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Abstract

Due to the advancement of the data storage and processing capabilities of computers,

most of the real life applications are shifted to digital domains and many of them are data

intensive. In general, most of the applications deal with similar type of data items, but

due to variety of reasons some data points are present in the data set which are deviating

from the normal behaviors of common data points. Such type of data points are referred

as outliers and in general the number of outliers in a data set is less in number. Identifying

the outliers from a reasonably big data set is a challenging task. Several methods have been

proposed in the literature to identify the outliers, but most of the methods are computation

intensive. Due to the diverse nature of data sets, a particular outlier detection method

may not be effective for all types of data set.

The main focus of this work is to develop algorithms for outlier detection with an

emphasis to reduce the number of computations. The number of computations can be

reduced if the data set is reduced by removing some data points which are obviously not

outliers. The number of computations again depends on the number of attributes of data

points. While detecting outliers it may be possible to work with less number of attributes

by considering only one attributes from a set of similar or correlated attributes.

The objective of this work is to reduce the number of computations while detecting

outliers and study the suitability of the method for a particular class of data set. Our

methods are based on the clustering techniques and divide the whole data set into several

clusters at the beginning. Depending on the nature of the clusters we propose methods

to reduce the size of the data sets, and then apply outliers detection method to find the

outliers.

We propose three methods based on the characteristics of the clusters to identify the

clusters that may not contain outliers and such clusters are pruned from the data set.
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ABSTRACT

We also propose a method to identify the inlier points from each cluster and prune those

points from clusters. We use the principle of data summarization and propose a method

that involves both cluster pruning and point pruning. For high dimensional data set, we

propose a method that involves attributes pruning to reduce the number of computations

while detecting outliers.

Once we perform the pruning step, a reduced data set is resulted and then outlier

detection techniques are used to detect the outliers. For each method we demonstrate the

effectiveness of our proposed methods by performing experiments.
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Chapter 1

Introduction

Knowledge extraction from data is commonly referred to as data mining. Extractions

of knowledge vary from application to application. Outlier detection in data mining

is the identification of items, events or observations/patterns which do not conform to

an expected behavior. An outlier is a data point which is significantly different from

remaining data. Outliers arise due to mechanical faults, changes in system behavior,

fraudulent behavior, human error, instrument error. Their detection is important before

they escalate with potentially catastrophic consequences. Many data mining algorithms

try to minimize the influence of outliers or eliminate them all together. Thus, finding the

outliers and analysing its behaviour is an interesting data mining task, which is referred

as outlier detection [2]. Indeed, for many applications, the rare events (outliers) are often

more interesting than the normal ones (inliers). Although rare events are by definition

infrequent and their significance is high as compared to other events; so the detection of

outliers is becoming important. Outlier detection can identify errors and can be removed

from the data set makes data set pure for processing. Outlier detection is related to, but

distinct from noise. Noise can be defined as a phenomenon in data that is not of interest

to the analyst, but acts as a hindrance for data analysis.

1.1 Outlier Detection

Outlier is a point that deviates from other points and outlier detection is a technique to

discover the outliers. Most data mining methods discard outliers as noise or exception.

However, in some applications such as fraud detection, the rare events can be more

interesting than the more regularly occurring ones. Many outlier detection methods

have been emerged/developed for different areas/applications. These methods can be

1



1.1 Outlier Detection

classified from different perspectives. One important view on which outlier detection can

be classified is based on the distance among the data points. Detecting outliers from

various applications using different techniques is a non-trivial task. A simple and straight

forward method to detect an outlier is to identify the data points which do not belong

to normal region. Depending on the application domain, outliers are of specific interest.

Outlier detection methods always use some parameters based on the characteristics of

data points to define the ’degree of outlierness’. Many techniques have been employed

for detecting outliers and in literature it is found that several terminologies have been

used by different authors. For example, Chandola et. al. [3] described their various

approaches as outlier detection. Chandola et. al. [3] used the term anomalies and

authors of the papers [4–6] used the term novelty detection. Similarly the term discordant

observations [3,7], exceptions [3,8,9], surprises [3], peculiarities [3,10] are the other terms

used by different authors in their works. On the other-hand, there is no single formal

definition for an outlier, but conceptually:

An outlier is an observation (or a set of observations) that differs so much from

other observations (or sets) as to arouse suspicion that it has been generated

by a different mechanism. [11]

Barnett and Lewis [12] indicate that an outlying observation, or outlier, is one

that appears to deviate markedly from other members of the sample in which it occurs.

