
Robustness of Primitive and L-Primitive Words

Thesis submitted in partial fulfilment of the requirements
for the award of the degree of

Doctor of Philosophy

in

Computer Science and Engineering

by

Amit Kumar Srivastava

Under the supervision of

Dr. Benny George Kenkireth
Dr. Kalpesh Kapoor

Department of Computer Science and Engineering

Indian Institute of Technology Guwahati

Guwahati - 781039 Assam India

SEPTEMBER, 2017



Copyright c© Amit Kumar Srivastava 2017. All Rights Reserved.



Dedicated to

My beloved Family

For their love, care and support





Acknowledgements

While a completed dissertation bears the single name of the student, the process that leads

to its completion is always accomplished in combination with the dedicated work of other

people. I wish to acknowledge my appreciation to certain people.

First and foremost I want to thank my advisor Dr. Kalpesh Kapoor. He has taught me, both

consciously and unconsciously, how to think and move forward in theoretical computer

science. I appreciate all his contributions of time and ideas to make my Ph.D. work good.

The joy and enthusiasm he has for his research was contagious and motivational for me,

even during tough times in the Ph.D. pursuit.

I would like to thank my administrative advisor Dr. Benny George K. for his important

initial time to discuss basic ideas to start and improve my work. I would also like to thank

him for his support and encouragement. I would like to thank to Professor G. Sajith, Dr.

Deepanjan Kesh and Dr. K.V. Krishna, for their support and encouragement.

I wish to express my unqualified thanks to my wife, Priyanka Amit Srivastava. I could

never have accomplished this dissertation without her love, support, and understanding. I

also wish to say thanks to my son, Shivam and I am sorry that I could not give him time

when he needed most because of my research work and to complete of my dissertation. I

am extremely grateful to my father, Shri Brindaban Bihari Lal, and my mother Smt. Kusum

Srivastava, who raised me and taught me to study hard and to give priority in my life to the

quest for knowledge.

Last but certainly not least, thanks to people and the government of my country, Bharat,

and faculties of CSE department, IITG. I would like to express my full appreciation to the

Technical Officers of the Department of Computer Science and Engineering and the medical

staff of IIT Guwahati hospital to support me every time I needed.

September 2017 Amit Kumar Srivastava





Declaration

I certify that

• The work contained in this thesis is original and has been done by myself and under

the general supervision of my supervisors.

• The work reported herein has not been submitted to any other Institute for any degree

or diploma.

• Whenever I have used materials (concepts, ideas, text, expressions, data, graphs,

diagrams, theoretical analysis, results, etc.) from other sources, I have given due

credit by citing them in the text of the thesis and giving their details in the references.

Elaborate sentences used verbatim from published work have been clearly identified

and quoted.

• I also affirm that no part of this thesis can be considered plagiarism to the best of

my knowledge and understanding and take complete responsibility if any complaint

arises.

• I am fully aware that my thesis supervisors are not in a position to check for any

possible instance of plagiarism within this submitted work.

September 2017 Amit Kumar Srivastava





Department of Computer Science and Engineering
Indian Institute of Technology Guwahati
Guwahati - 781039 Assam India

Dr. Benny George Kenkireth
Assistant Professor
Email : ben@iitg.ernet.in

Dr. Kalpesh Kapoor
Professor

Email : kalpesh@iitg.ernet.in

Certificate

This is to certify that this thesis entitled “Robustness of Primitive and L-Primitive Words"

submitted by Amit Kumar Srivastava, in partial fulfilment of the requirements for the

award of the degree of Doctor of Philosophy, to the Indian Institute of Technology Guwa-

hati, Assam, India, is a record of the bonafide research work carried out by him under our

guidance and supervision at the Department of Computer Science and Engineering, Indian

Institute of Technology Guwahati, Assam, India. To the best of my knowledge, no part of

the work reported in this thesis has been presented for the award of any degree at any other

institution.

Date: September 2017

Place: Guwahati

Dr. Kalpesh Kapoor Dr. Benny George Kenkireth





Abstract

Word combinatorics is a field which aims to study words and formal languages over some

alphabet containing symbols, to understand their properties, with respect to operations such

as concatenation, insertion, deletion and exchange of symbols. One of the most important

study in the field of Word combinatorics is of primitive words, their properties and robust-

ness. A word is said to be primitive if this can not be written as proper power of a smaller

word. We investigate the effect on primitive words of point mutations (inserting or deleting

symbols, substituting a symbol for another one), of morphisms, and of the operation of

taking prefixes.

We characterise the subset of

• Primitive words that remains primitive on the operations, viz. substitution of any

arbitrary symbol from the primitive words, deletion or insertion of a symbol in the

primitive words or exchange of consecutive symbols. The properties of the languages

of such primitive words are also discussed.

2 We find a property of language L such that the set QL, language of L-primitive words

over an alphabet is reflective. We also find the smallest language L such that QL = Q.

We examine the robustness of the language of L-primitive words.

3 We next examine the robustness of the language of pseudo-primitive words with a

morphic involution. It is proved that a language of ins-robust pseudo-primitive words

is not regular for an involution morphism.

[[]X]\\
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“You have to grow from the inside out. None can teach you,

none can make you spiritual. There is no other teacher but

your own soul."

Swami Vivekananda (1863 - 1902) World spiritual leader

Chapter1
Introduction

Extensive research has been done over the past three decades on Combinatorics on

Words. Despite the fact that there has been important contributions on words starting

from the last century, they were usually needed as tools in computer science and mathe-

matics. The main objects of automata theory are words, and in fact in any standard model

of computing, words are main entity. Even when computing on numbers computers oper-

ate on words, i.e., representations of numbers as words. Consequently, on one hand, it is

natural to study algorithmic properties of words. The collective works by several people

under the pseudonym of Lothaire that has been documented in the form of series of books;

namely algorithmic [1], algebraic [2], and applied combinatorics on words [3] gives an

account of it. Several classical notions on properties of words have been explored. The

wide range of applications of combinatorial properties of words in the subject of formal

language theory [4], coding theory [5], computational biology [6], DNA computing [7],

string matching [8, 9] etc. have drawn a lot of attention. One of the interesting problem

which is still unsolved is whether the language of primitive words is context-free [10].

Primitive words play an important role in formal language theory [4], coding theory [5],

combinatorics on words [1]. The theory of primitive words has been extensively studied and

many combinatorial properties have been unveiled; see for example [11, 12, 13, 10, 14, 15].

Outline of Thesis

The thesis comprises six chapters. The chapter wise organization of the thesis is given

below:

Chapter 1: This chapter discusses the motivation behind the research, followed by a survey

of the state-of-art. It also briefly describes the contributions made in this thesis.

1



Chapter 2: In this chapter, we review the basic concepts on words. We mention some

important results which are required to analyse the work in this thesis.

Chapter 3: This chapter presents the contributions made in some special type of primitive

words which remain primitive after substitution of a symbol. This type of primitive

words are called substitute robust primitive words. We discuss the characteristics and

properties of these words. We also discuss the relation of the language of substi-

tute robust primitive words, language of non-substitute robust primitive words with

some formal languages. We discuss about del-robust primitive words, the primitive

words which remain primitive after deletion of any one symbol. Next we study about

the characteristics, properties and algorithmic method to identify such words. We

show that the language of non-del-robust primitive words is not context free. We

also discuss relation of the language of del-robust primitive words with other formal

languages. The similar results are discussed for the ins-robust and exchange-robust

primitive words.

Chapter 4: This chapter presents the contributions made in L-Primitive Words and discuss

on various point mutations on these words. We discuss the word primitivity over some

language L called L-primitive word in this chapter and characterise them. We dis-

cuss various robustness of L-primitive words. The relation of language of L-primitive

words with the language of primitive words is discussed with the various languages

which is subset of V ∗. We also discuss some robustness of L-primitive words.

Chapter 5: This chapter presents the contributions made in Pseudo Quasiperiodic Words.

In this chapter, we study some robustness of θ-primitive words that remains θ-primitive

on insertion of any arbitrary symbol from the alphabet. Recall that θ is a morphic in-

volution on V ∗. We also discuss the θ-superprimitive words and pseudo L-primitive

words and their characterization.

Chapter 6: This chapter presents the future works.

[[]X]\\
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“You cannot believe in God until you believe in yourself."

Swami Vivekananda (1863 - 1902): A chief disciple of the

19th-century Indian mystic Ramakrishna.

Chapter2
Background and Literature Survey

We introduce words and give some basic results on words, morphism and primitive words

and formal languages which will be used in later chapters.

2.1 Words

An alphabet is a finite non-empty set V . The elements of V are called symbols or letters

of V . A finite word over an alphabet V is a finite sequence of letters drawn from V . We

assume that an alphabet V contains at least two elements. The empty word is denoted by λ.

Concatenation or product of words is defined as (a1 . . . an).(b1 . . . bm) = a1 . . . an.b1 . . . bm.

Clearly, this operation is associative and the empty word is the unit element with respect

to this operation. The set of all words of length n over V is denoted by V n. We define

V ∗ =
⋃
n∈N V

n, where V 0 = {λ} and, V + = V ∗\{λ}. A language L over V is a subset of V ∗.

Consequently, V ∗ = (V ∗, .) and V + = (V +, .) are a monoid and a semigroup respectively.

Recall that a monoid S is called free if it has a subset B such that each element of S can

be uniquely expressed as the finite sequences of zero or more elements of B. Such a B is

referred to as a free generating set of S, or a base of S.

We denote length of word w as |w| which is the total number of letters in w. The notation

|w|a denotes the number of letter a in w. The letters that appear in w is Alph(w) = {a |
|w|a ≥ 1}. A power of a word u is a word of the form uk for some k ∈ N. It is convenient

to set u0 = λ, for each word u. When k ∈ N \ {0, 1}, we say that uk is a proper power of u.

A word u is said to be a prefix (resp. suffix, resp. factor ) of a word v if there exists a word

t (resp. t, resp. t and s) such that ut = v (resp. tu = v, resp. tus = v). All these are said

to be proper if they are different from v. The set of all prefixes of w is denoted by pref (w),

while pref k(w) means the prefix of length k of w (or w if |w| < k). Similarly, by suf (w),for

instance, we mean the set of suffixes of w and Fact(w) is set of factors of w. The reverse of a

3



2.1. WORDS

word w = a1 . . . an with ai ∈ V is wR = an . . . a1. A language L is called reflective if uv ∈ L
implies vu ∈ L, for all u, v ∈ V ∗.

A word w is said to be a conjugate of a word x if w is a cyclic shift of x, that is, if w = uv

and x = vu for some u, v ∈ V ∗ [16]. A language L ⊆ V ∗ is called a k-dense language if for

every word w ∈ V ∗, there exist words x, y ∈ V ∗ where |xy| ≤ k such that xwy ∈ L. L is

said to be dense if it is k-dense for all k ≥ 1. A language L ⊆ V ∗ is called right k-dense if for

every u ∈ V ∗ there exists a word x ∈ V ∗ where |x| ≤ k such that ux ∈ L. The language is

said to be right dense if it is right k-dense for every k ≥ 1.

Let w = a1a2 . . . an with ai ∈ V . A number p is period of w if ai = ai+p for i = 1, . . . , n−p.
A word can have several periods. For example words abcabcabca and aabaabbaabaa have

periods 3, 6, 9 and 7, 10, 11 respectively. We define the minimum of all the periods of a

word w as per(w). Moreover, any number greater than |w| is always a period of w.

The rational |w|/per(w) is called the exponent of w. If the exponent is an integer number

k > 1, w can be simply written as uk and is called an integer power (or k-power). A

repetition is a word of exponent 2 or more, that is, a word with the period of at most half

the word length. A maximal repetition at a position i in a word is a factor w(i, j) which is a

repetition such that its extension by one letter to the right or to the left yields a word with

a larger period, that is,

• per(w(i, j)) < per(w(i, j + 1))

• per(w(i, j)) < per(w(i− 1, j))

where per(w) is period of word w [17, 18]. For example, the factor ababa in the word

w = abaababaabaab, is a maximal repetition at fourth position with period 2, while the

factor abab is not a maximal repetition at this position. Section (4) [17] discuss the linear-

time algorithm for finding all maximal repetitions in a word together with their periods.

Several facts about word combinatorics are known, we recall some of them.

Theorem 2.1 ([19]). Let w and x be conjugates. Then w is a power if and only if x is a power.

Furthermore, if w = yk, k ≥ 2, then x = zk where z is a conjugate of y.

Lemma 2.1. Let L be a reflective language. Then L is also reflective.

Lemma 2.2. Let L be a reflective language. Further, let S ⊆ L is reflective. Then L \ S is also

reflective.

Theorem 2.2 ([20]). If words u, w, x and y over V satisfy uw = xy, then there exists a

unique word t such that either

(a) u = xt and y = tw, or

4



CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

(b) x = ut and w = ty.

Theorem 2.3 ([21]). Let u, v ∈ V +. The following conditions are equivalent :

(a) u and v are conjugates,

(b) there exists a word z such that uz = zv,

(c) there exists words z, p and q such that u = pq, v = qp and z ∈ p(qp)∗.

Theorem 2.4 (Fine and Wilf, 1956, [22]). Let u, v ∈ V +. Then the words u and v are

powers of a same word if and only if the words ur and vr have a common prefix of length

|u|+ |v| − gcd(|u|, |v|).

There exists an obvious reformulation of Theorem 2.4.

Corollary 2.1. If a word has two periods p and q, and if it is of length at least p+q−gcd(p, q),

then it has also a period gcd(p, q).

Theorem 2.5 (Fine and Wilf, [1]). Let u and w be words over an alphabet V . Suppose uh

and wk, for some h and k, have a common prefix of length |u|+ |w| − gcd(|u|, |w|). Then there

exists z ∈ V ∗ of length gcd(|u|, |w|) such that u,w ∈ z∗. The value |u| + |w| − gcd(|u|, |w|) is

also the smallest one that makes the theorem true.

Lemma 2.3 (Lyndon-Schutzenberger [11]). Let u, v ∈ V ∗ with uv = vu. Then there exists a

word t such that u, v ∈ t∗ := {tn | n ∈ N}.

Lemma 2.4 (Lyndon-Schutzenberger [11]). Let u ∈ V +. Then there exist a unique primitive

word z and a unique integer k ≥ 1 such that u = zk.

2.2 Finite Automata

An automaton over an alphabet V , is a composition A = 〈S,E, I, T 〉, consisting of a finite

set of states S, a finite set of edges or transitions E ⊂ S×V ∗×S, set of an initial state I ⊂ S
and set of terminal states T ⊂ S. For an edge e = (p, u, q), p is the origin state, u is the

label and q is the end state. A path between two states is successful if it starts in an initial

state and ends in a terminal state. The set recognized by the automaton is the set of labels

of its successful paths. A set is recognizable or regular if it is the set of words recognized by

some automaton (Kleene’s Theorem). The symbol processing neural networks have a rich

history [23, 24, 25]), and that networks of string-processing finite automata have appeared

in many contexts ([26, 27, 28]).

5



2.2. FINITE AUTOMATA

Regular expressions over an alphabet V

(a) each symbol a ∈ V is a regular expression.

(b) the empty string λ is a regular expression.

(c) the null set φ is a regular expression.

(d) if r and s are regular expressions, then so is (r|s), where | represents union.

(e) if r and s are regular expressions, then so is rs.

(f) if r is a regular expression, then so is r∗.

Every regular expression is built up inductively, by finitely many applications of the above

rules. A regular language is a formal language that can be expressed using a regular ex-

pression.

Lemma 2.5. (Pumping lemma for regular languages [29]) For a regular language L ⊆ V ∗,

there exists an integer p ≥ 1 such that for every word w ∈ L with |w| ≥ p, there is a factoriza-

tion w = xyz in V ∗ satisfying y 6= λ, |xy| ≤ p and xynz ∈ L for all n ∈ N.

The integer p in the statement of the lemma is called the pumping length of L.

A context-free grammar G = 〈N,T, P 〉 consists of an alphabet N of variables, an alphabet

T of terminal letters, which is disjoint from N , and a finite set P ⊆ N × (N ∪ T )∗ of

productions. A language L ⊆ T ∗ is a context-free language if there exists a context-free

grammar G = 〈N,T, P 〉 and a variable v ∈ N such that L = L(G, v) = {w ∈ T ∗ | v→∗w}.

Lemma 2.6. (Pumping Lemma for Context-Free Languages [30, 31]) Let L ⊆ V ∗ be a context-

free language. There exists p ∈ N such that if w ∈ L and |w| ≥ p, then there exists a

factorization w = (u, v, x, y, z) satisfying |v|, |y| > 0, |vxy| ≤ p, and uvixyiz ∈ L for each

i ≥ 0.

Definition 2.1. A pushdown automaton PDA is defined as P = 〈S, I, T, δ, s0, st〉, where

(a) S is a finite set of states.

(b) I is the input alphabet

(c) T is the pushdown list alphabet

(d) δ is a mapping from S × (I ∪ {λ})× T to S × T ∗. The value of δ(s, a,A) is, if defined, is

of the form (s
′
, B) where s

′ ∈ S, A on the top of the stack which is in T , is replaced by

B ∈ T ∗ and a ∈ I ∪ {λ}.

6



CHAPTER 2. BACKGROUND AND LITERATURE SURVEY

(e) s0 ∈ S is the initial state of the finite control.

(f) st is one of the designated final state.

The language accepted by PDAs are exactly the context-free languages [32].

Definition 2.2. A PDA, P = 〈S, I, T, δ, s0, st〉, is deterministic if

(a) for each p ∈ S, each a ∈ I, and each A ∈ T , δ does not contain both, an instruction

(p, λ,A)(q,B) and an instruction (p, a,A)(q,B).

(b) for each p ∈ S, each a ∈ I ∪ {λ}, and each A ∈ T , there is at most one instruction

(p, a,A)(q,B) in δ.

2.3 Primitive Words

A word w ∈ V + is said to be primitive if w cannot be written as the integral power of a

shorter word. Formally, w is primitive if w = vn implies w = v and n = 1. The languages of

primitive and non-primitive words are denoted by Q and Z, respectively [33]. We denote

the set of primitive words of length n as Q(n) and the set of non-primitive words of length

n as Z(n). Several facts are known about the languages Q and Z. We mention some of

them below which will be used later.

Lemma 2.7. A word w is primitive if and only if w is not an internal factor of its square ww,

that is, ww = xwy implies that either x = λ or y = λ [1, 40].

Theorem 2.6 ([11]). If u 6= λ, then there exist a unique primitive word p and a unique integer

k ≥ 1 such that u = pk.

Our next lemmas give an alternative condition for primitivity:

Lemma 2.8. A nonempty word w ∈ V ∗ is primitive if and only if it cannot be factored into

two nonempty commuting words: w ∈ Q ⇐⇒ w 6= λ ∧ ∀u, v ∈ V ∗, w = uv = vu =⇒ λ ∈
{u, v}.

Proof. If w ∈ Q and w = uv = vu for some non-empty words u and v then by lemma (2.3)

there exists a word t ∈ Q such that u, v ∈ t+ which is a contradiction as w = tk for some

k ≥ 2. Therefore λ ∈ {u, v}.

Conversely, let w 6= λ ∧ ∀u, v ∈ V ∗, w = uv = vu =⇒ λ ∈ {u, v}, and w /∈ Q then w = tk

for some t ∈ Q and k ≥ 2. Suppose u = tr and v = ts such that r, s ≥ 1 and r + s = k. In

this case w = uv = vu which is a contradiction.

7



2.3. PRIMITIVE WORDS

Proposition 2.1 ([15]). For every word u ∈ V + and every symbols a, b ∈ V , a 6= b, at least

one of the words ua, ub is primitive.

The above proposition says that the language of primitive words, Q is right 1-dense and

therefore right k-dense for every k.

The next result has several rather interesting consequences, proving in some sense that

"there are very many primitive words".

Corollary 2.2 ([34]). Let V be an alphabet containing at least two symbols.

(a) For every word u ∈ V ∗, at most one of the words ua, with a ∈ V , is not primitive.

(b) For all words u1, u2 ∈ V ∗, at most one of the words u1au2, with a ∈ V , is not primitive.

Lemma 2.9 ([15]). The languages Q and Z are reflective.

Theorem 2.7 ([34]). Let uv = f i, u, v ∈ V +, f ∈ Q, i ≥ 1. Then vu = gi for some g ∈ Q.

Lemma 2.10 ([15]). Let V be an alphabet containing at least two symbols.

(a) If w,wa /∈ Q where w ∈ V + and a ∈ V , then w ∈ a+.

(b) If u1, u2 ∈ V +, u1u2 6= an, for any a ∈ V , n ≥ 1 then at least one of the words among

u1u2, u1au2 is primitive.

Later we shall use several times the following two known results without explicitly men-

tioning them:

(a) If f, g ∈ Q, f 6= g, then for any m,n ≥ 2, fmgn ∈ Q. [33]

(b) If u, v ∈ V +, uv ∈ Q and n ≥ 2, then both u(uv)n and v(uv)n are in Q. [35]

For a morphism θ over an alphabet V , a word w ∈ V ∗ is called pseudo-power of a word

t ∈ V ∗ if w ∈ t{t, θ(t)}∗. A word w is θ-primitive if there exists no non-empty word t ∈ V +

such that w ∈ t{t, θ(t)}+. The word t is called pseudo-period of w relative to θ, or simply

θ-period of w if w ∈ t{t, θ(t)}∗. We call a word w ∈ V + θ-primitive if there exists no non-

empty word t ∈ V + such that w is a θ-power of t and |w| > |t|. We define the θ-primitive

root of w, denoted by ρθ(w), as the shortest word t such that w is a θ-power of t.

