
INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Energy and Thermal

Management of CMPs by

Dynamic Cache Reconfiguration

by

Shounak Chakraborty

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Department of Computer Science and Engineering

Under the supervision of

Prof. Hemangee K. Kapoor

February 2018

cseoff@iitg.ernet.in
c.shounak@iitg.ernet.in
cseoff@iitg.ernet.in
hemangee@iitg.ernet.in




Declaration of Authorship

I, Shounak Chakraborty, hereby confirm that:

� The work contained in this thesis is original and has been done by myself

under the general supervision of my supervisor.

� This work has not been submitted to any other Institute for any degree or

diploma.

� Whenever I have used materials (data, theoretical analysis, results) from

other sources, I have given due credit to the authors/researchers by citing

them in the text of the thesis and giving their details in the reference.

� Whenever I have quoted from the work of others, the source is always given.

Shounak Chakraborty

Research Scholar,

Department of CSE,

Indian Institute of Technology Guwahati,

Guwahati, Assam, INDIA 781039,

c.shounak@iitg.ernet.in, shou46@gmail.com

Date: February 28, 2018

Place: IIT Guwahati

iii





Certificate

This is to certify that the thesis entitled “Energy and Thermal Manage-

ment of CMPs by Dynamic Cache Reconfiguration” being submitted by

Mr. Shounak Chakraborty to the department of Computer science and Engi-

neering, Indian Institute of Technology Guwahati, is a record of bonafide research

work under my supervision and is worthy of consideration for the award of the

degree of Doctor of Philosophy of the Institute.

Prof. Hemangee K. Kapoor

Department of CSE,

Indian Institute of Technology Guwahati,

Guwahati, Assam, INDIA 781039,

hemangee@iitg.ernet.in

Date: February 28, 2018

Place: IIT Guwahati

v





Dedicated to
Late Shyamapada Adhikary (my maternal grandfather)

and

Late Nandan Adhikary & Late Gautam Adhikary (both of my maternal uncles)

and

my loving parents & all of my teachers.

vii





Acknowledgements

It is great pleasure for me to thank all the people whose instinct supports and

encouraging attitudes always boost me up to engineer my initial research career.

First and foremost, I thank to my supervisor Prof. Hemangee K. Kapoor for her

guidance, patience and encouragement over the last five and half years. Her un-

wavering enthusiasm for Computer Architecture kept me constantly engaged with

my research work. Needless to say, the journey of PhD is a small demonstration of

our life, which has uncountable number of ups and downs. The strong association

of five and half years with her taught me about handling different situations with

a gentle smile. The plethora of wonderful discussions with her helped me a lot to

understand how to visualise something from a philosopher’s point of view.

I take the opportunity to thank my Doctoral Committee members: Prof. Diganta

Goswami, Prof. Purandar Bhaduri and Dr. Arnab Sarkar for their fruitful and

constructive suggestions, which help me enough to shape up my final thesis. Sin-

cerely, I would also like to thank Prof. Kalpesh Kapoor and Dr. Arnab Sarkar

for numerous academic/non-academic suggestions. Discussions with them are al-

ways fun irrespective of the topics. Furthermore, my sincere thank to Prof. S. V.

Rao, the Head of the Department of Computer Science and Engineering and other

faculty members for their constant supports and helps.

I sincerely thank to Mr. Souvik Chowdhury, Mr. Raktajit Pathak, Mr. Nanu

Alan Kachari, Mr. Bhriguraj Borah and all other institute’s staffs who helped me

at different times during my stay at IIT Guwahati. I must mention and thank to

the Student Affairs section for providing on-campus hostel facility. I am conveying

my appreciation to all the hostel and canteen staffs, security guards, housekeeping

staffs who made my life smooth at the campus.

Life is incomplete without a set of good friends. I am fortunate enough to have

such a good set of friends during PhD who constantly push me to enhance my

creative thinking. I really feel privileged to have the company of Mandar, Suman,

Abhradeep, Mitali, Arindam, Pramit, Krishnanjan, Srimoy, Niladri, Mriganka, Ji-

nat, Gourhari, Gundappa, Atanu, Bihan, Susmita, Anwesika, Dr. Shuvendu, Dr.

Sibaji, Dr. Dishari, Karnika, Arya, Ramyani, Soheni, Arunangshu, Dr. Himadri,

Omkar, Deepanjan, Debojit, Abhinandan, Arunabha, Soumi and Sayan. Uncount-

able number of discussions especially reagrding different forms of performing arts

along with our own creations really added some special flavours to my PhD life,

ix



which are inexpressible. I am also thankful to my Tabla guru Mr. Dhriti Gob-

inda Dutta for his unforgettable inspirational lectures. During my PhD, I have

also spent some joyous moments with my fellow research scholars like Biswajit,

Dr. Debanjan, Dr. Pradeep, Mrityunjay, Rahul, Basant, Piyoosh, Rajesh, Mono-

jit, Shilpa, Sandeep, Awnish, Durgesh, Akash, Ranajit, Amit, Shubhrendu, Dr.

Suddhashil, Dr. Suchetana, Dr. Ashok, Dr. Niladri, Dr. Mayank, Satish, Dr.

Nilkanta, Subrata, Anasua, Aparajita, Abhijit, Shrestha, Ujjwal, Hema, Sumita,

Sanjukta and many more. I must mention the name of Dr. Sandip Chakraborty,

a iconic character in my life, whose constant support during initial stages of my

PhD is unforgettable. I am also thankful to Mr. Lalatendu Behera for adding

some special colours to my PhD life.

During my PhD, I got the opportunity to work with Dr. Shirshendu Das, Dipika

Deb, Sukarn Agarwal, Palash Das, Sheel Sindhu Manohar, Arijit Nath, Khushboo

Rani, T. Susma Devi, Major Alankar Umdekar, Prateek Halwe, Gibran Iqbal and

Arpit Agarwal. Sharing of knowledge with them, during countless number of

technical/non-technical discussions were amazing and simply helped me to carry

out my research work. I would also like to convey my respects and special thanks

to Mrs. Manjari Saha, Mr. Avijit Bose, Prof. Ranjani Parthasarathi, Mr. Arnab

Biswas and Mr. Biswajit Sanyal. I am also thankful to all the anonimous reviewers

of my papers & thesis and my friends inside & outside the IIT Guwahati.

Finally, I would like to share a few words about my family. Their constant sup-

port along with strong motivations always kept me focused to my research work.

I am extremely thankful to all of my beloved family members who have chan-

nelised enough mental strength and encouragement during all ups and downs of

my PhD life. I cannot express enough thanks to my parents, the two most im-

portant persons in my life, who show me the correct path with the onset of my

life. Instinctively they encouraged me in each step of my life with due respect to

my every thoughts and decisions. Lastly, towards completion, I should express my

thanks to all of those people who demoralised/discouraged/refused me to help at

different moments/stages of my life, as it indoctrinated me about taking something

as a challenge with sound cultivation of my own thoughts.



Abstract

Ever increasing demand of processing speed and parallelism, along with the mod-

ern shrunk transistors, motivates the architects to increase the number of cores on

a single chip leading to Chip Multi-Processors (CMPs). To commensurate the data

demand of these high number of cores, large on-chip Last Level Caches (LLCs) are

integrated. After studying a plethora of prior works, it has been concluded that,

LLCs play a vital role in maintaining system performance by accumulating more

data on-chip. But large sized LLCs are accounted for their significant leakage en-

ergy consumption, which has a circular dependency on the effective temperature of

the chip-circuitry. In addition to curtailing the circuit’s reliability, this increased

chip temperature (caused due to heavy power consumption) has enough potential

to damage the on-chip circuitry permanently, and to exacerbate the battery life

in embedded systems.

Towards leakage minimised on-chip cache design, with due consideration to the

Locality of Reference, we propose a set of performance constrained Dynamic Cache

Resizing techniques to reduce leakage in LLCs. The resizing is done by turning

off/on some cache banks which can be implemented by power gating at circuit

level. The cache resizing decision is triggered based upon the dynamic (cache)

usage and change in system performance. We get 65% savings in leakage energy

consumption. In the next contribution, apart from bank level granularity, we

proposed cache resizing at way-level granularity, where performance degradation is

handled by incorporating DAM (Dynamic Associativity Management) techniques.

In this policy, we obtain 70% improvement in the leakage energy. Both of these

techniques outperform a prior state preserving leakage reduction technique called,

Drowsy cache; both in terms of leakage savings and EDP gains. All of these

techniques are evaluated for tiled CMP having a multi-banked shared L2 cache as

its on-chip LLC.

From the thermal efficiency perspective, it has been noticed that, larger caches

fabricated in smaller technology nodes are the potential candidates for generating

hotspots similar to the CPU cores. The increased power density at heavily used

cache zones can heated them up faster, whereas the lightly used cache portions

unnecessarily consume high leakage, which has a circular dependency with chip

temperature. To mitigate these issues, our proposal selectively turns off LLC

banks to reduce temperature by reducing their power consumption. Moreover,

these turned off cache portions are utilised as on-chip thermal buffers that reduce



effective chip temperature. The proposal is evaluated for tiled CMP architecture

as well as CMPs having large multi-banked centralised LLCs. These approaches

reduce average chip temperature by around 4◦C and 6◦C, respectively, for both

architectures. The results are also compared with DVFS methods.

The thesis has thus demonstrated that, large LLCs on-chip need resizing for opti-

mal power management and they can also assist in controlling chip temperature.
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Chapter 1

Introduction

A few years back, in the city of Dieland a job advertisement was published.

Vacancy!! Vacancy!! Vacancy!!

A set of identically efficient employees are needed for information manage-

ment at Dieland Corporate House (DCH). The selected applicants have

to maintain a set of information during office hours. They have to provide

information to the foremen whenever needed, and have to manage the in-

formation carefully if foremen have modified it. The missing information, if

any, has to be brought from the subordinates. Workload may vary with the

situations.

Reward-UFS, the Uninterrupted Food Supply during office hours.

Almost a couple of weeks later, on a fine morning a set of identically efficient and

jobless people came for the interview at the DCH-office. Surprised after seeing

such a crowd, the manager arranged an interview and selected a chunk of people,

who were found fit for the job. These newly appointed employees formed a group,

1
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named Basket. The governing body of DCH was very pleased with the situation

and Basket started enjoying UFS facility during the office hours.

The first quarter was over. Everything was fine at the Basket end. However,

suddenly one morning, the manager noticed something. Most members of Basket

were busy with the appetiser whereas very few of them working hard with a mam-

moth amount of workloads; and another few having a bit lesser amount of work

to handle. Hence, there was a mass of employees relaxing and energised heavily

just by enjoying the UFS and creating disturbances at office. The manager was

worried about the horrified situation and tried hard to get a solution. Alas! no

idea clicked in his wobbly mind even after thinking continuously round the clock

for over a week.

At the beginning of the next week, while buying fuel for his car, an idea came

to manager’s mind. “UFS!! the principal fuel of Basket...should be restricted

right now!!...no food supply to the idle ones.” On his way to office, the rules were

prepared and thrown in the Basket. Basket opened the rule-book and the rules

revealed:

1. (R1) More food consumption is bad for one’s health and may reduce your

lifetime. Therefore, food will be supplied only when you will work and be

honest in helping others.

2. (R2) Rearrange/Optimise the movements of your organs in such a way that

you can provide the same performance with lesser amount of food as only

some of your body-parts will be active.

3. (R3) Those who handle heavy workloads are allowed to sleep for a stipulated

time-span (hence no food supply); UFS is however restricted to the people

having lesser or no workloads to handle.

4. (R4) Recently, we have noticed that, some of you have become over energised

due to UFS and are disturbing the foremen adjacent to you. Hence, there

will be restricted food supply to the neighbours of the foremen.
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To get rid of these rules, a meeting was arranged where the whole Basket decided

to resign from DCH. Meanwhile, the whole corporate world of Dieland started

following the same set of rules, which Basket was not accepting. Finally, the news

spreaded all over and soon, the Basket returned back at DCH following the set of

rules.

When I came to know about this tale of DCH, from a computer architect’s point

of view, I was surprised that, the characters can be mapped and fixed well in my

domain. Making the foremen as CPU cores and Basket as caches with manager

as the cache controller, the scenario can be visualised well enough in the world of

real computer hardware.

Basically, over the past decade (with end of Dennard Scaling [8]), the single-

core systems touched the upper-limit of maximum attainable performance, i.e.

the highest operating frequency, primarily due to its higher power consumption.

The architects and designers got motivations from this to develop processor chips

with multiple cores that can operate at lower voltages and frequencies than their

single core counterparts, while offering the same performance with lesser power

consumption. Furthermore, the ever increasing demand of processing power to run

modern heavy applications needs heavy amount of parallel processing, which can

no longer be satisfied with single core systems. With due consideration to Moore’s

Law for on-chip transistor counts, and depending upon the modern integration

technology, the number of cores in a chip is expected to increase every year [9,

10]. This integration of multiple cores on a single chip is known as Chip Multi-

Processors (CMPs).

1.1 Modern Chip Multi-Processors (CMPs)

Modern CMPs are usually equipped with a large number of cores, each with same

(homogeneous) or different (heterogeneous) processing power. To commensurate

the high data demand of these cores, multi-level on-chip caches (i.e. the Basket of

DCH) are attached [11]. Eventually, the large CMPs need strong communications
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among all of its components, which can be offered by a modern on-chip network

system, called as Network on-Chip (NoC). Figure 1.1 shows floorplan outlines and

designs for two modern CMPs- UltraSPARC T2 and Nehalem [12].

(a) UltraSPARC T2 [13]

(b) Nehalem [10]

Figure 1.1: Modern CMPs: Design and Floorplan outlines

1.1.1 Components in CMPs

On-chip components of a modern CMP can be classified into three categories:

1. CPU Cores. as the computational units.

2. On-chip Caches. to accumulate most recently used data on the chip.

3. Network-on-Chip. for communicating among the on-chip components.
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Computational performance refers to how much time the system takes to execute

an application. It is usually measured in terms of Total Execution Time, Instruc-

tions Per Cycle (IPC), Instructions Per Second (IPS), speed-up factor to a base

system, etc [14]. The resulting performance in a CMP further depends on how

much parallelisation is achieved while the application is executed. The parallelisa-

tion is achieved by multi-threading where an application is grained into a certain

number of threads.

Depending upon the nature of majority of its instructions, an application is tagged

either as Compute Bound or Memory Bound [15, 16, 17, 6]. In the case of memory

bound application, most of its instructions need to access memory. Hence, system

performance has direct dependency upon both core’s clock frequency and memory

latency. Memory latency further depends upon the following: (I) How quickly

memory finds the desired block after it has been requested, (II) How fast the data

reaches to the core from the memory subsystem. Former one depends upon the

type and structure of the memory, whereas latter one relies on NoC performance.

The equation for Execution Time can be formulated as:

Total Exec T ime = Computation T ime+Memory Cycles+NoC Latency

(1.1)

1.1.1.1 On-Chip Caches

The rapid progress in VLSI technology, and reduced channel length of modern

transistors [9] help architects and chip designers to integrate more on-chip cores

with the larger multi-level on-chip caches. Caches are labeled according to their

distance from the CPU cores. The nearest (i.e. higher) level caches to the cores

are named as L1 caches, and next (i.e. comparatively lower) level is named as

L2 and so on [14]. However, among all levels of on-chip caches Last Level Caches

(LLCs) are the largest in size and occupy a significant area on the wafer real-estate

(ref. Figure 1.1). Recent CMPs usually have two to three levels of on-chip caches,
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out of which, mostly the LLC is kept as shared cache space, whereas rest are made

private to the cores [12].

Accessing a large cache for every memory operation is both time consuming and

incurs more power. Additionally, the large on-chip caches are accounted for their

significant contributions in total on-chip power consumption. To mitigate this

issue, architects split the whole large cache physically into a number of identical

slices, each of them is called as cache bank. When the large cache is divided into

banks, the division may follow either of the two patterns-(a) set wise distribution,

where all ways of a set are present in a same bank, (b) way wise distribution,

where a particular way of all the sets are kept in the same bank. Some optimised

structures also follow a mixed distribution of the above two. The multi-banked

caches not only reduce the access latency but also provide more space to the circuit

designers for power optimisation.

Data in the caches are stored as cache blocks. For a CMP, these cache blocks/loca-

tions may maintain a uniform (UCA) or non-uniform (NUCA) cache access time

from the cores. Most of the state-of-the-art CMPs follow NUCA architectures,

as maintaining uniform latency with larger caches when coupled with a large set

of cores is impractical. In the case of NUCA, cache blocks can be accessed with

lesser latency if the blocks are located near to the requesting core, and reverse

situation may also arise, which drastically curtails system performance. Static

NUCA (SNUCA) always maintains a fixed cache location for a particular block,

whereas Dynamic NUCA (DNUCA) moves the block to the close proximity of the

requester core [18]. However, too much block movements across the larger cache

increase power consumption in DNUCA. The proposed designs given in this thesis

use the multi-banked SNUCA LLC structure with set wise distribution.

While fetching cache blocks from the lower level memory to multi-level caches, data

allocation can follow either multi-level inclusion or multi-level exclusion property.

In the former one, cache blocks present at the higher levels are the proper subset

of the blocks present at the lower level caches. Whereas in the latter one, blocks
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(a) Tiled CMP architecture
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Figure 1.2: A Tiled CMP and a CMP with Centralised LLC.

present across the cache levels are disjoint. In this thesis, we use multi-level

inclusive caches.

1.1.1.2 Placement of LLCs

Tiled CMP (TCMP) A Tiled CMP architecture divides the chip into multiple

number of identical tiles [19, 18]. Figure 1.2(a) depicts a model of a Tiled CMP,

where the chip is constructed by 16 identical tiles. Each of them contains a CPU

core with its private L1 Data & Instruction caches, and an L2 cache bank. A 2D

mesh NoC [20] connects all the 16 tiles to form the whole chip. Each of the tiles

is also associated with its own router for communicating through the NoC with

other tiles. The L2 cache is here physically distributed but all banks are shared

among the 16 cores. Accessing a data block from the home L2 bank (i.e. the

bank located with the same tile of the requester core) incurs less latency than the

far remote banks (located in some other tiles). L2 is considered here as on-chip

LLC. The number written in each tile (like T4) represents the tile id. The tiles

are numbered from 0 to 15.

CMP with Centralised LLC (CCMP) In case of CCMP, the whole chip is

also divided into several tiles, where the tiles are not identical. Each tile either

contains an LLC bank or can contain a core along with its private L1 Data &
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Instruction caches. The LLCs are large in size and mostly the number of banks

are more and placed centrally. Figure 1.2(b) illustrates the architecture, where 16

cores are available and tiles containing cores are located along the periphery of

the CMP. Note that, in this figure, L2 is considered as the on-chip LLC similar to

TCMP architecture.

1.2 Power Consumption in CMPs

For each of the on-chip components, the total power consumption can be divided

into three major parts [4, 21, 22]-(A) Dynamic Power, (B) Static Power and (C)

Short Circuit Power.

1.2.1 Dynamic Power

Dynamic Power is consumed due to switching activity of the transistors present

on-chip due to charging/discharging of the output capacitances. However, for

computational elements dynamic power is nothing but the processing power which

can be written as follows [23, 22]-

PDyn = α.C.V 2.f (1.2)

PDyn represents the dynamic power of the cores, and α, C, V and f denote activity

factor, capacitance, supply voltage and running frequency of the core, respectively,

which indicates that, core’s power consumption has direct dependency on its op-

erating frequency.

For the on-chip caches, dynamic power is consumed during cache accesses. The

cache is accessed either for a read operation or for a write operation. Usually,

in the case of cache memory (constructed with SRAM cells), reading and writing

power consumption are almost the same [7, 21, 24]. The detailed power/energy

model of the cache is discussed in the next chapter.
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The NoC of any CMP is constructed with two basic components-(a) Routers and

(b) Connecting Links. The routers are complicated part of NoC which use sev-

eral routing algorithms for sending data optimally across the chip. The data is

transmitted through the Links, which are primarily a set of metal wires. Routers

consume dynamic power during routing operations which usually comes from three

basic sub-parts of routers [25]-

• Router Clock- The essential component of any synchronous design.

• FIFO Buffers- That maintain the order/sequence of incoming/outgoing data

blocks.

• Allocators and Arbiters- That channelise data blocks to reach the proper

destinations.

1.2.2 Static Power

On-chip circuitry draws some amount of power even when the circuit is not per-

forming any job, so this power is termed as static power. The static power

mainly indicates the circuit’s leakage power which is due to two important leak-

age components-(a) Subthreshold Leakage and (b) Gate Leakage [23, 22, 26, 27].

The former one has direct dependency with the supply voltage and running chip

temperature. High chip temperature breaks the co-valent bonds in the atoms of

semiconductor materials and releases electrons which start flowing through the re-

verse bias, and draws a current, called Subthreshold Leakage current. The power

consumed due to this Subthreshold Leakage current is known as Subthreshold

Leakage power. On the other hand, down-scaling device size reduces the thickness

of gate-oxide materials, which increases the Gate Leakage power. The detailed

analysis of the root causes of leakage power is out of scope of this thesis.
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Following equation shows the direct dependency of subthreshold leakage upon the

running temperature and supply voltage [28, 23]:

Ps = K1VDDT
2e(αVDD+β)/T )) +K2e

(γVDD+δ) (1.3)

Ps denotes the static power consumption due to subthreshold leakage for a CMOS

circuit. VDD is the supply voltage and T implies the current temperature. K1,

K2, α, β, γ and δ are the empirical constants which represent different circuit

parameters.

1.2.3 Short-Circuit Power

This power is consumed due to non-zero rise/fall time of the CMOS circuitry.

A very short time-span when both NMOS and PMOS are active simultaneously,

makes a direct link between supply voltage and ground. This power consumption

is very negligible and often ignored while analysing power consumption of modern

CMPs [23, 22, 26].

In the case of modern CMPs, among all the on-chip components, cores are usually

accounted for their high dynamic power consumption whereas caches are con-

sidered for their significant leakage. The heavy dynamic power of the cores are

reduced by applying some classical techniques like- DVFS, DPM etc. In case of

cache leakage, either state destroying or state preserving techniques are used, and

in a few cases they are clubbed together. In some of the recent CMPs it has also

been found that, the large on-chip LLCs increase the number of transistors with

large area occupancy. This large chunk of LLC consumes heavy leakage and plays

the role of a significant contributor to the total on-chip power consumption. For

some recent CMPs, Table 1.1 shows the percentage contributions of on-chip caches

to the total power consumption of the chip, which can motivate the researchers to

reduce these numbers. This thesis focuses upon the leakage power consumption of

the on-chip LLCs, which has become a limiting factor in designing modern CMPs

with shrunk transistors.
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Microprocessor Power Consumed by on-chip Caches
with respect to total power

ARM 920T 44%
Strong ARM SA-110 27%

21164 DEC Alpha 25-30%
Niagra 12%
Niagra2 21%

Alpha 21364 13%
Xeon (Tulsa) 13%

Table 1.1: Power consumed by on-chip caches [4, 5]

1.3 Thermal Issues in CMPs

Rapid advancements in VLSI technology reduce the channel length of modern

transistors, for which modern CMPs are well equipped with giant number of on-

chip components to enhance system performance. Increment in number of on-chip

components increases the on-chip power density which in turn dissipates more

heat and increases chip temperature. The raised up chip temperature quadrati-

cally increases the leakage power (ref. Equation 1.3). The increased leakage power

further increases the effective chip temperature, and thus forms a circular depen-

dency with temperature [28, 23]. However, on-chip circuitry in high temperature

not only starts malfunctioning, but can also be damaged permanently. Figure 1.3

shows the change in total power consumption with the increment in chip tem-

perature, and this increment is due to the increase in leakage power. At high

temperature, leakage consumption is even as same as dynamic power. The values

in the figures are collected by running the same workload with Niagara2 CMP

in different temperatures in McPAT simulator [21]. The temperature values are

given in Kelvin in both the figures.

1.3.1 Thermal Characteristics

From the above discussion, it is pretty clear that power consumption constructs

the foundation of on-chip thermal issues. Hence, as a mitigation, most of the in-

built thermal management techniques use power consumption as an optimisation



Chapter 1. Introduction 12

(a) Increment in Total Power consumption

(b) Static vs. Dynamic power

Figure 1.3: Power consumed by Niagara2 Chip at different temperatures.

knob for thermal efficient chip design. Although the power consumption can be

changed instantaneously even in practical cases, this is not true about tempera-

ture. The associated thermal capacitances of every chip element does not allow

instantaneous change in temperature of the chip components. During execution

the chip temperature gradually reaches its steady-state. The intermediate values

before reaching at steady-state are known as transient temperatures. Figure 1.4

shows how the temperature changes over time during execution. The temperature

values shown along Y-axis are in ◦C and X-axis represents the time stamps during

execution. The values are obtained using HotSpot simulator [3].

1.3.2 Mitigations-at a glance

The primary objective of any thermal efficient chip design is to maintain the

chip temperature under a certain value, the thermal threshold, commonly known

as the critical temperature [29]. Classical chip manufacturing follows a common
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industry practice to provide Thermal Design Power (TDP) which is defined as

the highest sustainable power consumption of the chip. Even the manufacturers

further recommend that the cooling solutions should dissipate TDP in order to

ensure that the cooling arrangements are not over-dimensioned. Normally, TDP

is not the highest attainable power of the chip, rather, the chips are designed with

some Dynamic Thermal Management (DTM) methods. Commonly used DTMs

are reactive in nature and they gate the cores’ clock, reduce or scale the supply

voltage/frequency, migrate tasks from hotter region to colder, regulate fan-speed

etc. Few DTMs proposed recently also suggest use of larger on-chip caches in

thermal efficient chip design. As caches are usually colder than the hottest core

region, and dynamic resizing of large cache does not affect performance abruptly,

hence, with due consideration to performance, some cache portions can be turned-

off to create thermal buffers for reducing the chip temperature. These thermal

buffers will be eventually cooled down and will reduce their own as well as peers’

temperature values. Although, there is a plethora of proposed solutions for DTM

[30, 29], yet, thermal constraints are still the biggest limiting factor for modern

chip design, especially in the current era of short channel length.
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1.4 Cache based Mitigations

1.4.1 Leakage Minimisation

According to Table 1.1 on-chip caches are one of the major contributors to the

total power consumption of the chip. Moreover, cache leakage plays a pivotal

role for increasing the power values. Most of the cache based power optimisation

techniques hence focus upon leakage minimisation, which is usually done in two

ways [4, 5]-

1. State Destroying Method: This method turns off a portion of cache to

save power. The turn-off decision is either taken dynamically at run-time or

statically at compile time. Power gating is used as a backbone of turning

off circuitry. A portion of the cache can be turned off by shutting down

cache banks in the case of multi-banked caches or shutting down some cache

ways for higher associative caches. Blocks are usually evicted from the cache

portion before turning it off and hence, the associated metadata with the

cache controller is completely destroyed, as the name indicates.

2. State Preserving Method: This policy does not evict the cache blocks

from the caches, rather it keeps both data and tags but reduces the supply

voltage to a level which can preserve the state of the data. Maintaining a

low voltage level for state preservation is commonly known as drowsy caches

[31]. However, when these data are required to be accessed, the voltage level

needs to be raised up. This voltage transition may incur some idle clock

cycles, which can slightly increase the memory latency.

State destroying methods are very effective while saving power consumption ag-

gressively. This policy can take advantages by anticipating cache access patterns

by exploiting Locality of Reference, a classical cache access property. Turning off

the least used cache portions for saving power is a better option, i.e. lesser per-

formance degradation prone, while using state destroying method. However, for
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state preserving ones, putting least used cache portions in low power mode can

also help to maintain performance.

1.4.2 Controlling Temperature

Larger LLCs in modern CMPs have enough potential to create hotspots at the

cache area [32]. These hotspots are generated due to Locality of Reference, as

same or its nearby locations are accessed repeatedly over a short time-span. Hence,

shutting down of these heavily accessed banks can help to reduce cache hotspots.

But, turning-off a heavily used cache area can degrade system performance no-

ticeably, therefore, an optimal cache resizing has to be attached to put a balance

between temperature and performance. On the other end of the spectrum, leakage

is consumed as long the cache is turned-on, irrespective of its accesses. To get rid

of circular dependency of leakage and effective chip temperature, least used cache

portions can also be turned-off, which will incur lesser performance degradation.

However, the turned-off cache banks will create thermal buffers on-chip which will

eventually cool down the chip.

1.4.3 Objectives of this work

The main objective of this thesis is to reduce LLC leakage and control chip temper-

ature by resizing LLC dynamically. The proposed techniques are also compared

with the existing ones in order to demonstrate the improvements of our architec-

ture. To achieve the goal, the first two proposals reduce leakage by incorporating

state destroying technique in the LLCs, whereas the last two policies have been

developed to control the chip temperature. The proposed techniques are com-

pletely implemented at LLC, and they are transparent to the higher level caches

and cores. The motivation behind our proposals is discussed in the next section.
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1.5 Motivations

From the performance and cache access perspective, caches are usually accessed

in a non-uniform manner and follow the Locality of Reference. This in turn keeps

some cache portions under-utilised, which only consume a significant amount of

leakage power. Hence, shutting down these under-utilised cache portions can help

us to reduce leakage while maintaining performance within permissible limits,

thanks to Locality of Reference. However, these cache access patterns are only

known during execution and are diverse in nature across the applications, there-

fore, no generalised cache resizing patterns can be proposed. Furthermore, for a

set of modern long running applications, Locality of Reference is violated, which

cannot anticipate the cache usages at the far future. This phenomena motivates

us to develop a dynamic cache resizing technique, which resizes the cache in either

direction. That is, provide adequate space to the application’s working set as per

its current requirement.

On the other hand, caches are usually considered as colder on-chip components,

whereas cores are accounted for their high temperature. In a recent study, a

thermal variance of 30 Kelvin (K) [32] has been noticed at the on-chip LLC,

which strongly claims about the presence of cache hotspots. The heavily accessed

cache area consumes more dynamic as well as leakage power, which can create the

cache hotspots. Hence, shutting down of these heavily accessed cache portions can

reduce the cache hotspots, but at the same time, they can aggravate the system

performance, if cache resizing is not controllable. Conversely, shutting down least

used cache portions reduces leakage and also curtails the chance for creation of

future hotspots on-chip. However, powered off cache portions create a large chunk

of thermal buffer which can gradually lower the chip temperature by exploiting

the principle of Superposition and Reciprocity of Heat Transfer [33].

The main aims of this thesis-work can be pointed out in a nutshell as follows:

• Dynamic Cache Resizing (DiCeR) to save leakage power consumption at

bank level granularity.
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• Resize the cache at both bank and way level granularities with some DAM

based technique to maintain performance while still reducing leakage.

• Reduce cache hotspots by independently turning off heavily used banks and

turning-off least used ones to create thermal buffer with reasonable reduction

in leakage.

• Create (dynamically resizable) optimal amount of on-chip thermal buffer by

shutting down cache banks based on their location and proximity to cores

in order to gradually reduce the chip temperature.

1.6 Principal Contributions

This thesis considers a modern CMP having 16 cores UltraSPARC III model with

a TCMP and a CCMP architecture, as discussed earlier. The LLC in the whole

thesis is implying on-chip L2 unless otherwise specified. The major contributions

of this thesis can be summarised as follows-

1.6.1 DiCeR at Cache Bank Level

R1 at DCH : “More food is bad for health”

In our first leakage saving technique, we initially reduce cache-size by only shutting

down cache banks till an allowable degradation in the performance. This technique

is referred to as BSP. However, this policy cannot provide adequate cache space

to the process in case it needs more cache space in future execution. Hence, we

further propose a dynamic cache tuning technique which considers performance

and locality of reference as system-wide constraints to manage the cache size in

our baseline architecture, shown in Figure 1.2(a). In order to save leakage power,

based on usage statistics, L2 cache banks are shutdown at runtime and its future

accesses are remapped to other active L2 cache banks, called as target banks.
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Additionally, this policy also takes care of the sudden increase in the application’s

WSS during execution by allowing dynamic restarting of the powered off cache

banks. System performance is monitored periodically and accordingly L2 bank(s)

will be restarted if performance degradation is more than a threshold value. During

turning on process, all the remapped contents are brought back to its home bank

from its remapped location. The results are compared with BSP and Drowsy

Cache [1], an existing policy. In particular, the following variations are proposed :

(1) B ON OFF ALL. The system can decide to shutdown or turn-on some cache

banks periodically throughout the process execution. (2) B OFF ONCE. The

system allows to shutdown banks initially and once the bank restarting initiates, no

more shutdown is permitted further. (3) B ON OFF OPT. This policy resizes

cache like first policy, with some predefined time slices in which cache cannot be

resized.

Out of these three policies, both first and third ones save 65% leakage energy on

an average which is higher than the second one, where leakage saving is around

46%. But, the unrestricted cache resizing in B ON OFF ALL shows lesser EDP

gain than B ON OFF OPT. The average EDP gains for these three policies are

29%, 27% and 30%, respectively.

1.6.2 DiCeR in combination with DAM technique

R2 at DCH : “Better organ movements with restricted food supply”

In BSP, the bank shutdown process saves static power but reduces the perfor-

mance of LLC. Due to multiple banks being shutdown the target banks may also

get overloaded. Additionally, the request forwarding increases the on-chip traffic.

Therefore, to improve the performance of the target banks we use a dynamic asso-

ciativity management (DAM) technique called CMP-SVR [34]. Furthermore, the



Chapter 1. Introduction 19

cost of request forwarding is optimized by considering network distance as an addi-

tional metric for target selection. These two strategies help to reduce performance

degradation.

While using DAM method on BSP, we can further try to reduce leakage energy

by turning-off cache ways and apply associativity management. This policy goes

through the following phases :

• Bank shutdown: Least used cache banks are turned off until either the

performance degrades beyond the allowable threshold or if the number of

banks turned off reaches a predefined maximum limit.

• Way shutdown: It is desirable to turn off some number of ways from every

set, when a bank is not suitable for complete power off. DAM is incorporated

here to enhance performance after way shutdown.

This policy saves 70% of leakage energy with negligible degradation in performance

and outperforms some prior works. The average EDP gains for this policy is around

35%.

1.6.3 DiCeR for temperature control in TCMP

R3 at DCH : “Recess for the exhausted and no food to the idle”

Most DTM techniques apply DVFS or task migration to reduce core temperature,

as cores are considered as the hottest on-chip components. On the other hand,

modern large on-chip Last Level Caches (LLCs) are significant contributors to on-

chip leakage power consumption and occupy the largest on-chip area. As power

reduction plays the pivotal role for temperature reduction, hence, DiCeR not only

can reduce leakage power consumption, furthermore, it can create on-chip thermal

buffers for reducing average as well as peak temperature of the chip without dis-

turbing the computation. In order to use cache to control temperature, the cache
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resizing decisions in a TCMP (ref. Figure 1.2(a)) will be taken based upon the

generated cache hotspots and/or the access patterns, during the process execution.

The major contributions of this work can be summarised as follows:

1. Hot Bank [HB] As leakage power increases quadratically with the tem-

perature, it is hence better to turn off a heavily accessed “hot” bank and

distribute its blocks to a colder target bank to reduce the cache hotspot as

well as the leakage.

2. Cold Bank [CB] As leakage increases quadratically with the temperature

and forms a circular dependency on the temperature, so, it is beneficial to

shutdown least accessed and comparatively colder banks to make their power

consumption zero. The small number of their remapped requests will not

drastically affect the targets.

3. Both of these policies are compared with a greedy DVFS technique [2] which

employs per core DVFS upon threshold temperature violation.