Similarly, Johnson [13] defines an outlier as an observation in a data set which appears to

be inconsistent with the remainder of that set of data

Formally outlier detection can be described as: Given a set of N data points or data

objects and m the expected number of outliers, find the top-m objects in reference to some

dissimilarity measures that are considerably dissimilar, exceptional, or inconsistent with

respect to the remaining data points.

In order to understand the need of outlier detection, we need to understand different

aspects of outlier detection. For example, as to formulate specific problem, which has to

be determined by all factors such as nature of data, description/information about the

data, application domain requirements and to describe data in terms of global and local

outliers. The global outliers are the observations with the largest distances, whereas an

observation that deviates greatly from its neighbors with respect to its local density is

considered to be a local outlier. The density is measured by the length of the κ-nearest

neighbor distances of its neighbors. Even though a local outlier may not deviate from all

the other observations, it, indeed, may signal interesting information. Data visualization

2



1.1 Outlier Detection

techniques are one way for detecting outliers. Human eyes are very fast and effective at

noticing data inconsistencies. However, data visualization methods are weak in detecting

outliers in data with many categorical attributes or in data of high dimensionality, since

human eyes are good at visualizing numeric data of only two to three dimensions.

There are several factors that affect the performance or utility of the outlier detection

methods. Some of them are listed below:

Nature of input data: The nature of input data [3,14] is the key aspect of any outlier

detection technique. The input data is described in terms of set of data points(

also referred as objects, records, instances, vectors, patterns, events, cases, samples,

observations, entities) and each data point can be described using a set of attributes

(also referred to as variables, characteristics, features, fields, or dimensions). The

attributes can be of different types such as binary, categorical, or continuous. Each

data instance might consist of only one attribute (uni-variate) or multiple attributes

(multivariate). In case of multivariate data instances, all attributes might be of

same type or might be a mixture of different data types. The nature of the data

and the nature of the attributes determine the applicability of the outlier detection

techniques.

Type of Outliers: The nature of the desired outliers (output) is also the key aspect

of any outlier detection technique. Outliers can be classified into following three

categories [3]:

• Point Outliers: If an individual data point is deviating from the rest of the data

points, then the data point is termed as point outlier.

• Contextual Outliers: If a data point is observed to be an outlier in a specific

context, but not otherwise, then it is termed contextual outlier (also referred

to as conditional outliers [15]).

• Collective Outliers: If a set of related data points appears together and behave

as outliers with respect to the entire data set, it is termed a collective outliers.

Output: Output is the way to present/describe the nature of the result for any outlier

detection technique. In general there are two different ways to present the output:

• Outlier Score: A score is assigned to each data point, which is the degree of

outlierness of a data point.

3



1.1 Outlier Detection

• Labels: A binary classification technique is used to present whether a data

point is normal or outlier.

In majority of the applications, outliers are present in the data set due to variety

of reasons. The major challenges for outlier detection can be attributed to the following

points.

• It is very difficult to indicate the clear boundary between the outliers and inliers.

• Different application domains assume different perspective to distinguish an outlier

from the inliers.

• It is very difficult to predict how many number of outliers are present in a data set.

• The task of defining the action of a normal points from abnormal points is very

difficult.

Over the time, a variety of outlier detection techniques have been emerged from

research communities. Many of these techniques are specific to certain application

domains, while others are more generic. Methods for outlier detection can be categorized

into following approaches [3].

Statistical outlier detection techniques: These techniques generally take the

assumption that outliers lie in the low probability regions and normal point lie in

high probability regions of a stochastic model [12,16]. A statistical model is fitted to

a given data and a test is applied on the data point to find out whether it belongs to

the model are not. The data points with low probability obtained from the model,

based on the applied test statistics, are declared as outliers [11, 17]. There are two

basic types of procedures for detecting outliers: (1) Block procedures: In this case,

either all of the suspect objects are treated as outliers or all of them are accepted

as consistent. (2) Consecutive (or sequential) procedures: An example of such a

procedure is the inside-out procedure. Its main idea is to consider an object to be

tested first which is least likely to be an outlier. If it is found to be an outlier, then

all of the more extreme values are also considered as outliers; otherwise, the next

most extreme object is tested, and so on. This procedure tends to be more effective

than block procedures.