Some results from [36] for a morphic involution θ which is used later, are as follows:

Corollary 2.3. For any word w ∈ V ∗ there exists a unique θ-primitive word t ∈ V ∗ such that

w ∈ t{t, θ(t)}∗, i.e., ρθ(w) = t.

8
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Corollary 2.4. Let u, v ∈ V + be two words such that u, v ∈ t∗ for some t ∈ Q. Then

ρθ(u) = ρθ(v) = ρθ(t).

Corollary 2.5. If we have two words u, v ∈ V + such that u ∈ v{v, θ(v)}∗, then ρθ(u) = ρθ(v).

If every position in a string w is covered by an occurrence of a string t then we say that

t covers w. For example w = aabaaabaaabaabaa is covered by t = aabaa. If t covers w

then t is both a prefix and a suffix of w. A string is quasiperiodic if it can be covered by a

shorter string. A string is superprimitive if it is not quasiperiodic. If a superprimitive string

t covers a string w then t is called quasiperiod of w [37, 38]. For example, let V = {a, b, c}
be the alphabet. Then the word w = abcabcab is primitive but not superprimitive, covered

by abcab, whereas ambn is superprimitive for m, n ≥ 1.

A quasiperiod t of a string w is a unique substring of w which covers the word w, therefore

t is both prefix and suffix of w [37].

2.4 L-Primitive Words

Let L be a language over an alphabet V . A word x ∈ V + is said to be an L-primitive word if

x is not a proper power of any word in L. The set of L-primitive words over the alphabet V

is denoted by QL(V ) or simply QL and the set of non-L-primitive words over the alphabet

V is denoted by ZL.

An L-primitive word need not be primitive. For instance, let L = {abab} ⊆ {a, b}∗.
Clearly, the word abab is an L-primitive word, but not a primitive word. For w ∈ V +, we

define the set of L-primitive roots of w, denoted by L
√
w, is defined as

L
√
w = {x ∈ QL | xk = w, for some integer k ≥ 1}.

Further, for X ⊆ V ∗, the L-primitive root of X, denoted by L
√
X, is defined as

L
√
X =

⋃
w ∈ X\{λ}

L
√
w.

Some basic properties of L-primitive words are as follows.

(a) If L = φ, then QL = V +, the set of all nonempty words over V .

(b) If L = V ∗, then QL = QV , the set of all primitive words over V .

Proposition 2.2 ([39]). If L1 and L2 are two subsets of V ∗, then L1 ⊆ L2 =⇒ QL2 ⊆ QL1.

9
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Proposition 2.3 ([39]). Every primitive word is an L-primitive word. Hence, if |V | ≥ 2, then

|QL| =∞.

[[]X]\\
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“God helps those who help themselves."

Swami Vivekananda

Chapter3
Robustness of Primitive Words

3.1 Substitute-Robust Primitive Words

3.1.1 Symbol Substitution and Primitivity

Let V be an alphabet. For x ∈ V +, consider the set

one(x) = {x1bx2 | x = x1ax2, x1, x2 ∈ V ∗, a, b ∈ V, a 6= b}

A primitive word is Subst-robust if w remains primitive on substitution of any arbitrary

symbol from the word w. In other words we say that x is subst-robust primitive word if

one(x) ⊆ Q [15].

The language of primitive words, Q, contains both subst-robust and non-subst-robust

words of arbitrary length. For example, wn = aba2b2 . . . anbn, n ≥ 3 are subst-robust,

whereas zn = abn, n ≥ 1 are not. (Note that replacing the second occurrence of b by a

in primitive word u = bbabaa we get the non-primitive word baabaa, therefore u is not

subst-robust.)

Proposition 3.1 ([15]). If V is an alphabet containing at least three symbols, then for each

word x ∈ V ∗ and for each decomposition x = x1ax2, x1, x2 ∈ V ∗, a ∈ V , there is b ∈ V, b 6= a,

such that x1bx2 is primitive.

If we start with x ∈ V ∗, x ∈ Z, then all substitutions in x gives a primitive word: from

Corollary 2.2(b), we know that if x = x1ax2 is not primitive then all words x1bx2, b 6= a, are

primitive. The argument holds even for V = {a, b}. The assertion in Proposition (3.1) does

not hold true for V = {a, b}, e.g., we can not replace the second occurrence of a by b in the

11
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word abaabb , or the last occurrence of b by a without loosing the primitivity. However, we

have the following result.

Lemma 3.1. If V = {a, b}, then for each word x ∈ V ∗, |x| ≥ 3, and for each decomposition

x = x1cdx2, x1, x2 ∈ V ∗, c, d ∈ V , at least one of the words x1c′dx2, x1cd′x2 is primitive,

where c, d, c′, d′ ∈ V , c′ 6= c and d 6= d′.

Proof. We prove it by contradiction. Consider a word x with |x| ≥ 4. Then x can be written

as x = x1αβx2 where α, β ∈ V , |x1x2| ≥ 2. As Q is reflective, then to prove the lemma it is

sufficient to prove that at least one of the x2x1α′β, x2x1αβ′ is primitive.

Assume on the contrary, x2x1α′β = um, x2x1αβ′ = vn for m,n ≥ 2 and u, v ∈ Q. It is not

possible to have m = n = 2 otherwise u = v which is a contradiction. So we can assume

that at least one of m and n is greater than 2 and without loss of generality we assume that

m ≥ 3, n ≥ 2. Similarly, we cannot have |u| = 1. Otherwise x2x1α′β = um implies that

u ∈ {a, b}. Then as α 6= α′, β 6= β′ then x2x1αβ′ is primitive which is a contradiction to the

assumption. Hence we have |u| ≥ 2.

Now, we have |x2x1| = m|u| − 2 and |x2x1| = n|v| − 2 which implies that

2|x2x1| = m|u|+ n|v| − 4

=⇒ |x2x1| =
m

2
|u|+ n

2
|v| − 2

As m ≥ 3, n ≥ 2, we can write |x2x1| ≥ |u| + |v| + 1
2 |u| − 2. Since |u| ≥ 2 we obtain

|x2x1| ≥ |u|+ |v| − 1. Consider the following cases.

(a) If |x2x1| = |u|+ |v| − 1 then m = n = 2 which leads to a contradiction.

(b) If |x2x1| > |u| + |v| − 1 then by Theorem 2.5, there exist a word y such that u = yk

and v = yl for some integers k, l. Hence x2x1α′β = ykm and x2x1αβ′ = yln which is

a contradiction.

Thus at least one of the x2x1α′β and x2x1αβ′ is a primitive word.

The condition |x| ≥ 3 in the Lemma 3.1 is necessary: for x = ab, neither aa nor bb is

primitive. Note also that ab is primitive, hence the condition of x being primitive does not

help.

A subst-robust primitive word w is a primitive word which remains primitive on substitute

of any arbitrary symbol from the word w. The formal definition is as follows.

12
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Definition 3.1 (Substitute-Robust Primitive Word). A primitive word w of length n is said to

be subst-robust primitive word if and only if the word

pref(w, i) .a. suf(w, n− i− 1)

is a primitive word for all i ∈ {0, 1, . . . , n− 1} and for all a ∈ V .

For example, the words abba and anbn for n ≥ 2 are subst-robust primitive words.

The collection of all subst-robust primitive words over an alphabet V is denoted by QS .

Clearly, the language of subst-robust primitive words is a subset of the set of primitive

words, Q. Next lemma is a structural reformulation of definition of subst-robust primitive

words.

Proposition 3.2. A primitive word w is not subst-robust if and only if w can be expressed in

the form of uk1u1cu2uk2 where u, u1, u2 ∈ V ∗, k1, k2 ≥ 0, k1 +k2 ≥ 1 and u1bu2 = u, for some

c 6= b, c, b ∈ V .

Proof. We prove the sufficient and necessary conditions below.

(⇐) This part is straightforward. Let us consider a word w = uk1u1cu2u
k2 where u1bu2 = u

for some b 6= c and b, c ∈ V . Now substitution of the letter b at place of c in w gives the

exact power of u which will be a non-primitive word. Hence, w is not a subst-robust

primitive word.

(⇒) Let w be a primitive word but not subst-robust primitive word. Then there exists a

decomposition w = w1cw2 for c ∈ V such that w1bw2 is not a primitive word for some

b 6= c and b ∈ V . That is, w1bw2 = un for some u ∈ Q and n ≥ 2. Therefore w1 = uru1

and w2 = u2u
s for r, s ≥ 0 and r + s ≥ 1 such that u1bu2 = u. Hence w = uru1cu2u

s.

We denote the set of non-subst-robust primitive words as QS = Q \ QS , where ‘\’ is the

set difference operator. By Lemma 2.9, we know that the language of primitive words Q

and the language of non-primitive words Z over an alphabet V are reflective. Similarly, we

have the property of reflectivity for the language of subst-robust primitive words QS .

Lemma 3.2. If w ∈ QS then rev(w) ∈ QS .

Proof. We prove this by contradiction. Let w ∈ QS such that rev(w) is not a subst-robust

primitive word. Therefore, rev(w) = prp1ap2p
s where p ∈ Q and p = p1bp2 for some

13
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a 6= b. Then the word w = rev(prp1ap2p
s) = (rev(p))s rev(p2) a rev(p1) (rev(p))r and

since p = p1 b p2, so rev(p) = rev(p2) b rev(p1). By Proposition 3.2, w is not a subst-robust

primitive word, which is a contradiction. Therefore, if w ∈ QS then rev(w) ∈ QS .

Next we show that any cyclic permutation of a subst-robust primitive word is also a subst-

robust primitive word.

Theorem 3.1. QS is reflective.

Proof. (By contradiction.) Let there be a word w = xy ∈ QS such that yx /∈ QS . Since

w ∈ QS hence w ∈ Q. Q is reflective (lemma 2.9), therefore yx ∈ Q and so yx ∈ Q \ QS ,

that is, yx ∈ QS . Using Proposition 3.2, we have yx = uru1au2u
s where u = u1bu2 ∈ V ∗ for

some b ∈ V , b 6= a and r+ s ≥ 1. We consider here two cases depending on the inclusion of

the letter a either in word y or in the word x.

Case A If a is contained in y, we consider two subcases.

Case A.1 If u1au2 is contained in y then y = uru1au2u
r′u′1, and x = u′2u

s′ for u =

u1bu2 = u′1u
′
2. So xy = u′2u

s′uru1au2u
r′u′1 which is not subst-robust as after

substitution of a by b the new word will be u′2u
s′uru1bu2u

r′u′1 = (u′2u
′
1)
s′+r+r′+2

which is not a primitive word. This is a contradiction to the assumption that

w = xy ∈ QS .

Case A.2 If a portion of u2 belongs to y then y = uru1au
′
2, and x = u

′′
2u

s for u =

u1bu2 and u2 = u′2u
′′
2 . Now, xy = u

′′
2u

suru1bu
′
2 which is not subst-robust as

after substitution of a by b, and the result will be (u
′′
2u1bu

′
2)
s+r+1 a non-primitive

word. This is a contradiction to the assumption that w = xy ∈ QS .

Case B If a belongs to x, similar subcases as in Case A are to be considered and proved.

Hence QS is reflective.

Corollary 3.1. QS is reflective.

Proof. We prove it by contradiction. Let there be a word w = xy ∈ QS such that yx /∈ QS .

By Lemma 2.9, we have that xy ∈ Q and Q is reflective, so, yx ∈ Q. Therefore yx ∈ Q \QS ,

that is, yx ∈ QS . Since QS is reflective, by Theorem 3.1, we have xy ∈ QS , which is a

contradiction. Hence yx ∈ QS .

Corollary 3.2. A word w is in the set QS if and only if it is of the form unu′a or its cyclic

permutation for some u ∈ Q, u 6= a, n ≥ 1 and u = u′b for some b ∈ V and b 6= a.
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Proof. We prove the sufficient and necessary conditions below.

(⇒) Let w ∈ QS , then w can be written as w = uru1au2u
s where u(= u1bu2) ∈ Q for some

b 6= a and a, b ∈ V . Since QS is reflective, and u2usuru1b = ((u2u1b)
r+s+1) ∈ Z and

so w is a cyclic permutation of vr+sv′a where v = v′b and v′ = u2u1.

(⇐) If a word w is a cyclic permutation of unu′a for n ≥ 1 then after replacing a by b it gives

a cyclic permutation of un+1 which is non-primitive. Since Z is reflective therefore,

w ∈ QS .

Observe that not all infinite subsets of Q are reflective. For example, the subset {anbn |
n ≥ 1} of Q over the alphabet {a, b} is not reflective. We now investigate the relation

between the language of non-subst-robust primitive words with the traditional languages

in Chomsky hierarchy.

Theorem 3.2. QS is not a context-free language.

Proof. On contradiction, let us assume that QS is a context-free language. Let p > 0 be

an integer which is the pumping length that is guaranteed to exist by the pumping lemma.

Consider the string s = ap+1bp+1ap+2bp, where a and b are distinct letters from the underly-

ing alphabet V . It is easy to see that s ∈ QS and |s| ≥ p.

Hence, by Pumping Lemma for context free languages, s can be written in the form

s = uvwxy, where u, v, w, x, and y are factors, such that |vwx| ≤ p, |vx| ≥ 1, and uvkwxky

is in QS for every k ≥ 0. By the choice of s and the fact that |vwx| ≤ p, it is easily seen

that the substring vwx can contain no more than two distinct symbols. That is, we have

uvwxy = ap+1bp+1ap+2bp, vwx ≤ p, |vx| ≥ 1. There are four main cases to be considered.

The string vwx is

(a) power of a.

(b) power of b.

(c) of the form ajbk, j, k ≥ 1.

(d) of the form bjak, j, k ≥ 1.

Case (a) First we discuss pumping lemma such that vwx is a power of a. There are two

possible cases.

(i) u = am, v = aj , w = ak, x = al, y = anbp+1ap+2bp,

j + l ≥ 1, j + k + l ≤ p, m+ j + k + l + n = p+ 1.
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In this case, pumping lemma does not satisfy for i = 0 as uviwxiy = ap
′
bp+1ap+2bp

/∈ QS , where 1 ≤ p′ (= m+ k + n) ≤ p.

(ii) u = ap+1bp+1am, v = aj , w = ak, x = al, y = anbp,

j + l ≥ 1, j + k + l ≤ p, m+ j + k + l + n = p+ 2.

For i = 3, uviwxiy = ap+1bp+1ap
′
bp /∈ QS as p′ (= m+3j+k+3l+n = p+2+2j+2l) >

p+ 3

and therefore no replacement in uviwxiy is possible to make it non-primitive, and

therefore pumping lemma does not hold.

Case (b) Next we discuss the pumping lemma such that vwx is a power of b.

(i) u = ap+1bm, v = bj , w = bk, x = bl, y = bnap+2bp, j + l ≥ 1, j + k + l ≤ p,

m+ j + k + l + n = p+ 1.

uviwxiy = ap+1bp
′
ap+2bp /∈ QS for i = 2 as p′ ≥ p+ 3.

Clearly in this case pumping lemma does not hold.

(ii) u = ap+1bp+1ap+2bm, v = bj , w = bk, x = bl, y = bn, j + l ≥ 1, j + k + l ≤ p,

m+ j + k + l + n = p.

uviwxiy = ap+1bp+1ap+2bp
′
/∈ QS for i = 4 as p′ ≥ p+ 3

that is, in this case also no replacement will give non-primitive word.

Case (c): In this case we discuss the pumping lemma so that vwx = ajbk, j, k ≥ 1.

We have, u = am, v = aj , w = ak
′
, x = albk, y = bnap+2bp.

Here j + l + k ≥ 1, j + k′ + k + l ≤ p, m+ j + k′ + l = p+ 1 and k + n = p+ 1.

In this case, uviwxiy = ama3jak
′
albkalbkalbkbnap+2bp

= ap+1a2jbkalbkalbp+1ap+2bp.

In this case for i = 3, uviwxiy /∈ QS as 0 ≤ l, k < p.

Case (d) Similar to Case (c), we can find i in this case as well, such that pumping lemma

does not hold.

Since pumping lemma does not hold in any case, therefore QS is not context-free.

3.1.2 Recognizing Subst-Robust Primitive Words

In this section we give a linear time algorithm to recognize a subst-robust primitive word.

An algorithm to test whether a given word is primitive, is based on the lemma 2.7 which

state that a word w is primitive if and only if w is not an internal factor of ww.
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Observe that if a word w ∈ QS , then by Corollary 3.2, there exists a cyclic permutation of

w which contains a factor of length |w|−1 with periodicity p which divides |w| and
|w|
p
≥ 2.

We make use of this fact in the following theorem by observing that the word ww contains

a periodic substring (of length |w| − 1) of one of the cyclic permutation of a word w.

Lemma 3.3. Let u be a primitive word. Then u is a non-subst-robust primitive word if and

only if the word uu contains a periodic word of length |u| − 1 with periodicity p such that p

divides |u| and
|u|
p
≥ 2.

Proof. We prove the sufficient and necessary conditions below.

(⇒) Let u be a non-subst-robust primitive word. Thus u can be written as trt1at2ts where

t1, t2 ∈ V ∗, a ∈ V , r + s ≥ 1 and t = t1bt2 for some a 6= b. Thus, the word uu =

trt1at2t
strt1at2t

s contains a factor t2tstrt1 of length |u| − 1 which is equal to the

primitive word (t2t1b)
r+st2t1.

(⇐) Let the word uu have a factor of length |u|−1 which is periodic with periodicity p such

that
|u|
p
≥ 2 where u is a primitive word. Then uu = t1p

rp′at2, where t1, t2 ∈ V ∗,

|prp′| = |u| − 1, p = p′b ∈ Q for some a 6= b and r ≥ 1. Since |prp′a| = |u|, and

therefore u is a cyclic permutation of non-subst-robust primitive word prp′a. Since

QS is reflective, therefore u ∈ QS .

Let u be primitive word. The following corollary claims that there are some maximal

repetitions with specific periods in the word uu whose lengths are at least |u| − 1 if u ∈ QS .

Corollary 3.3. Let u be a primitive word. If the word uu contains a maximal repetition of

length at least |u| − 1 with a period p where p divides |u| and p < |u| then u is a non-subst-

robust primitive word.

Proof. Let a maximal repetition vkv1 be a factor of uu for v ∈ Q, k ≥ 2 and v1 be prefix of v

such that |v1| = |v| − 1. Since |v| divides |u|, we have |u| = r|v| for some r ≥ 2 and r ≤ k,

that is, uu contains vrv1. Hence by Lemma 3.3, u is a non-subst-robust primitive word.

The computation of maximal repetitions in a word can be done in linear time in terms of

the length of the input word [17].
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3.2 Del-Robust Primitive Words

In this section, we present another type of primitive words which remain primitive after

deletion of any one symbol. Such words are called del-robust primitive words. On the basis

of characteristics of primitive words we observe some properties of such words and relation

with some formal languages. We give a linear time algorithm to verify the del-robustness of

primitive words.

Definition 3.2 (Del-Robust Primitive Word). A primitive word w of length n is said to be

del-robust primitive word if and only if the word

pref (w, i) . suf (w, n− i− 1)

is a primitive word for all i ∈ {0, 1, . . . , n− 1}.

For example, the words a4b5 and aba2b2 . . . ambm for m ≥ 2 are del-robust primitive

words.

The collection of all del-robust primitive words over an alphabet V is denoted by QD.

Clearly, the language of del-robust primitive words is a subset of the set of primitive words,

Q. Next we give a structural characterization of the words that are in the set Q but not in

the set QD. The definition can be written in form of following lemma.

Proposition 3.3. A primitive word w is not del-robust if and only if w can be expressed in the

form of uk1u1cu2uk2 where u, u1, u2 ∈ V ∗, u1u2 = u, c ∈ V , k1, k2 ≥ 0 and k1 + k2 ≥ 1.

Proof. We prove the sufficient and necessary conditions below.

(⇐) This part is straightforward. Let us consider a word w = uk1u1cu2u
k2 where u1u2 = u

and c ∈ V . Now deletion of the letter c in w gives the exact power of u which will be

a non-primitive word. Hence, w is not a del-robust primitive word.

(⇒) Let w be a primitive word but not del-robust primitive word. Then there exists a

decomposition w = w1cw2 for c ∈ V such that w1w2 is not a primitive word. That

is, w1w2 = un for some u ∈ Q and n ≥ 2. Therefore w1 = uru1 and w2 = u2u
s for

r, s ≥ 0 and r + s ≥ 1 such that u1u2 = u. Hence w = uru1cu2u
s.

Definition 3.3 (Non-Del-Robust Primitive Words). A primitive word w, is said to be non-del-

robust primitive word if and only if w ∈ Q and w /∈ QD. Further, QD = Q \ QD, where ‘\’ is

the set difference operator.
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Proposition 3.4. Let u, v ∈ Q, um = u1au2 and v = u1u2. Then umvn ∈ QD for m,n ≥ 2.

Proof. From Lemma 2.10, we know that at least one of u1au2 and u1u2 is primitive. Since

um = u1au2 and v = u1u2, therefore umvn = u1au2(u1u2)
n. After deletion of the letter a

we will get (u1u2)
n+1 which is not a primitive word. However, by Lemma 3.5, umvn is a

primitive word for m,n ≥ 2. Hence it is not a del-robust word, that is, umvn ∈ QD.

Next, we discuss the reflective property for the language of del-robust primitive words

QD.

Lemma 3.4. If w ∈ QD then rev(w) ∈ QD.