Through this thermal efficient cache resizing, we are able to reduce average chip

temperature by 4◦C, at most. The maximum leakage saving achieved through this

policy is more than 40% with slight degradation in performance. This leakage

savings with slight change in performance offer an average EDP gains of 21% and

29% for HB and CB, respectively.

1.6.4 DiCeR for temperature control in CCMP

R4 at DCH : “Don’t disturb your peers”

This contribution analyses the role of a centralised multi-banked SNUCA LLC

in thermal management while maintaining system performance. We dynamically
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resize LLC to optimally balance the performance and chip temperature by offer-

ing two levels of thermal management-(i) controlling cache temperature, and (ii)

reducing temperature of the global hotspots by governing conductive heat transfer.

The major contributions of this work can be summarised as follows:

1. Considering performance as a system-wide constraint, we have developed an

analytical model by employing Lagrange Multiplier [35] for our architecture

to determine the optimal cache size.

2. The analytically determined optimal cache size is used for resizing LLC by

following the three thermal efficient patterns.

• AltRow. Shuts down alternate rows of cache banks.

• Chess. Generates a chessboard like pattern in LLC resizing.

• OptTar. Cache banks closer to cores are assigned highest shutdown

priority, with optimal management of future requests of the turned off

cache banks.

Among all of these patterns, OptTar shows the maximum average temperature

which is around 6◦C, with 40.3% savings in leakage energy, whereas AltRow and

Chess save 26% and 26.5% leakage energy, respectively. The respective EDP gains

for AltRow, Chess and OptTar are 11%, 11.5% and 18.7%.

1.7 Summary

To commensurate the high data demand in recent CMPs, equipped with a num-

ber of cores, large on-chip LLCs are attached. These LLCs play a vital role in

maintaining system performance. But large sized LLCs are accounted for their

significant leakage energy consumption, which has a circular dependency on ef-

fective temperature of the chip. In addition with curtailing circuit’s reliability,

this increased chip temperature has enough potential to permanently damage the

on-chip circuitry.
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In our work, we initially propose a set of performance constrained DiCeR tech-

niques to reduce leakage in LLCs. The resizing is done by turning-off/on some

cache banks which can be implemented by power gating at circuit level. The

cache resizing decision is triggered based upon the dynamic change in system per-

formance. We get 65% savings in leakage energy consumption. Apart from bank

level granularity, we have also proposed cache resizing at way-level, where per-

formance degradation is handled by incorporating DAM (Dynamic Associativity

Management). In this policy, we have the 70% improvement in leakage energy.

However, from thermal efficiency perspective, these turned-off cache portions are

utilised as on-chip thermal buffers to reduce effective chip temperature, especially

in CMPs having larger LLCs. The gained energy and thermal benefits are studied

for (i) TCMP and (ii) CCMP architectures. For TCMP, we get a reduction of

around 4◦C for average chip temperature, which is closer to 6◦C in CCMP.

1.8 Organisation of Thesis

The rest of this thesis is organised as follows:

• Chapter 2 summarises the background and prior works related to the con-

tributions of the thesis.

• Chapter 3 summarises the simulation framework used to build up the con-

tributions of this thesis.

• Chapter 4 presents the first contribution, which dynamically resizes the LLC

to reduce static energy consumption.

• Chapter 5 incorporates a DAM technique to improve cache performance

which has been traded to save more power by shutting down more LLC

banks and cache ways inside the banks.

• Chapter 6 explores the role of LLCs in Tiled CMPs for minimisation of chip

temperature.
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• Chapter 7 provides the analytical and simulation frameworks for selecting

optimal cache size to reduce chip temperature under a certain performance

constraint.

• Chapter 8 finally concludes the thesis.

• Appendix A describes our closed loop simulation framework, used for our

dynamic thermal simulations.





Chapter 2

Background

As mentioned in Chapter 1, the LLCs in modern CMPs are usually shared and the

largest in size. Apart from its remarkable leakage consumption, the performance

of a CMP largely depends upon the performance of its LLC [11, 36]. The main aim

of this thesis is to design cache based energy/thermal efficient techniques by con-

sidering performance as a system wide constraint. Hence, before discussing about

state-of-the-art energy/thermal efficient techniques developed over the decades,

we initially discuss some preliminary concepts/results regarding shared LLCs, rel-

evant to our work.

2.1 Access Patterns of Shared LLCs

Locality of Reference in addition with the existing diversities in the number of

memory operations across the applications generate non-uniform accesses to the

caches, and LLCs are not an exception. These non-uniform cache access pat-

terns are generated by the applications at different levels of granularity during the

process execution.

25
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Figure 2.1: Variable bank usages across different benchmarks in a TCMP as
shown in Figure 1.2(a).

2.1.1 Bank Level Granularity

The runtime cache accesses across the banks are unevenly distributed in a multi-

banked SNUCA based cache architecture. For four PARSEC [6] applications, we

derived the bank accesses shown in Figure 2.1 for a TCMP architecture having 16

L2 banks. We have also plotted the same for three PARSEC applications in Figure

2.2 for a CCMP having 64 L2 banks. These figures show noticeable diversities in

cache accesses across the applications at a certain time-stamp during execution.

(a) black16 (b) body16

(c) fluid16

Figure 2.2: Non uniform distribution of cache bank accesses in a CCMP like
Figure 1.2(b).

According to Figures 2.1 and 2.2, each application has different cache space re-

quirement and the cache banks that receive frequent data accesses are also not

fixed across the applications. Therefore, cache bank usages can only be known at

run-time as to which bank(s) is(are) the mostly accessed while which are utilised
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the least. As all the cache banks are neither fully nor evenly utilised, it would be

helpful to shutdown selective cache banks, specifically, the least used ones to save

cache power consumption. Note that in the above discussion, the bank usages are

calculated by using the formula:

L2BankUsage(i, j) =
totalAccesses(i, j)

totalL1Misses(j)
× 100% (2.1)

where, i implies L2 bank-id and j is the remap-period. So, the term L2BankUsage(i, j)

represents bank usage percentage for bank-id i in jth interval.

The non-uniform cache access patterns discussed above are based on SNUCA

architecture, where mapping of a particular cache block is always fixed to a par-

ticular bank. The accessing and allocation strategies are changed in the case of

a DNUCA architecture, where a cache block is moved dynamically towards the

core requesting it repeatedly. Tiled DNUCA [18] with its different variations are

proposed recently to mitigate the performance bottleneck of SNUCA based LLCs.

Although, DNUCA helps in performance enhancement, but, their implementation

is critical in real hardware. Additionally, significant data movement across the

cache banks can increase the dynamic power consumption of the on-chip circuitry.

However, detailed discussions on this topic remain out of scope of this thesis.

2.1.2 Set Level Granularity

Similar to the access patterns across cache banks, it has been observed that the

accesses within a cache bank are also unevenly distributed among the sets [34, 37].

This uneven distribution increases conflict misses in the heavily accessed sets.

Figure 2.3 shows an example of how the conflict misses of each set varies in a

bank in the case of our TCMP architecture. As seen in the figure, some sets

are used heavily while some other sets remain underused. Such non-uniform load

distribution reduces the total utilisation of the cache by increasing conflict and

capacity misses at the higher utilised cache sets.
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Figure 2.3: Set usage profile of a bank in a TCMP. In case of CCMP too, this
non-uniform pattern exists.

2.1.3 Dynamic Associativity Management (DAM)

DAM is a technique that can be used to handle the non-uniform load distributions

among the cache sets [37, 34]. In DAM based techniques, the associativity of each

set can be managed dynamically without changing the actual size of the cache.

The heavily used set can use the idle ways of underused sets, thereby effectively

increasing its associativity. This will in-turn reduce the conflict as well as capacity

misses inside the cache sets. Several DAM based approaches already exist in

literature [37, 34, 38]. CMP-SVR [34] is one such DAM based approach that has

less hardware overhead compared to other similar techniques. It improves the

performance of the cache by reducing the number of conflict misses in the cache.

The non-uniform distribution of memory accesses is a major cause for higher con-

flict misses in LLC. Associativity of the conventional set-associative caches cannot

be adjusted dynamically because of the static one-to-one mapping between the tag

entries and data lines. Note that, all of these techniques can be implemented in

multi-banked SNUCA caches. In this thesis, we use CMP-SVR [34] to improve the

performance of some heavily loaded cache banks, during and after cache resizing.

2.1.3.1 CMP-SVR

Here, the ways of each set are divided into two parts: Normal sTorage (NT) and

Reserve sTorage (RT). NT behaves same as conventional cache and RT takes 25%

to 50% ways from each set. The sets are divided into multiple groups; each group

is called as fellow-group. The sets within a fellow-group are called fellow-sets. A
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heavily used set can use the idle reserve ways of its fellow-sets. In this way a

heavily used set can distribute its load to some other underused sets. Such way

sharing improves the utilisation of the cache and hence improves performance.

Each fellow-group has its own RT section which is created by the reserve ways of

all the fellow-sets within the fellow-group. A fellow-set can use any RT locations

of its fellow-group but cannot use any location outside its fellow-group. Searching

the entire RT, reserved for a particular fellow-group, directly from the cache is an

expensive operation as it requires us to search all the sets within the fellow-group.

To overcome this problem an additional tag-array, SA-TGS is used for RT. In

SA-TGS, each RT location (L) has a corresponding entry, which contains the tag

address of the block currently residing in L. An example of CMP-SVR is given in

Figure 2.4.

Figure 2.4: An example of CMP-SVR

CMP-SVR does not search RT directly, instead it searches the SA-TGS which

contains a dedicated location for each corresponding RT location. If a block is not

available in its dedicated cache set (i.e. in NT) then the block may be available

in RT. In CMP-SVR, tag matching for a block in NT and SA-TGS (not in RT)

is done simultaneously. If the tag is found in NT then it is a direct hit and if

the tag matches in SA-TGS then it is an indirect hit. In the case of an indirect

hit, the block is moved from RT to NT. Moving a block from RT to NT is easy,

provided NT has free (invalid) way, otherwise it swaps with the LRU block of NT.

During replacement, instead of removing a victim (LRU) block completely from

the cache, it moves to RT. Moving a victim block (V ) to RT is easy if RT has a free
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(invalid) location; otherwise it has to replace the LRU block of RT. However, an

experimental evaluation with a full system simulation shows CMP-SVR improves

overall system performance by 8%, while reducing miss rate by 28%.

2.1.4 Violation in Locality of Reference

Although cache accesses exploit Locality of Reference, but, in the case of long

running applications, this property violates. The change in access patterns over

long time-span for a set of PARSEC applications are shown in Figure 2.5 for a

TCMP architecture. For each application, 4 banks out of 16 have been randomly

selected to maintain clarity in the figures. Here, X-axis represents uniform time-

intervals. Figure 2.6 depicts the changes in cache access patterns in the case of

a CCMP. The access patterns are shown along y-axis for the cache banks over

different epochs for black16, body16 and fluid16, respectively. In this case, we

have taken 5 banks (along the x-axis) from each of the benchmarks, to show

heavily used, moderately used and least used banks in each epoch. Epochs imply

a time-span of 10 million cycles, just after the warm up (Epoch-1 ), at the middle

of execution (Epoch-2 ), and at the end (Epoch-3 ). The figures show that, for all

the applications, accesses to a bank change over the three different epochs. A

heavily used bank can become a lightly used one later, or vice versa.

Finally, from the above discussions, following observations can be listed:

1. Diversity exists in cache access behaviour across the applications with sig-

nificant changes during execution.

2. Locality of Reference with respect to bank id may not be exploited over a

long-run.

3. Access behaviour for the banks are diverse in nature and also change during

execution.
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(a) freq1 (b) swap1

(c) body1 (d) ferret1

(e) vips1 (f) body16

(g) swap4 (h) ferret4

(i) freq16 (j) black4

(k) fluid16

Figure 2.5: Temporal Change in Bank Usages for different applications in a
TCMP having 16 banks.
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(a) black16 (b) body16 (c) fluid16

Figure 2.6: Change in cache bank access behaviour over time in a CCMP
having 64 banks.

From a performance perspective, these observations indicate cache bank turn-off

during less utility and turn-on when in greater demand, while saving cache leakage

consumption.

2.2 Cache Energy Modeling

2.2.1 Dynamic and Leakage Energy

Energy consumption of the SRAM cells can be divided as follows [39, 7, 21] :

Etotal = EDynamic + EStatic + Eoff−cache (2.2)

EDynamic, the Dynamic energy, is consumed during read or write accesses of the

cache blocks. As writing energy is computed by the similar set of equations like

read energy, hence, only the equations for read accesses are provided here to avoid

redundancy. EDynamic for a read access is computed as follows:

EDynamic = Edyn−read−req−net

+ Edyn−read−data + Edyn−rep−net

(2.3)
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Here, Edyn−read−req−net denotes the energy consumption per read request and

Edyn−rep−net represents the energy consumption for replying a read request. En-

ergy consumption during accessing data array, i.e. Edyn−read−data, can be written

as follows:

Edyn−read−data = Edyn−predec−blks + Edyn−dec−drivers

+ Edyn−read−bitlines + Edyn−senseamps

(2.4)

The components Edyn−predec−blks and Edyn−dec−drivers imply dynamic energy con-

sumption of predecoder and decoder drivers, respectively. Sense amplifiers’ dy-

namic energy is Edyn−senseamps whereas dynamic energy for reading bitlines is

Edyn−read−bitlines.

EStatic, on the other hand, represents static/leakage energy of the SRAM cell,

having direct dependency both upon the running temperature and supply voltage.

Modern CMPs with 32nm or lesser technology are equipped with larger LLCs,

which increases on-chip transistor counts with shorter channel length, inherently

increasing the power density and in turn higher leakage energy consumption. The

total leakage energy consumption EStatic can be written as follows:

EStatic = Eleak−req−net + Eleak−data−array

+ Eleak−rep−net

(2.5)

Eleak−req−net and Eleak−rep−net represent leakage energy consumption for the re-

quest and the reply networks, respectively. Leakage for data array is denoted by

Eleak−data−array which is further divided into predecoder’s leakage, decoder driver’s

leakage, sense-amplifier’s leakage and leakage of memory cells:
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Eleak−data−array = Eleak−predec−blks + Eleak−dec−drivers

+ Eleak−mem−cells + Eleak−senseamps

(2.6)

However, the energy consumed by accesses that go to the next level from the L2-

cache is called the off-cache energy. We assume the next level DDR2 system which

needs Eoff−cache−access energy per access having a value of 12200 pJ [40]. Thus,

the overall value will be as:

Eoff−cache = #off cache accesses× Eoff cache access (2.7)

2.2.2 Channel Length, Temperature and Leakage

The drastic reduction in channel length reduces the circuit capacitance, which in

turn increases the operating speed. With the sound improvement in performance,

these transistors with reduced channel length suffer from unwanted side effects:

traditionally called as Short Channel Effects [41]. The short channel designs

exacerbates sub-threshold leakage current that arises from some induced electrons

in the channel, even before the establishment of the strong inversion. Basically,

this sub-threshold current is made worse especially by the DIBL (Drain Induced

Barrier Lowering) effect that increases the injection of electrons from the source.

Modern CMPs are usually fabricated with the transistors having channel length of

32nm or less [5, 4, 7, 21], whereas the short channel effect becomes prominent in the

transistors having a channel length of 45nm or less. Thus, leakage consumption

of such CMPs plays the pivotal role during its designing phase. The increased

leakage consumption along with the dissipated dynamic power together increase

the effective chip temperature, which can be written as follows [28]:

T (t) = (P ′d.V
2(t).f(t) + ζv + P ′s).R (2.8)
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where, T (t) is the effective chip-temperature at time t, P ′d , ζT .Pd, P
′
s , ζT .Ps

and R is a system’s constant. ζT and ζv are the temperature-leakage coefficient

and the voltage-leakage coefficient, respectively, where V (t) is the supply voltage

at time t. Pd implies dynamic power and Ps is the leakage power consumption of

the chip circuitry.

However, this raised up chip temperature further increases the leakage power con-

sumption as leakage has a quadratic relationship with the circuit’s temperature

(ref. Equation 1.3). This is how, leakage forms a circular relationship with the

chip temperature. As seen earlier, LLCs consume a significant portion of the total

on-chip power, and majority of it is coming from leakage, hence, we simulated

the contribution of an LLC to the total power consumption of the chip in Figure

2.7 for different temperatures. The change in leakage power for the LLCs are

also shown in Figure 2.8 and 2.9. These figures claim that, on account of large

number of transistors, the leakage consumption is more in larger caches compared

to the smaller ones. Figure 2.10 further shows the domination of static power

over dynamic power consumption for an 8MB L2 cache at a fixed temperature of

350K. These values are generated by running a set of PARSEC applications in our

simulation framework (which will be discussed in the next Chapter).

Figure 2.7: Contribution of LLCs to the total Chip power consumption.



Chapter 2. Background 36

Figure 2.8: Increment in Cache Leakage Power in low temperature.

Figure 2.9: Increment in Cache Leakage Power in high temperature.

Figure 2.10: Distribution of Power Consumption in an 8MB L2 cache.

2.3 Reducing Cache Leakage Consumption

In modern era of green computing with excessively shrunk transistors, leakage

minimisation has become a topic of paramount importance across the VLSI re-

search community [42]. The primary objective of the modern CMP design is now
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focusing towards minimisation of leakage energy, at the end of Dennard’s Scal-

ing [8]. From our earlier discussion, it can be stated that, on-chip LLCs are one

of the principal contributors to the total power consumption of the CMPs, and

majority of which is coming from its leakage consumption. Plenty of techniques

that minimise leakage consumption in caches are constructed based upon the cache

(size) tuning methods, where in most of the cases performance is considered as a

system-wide constraint. These cache tuning techniques towards minimising cache

energy consumption can broadly be classified into two major classes-(a) Off-Line

techniques and (b) On-Line techniques [4, 5]. The former one decides about the re-

quired cache space/configuration at the design time or during some pre-execution

phases, whereas the latter one tunes the caches during execution and may or may

not continue tuning over the whole span of execution. Figure 2.11 classifies all of

these state-of-the-art on-line and off-line techniques into more sub-categories.

Cache Tuning Techniques

On-Line TechniquesOff-Line Techniques

Circuit Level Techniques

Cache Granularity

Exploiting Cache Property

For Multi-cores

Application
Structure Based

Memory
Access Based

Compiler Profiling

Figure 2.11: Classification of cache tuning techniques from a power/perfor-
mance perspective.

2.3.1 Off-Line Techniques

Off-line cache tuning is also termed as static cache tuning, where designers usually

evaluate the applications’ structures and system configuration before execution, in

order to determine the cache configuration. This configuration remains unchanged

during the process execution. Mostly, cache sizes and other configuration parame-

ters are determined off-line through analytical formulations [43, 44, 45, 46, 47, 48,
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49, 50, 51, 52] or by evaluating the compilation process [53, 54, 55]. The analyti-

cal formulation for cache size determination uses mathematical models which can

spontaneously compute the cache misses [4]. This cache size prediction at design

time reduces the run-time cache tuning overhead. Hence, in this section we will

discuss about some off-line cache size prediction and tuning techniques.

2.3.1.1 Application Structure Based

The spatial and temporal behaviours of the applications determine its run-time

cache access patterns, which are actually profiled from the application’s branch &

control instructions’ characteristics. In their work, Ghosh et. al. [47] generated

cache miss equations to summarise the cache access behaviour of the loop and its

variables. However, the direct computation of cache misses from these equations is

an NP-Complete problem. Later in 2004, Vera et. al. proposed an approximation

algorithm to estimate the cache misses during execution [44]. But both of these

methods have limited applicability in case of applications having perfectly nested

loops in their source code. In another work [45], Presburger formulas are used for

further extension of the model [47] to include some non-linear array structures.

Based upon this, Kim et. al., in their work [56] proposed an estimation of energy

efficient memory model (as an extension of [45]) for some video encoding appli-

cations. This model shows 70− 80% accuracy with respect to simulation results.

At this same time-frame, Harper et. al. proposed an approximation model that

estimates cache misses for any loop structure [43], whereas a near optimal cache

size determination was done by an another algorithm proposed later [46] through

loop statistics extraction. But, this model has very limited application in modern

multi-tasking environment, where thread/task interleaving and unpredicted loop

structures are very common. In fact, the models proposed in [47, 44, 45, 4] are

complex enough to implement in practical environment, hence, these methods are

not widely used now-a-days [57].
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2.3.1.2 Memory Access Trace driven

Most of the analytical formulations that estimate/determine (sub-)optimal cache

size are almost similar like the earlier ones stated in section 2.3.1.1. However, these

methods are usually formulated based upon the memory reuse distance between

two successive accesses at the same memory location. Ding and Zhong predicted

the whole program behaviour with 94% accuracy by analysing the data reusabil-

ity [58]. Their algorithm analyses the LRU stack distance, pattern recognition and

distance based sampling to predict the memory footprint of the process, however,

the idea of reuse distance was earlier incepted by Mattson et. al. in 1970 [51].

Later, for the CMP architecture, a different reuse distance prediction model was

proposed in [59], which uses the accesses related to the threads while consider-

ing the inter-thread contention at the shared cache space. This model although

predicts the cache misses for individual threads but, does not consider the cache

contention. Later in 2009, a fine grained cache contention was predicted [49] for

a multi-threaded environment with a prediction accuracy of 92%. This model

also considers system-wide CPI for predicting cache accesses in absence of cache

contention. In another study [48], authors have predicted the cache miss rates

in a CMP with a high prediction accuracy of 98%, by exploiting the hardware

performance counters while running an application on real processor cores. A low-

cost profiling technique was further developed to analyse the full execution with

a guaranteed precision [52]. All of these developed techniques consider the cache

contention models but data sharing among the threads was given lesser impor-

tance. In a latter work by Ding and Chilimbi [60], thread interleaving and cache

contention are studied together while predicting cache usages with an accuracy of

more than 90%. Shi et. al. further studied the data replication across the private

and shared caches [61] during prediction of cache access behaviour, having less

than 9% error margin using only about 8% of simulation time. But all of these

discussed methods are suffering in case of some modern applications where cache

access behaviour changes as the execution proceeds.
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2.3.1.3 Compiler Profiling/OS level approaches

Apart from analytical prediction of cache behaviour for energy reduction, compiler

can also assist to reduce leakage consumption by anticipating the cache require-

ment through code analyses. Zhang et. al. in 2002 designed a compiler based

leakage reduction technique for instruction caches [54], that reduces leakage more

than 40% on an average. The whole technique is divided into two parts: (a) Con-

servative approach, that detects dead instructions and puts those cache lines in a

low leakage mode; and (b) Optimistic approach, that puts the cache lines into low

leakage mode when the next instruction is detected as dead. The cache leakage

power consumption is reduced by putting the lines into both state preserving and

state destroying modes whichever is necessary. In another work [55], code has been

restructured at compile time for array based and pointer-intensive applications for

lowering data cache energy, which is beneficial mostly for the heavy stand alone

applications. This policy saves 59% leakage with a performance penalty close to

4%.

Reddy and Petrov designed a profile based off-line algorithm [62] that identifies

a beneficial cache partitioning. During context switching OS selects the proper

configuration that has to be kept unchanged upto the next context switching. The

cache parts are activated or deactivated according to the selected configuration.

A 40− 80% of leakage saving has been reported in this article. Wang and Mishra,

also accumulate the execution profile from the prior executions and heuristics are

generated accordingly [63]. These heuristics are used at run-time with proper

selection of active cache portions. This method is proposed for a multi-tasking

soft real-time environment, with having a significant leakage reduction of 32 −

49%, while maintaining performance. In 2011, Wang et. al. proposed a better

algorithm [53] which judiciously finds a cache configuration by analysing static

profiling of the applications those executed earlier. This policy works in both

private as well as shared caches, and saves leakage upto 30%. As leakage power

has a quadratic relationship with temperature, hence, Noori et. al. developed a

Temperature Aware Configurable Cache (TACC) [64] that shrinks cache during
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high temperature and expands the same in low temperature with a slight penalty

in performance. The reduced cache temperature noticeably reduces the cache

leakage, by more than 60% for higher level caches at its best.

Most of the off-line techniques mentioned above reduce leakage consumption of

the caches, however they have some limitations [4]:

• Most of the time, off-line techniques need prior information about the appli-

cations that have to be executed.

• Analytical methods are complex and may not be a good predictor for some

modern applications where cache accesses may change for its every occasion

of executions.

• Compiler based methods need detailed analysis of the source code which may

slow down the compilation process.

• Additionally, violation in Locality of Reference for modern long running

applications demands on-line algorithm for better anticipation of the future

cache footprints to save leakage accordingly.

Hence, architects move to the on-line solution for better tuning of caches during

execution.

2.3.2 On-Line Techniques

The development of architectural techniques need some circuit level backbone to

ensure their proper implementation, therefore firstly we will discuss about some

circuit-level or micro-architectural level techniques those are exploited in most of

the dynamic architecture level cache tuning techniques.

2.3.2.1 Circuit Level/Micro-architecture Based techniques

Since, on-chip transistor count determines the circuit leakage, hence, deactivation

of these transistors can be a promising option for reducing leakage consumption.
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The deactivation may be done for the unused or least used cache blocks/sets, for

maintaining performance within a given threshold, if any. Gated-Vdd is a technique

that turns-off an SRAM cell by disconnecting power and/or ground rails with an

extra gated-Vdd transistor [65]. The corresponding circuits for an SRAM cell is

depicted in Figure 2.12(a). The contents of these turned-off cache locations are

lost along with their tag entries. Hence, this method of power saving is termed as

state destroying policy. This technique now-a-days has become the backbone for

most of the state destroying leakage saving techniques in cache memory [66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77], as in a large scale the leakage reduction is

remarkably high. On the other hand, during cache space requirement, these cells

can also be turned-on by establishing the connection as it works normally.

V
dd

bitline bitline
Gnd

Gated V
dd

control

Word Line

(a) Gated-Vdd [65]

V
dd

bitline bitline

Gnd

Word Line

V
ddLow

LowVolt

LowVolt
V

T0
 > 0.3V

V
T0

 > 0.2V

(b) Drowsy Cache [31]

Figure 2.12: Cache leakage reduction method at circuit level.

Rather than complete shutdown of the cache portions as it is in gated-Vdd, a

reduced but non-zero supply voltage can also save some amount of leakage, with

proper preservation of the meta-data related to the cache blocks. This technique

is known as drowsy cache, which compromise the cache power supply between

fully active mode and turned-off mode [31]. However, as the SRAM cells are not

turned-off fully, this policy does not save leakage as much as gated-Vdd [65], but,

drowsy cache has lesser waking up overheads that is much lesser than a number

of cache misses which occurs in case of gated-Vdd. We show the schematic view of

an SRAM cell in Figure 2.12(b) after incorporating drowsy cache circuitry. This

circuit uses a couple of extra PMOS gate switches for supplying normal voltage

(Vdd) and low voltage (VddLow) to the SRAM cell [31]. Several micro-architectural
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based leakage saving techniques use this policy to save leakage under some strict

performance constraints [78, 79, 80, 81, 1, 82, 83, 84].

2.3.2.2 Optimisation at different Cache Granularity

By exploiting either or both of the state preserving and destroying techniques,

researchers have contributed different leakage saving policies at various granularity

levels of the cache. Based on these granularity levels, these techniques can be

classified as follows: (1) Way level, in which cache tuning is performed by changing

the cache associativity through power gating some cache ways or put some ways

into drowsy mode [1, 85, 86, 83, 84, 87, 88]. (2) Set-level or bank-level, which

is usually performed by gating a number of cache sets/banks [89, 90, 91, 92, 75].

This policy is exploited in case of multi-banked NUCA caches. (3) Block level,

where each gating can be controlled at block level inside the cache sets and hence,

the cache reconfiguration will be more fine tuned [66, 93, 77, 70, 72, 94].

In case of way-level granularity, changing in cache associativity increases the capac-

ity and conflict misses. Although in state preserving way level leakage reduction

through drowsy cache Fitzgerald et. al. saves more than 40% leakage with negli-

gible drops in performance [1]. In another work, implementing a state destroying

technique in a DNUCA cache reduces leakage significantly by deactivating 40−75%

cache ways which saves a noticeable amount of EDP by 30%, while degradation in

performance is close to 3% [85, 92]. The frequently used data will be brought to

the nearest possible cache location of the core accessing it and the least accessed

blocks will be brought to the farthest possible location and will be turned off even-

tually. Turned-off cache portion saves cache power whereas bringing MRU data to

the nearest possible cache line improves performance. However, this policy con-

sidered a uniprocessor system hence, effect on coherence is not studied which may

have some adverse effect on NoC performance while being attached with DNUCA.

The dynamic cache reconfiguration policy can be implemented more efficiently

when the program behaviour including its memory footprints are well known in

advance. A trace driven dynamic cache proposed by Tsai and Chen [86] collects
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the traces both from the compiler outputs and instruction caches. These traces

are stored in a special trace history hardware which are used in latter executions

of the same program. This trace history helps in prefetching of instructions in the

private cache and lessen the fetching overhead both in terms of time and energy

consumption. Authors claim a 75% reduction in energy consumption with 20%

improvement in IPC. In spite of these impressive results, on the other end of the

spectrum, this policy may suffer from the following overheads-(1) system cost may

be increased due to incorporation of a new hardware, (2) the hardware is evaluated

in a 90nm technology nodes that has lesser power density, where in modern CMPs

having technology node of size 32nm or less may badly suffer from heavy leakage

consumption, (3) additionally, the history based/compiler based policies are more

useful when same known applications are running repeatedly [83].

Furthermore, shutting down of cache lines can also save energy by 65% [75], but

gating circuitry needs to be attached at every cache line. Additionally controlling

individual cache lines can further increase the controller’s overhead. Hence, in most

of the modern techniques apply power gating at set/way/bank level. Such a policy,

named “folding” has been introduced in [90] which combines a pair of cache sets

to improve the performance. This gained performance has been traded off further

by shutting down some cache sets and saves energy by 20% while performance

degradation is less than 4%. But the run-time complexity is a bit higher in this

set combined algorithm in case of larger modern cache, though authors claimed

it scalable enough. At the bank level granularity, Dani et. al. proposed a bank

shutdown scheme where they turn-off least used cache banks with a prediction

based algorithm [91] for on-chip LLCs. This power saving policy implements

their algorithm at the higher level cache controller, which in turn aggravates the

performance, however, a 40% of EDP savings has been achieved by this policy.

By exploiting cache colouring, a power estimation emulator has been proposed [70]

which reduces cache energy consumption remarkably with negligible performance

degradation. The simulation based results claim an EDP savings of 30% that out-

performs its prior state of the art techniques. The traditional caches are usually

composed of tag and data arrays. In another power saving policy [72], data arrays
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of the LRU cache portions are kept in the sleep or low power modes, where tags

are not. Once the hit/miss is detected the corresponding data array is turned-

on. This technique is well fitted in the caches which support sequential access

technique. However, by 1.7% performance degradation, this technique saves a

significant amount of leakage energy by more than 40%. The dynamic cache re-

configuration can further affect the performance of its lower level memories. Hence,

in [77], Kim et. al. considered caches along with lower level memories and their

accessories while saving leakage by tuning of caches. This method saves 31% leak-

age energy across the cache levels and main memory along with its communication

channels.

All of these techniques discussed above are proposed at different granularity levels

have their own pros and cons. To get advantages of these both, a few works also

proposed some hybrid techniques [68, 64], where more than one granularity levels

are mixed together to save leakage power consumption. However, the implementa-

tion overhead is increased in case of hybrid policies than the single level ones. All

of these energy saving policies resize the caches dynamically, but reducing cache

size to its 1/8 or lesser will drastically reduce the performance by incurring more

capacity and conflict misses [5, 4].

2.3.2.3 Exploitation of different Cache Property

A set of leakage saving techniques exploit the benefits of some cache properties.

Memik et. al. uses the multi-level inclusion property to save leakage [95], by at-

taching a small chunk of memory which keeps the cache footprint information of

the blocks. This information predicts the block location and thus determination

of hits or misses can be predicted before accessing the lower level. By using Sim-

pleScalar simulator [96], authors have shown 53% reduction in misses while reduc-

ing a maximum of 12% cache power consumption. On the other hand, temporal lo-

cality is exploited for leakage saving in another set of policies [85, 92, 91, 81, 82, 97].

In [85, 92], temporal locality is exploited through way adaptation in a DNUCA

cache. In another work [91], a prediction based algorithm is used to get the optimal
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cache size during execution. The prediction is done by using a Bloom Filter that

uses the earlier traces of the same execution. The way prediction based algorithm

also has been proposed in [97], in which an additional CAM is required to get

the benefit of temporal locality. To reduce the energy consumption, authors also

attached a post-technique which compares partial tags instead of doing the whole.

However, this technique speeds up power/performance by 15% while reducing en-

ergy consumption by 40%. In another exploration [82], a large chunk of tag bits

are moved from the cache into an external register (called the Tag Overflow Buffer)

which works as an identifier of the current locality of the cache references. This

work achieves dynamic energy efficiency, at the same time reduction in tag-bits

during comparison also reduces the leakage. The overall energy savings in this

policy lies in between the range of 16− 40% depending upon the cache structural

parameters. In [81], an adaptive cache reconfiguration is done that solely depends

upon the local cache access behaviour, rather than considering the system-wide

performance. By applying this technique overall energy saving has been achieved

by 30% on an average with a performance degradation of 2.1%. Apart from study-

ing cache locality, Working Set Sizes (WSSs) of the running applications are also

studied in some of the prior energy saving approaches [98, 99, 100, 101]. During

execution, the cache requirement for the next phase is predicted and accordingly

the adequate cache space is provided to the applications. The remaining cache

parts will be gated to save leakage. Among these four techniques mentioned here,

8− 10% of EDP saving has been noticed in [98], where in [99] and [100] 5− 82%

energy reduction has been achieved for data caches. However, all of these three

proposals maintain performance while saving cache energy significantly. While

designing a power-aware cache in [101], more than 20% of cache energy has been

saved than the conventional ones.

2.3.2.4 Techniques for Multi-Cores/Multi-Processors

Some of the cache tuning techniques used in single core can also serve well in

the case of multi-core caches: e.g.-Way shutdown, bank/set shutdown, block level

cache management etc. Most of the techniques usually attempt to turn-off the



Chapter 2. Background 47

unused/least used cache space [4]. The power efficient design and cache reconfig-

uration have to be changed in the case of multi-cores, as shared data consistency,

cache coherency, thread interleaving, resource contention need to be taken into

account. In 2002, Zhu and Zhang developed a speculation based energy saving

technique for CMP caches [101]. The speculation technique mainly anticipates

the future hits and misses across the available cache locations, which reduces the

access time as well as energy. In another work, an efficient integration of cache

reconfiguration in soft real-time systems with a unified two-level cache hierarchy

has been done [63]. This policy collects the cache usage profile of the applica-

tions and reconfigures the cache during next execution of the same process. This

method saves significant amount of energy which is in the range of 32 − 49% in

a real-time environment. In their off-line OS based implementation [62], Reddy

and Petrov proposed an energy efficient cache partitioning method which ensures

interference-free multi tasking environment in a real-time scenario. This policy

shows a leakage saving more than 40% for most of the tasks (the authors used).

Later in 2013, Bardine et. al. propose a novel hybrid scheme [102] based on a

Drowsy and Way Adaptable techniques for a DNUCA shared cache, with a signif-

icant leakage energy saving of more than 50% and a performance degradation of

6%. In another exploration [78], level one (L1) data cache is tuned to save energy

in a heterogeneous dual-core system where each data cache can have a different

configuration. The authors claim a near optimal cache energy saving which is

around 26% on an average for this policy with sound management in consistency

and data coherency.