Nearest neighbor based outlier detection techniques: The distance or similarity

measure between two data points is used in nearest neighbor based outlier detection.
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1.1 Outlier Detection

The distance (or similarity) between two data points can be computed for different

types of data in different ways. These methods identify the data points as

outliers based on two different aspects; (1) distance between the neighbors and

(2) density of the neighbors. From the literature nearest neighbors based outlier

detection techniques are broadly classified into two categories namely, distance based

techniques, use the distance of the data point to its κ-nearest neighbors as the outlier

score [1, 18–23] and density based techniques, use relative density of the data point

as outlier score [23,24].

Classification based outlier detection techniques: These techniques use classifica-

tion algorithms to build a model to test whether a data point is an outlier or not.

Learning a model from a set of training data and classifying a test data point using

the learnt model is called classification [3,14,25]. Classification based outlier detec-

tion techniques can be grouped into two categories namely one-class outlier detection

techniques and multi-class outlier detection techniques. In One-class techniques all

the training data points have only one class label which are the normal points. If

the classifier does not classify the data point then it is an outlier. In multi-class

techniques normal points belong to any one of the class where as outlier belong to

none of the class.

Clustering based outlier detection techniques: These techniques generally take

two important assumptions:

1. Normal data points lie close to their closest cluster centriod, while the outliers

lie far away from their closest cluster centriod.

2. Normal data points belong to large and dense clusters, while outliers lie in small

or sparse clusters.

Applying an outlier score on the data point to find out the degree of outlier. Most of

the outlier detection methods use some quantitative parameters to identify a data point

as outlier. These measures are either distance based or density based. The outlier score

of a data point is measured as its distance to its k-th nearest neighbor [26] or KNN-

distance [27]. If the distance measure is more then the point is an outlier. Knorr et.

al. [1] use the outlier score as the number of neighbors that are not more than d distant

away from the data point and if the number of neighbors is small then the point is an

outlier. Similarly, Local Distance Based Outlier Factor (ldof) [21], Local Outlier Factor
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(LOF ) [23], Outlier Detection Using In degree Number (ODIN) [28], Multi granularity

Deviation Factor (MDEF ) [9], etc. are some of the measures for outlier score.

Clustering and classification are both fundamental tasks in Data Mining. Classifica-

tion is used mostly as a supervised learning method, clustering for unsupervised learning.

The goal of clustering is descriptive and goal of classification is predictive [29]. The ob-

jective of clustering is to find a set of groups which is driven by the intrinsic properties of

data points, but in classification, the grouping of data points are driven by some extrinsic

properties.

Clustering methods can be divided into different categories, like partitioning meth-

ods, hierarchical methods, density based methods, grid based methods, fuzzy and model

based methods. Similarly classification methods can be divided into different categories,

like parametric and non-parametric. Parametric methods: Linear discriminant analysis,

Quadratic discriminant analysis, Maximum entropy classifier. Non-parametric methods:

Decision trees, Kernel estimation and k-nearest-neighbor algorithms, Naive Bayes classi-

fier, Neural networks, Support Vector Machines, and Gene expression programming.

In our proposed methods of outlier detection, we perform pre-processing on given data

set by partitioning it into several clusters. We used simple and most popular clustering

algorithm (k-means) as a initial pre-processing for outlier detection. k-means is a distance

based partitional clustering algorithm. It is popular due to the following reasons:

• Its time complexity is O(i ∗ k ∗ N), where N is the number of patterns, k is the

number of clusters, and i is the number of iterations taken by the algorithm to

converge. Typically, k and i are fixed in advance and so the algorithm has linear

time complexity in the size of the data set [30].

• It is order-independent; that means for the same set of initial seed points, it generates

the same clusters, irrespective of the order of data points presented to the algorithm.

However, the k-means algorithm is sensitive to initial seed selection and even in the

best case, it can produce only hyper-spherical clusters.