Proof. We prove this by contradiction. Let w ∈ QD such that rev(w) is not a del-robust

primitive word. Therefore, rev(w) = prp1ap2p
s for some p ∈ Q and p = p1p2. Then the

word w = rev(prp1ap2p
s) = (rev(p))s rev(p2) a rev(p1) (rev(p))r and since p = p1p2, so

rev(p) = rev(p2)rev(p1). By Proposition 3.3, w is not a del-robust primitive word, which is

a contradiction. Therefore, if w ∈ QD then rev(w) ∈ QD.

Next we show that any cyclic permutation of a del-robust primitive word is also a del-

robust primitive word.

Theorem 3.3. QD is reflective.

Proof. (By contradiction.) Let there be a word w = xy ∈ QD such that yx /∈ QD. Since

w ∈ QD, hence w ∈ Q. By Lemma 2.9, we know that Q is reflective. Therefore yx ∈ Q

and so yx ∈ Q \ QD, that is, yx ∈ QD. Using Proposition 3.3, we have yx = uru1au2u
s

where u = u1u2 ∈ V ∗, a ∈ V and r + s ≥ 1. We consider here two cases depending on the

inclusion of the letter a either in word y or in the word x.

Case A If a is contained in y, we consider two sub-cases.

Case A.1 If u1au2 is contained in y then y = uru1au2u
r′u′1, and x = u′2u

s′ for u =

u1u2 = u′1u
′
2. So xy = u′2u

s′uru1au2u
r′u′1 which is not del-robust as after deletion

of a the new word will be (u′2u
′
1)
s′+r+r′+2 which is not a primitive word. This is

a contradiction to the assumption that w = xy ∈ QD.

Case A.2 If a portion of u2 belongs to y then y = uru1au
′
2, and x = u

′′
2u

s for u =

u1u2 and u2 = u′2u
′′
2 . Now, xy = u

′′
2u

suru1au
′
2 which is not del-robust as after

deletion of a, and the result will be (u
′′
2u1u

′
2)
s+r+1 a non-primitive word. This is

a contradiction to the assumption that w = xy ∈ QD.

Case B If a belongs to x, similar sub-cases as in Case A can be considered and proved.
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Hence QD is reflective.

Corollary 3.4. QD is reflective.

Proof. We prove it by contradiction. Let there be a word w = xy ∈ QD such that yx /∈ QD.

We have that xy ∈ Q and Q is reflective, so, yx ∈ Q. Therefore yx ∈ Q \QD, i.e. yx ∈ QD.

Since QD is reflective by Theorem 3.3, we have xy ∈ QD, which is a contradiction. Hence

yx ∈ QD.

Corollary 3.5. A word w is in the set QD if and only if it is of the form una or its cyclic

permutation for some u ∈ Q, u 6= a and n ≥ 2.

Proof. We prove the sufficient and necessary conditions below.

(⇒) Let w ∈ QD, then w can be written as w = uru1au2u
s for some u(= u1u2) ∈ Q and

a ∈ V . Since QD is reflective, therefore u2usuru1a = ((u2u1)
r+s+1a) is also in QD.

(⇐) If a word w is a cyclic permutation of una for n ≥ 2 then after deletion of a it gives

a cyclic permutation of un which is non-primitive (since Z is reflective). Therefore,

w ∈ QD.

We now investigate the relation between the language of non-del-robust primitive words

with the traditional languages in Chomsky hierarchy.

Theorem 3.4. QD is not a context-free language.

Proof. Let us assume that QD is a context-free language. Let p > 0 be an integer which is

the pumping length that is guaranteed to exist by the pumping lemma. Consider the string

s = ap+1bpapbpapbp, where a and b are distinct letters from an alphabet V . It is easy to see

that s ∈ QD and |s| ≥ p.

Hence, by the Pumping Lemma 2.6, s = uvwxy, where u, v, w, x, y ∈ V ∗ such that |vwx| ≤
p, |vx| ≥ 1, and uviwxiy ∈ QD for every i ≥ 0. By the choice of s and the fact that |vwx| ≤ p,
it is easily seen that the substring vwx can contain no more than two distinct symbols. That

is, we have s = uvwxy = ap+1bpapbpapbp, vwx ≤ p, |vx| ≥ 1. There are four main cases to

be considered. The string vwx is

(a) power of a.

(b) power of b.
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(c) of the form ajbk, j, k ≥ 1.

(d) of the form bjak, j, k ≥ 1.

Case (a) vwx is a power of a.

a(1) In this case we check for first substring of a, that is in ap+1. u = am, v = aj , w = ak,

x = al, y = anbpapbpapbp, j + l ≥ 1, j + k + l ≤ p, m+ j + k + l + n = p+ 1.

Now, uviwxiy = ap
′
bpapbpapbp /∈ QD for i = 0 as 1 ≤ p′ (= m+ k+n) ≤ p. Therefore,

in this case pumping law does not hold for QD. Next two cases a(2) and a(3) is to

check pumping lemma in both the substring ap at second and third occurrence in the

string s.

a(2) u = ap+1bpam, v = aj , w = ak, x = al, y = anbpapbp, j + l ≥ 1, j + k + l ≤ p,

m+ j + k + l + n = p.

uviwxiy = ap+1bpap
′
bpapbp /∈ QD for i = 0 as 0 ≤ p′ (= m+ k + n) < p.

a(3) u = ap+1bpapbpam, v = aj , w = ak, x = al, y = anbp, j + l ≥ 1, j + k + l ≤ p,

m+ j + k + l + n = p.

uviwxiy = ap+1bpapbpap
′
bp /∈ QD for i = 0 as 0 ≤ p′ (= m+ k + n) < p.

Case (b) vwx is a power of b. We check for the partition of s such that vwx = bn in b(1),

b(2) and b(3) cases.

b(1) u = ap+1bm, v = bj , w = bk, x = bl, y = bnapbpapbp, j + l ≥ 1, j + k + l ≤ p,

m+ j + k + l + n = p.

uviwxiy = ap+1bp
′
apbpapbp /∈ QD for i = 0 as 0 ≤ p′ (= m+ k + n) < p.

b(2) u = ap+1bpapbm, v = bj , w = bk, x = bl, y = bnapbp, j + l ≥ 1, j + k + l ≤ p,

m+ j + k + l + n = p.

uviwxiy = ap+1bpapbp
′
apbp /∈ QD for i = 0 as 0 ≤ p′ (= m+ k + n) < p.

b(3) u = ap+1bpapbpapbm, v = bj , w = bk, x = bl, y = bn, j + l ≥ 1, j + k + l ≤ p,

m+ j + k + l + n = p.

uviwxiy = ap+1bpapbpapbp
′
/∈ QD for i = 0 as 0 ≤ p′ (= m+ k + n) < p.

Case (c): In case (c), we discuss for the partition os s such that vwx = ajbk, j, k ≥ 1. In

this case there are nine cases based upon the division of v, w, and k in ajbk and position of

vwx in s.

c(1) u = am, v = aj , w = ak
′
, x = albk, y = bnapbpapbp, j + l + k ≥ 1, j + k′ + k + l ≤ p,

m+ j + k′ + l = p+ 1 and k + n = p.

uviwxiy = ap1bp2apbpapbp /∈ QD for i = 0 as 0 ≤ p1 (= m+ k′) ≤ p and p2 (= n) < p.
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c(2) u = ap+1bpam, v = aj , w = ak
′
, x = albk, y = bnapbp, j + l+ k ≥ 1, j + k′ + k + l ≤ p,

m+ j + k′ + l = p and k + n = p.

uviwxiy = ap+1bpap1bp2apbp /∈ QD for i = 0 as 0 ≤ p1 (= m+k′) < p and p2 (= n) < p.

c(3) u = ap+1bpapbpam, v = aj , w = ak
′
, x = albk, y = bn, j + l+ k ≥ 1, j + k′ + k + l ≤ p,

m+ j + k′ + l = p and k + n = p.

uviwxiy = ap+1bpapbpap1bp2 /∈ QD for i = 0 as 0 ≤ p1 (= m+k′) < p and p2 (= n) < p.

c(4) u = am, v = aj , w = ak
′
bl, x = bl

′
, y = bnapbpapbp, j + l′ ≥ 1, j + k′ + l + l′ ≤ p,

m+ j + k′ = p+ 1 and l + l′ + n = p.

uviwxiy = ap1bp2apbpapbp for i = 0, where p1 = m+k′ and p2 = l+n. Since j+ l′ ≥ 1

therefore either (p1 ≤ p and p2 ≤ p) or (p1 ≤ p+ 1 and p2 ≤ p− 1). In both the cases

uviwxiy = ap1bp2apbpapbp /∈ QD.

c(5) u = ap+1bpam, v = aj , w = ak
′
bl, x = bl

′
, y = bnapbp, j + l′ ≥ 1, j + k′ + l + l′ ≤ p,

m+ j + k′ = p and l + l′ + n = p.

uviwxiy = ap+1bpap1bp2apbp for i = 0, where p1 = m + k′ and p2 = l + n. Since

j + l′ ≥ 1 therefore either (p1 < p and p2 ≤ p or (p1 ≤ p and p2 < p). In both the

cases uviwxiy = ap1bp2apbpapbp /∈ QD.

c(6) u = ap+1bpapbpam, v = aj , w = ak
′
bl, x = bl

′
, y = bn, j + l′ ≥ 1, j + k′ + l + l′ ≤ p,

m+ j + k′ = p and l + l′ + n = p. Similar to the case c(5).

c(7) u = am, v = ajbk
′
, w = bl, x = bl

′
, y = bnapbpapbp, j + k′ + l′ ≥ 1, j + k′ + l + l′ ≤ p,

m+ j = p+ 1 and k′ + l + l′ + n = p.

uviwxiy = ap1bp2apbpapbp /∈ QD for i = 0 as p1(= m) ≤ p and p2 (= l + n) ≤ p.

c(8) u = ap+1bpam, v = ajbk
′
, w = bl, x = bl

′
, y = bnapbp, j + k′+ l′ ≥ 1, j + k′+ l+ l′ ≤ p,

m+ j = p and k′ + l + l′ + n = p.

uviwxiy = ap+1bpap1bp2apbp /∈ QD for i = 0 as p1(= m) < p and p2 (= l + n) ≤ p.

c(9) u = ap+1bpapbpam, v = ajbk
′
, w = bl, x = bl

′
, y = bn, j + k′+ l′ ≥ 1, j + k′+ l+ l′ ≤ p,

m+ j = p and k′ + l + l′ + n = p.

uviwxiy = ap+1bpapbpap1bp2 /∈ QD for i = 0 as p1(= m) < p and p2 (= l + n) ≤ p.

Case (d) Next we discuss for the division of s = uvwxy such that vwx = bjak, j, k ≥ 1.

d(1) u = ap+1bm, v = bj , w = bk
′
, x = blal

′
, y = anbpapbp, j + l + l′ ≥ 1, j + k′ + l + l′ ≤ p,

m+ j + k′ + l = p and l′ + n = p.

uviwxiy = ap+1bp1ap2bpapbp /∈ QD for i = 0 as p1 (= m+ k′) ≤ p and p2(= n) < p

d(2) u = ap+1bpapbm, v = bj , w = bk
′
, x = blal

′
, y = anbp, j + l + l′ ≥ 1, j + k′ + l + l′ ≤ p,

m+ j + k′ + l = p and l′ + n = p. Similar to case d(1).
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d(3) u = ap+1bm, v = bj , w = bk
′
al, x = al

′
, y = anbpapbp, j + l′ ≥ 1, j + k′ + l + l′ ≤ p,

m+ j + k′ = p and l + l′ + n = p.

uviwxiy = ap+1bp1ap2bpapbp for i = 0, where p1 = m + k′ and p2 = l + n. Since

j + l′ ≥ 1 therefore either (p1 < p and p2 ≤ p or (p1 ≤ p and p2 < p). In both the

cases uviwxiy = ap1bp2apbpapbp /∈ QD.

d(4) u = ap+1bpapbm, v = bj , w = bk
′
al, x = al

′
, y = anbp, j + l′ ≥ 1, j + k′ + l + l′ ≤ p,

m+ j + k′ = p and l + l′ + n = p. Similar to case d(3).

d(5) u = ap+1bm, v = bjak
′
, w = al, x = al

′
, y = anbpapbp, j+ k′+ l′ ≥ 1, j+ k′+ l+ l′ ≤ p,

m+ j = p and k′ + l + l′ + n = p

uviwxiy = ap+1bp1ap2bpapbp /∈ QD for i = 0 as p1 (= m) < p and p2 = (l + n) ≤ p.

d(6) u = ap+1bpapbm, v = bjak
′
, w = al, x = al

′
, y = anbp, j + l′ ≥ 1, j + k′ + l + l′ ≤ p,

m+ j = p and k′ + l + l′ + n = p. Similar to case d(5).

In any of the above cases Pumping Lemma does not hold, therefore the assumption that

QD is context-free must be false.

3.2.1 Recognizing Del-Robust Primitive Words

In this section we give a linear time algorithm to recognize a del-robust primitive word.

An existing algorithm to test whether a given word is primitive, is based on the idea that

a word w is primitive if and only if w is not an internal factor of its square ww, that is,

ww = xwy implies that either x = λ or y = λ [1].

Observe that if a word w ∈ QD, then by Corollary 3.5 there exists a cyclic permutation of

w which contains a non-primitive factor of length |w| − 1. We make use of this fact in the

following theorem by observing that the word ww consists of all the cyclic permutation of

a word w.

Theorem 3.5. Let u be a primitive word. Then u is a non-del-robust primitive word if and

only if the word uu contains at least one non-primitive word of length |u| − 1.

Proof. We prove the sufficient and necessary conditions below.

(⇒) Let u be a non-del-robust primitive word. Thus u can be written as trt1at2ts for some

primitive word t = t1t2 where t1, t2 ∈ V ∗, a ∈ V and r + s ≥ 1. Thus, the word

uu = trt1at2t
strt1at2t

s contains a factor t2tstrt1 of length |u| − 1 which is equal to the

non-primitive word (t2t1)
r+s+1.
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(⇐) Let the word uu have a non-primitive factor of length |u| − 1 where u is a primitive

word. Then uu = t1p
rt2, where t1, t2 ∈ V ∗, |pr| = |u| − 1, p ∈ Q and r ≥ 2. Here we

have two cases to consider viz. either the word pr is entirely contained in the word u

or some segment of the word pr is contained in the word u.

Case A Let pr be entirely in u. Then u is not del-robust as u can be either apr or pra

for some a ∈ V .

Case B Let some portion of pr be contained in u. Since uu = t1p
rt2 and Z is reflective

(by Lemma 2.9), we have t2t1p
r = u′u′, where u′ is cyclic permutation of u.

Here pr is entirely in u′ which is the Case (A). Therefore u′ = apr, that is, u′ is a

non-del-robust word. Thus u, which is nothing but a cyclic permutation of u′, is

also a non-del-robust word.

Recall the definition of maximal repetitions given in Section 2.1. Let u be primitive word.

The following lemma claims that there are some maximal repetitions with specific periods

in the word uu whose lengths are at least |u| − 1 if u ∈ QD.

Corollary 3.6. Let u be a primitive word. If the word uu contains a maximal repetition of

length at least |u| − 1 with a period p where p divides |u| − 1 and p < |u| − 1 then u is a

non-del-robust primitive word.

Proof. Let a maximal repetition vkv1 be a factor of uu for v ∈ Q, k ≥ 2 and v1 be prefix of

v. Since |v| divides |u| − 1, we have |u| − 1 = r|v| for some r ≥ 2 and r ≤ k, that is, uu

contains vr. Hence by the Theorem 3.5, u is a non-del-robust primitive word.

The computation of maximal repetitions in a word can be done in linear time in terms

of the length of the input word [17]. Next we present a linear time algorithm to test del-

robustness of a primitive word by using the algorithm, FINDMAXIMALREPETITIONS, that

finds maximal repetitions and testing primitivity in linear time for a given word.

Theorem 3.6 (Correctness of the ISDELROBUST Algorithm). Let u be a word. The Algorithm

1 returns True if and only if u is a del-robust primitive word.

Proof. The correctness of the algorithm follows from the Corollary 3.6 which is used in the

step 8 of the algorithm.

Theorem 3.7 (Complexity of the ISDELROBUST Algorithm). The time complexity of the Al-

gorithm 1 for an input word with length n is O(n).
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Algorithm 1 DEL-ROBUST PRIMITIVE WORD

Input: A finite word u
Output: “True” if u is a del-robust primitive word, else “False”

1: procedure ISDELROBUST

2: Let v ← uu.
3: S ← FindMaximalRepetitions(v) . S is a set of pairs of period and length.
4: for all (pi, li) ∈ S do
5: if |u| mod pi = 0 and pi < |u| then . Testing primitivity.
6: return False . The word u is not primitive.
7: end if
8: if pi < |u| − 1 and (|u| − 1) mod pi = 0 and li ≥ |u| − 1 then
9: return False (Corollary 3.6) . The word u is not del-robust.

10: end if
11: return True . The word u is del-robust.
12: end for
13: end procedure

Proof. In step (3), the set of pairs of periods and corresponding lengths of maximal repe-

titions of uu can also be computed in linear time [17]. The number of pairs returned in

step (3) is bounded by O(n). Thus, step (4) - (9) takes linear time to find those periods

which are mentioned in Corollary 3.6. Therefore the total time taken by the algorithm to

test del-robustness of a word of length n is O(n).

3.2.2 Counting Del-Robust Primitive Words

In this section we give a lower bound on number of n-length del-robust primitive words.

Let V be an alphabet and Z(n) = V n \ Q(n) be the set of n-length non-primitive words.

Given a word w ∈ Z(n− 1) and a symbol a ∈ V , the number of the words that are obtained

by inserting a in w is equal to

|{w1aw2 | w = w1w2, w1, w2 ∈ V ∗}| = n− |w|a.

(For example if w = w1.a.a.w2 then insertion of a immediately before aa or in between aa

or after aa gives the same word, that is, insertion at two positions is not required which is

same as |aa|. Similarly, we can prove it for w = w1aw2aw2.)

Now for a given word w the number of all words that can be obtained by inserting any
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one symbol from V is given by

|{w1aw2 | w = w1w2, w1, w2 ∈ V ∗, a ∈ V }|

=
∑
a∈V

(n− |w|a) = n|V | −
∑
a∈V
|w|a = n|V | − (n− 1) = n|V | − n+ 1

We know from Lemma 2.10 that a non-primitive word w either remains non-primitive

after inserting a symbol a if w = an−1 or become non-del-robust primitive word. Therefore,

the number of non-del-robust primitive words of length n, QD(n), is the difference between

the number of all words obtained by inserting a symbol in the words from set Z(n− 1) and

the number of elements in set {an | a ∈ V }. We can find an upper bound on number of

non-del-robust primitive words of length n as follows.

|QD(n)| = |{w1aw2 | w = w1w2 ∈ Z(n− 1), w1, w2 ∈ V ∗, a ∈ V }| − |V |

≤
∑
a∈V

∑
w∈Z(n−1)

|{w1aw2 | w = w1w2}| − |V |

≤
∑

w∈Zn−1

(n|V | − n+ 1)− |V |

≤ (n|V | − n+ 1)|Z(n− 1)| − |V |

From the Proposition 3.6, we have the number of primitive words of length n that is |Q(n)|.
Since Z(n) = V n \Q(n) we have |Z(n)| = |V n|− |Q(n)| and number of del-robust-primitive

words of length n over alphabet V is |QD(n)| = |Q(n)| − |QD(n)|.

3.3 Ins-Robust Primitive Words

Definition 3.4 (Ins-Robust Primitive Word). A primitive word w of length n is said to be

ins-robust primitive word if the word

pref(w, i) . a . suf(w, n− i)

is a primitive word for all i ∈ {0, 1, . . . , n} where a ∈ V .

There are infinitely many primitive words which are ins-robust. For example, the words

anbncn for n ≥ 1 are ins-robust primitive words. We denote the set of all ins-robust primitive

words over an alphabet V by QI . Clearly the language of ins-robust primitive words is a
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subset of the set of primitive words, that is, QI ⊂ Q.

Following theorem is a reformulation of the definition of ins-robust primitive words.

Theorem 3.8. A primitive word w is not ins-robust if and only if w can be expressed in the

form of uru1u2us where u = u1cu2 ∈ Q, u1, u2 ∈ V ∗, for some c ∈ V , r, s ≥ 0 and r + s ≥ 1.

Proof. We prove the sufficient and necessary conditions below.

(⇐) This part is straightforward. Let us consider a word w = uk1u1u2u
k2 where u1cu2 = u

for some c ∈ V . The word w is primitive by Lemma 2.10(b). Now insertion of the

letter c in w (between u1 and u2) gives the exact power of u which become a non-

primitive word. Hence, w is not an ins-robust primitive word.

(⇒) Let w be a primitive word but not ins-robust. Then there exists a decomposition w =

w1w2 such that w1cw2 is not a primitive word for some letter c ∈ V . That is, w1cw2 =

pn for some p ∈ Q and n ≥ 2. Therefore w1 = prp1 and w2 = p2p
s for r, s ≥

0 and r + s ≥ 1 such that p1cp2 = p. Hence w = prp1p2p
s.

Definition 3.5 (Non-Ins-Robust Primitive Words). A primitive word w is said to be non-ins-

robust if w ∈ Q but w /∈ QI . We denote the set of all non-ins-robust primitive words as QI . So,

QI = Q \QI , where ‘\’ is the set difference operator.

The next theorem is about an equation in words and identifies a sufficient condition under

which three words are power of a common word.