2.3.2.5 Frequency of Cache Reconfiguration

In the on-line cache reconfiguration, the time interval at which reconfiguration has

to be triggered plays an important role. This time interval is called as reconfigu-

ration period, that determines how frequently reconfiguration can take place. The

time-span of reconfiguration period may be fixed (static) or variable (dynamic) [5].

Former one keeps the span fixed during whole execution of the process, whereas,

latter one varies the period as execution proceeds. A number of energy efficient
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techniques use static period [86, 98, 99, 100, 91], where experiments have been

performed before fixing the interval length. According to [91], for a TCMP with

4MB or more shared LLC, 2M to 5M clock cycles can be taken as fixed reconfig-

uration period. However, fixed interval may suffer from reconfiguration overhead

if the interval is small, conversely, in the case of a large interval the system may

suffer from inadequate cache space (if the current cache size is small) or from

more power consumption (if the current cache size is big). Hence, a moderate

interval length has to be chosen, which has been (sub-)optimally solved in most

contributions that use dynamic intervals [93, 77, 103].

The dynamically reconfigurable cache architectures directly leverage the circuit-

level techniques for varying individual cache parameters at their respective levels

of granularity. Based upon the cache parameter adjustment, on-line cache tuning

methods reduce energy consumptions by way/bank level management, set level

management and block level management. In this regard, trivially, it can be stated

that, management at finer granularity offers better energy consumption tuning

whereas having more implementation overheads. From our literature survey and

the techniques mentioned in [5, 4], the following points can be stated:

• Way/Bank level techniques have limited cache configurability but needs

minimal changes in hardware circuitry. Additionally, management at this

level has enough potential to reduce bulk amount of energy with minimally

changed circuitry. The operating time for this is also very less. However,

dynamically shrunk caches experience more capacity and conflict misses.

• Tune cache at set level provides a bit more fine tuning of energy than the

earlier one but has more circuit complexity, hence, increment in controller

overheads.

• At the block level management, implementation is most critical but this

management offers more energy tuning options to the users. Even complex

controller takes more time to response during the process execution, eventu-

ally aggravates system performance.
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In our proposed works, we therefore choose to tune the cache at bank/way level

granularity having minimal implementation overheads. Moreover, we also apply

DAM based policy for improving performance at the shrunk caches. Unlike an

earlier exploration [91], from performance point of view, we implement our pol-

icy at the LLC controllers, thus we keep higher level caches transparent to this.

Additionally, rather than using some access prediction based cache tuning pol-

icy mentioned in [5, 4], we directly exploit locality of reference and other critical

performance parameters online, hence, storage overheads for maintaining history

have been reduced.

2.4 Thermal Management in CMPs

Rapid progress in chip design technology reduces the channel length of modern

transistors, which in turn helps to meet the ever increasing demand of high process-

ing power in modern Chip Multi-Processors (CMPs), by integrating more on-chip

components in a single chip. In addition to the noticeable increment in circuit

complexity of the new generation of CMPs, this heavy integration increases the

power density along with the spatial power variation, introducing severe local

hotspots. These on-chip hotspots increase effective chip temperature which raises

up reliability concerns of circuit functionality in addition to the higher cooling cost

and performance degradation. Finding out an economical and efficient way for re-

ducing chip temperature, still remains a challenging task for the researchers [29].

Hence, in recent years, architects and designers are concentrating on dynamic

thermal management techniques while designing modern CMPs. A plethora of

such recently developed techniques are discussed in [29]. According to the nature

of mitigation provided for thermal issues, these techniques can be classified as

follows-(a) minimise chip temperature for a given performance constraint, and (b)

maximise performance for a predefined power budget and/or thermal constraint.

Both of these two strategies attempt to minimise the power consumption dynam-

ically either at CMP cores or at caches.
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2.4.1 Core Level Management

The gradual reduction in channel length of modern transistors fits more compo-

nents in a single chip, resulting into due increment in power density which creates

local hotspots. DVFS and task migration are the two most promising techniques to

remove these hotspots from the chip, by controlling the dynamic power consump-

tion of the cores. Leakage power, on the other hand, having a circular dependency

with temperature, is efficiently modeled in [28]. The authors have linearised the

problem through a piece wise linear approximation method for estimating both

temperature and leakage as much realistic as possible. This thermally constrained

policy shows 19.6% performance improvement while keeping peak temperature of

the chip below the preset threshold of 110◦C. Additionally, an quadratic algorithm

has been proposed to estimate upper bound on energy savings [104]. As a tradi-

tional common industry practice, TDP is introduced in modern CMPs. However,

for a given thermal constraint, researchers have attempted to maximise through-

put of the processors [105] by employing DVFS as a backbone. The detailed

analyses are done by varying a set of critical parameters like initial chip tempera-

ture (45◦C or more), thermal capacitance and the maximum attainable processing

speed while maintaining TDP. This policy achieves a sub-optimal performance by

approximating an optimal speed curve. Apart from DVFS, a latter exploration

[106] proposes an efficient thread migration method for thermal efficiency. For a

given thermal constraint, an optimal mixing of thread migration and DVFS has

been done which shows a pareto-optimal performance for the used experimental

set-up. This merging of DVFS and thread migration actively participate in scal-

able cooling of the cores and keeps both peak and average temperature around

370K which shows a temperature reduction around 10K. Through integration of

optimal control mechanism [107] or Model Predictive Controller [108], DVFS can

be achieved at circuit level as well.

Concomitant to the fact that, global thermal management suffers from scalability

for modern CMPs having hundreds of cores, authors in [109] tried to reduce en-

ergy consumption in diverse runtime characteristics of the threads. From DVFS
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perspective, this work initially analysed the potential loss in performance and

power with an off-chip voltage regulator that slowly serves the voltage scaling

request. Hence, to fasten the process they have further proposed an on-chip reg-

ulator to optimise both power and performance. Even DVFS and PCPG (Per

Core Power Gating) together [110] can improve processors’ throughput and put

idle cores in sleep modes to reduce temperature in large CMPs. By exploiting

core-to-core frequency variation, this policy improves system throughput by 57%

for a 16-core CMP designed in 32nm predictive technology while obeying a tem-

perature constraint of 100◦C. Moreover, insertion of idle time slice to a core with

a thermal aware task scheduling can further reduce peak temperature of the chip

[111] by more than 9◦C on an average for an embedded processor. This significant

improvement has been achieved by proposing an approximation solution for an

NP-hard task assignment and scheduling problem. This insertion of idle slots has

no significant effect on system performance. The above discussed task migration

and scheduling techniques are the widely used ones for thermal efficiency in case

of modern CMPs supports real-time applications. The proactive dynamic task

migration from hotter cores to colder area can reduce the chances for thermal im-

balance [112, 113]. This policy maintains a stable core temperature around 80◦C

during run-time. Although thermal stability is a big concern while managing chip

temperature, but, frequent task shifting towards thermal efficiency in this work

leads to a costly on-chip ping-pong effect. Mizunuma et. al. in [114] tried to

reduce this ping-pong effect by implementing a core search based task migration.

This policy reduces migration counts by 39% and overheat time by 22.4% for a

negligible performance penalty of less than 2%.

From the available literature and our above discussion, the following characteristics

can be listed for the core based DTM techniques:

• Reducing cores’ temperatures is the primary concern for the modern chip

designers, as on-chip hotspots are mostly created at the cores.

• Task Migration and DVFS are the most promising and preferable options

for the core temperature reduction.
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• The research directions towards core based DTM are bisected into two broad

avenues: (a) improve performance under a set of thermal constraints, or (b)

for a certain performance constraint maximise the reduction in the core

temperature.

• Thermal imbalance or instability is also a major point of interest while de-

signing some DTM techniques.

• Most of the cases, task migration and DVFS may have noticeable impact

on system performance. Especially, task migration is only possible with the

presence of some idle cores in the system. On the other hand, uncontrollable

use of DVFS can potentially incur huge temperature fluctuation at the cores

which may severely damage the chip circuitry.

2.4.2 Cache Based Policies

The large LLCs of modern CMPs are accounted for their significant leakage power

consumption [4, 5, 29]. Reduction in LLC leakage can be done either by (a)

cache resizing or by (b) reducing cache hotspots. The classical techniques for

cache leakage reduction exploit both state preserving and state destroying policies

[115, 67]. Even Drowsy cache [31], a state preserving technique, can also reduce

leakage power alone, significantly.

A Power density-Minimized Architecture (PMA) with a Block Permutation Scheme

(BPS) [116] decreases cache temperature for leakage reduction by exploiting gated-

Vdd [65] at circuit level. This policy gives 53% leakage reduction with compared to

a conventional cache design, and 14% with respect to a cache architecture having

no thermal-aware power reduction scheme. Leakage also plays the pivotal role of

thermal control for a performance cognizant thermal efficient technique, shadow

tag [117, 118]. The authors claim a reduction of 7− 15◦C in peak temperature of

the CMP while using a 3D architecture. This policy uses state destroying cache en-

ergy reduction policy towards controlling chip temperature. Noori et. al. further
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analysed the increment in cache energy and temperature along with their inter-

dependency for a 100nm technology [119]. This study reveals the requirement for

incorporation of dynamic cache resizing during change in chip temperature, as

higher temperature potentially increases the leakage power of the caches, which

has an adverse effect on chip circuitry. In a latter exploration [64], Temperature

Aware Cache Configuration (TACC) has been proposed to optimally reconfigure

caches at different execution phases by a combination of the offline and online anal-

ysis of cache usages. Results show that, this technique reduces leakage power by

61% for instruction caches and 77% for the data caches, while TACC is compared

to a configurable cache which is configured for only the corner case temperature

of 100◦C. Additionally, this policy also shows significant performance improve-

ment which is more than 15% for both types of caches. Sentry tags, in another

work [120], eliminate unnecessary cache accesses to minimize power and tempera-

ture. By applying this policy, “a peak to peak” cache temperature reduction has

been achieved by 10◦C for both instruction as well as data caches at the steady-

state. No significant performance aggravation has been reported for this policy.

Moreover, prediction based core level cache block migration also reduces cache

temperature where migration is triggered due to overheating [121].

Modern 3D CMPs suffer from high power density, hence, the increased effective

chip temperature [122]. A runtime thermal management is proposed for 3-D chip

at way level granularity in [123] which combines DVFS with a novel thermal aware

technique for hybrid (MRAM/SRAM) cache. This technique reduces both cores

and cache (MRAM/SRAM) layers’ temperatures more than 5◦C while maintaining

critical temperature of the chip.

From the above discussions regarding cache based thermal efficient strategies, we

can draw the following conclusions:

• Constructed with shrunk transistors, the SRAM based modern caches are

accounted for their heavy leakage, that has a circular dependency on effective

temperature.
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• From the available literature, it has been noticed that, large SRAM based

modern LLCs can potentially increase chip temperature by generating hotspots

at the large cache area, although in earlier designs caches are usually con-

sidered as colder on-chip components.

• Reduction in cache temperature can only be done by applying either of these

two classical techniques: (a) power gating or (b) regulating supply voltage

(i.e. drowsy cache). Power gating reduces more temperature than the latter

option as gating the power supply at cache area drastically reduces the power

consumption.

• Most of the cache techniques developed earlier are attempting to reduce tem-

perature by controlling the cache accesses, i.e. by reducing dynamic power.

But, modern thermal cache design also needs attention towards leakage re-

duction. Furthermore, most of these techniques are built with the larger

sized transistors having a minimum channel length of 65nm, whereas recent

designs have a channel length of 32nm or lesser.

• By considering the superposition and reciprocity theorem [33], it can hypo-

thetically be stated that, turned off large cache portion can create on-chip

thermal buffer which can significantly reduce chip temperature.

• Additionally, cache based policies impact the computation according to its

sensitivity towards the dynamic WSS of the process, but can maintain a

stable thermal profile.

2.5 Summary

CMPs, the basic building block of modern computing systems, have a number of

cores integrated with multi-level on-chip caches. On-chip LLCs are the biggest in

size across the cache hierarchy and occupy the largest area on the chip. Usually,

these LLCs are divided into multiple banks and shared among the cores. The short

channel length of modern transistors further increases the on-chip power density
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which in-turn increases temperature and leakage power consumption [5, 4, 29]. Ac-

cording to our survey and simulation analysis discussed so far, it can be concluded

that, reduction in both leakage power and chip temperature are the supreme de-

sign concern for the architects. Especially, LLCs are the major contributors to the

total on-chip power consumption, where LLC leakage dominates the other power

components. Additionally, LLCs are evaluated as the comparatively colder on-

chip components, but from the earlier discussion it can be stated that LLCs can

also generate on-chip hotspots.

Reduction in effective LLC area can reduce its leakage consumption significantly,

which can be done either by some off-line techniques or through some on-line

techniques. The existing diversities in cache usage patterns of the modern appli-

cations in addition with multi-tasking environment motivate us to tune the cache

size on-line in either direction; that is, provide ample amount of caches to the

applications when it is required and shrink the cache size with reduction in WSS.

Reducing cache size through state destroying policy can aggressively reduce the

leakage but may incur stall cycles which can degrade the system performance. To

address these issues, we propose an on-line cache tuning policy that resizes the

cache at bank level granularity based upon the locality of reference and system

performance.

Power consumption in a semiconductor circuitry excogitates the thermal issues.

Hence, reduction in cache leakage can also help us further to reduce effective

chip temperature. In the next part of the thesis, we therefore propose thermal

aware cache tuning, which reduces the cache hotspots by turning them off. As

leakage has a quadratic relationship with the temperature and by forming a circular

dependency these cache portions can also increase the chip temperature, hence, it

makes sense to turn-off the least used cache portions. The gated cache banks form

on-chip thermal buffer which distributes the generated heat to the components

in its close proximity by exploiting reciprocity and superposition theorem of heat

transfer [33]. Thus the effective chip temperature gets reduced. We also design

thermal aware cache resizing for a CCMP, where cache resizing follows some pre-

designated patterns to reduce temperature. Both of these thermal aware designs
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are performance cognizant and hence, they also turn-on cache banks whenever

required.



Chapter 3

Simulation Framework

This chapter elaborates the simulation environment that we have used in our

works. All the experiments reported in this thesis are done in a full-system simu-

lation framework. Basically, full-system simulators are able to simulate the entire

electronic systems including CMPs. The machine where simulation environment

runs is called as the host machine, and the virtual system engineered by the sim-

ulator is called as target machine. Moreover, the full-system simulator provides

CPU cores, along with multi-level private/shared caches, memory systems and

I/O devices, which altogether produce a flavour of a real CMP. Additionally, these

system components are connected through a standard NoC module that has also

been integrated in this. The full-system simulator further allows to execute real

programs through an Operating System (OS) platform installed independently

in the target machine, unlike the instruction set simulators. The virtual device

drivers of target machine also allows OS to execute all of its modules those run

normally on a real hardware.

As simulators are a set of computer programs, hence, any program module devel-

oped for target machine’s architecture can be modified to meet any new design

requirements. For example, a conventional cache designed in a full system simu-

lator can be modified to support Dynamic Cache Reconfiguration at both way as

well as bank levels. For design space exploration, we can also easily change some

preliminary parameters, like cache associativity, cache size, number of banks etc.

57
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in target machines. A brief on computer architecture simulators are provided in

the next sections with their importance in industrial and academic research.

3.1 Computer Architecture Simulators

Simulation is a useful technique for analysing performance and power consumption

of any computer system. Among a variety of simulation techniques, computer

architects are usually interested in emulators, trace-driven simulators and discrete-

event simulations [124]. Although emulators are a kind of simulators, still they

have hardware design limitations, hence, we use a set of discrete-event and trace

driven simulators in our experiments. A computer architecture simulator is a

software that models the hardware devices for analysing power/performance of the

modeled system. It can either model a (a) target microprocessor called instruction

set simulator, or a (b) full system simulator that simulates the whole computing

system.

Physical design of modern CMPs are really expensive and complex to design [125].

Furthermore, for an experimental analysis, changing different parts of it are also

required before deployment of the design. For example, while designing any of our

reconfiguration technique, we need to have certain level of illustrated results which

can produce one or more design choices for the next generation architecture. In

this regard, after implementing our technique in the simulator, we have to test

it for different number of cache banks, different associativity or may be with dif-

ferent cache sizes. Prototyping and designing some of these real set of hardware

are impractical in academic scenario [126, 127]. The expensive tools and complex

designing process for making hardware are not possible for an academic research

project where a single project comprises of a bunch of design proposals. In our

case, reconfiguration of caches at different granularities with their detailed energy

and thermal analyses are highly required and recommended. In addition to that,

performance analysis also plays a major role while designing architecture. Hence,
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to check design accuracy with its power/performance analysis, architects use simu-

lators for their experiments in a timely and cost-effective manner [128, 125]. Most

of the prior works listed and described in Chapter 2 are implemented in full-system

simulators.

SimOS [129], one of the oldest machine simulator, simulates hardware of a machine

by using the services provided by the underlying operating system. Later in 2002,

SimpleScalar [96] has been developed which could simulate a set of super-scalar

processors. Although this simulator does not support multi-core systems. How-

ever, shortly after that, a number of simulators have been designed, for event driven

simulation [130], fault analysis [131], and verification tool for microprocessor based

on virtual machine [132]. The simulators as they run on some real systems, hence,

their performance depends upon the real hardware of the host. Apart from that,

some simulators have inherently sequential nature that runs slower than the others

who can be parallelised. Despite that, if the real hardware boosts up its processing

power, the full-system simulators can model the actual systems without sacrificing

performance [125]. Many full-system simulators, developed over a decade or more

are available for various requirements [132, 133, 127, 134, 135, 125, 131, 130].

Full-system simulators can be categorised into two categories: functional and tim-

ing [126]. Functional simulators mainly replicate the activities or functionalities

of an actual system (for which the simulator is designed). Timing simulators, on

the other hand, takes care of the real-time behavior of the system that follows

a discrete-event simulation technique. In addition with replication of the func-

tionalities of an actual system it also models the timings that when a task has to

be triggered. Usually, the timing simulation is required for comparing the LLC

performance in modern CMPs, that execute long running applications.

3.1.1 Simics

A full-system simulator Simics [125] is used to generate a complete virtual machine

i.e. the target machine which runs on top of a host machine. This simulator



Chapter 3. Simulation Framework 60

is flexible enough to support a variety of processes like microprocessor design,

electronic system design and verification, OS development etc. Simics supports

a number of real-architecture models, such as-UltraSparc, Alpha, x86, x86-64,

PowerPC, IPF (Itanium), MIPS and ARM. Simics is even fast enough while it

executes realistic workloads, including the SPEC CPU2006 benchmark suite [136],

PARSEC benchmark suite [6], database benchmarks such as TPC-C, interactive

desktop applications, and games.

The main focus of architectural research is to design architecture for the next

generation. In this thesis, we propose some power and thermal efficient TCMP

and CCMP based architectures which can perform better in future with increased

workload. The full-system simulation framework provided by Simics is well suited

for the designing of such future hardwares without any physical overheads. Even,

from industrial point of view, this quick design and verification of the newly de-

signed hardware in Simics are also useful enough. Furthermore, designing of some

softwares for such hardwares can also be done concurrently as the simulated envi-

ronment provides the flavour of whole system.

3.1.1.1 Limitations of Simics

Although Simics has its own powerful capabilities, still its functional behaviour

limits one from performing timing simulations which are needed to simulate CMP

based systems. GEMS [126], a timed simulator has been proposed that works on

top of Simics. GEMS was actually designed to simulate the complete memory

hierarchy of CMP with coherence management and the on-chip communications.

Additionally, timing simulation with GEMS helps to compare the performance for

different CMP architectures. The details on GEMS are provided in the next sec-

tion. However, GEMS can not run without Simics, thus, the functional execution

is decoupled here with the timing models.
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3.1.2 GEMS: An Overview

The three major modules: Ruby, Garnet [137] and Orion [25] construct GEMS [126]

together. Ruby models the entire memory system of any CMP based architecture

where each component like L1 cache, L2 banks, memory banks, directories etc.

are modeled. Individually, each of these components are called as “machine” in

Ruby. Each and every machine has its own unique id called machineID which is

required to identify a machine during the on-chip communications. The machines

in CMP communicate with each other through the underlying NoC, which is man-

aged by Garnet. Any CMP based architecture that can be modeled in ruby uses

Garnet for establishing on-chip communications. Garnet simulates the real-time

scenarios for transferring messages through the NoC. Moreover, Garnet supports

different topologies which helps to simulate NoC with variety of options. Another

simulator Orion [25] is attached with Garnet for modeling the energy consumed by

the underlying NoC provided by Garnet. However, the Garnet version used in our

simulation follows X-Y routing. The on-chip communication cost from both power

and performance perspectives are considered for all the experimental analysis done

in this thesis.

The requested block (load, store, fetch) from simics processors are passed to the

Ruby module of GEMS. The very first level of cache i.e. L1 in ruby detects early

if the requested block is a hit or a miss. If a hit is detected then simics continues

its execution, else in case of a miss, the request from the issuing core is stalled

for a while until GEMS completes its simulation for the detected cache miss. The

timing-dependent functional simulation in Simics is determined by ruby, through

the control of timing of when Simics moves forward its simulation.

A sequencer is attached with each of the L1 cache for managing the requests from

the corresponding core. In case of CMP, multiple L1s and L2s can be available and

can also handle cache requests concurrently. For each of the machine, a controller

is attached and all functionalities of a machine are performed by its own controller.

GEMS provides a domain-specific language called SLICC for modeling of such con-

trollers to manage all the operations of the machine itself and its communications
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with the others. Managing coherence, on the other hand, is a major concern

in case of CMP based cache structure that uses shared caches, hence, coherence

protocol has to be implemented. Different modules of the controller manage the

coherence protocol through message passing among themselves. These messages

are communicated across the modules are passed through the NoC (modeled by

Garnet). SLICC is further responsible for coherence protocol designing as it is a

combined task of all the controllers.

3.1.2.1 CMP Architectures Supported by GEMS

GEMS supports SNUCA based TCMP/CCMP cache architecture which is very ro-

bust and can be configured with a set of varieties like, cache size, number of banks,

number of tiles, cache access latency, miss penalty, hit time, network protocols etc.

All of these parameters can be modified by just changing their respective values

in a separate configuration file. Apart from that, many other parameters are also

there which can be reset based on the configuration demand, such as-number of

virtual networks, block size, cache associativity, replacement policy, network flit

size etc. For coherence management, we use MESI protocol in our proposed and

baseline designs, which is termed as “MESI-CMP protocol” in GEMS. For exper-

imenting with different network topology, changes can also be permitted in the

network configuration file in Garnet.

GEMS supports the baseline cache architecture where we implemented our Dy-

namic Cache Reconfiguration (DiCeR) techniques. We made certain changes at

the protocol level to manage the associated coherence mechanism. The code writ-

ten in SLICC has been modified for implementing the proposed architectures, as

by simply changing the parameters our proposals could not be implemented. Fur-

thermore, to provide supports, other internal structures of its memory systems

are also modified. Finally, a new compilation of GEMS constructs the new ar-

chitecture. The migration of cache blocks during bank turning-off/on increases

workloads in NoC, which is also simulated in Garnet. In addition to that, the re-

quest forwarding after reconfiguration of cache are also taken care by involvement



Chapter 3. Simulation Framework 63

of Garnet. The integration of Orion also simulates the corresponding changes in

NoC power consumption.

3.1.2.2 Result Analysis

The GEMS-Simics integration can run real set of workloads on the simulated

(modeled) CMP architecture. During execution, the simulation framework records

plenty of information. Some important information recorded by GEMS during

execution are:

• Total Cycle Executed: This metric is a summation of all the cycles executed

by all the cores. Note that GEMS also records executed cycles for individual

cores.

• Total instruction executed: Same as the above metric, i.e. individual as well

as the summation of all executed instructions are recorded.

• Total L1 accesses/misses: GEMS also records total and individual access/miss

counts for each of the L1 banks, which are private to their respective cores.

• Total L2 accesses/misses: This implies same like L1 accesses/misses, but in

LLC (L2). The bank-wise distribution is not provided in the original GEMS

but can be implemented easily on demand.

• Average network latency: Garnet outputs this parameter which is the av-

erage cycles required for individual message to communicate through the

NoC.

• NoC energy consumption: Total energy consumed by the NoC during exe-

cution (produced by Orion).

Apart from that, GEMS also provides: cycle per instructions (CPI), instruc-

tions per cycle (IPC), average memory access latency (including on-chip/off-chip

communication time), average link utilisation, Miss Per Thousand Instructions

(MPKI) etc.
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The special module, named as Profiler, embedded in GEMS manages all the re-

sults during execution. However, Profiler can be initialised at any point of time

during execution, so that results can be recorded for any particular time zone

during execution. Further, the Profiler can also be modified (or reset on-the-fly)

if required.

3.1.3 CACTI

GEMS+Simics environment executes a set of realistic applications by exploiting its

underlying architecture. However, this simulation environment can not model or

simulate power, area and timing at the different cache level granularities. CACTI

6.5 [7], a simulator which is well known across the computer architecture research

community, models caches upto device/circuit levels while taking some architec-

tural parameters as its inputs like-associativity, cache size, cache level, block size,

access techniques (UCA or NUCA), number of banks etc. By simulating the ar-

chitecture at device level it produces cache access time, its power consumption,

area overhead etc. as outputs. According to the ITRS [9], SRAM cells that con-

struct caches can be of three types-(a) HP, called as high performance cell which

are very fast in their operations, and naturally the power consumption is higher;

(b) LSTP, known as low standby power cells, that consumes very low power while

not in use, but accessing is slower than HP as transition cycles are incurred be-

fore reaching at its accessing mode from the low power standby mode; (c) LOP,

the low operating power cells which consume less power both in active as well as

in standby modes, and the slowest among the three. In our work, we consider

HP cells as backbone of our cache construction. The cache access methodology

used in our work is fast, where tag and data arrays are searched concurrently

for determination of hit or miss. Apart from that CACTI also supports normal

and sequential access patterns. For calculating power consumption in cache cells,

transistors’ channel length plays the most vital role, which is known as technology

parameters in CACTI. We use transistors having a channel length of 32nm which

is supported well by CACTI.
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For our first two contributions we use Simics+GEMS environment to get the per-

formance simulation, and CACTI was used to model the inner circuitry for further

modeling of power. The traces from GEMS are used with the similar cache model

of CACTI to get the (dynamic and leakage) power consumption of cache.

3.1.4 McPAT

McPAT 1.0 [21], a trace-driven stand-alone simulator, provides power, area and

timing modeling framework with enough support for the comprehensive design of

multi-core architectures. At the micro-architectural level, this simulator includes

models for the fundamental components of a CMP, with support for both in-order

and out-of-order processor cores, NoC, shared caches, integrated memory con-

trollers, and multiple-domain clocking. From designing and technology point of

view, McPAT further supports critical-path timing modeling, area modeling, and

dynamic, short-circuit, and leakage power modeling for all device types forecast

in the ITRS roadmap having a channel length in between 22nm to 90nm. McPAT

has its own flexible XML input interface that facilitates many performance simula-

tors, from which traces can be generated. Combining McPAT with a performance

simulator like GEMS, enables designers for consistently quantifying the cost of

new ideas in perspectives of power and performance frontiers. Note that, McPAT

uses the cache memory models of CACTI for power, area and timing simulation

of caches.

3.1.5 HotSpot

HotSpot 6.0 [3], a novel modeling methodology, that develops compact thermal

models based on the popular and modern VLSI systems. In addition to modeling

silicon and packaging layers, HotSpot further includes high-level on-chip intercon-

nects such that the thermal impact of interconnects can also be reflected at the

early design stages. This compact thermal modeling approach suits well in pre-

RTL and pre-synthesis thermal analysis and is also able to produce detailed steady
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and transient temperature information across the die-components. This trace-

based simulator takes power traces collected over-time by running application in

an integrated version of functional full system and power simulators. HotSpot gen-

erates transient and steady-state temperature values which completes the thermal

simulation process. In our works, we use this simulator by integrating with the

others so that a dynamic thermal aware closed loop simulation framework can be

formed. Additionally, by providing the aspect ratio along with detailed area anal-

ysis, HotFloorplan module of HotSpot can generate an optimised chip floorplan

through a simulated annealing method.

For our last two contributions we need to simulate power and temperature of

the whole chip. In order to do so, we need to model the power consumption

of all fundamental chip components. Hence, we simulate our designs firstly in

GEMS+Simics environment to collect the performance traces and feed them to

the input interface of McPAT. Once, McPAT gives the power values as outputs,

we send them to HotSpot to get the thermal status of the chip. Accordingly, our

designated algorithm will decide about the next cache configuration, that has to

be applied at the underlying cache architecture, specifically at LLCs. The details

for the developed closed loop simulation environment is described in Appendix A.

3.2 Benchmarks

As we discussed earlier, a full-system simulator like GEMS+Simics framework

executes real workloads on the simulated architecture. With different set of results

collected from these executions are analysed from performance perspective of the

underlying architecture. Furthermore power and thermal simulation of the CMP

architectures provide enough room for the hardware manufacturers or researchers

to get testing for the new design that represent real-world behavior accurately.

The Princeton Application Repository for Shared-Memory Computers (PARSEC) [6],

a benchmark suite that composed of multi-threaded applications which can be used

for evaluation and development of next-generation CMPs. A collaborative project
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between Intel and Princeton University drive their research community to put their

effort for developing such benchmark programs those will help architects during

designing future computer systems. PARSEC is freely available and well known

in the architecture community. This benchmark suite is used for both academic

and industrial research. PARSEC has the following major objectives:

• Focusing on multi-threaded applications.

• Diverse input sizes for each and every workload.

• Real-world problems are formulated.

Before PARSEC came into the picture, most of the benchmarks were application

specific and they were available in an unparallelised version [6]. PARSEC 2.1

Benchmark Suite composed of 12 different workloads. Each of these workloads is

multi-threaded and parallelised. The applications of PARSEC are basically cho-

sen from different real-world areas, such as-finance, media processing, computer

vision, enterprise service and animation physics etc. Table 3.1 contains the de-

tailed descriptions regarding the PARSEC workloads. Multi-threaded applications

usually share data among its spawned threads. Data usage details of the bench-

marks are also provided in Table 3.2. The properties for each of the application

are described in details in this article [6]. These workloads are also termed as

programs, applications or benchmarks, alternatively.

Each of these application has its own WSS with a different set of input sizes: small,

medium, large etc. According to the requirements, users can run applications with

any input sets relevant to the architectural designs.

SPEC-CPU 2006 [15] is also another benchmark suite that is used in CMP simu-

lations, but it is not available freely. The free availability of PARSEC benchmark

suite is one of the major reason for which we have chosen it in our experiments.

In last decade, SPLASH-2 [138] was a widely used benchmark suite for CMP en-

vironment. But for its smaller input sizes current large sized LLCs can not be

verified properly.
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Program/
Benchmarks

Application
Domain

Parallelisation Working-
SetModel Granularity

blackscholes Financial Analysis data-parallel coarse small
bodytrack Computer Vision data-parallel medium medium
canneal Engineering unstructured fine unbounded
dedup Enterprise Storage pipeline medium unbounded
facesim Animation data-parallel coarse large
ferret Similarity Search pipeline medium unbounded
fluidanimate Animation data-parallel fine large
freqmine Data Mining data-parallel medium unbounded
streamcluster Data Mining data-parallel medium medium
swaptions Financial Analysis data-parallel coarse medium
vips Media Processing data-parallel coarse medium
x264 Media Processing pipeline coarse medium

Table 3.1: The inherent key characteristics of Parsec benchmarks [6].

Program/
Benchmarks

Data Usage

Sharing Exchange

blackscholes and swaptions low low
bodytrack and freqmine high medium
canneal, dedup, ferret and x264 high high
facesim, fluidanimate, streamcluster and vips low medium

Table 3.2: The data usage behavior of Parsec benchmarks [6].

3.2.1 Parsec Benchmark Suite

In this section, the properties of some PARSEC benchmarks are described those are

used in our works for evaluation of our different proposed CMP based architectures.

The detailed descriptions regarding the benchmarks are presented in [6].

3.2.1.1 Blackscholes

This application models a financial analysis. It is basically an Intel’s recognition,

mining and synthesis (RMS) benchmark that analytically calculates the prices for a

portfolio of European options with the Black-Scholes Partial Differential Equation

(PDE). Blackscholes needs to solve a diverse variety of PDE for the application
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in financial analysis. Its program is divided into a number of concurrent threads.

Each thread represents a unit of the portfolio.

3.2.1.2 Bodytrack

This benchmark tracks the 3D view of the human body by using multiple cameras.

An annealed practice filter tracks the 3D view by using an edge and foreground

silhouette. In this benchmark, an input video that contains many frames is used

to select as a reference frame. This reference frame at time stamp is used to

compute its likelihood. This likelihood is a degree of the 3D body model alignment

with its foreground and its edges in the respective images. The likelihood’s value

is computed by using the two attributes of a particular image, named as the

foreground map and the edge distance map. This benchmark also has a persistent

thread pool, from which the main thread sends the task to the thread pool. This

main thread has to wait for the remaining working threads for finishing their

executions before proceeding further.

3.2.1.3 Facesim

Facesim is an Intel RMS application that was developed by Stanford University.

This is an animation based application which takes a human face along with a

time sequence of muscle activations as inputs and computes a visually realistic

animation of the modeled face. The underlying physics are simulated to get the

visually realistic results. Basically, human faces are observed with more attention

from the users than other details of a virtual world, so that a realistic presentation

for animations can be prepared well.

3.2.1.4 Ferret

This process is used in content based similarity search of rich text data in large

internet search engines. The rich text data includes audio, images, video, 3D
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shapes etc. Ferret toolkit [139], used for searching, has six modules, out of which

first and last modules are serially executed while the rests are parallel. The first

and last modules are used as input and output, respectively.

3.2.1.5 Fluidanimate

The inclusion of this application in PARSEC is for increasing importance of real

time animation and physical simulations for computer games. This is also an

Intel RMS application that is based on Smoothed Particle Hydrodynamics (SPH)

method [140]. Fluidanimate uses five kernels for simulating an incompressible fluid

for the interactive animations. This also generates an output by interpreting and

discovering the surface of incompressible fluid.

3.2.1.6 Freqmine

Freqmine is used for the Frequent Itemset Mining (FIMI) [141] with an array

based version of the Frequent Pattern-growth method. This is also an Intel RMS

benchmark that was actually developed by Concordia University. FIMI is the

basis of Association Rule Mining (ARM), a common data mining problem for

areas like protein sequences, market data and log analysis etc. PARSEC includes

this because of its increasing demand in data mining techniques. This has been

parallelised with OpenMP and uses three parallel kernels.

3.2.1.7 Swaptions

PARSEC has included this benchmark due to increase the importance of Partial

Differential equation (PDE) and the Monte Carlo simulation. This is used for

pricing a portfolio of Swaptions by using the Heath-Jarrow-Morton (HJM) [142]

framework. This is also an Intel RMS workload like some earlier applications.

HJM model behaves as a non Markovian that prevents the solving of PDE for the

computation of prices. Hence, this benchmark employs a Monte Carlo simulation.
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Basically, in Swaptions array, the program stores all the portfolio. Each of these

array entry represents a derivative. Swaptions further divides the array into the

number of blocks that is same with the number of threads that will be spawned and

thus, each block is assigned to a particular thread. To compute a price Swaptions

iterates through all of its blocks and earlier it calls the function HJM Swaption

Blocking.