The key advantage of distance based techniques is that they are purely data driven

and do not make any assumptions. The key disadvantage of distance based technique is

that it greatly relies on a distance measure defined between a pair of data points. So it

involves lot of distance computations. In order to reduce the distance computations we

have used clustering to group the data points. Generally the chances of having outliers

in dense clusters are less and removing those clusters may not remove any outliers. Our

outlier detection methods identify the outliers from remaining points. Several outliers
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1.2 Objective of the Thesis

scores are reported in the literature to identify the outliers. The outlier score local distance

based outlier factor (ldof) [21] is a good measure for scattered real-world data sets. After

removing some of the clusters from given data set, the remaining data set becomes sparse

one, and so ldof is used in our methods as outlier score.

1.2 Objective of the thesis

Several methods for outlier detection have been published by different researchers. The

basic ideas of all these methods are to calculate an outlier score for data points. Depending

on the value of the outlier score, declare the data point as outlier or inlier. The calculation

of the outlier score is computation intensive. The main objective of this work is to

reduce the number of computations. The reduction of the number of computations can be

achieved by reducing the number of data points. In our work, we divide the entire data

set into several clusters using k-means clustering algorithm. Depending on the behaviors

of clusters it is possible to prune an entire cluster or prune some points from a cluster.

Also the computation can be reduced by selecting some features of a data set. As the

number of points in a data set can be reduced by pruning, the outlier score calculations

for all remaining data points in terms of distance computations are reduced. To reduce

the computations while detecting outliers we propose three different ways of pruning data

points (for which chances of being an outlier is less) from the data set. Also we put forward

another method of features pruning to reduce the number of computations.

• Cluster Pruning: Removing a cluster of points is called cluster pruning. A

clustering algorithm is used to obtain the clusters. These clusters are analyzed based

on different parameters, and identify the clusters that can be pruned. A complete

set of data points in the cluster is pruned.

• Point Pruning: Removing data points is called point pruning. Clusters are found

using clustering algorithm and the points are pruned from each of the clusters with

respect to the distance of a point from the centriod of the cluster.

• Data Summarization based Pruning: Summarization of a cluster and removing

the points based on summarization parameters is called data summarization based

pruning. Clusters are formed using clustering algorithm and obtain the features for

each cluster. These features are used to select the clusters for pruning.

• Feature Pruning: Removing features with similar characteristics is called feature

pruning. Correlation factor is calculated for all pairs of features. The features are
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pruned which are having similar correlation values. The unpruned distinct features

are used for outlier detection.

1.3 Contributions of the Thesis

In this work, we propose three cluster based pruning methods, one point pruning, one

data summarization based pruning and one feature pruning method to reduce the size of

the data set and eventually reduce the number of computation while detecting outliers.

We use the parameter ldof [21] in our work to determine the outlierness of a data point.

The contributions of our work are summarized as follows:

Cluster based pruning for Outlier Detection: Three new cluster based pruning

methods are proposed in our work. All the methods have three stages. In first

stage k-means clustering method is applied to a given data set to obtain k number

of clusters. In the second stage, which is termed as pruning stage, the clusters are

analyzed so as to prune some clusters. In the third stage an outlier score is calculated

for the unpruned data points to report the top-m outliers.

In the first method, outlier score of the centriods of the clusters are calculated.

Using these outliers scores, we obtain the clusters that are pruned from data set.

The basic assumption for this method is that, the clusters with low outlier score have

less chances of containing outliers. Removing certain number of clusters reduces the

size of the data set. In the first method we have reduced the data points by pruning

half of the clusters. In second and third methods we use some characteristics of

the clusters to identify the clusters to be pruned. In the second method we use the

radius of each cluster to take the decision about cluster pruning. In the third method

we calculate the distance of each cluster’s centriod from the overall centriod of the

data set and use this distance to find the candidate clusters to be pruned. From

the limited number of points remain after pruning, we calculate the outlier score of

these points and report the top-m points as outliers from the data set. The results

produce by these methods are analyzed experimentally. Proposed methods perform

better than the existing method [21].

Point Pruning based Outlier Detection Method: A new point pruning method is

proposed to perform better pruning than the cluster pruning methods. In cluster

pruning entire cluster is pruned, whereas in point pruning we identify some data

points from each clusters that to be pruned. We form the clusters using k-means
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clustering algorithm. The radius of the clusters are used in this method to decide

whether a data point to be pruned or not. The radius is the average distance of all

the data points from the centriod of the cluster. Based on the distance of a point

from the centriod, we check for the points which are inliers, that are the points which

lie close to the centriod and fall below the radius of the cluster. Pruning the inliers

points from the clusters reduces the data points and eventually brings down the

distance computations. For the remaining unpruned points we calculate the outlier

score and report the top-m points as outliers. We present the experimental results

for showing the efficiency of this scheme.