Theorem 3.9 ([11]). If umvn = wk 6= λ for words u, v, w ∈ V ∗ and natural numbers m, n,

k ≥ 2, then u, v and w are powers of a common word.

The following lemma is a consequence of the Theorem 3.9 which states that a word

obtained by concatenating powers of two distinct primitive words is also primitive.

Lemma 3.5 ([33]). If p, q ∈ Q with p 6= q then piqj ∈ Q for all i, j ≥ 2.

Proposition 3.5. If u, v ∈ Q, um = u1u2 and v = u1cu2 for some c ∈ V then umvn ∈ QI for

m,n ≥ 2.

Proof. From Lemma 2.10(b), we know that at least one of u1u2 and u1cu2 is primitive. Since

um = u1u2 form ≥ 2 and v = u1cu2, therefore v is primitive and so is umvn = u1u2(u1cu2)
n.

After insertion of the letter c we will get (u1cu2)
n+1 which is not a primitive word. However,
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by Lemma 3.5, umvn is a primitive word for m,n ≥ 2. Hence it is not a ins-robust word,

that is, umvn ∈ QI .

As mentioned earlier, if a word w is primitive then rev(w) is also primitive. We prove this

for ins-robust primitive word.

Lemma 3.6. If w ∈ QI then rev(w) ∈ QI .

Proof. Assume that for a word w ∈ QI , rev(w) is not a ins-robust primitive word. i.e.

rev(w) = prp1p2p
s where p = p1cp2 ∈ Q for some c ∈ V . Then the word w = rev(rev(w)) =

rev(prp1p2p
s) = (rev(p))s rev(p2) rev(p1) (rev(p))r and p = p1cp2, rev(p) = rev(p2) c rev(p1).

By Theorem 3.8, w is not a ins-robust primitive word, which is a contradiction. Therefore,

if w ∈ QI then rev(w) ∈ QI .

Next, we show that the language of ins-robust primitive words, QI , is reflective.

Theorem 3.10. QI is reflective.

Proof. Let there be a word w = xy ∈ QI such that yx /∈ QI . Since w ∈ QI , hence w ∈ Q.

By Lemma 2.9, we know that Q is reflective. Therefore yx ∈ Q and so yx ∈ Q \ QI , i.e.

yx ∈ QI . Using Theorem 3.8, we have yx = uru1u2u
s where u = u1cu2 ∈ V ∗ for some

c ∈ V and r + s ≥ 1. There are three possibilities which are as follows.

Case A If y = ur1u′, x = u′′ur2u1u2u
s where u = u′u′′ and r1 + r2 + 1 = r.

In this case xy = u′′ur2u1u2u
sur1u′ = (u′′u′)r2u′′u1u2u

′(u′′u′)s+r1 .

Since u = u1cu2, therefore u′′u1cu2u′ = u′′uu′ = (u′′u′)2.

Therefore (u′′u′)r2u′′u1cu2u
′(u′′u′)s+r1 = (u′′u′)s+r+1, that is, xy ∈ QI , which is a

contradiction.

Case B y = uru′, x = u′′us where u′u′′ = u1u2

Case B.1 If u′ = u′1 and u′′ = u′′1u2 where u′1u
′′
1 = u1.

Since u = u1cu2 = u′1u
′′
1cu2.

In this case xy = u′′usuru′ = u′′1u2u
suru′1.

Now u′′1cu2u
suru′1 = (u′′1cu2u

′
1)
r+s+1.

Therefore xy ∈ QI , a contradiction.

Case B.2 If u′ = u1u
′
2 and u′′ = u′′2 where u′2u

′′
2 = u2. This is similar to Case B.1.

Case C If y = uru1u2u
s1u′, x = u′′us2 where u = u′u′′. This case is similar to the Case A.
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Hence QI is reflective.

Corollary 3.7. QI is reflective.

Proof. We prove it by contradiction. Let there be a word w = xy ∈ QI such that yx /∈ QI .
We have xy ∈ Q and Q is reflective, so yx ∈ Q by Lemma 2.9. Therefore yx ∈ Q \ QI , i.e.

yx ∈ QI . But QI is reflective by Theorem 3.10, we have xy ∈ QI , which is a contradiction.

Hence yx ∈ QI .

Theorem 3.11. A word w is in the set QI if and only if it is of the form unu′ or its cyclic

permutation for some u ∈ Q, u = u′a , a ∈ V and n ≥ 1.

Proof. We prove the sufficient and necessary conditions below.

(⇒) Let w ∈ QI , then w can be written as w = uru1u2u
s for some u (= u1au2) ∈ Q and

a ∈ V . Since QI is reflective, therefore u2usuru1 = (u2u1a)r+su2u1 is also in QI .

(⇐) If a word w is a cyclic permutation of unu′ for n ≥ 1 and u = u′a then after insertion

of a symbol a, it gives a cyclic permutation of un+1 which is non-primitive (since Z is

reflective). Therefore, w ∈ QI .

We observe that a word w is periodic with minimum period p (≥ 2) divides |w| + 1 and

p ≤ |w| then w is non-ins-robust primitive word. Since QI is reflective, therefore any cyclic

permutation of w is also non-ins-robust primitive word. We know by Theorem 2.7 that

cyclic permutation of a primitive word is also primitive , so the cyclic permutation of an

ins-robust primitive word is primitive. In next result, we show that it remains ins-robust

too.

Corollary 3.8. Cyclic permutation of a ins-robust primitive word is ins-robust.

Proof. Let w ∈ QI . Then cyclic permutation of w will be yx for some partition w = xy.

Since QI is reflective. Therefore yx is also ins-robust primitive word. This proves that any

cyclic permutation of an ins-robust primitive word is ins-robust.

3.3.1 Ins-Robust Primitive Words and Density

It is easy to see thatQ is right dense [41]. In the following theorem we discuss the denseness

of language of non-ins-robust primitive words QI .
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Theorem 3.12. Let w ∈ V ∗ be a word. If |w| = n and wan ∈ QI where w /∈ a∗ and n ≥ 1,

then there exists words u, u1, u2 ∈ V ∗ such that wan = u2u1u2 and u = u1bu2 for some b 6= a.

Proof. Let wan ∈ QI .

If wan = uru1u2u
s, where u = u1bu2, for some b ∈ V . We claim that r = 2 and s = 0.

Case A. First we prove that s 6≥ 1 .

If s ≥ 1 then |u| ≤ n+ 1. We have two cases depending on the length of u.

Case A(i). In this case we prove that |u| ≤ n. On contrary if |u| = n+1 that the possibility

can be wan = u1u2u. But then u = ban for some b 6= a. Since |u| = n+ 1 and so |u1u2| = n.

|wan| = 2n+ 1, which is a contradiction as |w| = n and so |wan| = 2n.

Case A(ii). If s ≥ 1 and |u| ≤ n, then u = ar, where r = |u|, and therefore u1u2 = ar−1.

wan = a2n /∈ QI which leads to a contradiction.

Therefore s = 0. Hence wan = uru1u2. Next we prove that r = 2 is only possibility.

Case B. r = 1. This case is not possible. Because in this case wan = uu1u2, |wan| = 2n

which implies |u| = (2n+ 1)/2 a non-integral value.

Case C. If r ≥ 2. In this case we prove that r ≥ 3 is not possible.

Let r ≥ 3 then |wan| = |uru1u2| = ((r + 1)|u| − 1). In this case |u| = 2n+1
r+1 ∗ 2 ≤ n.

Therefore u = ak+1 but then wan /∈ QI . Hence r ≥ 3 is also not possible.

Thus the only possibility is r = 2, |wan| = u2u1u2. Since u1u2 = ak and wan ∈ QI

therefore w, u /∈ a∗, and so u = ak1bak2 where k1 + k2 = k, b 6= a and k2 ≥ k1 + 2.

Lemma 3.7. Let V be an alphabet, w ∈ V ∗ , |w| = n and a ∈ V . If wan ∈ QI then for b 6= a,

wbn ∈ QI .

Proof. Let wan ∈ QI . Then, by Theorem 3.12 we have,

wan = u2u1u2 and u1u2 = ak.

u = ak1bak2 where a 6= b.

Let wcn be also in QI for some c 6= a. Then, by Theorem 3.12 we have,

wcn = v2v1v2 and v1v2 = ck.

v = ck
′
1dck

′
2 where c 6= d.

But since |u| = |v| and w = uu′ = vv′ where u′ = uu1u2 and v′ = vv1v2, therefore u = v,

that is, ak1bak2 = ck
′
1dck

′
2 .

If k1 < k′1 then a = b = c = d, which is a contradiction. Alternatively, if k1 = k′1 then a = c

which is again a contradiction. Therefore wcn ∈ QI .

Theorem 3.13. The language QI is dense over the alphabet V .
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Proof. Consider a word w. We only need to consider the case when w /∈ QI , that is, w ∈
V ∗ \QI . By Lemma 3.7, there exists b ∈ V such that wbn ∈ QI , where n = |w|. Hence QI is

dense over V .

3.3.2 Relation of QI with Other Formal Languages

We now investigate the relation between the language of ins-robust primitive words with

the traditional languages in Chomsky hierarchy. We prove that the language of ins-robust

primitive words over an alphabet is not regular and also show that the language of non-ins-

robust primitive words is not context-free. For completeness, we recall the pumping lemma

for regular languages and pumpimg lemma for context-free languages which will be used

to show that QI is not regular and QI is not context-free respectively.

Let us recall a result which will be used in proving that the language of ins-robust primi-

tive words is not regular.

Lemma 3.8 ([42]). For any fixed integer k, there exist a positive integer m such that the

system of equations (k − j)xj + j = m, j = 0, 1, 2, . . . , k − 1 has a nontrivial solution with

appropriate positive integers x1, x2, . . . , xj > 1.

Theorem 3.14. QI is not regular.

Proof. Let us suppose that the language of ins-robust primitive words QI is regular. Then

there exist a natural number n > 0 depending upon the number of states of finite automaton

for QI .

Consider the word w = anbamb,m > n + 1 and m 6= 2n. Note that w is an ins-robust

primitive word over V , where |V | ≥ 2 and a 6= b. Since w ∈ QI and |w| ≥ n, then it

must satisfy the other conditions of pumping Lemma for regular languages. So there exist

a decomposition of w into x, y and z such that w = xyz, |y| > 0 and xyiz ∈ QI for all i ≥ 0.

Let x = ak, y = a(n−j), z = aj−kbamb. Now choose i = xj and since we know by

Lemma 3.8 that for every j ∈ {0, 1, . . . , n − 1}, there exists a positive integer xj > 1 such

that xyxjz = aka(n−j)xjaj−kbamb = a(n−j)xj+jbamb = ambamb = (amb)2 /∈ QI which is a

contradiction. Hence the language of ins-robust primitive words QI is not regular.

Theorem 3.15. QI is not a context-free language for a binary alphabet.

Proof. Let V = {a, b} be an alphabet. By contradiction, let us assume that QI is a context-

free language. Let p > 0 be an integer which is the pumping length for the language QI .
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Consider the string s = ap+1bp+1ap+1bp, where a, b ∈ V are distinct. It is easy to see that

s ∈ QI and |s| ≥ p.

Hence, by the Pumping Lemma 2.6, s can be written as uvwxy, where u, v, w, x, and y

are factors of s, such that |vwx| ≤ p, |vx| ≥ 1, and uviwxiy ∈ QI , ∀i ≥ 0. By the choice of s

and the fact that |vwx| ≤ p, we have one of the following possibilities for vwx:

(a) vwx = aj for some 1 ≤ j ≤ p.

(b) vwx = ajbk for some j and k with j + k ≤ p and j, k ≥ 1.

(c) vwx = bj for some 1 ≤ j ≤ p.

(d) vwx = bjak for some j, k ≥ 1 with j + k ≤ p.

In Case (a), since vwx = aj , therefore vx = at for some t ≥ 1 and hence uviwxiy =

ap−t+1bp+1ap+1bp /∈ QI for i = 0.

Case (b) can have several subcases.

(i) v = aj1 , w = aj2 , x = aj3bk where j1 + j2 + j3 + k ≤ p and j1 + j3 + k ≥ 1.

If vwx is in the prefix substring string ap+1bp+1, then

uv4wx4y = ap+1−j1−j2−j3 a4j1aj2aj3bkaj3bkaj3bk aj3bkbp+1−k ap+1bp = ap+1a3j1bkaj3bk

aj3bkaj3bp+1ap+1bp /∈ QI for i = 4 as 0 ≤ j1, j3, k ≤ p − 1 and k ≥ 1 so insertion of a

or b at any place can not make it non-primitive.

Similarly, we can show for the occurrence in suffix substring ap+1bp.

(ii) v = aj1 , w = aj2bk1 , x = bk2 where j1+k2 ≥ 1, j1+j2+k1+k2 ≤ p and j1, j2, k1, k2 ≥
0.

uv4wx4y = ap+1+3j1bp+1+3k2 ap+1bp /∈ QI for i = 4 because atleast j1 or k2 must be

greater than or equal to 1 and less than or equal to p.

(iii) v = ajbk1 , w = bk2 , x = bk3 .

Case (b) (iii) is similar to case b(i).

Case (c) is similar to case (a) and case (d) is similar to case (b). Therefore, our initial

assumption that QI is context-free, must be false.

Next we prove that the language of non-ins-robust primitive words is not context-free in

general.

Lemma 3.9. The language QI is not context-free over an alphabet V where V has at least two

distinct letters.
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Proof. The proof of Theorem 3.15 can be generalized to arbitrary alphabet V having at least

two letters. The set of all words over alphabet having greater than two distinct letters also

contains the words with two letters. If QI is assumed to be a CFL over V where |V | ≥ 3,

then we can choose words of the form used in Theorem 3.15 and obtain a contradiction.

Hence the language of non-ins-robust primitive words QI is not context-free over V where

|V | ≥ 2.

3.3.3 Counting Ins-Robust Primitive Words

In this section we give a lower bound on number of n-length ins-robust primitive words.

Let V be an alphabet and Z(k) = V k \Q be the set of n-length non-primitive words.

We have the following result that gives the number of the primitive words of length m.

Proposition 3.6 ([43]). Let m ∈ N and m = m1
r1m2

r2 . . .mt
rt be the factorization of m,

where all mi, 1 ≤ i ≤ t , are prime and mi 6= mj for i 6= j, then the number of primitive words

of length m is equal to

|V |m−
∑

1≤i≤t
|V |

m
mi +

∑
1≤i≤j≤t

|V |
m

mimj

−
∑

1≤i≤j≤k≤t
|V |

m
mimjmk + · · ·+ (−1)t−1|V |

m
m1m2···mt

We observe that the deletion of a symbol from a n-length non-primitive word gives a

maximum of (n − 1)-different non-ins-robust primitive words when the word is of type

a1a2 . . . an such that ai 6= ai+1 for 1 ≤ i ≤ n − 1 and minimum it can be zero if the word

is of type ar, r > 2, a ∈ V . Given a word w ∈ Z(n). The number of words that can be

obtained by deleting a symbol from w is

0 ≤ |{w1w2 | w1aw2 = w, w1, w2 ∈ V ∗, a ∈ V }| ≤ n.

We know from Lemma 2.10 that a non-primitive word w remains non-primitive after delet-

ing a symbol a if w = an and n ≥ 3. Otherwise a non-ins-robust primitive word.

QI(n) = {w1w2 | w1aw2 ∈ Zn+1, a ∈ V,w1, w2 ∈ V ∗}

Therefore, the number of non-ins-robust primitive words of length n, QI(n), is the dif-

ference between the number of all words obtained by deleting a symbol from the words of

set

Z(n+ 1) \ V n+1 where V n+1 = {an+1 | a ∈ V } for n ≥ 2
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We can find an upper bound on number of non-ins-robust primitive words of length n ≥ 2

as follows.

|QI(n)| = |{w1w2 | w = w1bw2 ∈ Z(n+ 1) \ V n+1, w1, w2 ∈ V ∗, b ∈ V }|

|QI(n)| = |{w1w2 | w = w1aw2 ∈ Z(n+ 1), w1, w2 ∈ V ∗, a ∈ V }| − (n+ 1).|V |

≤ (n+ 1).(|Z(n+ 1|)− |V |).

From the Proposition 3.6, we know the number of primitive words of fixed length. Thus

the number of ins-robust-primitive words of length n, QI(n), over an alphabet V is equal to

|Qn| − |QI(n)|.

3.3.4 Recognizing Ins-Robust Primitive Words

In this section, we give a linear time algorithm to determine if a given primitive word w is

ins-robust. We design the algorithm that exploits the property of the structure of ins-robust

primitive words. We state some simple observations before presenting the algorithm. The

following theorem is based on the structure of ins-robust primitive word.

Theorem 3.16. Let u be a primitive word. Then u will be non-ins-robust primitive word iff

uu contains at least one periodic word of length |u| with period p such that p divides of length

|u|+ 1 and p ≤ |u|.

Proof. (⇒) If u is a non-ins-robust primitive word, then u can be written as trt1t2ts for some

primitive word t, r + s ≥ 1 and t = t1at2 for some symbol a ∈ V where t1, t2 ∈ V ∗. uu =

trt1t2t
strt1t2t

s, This word contains a subword t2t
strt1 of length |u| that is (t2t1a)r+st2t1

which is a periodic word with period |t2t1a| = |t| which divides |u|+ 1.

(⇐) Let uu has a periodic substring of length |u| with period p ( p/|u|+1 and p ≤ |u|) where

u is primitive word. Then uu = t1x
rx′t2, where t1, t2 ∈ V ∗, |xrx′| = |u|, x ∈ Q, r ≥ 1 and

x = x′a for some a ∈ V . |t1t2| = |u|. Here we have two cases, either xrx′ entirely contained

in u or some portion of xrx′ contained in u.

Case A. Let xrx′ entirely in u. Then u is not ins-robust as u = xrx′.

Case B. Let some portion of xrx′ contained in u. Since uu = t1x
rx′t2, and Z is reflective,

therefore t2t1xrx′ = u′u′, where u′ is cyclic permutation of u. Hence, u′ = xrx′, is non-ins-

robust. Since QI is reflective, therefore u is also non-ins-robust.

Corollary 3.9. Let u be a primitive word. Then u will be non-ins-robust primitive word if
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and only if there exists a cyclic permutation of u, say u′, which is a periodic with period p such

that p divides |u|+ 1 and p ≤ |u|.

Proof. The proof follows from Theorem 3.16.

Next we present a linear time algorithm to test ins-robustness of a primitive word by using

the existing algorithm for finding maximal repetitions in linear time. For more details on

the maximal repetition, see section 4 [17].

Algorithm 2 INS-ROBUST PRIMITIVE WORD

Input: A finite word u
Output: “True” if u is a ins-robust primitive word, else “False”

1: procedure ISINSROBUST

2: Let v ← uu.
3: S ← FindMaximalRepetitions(v) . S is a set of pairs of period and length.
4: for all (pi, li) ∈ S do
5: if |u| mod pi = 0 and pi < |u| then . Testing primitivity.
6: Return False . The word u is not primitive.
7: end if
8: if thenpi < |u| and (|u|+ 1) mod pi = 0 and li ≥ |u|
9: Return False (Corollary 3.6) . The word u is not ins-robust.

10: end if
11: Return True . The word u is ins-robust.
12: end for
13: end procedure

Theorem 3.17. Let w be a word given as input to Algorithm 2. The algorithm returns true if

and only if the word w is ins-robust.

Proof. In step (3), the algorithm finds the maximal repetitions with their periods. Since

QI is closed under reflectivity, therefore uu has all the cyclic permutations of u. There is a

periodic word xrx′, a permutation of u such that x = x′a for some a ∈ V . Therefore uu

also has this periodic word which is proved in Theorem 3.16. That is for a non-ins-robust

primitive word u, uu contains a periodic word of length at least |u| with a period p such

that p divides (|u|+1) and p < |u|. This is explained in Step (8) where u is a primitive word

Step (6). Otherwise u is ins-robust primitive word.

Theorem 3.18. The property of being ins-robust primitive is testable on a word of length n in

O(n) time.
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Proof. The Step (2) in Algorithm 2 has O(1) running time. In Step (3) maximal repetition

algorithm is computed using algorithm given in section 4 [17] is used which has linear time

complexity. Now from Step (4) to Step (9), the complexity depends on the cardinality of S,

which is less than n. Hence it also has linear time complexity. Therefore by Theorem 3.16

testing ins-robustness for primitive word can be done in linear time.

3.4 Exchange-Robust Primitive Words

We consider a new formal language class known as exchange-robust primitive words in

which exchanging two different consecutive symbols in a primitive word preserve primitiv-

ity.

Definition 3.6 (Exchange-Robust Primitive Words). A primitive word w = a1a2 · · · ai+1ai+2

· · · an of length n is said to be exchange-robust if and only if

pref (w, i) . ai+2ai+1 . suff (w, n− i− 2)

is a primitive word for all i ∈ {0, 1, . . . n− 2}.

Observe that if a primitive word is exchange robust then it must remain primitive on

exchange of any two consecutive symbols. We denote by QX the set of all primitive words

which are exchange-robust over an alphabet V . Clearly, the set of all exchange-robust

primitive words is a subset of Q. There are infinitely many primitive words which are

exchange-robust. For example, anb2nan, n ≥ 2 is exchange-robust. We exchange two

consecutive symbols a and b if a, b ∈ V and a 6= b.

Our next result is concerned about the exchange of two different symbols at consecutive

places in a nonprimitive word. We prove that the new word which we obtain by exchanging

two different and consecutive symbols at any position in a nonprimitive word results in a

primitive word.