3.2.1.8 Vips

Vips includes fundamental image operations such as transformation and convo-

lution. This application is based on the VASARI Image Processing System [143]

which is able to produce multi-threaded image processing pipelines transparently

at runtime. This image transformation pipeline has 18 stages and is implemented

in the VIPS operation im benchmark. All of these 18 stages of Vips are imple-

mented in the following kernels:

• Crop- removes 100 pixels from all the edges.

• Shrink- shrinks the image by 10% by using the matrix transformation.

• Adjust white point and shadows- brightens the white point and tries to

reduce the shadows for improving the visual quality of an image.

• Sharpen- enlarges the edges of an output image. This kernel also removes

the blurring and can produce better overall appearance of an output image.

3.2.1.9 X264

X264 is a H.264/AVC (Advanced Video Coding) video encoder that includes new

features in encoding such as increased sample bit depth precision, higher-resolution

colour information, variable block-size motion compensation (VBSMC) or context-

adaptive binary arithmetic coding (CABAC). This application allows the H.264

encoders for generating a higher output quality in addition to a lower bit-rate
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at the expense of a significantly increased encoding and decoding time. Motion

compensation is used for removing the data redundancy. X264 is very flexible and

is used for different requirements like video conferencing to HD movie distribution.

Moreover, H.264/AVC encoding is also required for the next-generation HD DVD

or Blu-ray video players.

3.3 Simulation Methodologies

For our experimental analysis, we used several multi-threaded and multi-programmed

benchmarks. In the next section, we describe about the multi-threaded and multi-

programmed benchmarks that we used/made from the PARSEC benchmarks.

3.3.1 Multi-threaded vs. Multi-programmed Benchmarks

Each PARSEC benchmark itself is a multi-threaded program, where number of

threads in each benchmark is completely based upon the input size and the load

of the program. Some benchmarks take number of threads as a command line

parameter. For all PARSEC benchmarks, during their execution a specific region

where the actual multi-threading occurs is termed as “Region Of Interest”(ROI).

A magic instruction is inserted in each of the benchmark at the Simics console

of the host machine just before starting of the ROI and also after completion

of the ROI. This magic instruction pauses the benchmark execution at different

points, particularly, it makes the entire simulator to pause its execution at the

virtual machine. However, execution can be resumed by manually pressing a “c”

or “continue” command. In brief, the real parallelisation of PARSEC benchmarks

actually happens in the ROI. Initialisation, input scanning etc. are done before

ROI, and on completion of ROI, program terminates after producing outputs.

We further built multi-programmed benchmarks by combining multiple PARSEC

applications through Solaris Commands in virtual target machine. The term com-

bining implies that, threads of different processes are bounded on different cores
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and they will run on the same core until completion of the execution. For example,

by using 4 copies of vips, we can make a multi-programmed benchmark in which

each copy of vips can be bounded on 4 cores while considering a 16 core CMP.

Note that, every single PARSEC application is a multi-threaded one, hence, in

multi-programmed environment also each application has multiple threads where

resources or codes are shared during execution. For multi-programmed bench-

marks the term benchmark represents the combined workload.

3.3.2 Used Benchmark Applications

Based upon the multi-threaded benchmarks provided by the PARSEC we made

different combinations for experiments. They are either a single PARSEC bench-

mark or a combination of more than one benchmark applications. Table 3.3 gives

the details of the benchmarks we used in our experimental analysis. Also note

that, all benchmarks mentioned in the table are not used for verification of all of

our proposed or prior architectures.

3.3.3 Executing Benchmarks

For executing a multi-threaded benchmark each benchmark on the target machine

is run upto the starting of the ROI. Once the ROI is reached the benchmark stops

automatically because of the inserted magic instruction. Reaching ROI implies

that the initialisation of the benchmark is over and all the threads are spawned.

Once all threads are created, the benchmark is run further for 50 million cycles to

warm-up. The warm-up period is necessary for avoiding the compulsory misses in

caches and also allowing the NoC architecture to settle properly. After warming-

up, the Ruby profiler is made clear through a command and from this point the

actual execution begins. Few benchmarks are executed upto its termination i.e.

until the ROI completion, whereas another set of benchmarks are executed upto

a fixed number of cycles. Note that, the number of execution cycles varies across

the benchmarks but is never less than 800 million (unless the case of termination).
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Multi-threaded benchmarks
blackscholes (black), bodytrack (body)

ferret (ferret), fluidanimate (fluid), freqmine (freq)
swaptions (swap), vips and X264 (x264)

Multi-programmed benchmarks
Benchmark Details

black4 4 copies of black.
ferret4 4 copies of ferret.
fluid4 4 copies of fluid.
freq4 4 copies of ferq.
swap4 4 copies of swap.
vips4 4 copies of vips.
black16 16 copies of black.
body16 16 copies of body.
ferret16 16 copies of ferret.
fluid16 16 copies of fluid.
freq16 16 copies of ferq.
swap16 16 copies of swap.
vips16 16 copies of vips.

Table 3.3: List of all the multi-threaded and multi-programmed benchmarks
used for the experiments in this thesis.

This number of cycles are termed as Simics cycles, which is 4× than the Ruby

cycles of GEMS. Hence, 800 million Simics cycles implies 200 million Ruby cyles.

The execution process that is fixed for a benchmark is being maintained for all

the architectures being compared.

To execute a multi-programmed benchmark the very initial step is to load all the

applications (belonging to the benchmark) one by one. Each application is then

executed until its ROI. Once threads have been spawned, they are bounded at

some cores. Note that, each program may have multiple number of threads and

the threads can be bounded with the cores assigned to each application. However,

after thread binding the execution of that application remains paused. This bind-

ing process is now repeated with the other applications. Once thread binding is

done for all the applications, all of them are simultaneously resumed from their

corresponding ROI. Rest of the processes, like warm-up and running policies are

same like multi-threaded benchmarks. The thread binding for multi-programmed

benchmarks are also done through the Solaris commands as we mentioned earlier.
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3.3.4 Comparing Different CMP Architectures

For performance analysis of our proposed TCMP and CCMP architecture we com-

pare its performance with other existing architectures in terms of IPC, energy

consumption, EDP, running temperature, implementation overheads etc. In or-

der to do so, we have designed all of our TCMP and CCMP architectures on

GEMS+Simics (full-system simulator) and then we ran PARSEC benchmarks on

top of them. We record different statistics during the execution of each bench-

marks as discussed in Section 3.1.2.2. Based on this statistics, we compare the

performances of two architectures.

Usually, an architecture is engineered with different configurations and design

choices, for example, with various cache sizes, associativities, block sharing capa-

bilities etc. Details regarding this will be provided in the relevant chapters/sections

later whenever required. For all the architectures with different configurations, the

process of running a particular benchmark is kept same to maintain uniformity.

The individual results for each of the benchmarks are reported and the geometric

mean (average) of all those are derived in our result sections.

3.3.5 Our Architectural Models

The entire thesis considers SNUCA based TCMP and CCMP as our baseline archi-

tecture which are already implemented in GEMS for different coherence protocols,

cache sizes and replacement policies. The architectures are shown in Figure 1.2.

MESI-CMP protocol is used as coherence protocol in our cache hierarchy. We

use different cache sizes and associativities for the experimental versatility. Our

first three contributions use TCMP as baseline whereas last one uses CCMP as

its baseline architecture. The detailed configurations used in our simulations are

provided separately whenever required in the subsequent chapters.

Mostly we perform our experiments by considering L2 as shared LLC having a size

of 2MB, 4MB, 8MB and 16MB. Use of even larger caches may not be judgmental
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according to the size of inputs provided by the PARSEC benchmarks. Multi-

banked LLCs are sliced into equal sized banks. For example, in our baseline

design an 8MB LLC (L2) has a bank of size 512KB, where we have 16 banks. The

associativity is same across the LLC banks and is maintained uniformly.



Chapter 4

Static Energy Reduction by

Performance Linked Dynamic

Cache Resizing (DiCeR)

In this chapter, we are going to discuss about the dynamic tuning of LLC size,

which is a promising option for reducing the cache leakage in modern CMPs.

Towards this, our policy dynamically shuts down or turns on cache banks based

upon the system performance and the banks’ usage statistics. In addition with

savings in leakage energy, shutting down of a cache bank remaps its future requests

to another active bank, called as target bank. The proposed technique is evaluated

on three different implementation policies.

4.1 Introduction

According to the survey given in [4], power consumption of on-chip memory sub-

system shares a major portion of total power consumed by the chip. In modern

CMPs, the on-chip caches are organised into multiple levels with the Last Level

Cache (LLC) biggest in size. As LLC occupies large on-chip area, it consumes

more leakage power that, at times exceeds dynamic power [144, 145].

77
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As we discussed in Chapter 1 and 2, an effective way of reducing power consump-

tion of the on-chip LLCs is by shrinking its size. Some recent works [85, 91, 75]

have proposed power optimisation approaches where on-chip LLC has been shrunk.

Reduction in LLC size can degrade system performance if the application’s cache

demand is more or if some heavily used cache portion is powered off. Hence, tuning

process of on-chip LLC size should consider the system performance and locality of

reference as its constraints. As these constraints are only known during execution

of the applications, hence, dynamic/runtime cache size tuning approaches will be

more effective for reducing LLC power consumption.

The recent surveys [5, 4] on cache-size tuning techniques from power/performance

perspective have broadly classified the cache power reduction techniques into two

categories:

1. Power supply control (State Preserving Approach), and

2. Resizing of the Cache Memory (State Destroying Approach).

The former one optimises the power consumption by controlling the power supply

at physical circuitry whereas the latter one resizes the cache.

For modern tiled CMPs, recent works [91, 75] propose a set of utilisation based

cache resizing techniques, which power off least utilised cache portions and dynam-

ically remaps subsequent future requests to other active parts. In our work, we

have taken a similar approach for optimising cache power consumption, by request

remapping at L2-controller, unlike the prior works, where remapping is done at

L1-controllers.

The current work proposes a dynamic cache tuning technique which considers

performance and locality of reference as its constraints for managing the cache

size. Towards this, we initially attempt to reduce cache-size by shutting down

cache banks till an allowable degradation threshold in IPC which we refer to as

BSP, the Basic bank-Shutdown Policy. In order to save leakage power, based on

usage statistics, this policy turns-off L2 cache banks at runtime and its future
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accesses are remapped to other L2 cache banks, called as target banks. Once,

the performance degrades beyond a predefined threshold, the system stops bank

shutdown process. However, this policy cannot provide adequate cache space to

the process in case it needs more cache space in future, during execution. To

address this issue, we developed an extended policy of BSP, which takes care the

sudden increment in application’s Working Set Size (WSS) during execution by

allowing dynamic restarting of the powered off cache banks. System performance is

monitored periodically and accordingly L2 bank(s) will be restarted if performance

degradation is more than a threshold value. During turning on process, all the

remapped contents are brought back to this bank from its remapped location. The

results are compared with Drowsy [1], an existing policy. Specifically, the main

contributions of this work can be listed as follows:

1. B ON OFF ALL A performance linked dynamic cache tuning strategy

resizes the L2 caches by turning off cache banks. However, if the application

needs more cache space, L2 banks are turned-on/restarted.

2. B OFF ONCE Frequent turning on and off of the L2 banks degrades per-

formance. Hence, we experiment with different on-off patterns. Once the

performance degradation reaches a threshold value, the system will not al-

low any more shutdown of L2 bank(s). After this only turning on of L2 cache

banks will be allowed.

3. B ON OFF OPT The frequent resizing of L2 cache of first policy may

degrade system performance. On the other hand, second policy does not

allow the system to save power by turning-off the cache banks once the

turn-off process is stopped, even when there is scope to do so in future.

These two problems have been rectified in the third policy by putting some

restrictions on cache resizing.

Basically, in this work, power saving is done by complete shutdown of the un-

derutilised cache banks. Shutting down of these least utilised cache banks can

also aggravate the system performance, if the current application later changes its
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Figure 4.1: Tiled CMP architecture

cache-space requirement. In such situations, the powered off banks will also be

turned-on when performance degradation is more than a preset threshold value.

The baseline architecture used in this work is elaborated in Figure 4.1. Accord-

ing to this figure, the whole chip is a collection of some replicated tiles, where

each tile contains a processor core along with its private L1 (Data & Instruction)

caches and a chunk of shared L2 cache, called as L2 bank. In this figure tile 4 is

elaborated in details. Note that, L2 cache is used here as on-chip LLC and it is

physically distributed uniformly among the tiles. The tiles are connected to each

other through a 2D NoC and hence, each tile is also attached to an NoC router.

4.2 Proposed Energy Saving Policy

According to our analysis given in Figure 4.2, it can be stated that most of the

cache banks are underutilised while executing processes. This characteristic moti-

vates us to tune the cache size dynamically by selectively powering off or turning

on the cache banks as it is required. However, the cache space requirements of

the applications are diverse to each other i.e. each of them has separate cache

space requirements and even the cache banks in which data is accessed frequently

are not fixed throughout the execution. Therefore, cache bank usages can only be

known at run-time as to which bank(s) is(are) the mostly accessed while which are

utilised the least. As all the cache banks are neither fully nor evenly utilised as

shown in Figure 4.2, it would be helpful to shutdown selective cache banks, specif-

ically, the least used ones. The load of these powered-off banks will be shared

by the remaining set of active banks. Bank shutdown will save static energy but
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effectively reduce the cache space. This might lead to more misses and hence affect

the performance. Our policy therefore needs to keep track of performance.

Figure 4.2: Variable bank usages across different benchmarks

At some certain point during execution, the Usage Percentage of a bank in Figure

4.2 implies what percentage of total L2 accesses (i.e. #hits+ #misses) this bank

handles, upto the current time-stamp. Values in Figure 4.2 have been collected

for 4 benchmarks by running them upto 40 million clock cycles, after warming

up. Moreover, the bank usages for applications even vary with respect to time,

i.e. a heavily used bank of initial stage of execution may become a lightly used

one in latter stage, or vice versa. For some applications (swap1, body1, ferret1,

vips1 etc.), a few banks have almost same amount of usages throughout the ex-

ecution, as they exploit high Locality of Reference. Graphs in Figure 4.3 show

the patterns of these temporal changes of bank usages for a set of applications.

For each application, we show randomly selected 4 banks out of 16 where each

X-axis in the Figure 4.3 represents uniform time-intervals. The bank usages for

the applications change over time, as shown in Figure 4.3, hence online stats are

considered for dynamic resizing of LLC. Note that, bank usage statistics are taken

over a moderate periodic interval for which changes in usages are not significant,

which implies locality of reference is exploited within short time-duration, but for

longer duration, this property is prone enough to be violated.

On the other hand, energy analysis for on chip caches shows that static energy

consumption is lot more than dynamic energy consumption. Dynamic energy of

the cache is only consumed during cache block accesses, whereas static energy is

continuously spent as long as power is supplied to the bank. Figure 4.4 shows the

distribution of static versus dynamic energy for a few benchmarks.
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(a) freq1 (b) swap1

(c) body1 (d) freq16

(e) black4 (f) fluid16

Figure 4.3: Temporal Change in Bank Usages for 6 different PARSEC appli-
cations.

Hence, in order to save energy, static energy saving will be the most useful com-

ponent, which can be achieved by powering-off some least used cache portions.

The dynamic performance tracking helps to decide about the cache size tuning,

whereas the dynamic bank-usage profiles are used to determine which banks are

to be turned-off or on.

During the process execution, it is noticed that, cache requirement for a process

can be changed at any point of time. Hence, a one time shutdown of cache banks

(like our BSP) may degrade system performance (and in a few cases it may be

costly enough). To compensate this situation, the banks are selectively turned on

as per system’s requirement. This approach for energy saving is taken with system

wide performance constraint.
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Figure 4.4: Distribution of static and dynamic energy consumption of on-chip
Last Level Caches(LLCs). Benchmarks are put in X-axis. Suffix ’-B’ implies

that, simulation results are obtained in baseline architecture.

ALGORITHM 1: Performance linked dynamic cache tuning

1: T : Reconfiguration interval
2: δ : Permissible percentage degradation in IPC (Instruction Per Cycle)
3: m : Maximum limit on bank shutdown
4: j = 0 : Number of banks turned off. Initially zero.
5: while application is running do
6: Run the application for T number of clock cycles.
7: Compute degradation in IPC compared to the IPC upto last

reconfiguration interval.
8: if degradation is lesser than or equal to δ and j < m then
9: CALL TURN-OFF Algorithm (i.e. Algorithm 2)

10: j:=j+1
11: end if
12: if degradation is greater than δ and j > 0 then
13: turn on the cache bank which was turned off most recently.
14: CALL TURN-ON Algorithm (i.e. Algorithm 3)
15: j:=j-1
16: end if
17: end while

The L2 bank with the least number of accesses over the last reconfiguration period

of the execution will be selected as candidate for shutdown. Our hypothesis is

that, according to temporal locality the bank having lesser accesses in the current

interval will have fewer accesses over the next (few) interval(s). Therefore powering

off this bank may not affect system performance and at the same time will save

static power. However, performance degradation needs to be monitored, as at

any point of time during process execution resource requirement may change.
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ALGORITHM 2: : TURN-OFF (Manage cache bank ShutDown)

1: Calculate the usage for every active cache bank.
2: Select the cache bank, Bi, with minimum usage, as a candidate to shutdown.
3: Select another cache bank, Bj, with usage greater than that of Bi as the

target bank.
4: Stall all the requests for Bi, however keep the response queues open.
5: Migrate all the valid blocks from Bi to Bj.
6: Inform the controller of Bi to forward all subsequent requests to Bj.
7: Open the request queues for Bi.
8: Shutdown bank Bi.

So, if the performance goes below a given threshold, bank shutdown will not be

allowed. In addition, if the number of currently turned off banks is more than

zero, then the most recently turned off bank will be turned on. The performance

degradation is analysed periodically and depending upon this, bank shutdown or

turn on processes continue. This whole cache tuning process is repeated all over

the program execution. The shutdown process will be stopped if at any time,

the number of turned off banks reaches the maximum permissible limit. This

maximum limit can be set by performing experimental analysis [5]. The complete

method is given in Algorithm 1, 2 and 3. Note that, either the Operating System

(OS) or the master cache (i.e. LLC) controller are responsible to keep track of

the cache bank usages along with other technical concerns while implementing our

policy.

ALGORITHM 3: : TURN-ON (Manage cache bank Turn On)

1: Select the cache bank, say Bi, turned off most recently as a candidate for
turning on.

2: Identify the target bank, say Bj, to which its requests have been remapped.
3: Stop the remapping of requests from Bi to Bj.
4: From Bj, migrate all the valid blocks to Bi, whose original location was Bi

and were remapped to Bj.
5: Turn on Bi and open the requests for this bank.
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4.2.1 Book Keeping and Future Requests

Before turning off a cache bank, two major issues need to be handled: (i) relocation

of existing valid blocks in the bank, and (ii) future requests which will come to

this bank after turning off. All future requests to this shutdown bank should be

redirected to some other bank, called ‘target’ bank. The ‘target’ bank is chosen

based on the usage statistics, which implies that the banks, those are prospective

candidates to be turned off in future, will not be selected as ‘target’. Handling of

already cached blocks have two options: (a) Writeback all these blocks to the next

lower level memory (W), or (b) send/migrate these blocks to the target bank (M).

Hypothetically, writing back to next level memory may be an expensive operation,

especially (it will be much more expensive in terms of latency) when the next level

memory will be off-chip. In this regard, we also performed a set of experiments on

PARSEC benchmark applications, which claim the correctness of our hypothesis.

To show the effectiveness of both W and M policies, we implement them in our

simulation framework for a TCMP architecture having a 4MB 4 way L2 cache as

on-chip LLC. For in depth analysis, our BSP has been modified in this experiment,

where, we perform simulations on 4 different configurations:

• BSP H M : Turn off heavily used cache banks and migrate blocks from victim

to target during shutdown operation.

• BSP H W : Turn off heavily used cache banks and write back blocks from

victim to the lower level memory during shutdown operation.

• BSP C M : Turn off lightly used cache banks and migrate blocks from victim

to target during shutdown operation.

• BSP C W : Turn off lightly used cache banks and write back blocks from

victim to the lower level memory during shutdown operation.

Figure 4.5 shows that, the IPC degradation is more for write-back than migration

for all of our applications, as the write-back policy takes more time to settle down
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Figure 4.5: Comparison between Migration (BSP H M, BSP C M) and Write-
Back (BSP H W, BSP C W) policies in terms of IPC, while turning off some

heavily used and lightly used L2 banks.

than the migration based policy. For write-back cases, average IPC degradation

is near to 10%, whereas in migration based policy average IPC degradation is less

than 5%. These results have strengthened our hypothesis, and motivate us to use

the latter option i.e. migrate the victims’ blocks to the ‘target’ while resizing the

cache.

However, during relocation of these blocks, the bank being shutdown (victim bank)

is searched line-by-line to evict its blocks one-by-one for sending them to its target.

While block migration initiates, it is only the victim bank who does not handle

any further requests. But other banks in the system continue as usual with normal

operations. In prior works, the complete system was stalled during the relocation.

But in our proposal, only the bank being shutdown (victim bank) is stalled during

the shutdown process. Once the block migration (from victim bank to target

bank) is completed, the (victim) bank will be shutdown. For turned off banks,

future requests are forwarded to the target bank. Dynamic energy consumption

for the target bank increases marginally but the static energy of the turned off

bank, which is a significant portion, is saved. This whole process will increase

the traffic in NoC which will incur a number of stall cycles and increase in NoC

power consumptions. Furthermore, cache bank on-off overhead will also incur stall

cycles in the system. Our simulated system takes into account all of these system
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overheads. The average reconfiguration overhead incurred in our experimental

evaluation is reported in Section 4.4.1.

During shutdown process, the migrated blocks are loaded into the target bank from

the victim bank. In case no free ways are available in the corresponding set of the

target bank, ideally the oldest block among the incoming migrated block and the

LRU (Least Recently Used) of that particular set should be evicted. But, an LRU

block can only be decided inside the bank. Hence, in our implementation we add an

extra field called Reuse-Counter of 4 bits to each block like [18], having a negligible

storage overhead. This value is also sent with each block during migration. The

values of Reuse Counters of the incoming migrated block and the LRU block of

the target’s set are compared, and lower valued one will be eventually evicted.

However, conflict cases are handled by evicting the migrated blocks.

Similarly, during turning on process, the target bank of the bank being turned on

will be stalled and will not be handling any requests during the turning on process.

The remapped data of this bank, which is being turned on, will be brought back

from its target bank. The bank will be turned on after completion of this migration

process and all the pending requests will be processed after that. On completion of

turning on process, the bank starts handling its own requests normally. The whole

process is transparent to the underlying cache coherence protocol. The request-

redirection happens at victims and the states of redirected blocks are maintained

by the target banks.

Storage Overhead for Source Bank Tracking Selection of the target bank

is decided at runtime based on bank usage statistics of the cache banks. Hence,

no separate remap table is required to be maintained. But whenever a cache bank

is needed to be turned on all of its remapped cache blocks need to be placed back

in it from its target bank. As a bank can become target bank for more than one

banks, an extra field, called Source ID is added with every block in the LLC to

keep track of the original cache bank ID for remapped cases. To store source cache

bank ID, size of this field will be log2N , where N is the number of cache banks.
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For a 4MB L2 cache having 16 cache banks of equal size with 64 Bytes data block,

this additional field will have an overhead of 32 KB extra storage i.e. 0.78%, which

is negligible.

Prior works, in which power saving has been done through remapping techniques,

have used a remap table at the L1-cache level and whenever any new bank is

shutdown the entries in all L1 caches need to be updated. Also keeping and

maintaining such tables with L1 caches is an additional overhead. Our proposed

method is completely transparent to the L1 caches. The L2 controllers of the

banks being shutdown maintain the information of the target bank. For every

shutdown bank, there is only one target bank, so, there is no hardware overhead

of remap tables.

4.2.2 Constraints to maintain

As it is mentioned earlier that, the requests to the powered off banks are forwarded

to their respective target banks after the shutdown process. This redirected/for-

warded requests increase some amount of network utilisation and so the overall

network power consumption also goes up. However, according to the experimental

evaluation this overhead is not significant. The main metric to consider here is the

system performance, i.e IPC which is dynamically collected by the controller. The

system wide IPC, i.e. average among all the cores, has been tracked during the

execution and if it drops below a given threshold, no more shutting down of cache

banks will be permitted. Note that, there is a possibility to turn on a powered off

bank, if any exists. Mainly, this happens when the working set of the application

needs more cache space and shutting down of one full bank causes overload on the

target bank. For a set of benchmark applications this happens when the number

of powered off banks is greater than half of the total number of cache banks and

the system yet shuts down one more bank. Here, the cache misses increases in the

target bank, that leads to degradation of IPC. Therefore, the proposed method

keeps track of IPC degradation and thus makes a performance aware static energy

savings by selectively tuning the cache size.
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System wide IPC depends upon two performance parameters: (a) Computation

Time and (b) Memory Access Time. The memory access time also depends on the

available cache capacity. An analysis of this dependency is employed in Chapter

5.

Config. freq1 swap1 body1 ferret1 vips1 body16 swap4 ferret4 freq16 black4 fluid16

Baseline 0.314 0.328 1.92 2.401 1.05 0.94 2.09 0.195 0.83 0.294 2.16
Bank-off 1.32 0.692 2.19 3.20 2.19 2.18 2.7 0.345 1.47 1.17 2.7

Table 4.1: Maximum percentage of runtime IPC degradation with 4MB 4Way
L2 cache.

However, while running an application, both computational as well as memory

cycles may change at any point of time and can increase or decrease IPC according

to the program’s structure. To see the effect of bank shutdown on IPC, we compare

baseline’s IPC with the IPC of pure bank shutdown policy (where number of

shutdown banks has been limited to 50% of total number of banks), through a set

of simulations. Table 4.1 shows the values for these setup, which demonstrates IPC

degradation because of bank shutdown. Hence, bank turn-on is further required

to restrict this IPC degradation within a limit.

All the usage statistics and shutdown management can be handled by the cache

controllers. To keep its logic simpler, we are not allowing shutdown of the target

banks. As shutting down of a target bank will incur transitive redirection of cache

blocks which will affect the system performance and will increase the network

traffic. During the execution, a few clock cycles are required to transfer data

between banks and for collecting usage statistics. These extra system overheads

are taken into account in our simulations. Moreover, for data redirection, NoC

energy consumption is increased which are calculated implicitly in (Garnet-Orion

integrated) network model of GEMS simulator.

4.3 Experimental Evaluation

In our experiments, we have used a 16 core TCMP architecture, where each tile

contains a processor core with a private L1 cache, and a slice of shared L2 cache,
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4MB 4Way 8MB 4Way
Leakage Power per bank 249.851 mW 322.359 mW

Dynamic energy per access 0.188211 nJ 0.232409 nJ

Table 4.2: Energy/Power values obtained from CACTI [7] for two different
L2 cache configurations. In each of these cases, L2 is uniformly divided into 16

banks.

Components Parameters

No. of Tiles 16
Processor UltraSPARCIII+
L1 I/D Cache 64KB, 4-way
L2 Cache bank 256 KB or 512 KB, 4-way
Memory bank 1GB, 4KB/page
Flit Size 16 bytes
Buffer Size 4
Pipeline Stage 5-stage
VCs per Virtual Network 4
Number of Virtual Networks 5

Table 4.3: System and Network Parameters

Cache Parameters Values

Cache Level L2
Size of a L2 Bank 256 KB or 512 KB
Block Size 64 Bytes
Technology used 32nm
Associativity 4
Cache Model NUCA
Operating Temperature 380 K
Actual Cache Size 4 MB or 8 MB

Table 4.4: CACTI Configurations

called L2 cache bank. These set of tiles are interconnected with each other through

a 2D network mesh. Each tile contains a router in it for communicating among

the tiles. The detailed architectural diagram is shown in Figure 4.1.

4.3.1 Experimental Setup

A multicore time-based simulation framework of GEMS + Simics are used here for

our experiment, which have been described in Chapter 3. For our memory module

simulation we use Ruby from GEMS. The cache coherence is maintained here by
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MESI-CMP based cache controller. The configuration details for this simulation

setup is given in Table 4.3 which contains details about processor, memory and

network configurations. Performance and power simulation of NoC is handled by

the Garnet-Orion integration that have been clubbed inside GEMS. The values

of the cache parameters used in CACTI simulation are given in Table 4.4. For

calculating cache power consumptions, CACTI 6.5 has been used. Table 4.2 gives

all the energy/power values obtained for our experimental setup.

PARSEC benchmark suite [6] has been used as application program for validating

our proposed architecture, details of which are also given in Chapter 3.

4.4 Results and Analysis

Before evaluating the proposed policy, we initially implement BSP in our sim-

ulation framework in which L2 banks are turned off dynamically until the IPC

degradation is within a predefined limit. We have taken a 4MB 4Way set associa-

tive L2 cache for our experimentation with a 3% performance degradation limit

and maximum 8 out of 16 banks (i.e. 50% at max.) can be turned off. The whole

execution span is divided into several uniform time-slices, called as reconfiguration

period, at the end of which, system takes bank shutdown decision, based upon the

performance statistics. To keep performance degradation within a limit, BSP does

not allow further cache bank shutdown, once this threshold is violated. But, if the

WSS of the running application(s) need(s) more cache space in future, BSP cannot

provide the same by turning-on some cache banks. As a mitigation to this fact,

we have decided to turn-on some banks on violation of performance degradation

threshold.

The proposal suggests cache bank shutdown to save power and turn-on to rectify

IPC degradation. The experiments are performed on our main three different

policy-configurations, as discussed below:
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1. B ON OFF ALL The first policy-configuration allows the banks on/off

procedure to continue throughout the process execution with a reconfigura-

tion interval of 2M clock-cycles. In other words, after every 2M clock-cycles,

based upon the system’s performance, decision is taken to either shutdown,

or turn-on or no-change. This may lead to constant fluctuations, in that

some banks will be turned-off and within few intervals, again they will be

turned-on. This may degrade system performance. The next policy tries to

rectify this.

2. B OFF ONCE When the application starts executing, depending on the

system performance reduction of cache size is invoked by bank shutdown.

This process stops once the IPC degradation reaches a threshold. Hence-

forth, only bank turn-on is permitted to improve the IPC.

3. B ON OFF OPT Cache requirements change over the process execution.

The second policy only allows shutdown followed by restart of cache banks.

However, the cases when cache requirement may reduce later cannot be han-

dled here. In order to give more flexibility, in this policy the reconfiguration

of banks is done periodically. In particular, cache tuning is done for 25M

clock cycles and no changes take place for the next 25M clock cycles. Cache

is again resized for the next 25M clock cycles and so on.

For each of these policies, the system is evaluated for three different IPC degra-

dation threshold values: 2%, 3%, and 4%. The results are compared with BSP

and two different configurations of Drowsy [1] for a 4MB cache with IPC degra-

dation threshold of 3%. Later, results are presented for the trade-off of varying

IPC degradation threshold on the power savings. We have also experimented with

larger cache of size 8MB. The results for the same is also shown at the end of this

section.
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Figure 4.6: Energy Delay Product obtained in proposed policies over the
baseline, BSP and Drowsy, with 4MB L2 cache. A smaller value is better.

4.4.1 Comparison with baseline architecture

Energy Delay Product (EDP)

Figure 4.6 shows the EDP savings (on Y-axis) for all the policies normalised over

the baseline for the different benchmark programs, shown along the X-axis. In

this case, energy dissipated for following components, such as-L2 cache, network

and DRAM accesses are included. Energy consumed by other on-chip components

like L1 cache, CPU cores etc. are not included in calculation of EDP or total en-

ergy consumption in this work. Applications having WSS much smaller than the

available cache show significant improvement in the savings for B ON OFF ALL

and B ON OFF OPT. But, for B OFF ONCE a few applications show less sav-

ings. These applications need more cache space initially, so lesser number of cache

banks have been shutdown. As in B OFF ONCE, no cache bank shutdown will be

allowed once IPC degradation is more than the given threshold. We get an aver-

age savings of 29%, 27% and 30% in EDP for the three policies over our baseline

architecture.

Static energy savings

Static energy is the main component of the chip energy which we save here by

tuning the cache size dynamically. Figure 4.7 shows the energy consumptions for

different policies over the baseline architecture. We saved 66%, 59% and 65% in

static energy consumption on an average for different policies over the baseline.

Shutting down of cache banks leads to no switching activity in those areas of the
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Figure 4.7: Normalised static energy consumption, with 4MB L2 cache.

chip which in-turn helps to control the temperature increase in these parts of the

chip. Note that, this remap policy can be used to relocate cache requests from

hotter part of a chip to cooler ones.

Execution Time

Dynamic cache tuning incurs data migration of valid blocks in the bank being

shutdown and also requires forwarding of subsequent requests to the target bank.

Implication is that, the network traffic will be increased and also leads to slightly

more cache misses at the target bank. These overheads lead to degradation in

overall IPC. The average overhead incurred from migration is around 1.3% of the

total execution time, which is negligible. Figure 4.8 shows the normalised IPC

across the benchmarks for all the proposed policies over baseline. The respective

IPC degradation for B ON OFF ALL, B OFF ONCE and B ON OFF OPT are

2.9%, 1.5% and 1.8% on average. The excessive cache tuning in B ON OFF ALL

increases more number of idle clock cycles in the system and hence the perfor-

mance degrades. But the controlled cache tuning of B ON OFF OPT reduces the

performance degradation significantly than B ON OFF ALL. For B OFF ONCE,

the cache size will be changed in a very restricted way, so performance degradation

is lesser than other two policies, but this policy does not offer more energy savings

compared to B ON OFF OPT. However, B ON OFF ALL enables better control

on cache size and hence we get more EDP savings than B OFF ONCE.
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Figure 4.8: Normalised IPC value for different benchmark applications, with
4MB L2 cache.

Figure 4.9: Normalised network energy value for different benchmark appli-
cations, with 4MB L2 cache.

Network overhead

While shutting down the cache banks, its contents must be transferred to the target

bank and all future requests must be forwarded to the target bank. Even while

turning on a cache bank, all of its existing contents from the target bank must be

brought back into this bank before resuming its normal operations. This increases

the network traffic as is evident from the increased energy consumption. But the

cache portions which are turned off or turned on are the least accessed portions,

hence the amount of traffic transferred is not huge with respect to normal baseline

communication. However, frequent cache tuning increases the network traffic. The

result shown in Figure 4.9 implies that network energy has not been increased

significantly. However, this small increment of around 1.23% is compensated by

the reduction in static power, which is evident due to an overall 30% savings in

EDP.

Additionally, Figure 4.10 shows the change in NoC latency for all the applications.
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Figure 4.10: Normalised NoC latency for different benchmark applications,
with 4MB L2 cache.

Most of the cases, the increment in latency is not significant, however, highest

increment is 4.7% for ferret4. On the other hand, for freq1, body1 and ferret1

latencies are decreased in some cases. The reduced NoC latencies in Figure 4.10

reflects the performance improvements in Figure 4.8. This decrement in latency

happens due to lesser amount of remapped requests after shutting down of banks,

i.e. number of requests to the turned off banks have been reduced during execution.

The other reason for reduced NoC latency could be due to the target banks being

in close proximity of the accessing core compared to the original (victim) bank.

Note that, overall bank access patterns change with the policies, hence, there exists

diversity in NoC latency for the same application.