Effective data summarization based pruning for Outlier Detection: A new data

summarization scheme is proposed to prune both the clusters and the data points

depending on the parameters obtained from the clustering method. Initially we

cluster the data set using a leaders clustering method. A leader with summarized

information of its followers is referred as Data Entity. The distance between the

leader and centriod of the cluster is used to take the decision whether the cluster has

to be pruned are not. If a cluster is not getting pruned we take the distance of the

data points from the leader to check whether the point is a candidate outlier are not

and accordingly we prune some data points. For all the pruned clusters, we include

a representative data point for each of such pruned clusters in the remaining data

set. After pruning the clusters and points from the clusters, we calculate the outlier

score for the rest of the points and report the top-m as outliers depending on their

outlier scores.

Correlation based Pruning Method for Outlier Detection: A new correlation

based attribute pruning method is proposed to identify the attributes to be pruned.

A well known Pearson Correlation Coefficient is used to find the correlation value

between the attributes. The attributes which are having very high correlation values

are grouped together. Only one attribute is selected from each group, remaining

attributes are pruned from the group. All features selected from different groups

are used for outlier detection. An outlier score is calculated for all the points with

only selected attributes. Due to the reduction in the number of attributes, the time

required for distance computation is also reduced. Finally we report the top-m

points with outlier score as outliers.
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1.4 Organization of the Thesis

The thesis is organized into seven chapters. A summary of the contents of the chapters is

as follows:

Chapter 2: This chapter presents a brief survey and related concepts of previous work

on outlier detection methods that forms the background of our work.

Chapter 3: This chapter introduces the idea of pruning to reduce the computations

while detecting outliers and presents three new cluster pruning methods for outlier

detection.

Chapter 4: This chapter addresses the problems of cluster pruning and a new point

pruning method is introduced to prune the data points from different clusters while

detecting outliers.

Chapter 5: In this chapter we define a new method for data summarization called

Data Entity. Using the data entity, we propose a new outlier detection method that

involves both cluster pruning and data pruning.

Chapter 6: In this chapter we propose a feature correlation based pruning method,

which can identify the correlated features. An outlier detection method is proposed

using only one feature among the correlated features.

Chapter 7: This chapter summarizes the overall contributions of the thesis with several

interesting directions for future research.
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Chapter 2

Background and Related Works

2.1 Introduction

It is observed that in many applications there exist data points that do not comply with

the general behavior or model of the data. Such data points, which are inconsistent

with the remaining set of data, are called outliers [3, 31]. Many data mining algorithms

try to minimize the influence of outliers or eliminate them all together. This, however,

could result in the loss of important hidden information. In other words, the outliers

may be of particular interest, such as in the case of fraud detection. Hence forth, outlier

detection and analysis is an interesting data mining task, referred to as outlier detection.

Outlier detection can be described as follows [3, 21,31]: For a given set of N data points,

finding the top-m (m expected number of outliers) objects that are considerably dissimilar,

exceptional or inconsistent with respect to the remaining data points is treated as outlier

detection. The outlier detection problem can be viewed as two sub-problems:

• Defining the objects/data points that are inconsistent in a given data set.

• Defining efficient algorithms to detect outliers.

The problem of defining outliers is non-trivial. When multidimensional data are

analyzed, not any particular one dimension but a combination of dimension values may

be extreme. For non-numeric (i.e., categorical) data, the definition of outliers requires

special consideration. Similarly data visualization methods are weak in detecting outliers

in data with many categorical attributes or in data of high dimensionality, since human

eyes are not good at visualizing numeric data beyond two to three dimensions. Even

clustering algorithms may not identify outliers [32]. Clustering finds groups of strongly
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related objects. Outlier detection finds objects that are not strongly related to other

objects. Some clustering algorithms discard outliers as noise. The clustering algorithms

can be modified to include outlier detection as a by-product of their execution. An object

is a cluster-based outlier if the object does not belong strongly to any cluster. In detecting

outliers, small clusters that are far from other clusters are considered to contain outliers.