Lemma 3.10. Let w be a word with |alph(w)| ≥ 2. If w = x1abx2 ∈ Z then x1bax2 ∈ Q.

Proof. We prove it by contradiction. Since w ∈ Z, then there exists a unique primitive

word u such that w = um, m ≥ 2. We can express w = um1u1abu2u
m2 where u1abu2 = u

and m1 + m2 + 1 ≥ 2. Assume on the contrary that w′ = um1u1bau2u
m2 /∈ Q. As the

languages Q and Z are reflective, then it is enough to consider abu2um2um1u1. Suppose

abu2u
m2um1u1 = vm and bau2um2um1u1 = yn, n ≥ 2. Let p be the maximal common suffix

of vm and yn. vm and yn have common suffix of length m|v| − 2 and n|y| − 2 respectively.
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We have, |p| = m|v| − 2 = n|y| − 2. It is not possible to have m = n = 2; otherwise we have

a contradiction.

So at least one of m and n is strictly greater than 2. Without loss of generality, let us

assume that m ≥ 3 and n ≥ 2. Now,

2|p| = m|v|+ n|y| − 4

⇒ |p| = m
2 |v|+

n
2 |y| − 2

⇒ |p| ≥ |y|+ |v|+ 1
2 |v| − 2 (∵ m ≥ 3 and n ≥ 2)

Since |v| ≥ 2, we obtain that |p| ≥ |y|+ |v| − 1. Hence by Fine and Wilf’s theorem, v and y

are powers of the same primitive word which is a contradiction. Thus bau2um2um1u1 ∈ Q
which implies that w′ = um1u1bau2u

m2 ∈ Q.

Next we study the primitive words in which exchange of two different and consecutive

symbols result in a nonprimitive word.

Definition 3.7 (Non-exchange-robust Primitive Words). A primitive word is said to be non-

exchange-robust if and only if exchange of two different symbols at some consecutive positions

results a nonprimitive word.

We call this set of words as non-exchange-robust primitive words. We denote the set of

non-exchange-robust primitive words over the alphabet V as QX . By definition, we have

QX ∪QX = Q.

3.4.1 Structural Characterization of Exchange-Robust Primitive Words

We give the structural characterization of non-exchange-robust primitive words.

Theorem 3.19. A primitive word w is non-exchange-robust if and only if w is a primitive word

of the form uk1u1abu2u
k2 , a, b ∈ V, a 6= b, k1 + k2 ≥ 0 such that u1bau2 = um for some

m ≥ 2.

Proof. (⇒) Let w be a primitive word. Suppose w = v1xyv2 = uk1u1abu2u
k2 where a 6=

b such that v1 = uk1u1, v2 = u2u
k2 . If we exchange x and y, we get w′ = v1yxv2 =

uk1u1bau2u
k2 such that u1bau2 = um form ≥ 2. Hence w′ = uk, k ≥ 2 where k1+m+k2 = k

and thus w is not an exchange-robust primitive word.

(⇐) Let w ∈ Q which is not an exchange-robust word. Then there exists at least one

consecutive positions where exchanging them makes the word nonprimitive. The word w

can be written as either v1abv2 where v1, v2 ∈ V ∗ and a, b ∈ V . Let w′ = v1bav2 ∈ Z that
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is w′ = v1bav2 = um for m ≥ 2. Now v1 = uiu1 and v2 = u2u
j for i, j ≥ 0. Combining both

we have v1bav2 = uiu1bau2u
j where u1bau2 = uk for k ≥ 2.

QX = Q \ QX where ‘\’ is the set minus operator. There are finite length as well as

arbitrary length primitive words which are non-exchange-robust; for example, abba and

(ab)nba(ab)n for n ≥ 1.

Unlike the languages of del-robust and ins-robust primitive words which are closed under

the cyclic permutation [44], the set of QX is not closed under the cyclic permutation. For

example, consider the word abbabbbab ∈ QX . One of the cyclic permutation of the word is

ababbabbb, which is exchange robust. Hence the language of QX is not closed under cyclic

permutation.

Before we prove the denseness of the language of non-exchange-robust primitive words,

we prove the following result which we require to prove the denseness of QX .

Lemma 3.11. The language QX is dense over the alphabet V .

Proof. Let w be a word. We consider two different possibilities depending upon whether w

is a primitive word or a non-primitive word.

Case (A) Suppose w is a primitive word. If |w| = 1, then there exist a ∈ V such that

w 6= a and waaw ∈ QX . Suppose |w| ≥ 2. We can express w = w1abw2 where w1, w2 ∈ V ∗

and a 6= b. Then we can choose x = w1baw2 and z = λ so that xwz ∈ QX .

Case (B) If w is a non-primitive word. Suppose w = an for some a ∈ V , n ≥ 2 and

|w| = n. We can choose x = λ and z = ban−2b. Then we have xwz = anban−2b ∈ Q

and also it is non-exchange robust. Suppose w = um for m ≥ 2 and |alph(w)| ≥ 2. As

|alph(w)| ≥ 2 then |u| ≥ 2. Suppose u = u1abu2. If we choose x = λ and z = u1bau2 then

xwz ∈ Q and xwz ∈ QX . Hence QX is dense over V .

3.4.2 Context-freeness of QX

In this section we prove that the language of non-exchange-robust primitive words is not

context-free over a given alphabet. In our proof, we use the classic Ogden’s lemma, the fact

that intersection of a CFL and a regular language is also context-free and we also use the

fact that the family of context-free languages are closed under gsm-mapping [45].

Lemma 3.12. (Ogden’s lemma [46]) For each context-free grammar G = (V,Σ, P, S) there is

an integer k such that any word w in L(G), if any k or more distinct positions in are designated

as distinguished, then there is some A in V \Σ and there are words u, v, x, y and z in Σ∗ such

that:
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(a) S⇒∗ uAz ⇒∗ uvAyz ⇒∗ uvxyz = w.

(b) x contains at least one of the distinguished positions.

(c) Either u and v both contain distinguished positions, or y and z both contain distinguished

positions.

(d) vxy contains at most k distinguished positions.

Theorem 3.20. The language of non-exchange robust words is not context-free over the alpha-

bet V = {a, b}.

Proof. Consider the regular language R = ba+ba+ba+ba+. We obtain a new language L by

intersecting QX and R as QX ∩R = L where

L = {ban1ban2ban3ban4 | n1, n2, n3, n4 ≥ 1, (|n1 − n3| ≤ 1, |n2 − n4| ≤ 1,

|(n1 + n2)− (n3 + n4)| = 0 or 2) and (n1 6= n3 or n2 6= n4)} (3.1)

We claim that QX ∩R = L.

We prove it in both directions. The inclusion QX ∩ R ⊇ L is easy to observe. For the

converse, let us take a word w = ban1ban2ban3ban4 ∈ QX ∩ R. As w ∈ QX , then w can be

represented as w = u1abu2 such that u1bau2 ∈ Z. We have the following possibilities of

exchanging.

Case (a) aban1−1ban2ban3ban4

Case (b) ban1−1ban2+1ban3ban4

Case (c) ban1+1ban2−1ban3ban4

Case (d) ban1ban2−1ban3+1ban4

Case (e) ban1ban2+1ban3−1ban4

Case (f) ban1ban2ban3−1ban4+1

Case (g) ban1ban2ban3+1ban4−1

It is easy to see that all of the above cases is in the language QX only if we have

(i) n1 6= n3 or n2 6= n4 (otherwise ban1ban2ban1ban2 /∈ Q)

(ii) |n1 − n3| ≤ 1, |n2 − n4| ≤ 1, |(n1 + n2) − (n3 + n4)| = 0 or 2 (otherwise the word

w′ ∈ QX
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Hence the inclusion QX ∩R ⊆ L.

A CFL is closed under gsm mapping [47]. Using a sequential transducer (a gsm), the

language QX ∩R can be translated into a new language

L′ = {an1bn2cn3dn4 | n1, n2, n3, n4 ≥ 1, |n1 − n3| ≤ 1, |n2 − n4| ≤ 1,

|(n1 + n2)− (n3 + n4)| = 0 or 2 and (n1 6= n3 or n2 6= n4)} (3.2)

We have to prove that L′ is not a context-free language. Assume by contradiction that L′ is

context-free. Suppose there exist a constant N > 0 which must exist by Ogden’s lemma. As

L′ satisfies Ogden’s lemma, then every w ∈ L′, |w| ≥ N can be decomposed into w = uvxyz

such that the following conditions hold: (i) vxy contains at most N marked symbols (ii) v

and y have at least one marked symbol and (iii) uvixyiz ∈ L′ for all i ≥ 0.

Consider a stringw = an1bn2cn3dn4 such that n1 = N, n2 = N, n3 = N+1 and n4 = N−1.

As |n1 − n3| ≤ 1, |n2 − n4| ≤ 1, |(n1 + n2) − (n3 + n4)| = 0 and n1 6= n3, n2 6= n4 then

w ∈ L′. Let us mark all the occurrences of b which are at least N of them. Now we can

decompose w = uvxyz such that all the conditions of Ogden’s lemma satisfy.

Clearly, neither v nor y contain two different symbols. There are two different cases

depending whether vy contains some occurrences of a or not.

Case (a) Suppose vy does not contain any occurrence of a. In this case, we have u =

aNbi1 , v = bm1 , x = bm2 , y = bm3 such that m1 + m3 ≥ 1 k1 = m1 + m2 + m3 and

z = bN−(k1+i1)cN+1dN−1. For i = 2, uvxyz = aNbN+(m1+m3)cN+1dN−1 = ap1bp2cp3dp4

which is a contradiction as |p2 − p4| ≥ 2.

Case (b) Suppose vy contains occurrences of a. Let v = aj and y = bk for j, k ≥ 1. If

j < k, then for a large value of i, we can have w′ = uvixyiz = ap1bp2cp3dp4 such that

|p1 − p3| > 1 which is a contradiction. Therefore we must have j ≥ k. consider the

word uvixyiz which becomes aN−j+jibN−k+kicN+1dN−1. For i = 5, we have w′′ =

aN+4jbN+4kcN+1dN−1 where |(N+4j)−(N+1)| = 4j−1 ≥ 3, |(N+4k)−(N−1)| =
4k + 1 ≥ 5 and |(N + 4j + N + 4k) − (N + 1 + N − 1)| = 4(j + k) ≥ 8 which is a

contradiction.

Hence L′ is not context-free. Since the family of context-free languages is closed under

sequential transducers and intersection with regular languages [47], we conclude that QX
is not context-free.
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3.5 Conclusions

We have investigated four different types of point mutation operations on primitive words.

We have studied to preserve the primitivity by substitute a symbol by another symbol, dele-

tion or insertion a symbol and exchanging two consecutive symbols. The structural char-

acterization of each of the class of primitive words have been discussed and also some

important combinatorial properties related to each of the class have been identified. It has

been proved that the languages of non-del-robust, non-ins-robust and non-exchange-robust

primitive words are not context-free. We have also proved that QD, QS and QI are reflec-

tive. We have linear time algorithms to recognize the del-robust and ins-robust primitive

words, but for exchange robust this problem is still open.

We summarize the results as follows.

QS QD QI QX

Definition Elements re-

main primitive

after a symbol

substitution

Elements re-

main primitive

after a symbol

deletion

Elements re-

main primitive

after a symbol

insertion

Elements

remain prim-

itive after

an exchange

of distinct

consecutive

symbols

Reversibility Reversible Reversible Reversible Reversible

Reflectivity Reflective Reflective Reflective Not Reflective

Context-Freeness QS is not CFL QD is not CFL QI is not CFL QX is not CFL

Algorithm for

recognition

Result for Lin-

ear time Algo-

rithm

Linear time Al-

gorithm

Linear time Al-

gorithm

No linear time

algorithm is

known

[[]X]\\
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“Once you start working on something, don’t be afraid of fail-

ure and don’t abandon it. People who work sincerely are the

happiest.”

- Chanakya

Chapter4
Robustness of L-Primitive Words

4.1 L-Primitive Words

The primitive words has been studied in [48, 20, 49, 36, 50], which is generated by letters

of alphabet V such that it is not proper power of x ∈ V ∗. In this chapter, we deal with a

language of primitive words with respect to a language L ⊆ V ∗, called L-primitive words,

that is, if x is L-primitive then x is not a power of any word y ∈ L.

Definition 4.1. [39] Let L be a language over an alphabet V . A word x ∈ V + is said to be an

L-primitive word if x is not a proper power of any word in L, that is,

x = uk for u ∈ L, =⇒ k = 1.

Let X ⊆ V ∗ and Xc denotes the complement of X in V ∗. The set of L-primitive words

over an alphabet V is denoted by QL(V ) or simply QL and the set of non-L-primitive words

over an alphabet V is denoted by ZL.

A word over an alphabet has unique primitive root but it can have more than one L-

primitive roots. For example if L = {aa, aaa}, then aaaaaa has only one primitive root,

which is a, whereas there are two L-primitive roots which are aa and aaa.

Proposition 4.1. [39] If L1 and L2 are two subsets of V ∗, then

L1 ⊆ L2 =⇒ QL2 ⊆ QL1

.

The Proposition 4.1 is proved for two languages such that one is subset of other. In next

proposition we prove above result for independent languages.
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Proposition 4.2. Let Lk = {u2k} for the natural number k where u is a primitive word. Then

QLi ⊆ QLj for i ≤ j.

Proof. For Lk = {u2k}, ZLk = {u2k.i | i ≥ 2}. Therefore ZLj ⊆ ZLk for j ≥ k. Therefore

QLk ⊆ QLj for k ≤ j.

Proposition 4.3. Let for i ≥ 1, Lik = {uik} where k ≥ 0 and u is a primitive word. Then

QLik ⊆ QLij for k ≤ j.

Proof. Proof is similar to that of Proposition 4.2.

The language of primitive words, Q, is reflective but the language of L-primitive words,

QL, need not be reflective. Consider for example, a language L that contains ab but not ba.

Then baba ∈ QL as it is not proper power of any word contained in L but abab /∈ QL.

Lemma 4.1. Let L be a language. Then QL is reflective if and only if ZL is reflective.

Proof. If part: Since QL is reflective, we have vu ∈ QL for all w′ = u′v′ ∈ QL. On contrary,

let ZL is not reflective, then there exists a word w = uv ∈ ZL such that vu ∈ QL but then

uv ∈ QL, which is contradiction.

Proof of only if part is similar to if part.

Lemma 4.2. Let L be a language. Then L is not reflective if u2u1 ∈ ZL for some u1u2 ∈ QL.

Proof. Since u2u1 ∈ ZL, there exists v ∈ L such that u2u1 = vk for some k ≥ 2. Therefore

u1u2 = v′k for some v′, cyclic permutation of v. But since u1u2 ∈ QL, v′ /∈ L. Therefore L

is not reflective.

Lemma 4.3. Let L be a language. Then if L is reflective then QL and ZL are also reflective.

Proof. Suppose L is reflective. Then for all w = w1w2 ∈ L, w2w1 ∈ L, and suppose for

contradiction a partition of a word v = v1v2 ∈ QL, v2v1 /∈ QL. Therefore v2v1 ∈ ZL which

implies that there exists u ∈ L such that v2v1 = uk for some k ≥ 2. Therefore v2 = uk1u′

and v1 = u
′′
uk1 where u′u

′′
= u. Also v1v2 = u

′′
uk1uk1u′ = (u

′′
u′)k. Since u

′′
u′ ∈ L, we

have v1v2 ∈ ZL, which is contradiction.

Converse of Lemma 4.3 need not be true. For example, if L = {abc, abcabc, cab, bca}, then

for all uv ∈ QL, vu ∈ QL , that is, QL is reflective even though bcabca, cabcab /∈ L.

Lemma 4.4. Let L be a language over an alphabet V . Then if vu ∈ QL for all u, v ∈ V ∗ such

that uv ∈ QL then vu ∈ L for all u, v ∈ V ∗ such that uv ∈ L and uv is L-primitive.
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Proof. For contradiction, let a word w = uv ∈ L ∩ QL such that vu /∈ L. Since QL is

reflective, we have vu ∈ QL. Since QL is reflective, ZL is also reflective and (uv)k ∈ ZL
for all k ≥ 2 implies that (vu)k ∈ ZL. Also we have vu ∈ QL therefore vu ∈ L, which is a

contradiction.

Theorem 4.1. Let L be a language over an alphabet V . QL is reflective if and only if vu ∈ L
for all u, v ∈ V ∗ such that uv ∈ L and uv is L-primitive.

Proof. Only if part: Let L ∩ QL be reflective but on contrary QL is not, then there exist

w ∈ QL such w = uv for some u, v ∈ V + such that vu ∈ ZL. Therefore vu = tk for some

k ≥ 2 and t ∈ L ∩ QL. Since Q is reflective, we have uv = t′k for some t′ ∈ V ∗ such that

t′ is cyclic permutation of t. Since L ∩ QL is reflective, we have t′ ∈ L ∩ QL. Therefore

uv ∈ ZL, which is a contradiction.

If part: This part is the same as Lemma 4.4.

The language of primitive words, Q, is closed under reverse operation on words but

the language of L-primitive words, QL, need not be closed under reverse operation. For

example, if L = {ab, baba}, then baba ∈ QL but abab /∈ QL.

Lemma 4.5. Let L be a language over an alphabet V . Then if rev(w) ∈ L for all w ∈ L then

rev(w) ∈ QL for all w ∈ QL.

Proof. Let for a word v ∈ QL, rev(v) /∈ QL, then there exists a word w ∈ L such that

rev(v) = wk for some k ≥ 2. Since for all w ∈ L, rev(w) ∈ L, v = rev(rev(v)) = rev(wk) =

(rev(w))k /∈ QL, which is a contradiction. This proves the result.

But converse of the above statement need not be true. For example, consider L =

{ab, abab, ba}. Then rev(w) ∈ QL for all w ∈ QL, but rev(abab) /∈ L.

Lemma 4.6. Let L be a language over an alphabet V . Then if rev(w) ∈ QL for all w ∈ QL
then rev(v) ∈ L for all v ∈ L ∩QL.

Proof. For w ∈ QL, rev(w) ∈ QL. For contradiction, let a word v ∈ L, v ∈ QL, v2 ∈ L,

rev(v2) = (rev(v))2 /∈ L and also rev(v) /∈ L. Since (rev(v))2 /∈ L therefore (rev(v))2 ∈ QL
therefore by assumption we have, rev((rev(v))2) = v2 ∈ QL which is a contradiction as

v ∈ QL. Therefore rev(v) ∈ L.

Theorem 4.2. Let L be a language over an alphabet V . rev(w) ∈ QL for all w ∈ QL if and

only if rev(v) ∈ L for all v ∈ L ∩QL.

Proof. This result follow from the Lemma 4.5 and Lemma 4.6.

45



4.1. L-PRIMITIVE WORDS

Lemma 4.7. Let L be a language over an alphabet V . For w ∈ QL, rev(w) ∈ QL if and only

if rev( L
√
v) ∈ L for all v ∈ L.

Proof. If part: Let for any w ∈ QL, rev(w) ∈ QL. Therefore we have rev(w) ∈ QL for all

w ∈ QL.

If w ∈ L, then w = uk for some k ≥ 1 and u ∈ L. rev(w) = (rev(u))k where rev(u) ∈ L.

Let reverse of L-primitive root of w is not in L for a word w ∈ L.

Only if Part: If L-primitive root of rev(w) is in L for all w ∈ L. and let w ∈ QL but

rev(w) /∈ QL, then rev(w) = vk for some v ∈ L ∩ QL and k ≥ 2. w = rev(rev(w)) =

rev(vk) = (rev(v))k. But since v ∈ L which is L-primitive root of rev(w), therefore rev(v) ∈
L. Hence w /∈ QL, which is a contradiction.

Lemma 4.8. Q ⊆ QL, for any language L ⊆ V ∗, where Q is the language of primitive words

and QL is set of L-primitive words.

Proof. Let w ∈ Q but w /∈ QL, then w = uk for some u ∈ L and k ≥ 2. Since L ⊆ V ∗,

therefore w /∈ Q, which is contradiction.

As we know that at least one of w and wa is primitive for w /∈ a∗ (lemma (2.10)), this is

also true in case of L-primitive. For every word u ∈ V + and every symbols a, b ∈ V , a 6= b,

at least one of the words ua, ub is primitive as well as L-primitive. This result has several

consequences, proving in some sense that "there are very many L-primitive words".

Corollary 4.1. (a) For every word u ∈ V ∗, at most one of the words ua with a ∈ V , is not

L-primitive.

(b) For every words u1, u2 ∈ V ∗, at most one of the words u1au2, with a ∈ V , is not L-

primitive.

This corollary claims that the language QL is right 1-dense and therefore right k-dense

for every k.

Lemma 4.9. Let L be a language over an alphabet V . Then if Q 6⊆ L then there exist a word

u ∈ Q and an integer k ≥ 2 such that uk ∈ QL.

Proof. If u ∈ Q but u /∈ L and let for some k ≥ 2, uk in ZL then there exist a minimum of

all i ≥ 2 such that i divides k and ui ∈ L. If that minimum is j then uj ∈ QL as it is not a

proper power of any element in L.

Theorem 4.3. Let L be a language over an alphabet V . QL = Q if and only if Q ⊆ L.
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Proof. If part: Let QL = Q but Q 6⊆ L, then there exists u ∈ Q which is not in L, therefore

there exists k ≥ 2 such that uk ∈ QL. But Q = QL, uk ∈ Q which is a contradiction.

Only if Part: Let Q ⊆ L, we have Q ⊆ QL. Let QL 6⊆ Q, then there exists u ∈ QL,

such that u = xk for some x ∈ Q and k ≥ 2. But since Q ⊆ L, we have x ∈ L. Therefore

xk ∈ ZL, which is a contradiction. Hence Q = QL.