Effect in Total Energy Consumption

Savings in static energy reduces the total energy consumption effectively. Fig-

ure 4.11 shows reduction in total energy consumption with significant savings in

static energy than baseline architecture. The proposed policy B ON OFF OPT,

is compared in this figure with baseline architecture ( B and O are suffixed with

the benchmarks’ names in this figure to represent Baseline and B ON OFF OPT

policy). Slight increment in network energy, due to remapping, is compensated by

significant EDP gains due to performance aware static energy savings. Dynamic

energy (energy for cache accesses) is added with the network energy in this figure.
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Figure 4.11: Normalised total energy consumption with details breakdown of
its components, for different benchmark applications, with 4MB L2 cache.

4.4.2 Comparison with BSP and Drowsy [1]

According to the experimental results shown earlier, B ON OFF OPT policy gives

the best energy savings among the three proposals. We compare energy savings of

B ON OFF OPT with BSP and Drowsy here. As it is discussed earlier, Drowsy

cache actually puts some cache portions in drowsy or low power consumption

mode; hence, more amount of drowsy cache portion saves more energy, but, may

degrade system performance by incurring more idle clock cycles while accessing

data from drowsy parts. To address this issue, authors proposed a set of combina-

tions in [1], by which amount of drowsy portion can be decided depending upon

the cache size. In our experiment, we use a 4MB 4 way set associative L2 cache,

for which two possible drowsy cache combinations have been taken for comparison.

The drowsy policies are as follows:

• Drowsy C1 : has the ratio 1 : 3, with 3 ways in drowsy mode and 1 way in

normal mode.

• Drowsy C2 : has the ratio 2 : 2, with 2 ways in drowsy mode and 2 ways in

normal mode.

Figure 4.12 and Figure 4.13 show the EDP savings and static energy savings,

respectively, for B ON OFF OPT over Drowsy and BSP, normalised with respect
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Figure 4.12: Energy Delay Product obtained in B ON OFF OPT over BSP
and Drowsy, with 4MB L2 cache. A smaller value is better.

Figure 4.13: Normalised static energy consumption for B ON OFF OPT and
compared with BSP and Drowsy, with 4MB L2 cache.

to baseline. Average EDP gains for BSP is 20%, and average static energy saving

is 44%. B ON OFF OPT, the proposed policy, has 30% gains in EDP and 65%

savings in static energy with respect to baseline. Drowsy C1 saves 17% EDP

with 46% savings in static energy, where Drowsy C2 has EDP gains of 13% with

36% savings in static energy. As drowsy cache incurs extra idle clock cycles for

accessing the data from the drowsy parts of the cache, this degrades the IPC in the

range of 1.2− 1.8%, on an average. In case of BSP, IPC degradation is more than

Drowsy which is 2.5%. However, our proposed policy B ON OFF OPT degrades

IPC by 1.8%, on an average, is comparable to Drowsy. With respect to baseline,

B ON OFF OPT has 19% and 29% more static energy savings than Drowsy C1

and Drowsy C2, respectively.
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Figure 4.14: Normalised EDP value for different benchmark applications for
IPC degradation threshold = 2, with 4MB L2 cache.

Figure 4.15: Normalised EDP value for different benchmark applications for
IPC degradation threshold = 4, with 4MB L2 cache.

4.4.3 Analysis of power savings by varying the IPC con-

straint

The previous section analysed the impact of the policies on IPC and power savings.

We further analyse the effect of policies i.e. B ON OFF ALL, B OFF ONCE

and B ON OFF OPT on power savings by relaxing and strengthening the IPC

constraint. In particular, we present the results for IPC degradation threshold

values of 2% and 4%.

Energy Delay Product

Figures 4.14 and 4.15 show the EDP gains for IPC degradation thresholds of

2% and 4%, respectively. The graph for 3% threshold is given in Figure 4.6.

In particular for 2%, the savings are 26%, 19% and 29% for B ON OFF ALL,
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Figure 4.16: Normalised static energy value for different benchmark applica-
tions for IPC degradation threshold = 2, with 4MB L2 cache.

Figure 4.17: Normalised static energy value for different benchmark applica-
tions IPC degradation threshold = 4, with 4MB L2 cache.

B OFF ONCE and B ON OFF OPT, respectively; and for 4% the respective val-

ues for B ON OFF ALL, B OFF ONCE and B ON OFF OPT are 27%, 24% and

31%. It can be observed that, the savings for B OFF ONCE are less compared to

both B ON OFF ALL and B ON OFF OPT. As B ON OFF OPT allows resizing

at various points during the process execution, it takes the maximum advantage

of the proposed policy. Relaxing the performance constraint leads to more power

savings.

Static Energy Savings

Figures 4.16 and 4.17 show the static energy savings for IPC degradation thresh-

olds of 2% and 4%, respectively. The graph for 3% threshold is given in Figure

4.7. In particular, for 2% the savings are 66%, 46% and 65% for B ON OFF ALL,

B OFF ONCE and B ON OFF OPT, respectively; and for 4% the values are 65%,
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58% and 69% for B ON OFF ALL , B OFF ONCE and B ON OFF OPT, respec-

tively. The savings are more if the constraint is relaxed for B OFF ONCE. But

in case of both B ON OFF ALL and B ON OFF OPT, relaxed constraint results

less cache resizing, whereas the stringent one resizes cache frequently. But static

energy saving is almost same for both relaxed and stringent constraints, due to the

fact that, same amount of cache portions are shutdown for a same time interval,

overall. In case of B OFF ONCE, relaxed constraint turns on lesser cache banks

than the stringent one, hence the energy saving is more with relaxed constraint.

4.4.4 Analysis of proposed policy on a larger cache

As the cache is larger, there is more opportunity of having unused cache portions to

be shutdown. This leads to more energy savings. For IPC degradation threshold of

3% the EDP savings are 40%, 33% and 34% for B ON OFF ALL , B OFF ONCE

and B ON OFF OPT, respectively. The savings in static energy are 67%, 59%

and 63% for B ON OFF ALL , B OFF ONCE and B ON OFF OPT, respectively.

Figures 4.18, 4.19 and 4.20 show the values for EDP gains for IPC degradation

thresholds of 2%, 3% and 4%, respectively; and Figures 4.21, 4.22 and 4.23 show

the static energy savings for IPC degradation thresholds of 2%, 3% and 4%, re-

spectively.

Similar to the case of a 4MB cache, relaxing the IPC constraint saves more static

energy and overall EDP savings. In all cases, policy B ON OFF OPT performs

better compared to B ON OFF ALL and B OFF ONCE for both the cache sizes.

As B ON OFF OPT runs the reconfiguration at intervals, it has more control on

the cache size. It also helps to keep the IPC degradation within limits as there

are more chances to rectify.

Table 4.5 summarises the obtained results. We also have compared our results

with drowsy cache techniques [1] which has been summarised in Table 4.6.
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Figure 4.18: Normalised EDP value for different benchmark applications for
IPC degradation threshold = 2, with 8MB L2 cache.

Figure 4.19: Normalised EDP value for different benchmark applications for
IPC degradation threshold = 3, with 8MB L2 cache.

Figure 4.20: Normalised EDP value for different benchmark applications for
IPC degradation threshold = 4, with 8MB L2 cache.

4.4.5 Summary

Our simulation results claim B ON OFF OPT as the best policy for this perfor-

mance aware static energy savings, which gives an insightful design choice. Size

of on-chip LLC is an important metric while designing TCMP architecture. Large

LLCs are better as they provide adequate cache space to fit the WSS of the ap-

plications, but larger caches consume huge static energy. As WSS, which is only



Chapter 4. DiCeR 103

Figure 4.21: Normalised static energy value for different benchmark applica-
tions for IPC degradation threshold = 2, with 8MB L2 cache.

Figure 4.22: Normalised static energy value for different benchmark applica-
tions for IPC degradation threshold = 3, with 8MB L2 cache.

Figure 4.23: Normalised static energy value for different benchmark applica-
tions IPC degradation threshold = 4, with 8MB L2 cache.

known at runtime, varies across the applications, hence, it is always better to

design a dynamically reconfigurable cache which turns off unused cache portions

on-the-fly to reduce static energy. And the cache portions will also be dynami-

cally turned on later if application’s WSS does not fit in the cache. Moreover,

from performance perspective, multi-banked cache design provide such relaxation

to the addressing scheme, where blocks can be easily placed inside any of the bank.
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Therefore, redirection of addresses at the turned off banks, does not require any

extra burden of remapping.

L2 Cache IPC Static Energy EDP
Configurations Degradation Savings Savings

Threshold B1 B2 B3 B1 B2 B3
2% 66% 46% 65% 26% 19% 29%

4 MB 4 Way 3% 66% 59% 65% 29% 27% 30%
4% 65% 58% 69% 27% 24% 31%
2% 67% 50% 64% 38% 25% 36%

8 MB 4 Way 3% 67% 59% 63% 40% 33% 34%
4% 66% 56% 67% 36% 30% 36%

Table 4.5: Summary of the results obtained from our experiments with re-
spect to baseline architecture. Here, B ON OFF ALL, B OFF ONCE and
B ON OFF OPT are denoted by B1, B2 and B3, respectively, in this Table.

L2 Cache IPC Static Energy EDP
Configurations Degradation Savings Savings

Threshold C1 C2 B3 C1 C2 B3
4 MB 4 Way 3% (for B3) 46% 36% 65% 17% 13% 30%

Table 4.6: Summary of the results obtained from our experiments with respect
to baseline for Drowsy cache [1] and B ON OFF OPT (denoted as B3 in this
Table ). C1 and C2 represents Drowsy C1 and Drowsy C2, respectively.

4.5 Conclusion

A static energy saving technique by tuning on-chip LLC size at bank level granu-

larity is presented in this chapter. Each of the applications used here has a different

working set requirement. Even the distribution of data across the cache banks is

not uniform. Initially, usage patterns for different benchmarks are collected and it

is dynamically decided whether to turn-off or turn-on the cache banks. The con-

tent of the shutdown bank is migrated to another powered on bank which will also

handle future requests for this shutdown bank. The policy keeps track of degrada-

tion in performance during execution and decides the shutdown or turn on process

once the IPC degradation reaches an allowable threshold. The shutdown process

reduces the static energy consumption but too much reduction in cache size may

degrade system performance. To compensate this, turning on process turns on
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cache banks to provide application more cache space on-demand. For a 16-core

setup with a performance degradation constraint of 3% with 4MB L2 cache, we

were able to dynamically tune the cache size and obtained EDP savings of 30%

on average. The total savings in static power of 65% compensates the overhead of

1% increment in network power and IPC degradation of 1.8%.

Three versions of the policy are presented: namely B ON OFF ALL , B OFF ONCE

and B ON OFF OPT. The first policy, B ON OFF ALL allows unrestricted on-off

options depending on the performance values. B OFF ONCE takes a conserva-

tive approach of allowing bank shutdown followed by only restart. Whereas the

third policy, B ON OFF OPT, takes a restricted approach of B ON OFF ALL.

Policy B ON OFF OPT gives the best savings compared to B ON OFF ALL

and B OFF ONCE. The EDP gains and static energy savings are maximum in

B ON OFF OPT. At the same time the execution time of B ON OFF OPT is

better compared to that of B ON OFF ALL, mainly on account of lesser data

movement and reconfiguration stall times. For a larger cache the savings are more

as there is more opportunity to reduce the cache size. We perform experiment to

trade the performance for power, in that if we relax the performance constraint

we can obtain more power savings. In particular, relaxing IPC constraint from 2%

to 4%, we get 4% extra static energy savings and 2% extra EDP gains. Among

all the cases, policy B ON OFF OPT is stable and adapts to the changing cache

requirements of the application. B ON OFF OPT gives better savings than exist-

ing works like BSP and Drowsy. In particular, for B ON OFF OPT, we get 30%

EDP gains and 65% static energy savings which is more than Drowsy for a 4MB

4way set associative L2 cache.

As the remapping information is kept inside the L2 controllers, the L1 caches are

totally transparent in this respect. Thus no extra remap information is maintained

with the L1 caches which reduces the overhead of maintaining the remap informa-

tion in the remap tables with L1. Additionally, cache size is tuned by turning off

or turning on the cache banks, instead of selected ways from the sets; this in-turn

simplifies the power gating circuitry.





Chapter 5

Reducing Static Energy

Consumption in Way Sharing

LLCs: DiCeR with DAM

While analysing the TCMP based DiCeR proposed in the previous chapter, we

can derive the following observations:

• The achieved leakage saving is significant while shutting down the cache

banks.

• The performance degradation is also less than 2% especially in the case of

B ON OFF OPT.

• Target banks, those handling the additional requests, are heavily loaded and

hence they experience more number of misses.

• For a set of applications, heavily accessed banks have non-uniform access

patterns across their cache sets/ways.

• Distance cognizant target selection can further reduce the NoC overhead.

The increment in the number of misses in the target banks can be reduced by

incorporating some DAM based techniques. In addition to that, leakage energy

107
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consumption can be reduced by using a combination of cache bank shutdown and

way shutdown, where the banks with minimal usages are candidates for shutdown

like in BSP, and in some moderately used banks a number of ways are turned off

to save leakage. The associated DAM based technique will mitigate the impact of

smaller set-size in those banks where ways are turned-off.

5.1 Introduction

Dynamic shutdown of the least accessed banks although saves leakage significantly,

but, if several banks are gated, it hampers the system performance by incurring

more capacity and conflict misses, especially at the target banks in BSP (ref.

Chapter 4). These banks are usually heavily loaded as they handle an amount

of additional loads of the turned off banks. Hence, with the increased number of

turned off banks, the loads at targets are also hiked, that results into increment

in conflict and capacity misses at targets. While analysing these load distribution

across the sets of a target bank, the diversity in access pattern is noticeably high.

Some sets are heavily used and some have lesser amount of loads. Moreover, the

heavily used sets have higher miss rates with compared to the others. DAM based

techniques have enough potential to reduce this adverse effect by increasing the

associativity of the sets at target banks. As a result, the misses at targets are

reduced which in turn ameliorates the system performance. Now, this enhanced

performance can be traded further to save more leakage by turning off more cache

portions.

One can resort to a mid-way solution by turning off some banks completely in

a TCMP based architecture (as shown in Figure 5.1) and from the remaining

banks turn-off some ways from every cache set i.e. exploitation of cache resizing

at multiple/hybrid granularities. Like the existing diversities in load distribution

across the sets, cache ways are also used in a non-uniform manner, which are

shown in Figure 5.2 and 5.3. These statistics are collected by running Body16 and

Freq16 benchmarks for a certain amount of time-span. However, if we can have
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Figure 5.1: Tiled CMP architecture

some mechanism(s) to use the cache space of the lightly used sets, it will give us

an opportunity to shutdown some ways from every cache set. This is also possible

by employing DAM on the cache.

Figure 5.2: Way Access pat-
tern in a bank for benchmark:

Body16.

Figure 5.3: Way Access pat-
tern in a bank for benchmark:

Freq16.

Among the various DAM techniques available in the literature, we have selected

CMP-SVR [34]. In this policy, each cache set is divided into two parts: Normal

sTorage (NT) and Reserve sTorage (RT). The RT-section from each set can be

shared among a group of sets thereby increasing their associativity. This helps to

recover the performance loss and also creates new opportunity to shutdown some

ways from every set. The CMP-SVR mechanism has already been elaborated

earlier in Chapter 2.

The request redirection and data migration to the target banks in BSP and DiCeR

play a major role in NoC, from a power/performance perspective, that we are

going to discuss in the next section. However, these additional loads increase the

NoC traffic, hence both NoC latency and power consumption are exaggerated. To



Chapter 5. DiCeR with DAM 110

mitigate this issue, target banks are to be selected within close proximity of the

victim, that can reduce the NoC overhead. Furthermore, if a moderately used

bank is selected as a target, then NoC congestion at that location will trivially

be lesser than selecting a heavily used bank as a target. Additionally, selecting a

heavily used banks also increases misses while playing the role of a target bank.

The main contributions of this work can be summarised as follows:

1. Dynamically shutdown the least used cache banks and redirect the traffic to

other banks (target banks).

2. Towards mitigating NoC overheads, select target as close as possible to the

powered off bank.

3. Apply DAM technique on all the powered-on banks.

4. Progressively shutdown cache ways from the powered-on banks.

In this work, all of these energy saving policies are implemented in a 16 core-based

TCMP architecture, which is shown in Figure 5.1.

5.2 Memory Latency in DiCeR

Before going into our proposed policy, in this section we first discuss about how

DiCeR effects the system performance (i.e. IPC) in a CMP having multi-banked

LLC on-chip. Towards this, we consider a CMP having N number of (homoge-

neous) cores, that associated with B number of LLC banks (of same size), out

of which b banks are turned on. As, system wide IPC depends upon two perfor-

mance parameters: (a) Computation Time and (b) Memory Access Time, hence

the following equations can able to represent the system-wide IPC as follows:

IPC =
1

N

N∑
i=1

IPCi, (5.1)



Chapter 5. DiCeR with DAM 111

where,

IPCi =
ICi

CCi +MCi(b)
(5.2)

Here, system IPC is the arithmetic mean of IPCi, where i lies between 1 to N .

IPCi represents the IPC at i-th core, where CCi and MCi are the cycles required

for computation and memory operations, respectively at the i-th core.

In Equation 5.2, as CCi includes L1 access latency, hence, MCi only represents

L2 accesses as follows:

MCi(b) =
b∑

j=1

(hij.d
i
j + aioj.do), b ≤ B. (5.3)

Note that, L2 is considered as on-chip LLC like our earlier assumption. Here, hij

is the number of hits at bank j, whose requests have been generated at core i.

The dij is the delay at bank j to send block to core i. aioj implies the number of

off-chip accesses due to misses at bank j which have been requested by core i, and

(uniform) off-chip access latency is represented by do.

Initially, in Equation 5.3, if all banks are turned on, then b = B. Shutting down

of cache banks introduces the target banks, which incurs a few extra cycles for

the remapped requests to reach at target. So, Equation 5.3 can be rewritten as

follows:

MCi(b) =
b∑

j=1

(hij.d
i
j + aioj.do) +

B−b∑
k=1

rik.n
i
tk, b ≤ B. (5.4)

rik in Equation 5.4 is the number of remapped requests at (B−b) number of turned

off banks, generated by core i. Number of NoC cycles required to reach at target

t (from k) is represented by nitk.
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During reconfiguration, system also needs a few clock cycles to move data from

victim to target or vice versa, which is negligible if it is done limited number of

times. However, Equation 5.1 can be rewritten as:

IPC(b) =
1

N

N∑
i=1

IPCi(b)

=
1

N

N∑
i=1

(
ICi

CCi +MCi(b)
)

=
1

N

N∑
i=1

(
ICi

CCi +
∑b

j=1(hij.d
i
j + aioj.do) +

∑B−b
k=1 r

i
k.n

i
tk

)

(5.5)

Reduction in b reduces cache capacity, hence, the number of misses i.e. aioj in-

creases, so, the decrement in hij (Equation 5.5). As, do > dj, therefore, increment

in aioj curtails performance by increasing MCi. Moreover, rik also increases for

more reduction in b. So, Equation 5.5 clearly shows how performance is related to

the number of cache banks (b). Hence, it can be stated that, dynamic reduction

in cache size can degrade system performance by incurring more misses and NoC

cycles, which ultimately curtail the system performance. To address these issues,

in this proposed energy saving policy, we adapt CMP-SVR [34] for alleviating per-

formance at the powered on banks and select nearby prospective bank as target

for reducing NoC overheads.

5.3 Proposed Energy Saving Policy

The physical distribution of L2 cache in multiple banks offers individual power

supply circuit for each bank, due to which dynamically gating of a bank’s power

supply [65] becomes easier with a simple circuitry. As, locality of reference prop-

erty of cache memory hypothetically states that, the least used cache banks will

have the least usages in the future. Hence, shutting down of a least used cache

bank during execution can save leakage energy. However, if we turn-off several
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Figure 5.4: Set usage profile of a bank in a TCMP.

banks it will drastically affect system performance if the applications’ WSS be-

comes larger than the available cache space. Furthermore, increased workloads at

the target banks will abruptly increase the conflict and capacity misses at the sets

of target banks, which also follows a pattern like Figure 5.4.

Hence, we initially apply DAM based policies at the target banks to improve per-

formance at targets. Secondly, we select some non-lightly used banks, out of which,

the nearest one from this set of banks is chosen as target bank. This modified BSP

is termed as BSP SVR, in our work. The usage aware and distance cognizant tar-

get selection improves performance of BSP in BSP SVR, which we further traded

to save more leakage. As a result, with the same performance degradation, we

are able to save more leakage energy than BSP. Additionally, location of targets

within close proximity reduces NoC latency and power consumption as well. This

improvement in NoC energy and performance also increase the gains in EDP across

the applications.

5.3.1 BSP vs. BSP SVR: A Comparative Analysis

To see the effect of BSP SVR, we have done a set of preliminary experiments in

our simulation setup. The results for a 4MB 4 way cache are shown in Figure

5.5-5.8. We have achieved 66% savings in static energy which is shown in Figure

5.5, with 45% average gains in EDP (ref. Figure 5.8) in case of BSP SVR. Both

of these values claim the superiority of BSP SVR over BSP. More EDP gains in

BSP SVR over BSP is achieved due to reduced NoC energy consumption and lesser
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Figure 5.5: Savings in Static Energy with BSP SVR.

Figure 5.6: Savings in NoC Energy with BSP SVR.

Figure 5.7: Change in IPC: BSP vs BSP SVR.

IPC degradation than BSP, which are shown in Figure 5.6 and 5.7, respectively.

The performance degradation threshold has been fixed at 3% for both BSP and

BSP SVR while performing the simulations.
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Figure 5.8: EDP gains: BSP vs BSP SVR.

5.3.2 DiCeR with DAM at Multiple Granularities

Applying CMP-SVR in a cache bank increases its effective associativity, hence,

more leakage saving can be achieved by shutting down some of the cache ways.

Therefore, we can also resort to the technique to way shutdown at the powered-

on banks by using power gating circuitry [65]. Here again, the effect is that due

to way shutdown the associativity of the set reduces thus increasing the conflict

misses. But, performance aware way shutdown can help us to keep the IPC within

a permissible (degradation) limit.

The proposed dynamic cache resizing saves more leakage energy of LLC (L2 cache

in this case) without significant degradation in performance. It goes through three

main phases:

• Bank shutdown: In the bank shutdown phase, least used cache banks are

selected and turned off. The future requests to these banks are redirected

to other powered on (target) banks. This phase of bank shutdown continues

until either the performance degrades beyond the allowable threshold or if

the number of banks turned off reaches a predefined maximum limit.

• Way shutdown: By bank level shutdown we are able to save on leakage

energy. However, banks with average usages are not suitable candidates for

complete power off. Instead, in such banks it is desirable to turn off some

number of ways from every set.
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• Associativity management: After way shutdown the effective associativity

of the bank reduces, thus increasing the number of conflict misses. In par-

ticular, the sets which are in high demand will suffer from more misses and

might lead to poorer performance. To mitigate these two issues, we apply

CMP-SVR to dynamically increase the associativity of the sets. This allows

better utilisation of the available bank capacity.

Algorithm 4 gives the details of the process. The application is run for certain

number of cycles before deciding to reconfigure. This interval can be decided by

profiling. The cache bank usages are collected by the controller, by attaching a

counter in each bank for dynamic monitoring of the accesses, and the banks with

minimum usages are decided to be shutdown. This process of bank shutdown is

repeated on other banks until the system is able to maintain the performance.

In case the performance starts degrading beyond a predefined limit, the bank

shutdown process is stopped. The process is also stopped in case the number of

banks turned off reaches a maximum limit (which can be set by using profiling).

This limit also prevents application thrashing. After selecting the bank to turn-off

(called as victim bank), its valid data blocks are transferred to a selected tar-

get bank like BSP/DiCeR. The placement of redirected/forwarded data in target

banks also follows the same mechanism like DiCeR, i.e. an implementation of

Reuse Counter [18].

The target bank selection is done by choosing another active bank with average

usage and which further has to be in close proximity (as per network hop distance)

to the shutdown bank like BSP SVR. Distance cognizant target bank selection

reduces network overhead of data migration and also the latency for subsequent

requests forwarding from shutdown bank to the target bank as it was in BSP SVR.

The target bank is chosen with average usage because a bank with heavy usage will

be unable to handle the additional load whereas a lightly used bank is a possible

candidate to shutdown. Like DiCeR, the shutting down of the target banks is

not permitted in order to avoid transitive redirection of requests. During block
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ALGORITHM 4: Algorithm for cache resizing

1: T : Reconfiguration interval
2: δ : Permissible percentage degradation in IPC
3: m : Maximum limit on bank shutdown
4: j = 0 : Number of banks turned off. Initially zero.
5: while (j < m) do
6: Run the application for T number of clock cycles.
7: Compute degradation in IPC compared to original average IPC.
8: if degradation is greater than δ then
9: do not shutdown bank.

10: break.
11: end if
12: CALL manageShutdown()
13: j++
14: end while
15: Run application with available number of cache banks for T number of clock

cycles.
16: Call wayShutdown()
17: Keep current configuration until end of execution.
18:

19: Function : manageShutdown()
20: Calculate the usage for every active cache bank.
21: Select minimum used cache bank, Bi, as a victim bank.
22: Select another bank, Bj as the target bank, that is closest to Bi and has

average usage.
23: if CMP-SVR is not activated on Bj then
24: activate CMP-SVR on Bj.
25: end if
26: Stall requests for Bi, but keep the response queue open.
27: Migrate all valid blocks from Bi to Bj. Remap all future request to Bj.
28: Turn-off bank Bi.
29:

30: Function : wayShutdown()
31: Activate CMP-SVR in non-target powered on banks (if any).
32: Turn off some ways from the NT partition of the active banks.
33: Run the system for T number of Clock cycles.
34: if IPC degradation over last reconfiguration period is lesser than δ then
35: Turn off ways from RT partition of average usage powered on banks.
36: end if
37: Return.



Chapter 5. DiCeR with DAM 118

Figure 5.9: Way shutdown using CMP-SVR.

transfer only the accesses to the victim bank are stalled, and the other components

can continue execution. The last step is to enable CMP-SVR on this target bank.

5.3.2.1 Effects of Way Shutdown on CMP-SVR

Once the limit to the turned off banks is reached: either due to performance

degradation or due to maximum bank off limit, one can further save static power

by attempting to turn off cache ways from the currently active cache banks. We

choose to turn off ways from the NT-partition. This is done, because CMP-SVR

helps to increase associativity using the RT partition of the sets. Thus even if

the set has lesser ways in NT, a set in high demand can still fulfill its requests by

spilling data in RT-partition of its friend sets. One can even become ambitious

and shutdown ways from the RT-partition. The proposed policy attempts to

even shutdown ways from RT-partition, provided it does not degrade performance

beyond limits. The results are shown for both categories: NT-only shutdown and

NT as well as RT shutdown. All dynamic reconfiguration overheads along with

the remapping have been considered during simulation.

Figure 5.9 illustrates the way shutdown proposal for the sample cache. Here the

cache is 8-way associative having 8 sets. There are two fellow groups with 4 sets

each. Each set is divided into 4-ways for RT and 4-ways for NT. The basic set

associativity is 8. Applying CMP-SVR with the help of fellow group of size 4, we

get maximum associativity of (8 + 4 × 3 =) 20. If we shutdown 2 ways from NT
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Cache Parameters Values

Cache Level L2
Size of a L2 Bank 256 KB / 128 KB
Block Size 64 Bytes
Technology used 32nm
Associativity 4 / 8
Cache Model NUCA
Operating Temperature 360 K
Actual Cache Size 4 MB / 2 MB

Table 5.1: CACTI Configurations

Components Parameters

No. of Tiles 16
Processor UltraSPARCIII+
L1 I/D Cache 64KB, 4-way
L2 Cache bank 128KB/256KB, 8-way
Memory bank 1GB, 4KB/page
Flit Size, Buffer Size 16 bytes, 4
Pipeline Stage 5-stage
VCs per Virtual Network 4
Number of Virtual Networks 5

Table 5.2: System and Network Parameters

portion, we are still able to maintain performance as the maximum associativity

is now 18. Shutting down of 2 ways each from NT and RT results in maximum

associativity of 10.

5.4 Experimental Evaluation

To validate our idea, a 16 core TCMP setup has been used for experiment as shown

in Figure 5.1. We have implemented our proposed policy in GEMS+Simics simu-

lation setup which have been already discussed in Chapter 3. CACTI 6.5 is used

for simulating cache power/energy consumption. Table 5.2 contains configuration

details of the processor, memory and NoC configuration used in experiments. The

CACTI configuration, used in this experiment is given in Table 5.1. We have used

PARSEC benchmark suite for validation which are also discussed in Chapter in 3.
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5.4.1 Results and Analysis

The proposed policy turns off cache banks up to a limit and then turns off ways

from the remaining active banks. We term the policy as “WS”. When the way

turn off is implemented in the NT-partition, the policy is termed as “WS NT”.

When the policy attempts to turn off ways from both NT and RT partitions, it is

termed as “WS NT RT”. Note that turning off ways from only RT partition will

not be able to take advantage of DAM, and hence we do not consider this option.

The proposed policies are compared with baseline tiled CMP and two existing

approaches: Drowsy cache [1] and simple bank shutdown. The drowsy cache

configurations that have been compared here are DR C1 and DR C2 with having

25% and 50% ways, respectively, are in the normal mode and the remaining ways

are in the low-power mode. The simple bank shutdown policy turns off banks

depending on their workloads up to a given performance degradation threshold,

which is termed as “BSP” (ref. Chapter 4). In our experimental setup we have

considered cache with size 4MB. We have experimented with associativity 4-way

and 8-way.

Gains in EDP Figure 5.10 shows the normalised EDP values for a 4MB 4-way

associative L2 cache. The two drowsy cache configurations DR C1 and DR C2

obtain average EDP savings of 14% and 11%, respectively with respect to the

baseline. BSP has average EDP savings of 18%. The proposed architecture saves

21% and 24% average EDP for WS-NT and WS-NT-RT respectively with respect

to the baseline.

Static Energy savings The savings obtained in cache leakage energy are shown

in Figure 5.11 for various benchmarks. Drowsy cache has savings of 40% and 27%

for DR C1 and DR C2, respectively. BSP saves on average 34% static energy. The

proposed technique outperforms BSP and Drowsy by saving on average 44% and

47% for WS NT and WS NT RT, respectively. The turned off cache portions not

only save energy rather it can be used to control the effective chip temperature.
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Effect on Higher Associative Caches A 4MB 8-way L2 cache obtains av-

erage EDP gains of 33% and 35% with respect to baseline for WS-NT and WS-

NT-RT, respectively. The respective static savings for WS-NT and WS-NT-RT

are 68% and 70%. Figure 5.12 shows the EDP gains and Figure 5.13 shows the

static energy savings for the various benchmark applications. The results have

been summarised in Table 5.3.

Figure 5.10: Savings in EDP in comparison with BSP and
Drowsy Cache for 4MB 4-way L2.

Figure 5.11: Savings in Static Energy in comparison with BSP
and Drowsy Cache for 4MB 4-way L2.

As can be observed the EDP gains in the proposed architecture are more for an

8-way associative cache as compared to a 4-way associative cache of the same

size (note that EDP gains for 4-way are around 21− 24%). This improvement is

achieved as in a higher associative cache we can shutdown more portion of the set

belonging for the NT-partition, yet maintaining performance due to associativity
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Figure 5.12: Savings in EDP in comparison with BSP and
Drowsy Cache for 4MB 8-way L2.

Figure 5.13: Savings in Static Energy in comparison with BSP
and Drowsy Cache for 4MB 8-way L2.

Parameters DR C1 DR C2 BSP WS NT WS NT RT

EDP gains 21% 15% 25% 33% 35%
Static Energy 51% 41% 47% 68% 70%

IPC Degradation 1.15% 1.0% -0.9% 2.1% 2.0%

Table 5.3: Summary of improvement over baseline for a 4MB 8-way set asso-
ciative L2 cache.

management. Note that these savings are obtained with IPC degradation of merely

2%.

Effect on Smaller Sized Cache Figure 5.14 shows the EDP savings and

Figure 5.15 shows the static energy savings for a 2MB 8 way associative L2 cache.

The EDP savings are around 15% and 17% and static energy savings are 49% and
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Figure 5.14: Normalised EDP gains for 2MB 8-way L2 with re-
spect to baseline.

Figure 5.15: Normalised Static Energy values for 2MB 8-way L2
with respect to baseline.

52% for WS NT and WS NT RT, respectively over the baseline. If the cache size

is small, the scope for only bank shutdown reduces due to capacity issues, hence

the combination of bank and way shutdown helps to save energy. These energy

savings are achieved with a IPC degradation of 2.6%, on an average.

Controlling IPC Degradation If an application changes its WSS later during

execution, then performance degrades, especially for smaller caches. To rectify

this, some of the turned off ways are selectively turned on at runtime from RT

and/or NT parts of the banks. Here we get 40% savings in static energy (Figure

5.16) which is slightly lesser than earlier value of 52% as some ways are turned-

on. As expected, in this case we are able to maintain performance (Figure 5.17)
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Figure 5.16: Normalised Static Energy values for 2MB 8-way L2
for way-off as well as way turn-on policy.

Figure 5.17: Normalised IPC values for 2MB 8-way L2 for way-
off as well as way turn-on policy.

compared to 2.6% degradation in earlier instance.

Overhead The proposed technique requires an additional mapping table to

implement CMP-SVR, which leads to area overhead of 9.5% and 1% for power

[34]. Power gating circuitry of cache banks and cache ways, used in proposed

work, would need negligible circuit overheads, similar to other existing approaches

[65]. The cache usage statistics can be maintained by the cache controllers.
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5.5 Conclusion

The DiCeR with DAM dynamically shuts down the least accessed cache banks

and attempts to shutdown ways from the remaining active banks. Way shutdown

reduces the associativity and can degrade system performance by increasing the

miss rate. However, if we are able to use the ways from other sets within the

bank, then the turned off ways do not affect performance. This is achieved by

dynamically increasing sets’ associativity. The proposed policy gives 33 − 35%

gains in EDP and saves static power around 68− 70% for 8-way associative cache

having a size of 4MB. The policy shows better gains for higher associative caches,

as they provide more opportunity for way shutdown, with more fine tuning of the

cache sizes. All these gains are obtained by staying within the IPC degradation

threshold. In case the IPC degrades beyond threshold, one can resort to selectively

turn on the cache-ways. Such a policy demonstrated 40% static energy savings

while maintaining IPC. The proposed policy was also shown to perform better

than BSP and drowsy cache [1], which keeps cache ways in low-power mode.

Both of our energy efficient policies discussed so far in Chapter 4 and 5 outperform

Drowsy cache [1] with significant amount of saving in leakage of the LLC. The

policy proposed in this chapter has an extra area overhead due to CMP-SVR

(less than 10%), where DiCeR proposed in previous chapter has negligible area

overhead. Additionally, complexity related to the attachment of power gating

circuitry is also a bit higher in this current work than the earlier one; as in this

work, cache is resized at multiple granularity levels. But, the area overhead for

power gating circuitry in both of these are considered as negligible [65]. However,

shutting down of a larger cache bank more effectively reduces power consumption

than its way-shutdown counterparts.

As power consumption plays the pivotal role in excogitation of on-chip thermal

issues, hence, reduction in power consumption is the most effective optimisation

knob for temperature reduction. Moreover, larger LLCs, that draw significant

leakage power, occupy a major area on the wafer real estate. Hence, gating a

large chunk of these LLC can potentially reduce the chip temperature by reducing
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leakage power and by introducing on-chip thermal buffers. Bank shutdown, in this

regard, can be a promising option towards achieving such goals, as shutting down

of (larger) banks create (larger) thermal buffers on-chip with remarkably high

savings in leakage. On the other hand, way shutdown can also reduce the chip

temperature, but, it can create local hotspots at the smaller number of turned on

ways in the CMP caches, in case of heavy accesses. Therefore, towards controlling

chip temperature, we have chosen the bank shutdown approach for our next couple

of contributions.