These approaches are sensitive to the number of clusters selected. It requires thresholds

for the minimum cluster size and the distance between a small cluster (with outliers)

and other clusters. If a cluster is smaller than the minimum size, it is regarded as a

cluster of outliers. Clustering is also called data segmentation in some applications because

clustering partitions large data sets into groups according to their similarity. As a data

mining function, cluster analysis can be used as a stand-alone tool to gain insight into

the distribution of data, to observe the characteristics of each cluster, and to focus on a

particular set of clusters for further analysis. Alternatively, it may serve as a preprocessing

step for other algorithms, such as characterization, outlier detection, attribute subset

selection, and classification, which would then operate on the detected clusters and the

selected attributes or features. Many algorithms are designed to cluster interval-based

(numerical) data. However, applications may require clustering other types of data, such

as binary [33, 34], categorical [35, 36], and ordinal data [34], or mixtures of these data

types. So clustering algorithms are used as a preprocessing step to obtain certain number

of clusters. These clusters are examined to use them for further analysis. For example,

the clusters are used to compress the data based on the data summarization. But to form

these clusters we need a measure to group the points into clusters. That is the similarity

or dissimilarity measure. In the next section we discuss various dissimilarity measures for

the different types of attributes.

2.2 Dissimilarity Measures

The types of data that often occur in cluster analysis and how to preprocess them for such

an analysis. Suppose a data set to be clustered contains N objects, which may represent

persons, houses, documents, countries, and so on. Many of the clustering algorithms

typically operate on either of the following two data structures.

Data matrix (or object-by-variable structure) [2,37]: This represents N objects, such

as persons, with δ variables (also called measurements or attributes), such as age, height,

weight, gender, and so on. The structure is in the form of a relational table, or N -by-δ

matrix (N objects × δ variables).
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2.2 Dissimilarity Measures

Table 2.1: A contingency table for binary variables.

Object j

Object i

1 0 sum

1 q r q + r

0 s t s+ t

sum q + s r + t p

Dissimilarity matrix (or object-by-object structure) [2,38,39]: This stores a collection

of proximities that are available for all pairs of N objects. It is often represented by an

N -by-N table, where d(i, j) is the proximities between the objects i and j and measure

the difference or dissimilarity between objects i and j. In general, d(i, j) is a non negative

number that is close to 0 when objects i and j are highly similar or near each other.

Similarly dissimilarity becomes higher as they differ more or move far from each other.

Many clustering algorithms operate on a dissimilarity matrix. If the data are presented

in the form of a data matrix, it can first be transformed into a dissimilarity matrix before

applying such clustering algorithms.

Calculating the dissimilarity between different variables like interval-scaled variables,

binary variables, categorical, ordinal, and ratio-scaled variables; or combinations of these

variables are different.

• A binary variable has only two states 0 or 1, where 1 represent presence of variable

and 0 represent absence of the variable. The results of any method can mislead if the

binary variables are treated as interval-scaled variables. Therefore, methods specific

to binary data are necessary for computing dissimilarities. There are two types of

binary variables, symmetric and asymmetric binary variables. A symmetric binary

variable is a variable that has equal valuable states and carry the same weight; that

is, there is no preference on which outcome should be coded as 0 or 1. Dissimilarity

measure that is based on symmetric binary variables is called symmetric binary

dissimilarity. If all binary variables are thought of as having the same weight, the

contingency table is viewed as 2-by-2 matrix as shown in Table 2.1, where q is the

number of variables that equals 1 for both objects i and j, r is the number of variables

that equals 1 for object i but that are 0 for object j, s is the number of variables

that equals 0 for object i but equal 1 for object j, and t is the number of variables

that equal 0 for both objects i and j. The total number of variables is p, where

p = q + r + s + t. The dissimilarity (or distance) measure for a symmetric binary
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variables can be assessed between objects i and j as shown in Equation (2.1).

d(i, j) =
r + s

q + r + s+ t
(2.1)

A binary variable is asymmetric if the outcomes of the states are not equally

important, such as the positive and negative outcomes of a disease test. Generally,

the most important outcome, which is usually the rarest one, is coded by 1 (e.g.,

Cancer positive) and the other by 0 (e.g., Cancer negative). Given two asymmetric

binary variables, a positive match (code 1) is considered more significant than

that of a negative match (code 0). The dissimilarity based on such variables is

called asymmetric binary dissimilarity, where the number of negative matches, t,

is considered unimportant and thus is ignored in the computation, as shown in

Equation (2.2).

d(i, j) =
r + s

q + r + s
(2.2)

Complementarily, we can measure the distance between two binary variables based

on the notion of similarity instead of dissimilarity. For example, the asymmetric

binary similarity between the objects i and j, or sim(i, j), can be computed as

shown in Equation (2.3)

sim(i, j) =
q

q + r + s
= 1− d(i, j) (2.3)

The coefficient sim(i, j) is called the Jaccard coefficient [40].