Corollary 4.2. Let L be a language over an alphabet V . Then if L = Q then QL = Q and

equivalently ZL = Z.

Proof. Follows from Theorem 4.3.

Corollary 4.3. Let L be a language over an alphabet V . QL∩Z is empty if and only if Q ⊆ L.

Proof. Follows from Theorem 4.3.

Ln is defined as concatenation of Ln−1.L where n ≥ 2 and L1 = L.

Theorem 4.4. For a language L, ZL =
⋃
n≥2

Ln if and only if there exists a unique L-primitive

word u ∈ L such that and for any x ∈ L, x = uk for some k ≥ 1.

Proof. This is obvious that to equate ZL and union of Ln, the elements of L should be

powers of a unique primitive word. Now remaining part is proved below.

If part: On contradiction let ZL =
⋃
n≥2

Ln and let x1, x2 ∈ L such that x1 = ur1.s1 and

x2 = ur2.s2 for two L-primitive words ur1 and ur2 , where (r1, r2) = 1. Then ur1+r2 ∈ L2 but

not in ZL, which is contradiction.

Only if part: Let u ∈ L be a unique L-primitive word such that and for any x ∈ L, x = uk

for some k ≥ 1. Then for any w ∈ Ln, w = uk1 .uk2 . . . ukn = uk1+k2...+kn ∈ ZL. Therefore,

for every n ≥ 2, Ln ⊆ ZL and so
⋃
n≥2

Ln ⊆ ZL.

Next, we have to prove that ZL ⊆
⋃
n≥2

Ln. Let w ∈ ZL, then w = uk for k ≥ 2 as every

element of L can be represented as power of u ∈ L. Therefore, w ∈ Lk. Similarly we can

show for all elements of ZL. Therefore ZL ⊆
⋃
n≥2

Ln.

4.2 Other Formal Languages and L-Primitive Words

We know that the language of primitive words, Q, is not regular [51]. This is still an

open problem that whether Q is context-free language or not [45, 52]. But we know that

primitive words can be identified with 2DPDA [13]. In this section we identify relation of
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other formal languages with the language of L-primitive words. The question arises that

whether nature of QL depends on the nature of language L. We identify conditions under

which language of L-primitive words is regular or context-free. We discuss some results

related to this.

Theorem 4.5. Let L be a language on an alphabet V . Then the language of L-primitive words

is regular if any of the following conditions holds.

(a) If L is finite.

(b) If L = {wn | n ≥ 1} for some word w ∈ V ∗ of finite length.

(c) If L =
⋃

w∈{w1,w2,...wm}⊂V ∗
{wn | n ≥ 1} for a finite number m where |wi| is finite for

1 ≤ i ≤ m .

Proof. Case (a): This case is related to finite language L. ZL =
⋃
u∈L
{un | n ≥ 2}. L is

regular, Therefore {un | n ≥ 2} = u∗ \ {u} is also regular language. Since the regular

languages are closed under finite union, we have ZL is regular. The regular languages are

closed under set complement, therefore QL(= V ∗ \ ZL) is regular.

The next cases are for the infinite language L.

Case (b): Since L = {un | n ≥ 1} for some u ∈ V ∗, we have ZL = {un | n ≥ 2} is

regular language. Therefore QL is regular.

Case (c): If L =
⋃

w∈{w1,w1,...wn}⊂V ∗
{wn | n ≥ 1} then ZL =

⋃
u∈{w1,w1,...wn}⊂V ∗

{un | n ≥ 2}

is regular language as the regular languages are closed under finite union. Since the regular

languages are closed under set complement, we have QL is regular.

There are examples for non-trivial regular languages for which ZL is not regular. Let

L = aaa(aa)∗ then L is regular. Consider ZL = {an | n > 3 and n 6= 2k where k ∈ N }.
However, ZL is not even context free.

There exists an infinite non-regular language L such that language of L-primitive words

is regular. For example, L = {ak | k is prime} is not regular. Now, ZL = {an | n ≥ 2}.
Clearly, ZL is a regular language. Therefore QL is also regular.

Theorem 4.6. Let L be a regular language. Then ZL is regular if and only if ZL \ L is a

regular language and primitive root of ZL \ L is a finite language.

Proof. If part: The class of regular languages is closed under union and taking the difference

of two sets, therefore if ZL \ L is a regular language then so is (ZL \ L) ∪ L = ZL.
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Only if part: If ZL is regular then so is ZL \ L. Let there be an n-state minimal deter-

ministic automaton which accept ZL \L. Now suppose that root of ZL \L, represented by

R, is infinite. Then there is a word w ∈ ZL \ L such that root of w is greater than n. Now

according to pumping lemma for regular languages there exists an integer n for w = xyz

such that |y| ≥ 1 and |xy| ≤ n and xyiz ∈ ZL \ L for all i ≥ 0, so xyiz is non-L-primitive

and so non-primitive for all i. That is for i, j ≥ 1 with i < j such that both xyiz and xyjz

are non-primitive. Since language of non-primitive words is reflective, zxyi and zxyj are

non-primitive. By Theorem 2.4, roots of zxyi and zxyj are same and equal to root ot y.

Hence root of xyz is same as root of y and so less than n, which is a contradiction to the

assumption that root of w is greater than n.

Therefore primitive root of ZL \ L must be finite.

Corollary 4.4. For a context free language L, the language ZL need not be a context-free

language.

Proof. Let L = {anbn | a 6= b, n ≥ 1}. L is a context-free language. Corresponding to it

ZL = {(anbn)k | a 6= b, n ≥ 1 k ≥ 2}. Consider the string s = ap+1bp+1ap+1bp+1, where

a, b ∈ V and a 6= b. It is easy to see that s ∈ ZL and |s| ≥ p. We prove it by using pumping

lemma for CFL.

Hence, s can be written as uvwxy, where u, v, w, x, and y are factors, such that |vwx| ≤ p,
|vx| ≥ 1, and uviwxiy ∈ QI for every i ≥ 0. By the choice of s and the fact that |vwx| ≤ p,

we have one of the following possibilities for vwx:

Case (a) vwx = aj for some j ≤ p.

Case (b) vwx = ajbk for some j and k with j + k ≤ p.

Case (c) vwx = bj for some j ≤ p.

Case (d) vwx = bjak for some j and k with j + k ≤ p.

In Case (a), since vwx = aj , therefore vx = at for some t ≥ 1 and hence uviwxiy =

ap−t+1bp+1ap+1bp+1 /∈ ZL for i = 0.

Similarly, we can obtain contradiction in Case (c).

Case (b) has several subcases.

(i) v = aj1 , w = aj2 , x = aj3bk.

(ii) v = aj1 , w = aj2bk1 , x = bk2 .

(iii) v = ajbk1 , w = bk2 , x = bk3 .
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In Case b(i), Case b(ii) and Case b(iii) if we take i = 0, uviwxiy /∈ ZL.

Similarly, we can obtain contradiction in Case (d).

Therefore ZL is not a context-free language.

4.3 Ins-Robust L-Primitive Words

Definition 4.2. An L-primitive word w of length n is said to be ins-robust L-primitive word if

the word

pref(w, i) . a . suf(w, n− i)

is an L-primitive word for all i ∈ {0, 1, . . . , n} where a ∈ V .

We denote the language of ins-robust L-primitive words as QLI and language of non-

ins-robust L-primitive words as QLI . QLI which is a subset of the set of primitive words,

QL.

A language QLI need not closed under reflective property.

For instance a language L which contains ab but not the word ba. Then baba ∈ QLI as it

is not proper power of any word contained in L and also not power of any word of L after

insertion of any symbol in this word, but abab /∈ QLI as it is not even in QL.

Similarly, we can have w ∈ QLI such that rev(w) need not be in QLI .

Lemma 4.10. QLI is reflective if and only if for all w = uv ∈ L ∩QL, vu ∈ L.

Proof. Proof is similar to Theorem 4.1.

We know that for w ∈ QI , rev(w) ∈ QI by Lemma (3.6), but for w ∈ QLI , rev(w) need

not be in QLI .

Theorem 4.7. Let L be a language over an alphabet V . For w ∈ QLI , rev(w) ∈ QLI if and

only if for u ∈ L ∩QL, rev(u) ∈ L.

Proof. Let w ∈ QLI , u, rev(u) ∈ L∩QL and rev(u) ∈ L but rev(w) ∈ QLI . Since w ∈ QLI ,
therefore w = uru1u2u

r, rev(w) = (rev(u))srev(u2)rev(u1) (rev(u))r for some u ∈ L and

u = u1au2 for some a ∈ V . It follows that rev(w) ∈ QLI .

Conversely let for all w, rev(w) ∈ QLI and u ∈ L ∩ QL but rev(u) /∈ L. Therefore

w = uru1u2u
r, rev(w) = (rev(u))srev(u2)rev(u1)(rev(u))r ∈ QLI for some u ∈ L ∩ QL.

The following two cases may arises.
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Case (A) If rev(u) = xk for k ≥ 2 where x ∈ L∩QL, then (rev(u))srev(u2) rev(u1)(rev(u))rx ∈
QLI . But then w = rev(x)(rev(x)k)rrev(u1) rev(u2)(rev(x)k)r ∈ QLI which implies

rev(x) ∈ L which is contradicting to u = (rev(x))k ∈ L ∩QL.

Case (B) If rev(w) = (rev(u))srev(u2)rev(u1)(rev(u))r = xmx1x2x
n for x = (rev(u))k

and k ≥ 2. The proof is similar to case (A).

Theorem 4.8. Let L be a language over an alphabet V . For w ∈ QLI , rev(w) ∈ QLI if and

only if for u ∈ L ∩QL, rev(u) ∈ L.

Proof. Proof is similar to Theorem 4.7.

Lemma 4.11. Let L be a language over an alphabet V . QI ⊆ QLI , for any language L ⊆ V ∗,
where QI is the language of ins-robust primitive words and QLI is set of ins-robust L-primitive

words.

Proof. Let w ∈ QI but w /∈ QLI . Then for some partition of w, say w1w2, and a ∈ V ,

w1aw2 = uk for some u ∈ L and k ≥ 2. Since L ⊆ V ∗, therefore w /∈ QI , which is a

contradiction.

Proposition 4.4. Let L and M be two subsets of V ∗. Then L ⊆M =⇒ QMI ⊆ QLI .

Proof. On the contrary, let us assume that QMI 6⊆ QLI . Then there exists w ∈ QMI ,

but w /∈ QLI . Therefore there exists partition of w = w1w2 such that w1aw2 = uk for

some u ∈ L and k > 1. Since L ⊆ M , we have u ∈ M . Consequently, w 6= QMI a

contradiction.

Remark 4.1. Clearly, an ins-robust L-primitive word need not be ins-robust primitive. For

instance, let L = {abb} ⊆ {a, b}∗. The word abb is an ins-robust L-primitive word, but not an

ins-robust primitive word.

4.4 Del-Robust L-Primitive Words

Definition 4.3. A L-primitive word w of length n is said to be del-robust primitive word if and

only if the word

pref (w, i) . suf (w, n− i− 1) 6= uk, k ≥ 2, u ∈ L, i ∈ {0, 1, . . . , n− 1} .

For example, if L = {(ab)n | n ≥ 1, a, b ∈ V }, then the words b(abb)k, k ≥ 1 and ambn for

m,n ≥ 2 are del-robust L-primitive words, whereas b(abb)k, k ≥ 1 are not in QD. We denote
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the language of del-Robust L-primitive words as QLD and language of non-del-robust L-

primitive words as QLD.

Lemma 4.12. Let L be a language over an alphabet V . QD ⊆ QLD, for any language

L ⊆ V ∗, where QD is the language of del-robust primitive words and QLD is set of del-robust

L-primitive words.

Proof. Let w ∈ QD but w /∈ QLD, then for some partition of w (say w1aw2), w1w2 = uk for

some u ∈ L and k ≥ 2. Since L ⊆ V ∗, therefore w /∈ QD, which is contradiction.

A language QLD need not closed under reflective property. For example, let a language

L contains ab but not ba. Then baba ∈ QLD as it is not proper power of any word contained

in L and also not proper power of any word of L after deletion of any symbol from this

word, but abab /∈ QLD as it is not even in QL. For w ∈ QLD, rev(w) need not be in QLD.

Similarly, QLD need not closed under reflective property.

Lemma 4.13. Let L be a language over an alphabet V . QLD is reflective if and only if for all

w = uv ∈ L ∩QL, vu ∈ L.

Proof. Proof of this lemma is similar to that of Theorem 4.1.

From corollary 3.5, we know that a word w is in the set QD if and only if it is of the

form una or its cyclic permutation for some u ∈ Q, u 6= a and n ≥ 2. But since QLD is not

reflective, so this result may not be true for such words.

Proposition 4.5. If L and M are two subsets of V ∗, then L ⊆M =⇒ QMD ⊆ QLD.

Proof. On the contrary, let us assume that QMD 6⊆ QLD. Then there exists w ∈ QMD,

but w /∈ QLD. Therefore there exists partition of w = w1aw2 such that w1w2 = uk for

some u ∈ L and k > 1. By hypothesis, we have u ∈ M . Consequently, w 6= QMD a

contradiction.

Remark 4.2. A del-robust L-primitive word need not be del-robust primitive. For instance, let

L = {(abb)n | n ≥ 1} ⊆ {a, b}∗. Clearly, the word abb is a del-robust L-primitive word, but

not a del-robust primitive word.

It is easy to prove that an L-primitive word w is not del-robust if and only if w can be

expressed in the form of uk1u1cu2uk2 where u1, u2 ∈ V ∗, u1u2 = u ∈ L, c ∈ V , k1, k2 ≥ 0

and k1 + k2 ≥ 1.

Theorem 4.9. Let L be a language over an alphabet V . QLD = QD if and only if Q ⊆ L.
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Proof. If Q ⊆ L then it is easy to prove that QLD = QD. Conversely, if QLD = QD and

Q 6⊆ L, then there exists a primitive word u such that u /∈ L. We have uka ∈ QLD but

uka /∈ QD, which is a contradiction.

4.5 Exchange Robust L-Primitive Words

Definition 4.4. An L-primitive wordw of length n (≥ 2) is said to be exchange robust primitive

word if and only if the word

pref (w, i) wi+1wi suf (w, n− i− 2) 6= uk, k ≥ 2, u ∈ L, i ∈ {0, 1, . . . , n− 2}

.

For example, if L = {ab}, then the word baaaba is exchange robust L-primitive words,

whereas baaaba is not in QX . We denote the language of Exchange Robust L-primitive

words as QLX and language of non-exchange robust L-primitive words as QLX .

Lemma 4.14. QX ⊆ QLX , for any language L ⊆ V ∗, where QX is the language of exchange

robust primitive words and QLX is set of exchange robust L-primitive words.

Proof. Let w ∈ QX but w /∈ QLX , then for some partition of w ( say w1abw2), w1baw2 = uk

for some u ∈ L and k ≥ 2. Since L ⊆ V ∗, therefore w /∈ QX , which is contradiction.

Lemma 4.15. Let L be a language over an alphabet V . If L ⊆ V then QLX = QL .

Proof. To prove this, we have to prove that QLX(= QL \ QLX) is empty for L ⊆ V . Let

QLX be not empty, then there exist w1abw2 ∈ QL such that b 6= a and w1baw2 ∈ ZL. Since

L ⊆ V , we have ZL {ak | a ∈ L}. Therefore b = a, which is a contradiction. Therefore

QLX is empty and so QLX = QL.

Theorem 4.10. QLX is reflective if and only if L ⊆ V .

Proof. To prove this we prove that QLX is not closed under reflective property if and only

if L 6⊆ V .

Proof of if part is similar to Lemma 4.15. If L ⊆ V then QLX is reflective.

Only if : QLX is reflective, hence uv ∈ QLX implies vu ∈ QLX . Let L 6⊆ V (i.e. there

exists a word w ∈ L such that |alph(w)| ≥ 2) then QLX is not empty and so there exists

uru1bau2u
s ∈ QLX for some u = u1abu2 ∈ L. But au2usuru1b /∈ QLX , in fact au2usuru1b ∈

QLX , which is a contradiction, as QLX is reflective. Therefore L ⊆ V .
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Lemma 4.16. Let L be a language over an alphabet V . If rev(u) ∈ L for u ∈ L then

rev(w) ∈ QLX for w ∈ QLX .

Proof. Let rev(u) ∈ L for all u ∈ L but rev(w) /∈ QLX for some w ∈ QLX . Since rev(w) /∈
QLX , we have rev(w) ∈ ZL or rev(w) ∈ QLX .

Case (A) If rev(w) ∈ ZL, then w ∈ ZL, which is a contradiction.

Case (B) If rev(w) ∈ QLX , rev(w) = uru1bau2u
s for some u = u1abu2 ∈ L and a 6= b.

Therefore w = rev(rev(w)) = (rev(u))s rev(u2) ab rev(u1) (rev(u))r ∈ QLX as rev(u) =

rev(u2) ab rev(u1) ∈ L which is contradiction.

Therefore rev(w) ∈ QLX .

Theorem 4.11. For w ∈ QLX , rev(w) ∈ QLX if and only if for u ∈ L ∩QL, rev(u) ∈ L.

Proof. Proof of if part is similar to that of Lemma 4.16.

For other part, let w ∈ QLX implies rev(w) ∈ QLX but for some u ∈ L∩QL, rev(u) /∈ L.

Then there exists r, s ≥ 0, r+s ≥ 1 such that (rev(u))r rev(u2) ab rev(u1) (rev(u))s ∈ QLX
where u = u1 ab u2.

rev((rev(u))r rev(u2) ba rev(u1) (rev(u))s) = us u1 ba u2 u
r is in QLX , which contradict

the assumption that QLX is closed under reverse operation.

Proposition 4.6. If L and M are two subsets of V ∗, then L ⊆M =⇒ QMX ⊆ QLX .

Proof. On the contrary, let us assume that QMX 6⊆ QLX . Then there exists w ∈ QMX , but

w /∈ QLX . Therefore there exists partition of a word w = w1abw2 such that w1baw2 = uk

for some u ∈ L and k > 1. By hypothesis, we have u ∈ M . Consequently, w 6= QMX a

contradiction.

Remark 4.3. An exchange robust L-primitive word need not be exchange robust primitive. For

instance, let L = {abba} ⊆ {a, b}∗. Clearly, the word abba is an exchange robust L-primitive

word, but not exchange robust primitive word.

Theorem 4.12. An L-primitive wordw is non-exchange robust if and only ifw can be expressed

in the form of uk1u1bau2uk2 where u1, u2 ∈ V ∗, u1abu2 = u2 ∈ L, c ∈ V , k1, k2 ≥ 0 and

k1 + k2 ≥ 0.

Proof. We prove the necessary and sufficient conditions are as follows:

(⇒) Let w be a primitive word. Suppose w = v1xyv2 = uk1u1abu2u
k2 where a 6= b such

that v1 = uk1u1, v2 = u2u
k2 . First we consider that x and y are not hole. If we exchange
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x and y, we get w′ = v1yxv2 = uk1u1bau2u
k2 such that u1bau2 = um for m ≥ 2. Hence

w′ = uk, k ≥ 2 where k1+m+k2 = k and thus w is not an exchange-robust primitive word.

(⇐) Let w ∈ Q which is not an exchange-robust word. Then there exists at least one

consecutive positions where exchanging them makes the word nonprimitive. w can be

written as either v1abv2 where v1, v2 ∈ V ∗ and a, b ∈ V . Let w′ = v1bav2 ∈ Z that is

w′ = v1bav2 = um for m ≥ 2. Now v1 = uiu1 and v2 = u2u
j for i, j ≥ 0. Combining both

we have v1bav2 = uiu1bau2u
j where u1bau2 = uk for k ≥ 2.

4.6 Conclusions

In this chapter, we have discussed a special type of words which are primitive with respect to

a language L, called L-primitive words. We have characterize them and identified several

properties. We have also defined the robustness of these words. We have identified the

conditions to show the reflectivity of QL. Various robustness of L-primitive words and their

properties are also discussed in this chapter.

[[]X]\\

55





“The fragrance of flowers spread only in the direction of

wind. But the goodness of a person spreads in all direction.”

- Chanakya: Indian teacher, philosopher, economist, jurist

and royal advisor

Chapter5
Pseudo Quasiperiodic Words

A morphism h : U∗ → V ∗ (or h : U+ → V +) is a mapping which satisfies: h(ww′) =

h(w)h(w′) for all w,w′ ∈ U∗, where U and V are alphabets. In particular, if h is morphism

then h(λ) = λ and h is completely specified by the words h(a) with a ∈ V . A morphism

h is λ-free if h(a) 6= λ for all a ∈ V . A morphism h is called injective if and only if, for all

v, w ∈ V ∗, h(v) = h(w) implies v = w. A morphism h is periodic if ∃z such that h(a) ∈ z∗,
for all a ∈ V . For a morphism h, if |h(a)| = |h(b)| for all a, b ∈ V then h is called uniform

morphism. h is prefix (resp. suffix) if none of the words in h(V ) is a prefix (resp. suffix) of

another and if h is injective then h is called code [53].

The notion of a morphism is very important in combinatorics of words. A mapping

θ : V ∗ → V ∗ is called a morphic involution of V ∗ if θ(xy) = θ(x)θ(y) for any x, y ∈ V ∗

(morphism), and θ2 is equal to the identity (involution). Throughout this chapter, θ de-

notes an morphic involution.