Chapter 6

DiCeR at LLC: Towards

Controlling Temperature in

TCMP

Dynamic Thermal Management (DTM) has become a major concern for the chip-

designers, as it becomes a challenging task in recent power densed high perfor-

mance CMPs, due to integration of more on-chip components to meet ever in-

creasing demand of processing power. This increased chip temperature incorpo-

rates circuit errors along with significant increment in leakage power consumption.

The popular DTM techniques apply DVFS or task migration to reduce core tem-

perature, as cores are considered as the hottest on-chip components. But, large

on-chip LLCs attached in modern CMPs are the principal contributors to the on-

chip leakage power consumption and occupy the largest on-chip area, out of which

a major portions may be unused. As power consumption reduction plays the piv-

otal role for temperature reduction, therefore, this work exploits DiCeR to create

on-chip thermal buffers for reducing average chip temperature without disturbing

the computation. Cache resizing decisions are taken based upon the generated

cache hotspots and/or access patterns during the process execution.

127
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6.1 Introduction

Traditional DTM methods are the effective techniques for handling thermal issues

in the modern CMPs [29]. Usually, the modern DTM techniques control the

running behaviour of the processor cores, the hottest on-chip elements, either by:

(a) dynamically regulating its supply voltage and frequency, i.e. DVFS or (b) by

migrating a hotter core’s task-set to a colder one [29], called as task migration.

DVFS scales down the voltage/frequency settings (V/F settings) of the running

cores and can be performed either in a coarse grained manner or in a fine grained

manner. On the other hand, task migration is an effective technique for reducing

peak temperature of the chip, and also has wider applications for lowering energy

consumption in modern heterogeneous multi-core systems.

DVFS controls voltage and runtime frequency of the processor cores for adjusting

heat dissipation of the on-chip circuitry with significant savings in energy con-

sumption. However, regulating the cores’ voltage and slowing down its frequency

degrades computing performance. A plethora of measures have been taken earlier

to address this issue [146, 109, 111, 106]. Task migration, on the other hand, gath-

ers information from thermal sensors’ to decide migration of tasks from a hotter

zone to a colder on-chip area. Migration of tasks may stall the system for a while,

which degrades system performance, although it has been taken care well in some

state-of-the-art policies [112, 147].

In addition with the above discussed DTM policies, larger on-chip LLCs can also

be used to control the chip temperature while maintaining performance within a

certain limit. On chip LLCs are comparatively colder on-chip elements, hence, are

often neglected in prior DTM techniques [29]. However, a recent survey shows a

spatial temperature variance of 30K in a modern CMP cache [32] (built in 45nm

or lesser technology). This spatial difference in temperature clearly claims that,

hotspots can also be generated in the cache area. Moreover, available literature is

strengthening the claim by illustrating that on-chip caches incur significant leakage

power consumption, which in turn increases chip temperature. Shrinking cache

size by shutting down some portions of cache can reduce cache leakage and can
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Figure 6.1: Tiled CMP architecture

mitigate cache hotspot problem. Furthermore, the powered off cache portions

generate on-chip thermal buffer which helps in reducing temperature of adjacent

on-chip components. Thereby, it reduces chip temperature without affecting the

processor cores.

This work analyses the role of LLCs to control chip temperature in a TCMP

architecture (shown in Figure 6.1), by dynamically shutting down certain on-

chip LLC portions (while maintaining performance). Towards this, we need to

identify the parts of LLC that can be powered-off, as we did in DiCeR. For this,

we analyse cache usages and access patterns to make the decision. From our

experimental analysis and literature survey, it has been noticed that, larger LLCs

are non-uniformly accessed during the execution of an application. By considering

non-uniform cache access patterns and locality of reference, cache bank shutdown

towards improving thermal efficiency can be done in the following two ways-

1. Dynamic shutdown of heavily accessed cache portions will reduce cache

hotspots, reduce leakage power, and create thermal buffer on-chip.

2. Conversely, dynamic shutdown of least used cache parts will reduce cache

leakage and will also create on-chip thermal buffer with less performance

impact.

The major contributions of this work can be summarised as follows:

1. Proposal 1 [HB] The heavily accessed (cache hotspots) L2 banks in a

TCMP (as shown in Figure 6.1) will be turned off and contents of these
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turned off banks will be remapped to some other colder cache banks, called

as target bank. In the latter phase of the execution, if performance degrades

beyond a threshold value or the colder target bank becomes a hotter one,

the turned off bank will be turned on.

2. Proposal 2 [CB] Lightly used cache banks will be turned off after remap-

ping their contents to other moderately used nearby banks. If the perfor-

mance degrades more than a threshold value, then the turned off banks will

be turned on.

3. The turned off cache portions will not only reduce the leakage power con-

sumption, but also create thermal buffers to control chip temperature.

4. Both of these policies are compared with a greedy DVFS technique [2] that

reduces chip temperature by applying per core DVFS when the core’s tem-

perature violates a predefined threshold value.

6.2 Thermal issues: from LLC perspective

The existing diversities in physical configuration along with the diverse set of ap-

plications generate non-uniform power consumption profile of the CMP elements.

This uneven power distribution further produces enough spatial difference in tem-

perature of the chip. In our TCMP architecture, a particular tile comprises of a

core along with its local/private caches and a chunk of shared L2 as LLC (ref. Fig-

ure 6.1). Out of these elements, core’s dynamic power is very high that makes it

the hottest component among all, whereas comparatively colder L2 bank consumes

highest leakage with the largest area occupancy.

6.2.1 LLC: Thermal Characteristics

According to the experimental statistics, thermal potential of large LLC is com-

parable with other on-chip components. Figure 6.2 shows the change in peak
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temperature of LLC for our baseline architecture while executing 4 long running

applications. The peak temperature reaches to 75◦C or more for the larger caches.

The uneven access patterns for the caches show non-uniform thermal status, i.e.,

heavily accessed cache parts are normally heated more due to their high local

power density. Thus large LLCs in modern CMPs have enough potential to be-

come hotspots (Figure 6.2). The raised temperatures will further increase the

leakage and thus form a circular dependency between leakage power and temper-

ature (which we have already discussed earlier).

Figure 6.2: Peak Temperature of Caches in ◦C.

6.2.2 Thermal Management: Core vs Cache

The survey given in [29] shows that both DVFS and Task Migration techniques

are the promising options to reduce peak and average temperature of the chip,

but they may suffer from high system overhead. Migrating tasks from a hotter

core to a colder one incurs idle clock cycles. Whereas DVFS increases the ex-

ecution time by slowing down cores, which may be prone to violate the overall

EDP budget. Moreover, task migration is only possible in those scenarios, where

number of cores are more than the number of threads currently being executed.

In modern era of multi-tasking environment, finding out such situation may be

difficult. However, cache based thermal management, on the other hand, may

increase memory stalls. But, reducing size of larger caches of modern CMPs may

not be expensive enough always. Hence, from a thermal perspective, cache based

methods have the following benefits to offer:
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1. Core performance is not affected directly.

2. Powered-off cache banks reduce their own as well as their host tile’s temper-

ature.

3. Creation of thermal buffer through turned off banks reduces temperature in

its vicinity.

4. Can maintain lower average chip temperature for a longer time duration.

These properties motivated us to build up the proposed cache based thermal effi-

cient technique.

6.2.3 Modeling Tile Temperature in TCMP

Dynamic temperature of a tile is driven by the following three factors: (a) the

component’s own power consumption, (b) heat abduction by the ambient and (c)

heat exchange among the peer components, which can be modeled as [33]:

Ti(t) = Ti(t− 1) + fgen(Pdyn(t) + Pst(t))

− frem(Ti(t− 1)− Ta)

+

Tp∑
m=1

ftr(Ti(t− 1)− Tm(t− 1))

(6.1)

where, at time t, temperature of ith tile is Ti(t). Ti(t − 1) is the temperature of

the tile i at time t − 1. fgen(Pdyn(t) + Pst(t)) denotes the generated temperature

due to its power consumption. frem(Ti(t− 1)−Ta) is the temperature change due

to heat removal by the ambient (where Ta is the current ambient temperature),

the most effective way of cooling. Finally, ftr(Ti(t − 1) − Tm(t − 1)) implies the

temperature change due to heat transfer among the peer tiles (Tp), which obeys

the principle of superposition and reciprocity [33].

In case of a powered off cache bank, the power consumption for the bank i.e.

fgen(Pdyn(t) + Pst(t)) in equation 6.1 will become zero. Therefore, heat abduction
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by the ambient will be active with the heat conduction from peers. As, power con-

sumption plays the pivotal role in temperature increment, hence, our hypothesis

is that, a powered-off bank will be cooled down eventually, and heat flow will take

place to it from its hot neighbours, which will reduce the peers’ temperatures.

Hence, initially in HB, we attempt to reduce cache hotspots by shutting down

some heavily used banks to reduce leakage, whereas in CB, we turned off the

least used banks to significantly reduce leakage power, which will further reduce

the effective chip temperature. In both the cases, turned off banks create thermal

buffers, and will be able to reduce the chip temperature.

6.3 Performance Linked Thermal Management

with DiCeR

As we have seen earlier, the runtime cache accesses across the banks are unevenly

distributed in our multi-banked cache architecture. Generally, cache memory ex-

ploits Locality of Reference, which anticipates the unchanged cache access pattern

for an application in future. But, in case of modern multitasking environment, this

phenomena is observed for a short interval. Whereas for a large interval (more

than 2−5 million clock cycles for a standard CMP) the principle of Locality of Ref-

erence is violated (ref. Figure 6.3), hence, we adopt DiCeR towards performance

linked temperature control for a TCMP. The performance and request redirection

issues for DiCeR can be summarised by the following couple of equations (ref.

Section 5.2):

MCi(b) =
b∑

j=1

(hij.d
i
j + aijo .do) +

B−b∑
k=1

rik.n
ik
t , b ≤ B. (6.2)

and
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(a) freq1 (b) swap1

(c) body1 (d) freq16

(e) black4 (f) fluid16

Figure 6.3: Temporal Change in Bank Usages for 6 different PARSEC appli-
cations.

IPC(b) =
1

N

N∑
i=1

IPCi(b)

=
1

N

N∑
i=1

(
ICi

CCi +MCi(b)
)

=
1

N

N∑
i=1

(
ICi

CCi +
∑b

j=1(hij.d
i
j + aijo .do) +

∑B−b
k=1 r

i
k.n

ik
t

)

(6.3)

The notations written in Equations 6.2 and 6.3 have similar meaning as it is

described in Section 5.2.
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6.3.1 Target Bank Selection

According to the equation 6.2, target bank selection during cache resizing is to

be done by considering two key parameters-(a) present workload of victim bank,

and (b) distance between target and victim banks. Exploitation of Locality of

Reference in addition with shutting down of victim imply that, value of rk in

equation 6.2 is directly proportional to the usage of victim in recent past. Hence,

if a heavily used bank is gated, it is most likely to happen that, value of rk will

be higher enough in near future. On the other hand, rk will experience a smaller

value for the least used victims. Remapping of requests will incur more cycles in

case the distance between the target and victim i.e. value of nkt is high enough.

Since, both rk and nkt are positive integers, hence, large values for both, (even for

atleast one) will aggravate system performance drastically. So, it is better to turn

off banks by assigning target in its close proximity. From thermal perspective, it

can be stated that, the heavily used banks cannot be selected as a target bank to

avoid further generation of cache hotspots.

6.3.2 Reconfiguring the LLC

The following equation shows that, the consumed leakage power of the SRAM cells

has a direct dependency on the running temperature and supply voltage [28, 23]:

Ps = K1VDDT
2e(αVDD+β)/T )) +K2e

(γVDD+δ) (6.4)

The notations used in Equation 6.4 represent the same parameters/constants as it

was discussed in Chapter 1 (ref. Equation 1.3). However, as leakage power has a

direct dependency on the supply voltage (Equation 6.4), hence, gating the power

supply to the SRAM cells [65] can reduce the leakage consumption. Power gating

technique has been used here as a backbone of this energy efficient cache. The

data management during reconfiguration is done by migration of data blocks from

victim to the target like DiCeR (ref. Chapter 4). This policy also does not support
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multiple target banks for a particular bank in order to keep the remapping logic

simple and it also uses Reuse Counter [18] for LRU selection, if replacement is

needed at the target location.

On the other hand, system architecture needs a mechanism to control the power

gating circuitry when to activate or deactivate it. Our cache resizing policy can be

implemented as a part of cache controller just like our earlier policies. The policy

monitors both performance degradation and temperature values while controlling

power gating circuitry. Cache access pattern needs to be monitored also while

shutting down or turning on the cache banks. The policy details are described

later with detailed analysis.

ALGORITHM 5: [HB] Reduction in temperature at cache hotspot

1: Tnormal : Interval that does not allow reconfiguration attempts
2: T : Reconfiguration interval
3: δ : Permissible percentage degradation in IPC
4: m : Maximum limit on bank shutdown
5: j = 0 : Number of banks turned off. Initially zero.
6: D : Distance threshold, used for target bank selection.
7: Run system for Tnormal number of clock cycles.
8: while (j ≤ m) do
9: Find out the hottest LLC bank.

10: Compute degradation in IPC compared to original average IPC.
11: if hottest bank (Bh) is a non-target bank and IPC degradation < δ and

j < m then
12: Select coldest bank (say Bt) as target having NoC hop distance ≤ D

from the hottest bank (say Bh) has to be turned off.
13: Migrate contents of Bh to Bt, and enable remapping.
14: Turn off Bh.
15: j + +.
16: else if (hottest bank is a target or IPC degradation ≥ δ) and j ≥ 1 then
17: Find out the least recently turned off source bank (say Bh) of this target

bank (say Bt).
18: Turn on Bh and migrate remapped blocks of Bh from Bt.
19: Disable remapping at the source, Bh.
20: j - -.
21: end if
22: Run for the next T number of clock cycles.
23: end while
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6.3.3 Algorithmic Design

HB: As leakage power increases quadratically with the temperature (equation 6.4),

it is hence better to turn off a “hot” bank and distribute its blocks across a few

colder banks, called as target banks. Eventually, it will cool down and later even

if it is turned-on, the leakage will be in control (for a while). However, turning off

a hot bank and distribution of its blocks across the other colder ones will consume

some dynamic energy but, reduction in static energy will compensate this. NoC

latency and energy values will also be increased slightly due to remapping of future

requests to the target banks.

Algorithm 5 shows the detailed process of HB, which reduces temperature at

cache hotspot. Initially, the process runs for Tnormal clock cycles, after which the

system will start monitoring temperatures of different on-chip components. This

is a very first time-span during which system starts dissipating heat, hence, no

cache reconfiguration takes place. However, at the end of first Tnormal clock cycles,

system does the following operations (line 8 to 23) as follows and loops back after

end of each T clock cycles:

System initially finds out the hottest cache bank (line 9) and checks the IPC degra-

dation over the last period [T clock cycles] (line 10). If performance degradation

is within a predefined limit (δ), and the hottest bank is not a target bank, the

system will turn off the hottest bank after migrating its contents to the target

and enable remapping at turned off bank’s controller (line 11 to 15). System also

maintains the maximum permissible limit of turned off banks. On the other hand,

if a target bank is found as a hottest bank or IPC degrades more than δ (line 16),

system turns on a powered off bank after relocation of all the remapped data and

disables the remapping (line 17 to 20).

CB, the other end of the spectrum, turns off the banks having low temperature

profile and maps its contents to another colder bank. This saves the energy of

the turned-off bank(s) and its usage was minimal, hence, the target bank is not

overloaded, implying lesser temperature increment of the target. Also, turning off

least used banks hardly affects performance.
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ALGORITHM 6: [CB] Reduction in temperature using cache as thermal buffer

1: Tnormal : Interval, that does not allow reconfiguration
2: T : Reconfiguration interval
3: δ : Permissible percentage degradation in IPC
4: m : Maximum limit on bank shutdown
5: j = 0 : Number of banks turned off. Initially zero.
6: Run system for Tnormal number of clock cycles.
7: while (j ≤ m) do
8: Select minimum used cache bank, Bi, as a victim bank.
9: Select another bank, Bt as the target bank, that is closest to Bi and has

average usage.
10: Compute degradation in IPC compared to original average IPC.
11: if degradation is lesser than δ and j < m then
12: Select another moderately accessed bank, Bt as the target bank.
13: Shutdown Bi after enabling remapping to Bt.
14: j + +
15: else
16: Turn on most recently turned off bank.
17: Migrate all the blocks of original bank from its target and disable

remapping.
18: j - -
19: end if
20: Run system for T number of clock cycles.
21: end while

Policy CB, described in Algorithm 6, starts resizing the cache dynamically after

Tnormal clock cycles (line 7 to 21). From this point onwards the application runs

for T clock cycles (line 20) and at the end of which it resizes the cache as follows:

The minimum accessed bank Bi will be sorted out and an average accessed bank,

Bt will be fixed as target, which is closer to Bi (line 8 to 9). If the IPC degradation

over the last period [T clock cycles] is more than the predefined threshold value,

δ, the system turns off Bi after transferring all of its contents to Bt and enables

remapping at Bi (line 10 to 14). If the IPC degradation violates the constraint at

the completion of a period, the system turns off the most recently turned off bank

after relocation of its contents (line 16 to 18). At the end of turning on process,

system disables the remapping.

Note that, both HB and CB incur same storage overhead like in DiCeR.
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Components Parameters

No. of Tiles 16
Processor UltraSPARCIII+
Flit Size 16 bytes
Buffer Size 4
#Virtual Networks 5
L1 I/D Cache 64KB, 4-way
L2 Cache bank 512KB, 8-way
Memory bank 1GB, 4KB/page
Pipeline Stage 5-stage
VCs per Virtual Network 4

Table 6.1: System and Network Parameters

Cache Parameters Values Core Parameters Values

Cache Level L2 Clock rate 2400MHz
Size of a L2 Bank 512KB ALU per core 2
Block Size 64 Bytes FPU per core 1
Technology used 32nm MUL per core 1
Associativity 8 Ambient temperature 47◦C
Cache Model NUCA

Table 6.2: McPAT and HotSpot Configurations

6.4 Experimental Analysis

For our hardware platform, we use a 16 core TCMP setup as shown in Figure 6.1.

Each of the core tiles consists of an UltraSPARCIII in-order core, designed in 32nm

technology. The cores are homogeneous in nature and composed by several units-

an Instruction Fetch Unit (IFU), a Load Store Unit (LSU), a private L1 Data and

Instruction cache. The reconfiguration interval T for both HB and CB is taken

as 5M clock cycles with IPC degradation threshold δ which is set to maximum of

5%. The reduction in cache size to lesser than its 25% degrades performance more

than 5% [5]. Hence, out of 16 L2-banks, m = 10 and m = 12 banks are allowed to

shutdown in case of HB and CB, respectively. As in HB, heavily used banks are

turned off, hence, too much remapped traffic can increase AMAT, so we allowed

m = 10 for HB and m = 12 for CB. The 8MB L2 cache used in this simulation

framework has an associativity of 8 ways. Table 6.1 contains configuration details

of processor cores, memory and NoC which are used in our simulation.



Chapter 6. DiCeR controls Temperature in a TCMP 140

1 2 3 4 5 6 7 8 9 10
0

4

8

12

16

HB CB

Time Stamps
#

O
N

_
L

2
_

B
a

n
k

s

1 2 3 4 5 6 7 8 9 10
62

64

66

68

70

72

74

Temp_B Temp_HB Temp_CB

Time Stamps

Te
m

p
e

ra
tu

re

1 2 3 4 5 6 7 8 9 10
0.6

0.8

1

1.2

1.4

1.6

1.8

MPKI_B MPKI_HB MPKI_CB

Time Stamps

N
o

rm
a

lis
e

d
 M

P
K

I

1 2 3 4 5 6 7 8 9 10
0.93

0.95

0.97

0.99

1.01

IPC_B IPC_HB IPC_CB

Time Stamps

N
o

rm
a

lis
e

d
 IP

C

Figure 6.4: Temporal effect of cache resizing: body16.

6.4.1 Simulation Setup

We have used our closed loop simulation framework described in Appendix A,

which is a collection of GEMS [126], SIMICS [125], McPAT [21] and HotSpot

6.0 [3]. Table 6.2 contains the configuration parameter details used by McPAT

and HotSpot 6.0 in our simulation. Multithreaded PARSEC benchmark suite

having emerging applications [6] are used to validate the proposed architecture.

6.4.2 Temporal effect of cache resizing

Both of our policies dynamically resize the cache to reduce leakage consumption

and temperature. Figure 6.4 shows the (discrete) temporal effect of cache resizing
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while applying both HB and CB independently, for Body16. To avoid redundancy,

results for Body16 is only shown here. Change in the number of active banks for

both HB and CB are shown in the top-most graph in Figure 6.4 at 10 consecutive

time-stamps taken at a fixed interval of 10M ruby cycles during execution. As

the execution progresses with resizing, the turned-off cache area are eventually

cooled down. HB shuts down cache hotspots but the number of turned-off banks

are lesser than CB. Temperature decrement is more in CB; but HB still has a

noticeable temperature reduction (as shown in second graph from the top in Figure

6.4 with respect to baseline (Temp B)). However, shrinking in cache size increases

MPKI in both the cases, but CB incurs more conflict and capacity misses as, it

shrinks cache more than HB. The third graph from the top in Figure 6.4 shows

the temporal change in MPKI.

Effect on NoC, IPC and target temperature: The dynamic cache resizing

further increases system overhead by incurring migration and remapping of cache

blocks at victim and turned-off banks, respectively. The shutting down of heav-

ily used banks in HB increases this overhead by invoking more remap requests,

whereas for CB, powering off lightly used banks slightly increases the same. How-

ever, this overhead increases NoC latency and the NoC energy consumption, which

is more in HB than CB. We show the final change in NoC latency and NoC energy

consumption for all of our applications in Figure 6.7 and 6.8, respectively. This

increased NoC overhead degrades IPC more in HB than CB, which is shown in

Figure 6.9 for all the applications whereas, temporal change in IPC for Body16 is

shown in the bottom most graph of Figure 6.4. On an average, 11.38% and 3.2%

overall increment in NoC energy have been observed for HB and CB, respectively,

with 4.62% and 3.06% overall increment in respective NoC workload than base-

line architecture. However, this NoC energy values include migration, remapping

and the energy consumption during off-chip accesses. The average performance

degradation for HB and CB are 5.0% and 1.1%, respectively.

Moreover, increased workloads further increases temperature at target locations.

For Body16 in HB, bank 12, a moderately used bank, has become a target. Remap-

ping of some heavily used bank(s) to bank 12 increases its workload and hence, its
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Figure 6.5: Thermal status of target banks in HB and CB, for Body16.

Figure 6.6: Change in cache leakage in HB and CB, for Body16.

temperature is raised up. On the other hand, bank 1 is a target in CB for Body16,

which handles extra loads of some lightly used bank(s). Hence, the increment in

its temperature with respect to baseline is a bit lower than bank 12 in HB. The

graphs are shown in Figure 6.5.

Finally, all of these changes in temperature have positive effect on cache leakage

consumption. Figure 6.6 shows the temporal change in cache leakage for Body16

while applying HB and CB individually. Leakage consumption is significantly

reduced in both the cases. More turned off locations in CB gives more savings

than HB, which only turns off cache hotspots. Both policies have good leakage

savings, which are shown in Figure 6.10 for all of our applications. On average,

HB saves 42% in leakage, whereas CB has a savings of 48%. Note that, the time

frames shown in Figures 6.4, 6.5, 6.6 are the same.

6.4.3 EDP gain

Figure 6.11 shows the EDP gains for HB and CB compared to the baseline. The

average EDP gains are 21% and 29% over the baseline architecture, for HB and
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Figure 6.7: Increment in NoC latency than Baseline.

Figure 6.8: Increment in NoC Energy than Baseline.

Figure 6.9: Change in IPC with respect to baseline.

Figure 6.10: Reduction in leakage energy for HB and CB than baseline.

Figure 6.11: EDP gain for HB and CB over baseline.
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CB, respectively. Increment in NoC energy and more performance degradation

in HB, reduce its EDP gain over CB. Still both policies have considerable EDP

gains. The EDP includes all of the above mentioned energy consumption during

and after cache resizing including the overhead of migration.

6.4.4 Effect on Tile and Chip Thermal Profile

6.4.4.1 Temporal Variation

Figure 6.12 shows the temporal change in tile temperature of Tile 7 and 10 for

Body16 & Freq, respectively, while applying HB & CB independently. We fur-

ther compare our policies with Greedy DVFS (GDVFS) [2], a core based DTM

technique. GDVFS scales down a core’s V/F settings (at 1.5v, 1.8GHz) when its

temperature goes beyond the preset value (95◦C in our work) and scales it up

(at 1.65v, 2.4GHz [baseline values]) to enhance performance, once temperature is

below the threshold. GDVFS reduces tile temperature by 4◦C atmost whereas HB

& CB reduce it by 3.7◦C and 4.1◦C, respectively for Body16. In case of Freq, these

reductions are 2.7◦C by GDVFS, and 3.4◦C & 3◦C for HB & CB, respectively. The

memory intensive application, Freq, does not allow much cache shrinking, hence,

reduction is lesser than Body16. Figure 6.13 & 6.14 show the change in peak &

average chip temperature for Body16 & Freq, respectively. GDVFS reduces peak

temperature by 5◦C for both the applications, but lesser reduction of 2.8◦C &

2.2◦C are noticed for average chip temperature for Body16 & Freq, respectively.

HB & CB, on the other hand, reduce peak temperature by 3.4◦C & 3.7◦C for

Body16 and 2.1◦C & 2.3◦C for Freq, respectively. But both HB & CB reduce

average chip temperature in the range of 3 − 4◦C for both the applications and

perform comparable to GDVFS.

6.4.4.2 Thermal Stability

To ensure circuit reliability, a stable thermal profile is to be maintained in a

CMP. Table 6.3 and 6.4 show the standard deviations for thermal changes in
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(a) Tile 7 for Body16 (best case)

(b) Tile 10 for Freq (worst case)

Figure 6.12: Temporal Thermal variation of a tile.

(a) Peak Temperature

(b) Average Temperature

Figure 6.13: Temporal change in Chip Temperature of Body16. (best case)
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(a) Peak Temperature

(b) Average Temperature

Figure 6.14: Temporal Change in Chip Temperature of Freq. (worst case)

Applications Baseline Greedy DVFS HB CB
Black 0.05 0.79 0.63 0.28
Body 0.11 0.83 0.62 0.19
Freq 0.14 0.77 0.69 0.22

Black4 0.06 0.80 0.64 0.28
Body16 0.07 0.78 0.68 0.24
Freq16 0.06 0.77 0.61 0.20
Swap4 0.16 0.72 0.58 0.27

Gmean 0.08 0.78 0.63 0.24

Table 6.3: Standard deviation for temporal changes in Average Chip
Temperature.

peak and average chip temperature for the set of applications we used here. The

highest standard deviation values for average temperature are 0.69 for HB, and

0.28 for CB; these respective values are 0.45 and 0.21 in case of peak temperature.

Shutting down of heavily used banks degrades more performance in case of HB,

hence, more dynamic cache resizing (by turn-ON-OFF) takes place, which changes

thermal profile more frequently than CB. However, this change is less frequent

than GDVFS. Due to more frequent changes in V/F settings, GDVFS maintains

a standard deviation in the range of 0.72 to 0.83 for average temperature, and
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Applications Baseline Greedy DVFS HB CB
Black 0.14 1.92 0.29 0.21
Body 0.25 1.85 0.30 0.16
Freq 0.11 2.17 0.45 0.09

Black4 0.15 2.01 0.28 0.21
Body16 0.13 2.29 0.26 0.21
Freq16 0.07 2.17 0.31 0.16
Swap4 0.24 2.03 0.30 0.18

Gmean 0.14 2.06 0.31 0.17

Table 6.4: Standard deviation for temporal changes in Peak Temperature
of the Chip.

1.85 to 2.29 for peak temperature. These values indicate a comparable thermal

stability of HB and CB with GDVFS.

6.4.4.3 Spatial Variation

The existing diversities in power consumption across the on-chip components build

up the diverse spatial thermal profile of the chip. Figure 6.15 shows the spatial

thermal status of the chip for baseline, HB and CB, generated from Hotspot 6.0 [3],

while running Body16 application. In comparison with baseline, both HB and CB

show certain changes, when banks are turned off. The legends in the figures

show the decrement in peak and lowest temperature. Tiles experiencing a bank

shutdown have lesser temperature, whereas target banks’ temperature are raised

up slightly.

Furthermore, we show the individual tile temperature at some certain point when

independently HB, CB and GDVFS are applied. Figure 6.16 shows the change in

tile temperature for Body16 while applying the corresponding thermal manage-

ment technique. The grey coloured box in this figure for HB and CB indicate that,

the tile has a turned off bank and hence, trivially having a noticeable reduction in

temperature. GDVFS, on the other hand also reduces temperature in the range

of 3− 4◦C, which is around 4.4◦C at most in case of CB. The maximum temper-

ature reduction for HB is around 4.1◦C. These values claim that, our cache based
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Figure 6.15: Spatial Thermal variation of the Chip for Body16.

policies play a crucial role in reducing average temperature of a tile comparable

with the GDVFS policy.
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Figure 6.16: Change in Average Tile Temperature for Body16.

6.4.4.4 Scalability

To show the scalability of our proposal, we have simulated our idea for a smaller

sized 4MB L2 and a larger sized 16MB L2 cache. The size of thermal buffer varies

across the total cache size in terms of following:

1. Too much reduction in cache size will affect performance drastically.

2. Smaller sized banks create smaller thermal buffer, having lesser potential for

temperature reduction.

Our simulation results further justify the couple of facts stated above. For a 4MB

cache, peak and average temperature are reduced by around 2◦C; for 8MB these

respective reductions are around 3.5◦C and 3.1◦C for average and peak temper-

ature in HB and CB. The maximum reduction is shown in case of 16MB cache,

which are around 6◦C for average and 5◦C for peak temperature of the chip, for

both HB and CB, respectively. From performance degradation perspective, aver-

age IPC degradations for HB and CB are 6.3% and 1.8%, respectively. For 8MB
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(a) 4MB

(b) 8MB

(c) 16MB

Figure 6.17: Reduction in Peak Temperature for different cache sizes.

and 16MB caches, these values are lesser than 5% and 4% for HB and negligible

for CB. Hence, it can be concluded that larger on-chip caches not only enhance

performance, but also can play significant role in on-chip thermal management.

Reduction in peak and average temperature for 4MB, 8MB and 16MB are shown

in Figures 6.17 and 6.18, respectively.
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(a) 4MB

(b) 8MB

(c) 16MB

Figure 6.18: Reduction in Average Chip Temperature for different cache sizes.

6.4.5 Varying Reconfiguration Interval

We further experimented with due changes in reconfiguration interval (T in Algo.

5 & 6). So far, all of our simulations are performed with 5M span of reconfiguration

interval, which we have changed to 2M and 8M intervals. Figures 6.19 and 6.20

depict the temporal changes in peak and average temperature of the chip for

Body16 in case of both HB and CB. The graphs in all of these cases clearly show

that, fluctuation in chip temperature is more in smaller reconfiguration interval,

which has been controlled better for higher values like 5M and 8M. As both 5M
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(a) HB

(b) CB

Figure 6.19: Temporal Change in Peak Temperature of Body16 while varying
Reconfiguration Interval.

(a) HB

(b) CB

Figure 6.20: Temporal Change in Average Temperature of Body16 while vary-
ing Reconfiguration Interval.
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and 8M are showing the same nature of the curves, but, 8M degrades system

performance more than smaller ones, hence, 5M is chosen during our experimental

evaluation. Actually, for smaller value of T , the reconfiguration overhead will

be higher when application’s WSS changes abruptly (like Body). But for CPU

intensive applications (like Swap4), thermal efficiency is almost same across the

values of T . Further, for memory intensive applications (like Freq), smaller values

of T incurs high reconfiguration overhead, whereas larger values of T tend to

degrade performance as we have to use a fixed lower cache size for a long interval,

even when it is in high demand. From both thermal as well as performance

perspective, moderate values like 5M, however, shows (sub)-optimal value for all

applications we used here.

6.4.6 Summary

Table 6.5, 6.6 and 6.7 report the average reduction in peak and average chip tem-

perature across the applications with HB and CB along with the corresponding

degradation in performance, while using 4MB, 8MB and 16MB LLCs. We com-

pare our policies with GDVFS by applying it to all of our above mentioned LLC

sizes. As larger caches actively participate in increasing chip temperature (Figure

6.2), hence, cache based policies are showing more benefits with larger caches. On

the other hand, GDVFS reduces core’s temperature which in turn reduces peak

temperature of the chip. But larger area occupancy of LLCs with higher tem-

perature reduce this effect gained from DVFS. Furthermore, due to availability of

adequate cache space even after resizing, performance degradation is lesser with

larger caches while applying our policies. Therefore, for the CMPs having larger

caches, cache based thermal management policies can give more temperature re-

duction with a controlled performance degradation.

cache banks (not the cache ways like [117]), which is completely done during

execution unlike [64].
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GDVFS HB CB

Temperature Reduction (in ◦C)
Peak Average Peak Average Peak Average
5.2 3.6 2.3 2.2 2.6 2.5

Performance Degradation
6.1% 6.3% 1.8%

Table 6.5: 4MB L2 Cache

GDVFS HB CB

Temperature Reduction (in ◦C)
Peak Average Peak Average Peak Average
5.0 3.3 3.2 3.1 3.4 3.7

Performance Degradation
6.2% 4.8% 1.2%

Table 6.6: 8MB L2 Cache

GDVFS HB CB

Temperature Reduction (in ◦C)
Peak Average Peak Average Peak Average
4.7 3.1 4.6 5.1 5.0 5.7

Performance Degradation
5.6% 3.7% 1.1%

Table 6.7: 16MB L2 Cache

6.5 Conclusion

LLCs occupy large on-chip area in modern CMPs with a significant amount of

leakage power consumption which has a quadratic relationship with chip temper-

ature. In order to control chip temperature, our proposed policy dynamically

resizes on-chip LLC to reduce leakage power consumption and to create on-chip

thermal buffer which retards the temperature increment of the remaining powered

on portions.

Our proposed technique consists of two cache resizing policies: HB, which turns

off heavily accessed cache hotspots to cool them down. If performance degrades

beyond a threshold, it turns on these cache area later. The other policy, CB,

shuts down lightly used cache portions which consume significant leakage energy.

The cache turn on decision will be taken once the performance degrades. Both
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of our policies partially turn off the cache and create on-chip thermal buffer with

significant leakage reduction of 41% and 49%, respectively. The creation of thermal

buffer along with the leakage power reduction reduces effective temperature of the

tiles in our TCMP model.

Shutting down heavily accessed cache banks in HB reduces temperature of the tiles

by 3.6◦C. CB, which turns off lightly accessed banks, reduces tile temperature by

4◦C. Policy CB shuts down least accessed banks and keeps them turned off for

a long duration as performance degradation is negligible. Hence, more reduction

in leakage energy is noticed and additionally thermal buffer is active for a long

time-span. Therefore, temperature reduction is more in CB while maintaining the

performance. Although the first policy HB has a performance degradation of 5%,

still both are useful if chip temperature is a priority constraint to control.





Chapter 7

DiCeR in a CCMP Towards

Improving Thermal Efficiency

In our previous chapter, we have proposed our cache based thermal efficient tech-

nique for TCMP architecture. Basically, the physical structure of a TCMP offers

us the following issues while applying DiCeR based technique to reduce its effective

temperature:

• The cores/LLC banks located at the circumference of the chip has trivially

better cooling opportunity than the others.

• Some set of cores are sandwiched between two L2 banks. These kind of cores

are highly benefited when both adjacent banks are turned-off. Conversely, if

both banks are heavily heated, then core temperature is likely to be hiked.

• Additionally, a shutdown cache bank may also be sandwiched between two

cores. In such cases, cooling rate is very slow for these banks even when they

are turned off. Hence, in case they are powered on in future, there is a high

probability that, they will resume their operation at some high temperature,

which may increase the leakage consumption drastically.

157
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7.1 Introduction

To see the better effectiveness of our DiCeR in temperature control, we have taken

a CCMP, where cores are always located at the periphery. Centrally located large

LLC area implies that, the banks can never be sandwiched between a couple of

cores. Hence, cooling rate for the cache banks are more, especially when they

are gated. Furthermore, cores will be benefited more in CCMP if their adjacent

banks are turned off. So, this will help to reduce both peak as well as average chip

temperature.

This chapter analyses the role of a centralised multi-banked SNUCA LLC (as

shown in Figure 7.1) in thermal management while maintaining system perfor-

mance. By exploiting DiCeR, we dynamically resize the LLC to optimally bal-

ance the performance and chip temperature by offering two levels of thermal

management-(i) controlling cache temperature, and (ii) reducing temperature of

the global hotspots by governing on-chip conductive heat transfer. The turned off

cache banks are eventually cooled down, and create on-chip thermal buffers which

reduce temperature of the adjacent on-chip components (other cache banks and/or

cores). The major contributions of this work can be summarised as follows:

1. Considering performance as a system-wide constraint, we have developed an

analytical model for our architecture to determine the optimal cache size.

As in this architecture, we have more number of banks, hence, to strengthen

the limit of maximum number of turned off banks, we use both analytical

and simulation modeling.

2. The analytically determined optimal cache size is used for resizing LLC by

following the three thermal efficient patterns-

• AltRow. Shuts down alternate rows of cache banks.

• Chess. Generates a chessboard or checkerboard like pattern in LLC,

with two colours. One of the colour will represent prospective shutdown

candidates.
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• OptTar. Cache banks closer to the cores are assigned the highest

shutdown priority. Additionally, future requests of the turned off cache

banks are optimally handled, as more cache portions are turned off than

earlier methods.
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Figure 7.1: CMP architecture with Centralised LLC (CCMP).

In case of caches, heavily used blocks can generate cache hotspots, whereas least

used cache portions unnecessarily increase the leakage consumption contributing

to the chip temperature. Furthermore, in case of some modern applications, cache

access patterns do not conform to the classical cache access property, (the Locality

of Reference), in their long run. These existing diversities in cache access behaviour

across the applications show the necessity for dynamic cache resizing.

7.2 Background

In this section, we first discuss the role of a centralised LLC towards the chip

temperature and power consumption.
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Figure 7.2: Percentage contribution for all the on-chip components collected
by simulating our baseline CCMP architecture (ref. Figure 7.1) in McPAT
having 16 cores (from UltraSPARCIII family) and 64-banked 8MB L2 cache as

centralised LLC.

7.2.1 CCMP and its Leakage Hungry LLC

The baseline architecture, used in this work (shown in Figure 7.1), contains 16

homogeneous CPU cores, which are placed along the periphery of the chip. Each

circle in the figure, numbered from 0 to 15, represents a single core along with its

private Data and Instruction L1 caches. The centrally located shared L2 cache

(on-chip LLC in our case) is sliced set-wise into identical 64 banks, numbered from

0 to 63, called as centralised shared cache. This set-wise division implies that, all

ways of a set are present in the same bank. Note that, we are using Static NUCA

(SNUCA) cache access scheme, where a block is always placed at a fixed cache set

on its every allocation. A 2D mesh Network on Chip (NoC) connects all the L2

banks and the Cores.

For our baseline architecture (Figure 7.1), the total power consumption of the chip

can be divided into two major components (apart from the interconnect and I/O

interface): (I) power consumed by the individual cores that includes processing

power along with power consumed by L1 (data & instruction) caches; and (II)

power consumed by the LLC (L2 in our case). Figure 7.2 depicts power con-

sumption of the individual on-chip components, out of which L2 consumes highest

power among all. Majority of the L2 power consumption is coming from its static
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(leakage) component (as shown in Figure 7.3). Independent to the cache accesses,

leakage power that has a circular dependency on temperature can be reduced by

gating the cache banks. Hence, reducing LLC leakage power by dynamically re-

sizing it, can be a promising option to reduce chip temperature without affecting

the computational units as we have already seen earlier.

Figure 7.3: Distribution of Power Consumption in an 8MB L2 cache.

7.2.2 Thermal Potential of the Centralised LLCs

Table 7.1 shows the changes in peak temperature of LLCs for 4 different sizes in

case of a CCMP. The values are derived for three PARSEC applications from our

simulation setup discussed earlier. Even, the LLC in a CCMP also follow the same

access patterns. However, this peak temperature of LLC gradually increases with

its size and even reaches around 80◦C for all the cases (like Figure 6.2 for an LLC

in a TCMP). These values strongly indicate the existence of cache hotspots in

larger LLCs having size 8MB or more, which motivates us to explore the on-chip

thermal efficiency while dynamically resizing larger centralised LLCs.

Cache Size 2MB 4MB 8MB 16MB

black16 58.9 60.9 69.9 78.9
body16 60.1 63.4 70.3 80.1
fluid16 59.9 63.7 70.6 79.2

Table 7.1: Size vs LLC’s Peak Temperature (in ◦C).
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(a) black16 (b) body16

(c) fluid16

Figure 7.4: Non uniform distribution of cache bank accesses in a CCMP like
Figure 7.1.

7.2.3 Runtime Cache Behaviour

The run-time cache accesses across the banks are unevenly distributed also in

a multi-banked LLC of a CCMP architecture. Figure 7.4 shows the distribu-

tion of cache accesses for all 64 banks. The results are shown for three long run

applications-black16, body16 and fluid16, after running them upto consecutive 100

millions of instructions in our simulation setup. Although cache accesses exploit

Locality of Reference, but, in the case of long running applications, this property

violates with respect to bank mappings. The change in access patterns over long

time-span for black16, body16 and fluid16 are shown in Figure 7.5. On the other

hand, according to our analysis given in Chapter 6, we have seen that, DiCeR

actively participates in reducing chip temperature while maintaining performance

degradation within a certain limit. Furthermore, thermal benefits gained through

the cache based policy is also comparable with the traditional core based temper-

ature reduction techniques. Hence, it can be stated that, cache based methods

can assist in thermal management. They can be used either in isolation or in

conjunction with core based methods. Note that, cache based methods are more

effective in case of large LLCs.
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(a) black16 (b) body16 (c) fluid16

Figure 7.5: Change in cache bank access behaviour over time in a CCMP
having 64 banks.

7.3 Preliminaries and Analytical Problem For-

mulation

The TCMP architecture used in our earlier contributions has 16 L2 banks. Ap-

plying DiCeR through a heuristic approach to sort and select target among the

16 banks works well enough. But heuristic approach may not be a scalable one

for the large scale systems. In this work, we have a CCMP with an L2 having 64

banks, where heuristic approach may aggravate the system performance. Hence,

in this section, an analytical model will be introduced with a set of its required

preliminaries. The notations, that will be used in this model are given in Table

7.2.

The objective of this work is to increase thermal efficiency of this CCMP architec-

ture by exploiting DiCeR. From thermal efficiency perspective, shutting down of

more cache banks will create larger thermal buffers on-chip and eventually the chip

temperature will reduce. Therefore, towards enhancing thermal efficiency, gating

of more number of cache banks will always be beneficial. But, drastic reduction in

cache size will further curtail the performance by increasing off-chip access count.

To address these issues, we have to formulate a couple of inter-dependent optimi-

sation problems: (i) minimise chip temperature through DiCeR without violating

a predefined performance constraint; (ii) what will be the maximum achievable

performance for a certain cache size?



Chapter 7. DiCeR in a CCMP for Thermal Efficiency 164

Before handling these problems, we first model the core temperature with its

associated power consumptions. In the subsequent parts of this section we will

further formulate these problems towards finding out an optimal cache size for a

better thermal efficiency.

7.3.1 Core Temperature Modeling

The existing literature claims cores as the hottest on-chip components, but, unlike

caches cores are known for their significantly high dynamic power consumption

(PCi
d (t)) than their static counterpart (PCi

s (t)). As power consumption constructs

the backbone of the on-chip thermal issues, hence, we initially model the core

power consumptions.

The dynamic power of core Ci can be written as-

PCi
d (t) = α.CCi.V

2
Ci(t).fCi(t) (7.1)

Descriptions of the parameters/notations used in Equation 7.1 are given in Table

7.2.

The static/leakage power of Ci (PCi
s (t)) at time t, (ref. Equation 1.3), has a di-

rect dependency on running temperature of the circuitry. Additionally, leakage

consumption forms a circular dependency with the effective circuit temperature,

which strongly indicates that, the theoretical modeling and practical assusmp-

tion of leakage as well as running temperature is complicated. Even the well

established electro-thermal analogy stated in our literature [3] strengthens this

claim. However, authors in [28], decoupled this circular dependency with the help

of Piece-Wise Linear Approximation of a curve which has been adopted in our

thermal model as follows:

The static power is modeled as-

PCi
s (t) = PCi

s−min + kCiT .TCi(t) + kCiv .VCi(t) (7.2)
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And the effective temperature TCi(t) is approximated by-

TCi(t) = (P ′
Ci
d .VCi

2(t).fCi(t) + ζCiv + P ′
Ci
s ).R (7.3)

where, P ′Cid , ζCiT .P
Ci
d and P ′Cis , ζCiT .P

Ci
s . All notations/parameters used in

Equations 7.2 and 7.3 are described in Table 7.2.

Notations Descriptions

Ci i-th core
t Time Stamp

PCi
d (t) Dynamic Power consumption of core Ci at time t
PCi
s (t) Static Power consumption of core Ci at time t
α Activity factor
CCi Capacitance of core Ci
VCi(t) Supply voltage of core Ci
fCi(t) Running frequency of core Ci
kCiT Temperature coefficient of core Ci
kCiv Voltage coefficient of core Ci

PCi
s−min Minimum leakage power consumption of core Ci
TCi(t) Effective temperature of core Ci
R System’s constant
ζCiT Temperature-leakage coefficient
ζCiv Voltage-leakage coefficient

Table 7.2: Descriptions of the notations used in our analytical modeling.

7.3.2 Problem Formulation

This work basically focuses on reducing chip temperature by decaying/reconfig-

uring its on-chip LLC dynamically. Figure 7.6 shows the internal architectures of

our target CCMP. The inner grey blocks numbered from 0 to 63 are indicating L2

banks. Power supply is separated to each bank. Initially, the chip temperature

increases as the execution proceeds, until it reaches at its steady state, where the

dissipation of the generated heat is same with the heat absorption by the attached

cooling mechanism. Applying DiCeR on this system will eventually reduce the

average chip temperature by introducing thermal buffers. However, more buffer

space although may prohibitively intensify the thermal benefits, but, excessive

reduction in cache size will disgrace the system performance.
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Figure 7.6: Internals of our baseline CMP architecture.

Our first problem stated earlier in this section can be analytically defined as fol-

lows. Minimise the average chip temperature, Tmean, by applying DiCeR, with a

predefined performance constraint (C)-

Minimise

Tmean = Mean(T c1 , T
c
2 , ..., T

c
N , T

b
1 , T

b
2 , ..., T

b
B) (7.4)

subject to,

IPC =
1

N

N∑
i=1

IPCi ≥ C. (7.5)

where, N is the number of (homogeneous) cores, and B is the total number of

cache banks (of same size). T ci is the temperature of core i, T bj is the temperature

of L2 bank j and system IPC should obey the given performance constraint C.

Now, our next problem is to find out the optimal number of powered-on banks (b)

for which our performance constraint can be met while applying DiCeR. Towards

this, we assume a uniform performance constraint for the individual core i.e.,

IPCi ≥ C, where IPCi is the IPC of core i. Keeping b as system wide shared

parameter, now a performance maximisation problem can be formulated as below.

Maximise

IPC =
1

N

N∑
i=1

IPCi (7.6)

subject to,

IPCi =
ICi

CCi +MCi(b)
≥ C. (7.7)
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&

b ≤ B (7.8)

Here, IPC is the system wide average IPC across the cores with b number of

available L2 banks to satisfy the above defined constraints. IPCi depends upon the

total instruction count (ICi) of itself, the number of cycles required to perform the

computation (CCi) at core i and the number of memory cycles (MCi(b)) required

to access L2 (that includes both hit and miss cycles). The DiCeR modifies b and

in turn MCi. The modification details are as follows:

MCi(b) =
b∑

j=1

(hij.d
i
j + aijo .do), b ≤ B. (7.9)

All of these parameters used in the above equation are representing the same like

Chapter 5 and 6. hij is the number of hits at bank j, whose requests have been

generated at core i. The dij is the delay at bank j to send block to core i. aijo implies

the number of off-chip accesses due to misses at bank j which have been requested

by core i, and (uniform) off-chip access latency is represented by do. Initially, we

have b = B, and after bank shutdown, the target banks are introduced, which

incurs a few extra (NoC) cycles for the remapping of the requests to reach at the

targets. Hence, the Equation 7.9 can be rewritten as follows:

MCi(b) =
b∑

j=1

(hij.d
i
j + aijo .do) +

B−b∑
k=1

rik.n
ik
t , b ≤ B. (7.10)

rik in Equation 7.10 is the number of remapped requests at (B − b) number of

turned off banks, generated by core i. Number of NoC cycles required to reach at

target t (from k) is represented by nikt . Therefore, after elaboration of MCi(b) (in

Equation 7.10) while considering bank shutdown, Equation 7.6 can be modified as

follows:
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IPC(b) =
1

N

N∑
i=1

IPCi(b)

=
1

N

N∑
i=1

(
ICi

CCi +MCi(b)
)

=
1

N

N∑
i=1

(
ICi

CCi +
∑b

j=1(hij.d
i
j + aijo .do) +

∑B−b
k=1 r

i
k.n

ik
t

)

(7.11)

This equation illustrates how IPC depends on b. Now, we will use this analysis

to obtain the optimal number of cache banks (i.e. b) needed to get the desired

performance.

7.3.3 Performance Modeling with Cache Size

Each core’s IPC (IPCi) is directly proportional with its own instruction count

(ICi) and inversely proportional with the total clock cycles required to execute

ICi at core i. The total number of clock cycles is the summation of its CPU

cycles (CCi) and memory latency (MCi(b)). Now, considering ICi and CCi as

constants, we can say that, IPC is a function of b, i.e. IPCi(b). According to

the Equation 7.11, reduction in b will reduce the hit count (hij.d
i
j) that indicates

drastic increment both in cache misses (i.e. increment in aijo .do) and remap cycles

(i.e.
∑B−b

k=1 r
i
k.n

ik
t ), which eventually will degarde the performance (IPC(b)), by

incurring extra memory cycles. Therefore, Equation 7.6 can exhibit a nature of

a concave function if we vary b, and the performance improvement at core i can

then be written as-

PIi =
∂IPCi(b)

∂b
(7.12)

Practically, the values of PIi varies with the applications. The estimation of PIi

at t is basically derived from its value at t − 1, i.e. from performance at the

prior phase of the running process. Performance degradation sets value of PIi as
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negative. As L2 is a shared resource to all the cores, we can assume a uniform

change in PIi for all i.

PI1 = PI2 = PI3 = ... = PIN (7.13)

By using Lagrange Multiplier [35], the above equation can be proved as:

LF =
1

N

N∑
i=1

IPCi(b) +
N∑
i=1

λi(IPCi − C) (7.14)

The first term in the RHS of above equation implies the objective whereas second

term implies the constraints to be satisfied. Equation 7.14 is maximised when

(b, λ1, λ2, ...λN) is a stationary point, and first order derivative is zero [35], which

mathematically can be written as-

∂LF (b, λ1, λ2, ..., λN)

∂(b, λ1, λ2, ..., λN)
= 0 (7.15)

This has now formed N + 1 equations with N + 1 unknowns, and IPC maximises

when Equation 7.13 satisfies and optimal value of b can be derived.

7.3.4 Thermal Model

Before modeling temperature for our CCMP (ref. Figure 7.6) with equation

6.1 [33], we divided the whole CMP into three zones-

• the core area, for which the thermal status depends on the other adjacent

core blocks and the neighbouring cache banks;

• the cache banks adjacent to the cores, where heat exchanges between the

core blocks and the peer cache banks;

• other cache banks, where heat flows only among the cache banks.

Therefore, the temperature of a core block (TC(t)), the bank (TM(t)) adjacent to

core and an inner bank (TI(t)) at time t can be modeled, respectively, as-
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TC(t) = TC(t− 1) + fgen(Pdyn(t) + Pst(t))− frem(TC(t− 1)− Ta)

+

pC+pB∑
m=1

ftr(TC(t− 1)− Tm(t− 1))
(7.16)

TM(t) = TM(t− 1) + fgen(Pdyn(t) + Pst(t))− frem(TM(t− 1)− Ta)

+

pC+pB∑
m=1

ftr(TM(t− 1)− Tm(t− 1))
(7.17)

TI(t) = TI(t− 1) + fgen(Pdyn(t) + Pst(t))− frem(TI(t− 1)− Ta)

+

pB∑
m=1

ftr(TI(t− 1)− Tm(t− 1))
(7.18)

The notations in the above equations have their usual meaning like Equation 6.1.

pC denotes the number of peer core blocks and pB is the number of adjacent

cache banks for the corresponding element whose temperature is being modeled.

We further modify equation 7.16 by replacing fp with the power consumption

parameters for a core of Equation 7.3 as follows:

TC(t) = TC(t− 1) + (P ′
C
d .V

2
C(t).fC(t) + ζCv + P ′s

C
).R− fa(TC(t− 1)− Ta)

+

pC+pB∑
m=1

fc(TC(t− 1)− Tm(t− 1))

(7.19)

We use the insight gained from this zone based temperature variation to decide

the locations of the cache banks as candidates for shutting down. In particular,

this zone based temperature variation motivates us to propose and analyse three

different patterns (given in Section 7.3.7) for enhancing thermal efficiency of the

CCMP.
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7.3.5 Combined Analytics

Shutting down of a cache bank will make fgen(Pdyn(t) + Pst(t)) = 0 in Equations

7.18 and 7.17. When power consumption for a block is zero, its temperature will

only depend upon the ambient temperature (Ta) and the temperature of its peers.

Zero power consumption over a long time-span will retard the temperature incre-

ment rate and gradually the block will cool down. More temperature difference

with colder (power gated) peers will increase conductive heat transfer from the

hotter powered-on block to the colder peers, and eventually temperature of the

powered-on block will also reduce. Therefore, output of ftr in Equations 7.16, 7.17

and 7.18 will produce smaller values and will reduce temperatures of cores along

with the cache area. Hence, it can be concluded that, the mean temperature of the

chip will be reduced more by gating more number of cache banks at appropriate

locations.

On the other hand, drastic reduction in the cache size curtails the performance by

incurring more number of cache misses. According to section 7.3.3, performance

has been maximised based on the available number of cache banks for a given

performance constraint. To show the effectiveness of our theoretical model we as-

sume a CMP having a uniform execution pattern, i.e., same number of instructions

are executed by each of the cores and all cache banks are assigned with uniform

workload. Now, while dynamically reducing cache size our model must satisfy the

Equation 7.13 for maximising performance with the available cache size. More-

over, cache size reduction through power gating increases both the miss rate and

the NoC latency while accessing the target banks.

7.3.6 Finding out Optimal b

According to the equations 7.7 and 7.12, IPC of a core will be affected if the cache

capacity changes. This is reflected in the component MCi(b) in the equations that

represents the memory access latency. As derived in Equation 7.11, this latency
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depends on the number of cache misses, the available number of cache banks, off

chip access delay and delay incurred for redirected requests to target banks.

Our aim is to shutdown cache banks to control temperature while keeping IPC

under a given constraint. To find one optimal value for all applications is not

practically feasible. We therefore obtained the values of IPCs for all benchmark

applications and did a linear regression to obtain the value for b. Results are shown

in Figure 7.7. For our experiments, we have put a limit of 4% on IPC degradation

and hence using results of Figure 7.7 we derive the value of b as 16 for our setup.

Thus we can shutdown maximum of (B − b) number of L2 banks.

Figure 7.7: Relationship between IPC and Cache Size.

7.3.7 Patterns for Cache Resizing

Using the insight gained from Section 7.3.4, we have designed three patterns for

cache resizing that indicate which banks are to be shutdown and their correspond-

ing target locations. Figure 7.8 shows three patterns, named as AltRow, Chess

and OptTar, respectively.

• AltRow (Figure 7.8(a)), the first pattern, turns off cache banks located on

alternate rows. The target bank for a shutdown bank is the powered-on bank

in the neighbouring row, having NoC hop-distance 1. During execution, the

powered-off and target banks switch roles.
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Figure 7.8: L2 bank Shutdown patterns.

• Chess follows a pattern like a chess board (ref. Figure 7.8(b)) where black

coloured banks are turned off and others are kept powered-on becoming

targets of their gated peers. This pattern is also swapped like the earlier one

during execution.

• OptTar shuts down banks adjacent to the cores (shown in black in Figure

7.8(c)) for creating more thermal buffers near the chip’s hotspots. The banks

are clustered into a size of 4. The clusters along the periphery have one

powered-on and three gated banks in each cluster. The inner clusters can

have 2-ON and 2-OFF banks as per requirements. The ON/OFF banks

change roles during execution. However, banks along periphery, i.e. near to

the cores are kept turned off. The bank which is ON in a cluster becomes

the target for the OFF banks in that cluster.

7.4 DiCeR for Thermal Efficiency

7.4.1 Algorithms and Discussions

The implementation of the proposed policy needs to track core-wise IPCs dynami-

cally, in addition with the current temperature, which is monitored by the on-chip

thermal sensors [29] located across the chip wafer.
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ALGORITHM 7: Performance Constrained and Thermal Efficient Dynamic
Cache Resizing.
Input: i, r, t, bopt, δ, Mc, Mp

1 Initialize mc = 0, mb = 0 and add Bank IDs to Mc and Mb according to the selected pattern;
2 Run with the baseline system for initial duration i ;
3 repeat
4 Call Reconf();
5 Call Trans();

6 until end of execution;
7

8 Function Reconf()
9 repeat

10 if IPCdeg < δ & m < bopt then
11 if mp < Mp then
12 Select hottest bank mhot from Mp, assign Target bank mtar ;
13 mp = mp + 1 ;

14 end
15 else if mc < Mc then
16 Select hottest bank mhot from Mc, assign Target bank mtar ;
17 mc = mc + 1 ;

18 end
19 Migrate blocks from mhot to mtar;
20 Turn Off mhot and enable remapping to target at mtar ;
21 m = mc +mp ;

22 end
23 if IPCdeg ≥ δ & m ≥ 1 then
24 Turn on coldest bank mcold from the list of shutdown banks;
25 if mcold ∈Mc then
26 mc = mc − 1 ;

27 end
28 if mcold ∈Mp then
29 mp = mp − 1 ;

30 end
31 m = mc +mp ;

32 end

33 until r ;
34 Return;
35

36 Function Trans()
37 Turn on all the turned off banks;
38 mc = mp = m = 0;
39 repeat
40 Run the application;

41 until t ;
42 Modify the selected pattern by updating Mc & Mp, such that the roles of ON/OFF banks swap;
43 Return;

The practical implementation of our algorithm divides the whole execution time

into several big intervals. The intervals are used either for the reconfigurations

or for the transitions, as shown in Figure 7.9. The reconfiguration intervals allow
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cache resizing while maintaining performance constraint, whereas transition inter-

vals do not allow any cache resizing and runs the whole system by turning on all

shutdown components. After running the application for some initial duration we

collect bank usage-statistics for all the banks along with the thermal profile of the

chip. It is advantageous to shutdown cache banks along the periphery, i.e. near to

the cores before we choose to turn off central banks. The list of banks belonging

to each type are maintained by two sets, Mp and Mc, respectively. Using the

temperature values, if the number of turned-off banks has not reached its limit we

select a bank from either of the lists as a candidate for shutdown. The target bank

for this candidate bank is chosen as per the selected pattern (discussed in Section

7.3.7). The data blocks of the candidate are transferred to the target banks and

on completion of this process the candidate is powered off. All subsequent fu-

ture requests are forwarded to the target. The successive bank shutdown process

continues until we reach at the maximum limit of turned off banks or the perfor-

mance degrades beyond the predefined limit. In case the performance constraint

is violated, the coldest among the turned off banks is selected for turning on. The

remapped data belonging to this bank is relocated from its target before resuming

its normal operations. This whole process continues for a long enough interval.

The target banks during the reconfiguration interval are overloaded with the work-

loads of the turned off banks, resulting in increment in their power density hence,

the temperature raises up. Even for some memory intensive applications the

hotspots can be generated at the target banks if it is being accessed heavily for a

certain time quantum. Hence, in order to reduce the power density (or hotspot)

we need to switch their roles with the colder turned off banks. This procedure goes

through a transition interval where all the powered off banks are turned on, and

cache size remains unchanged until end of the interval. With the onset of the next
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Figure 7.9: The division of Execution time while implementing Algorithm 7.
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Parameters Descriptions

i Length of initial duration
t Length of transition interval
r Length of reconfig. interval
δ Maximum percentage of IPC degradation
Mc Set of central Bank IDs to be gated
Mp Set of peripheral Bank IDs to be gated
mc Counts no. of turned-off banks from Mc

mp Counts no. of turned-off banks from Mp

bopt Maximum no. of banks can be turned-off
m Counts total no. of turned-off banks

Table 7.3: Description of Parameters used in Algorithm 7.

reconfiguration interval, the selected pattern is updated by switching the roles of

banks and starts the cache resizing process further. This process continues until

the end of the process execution.

Detailed steps of the whole process are given in Algorithm 7 which divides the

whole process into three parts. The parameters used in this algorithm are described

in Table 7.3.

• The master part (line no. 1 to 5)- With the beginning of the execution,

it initialises all the required parameters (listed in Table 7.3) and run the

system for an initial duration of i clock cycles. While the process is running,

system alternatively calls Reconf() and Trans() functions which represent

two intervals r and t respectively as shown in Figure 7.9.

• Function Reconf() (line no. 8 to 34)- This function checks whether to power

on or off the cache banks while maintaining performance constraint δ. The

number of shutdown cache banks is also kept within optimal limit, bopt. The

algorithm tries to turn off banks from the peripheral parts (line no. 11

to 13). Once this list is exhausted it then attempts to turn off the inner

central banks (line no. 15 to 17). On violation of performance degradation

constraint, the coldest among the turned off banks is turned on (line no. 23

to 31). The whole process runs in each reconfiguration interval r. The cache

resizing follows a particular selected pattern from the three discussed earlier.
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• Function Trans() (line no. 36 to 43)- The gated banks are turned on at the

beginning of the function. During the transition interval t, no cache resizing

is allowed. On completion of t, roles are exchanged among the candidates

for ON and OFF banks of the last r interval while following the selected

pattern.

7.5 Experimental Evaluation

7.5.1 Simulation Setup

For our hardware platform, we use the floorplan as shown in Figure 7.6. The

whole chip is divided into 80 tiles, which are of two types-(a) the 16 core tiles,

located along the periphery, and (b) 64 central cache tiles. Each of the core tiles

consists of an UltraSPARCIII in-order core, in 32nm technology. The core tiles

are homogeneous in nature and composed by several units- an Instruction Fetch

Unit (IFU), a Load Store Unit (LSU), a private L1 Data and Instruction cache.

The shared L2 as on-chip LLC, is divided into 64 homogeneous banks and are

distributed uniformly across the 64 cache tiles (ref. Figure 7.6). These on-chip

components are connected through a 2D mesh, for which a router is equipped to

each of the cache tiles as well as with the cores. Table 7.4 contains configuration

Components Parameters

No. of Banks 64
Processor UltraSPARCIII+
Flit Size 16 bytes
Buffer Size 4
#Virtual Networks 5
L1 I/D Cache 64KB, 4-way
L2 Cache bank 128KB, 8-way
Memory bank 1GB, 4KB/page
Pipeline Stage 5-stage
VCs per Virtual Network 4

Table 7.4: System and Network Parameters
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Cache Parameters Values Core Parameters Values

Cache Level L2 Clock rate 3000MHz
Size of a L2 Bank 128KB ALU per core 2
Block Size 64 Bytes FPU per core 1
Technology used 32nm MUL per core 1
Associativity 8 Ambient temperature 47◦C
Cache Model SNUCA

Table 7.5: McPAT and HotSpot Configurations

details of processor cores, memory and NoC which are used in our simulation.

We simulated the whole system in our closed loop simulation framework discussed

in Appendix A and PARSEC benchmark suite has been used for validation (ref.

Section 3.2).

Figure 7.10: Static Energy savings at L2 Cache.

Figure 7.11: EDP Savings of the chip.



Chapter 7. DiCeR in a CCMP for Thermal Efficiency 179

7.5.2 Leakage Energy and EDP Savings

As power reduction constructs the backbone of any thermal management policy,

hence, we first show the leakage energy reduction while implementing the three

above mentioned patterns in our closed loop simulation environment. The mix

of 8 applications from PARSEC [6] are executed, and their corresponding leakage

energy savings are shown in Figure 7.10. The x-axis represents the benchmarks

whereas y-axis shows the leakage energy consumptions normalised to the baseline’s

leakage consumption. The maximum leakage savings of 40.3% are achieved for

OptTar. On an average, a static energy savings of 26% and 26.5% have been

achieved for AltRow and Chess, respectively.

The effect in static energy savings has sound reflection on total energy consumption

of the chip, with an effect on IPC (ref. equation 7.7). Figure 7.11 shows the savings

in EDP, which is derived from total energy consumption of the chip (including both

cores’ and cache-energy) and IPC. The average EDP savings for three patterns are

11%, 11.5% and 18.7%, respectively. The more static energy saving in the OptTar

gives more EDP gains than the others.

7.5.3 DiCeR Overhead in CCMP

DiCeR in turn increases NoC overhead due to two major operations-(a) block mi-

gration during turn-off process, and (b) remapping of requests after bank shutdown

in CCMP as well. Figure 7.12 shows the extra clock cycles required for migration.

For most of the applications, this average increment is around 3% for AltRow

and Chess, whereas for OptTar, it is close to 5%. However, this extra time-span

keeps idle only the victim banks, those that are going to be turned-off just after

completion of migration process. Whereas, the operations at the non-victims are

executed normally during this period. On the other hand, the remapped blocks

to the target locations increases NoC traffic. The maximum average increment

in NoC traffic (for OpTar) is 4.86%, which is shown in Figure 7.13. Migration

and remapping altogether further increase NoC energy consumption (Figure 7.14)
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by 5.18%, (on an average across the applications), for OptTar than our baseline

architecture. The distance cognizant target selection for all of our patterns in-

corporate a maximum hop distance of 2 in OptTar, and 1 for the rests. Hence,

OptTar experiences maximum energy overhead than AltRow and Chess, however,

this overhead has been compensated by the gained leakage and EDP savings.

Figure 7.12: Migration Overhead.

Figure 7.13: Increment in NoC Traffic.

Figure 7.14: Increment in NoC Energy.
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(a) Fluid16

(b) Body16

Figure 7.15: Snapshot of temporal changes in average temperature of L2
during execution.

7.5.4 On-Chip Thermal Profile

The turned off banks consume no power and eventually cooled down due to the

heat abduction by the ambient (equation 6.1). Additionally, the on-chip com-

ponents at vicinity of these shutdown banks will transfer heat towards this cold

zone and temperature of the adjacent components will also decrease gradually. To

show the effect of our proposal, we compare all three patterns for the best case (for

Fluid16) and worst case (for Body16) scenarios. We show the reduction in average

temperature of cache area and core blocks, separately. Figure 7.15 and 7.16 show

the reduction in average temperatures for cache and core area, respectively. The

x-axes in these figures represent a portion of the execution interval which includes

two consecutive reconfiguration (r) intervals with a transition (t) in between. The
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(a) Fluid16

(b) Body16

Figure 7.16: Snapshot of temporal changes in average temperature of the
cores during execution.

temporal changes in both caches’ and cores’ temperatures are noticed due to bank

shutdown in both r intervals as well as in t. Note that, the y-axis denotes the

temperature values in ◦C.

For all the cases, OptTar reduces more temperature than the others due to gating

of more and optimally located cache area. The reduction in average temperature

for OptTar is around 8.3◦C in case of Fluid16. For Body16, OptTar reduces the

cache temperature by 5.7◦C, during the same interval. Due to their adjacency

to the turned off cache banks, average temperature for the core area is reduced

by 4.3◦C for Fluid16, whereas for Body16 the value is around 3.8◦C. The core

temperature for Body shows fluctuation due to temporal variation in processing
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Figure 7.17: Temperatures (in ◦C) of the individual banks during r , for
Fluid16.

loads across the cores. Furthermore, at the beginning of t, the banks are turned-

on, hence, the average cache temperature rises. With the beginning of the next r

after t, again the temperature decreases for both L2 cache as well as for cores as

the cache banks are gradually shutdown.

Furthermore, we also show the thermal status for individual L2 banks along with

their adjacent cores at an instance during r. Instead of showing 64 banks with 16

cores, we have taken the bottom left part of the chip (Core id 0, 1, 14 and 15, with

4 consecutive banks from each row starting with bank id 0, 8, 16 and 24 in Figure

7.6). Figure 7.17 shows the temperatures for these 16 banks with 4 adjacent cores

while running Fluid16. The grey blocks in the figure represents shutdown banks.

Trivially, remarkable temperature reductions are noticed for the turned off cache

area. At the cores, for all of our policies, temperature reduction are in a range of

3− 4◦C, with maximum reduction of 4.1◦C for OptTar.
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7.5.5 Comparison with Greedy DVFS [2]

We have implemented a per-core DVFS based thermal optimisation technique (in

our simulation framework), called as Greedy DVFS [2] for comparing our cache

based thermal efficient policies. Greedy DVFS uses a predefined threshold tem-

perature value, on violation of which V/F setting is scaled down by one step

dynamically. Conversely, when temperature of a core is below the threshold, V/F

setting will be stepped up for better performance. The change in V/F setting is

(a) Fluid16

(b) Body16

Figure 7.18: Snapshot of temporal changes in peak temperature of the chip
during a sample reconfiguration interval r .
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Voltage, Frequency 1.8v, 3.0GHz 1.65v, 2.4GHz 1.5v, 1.8GHz 1.35v, 1.2GHz

Table 7.6: V/F Settings for UltraSPARCIII (used in our simulation)

done periodically per-core at the end of a fixed interval during execution. The de-

tailed V/F settings used in our implementation are given in Table 7.6. We use two

threshold values of 95◦C and 90◦C which are termed as DVFS 95 and DVFS 90,

respectively.