5.1 Robustness of θ-Primitive Words

A word w ∈ V ∗ is a pseudo-power of a non-empty word t ∈ V + relative to θ, or simply

θ-power of t, if w ∈ t{t, θ(t)}∗. Conversely, t is called pseudo-period of w relative to θ, or

simply θ-period of w if w ∈ t{t, θ(t)}∗. A word w is θ-primitive if there exists no non-empty

word t ∈ V + such that w is a θ-period of t and |w| > |t| [36]. We represent language of

θ-primitive words as Qθ.

For example, let V = {a, b, c} be the alphabet and θ : V ∗ → V ∗ be a morphic involution

define as

θ(a) = b, θ(b) = a and θ(c) = c.

Then the word w = abcbac is primitive but not θ-primitive, and θ-period of w is abc. ambn
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is not θ-primitive but amcn is θ-primitive for m, n ≥ 1.

Next we discuss some robustness of θ-primitive words.

5.1.1 Ins-Robustness of θ-Primitive Words

For an involution morphism θ on the alphabet V , a θ-primitive word w of length n is said to

be ins-robust θ-primitive word if the word pref (w, i) . a . suf (w, n− i) is a θ-primitive word

for all i ∈ {0, 1, . . . , n} where a ∈ V .

We denote the set of all ins-robust θ-primitive words over an alphabet V by QθI . A θ-

primitive word w is said to be non-ins-robust if w is θ-primitive but w /∈ QθI . The set of

non-ins-robust θ-primitive words is denoted by QθI . Clearly the language of ins-robust

θ-primitive words is a subset of the language of θ-primitive words.

Lemma 5.1. Let θ : V ∗ → V ∗ be a morphic involution. A θ-primitive word w is non ins-robust

if and only if w can be expressed in the form of u1u2 . . . ui . . . uk where uj ∈ {u, θ(u)} for

1 ≤ j(6= i) ≤ k and ui = ui1ui2 such that ui1cui2 ∈ {u, θ(u)} for some c ∈ V , ui1 , ui2 ∈ V ∗

and u ∈ Q.

Proof. Only if part: Let us consider a word w = u1u2 . . . ui1ui2 . . . uk where uj ∈ {u, θ(u)}
for 1 ≤ j(6= i) ≤ k and ui1cui2 ∈ {u, θ(u)} for some c ∈ V . Now insertion of the letter c in

w (between ui1 and ui2) gives the exact θ-power of u. Hence it is a non-θ-primitive word

after insertion of c at some position of w. Therefore, w is non-ins-robust θ-primitive word.

If part: Let w be a θ-primitive word but not ins-robust. Then there exists a decomposition

w = w1w2 such that w1cw2 is not a θ-primitive word for some letter c ∈ V . Hence, w1cw2

is θ-power of word p for some p ∈ Q. Therefore w1 = up1 and w2 = p2v such that p1cp2 ∈
{p, θ(p)} and uv is θ-power of p .

Corollary 5.1. If w ∈ QθI then rev(w) ∈ QθI for an involution morphism θ.

Proof. Let w ∈ QθI , but rev(w) is not ins-robust, i.e., rev(w) = u1u2 . . . ui . . . uk where

uj ∈ {u, θ(u)} for 1 ≤ j( 6= i) ≤ k, ui1cui2 ∈ {u, θ(u)} for some c ∈ V and ui = ui1ui2 .

Then the word w = rev(rev(w)) = rev(u1u2 . . . ui . . . uk) = rev(uk) . . . rev(ui) . . . rev(u1).

rev(uj) ∈ {rev(u), θ(rev(u))} for 1 ≤ j(6= i) ≤ k, and rev(ui) = rev(ui2)rev(ui1), rev(ui2)

c rev(ui1) ∈ {rev(u), θ(rev(u))}. Since after insertion of c, the word become θ-power of

rev(u). Hence w is not an ins-robust θ-primitive word, which is a contradiction. Therefore,

if w ∈ QθI then rev(w) ∈ QθI .

For a morphic involution θ : V ∗ → V ∗, the language of ins-robust θ-primitive words need
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not be reflective. For example, let θ(a) = b, θ(b) = a and θ(c) = c. bbbcabacbaabca ∈ QθI
but bcabacbaabcabb /∈ QθI .

We can easily prove that for a morphic involution θ : V ∗ → V ∗, the language of θ-primitive

words is reflective if and only if θ is identity function.

Theorem 3.16 need not be true for non-ins-robust pseudo-primitive words. For example,

if u = abcbacab ∈ QθI where θ(a) = b, θ(b) = a and θ(c) = c. There is no non-θ-primitive

word of length |u| − 1 in uu. In next lemma we discuss the condition on the words so that

the theorem holds on non-ins-robust pseudo-primitive words.

Lemma 5.2. Let u = u1u2 be a non-ins-robust θ-primitive word such that u1au2 = vθ(v) for

some a ∈ V , u1, u2 ∈ V ∗ and v ∈ V +. For a morphic involution θ over alphabet V , the word

uu contains at least one θ-periodic word of length |u| with θ-period p such that p divides of

length |u|+ 1 and p ≤ |u|.

Proof. If u = u1u2 such that u1au2 = vθ(v) for some a ∈ V and v ∈ V +, then there are two

cases, either u1a is prefix of v or au2 is suffix of θ(v).

Case(A). If u1a is prefix of v, i.e., v = u1av
′ such that u = u1v

′θ(u1 a v
′), then uu =

u1v
′θ(u1av

′) u1v
′θ(u1av

′). Here, θ(v′)u1v′θ(u1)θ(a) is a non-ins-robust θ-primitive word of

length |u| and θ(θ(v′)u1) = v′θ(u1).

Case(B). Similarly we can prove for the case au2 is suffix of θ(v).

5.1.2 Context-freeness of QθI

For a morphic involution, we prove that the language of ins-robust θ-primitive words over

an alphabet V (|V | ≥ 3) is not regular and also show that the language of non-ins-robust

θ-primitive words is not context-free.

Theorem 5.1. QθI is not regular for an involution morphism θ.

Proof. Suppose that the language QθI over an alphabet V = {a, b, c} is regular for an

involution morphism θ such that θ(a) = a, θ(b) = c and θ(c) = b. Then there exist a natural

number n > 0 depending upon the number of states of finite automaton for QθI . Consider

the word w = ancamb,m > n + 1 and m 6= 2n. Note that w ∈ QθI , where |V | ≥ 3 and

a, b and c are distinct symbols. Since w ∈ QθI and |w| ≥ n, then it must satisfy the other

conditions of pumping Lemma for regular languages. So there exist a decomposition of w

into x, y and z such that w = xyz, |y| > 0 and xyiz ∈ QθI for all i ≥ 0.

Let x = ak, y = a(n−j), z = aj−kcamb. Now choose i = xj and since we know by Lemma

3.8 that for every j ∈ {0, 1, . . . , n − 1}, there exists a positive integer xj > 1 such that
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xyxjz = aka(n−j)xjaj−kcamb = a(n−j)xj+jcamb = amcamb = (amc)θ(amc) /∈ QθI which is a

contradiction. Hence the language of ins-robust θ-primitive words QθI is not regular.

We know that, QI is not a context-free language for alphabet V such that |V | ≥ 2 by

Lemma 3.9. But QθI is regular for alphabet V such that |V | = 2 if θ 6= idV , where idV is

identity mapping over V . In the next theorem, we discuss for |V | ≥ 3.

Theorem 5.2. Let θ be an involution morphism. QθI is not a context-free language for alpha-

bet V such that |V | ≥ 3.

Proof. Let V = {a, b, c} be an alphabet. Assume that for an involution morphism θ, QθI is

context-free language such that θ(a) = a, θ(b) = c and θ(c) = b. Let p > 0 be an integer

which is the pumping length for the language QθI . Consider the string s = ap+1cp+1ap+1bp,

where a, b, c ∈ V are distinct. It is easy to see that s ∈ QθI and |s| ≥ p.

Hence, by the Pumping Lemma 2.6, s can be written in the form s = uvwxy, where

u, v, w, x, and y are factors, such that |vwx| ≤ p, |vx| ≥ 1, and uviwxiy is in QθI for every

integer i ≥ 0. By the choice of s and the fact that |vwx| ≤ p, we have one of the following

possibilities for vwx:

(a) vwx = aj for some j ≤ p.

(b) vwx = ajck for some j and k with j + k ≤ p.

(c) vwx = cj for some j ≤ p.

(d) vwx = cjak for some j and k with j + k ≤ p.

(e) vwx = ajbk for some j and k with j + k ≤ p.

(f) vwx = bj for some j ≤ p.

In Case (a), since vwx = aj , therefore vx = at for some t ≥ 1 and hence uviwxiy =

ap−t+1cp+1ap+1bp /∈ QθI for i = 0.

Case (b) can have several subcases.

(i) v = aj1 , w = aj2 , x = aj3ck.

(ii) v = aj1 , w = aj2ck1 , x = ck2 .

(iii) v = ajck1 , w = ck2 , x = ck3 .
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In Case (1), Case (2) and Case (3) if we take i = 4, uviwxiy 6= QθI .

Similarly, we can obtain contradiction in rest of the case (5.4), case (5.4), case (5.1.2)

and case (5.1.2) by choosing a suitable i.

Therefore, our initial assumption that QθI is context-free, must be false.

5.1.3 Other Robustness of θ-Primitive Words

A θ-primitive word w of length n is said to be del-robust θ-primitive word if and only if the

word pref (w, i) . suf (w, n− i− 1) is a θ-primitive word for any i ∈ {0, 1, . . . , n− 1}.

Theorem 5.3. A θ-primitive word w is not del-robust if and only if w can be expressed in the

form of w1u1cu2w2 where w1, w2, u1, u2 ∈ V ∗, u1u2 = u, w1, w2 ∈ {u, θ(u)}∗ but w1w2 ∈
{u, θ(u)}+ and c ∈ V .

Proof. We prove the sufficient and necessary conditions below.

(⇐) Let us consider a word w = w1u1cu2w2 where w1, w2, u1, u2 ∈ V ∗, u1u2 = u, w1, w2 ∈
{u, θ(u)}∗ but w1w2 ∈ {u, θ(u)}+ and c ∈ V . Now deletion of the letter c in w gives

the exact θ-power of u which is not a θ-primitive word. Hence, w is not a del-robust

θ-primitive word.

(⇒) Let w be a θ-primitive word but not del-robust. Then there exists a decomposition w =

w1cw2 for c ∈ V such that w1w2 is not a θ-primitive word. That is, w1w2 ∈ p{p, θ(p)}+

for some p ∈ Q. Therefore w1 = w′1p1 and w2 = p2w2 such that p1p2 ∈ {p, θ(p)} and

w′1, w
′
2 ∈ {p, θ(p)}∗ such that w′1w

′
2 ∈ {p, θ(p)}+. Hence proved.

Lemma 5.3. If w is del-robust θ-primitive then rev(w) is also del-robust θ-primitive.

Proof. We prove this by contradiction. Let w is del-robust θ-primitive but rev(w) is not

del-robust. Therefore, rev(w) = w1u1cu2w2 where w1, w2, u1, u2 ∈ V ∗, u1u2 = u, w1, w1 ∈
{u, θ(u)}∗ but w1w2 ∈ {u, θ(u)}+ and c ∈ V . Then the word w = rev(w1u1cu2w2) =

rev(w2) rev(u2) c rev(u1) rev(w1) where rev(w1), rev(w2) ∈ {rev(u), θ(rev(u))}∗ but

rev(w1)rev(w2) ∈ {rev(u), θ(rev(u))}+ and since u = u1u2, so rev(u) = rev(u2)rev(u1).

By Theorem 5.3, w is not a del-robust θ-primitive word, which is a contradiction. There-

fore, rev(w) is also del-robust θ-primitive.
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Cyclic permutation of a del-robust θ-primitive word need not be del-robust. For example

θ : V ∗ → V ∗ such that θ(a) = b, θ(b) = a and θ(c) = c, then aacbabc is del-robust θ-primitive

word but acbabca is not.

5.2 θ-Superprimitive Words

A word w ∈ V + is θ-primitive if there exists no non-empty word t ∈ V + such that w is a

θ-power of t and |w| > |t|. The θ-primitive root of w, denoted by ρθ(w), is the shortest word

t such that w is a θ-power of t.

A string w covers another string z if for every i ∈ {1, . . . , |z|} there exists a j ∈ {1, . . . , |w|}
such that there is an occurrence of w starting at position i − j + 1 in string z. A string z is

quasiperiodic if z is covered by w 6= z, and the ordered sequence of all occurrences of w in

z is called the w-cover of z. A string z is superprimitive if it is not quasiperiodic.

If a string u is simultaneously a θ-prefix and a θ-suffix of string x then u is a θ-border of x.

The longest nontrivial θ-border of x is denoted by Tθ(x). By convention, we refer to Tθ(x)

as the θ-border of x and to other as pseudo-border of x. Let tθx be a θ-quasiperiod of x. A

word u is called θ-cover of a word w if w can be written as concatenation or superposition

u or θ(u) or both.

Definition 5.1. A word, w, is θ-quasiperiodic if there exist a word x such that x is θ-cover of

w and |x| < |w|. A word is θ-superprimitive if it is not θ-quasiperiodic.

Example Let θ : {a, b, c, d}∗ → {a, b, c, d}∗ be a morphic involution defined by θ(a) = c,

θ(c) = a, θ(b) = d, and θ(d) = b. Then the word w = adcbb is θ-superprimitive, while its

conjugate w′ = badcb is not. abcbabcabccba is θ-quasiperiodic for θ(a) = c, θ(b) = b, θ(c) = a

and its θ-cover is abc.

Lemma 5.4. A θ-superprimitive word is superprimitive.

Proof. Suppose that w is a θ-superprimitive word but not superprimitive. Then there exists

some t ∈ L which is cover of w and |t| < |w|, therefore t is also a θ-cover for w, which is a

contradiction.

Converse need not be true. Let θ(a) = b, θ(b) = a and θ(c) = c. Here θ is an involution as

θ(θ(a)) = a. u = acbca is superprimitive but not a θ-superprimitive as acb is a θ-cover of u.

Lemma 5.5. The θ-cover of a word is θ-superprimitive.
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Proof. Let w ∈ V + and t be its θ-cover. Suppose, now that t is not θ-superprimitive. Then

there exists a word s ∈ V ∗ such that s is a θ-cover of t and |s| < |t|. Since θ(t) is covered by

either s or θ(s). Thus, s is a θ-cover of w. However, this contradicts t being the θ-cover of w

because |s| < |t|.

Alternate Proof Let θ-cover of a word be not θ-superprimitive, then the θ-cover (say u)

must have a proper cover say u′ such that |u′| < |u| and so u′ can cover entire u, which

is a contradiction, as u is the smallest word which is θ-cover of the word. Hence u is

θ-superprimitive.

Corollary 5.2. The θ-cover of a word is superprimitive and so it is primitive.

Proof. The proof follows from Lemmas 5.4 and 5.5.

A quasiperiodic word need not be reflective. For example, ababa is quasiperiodic, but

babaa is not quasiperiodic that is superprimitive. A θ-quasiperiodic word need not be reflec-

tive. For example, abcbabc is θ-quasiperiodic for θ : V ∗ → V ∗ θ(a) = c, θ(b) = b, θ(c) = a,

but cabcbab is not θ-quasiperiodic that is θ-superprimitive.

Lemma 5.6. If y is a θ-border of x and |y| ≥ |tθx| for a θ-border tθx of x, then tθx is θ-cover of

y.

Proof. Since |y| ≥ |tθx| and tθx is a θ-border of x, then s is also a border of y. We distinguish

two cases:

Case A |y| ≤ 2|tθx|. Then, every symbol of y is θ-covered by at least one of the two

occurrences of tθx or θ(tθx), that start at positions 1 and |y| − |tθx|+ 1 of y, respectively.

Case B |y| > 2|tθx|. Then, there exists some string u such that y = t1ut2, where t1, t2 ∈
{tθx, θ(tθx)}. However, since tθx θ-covers x, we know that every symbol in u is θ-covered by

an occurrence of tθx or θ(tθx). Therefore, tθx is θ-cover of y.

Corollary 5.3. If y is a θ-border of x and |y| ≥ |tθx|, then, for any θ-quasiperiod tθy of y,

tθy ∈ {tθx, θ(tθx)}.

Proof. Assume first that |tθy| ≥ |tθx|. Since tθy is a θ-border of y and y is a θ-border of x,

then tθy, is a θ-border of x. If |tθy| ≥ |tθx|, we have by Lemma 5.6 that tθx θ-covers tθy.

Now if |tθy| ≤ |tθx|, then tθx is a θ-border of y and |tθx| ≥ |tθy|, therefore by Lemma 5.6,

tθy θ-covers tθx. In either case, one has that tθy ∈ {tθx, θ(tθx)}, as tθx and tθy are both

θ-superprimitive by definition of θ-quasiperiod.
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Lemma 5.7. Any word x has at most two θ-quasiperiods (if one is denoted by Qθ(x) then

other is θ(Qθ(x))).

Proof. Assume that x has any third distinct θ-quasiperiod, denoted as tθx and assume to fix

the ideas that |Qθ(x)| > |tθx|. Let y be a border of x such that |y| > |Qθ(x)|. If tθy is θ-cover

of y, then by Corollary 5.3, we have that tθy ∈ {Qθ(x), θ(Qθ(x))} and tθy ∈ {tθx, θ(tθx)}.
Therefore, tθx ∈ {Qθ(x), θ(Qθ(x))}.

Lemma 5.8. If Tθ(x) is the θ-border of x and Qθ(Tθ(x)) = Qθ(x).

Proof. Since Tθ(x) is the θ-border of x, then |Tθ(x)| is maximum among all nontrivial

psuedo-borders with respect to θ and in particular it is not shorter than Qθ(x). The claim

then follows from Corollary 5.3.

5.2.1 Pseudo L-Primitive Words

For a morphic involution θ : V ∗ → V ∗ and a language L, we call a word w ∈ V +, θL-

primitive if there exists no non-empty word t ∈ L such that w is a θ-power of t and |w| > |t|.
We define the θL-primitive root (in short, θL-root) of w, denoted by ρθL(w), as the shortest

word t ∈ L such that w is a θ-power of t and there is no word x ∈ L which is θL-root of t

and |x| < |t|.

We represent the set of θL-primitive words as QLθ and set of non-θL-primitive words as

ZLθ. This is obvious that QLθ ⊆ QL (ZL ⊆ ZLθ).

For example, for L = {ab, abab, ba}, θ : V ∗ → V ∗, a morphism involution, such that

θ(a) = b and θ(b) = a, abba is L-primitive, but not θL-primitive, as abba = abθ(ab).

Proposition 5.1. Let f be a λ-free morphism of L ⊆ V ∗ with |V | ≥ 2. Then f(QL) ∩ QL is

infinite if f is injective,

Proof. The words anbn are L-primitive for all n ≥ 2. Let u = ambm with m ≥ 2 and suppose

that f(u) is not L-primitive. Let f(a) = pr, f(b) = qs where p, q ∈ Q. Then f(u) = prmqsm

with rm, sm ≥ 2. Since f(u) is not L-primitive as it is not primitive which is only possible

if p = q. Hence f(ab) = f(ba), a contradiction.

Lemma 5.9. Let L be a language over an alphabet V and θ : V ∗ → V ∗, a morphic involution

on V ∗. Then the θL-primitive root of a word is θL-primitive.

Proof. Let w ∈ V + and t = ρθL(w) be its θL-primitive root, that is, w is a θ-power of t ∈ L.

Suppose, now that t is not θL-primitive. Then there exists a word s ∈ L such that t is
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a θ-power of s and |s| < |t|. Since t is a θ-power of s, thus, w is a θ-power of s, which

contradicts t being the θL-primitive root of w because |s| < |t| and s ∈ L.

Lemma 5.10. Let L be a language over an alphabet V and θ : V ∗ → V ∗, a morphic involution

on V ∗. Then a θL-primitive word is L-primitive.

Proof. Suppose that w is a θL-primitive word but not L-primitive. Then there exists some

t ∈ L such that w = tn with n ≥ 2 and |t| < |w|, therefore w is also a θ-power of t, which is

a contradiction.

Converse need not be true. Since θ is not the identity function, there exists a word u ∈ L
such that θ(u) 6= u. Then, if we take w = u3θ(u), then w is not θL-primitive, but w is

L-primitive as if w and tk have common prefix of length |t| + |u| − 1 for some t ∈ L then

by Fine and Wilf Theorem [22], t and u have same root and so it is for θ(u), which implies

that u = θ(u), contradiction.

The θL-primitive root of a word need not be θ-primitive and so need not to be primitive.

Let L {bb, cc} such that θ(b) = c and θ(c) = b. For a word w = bbccbbbbcc, θL-primitive roots

is bb or cc which are neither θ-primitive nor primitive. The θ-primitive roots of w are b and

c.

The class of θL-primitive words is not necessarily closed under circular permutations. For

example, Let θ : {a, b, c, d}∗ → {a, b}∗ be a morphic involution such that θ(a) = b, θ(b) = a,

θ(c) = d, θ(d) = c and a language L = {ab, cd}. w = babcdcdaba is θL-primitive but

abcdcdabab is not. Similarily we can show that the class of θ-superprimitive words is not

necessarily closed under circular permutations.

For a morphism θ, a language L is called θ-closed if for every u ∈ L, θ(u) ∈ L.