Figure 7.18 shows the temporal changes in peak temperature of entire chip for

(a) Fluid16

(b) Body16

Figure 7.19: Snapshot of temporal changes in average chip temperature
during a sample reconfiguration interval r .
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both Greedy DVFS and our policies during the reconfiguration interval. For both

Fluid16 and Body16, our policy shows lesser peak temperature reduction than

DVFS 90. As DVFS directly reduces the core’s energy consumption, hence, core

temperature reduces more than the cache based method. However, in order to

compensate the system performance, DVFS shortly scales up the V/F setting

that resulting into further increment in temperature within a short time-span.

This frequent temperature change can affect the on-chip circuitry due to unstable

thermal profile. On the other hand, cache based method ensures stability in re-

duced temperature range. We achieve around 5.5◦C and 4.6◦C reduction in peak

temperature for Fluid16 and Body16, respectively.

Scaling V/F settings in DVFS generates huge temporal fluctuation in core’s tem-

perature incorporating an adverse effect in circuit reliability [148]; whereas cache

based techniques offer stable thermal status of the chip. Figure 7.19 shows the

temporal change in average chip temperature while using DVFS and our cache

based methods. The frequent change in cores’ temperature due to Greedy DVFS

incurs fluctuation in average chip temperature for both Fluid16 and Body16. The

detailed maximum reduction in peak and average chip temperature are given in

Table 7.7 and 7.8, respectively. On an average, DVFS 90 and OptTar reduces

peak temperature by 6.6◦C and 5.5◦C, respectively, but cache based policy offers

more thermal stability which may help for better durability for the on-chip cir-

cuitry. Due to shutting down of larger on-chip area, cache based policy shows more

decrement in average chip temperature which is around 4.9◦C, whereas DVFS 90

reduces the same by 4.2◦C on an average.

A stable thermal profile ensures better reliability for on-chip circuitry. Tables

7.9 and 7.10 show the standard deviations for the temporal changes in peak and

average temperature of the chip for different applications. The maximum standard

deviation for peak and average temperature are 0.58 and 0.64, respectively, almost

for all of our cache based techniques. Whereas, in case of DVFS based policies,

least values for standard deviation is 1.01 and 0.67 for peak and average chip

temperature, respectively. These values represents better thermal stability of our

cache based policies over Greedy DVFS.
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Benchmarks DVFS 95 DVFS 90 AltRow Chess OptTar

Body 3.1 6.1 3.5 3.7 4.9
Fluid 4.4 5.9 3.9 3.6 5.1
Freq 4.2 5.4 4.3 4.5 5.4
Vips 5.7 5.8 4.0 3.9 4.8
Black16 5.5 6.1 3.9 4.5 5.2
Body16 3.8 6.3 4.6 3.9 4.6
Fluid16 4.2 6.6 3.9 4.1 5.5
Swap16 3.2 5.9 3.6 3.8 4.9
Gmean 4.2 6.0 3.9 4.0 5.1

Table 7.7: Maximum Reduction in Peak Temperature (◦C) of the Chip with
respect to baseline.

Benchmarks DVFS 95 DVFS 90 AltRow Chess OptTar

Body 2.2 4.0 4.2 3.9 4.8
Fluid 2.1 4.4 4.3 4.2 4.6
Freq 2.8 4.2 4.1 4.0 4.6
Vips 2.4 4.3 4.3 4.4 5.0
Black16 3.2 4.8 4.2 4.1 4.7
Body16 2.7 3.9 3.9 3.8 4.4
Fluid16 3.4 4.8 4.3 4.0 5.8
Swap16 2.0 4.6 4.0 4.2 5.4
Gmean 2.6 4.2 4.2 4.1 4.9

Table 7.8: Maximum Reduction in Average Temperature (◦C) of the Chip
with respect to baseline.

7.5.5.1 Spatial Thermal Status

Diversities in power consumptions across the on-chip area define the spatial ther-

mal status of the chip. Figure 7.20 shows the thermal status of the chip for baseline,

Benchmarks DVFS 95 DVFS 90 AltRow Chess OptTar

Body 2.68 2.19 0.46 0.42 0.58
Fluid 1.32 1.01 0.05 0.09 0.21
Freq 1.78 2.13 0.08 0.19 0.34
Vips 1.31 2.67 0.14 0.16 0.42
Black16 1.10 1.95 0.17 0.24 0.28
Body16 2.71 2.51 0.11 0.21 0.32
Fluid16 2.56 2.20 0.16 0.14 0.26
Swap16 2.83 1.36 0.13 0.21 0.23
Gmean 1.91 1.93 0.13 0.19 0.31

Table 7.9: Standard Deviation: Peak Temperature of the Chip.



Chapter 7. DiCeR in a CCMP for Thermal Efficiency 188

Benchmarks DVFS 95 DVFS 90 AltRow Chess OptTar

Fluid 0.73 0.81 0.36 0.12 0.61
Body 1.21 0.79 0.51 0.61 0.90
Freq 1.41 0.72 0.23 0.41 0.63
Vips 0.67 0.71 0.55 0.44 0.64
Black16 1.20 1.02 0.51 0.43 0.61
Body16 1.21 1.32 0.71 0.52 0.60
Fluid16 1.11 0.80 0.41 0.17 0.61
Swap16 1.14 0.98 0.34 0.35 0.60
Gmean 1.05 0.85 0.43 0.34 0.64

Table 7.10: Standard Deviation: Average Temperature of the Chip.

DVFS 90 and OptTar during some r , generated from Hotspot 6.0 [3] tool while

running Fluid16 application. The corresponding temperature ranges are given in

the figures. The peak temperatures have been reduced by 4◦C for DVFS 90 and

6◦C for OptTar, respectively. In case of OptTar, cache temperature is reduced

more as expected and for which average chip temperature shows better reduction

than DVFS 90. Moreover, created thermal buffers reduce the peak temperature

values of the core area by generating more conductive heat flow towards the cache

area from the core. DVFS 90 reduces the core temperature which hardly reduces

the cache temperature as reduced cores’ temperatures are still a bit higher than

the cache temperature. Note that, all the temperature values in Figure 7.20 are

in Kelvin(K).

7.5.5.2 Effect on Performance

Table 7.11 presents the performance degradation for all the benchmarks with both

DVFS policies. DVFS 95, for all the applications, uses maximum frequency and

steps it down by one step whereas DVFS 90 uses three levels of frequencies for

more reduction in temperature. Hence, overall execution time increases for the

applications in DVFS 90 than DVFS 95. The cache based policies does not modify

the running frequencies of the cores, hence performance degradation is much lesser

than the DVFS policies, although dynamic cache resizing incurs an extra memory

latency, which has been taken care in our simulation. However, on an average,

DVFS 95 and DVFS 90 degrade performance by 4.38% and 12.51%, respectively.
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(a) Baseline (b) DVFS 90

(c) OptTar

Figure 7.20: On-chip spatial thermal behaviour generated by Hotspot 6.0 [3]
for Fluid16 at some certain instance during r . Temperature Ranges for three
configurations-(a) Baseline: 336K to 364K, (b) DVFS 90: 334K to 360K, (c)
OptTar: 332K to 358K. Red colour represents peak value where Blue represents

the lowest temperature.

The average performance degradation for all the cache based policies are lesser

than 4%.

7.5.5.3 Summary

Table 7.12 summarises results for all the policies. DVFS 90 reduces both peak and

average temperature at most by 6.6◦C and 4.8◦C, respectively, whereas OptTar

(the best of our proposed policies) reduces peak temperature by 5.5◦C and average

temperature by 5.8◦C. Although, OptTar reduces lesser peak but more average



Chapter 7. DiCeR in a CCMP for Thermal Efficiency 190

Benchmarks DVFS 95 DVFS 90 AltRow Chess OptTar

IPS values (normalised with respect to baseline)

Body 0.97 0.86 0.98 0.95 0.95
Fluid 0.93 0.90 0.97 0.98 0.97
Freq 0.95 0.85 0.98 0.97 0.97
Vips 0.96 0.87 0.98 0.98 0.97
Black16 0.97 0.88 0.97 0.96 0.96
Body16 0.95 0.86 0.96 0.93 0.96
Fluid16 0.96 0.90 0.96 0.97 0.95
Swap16 0.96 0.88 0.97 0.98 0.98

Average degradation in IPS (with respect to baseline)

4.38% 12.51% 2.87% 3.51% 3.62%

Table 7.11: Change in IPS with respect to baseline.

Parameters DVFS 95 DVFS 90 AltRow Chess OptTar

Max Peak 5.7◦C 6.6◦C 4.6◦C 4.5◦C 5.5◦C
Temp Reduction
Max Avg 3.4◦C 4.8◦C 4.3◦C 4.4◦C 5.8◦C
Temp Reduction
Std Dev of Peak 1.91 1.93 0.13 0.19 0.31
Temp Change
Std Dev of Avg 1.05 0.85 0.43 0.34 0.64
Temp change
IPS Degradation 4.38% 12.51% 2.87% 3.51% 3.62%

Table 7.12: Summary

chip temperature than DVFS 90, but, DVFS 90 degrades performance by 12.51%

which is 3.62% for OptTar. As LLC occupies a significant portions on-chip and

turning off its major parts makes a big chunk of energy free on-chip zone, which

reduces more average chip temperature in OptTar than the DVFS based ones. On

the other hand, DVFS based policy only handles cores’ V/F settings, i.e. it only

attacks the on-chip hotspots, hence, peak temperature reduction is more in case

of DVFS based policies.

7.5.6 Evaluating the Scalability

To show the scalability, we used OptTar and ran the same set of applications with

4MB and 16MB L2 cache having 64 banks. Figure 7.21 shows the reduction in
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(a) Peak Temperature of the Chip

(b) Average Chip Temperature

Figure 7.21: Comparing temperature reduction (in ◦C) with different cache
sizes.

peak and average chip temperature over various cache sizes across the applications.

We could shutdown 48 banks in the case of 16MB cache and this reduced the

peak and average temperatures by 6.1◦C and 5.8◦C on an average, respectively.

Larger turned off banks create larger thermal buffers, hence, more reduction in

temperatures. Gating 48 banks in 16MB cache, also maintains the cache size at

4MB which provides lesser cache space to the applications, hence, the IPC degrades

around 2%, on an average. Conversely, for 4MB L2 cache, powered off banks create

smaller thermal buffers than larger ones, hence, lesser temperature reduction is

obtained. The average reduction in peak temperature for 4MB is around 3.5◦C,

which is around 5.1◦C in case of 8MB cache. Moreover, 4MB cache does not allow

much resizing while maintaining performance, hence, the thermal benefit is lesser.

Our performance cognizant DiCeR maintains the cache size according to the WSS
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of the applications. Thus, implementing our policy in larger caches gives more

opportunity for reconfiguration and temperature control.

7.6 Conclusion

In this work, we have explored the possibility of using DiCeR towards temperature

control in CCMPs. We provide a cache based thermal management technique for

modern CMPs equipped with larger centralised LLCs. The cores are placed along

the periphery of the chip. Processor based techniques like DVFS are effective in

temperature control, however have considerable performance impact.

Considering performance as a system wide constraint, we dynamically resize the

LLC to create on-chip thermal buffer which reduces chip temperature. Three dif-

ferent patterns are proposed here to get the maximum reduction in average as

well as peak temperature while maintaining the performance within a limit. The

simulation results, prepared by running PARSEC workloads, are further compared

with the Greedy DVFS, a core based thermal management technique. Both Greedy

DVFS and OptTar show maximum reduction in peak temperature by 6.6◦C and

5.5◦C, respectively, for an 8MB LLC. The temperature reduction is more with

the larger LLCs, due to more chances to create larger thermal buffers. DiCeR

overheads are taken into account in our simulation, which can be further over-

lapped with context switching for enhancing performance. Cache based policy

shows better thermal stability than DVFS based ones, hence offers more circuit

reliability.

In recent CMPs, the cache capacity and area is considerable, and hence, one can

use cache reconfiguration to lower overall chip temperature with minimal impact

on the performance. The results also show that LLCs can remarkably contribute

to safeguard against the thermal breakdown.
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Conclusion and Future Work

Thanks to the manager of DCH, whose staff management skills opened up the

avenue for building up this thesis work towards energy and thermal manage-

ment in modern CMPs.

This research work is motivated towards improving energy and thermal efficiency

of the modern CMPs by dynamic cache resizing. Modern CMPs equipped with

shrunk transistors, having channel length of 32nm or less, have high power density.

This in turn increases the effective chip temperature, that may lead to thermal

breakdown of the circuitry. On-chip LLCs in these CMPs consume high leakage

power which significantly contributes to the total power consumption of the chip.

Also, large LLCs have sufficient potential to create on-chip hotspots when fabri-

cated using shrunk transistors. As power consumption constructs the backbone of

on-chip thermal issues, hence, we initially attempt to reduce power consumption

of the LLCs by shutting down some least used portions of it, which also helps us

for improving thermal efficiency.

Basically, to improve the energy efficiency of a TCMP, we dynamically resized the

LLC at two granularity levels: (i) at bank level, and (ii) both at bank and way

levels (i.e. hybrid). Later, towards improving thermal efficiency of the CMPs, we

exploit the dynamic cache resizing at the LLCs in following ways: (i) for a TCMP

193
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having 16 banked LLC, we turned off least used banks as well as heavily used

banks, and (ii) for a CCMP with 64 banked LLC, we turned off cache banks by

following some resizing patterns that assists to reduce the cache as well as core

temperature.

8.1 Summary of Contributions

Traditional cache accesses follow locality of reference, which anticipates that, cur-

rently least used banks will have least usages in future. Hence, to reduce the

leakage energy consumption of the LLCs with minimal impact on performance,

in our very first attempt, we decided to turn off a set of lightly used cache banks

dynamically (DiCeR). But, in modern multi-tasking environment, locality of ref-

erence is violated for the long running applications. Therefore, one-time shutting

down of cache banks will have an adverse effect on the system performance if

cache space cannot be provided dynamically to the applications on demand in

future. Hence, in order to put a balance between energy consumption and perfor-

mance, we proposed a performance constrained dynamic cache resizing technique

that turns off least accessed cache banks to save leakage, while maintaining perfor-

mance degradation within a certain limit by turning on cache banks when needed.

For a 4MB 4 way set associative cache, this technique achieves a leakage energy

saving by 65% with 30% gain in EDP, while performance penalty is minimal.

The workloads of the turned off banks in DiCeR are handled by the remaining

powered on banks, resulting into increased capacity and conflict misses at these

banks (called as target banks). Towards mitigating this fact, we incorporated DAM

based technique named CMP-SVR at these powered on banks which improves

system performance by reducing the number of cache misses. Subsequently, this

performance gain is further traded to save more leakage energy by turning off more

cache banks as well as cache ways. Moreover, a bank that experiencing 50% of its

cache way shutdown, still maintains more associativity than its actual value due

to the activation of DAM. However, in association with DAM, this policy saves
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leakage by 70% with 35% EDP gains for a 4MB 8 way set associative cache. DAM

in combination with DiCeR is also effective for the smaller sized caches, where we

also provide the option for turning on of the cache ways on demand. For a 2MB

8 way L2, this technique saves leakage by 52% while performance degradation is

lesser than 3%. Note that, to reduce NoC overhead, this policy also selects target

banks in a distance cognizant manner.

In our next exploration, we have exploited the DiCeR for increasing thermal effi-

ciency on-chip. The heavily used cache portions consume higher dynamic energy,

which in turn creates hotspots at these cache locations. Therefore shutting down

of these cache portions will reduce temperature at these hotspots. But, managing

subsequent requests at these heavily used powered off banks may create hotspots

at their target locations and can also curtail system performance. The controlled

used of DiCeR helps to reduce cache hotspots while keeping performance degra-

dation within a certain limit. On the other end of the spectrum, least used cache

banks consume heavy leakage which forms a circular dependency with the chip

temperature and may prone to thermal breakdown in future. Hence, turning off

these banks not only reduces leakage rather they create on-chip thermal buffers

which will further reduce the effective chip temperature. However, for a TCMP

having an 8MB L2 as LLC, both of these policies reduce average chip temperature

by around 4◦C with minimal impact on the performance.

The heuristic solution given for DiCeR performs well with the 16 banked cache.

But, analytical formulation can stringent the heuristic claim by putting a solution

for the optimal cache size while maintaining performance degradation within a cer-

tain threshold. In this work, we initially design an analytical solution for optimal

cache size and tried to maintain the same throughout the execution of the process,

in a CCMP having 64 L2 banks. While maintaining this optimal cache size, we dy-

namically turned off cache banks in some specific locations on-chip which urgently

need an ample amount of thermal buffers for reducing temperature. Towards this,

we develop three different cache resizing patterns and used them during process

execution for better thermal efficiency. For an 8MB L2 cache having 64 banks,
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this policy achieves more than 5◦C reduction in peak and average chip temper-

ature, which are comparable with a traditional core based thermal management

technique.

Figure 8.1 summarises the contributions of this thesis.

8.2 Scope for Future Work

The contributions of this thesis can be extended in a number of ways. Some of

these possible future research directions are listed below:

• Our state destroying caches although saves significant amount of leakage

energy but may be a costlier one when WSS is large enough to fit into the

available actual cache space. To mitigate this system overhead, we can also

exploit state preserving drowsy cache technique in addition with DiCeR.

System can alternatively decide and apply either of these techniques for

leakage minimisation. Towards implementing this, power gating circuitry

has to be attached with the MTCMOS circuitry.

• DiCeR works well enough with our 2D CMPs for a smaller set of cores and

LLC banks. But, this technique can also be applied to the modern 3D

CMPs where caches are placed in multiple 2D layers. Depending upon the

applications, DiCeR can be applied in addition with DAM and way turn

off/on techniques. The dynamic change in system performance will further

apply the energy optimisation policy during execution.

• DiCeR can further be attached with task migration and/or DVFS to enhance

its thermal efficiency. Basically, towards applying this in a large CMP, an

analytical model has to be developed for selection of proper optimisation

policy for controlling chip temperature.
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Figure 8.1: Summary of the thesis contributions. The results for the leakage
savings are shown for 4MB caches and for thermal management the cache size
is 8MB as given in the figure. Note that, the proposed architectures are also

evaluated with various cache configurations.





Appendix A

Closed Loop Simulation

Framework

In this chapter, we will discuss about the details of our closed loop simulation

framework, that we have used for our dynamic thermal simulation. We have

done our thermal simulation for the last couple of contributions, where a TCMP

and a CCMP architecture are simulated. Before going into the details of these

simulation methodologies, we first discuss about our baseline architectures with

their respective configurations. Figure A.1 shows our baseline architectures for a

TCMP (Fig. A.1(a)) and for a CCMP (Fig. A.1(b)).

TCMP and CCMP Architecture The whole TCMP is divided into 16 iden-

tical tiles where each tile contains a processor core from UltraSPARCIII family,

a private L1 Data and Instruction caches and a chunk of shared L2, called as L2

bank. A 2D mesh NoC binds up the whole chip by attaching each of the tile to a

dedicated router. Before configuring this architecture, we first look into the micro-

architectural schema of a processor core. The tile area in a TCMP is sub-divided

into two major parts-(a) Core area and (b) L2 bank.

CCMP, on the other hand, contains 16 cores placed along the periphery of the

chip. The whole L2 as shared LLC is located at the central portion of the chip

199
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(a) Tiled CMP architecture
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Figure A.1: A Tiled CMP and a CMP with Centralised LLC.

and divided into 64 equal sized cache banks. The core configuration is same in

both TCMP and CCMP we used in our works. The core area along the periphery

contains the same components like a tile in TCMP except the L2 bank.

A.1 Components at Core area and L2 Cache

While configuring the simulation setup, initially we design the UltraSPARCIII core

in Simics and McPAT simulators. In very first step, the physical core components

are required to be designed in the simulators. Our simulated core area contains

the following set of physical components [21]-

• Pipelines per Core: we have two integer pipelines and one floating point

pipeline per core.

• Pipeline Depth: determines the number of pipeline stages in each pipeline,

which is 5 for both types of pipelines.

• ALU and MUL per Core: we have two ALU and one MUL (for multi-

plications and divisions) unit per core used for integer instructions.

• FPU per Core: one floating point unit serves the FP instructions.

• Instruction Buffer Size: this buffer is able to store 32 entries at a time

and is placed between IF and ID stages of the pipeline.
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• Decoded Stream Buffer Size: this buffer is located between ID and EXE

stages of the pipeline and has 16 entries in it.

• Int and FP Instruction Window Size: the size of both integer and

floating point instruction windows are 16.

• ROB Size: as we are using in-order processor, hence, ROB is absent in our

design.

• IRF and FRF Size: the integer and floating point register files can store

32 data in each of them.

• Load and Store Buffer Size: as in-order cores do not need load buffer,

hence, only store buffers with 64 entries are kept at the core area.

• Icache and Dcache Config: both instruction as well as data caches have

size of 64KB with 4 way set associativity.

All of these above parameters are fixed through out the execution and kept same

for both TCMP and CCMP core designs. The LLC area is as follows:

• L2 Config: an 8MB LLC is used in our simulation. For TCMP, we have 16

banks and each of the bank having a size of 512KB. For CCMP, we have 64

identical banks and each bank can contain 128KB of cache data.

A.2 Initial Simulator setup and Floorplan

During installation of Simics simulator we have provided the core model, i.e. Ultra-

SPARCIII in our case, and Simics implicitly prepares the core components except

L1 caches. Additionally, to make it a multi-core, we also specify the number of

cores. Once the initial virtual hardware is prepared, we install Solaris Operating

System in it. Note that, the virtual hardware offered by installed Simics system

is known as target machine, and the computer on which we install Simics is called
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as host machine. The file transfer between the host machine and target machine

is done through some created mount point of Solaris at target machine.

However, once, Simics installation is over with Solaris, GEMS is compiled and

attached with it at the Simics interface arena. GEMS has its own configuration file,

where we have specified the parameters related to on-chip memories and NoC. This

GEMS+Simics integration together forms the complete system. Specifically, we

use “rubyconfig.defaults” file from the Ruby memory module of GEMS to develop

our simulated architecture. In this file, we first specify the size and associativity

of L1 Data and Instruction caches. These caches are private to each core and the

values specified here determines a single local L1 cache. Now, in the next, we

further specify the shared L2 size and its associativity. We also have fixed the

number of available on-chip cache levels along with a fixed cache block size across

the cache levels. The main memory size is also specified in the same file. Once,

these memory parameters are ready, now we specify the number of L1 and L2

banks. Further, for setting up the 2D mesh NoC, we need to determine the NoC

parameters, i.e. Virtual Network, Virtual Channel etc. Garnet network module

of GEMS takes care about this. At this point our GEMS+Simics setup is ready

to run.

McPAT on the other hand, now has to be modeled for the same kind of architec-

ture. However, McPAT itself has a default xml configuration interface for Ultra-

SPARCIII processors. Now, we specify all of these fixed parameters in this xml

interface from where McPAT models the target CMP. The components discussed

in Section A.1 are specified in this file and McPAT is executed for the very first

time to get the area details for the individual components. Note that, area details

directly depends upon the technology, i.e. channel length of the transistors those

are kept at the backbone. This technology parameter is also specified in the xml

interface. Following command executes the McPAT setup and gives us the area

details for components at core area and L1 and L2 caches:
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Syntax: ./mcpat -infile <*.xml> -print level <level of detailed output>

Example: ./mcpat -infile Niagara2.xml -print level 5

The example shows the actual data/values that we have used in our simulation.

Niagara2.xml is an input (processor description) file, provided by the McPAT

simulator, contains the same component descriptions like UltraSPARCIII proces-

sor [13, 149]. Hence, we use this file for our processor description and we have

changed the cache parameters (like associativity, size etc.) as needed. McPAT

provides 5 levels of detailed printing of its output parameters. Higher values of

this provide more details where lower values produce values at more abstract level.

For thermal modelling, we need to have simulated area as well as power consump-

tion details of the individual components, hence, we printed the outputs in details

with print level 5.

However, the outputs of McPAT is now ready for our floorplan construction. To-

wards this, we now use the HotFloorplan simulator from HotSpot 6.0 [3], that

prepares the floorplan of the whole chip by executing the following command:

./hotfloorplan -c hotspot.config -f ev6.desc -p avg.p -o output.flp

In the above command, the executable hotfloorplan takes four options during

its execution. The first option ‘-c’ enables the simulator to take inputs from the

HotSpot configuration file. ‘-f’, the second option enables floorplan descriptions

as input for the individual on-chip components, whereas the third option ‘-p’ gets

average power consumption of the respective components. The average power

values are the critical parameters while designing the thermal efficient CMPs.

Finally, ‘-o’ prints the developed floorplan into the “output.flp” file, the desired

floorplan. Next, we discuss these input/output parameters in details.
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HotSpot Configuration [hotspot.config] This file contains two classes of

parameters that have to be specified: (a) Thermal model parameters and (b)

Floorplanner parameters. The set of thermal model parameters includes the fol-

lowing:

1. Chip Specification: this subclass includes chip thickness, thermal con-

ductivity of silicon, specific heat of silicon and temperature threshold for

enabling DTM.

2. Heat Sink Specification: For more realistic simulation, HotSpot further

includes heat sink specifications, that include convection capacitance, con-

vection resistance, length of side of heatsink, heatsink thickness, its thermal

conductivity and the specific heat.

3. Specification of Interface Material: Here, thickness thermal conductiv-

ity and specific heat are mentioned for the interface material.

4. Others: In this zone, ambient temperature is to be mentioned. Apart

from that, processor clock frequency and the sampling intervals need to be

specified.

All of these parameters are used for thermal modeling during calculation of tem-

perature values. The latter one, i.e., floorplanner parameters include the following:

1. L2 modeling: The number of L2 banks with their labels are to be mentioned

here.

2. Rim Modelling: The rim thickness has to be specified with usage of dead

space on-chip while making the floorplan.

3. Annealing Parameters: While making CMP floorplan, this simulator

needs simulated annealing method for preparing the floorplan. Actually,

this policy tries several floorplans and selects the best combination as out-

put to the users. However, detailed process regarding this is out of scope of

this thesis.
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Floorplan Descriptions [ev6.desc] This description file contains the area (in

mm2) of the individual components with its minimum & maximum aspect ratio

(min-asp & max-asp). Aspect ratio implies the ratio of height and width for each

of the on-chip components. Among the other positional parameters in the 2D

plane of the chip, this file also provides whether a component is rotable or not.

The format is as follows:

Syntax: <unit-name> <area> <min-asp> <max-asp> <rotable>

Example: FPX 1.17785e− 6 1 6 1

In this example, we have described the details of FPX, i.e. Floating Point ALU

having an area of 1.17785e− 6mm2, with minimum & maximum aspect ratio of 6

and 1. This component is rotable and hence, we put 1 at the end. Additionally,

this file also provides information about the connectivity among the components,

i.e. which unit should have direct connectivity with which one. The format for

the same is as follows:

Syntax: <unit1-name> <unit2-name> <wire-density>

Example: InX IS 1

This command uses three parameters, where first two parameters represent two

units, and wire-density describes about their adjacency information. In this exam-

ple, InX and IS are Integer ALU and Instruction Scheduler. This two units have

to be placed in such a way so that, they can be connected to each other directly,

for which wire-density = 1 has to be written.

Average Power Consumption [avg.p] Towards generating average power

consumption, we executed three PARSEC applications-Black16, Body16 and Fluid16

upto 100 ruby cycles in GEMS+Simics framework. These traces are further sent
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to McPAT for simulation of power values. For collecting the central tendency of

the average power consumption values, we extracted geometric mean of the power

consumptions of individual elements, across the applications. These power traces

are then used in our avg.p file. This file contains the unit-names along with its

average power consumption which looks as follows:

avg.p

=========

- - - - - - - - - - -

- - - - - - - - - - -

FPX 1.3032335

Reg 0.0014071

InX 2.3281616

ITB 0.0008605

Mul 0.8638675

IS 0.4180698

- - - - - - - - - - -

- - - - - - - - - - -

=========

We have shown a smaller view of the avg.p file above, where we have only six on-

chip components along with their power consumptions (in Watt). The components

are as follows:

• FPX: Floating Point ALU

• Reg: Registers

• InX: Integer ALU

• ITB: Instruction Buffer

• Mul: Multiplication unit
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• IS: Instruction Scheduler

Floorplan as Output [output.flp] The generated output is written into out-

put.flp file in which following format is followed:

Syntax: <unit-name> <width> <height> <left-x> <bottom-y>

Example: Dcache 0.0007746983 0.00209321 0.00033104 0.00067272

Each row of this file contains the data corresponding to a particular unit. We

have shown only for Data Cache (Dcache), where unit name is placed at the be-

ginning of the row followed by its width, height, and co-ordinate position (left-x

and bottom-y) on the 2D plane of the chip. Once output.flp is prepared, an

embedded Perl script in HotSpot can be used to generate the graphical floorplan

of the CMP. The command for the same is given below:

./tofig.pl ev6.flp | fig2dev -L ps | ps2pdf - ev6.pdf

Note that, to avoid overlapping in our graphical floorplan, we replaced the names

of some elements (have large names) with identical alphabets as follows:

• a represents Reg.

• b represents IS.

• c represents ITB.

• d represents Mul.

• e represents DTB.

• f represents InX.
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Figure A.2: TCMP Floorplan

Components Parameters

Processor UltraSPARCIII+
Flit Size 16 bytes
Buffer Size 4
#Virtual Networks 5
Memory bank 1GB, 4KB/page
Pipeline Stage 5-stage
VCs per Virtual Network 4

Table A.1: System and Network Parameters

And names of the all other remaining elements are kept unchanged. However,

the prepared floorplans for both of our architectural frameworks i.e. TCMP and

CCMP are depicted in Figure A.2 and A.3, respectively. The L2 banks in these

figures are represented as L2 [Bank-ID]. The fixed parameters regarding NoC, Core

and Caches, used in our simulation are given in Table A.1 and A.2.
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Figure A.3: CCMP Floorplan

A.3 A few fixed McPAT Parameters

Apart from our previously mentioned parameters, McPAT also takes the following

parameters from its xml based input interface:

• Instruction Length: length of an instruction that has to be processed by

the cores and this length has to be similar with or multiples of the memory

transfer length, else integral number of instructions cannot be provided in a

single fetch cycle to the requested core.
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Cache Parameters Values Core Parameters Values

L1 I/D Cache 64KB, 4-way Clock rate 2.4 or 3.0GHz
An L2 Bank 128 or 512KB ALU per core 2
Block Size 64 Bytes FPU per core 1
Technology used 32nm MUL per core 1
L2 Associativity 8 Ambient temperature 47◦C
Cache Model NUCA Sampling interval 25 or 30µS

Table A.2: Cache and Core Parameters for McPAT and HotSpot Configura-
tions

• Opcode Width: determines the width of opcode of an instruction, which

can have two parts- opcode and operands. Opcodes are supplied by the L1

Instruction cache to the cores.

• Machine Type: is used to decide whether this core architecture supports

Out-of-Order (OoO) executions or not. If it supports OoO execution, then

ROB or Re-Order Buffer has to be attached with this core.

• Number of Hardware Threads: indicates the level of parallelism a core

can achieve.

• Fetch Width: an amount that can be fetched from the memory during

fetch cycles. This value is usually similar to the size of L1 cache line.

• Number of Instruction Fetch Ports: available number of ports for fetch-

ing instructions.

• Decode Width: the amount can be decoded at a time. The peak decode

rate is changed with the number of cores that can run concurrently.

• Issue Width: usually same with the dispatch width of the instruction

scheduler.

• Commit Width: is used to determine the number of ports available for

the register files, so, that much amount can only be sent to the register on

commit.

• FP Issue Width: same like the Issue Width but used for Floating Point

instructions.
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• Prediction Width: this component is related to the branch prediction

architecture for mitigating control hazards during execution.

A.4 Closed Loop Simulation

Figure A.4 shows the closed loop simulation framework that we have developed

and used in our dynamic thermal simulation once the floorplan is ready. While

simulation is running, the sampling period for performance traces has been taken

uniformly at 0.1 million Ruby cycles (which is around 30 micro seconds) at a

speed of 3.0 GHz. On an average, the simulations last for around 200 million ruby

cycles, hence, in whole simulation there will be around 2000 such sampling points.

Although the change in thermal status is a continuous process in real hardware,

but, in our discrete-event simulation model, it has to be modeled in a discrete

manner. However, sampling rates are sufficient enough [29] for such simulations.

The whole process can be summarised as follows:

1. Run applications in GEMS+Simics environment to get the traces at the

sampling points.

2. At the end of each sampling point collect the traces and send them to McPAT

to get the power consumption values.

3. Get power values from the outputs of McPAT and feed them to the HotSpot

for obtaining the temperature traces.

4. Use these temperature traces for deciding the next LLC configuration for

the next sampling intervals.

5. Repeat the whole process until the end of process execution.

We use shell scripts to construct this closed loop simulation framework by inte-

grating these three simulators.
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GEMS + Simics

Generates Results after
each sampling interval

P1      *.xml file

McPAT Simulator

./mcpat -infile <*.xml> \
  -print_level 5

HotSpot Simulator

P2

*.ptrace file

Floorplan
(ev6.flp)

1) ./hotspot -c hotspot.config -f ev6.flp -p \
*.ptrace -o *.ttrace -steady_file *.steady

2) cp *.steady *.init

3) ./hotspot -c hotspot.config -init_file *.init \
 -f ev6.flp -p *.ptrace -o *.ttrace

P3

Figure A.4: Our Closed Loop Simulation Framework for thermal analysis.

A.4.1 Data Flow in Closed Loop Simulation

The data flow among these simulators play the most significant role during the

simulation. We divided this flow of data into three modules, named P1, P2 and

P3, as shown in Figure A.4. In this section, we will discuss about these three

modules one by one.

P1. This data module flows between GEMS+Simics and McPAT simulators.

The outputs of GEMS at each sampling interval is evaluated and from which our

shell script prepares the input data to construct the new input file (*.xml) for

McPAT. From GEMS output, our script extracts the total number of executed:

(a) instructions, (b) integer instructions, (c) floating point instructions, (d) branch

instructions, (e) load instructions and (f) store instructions. Additionally, it also

extracts: total completed clock cycles, Icache read accesses and read misses, total

read and write accesses and misses for each L1 Data and L2 Banks. All of these
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extracted values are then placed at their proper locations in *.xml input file of

McPAT.

P2. The next data flow takes place between McPAT and HotSpot, where

generated power values from McPAT are to be written in the *.ptrace file of

HotSpot. The output of McPAT simulator are stored in a file from where our script

extracts the total power (Dynamic + Static) consumption of every component

discussed earlier. The power values for individual components here indicate the

power consumptions over the last sampling interval only. All these values are

taken together and appended at the *.ptrace file which provides input to the

HotSpot. The power values generated by the McPAT mostly depend upon the

following parameters, collected from GEMS output in every iteration: total (and

different kinds of) instructions executed, number of cache accesses and misses.

The technology parameter along with the current average chip temperature further

help McPAT together to generate dynamic and static power consumptions of the

individual elements.

P3. On its each and every run, along with the fixed floorplan, HotSpot uses

all the power values from the beginning for continuous modeling of temperature

values. Once, HotSpot gets power trace, initially it executes to generate the steady

state temperature at the last sampling interval (by using 1st command written in

the HotSpot block in Figure A.4). This steady-state temperature is further used as

the initial temperature at this stage (*.init file). To prepare this a copy command

is executed (2nd command in the HotSpot block in Figure A.4). This *.init file

is now contains initial temperatures for all of these components and by issuing

third command (from HotSpot block in Figure A.4), we get the final transient

temperature values for the current sampling interval. This temperature values

are written in a *.ttrace file which will be read by GEMS, from P3 interface, for

making decisions on future cache configuration.
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