5.3 Robustness of Primitive Morphism

A morphism f : V ∗ → V ∗ is k-primitive if for all x ∈ Q and |x| ≤ k, f(x) ∈ Q, where

k ≥ 1. The morphism f is primitive if it is k-primitive for all k ≥ 1. A morphism f is called

uniform if |f(a)| = |f(b)| for all a, b ∈ V and a 6= b. A morphism f is called 1-uniform if

|f(a)| = 1 for all a ∈ V . A word v is morphically primitive if, for every word w with |w| ≤ |v|,
there do not exist morphisms h, h′ : V ∗ → V ∗ satisfying h(v) = w and h′(w) = v, and we

call v morphically imprimitive if it is not morphically primitive.

Definition 5.2. A morphism f : V ∗ → V ∗ is k-del-robust-primitive if for all x ∈ QD and

|x| ≤ k, f(x) ∈ QD. The morphism f is del-robust-primitive if it is k-del-robust-primitive for

all k ≥ 1.
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Example. Define a morphism f : V ∗ → V ∗, such that f(a) = ab and f(b) = a, f is

primitive morphism but not del-robust-primitive morphism, as, ab ∈ QD but f(ab) = aba /∈
QD.

Theorem 5.4. A 1-uniform primitive morphism is del-robust-primitive morphism.

Proof. Since f is 1-uniform primitive morphism, therefore f(a) 6= f(b) for a 6= b. |f(a)| = 1

for every a ∈ V . If w ∈ QD then w can not be written as either ur, r ≥ 2 or uru1au2us,

r + s ≥ 1, r, s ≥ 0 where u, u1, u2 ∈ V ∗ and since f is primitive morphism, so f(w) can

neither be written as f(u)r nor f(u)rf(u1)f(a)f(u2)f(u)s and so f(w) ∈ QD. Therefore f

is del-robust-primitive morphism.

Let f : V ∗ → V ∗ be a morphism. Denote by fQ the set of all the primitive words u ∈ Q
such that f(u) ∈ Q and fZ the set of all the primitive words u ∈ Q such that f(u) ∈ Z [15].

Definition 5.3. Let f be a morphism of V ∗. Denote by fD the set of all the del-robust primitive

words u ∈ QD such that f(u) ∈ QD and by f ′D the set of all the del-robust primitive words

u ∈ QD such that f(u) /∈ QD, i.e. f(u) = pn or f(u) = prp1ap2p
s, p ∈ Q, p1, p2 ∈ V ∗,

a ∈ V , p1p2 = p, r, s ≥ 0, n ≥ 2 and r + s ≥ 1.

Lemma 5.11. [15] Let f be a morphism of V ∗. Then

(a) The languages fQ and fZ are reflective.

(b) If f is injective, then u, v ∈ fZ , u 6= v imply uv /∈ fZ and uv ∈ Q.

Proposition 5.2. Let f be a morphism of V ∗. Then the languages fD and f ′D are reflective.

Proof. If fD = φ, this is immediate. Suppose fD 6= φ and let uv ∈ fD. Then uv ∈ QD and

f(u)f(v) = f(uv) ∈ QD. Since QD is reflective and f is morphism, then vu ∈ QD and

f(vu) = f(v)f(u) ∈ QD. Therefore, vu ∈ fD. If f ′D = φ, this is immediate. Suppose f ′D 6= φ

and let uv ∈ f ′D. Then uv ∈ Q and f(u)f(v) = f(uv) ∈ QD(= V ∗ \QD). Since QD and QD
are reflective, then vu ∈ QD and f(vu) = f(v)f(u) ∈ QD. Therefore, vu ∈ f ′D.

Denote by fd the set of all the primitive words u ∈ Q such that f(u) ∈ QD and by f ′d the

set of all the primitive words u ∈ Q such that f(u) /∈ QD.

Proposition 5.3. Let f be a morphism of V ∗. Then the languages fd and f ′d are reflective.

Proof. If fd = φ, this is immediate. Suppose fd 6= φ and let uv ∈ fd. Then uv ∈ Q

and f(u)f(v) = f(uv) ∈ QD. Since Q and QD are reflective, then vu ∈ Q and f(vu) =

f(v)f(u) ∈ QD. Therefore, vu ∈ fd. If f ′d = φ, this is immediate. Suppose f ′d 6= φ and
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let uv ∈ f ′d. Then uv ∈ Q and f(u)f(v) = f(uv) ∈ QD(= V ∗ \ QD). Since Q and QD are

reflective, then vu ∈ Q and f(vu) = f(v)f(u) ∈ QD. Therefore, vu ∈ f ′d.

An injective morphism may not be del-robust. For example, define f on V = {a, b}, s.t.,

f(a) = b and f(b) = aba. f is injective morphism, but f(ab) = baba /∈ QD.

If f is a morphism of V ∗, the word u is said to be f -reductible if f(u) = pm, p ∈ Q,

m ≥ 2. Since Q, QD, QD and Z are reflective, then uv is f -reductible if and only if vu is

f -reductible.

Proposition 5.4. [15] Let f be an injective morphism of V ∗.

(a) If u, v ∈ V + with uv 6= vu are f -reductible, then uv is not f -reductible.

(b) If uv is f -reductible and uv 6= vu, then either u or v is not f -reductible.

A word u ∈ V + is said to be universally primitive or simply u-primitive if for every

injective morphism f of V ∗, the word f(u) is primitive [15]. Hence a u-primitive word is a

word that is not f -reductible for every injective morphism of V ∗. Let QU denote be the set

of all the u-primitive words of V ∗. Clearly QU ⊆ Q Since V ∩QU = φ, the inclusion is strict.

Definition 5.4. A word u ∈ V + is said to be universally del-robust primitive or simply

ud-primitive if for every injective morphism f of V ∗, the word f(u) is del-robust primitive.

Let QUD denote be the set of all the ud-primitive words of V ∗. Clearly QUD ⊆ Q. Since

V ∩QUD = φ, the inclusion is strict.

Proposition 5.5. [15] Let w = umvn with u, v ∈ V + and m,n ≥ 2. Then the following

properties are equivalent:

(a) w is u-primitive,

(b) u and v have different roots,

(c) uv 6= vu.

Proposition 5.6. Any λ-free morphism injective morphism on the set {anbnbnan | n ≥ 2} is a

subset of QD.

Proof. Since f is injective morphism, therefore f(uv) 6= f(vu) for uv 6= vu, u, v ∈ V ∗

and u 6= v and f(anbn) is primitive. Let there be an injective morphism f such that

f(anbnbnan) /∈ QD for some n ≥ 2. Then f(anbnbnan) ∈ Z or f(anbnbnan) ∈ QD, which is

not possible as f is λ-free injective.
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Proposition 5.7. If a word w is ud-primitive then w is u-primitive.

Proof. If the word w is ud-primitive then f(w) ∈ QD for every injective morphism f , and so

f(w) ∈ Q. Therefore w is u-primitive.

The converse need not be true as f(w) = (aba)2abab ∈ Q \QD.

Proposition 5.8. Let w = umvn with u, v ∈ Q, u 6= v and m,n ≥ 2. If w is ud-primitive then

w ∈ QD and u and v have different roots and uv 6= vu.

Proof. Since w = umvn ∈ Q and for every injective morphism f(w) ∈ QD, and so w ∈ QD.

Since w is ud-primitive and so it is u-primitive. Therefore by proposition 5.5, u and v have

different roots and uv 6= vu.

The set {anbnbnan | n ≥ 2, a, b ∈ V } contains only ud-primitive words and hence QUD is

infinite.

5.4 Robustness of Abelian Primitive Words

Let V = {a1, . . . , an} be an alphabet. The Parikh vector of a word w ∈ V ∗ is ψ(w) =

(|w|a1 , |w|a2 , . . . , |w|an). For the alphabet V = {a, b}, we assume a < b. Thus, for exam-

ple ψ(abbaabb) = (3, 4). A word w is a n-th Abelian power if x = y1y2 . . . yn for some

y1, y2, . . . , yn ∈ V ∗ such that for all 2 ≤ i ≤ n, ψ(yi) = ψ(y1).

A word w is Abelian primitive (or A-primitive, for short) if w is not a k-th Abelian power

for every k ≥ 2. For an alphabet V , the set of all A-primitive words w ∈ V ∗ is denoted by

AQ(V ) or simply AQ if V is understood.

Definition 5.5 (Substitute-Robust Abelian Primitive Word). A primitive word w of length n

is said to be subst-robust Abelian-primitive word (or subst-robust A-primitive word) if and only

if the word

pref(w, i) .a. suf(w, n− i− 1)

is an A-primitive word for all i ∈ {0, 1, . . . , n− 1} and for all a ∈ V .

For example, the word abbababaa is not a subst-robust A-primitive word and the words

anbn for n ≥ 2 are subst-robust A-primitive words.

The collection of all subst-robust A-primitive words over an alphabet V is denoted by

AQS .

Lemma 5.12. If w ∈ AQS then rev(w) ∈ AQS .
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Proof. Let w ∈ AQS such that rev(w) is not a subst-robust A-primitive word. Therefore,

rev(w) = p1.p2 . . . p
′
iap

′′
i . . . pk where ψ(pi) = ψ(p) for some p ∈ Q and p = p1bp2 for some

b 6= a. Then the word w = rev(p1.p2 . . . p
′
iap

′′
i . . . pk) = rev(pk) rev(p

′′
i ) a rev(p

′
i) rev(p1)

and ψ(p1 b p2) = ψ(p) = ψ(rev(p2) b rev(p1)). By Proposition 3.2, w is not a subst-robust

A-primitive word, which is a contradiction. Therefore, if w ∈ AQS then rev(w) ∈ QS .

Definition 5.6. A word w is del-robust Abelian primitive (or DA-primitive, for short) if the

primitive word w can not be written as uu1u2 . . . u′iaui” . . . un for some u, ui ∈ V ∗, ui = u′iui”

for some 1 ≤ i ≤ n and a ∈ V where ψ(ui) = ψ(u) for all 1 ≤ i ≤ n.

We denote the set of del-robust abelian primitive word as AQD.

The word w = aabbab is A-primitive and DA-primitive as well, while u = aabbabbab is

not a DA-primitive word, as u = xy1by2 where x = aabb,y1 = a, y2 = bab, y = y1y2 = abab

and ψ(x) = ψ(y) = (2, 2).

We know that the language of del-robust primitive words QD over an alphabet V is re-

flective by Theorem 3.3. Similarly, we have the property of reflectivity for the language of

del-robust abelian primitive words AQD.

Lemma 5.13. If w ∈ AQD then rev(w) ∈ AQD.

Proof. We prove this by contradiction. Let w ∈ AQD such that rev(w) is not a del-robust

abelian primitive word. Therefore, rev(w) = p1.p2 . . . p
′
iap

′′
i . . . pk for pl ∈ Q, 1 ≤ l ≤ k

and pi = p
′
ip
′′
i such that such that for all 1 ≤ i, j ≤ k, ψ(pi) = ψ(pj). Then the word w =

rev(p1.p2 . . . p
′
iap

′′
i . . . pk) = (rev(pk)) . . . rev(p

′′
i ) a rev(p

′
i) rev(p1) and since pi = p

′
ip
′′
i , so

rev(p) = rev(p
′′
i )rev(p

′
i). Therefore w is not a del-robust abelian primitive word, which is a

contradiction. Therefore, if w ∈ AQD then rev(w) ∈ AQD.

Corollary 5.4. If w ∈ AQ then rev(w) ∈ AQ.

Proof. Similar to lemma 5.13.

The language AQ is not reflective. For example, aabb ∈ AQ but abba ∈ AQ. AQD is not

reflective. aabbb ∈ AQD but baabb ∈ AQD.

Theorem 5.5. AQD is not a context-free language.

Proof. By contradiction, let us assume that AQD is not a context-free language. Let p > 0

be an integer which is the pumping length for the language AQD. Consider the string

s = apbpcpbpcpap+1, where a, b ∈ V are distinct. It is easy to see that s ∈ AQD and |s| ≥ p.
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Hence, by the Pumping Lemma 2.6, s can be written in the form s = uvwxy, where

u, v, w, x, and y are factors, such that |vwx| ≤ p, |vx| ≥ 1, and uviwxiy is in AQD for every

integer i ≥ 0. By the choice of s and the fact that |vwx| ≤ p, we have one of the following

possibilities for vwx:

(a) vwx = aj for some j ≤ p.

(b) vwx = ajbk or bjck or cjbk for some j and k with j + k ≤ p.

(c) vwx = bj for some j ≤ p.

(d) vwx = cjak for some j and k with j + k ≤ p.

In Case (a), since vwx = aj , therefore vx = at for some t ≥ 1 and hence uviwxiy =

ap−tbpcpbpap+1cp /∈ AQD for i = 3.

Case (b) can have several subcases. We prove it for vwx = ajbk. For bjck, proof will be

similar.

(i) v = aj1 , w = aj2 , x = aj3bk.

(ii) v = aj1 , w = aj2bk1 , x = bk2 .

(iii) v = ajbk1 , w = bk2 , x = bk3 .

In Case (a), Case (b) and Case (c) if we take i = 4, uviwxiy 6= AQD.

Similarly, we can obtain contradiction in Case (c) and Case (d) by choosing a suitable i.

Therefore, our initial assumption that AQD is context-free, must be false.

Theorem 5.6. AQD is not regular.

Proof. Let us suppose that the language AQD is regular. Then there exist a natural number

n > 0 depending upon the number of states of finite automaton for AQD.

Consider the word w = anbamb, n > m + 2. Note that w ∈ AQD. Since |w| ≥ n, then it

must satisfy the other conditions of pumping Lemma for regular languages. So there exist a

decomposition of w into x, y and z such that w = xyz, |y| > 0 and xyiz ∈ AQD for all i ≥ 0.

Let x = ak, y = a(n−j), z = aj−kbamb. Now choose i = xj and since we know by

Lemma 3.8 that for every j ∈ {0, 1, . . . , n − 1}, there exists a positive integer xj > 1 such

that xyxjz = aka(n−j)xjaj−kbamb = a(n−j)xj+jbamb = ambamb = (amb)2 /∈ AQD which is a

contradiction. Hence AQD is not regular.
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We know that the set AQ is not context-free [54]. Next we show that AQD over an

alphabet V (|V | ≥ 3) is not context-free.

Lemma 5.14. For a prime p ≥ 2, the word x = aabbc(ab)p−2 is del-robust A-primitive.

Proof. |x| = 2p + 1 for x ∈ M . If x is not del-robust A-primitive, then one of three cases

occurs:

(a) ψ(x) = ψ(u).2p+ {0, 0, 1} for some letter u,

(b) x = u1u2cu3 . . . up for words u1, . . . , up of length two such that ψ(ui) = ψ(uj), 1 ≤ i, j ≤
p and i 6= j

or

(c) Otherwise.

The case (a) cannot occur because x contains occurrences of a, b and c. In case (b), since

we would have u1 = aa and u2 = bb so this case is also not possible.

Thus, we must have that x = v1v2 for |v1| = p + 1 and |v2| = p. If p = 2 or 3, then x is

del-robust. If p > 3 and v1 = aabbc(ab)(p−5)/2a which has Parikh vector ((p− 5)/2 + 3, (p−
5)/2 + 2, 1), and v2 = b(ab)(p−1)/2 which has Parikh vector ((p− 1)/2, (p− 1)/2 + 1, 0). We

can see that the number of occurrences of a in v1 is even, while in v2 it is odd or vice versa.

Therefore aabb(ab)p−2 is A-primitive and so aabbc(ab)p−2 is del-robust A-primitive.

Lemma 5.15. AQD ∩ aabbc(ab)∗ = {aabbc(ab)p−2 | p is prime}.

Proof. Let M = AQD ∩ aabbc(ab)∗. The if part is immediate from Lemma 5.14. For the only

if part, let x ∈ M . Then |x| = 2n for some n ≥ 2. Suppose, on contrary x is not of the form

aabbc(ab)p−2 for some prime p. Then we must have that n is not prime. Let q be a prime

factor of n and note that x = (aabbc(ab)q−2).((ab)q)n/q−1 and that all factors of length 2q

have q occurrences of a, q occurrences of b and one symbol c. Further, aabb(ab)q−2 is an

A-primitive root after deletion of a symbol c from x by Lemma 5.14. Thus, x is not del

robust A-primitive, which is a contradiction.

We can now show that the set of all del-robust A-primitive words is not context-free.

Theorem 5.7. Let V be an alphabet such that |V | ≥ 3. The set AQD over V is not context-free.

Proof. We prove that M is not context-free. Let M ′ = h−1((aabb)−1M ) where h : {a, c}∗ →
{a, b, c}∗ is the morphism h(a) = ab and h(c) = c. Then M ′ = {cap−2 | p is prime}. As

the context-free languages are closed under quotient by regular sets and inverse homomor-

phism, M ′ is context-free if M is context-free. But as M ′ is unary after deletion of c from

each element of M ′. Since M ′ is not regular, by the pumping lemma. Thus, M and so AQD
are not context-free.
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5.5 Conclusions

In this chapter, We have discussed the characterizations of pseudo-superprimitive words

and pseudo-L-primitive words and identified several properties. We have investigated the

robustness of primitive morphism and some results on universally primitive words. We

have discussed the robustness of abelian primitive words and proved that the language of

del-robust abelian primitive words is not context free.
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Yatra Naryastu Pujyante Ramante Tatra Devata,

Yatraitaastu Na Pujyante Sarvaastatrafalaah Kriyaah.

(Manusmriti Verse 3.56)

Meaning: "Where Women Are Honored , Divinity Blossoms

There; And Where they Are Dishonored , All Action Remains

Unfruitful."

Chapter6
Conclusion and Future Directions

The main motivation of this thesis is to advance our understanding of various primitive

words and their robustness with respect to various operations. By providing approaches

for robustness on L-primitive words, pseudo-primitive words, superprimitive words and

pseudo-quasiperiodic words, we can hopefully gain more insight into the general problem

of primitive words. Each of the chapters leave scope for future directions. These are some

of the obvious steps to take towards advancing the current state-of-the-art.

1) It is shown that QD is reflective. It is also proved that the language of non-del-

robust primitive words QD is not context-free. We have also presented a linear time

algorithm to test if a given word is del-robust primitive. Finally, we have given a

lower bound on the number of del-robust primitive words of a given length There

are several interesting questions that remain unanswered about del-robust primitive

words. Some of them that we plan to explore in immediate future are:

(i) Is QiD for i ≥ 2 regular? It is known that Qi for i ≥ 2 is regular [50] where Q is

the set of primitive words.

(ii) It is known that the language of primitive words Q is accepted by 2DPDA [13].

Is the language of del-robust primitive words QD accepted by 2-way deterministic

context-free?

(iii) Is the language of del-robust primitive words QD deterministic context-free? We

believe that the properties we have identified for del-robust primitive words will be

helpful in answering these questions.

2) We have characterized ins-robust primitive words and identified several properties

and proved that the language of ins-robust primitive words QI is not regular. We also

proved that the language of non-ins-robust primitive words QI is not context-free. We

identified that QI is dense over an alphabet V . We have also presented a linear time
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algorithm to test if a given word is ins-robust primitive. Finally, we have given a lower

bound on the number of ins-robust primitive words of a given length.

There are several interesting questions that remain unanswered about ins-robust prim-

itive words. Some of them that we plan to explore in immediate future are as follows.

Is QiI for i ≥ 2 regular? It is known that Qi for i ≥ 2 is regular [55]. We conjecture

that the the language of ins-robust primitive words QI is accepted by 2DPDA and in-

dexed grammar [56, 57]. We also conjecture that the language of ins-robust primitive

words QI is not a deterministic context-free language. We believe that the properties

we have identified for ins-robust primitive words will be helpful in answering these

questions.

3) It has been proved that the languages of non-exchange-robust primitive words are not

context-free. We mention some of the interesting questions that are still unanswered.

(1) Is the language QX context-free? (2) One can consider to exchange two symbols

at any positions and preserve primitivity. It is an open problem to get a linear time

algorithm to recognize exchange-robust primitive word.

4) It is proved that the language QS is reflective and QS is not a context-free language.

There are several interesting questions that remain unanswered about subst-robust

primitive words. Some of them that we plan to explore in immediate future are:

(i) Is QiS for i ≥ 2 regular? (ii) Is the language of subst-robust primitive words QS
deterministic context-free?

5) A word is L-primitive if it is not a proper power of a shorter word from the language

L. It is shown that the exchange of any two consecutive distinct symbols in a non-

L-primitive word w, alph(w) ≥ 2, make it L-primitive word. If w = x1abx2 ∈ ZL

then x1bax2 ∈ QL. It also shown that the language QX need not be dense over

the alphabet V . It is proved that the language of non-exchange-robust L-primitive

words may be context-free for some language L and the language of exchange robust

primitive words QLX is accepted by a 2DPDA.

6) A special type of Primitive words (pseudo-superprimitive words) are defined which is

based on pseudo-primitivity and superprimitivity of words. There are still to discuss

the robustness of languages of pseudo-periodic, quasiperidic and pseudo-superprimitive

words. There is future scope to discuss the robustness of pseudo-primitive words for

the other morphisms viz. antimorphic involution, morphism without involution etc.

We have characterized ins-robust pseudo-primitive words and identified several prop-

erties. and proved that the language of ins-robust primitive words QθI is not context-

free. We have introduced some new terms say, pseudo L-primitive word and pseudo-
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superprimitive words and identified some properties. Finally, we have discussed ro-

bustness for morphism.

We mention some of the interesting questions that are still unanswered. (i) Are the

languages of subst-robust abelian primitive words AQS , ins-robust abelian primitive

words AQI and exchange-robust abelian primitive words AQX context-free? (ii) Is

there a linear time algorithm to find the θ-quasiperiod of a string?
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