• A categorical variable is a generalization of the binary variable in that it can take

on more than two states. For example, map color is a categorical variable that may

have, say, five states: red, yellow, green, pink, and blue. Let the number of states of

a categorical variable be st. The states can be denoted by letters, symbols, or a set

of integers, such as 1, 2, . . . , st. These integers are used just for data handling and

do not represent any specific ordering. The dissimilarity between two categorical

objects i and j can be computed based on the ratio of mismatches. Where st is

the number of matches (i.e., the number of variables for which i and j are having

the same state), and p is the total number of variables. Weights can be assigned to

increase the effect of st or to assign greater weight to the matches in variables having
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a larger number of states. Equation (2.4) shows the dissimilarity measure between

the objects i and j.

d(i, j) =
p− st

p
(2.4)

• A discrete ordinal variable resembles a categorical variable, except that the st states

of the ordinal value are ordered in a meaningful sequence. A continuous ordinal

variable looks like a set of continuous data of an unknown scale. Ordinal variables

may also be obtained from the discretization of interval-scaled quantities by splitting

the value range into a finite number of classes. The values of an ordinal variable can

be mapped to ranks. The treatment of ordinal variables is quite similar to that of

interval-scaled variables when computing the dissimilarity between objects. Suppose

that t is a variable has st states from a set of ordinal variables describing N objects.

The dissimilarity computation with respect to t involves the following steps:

1. The value of t for the ith object is xit , and t has st ordered states, representing

the ranking 1, ... ,st . Each xit is replaced by its corresponding rank,

rit ∈ {1, ...st}.
2. Since each ordinal variable can have a different number of states, it is often

necessary to map the range of each variable onto [0.0, 1.0] so that each variable

has equal weight. This can be achieved by replacing the rank rit of the ith

object in the tth variable by

zit =
rit − 1

st − 1
(2.5)

3. Dissimilarity can then be computed using any of the distance measures as

described in the interval scaled variables.

• A ratio-scaled variable makes a positive measurement on a nonlinear scale, such as

an exponential scale, approximately following the formula

AeBq orAe−Bq (2.6)

where A and B are positive constants, and q typically represents time. Common

examples include the growth of a bacteria population or the decay of a radioactive

element. There are three methods to handle ratio-scaled variables for computing the

dissimilarity between objects
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1. Treat ratio-scaled variables like interval-scaled variables. This, however, is not

usually a good choice since it is likely that the scale may be distorted.

2. Logarithmic transformation is applied to a ratio-scaled variable t having value

xit for object i by using the formula yit = log(xit). The yit values can be treated

as interval- valued.

3. Treat xit as continuous ordinal data and treat their ranks as interval-valued.

The latter two methods are the most effective, although the choice of method

used may depend on the given application.

• Interval-scaled variables are continuous measurements of a roughly linear scale.

Typical examples include weight and height, latitude and longitude coordinates and

weather temperature. The measurement unit used can affect the analysis. For

example, changing measurement units from meters to inches for height, or from

kilograms to pounds for weight, may lead to a very different results. To help avoid

dependence on the choice of measurement units, the data should be standardized.

Standardizing measurements attempts to give all variables an equal weight. This

is particularly useful when given no prior knowledge of the data. However, in

some applications, users may intentionally want to give more weight to a certain

set of variables than to others. After standardization, or without standardization in

certain applications, the dissimilarity (or similarity) between the objects is typically

computed based on the distance between each pair of objects. The most popular

distance measure is Euclidean distance. Distance between any two data points

is often used as the dissimilarity measure in many methods. Suppose there are

three different points a, b, and c. If the distance between (a,b) is higher than the

distance between (a,c), then we can say that dissimilarity between (a,b) is higher

than dissimilarity between (a,c).

Euclidean distance [41,42] is widely used dissimilarity measure by machine learning

and data mining communities. Euclidean distance between a pair d(x, y) of δ-

dimensional points (objects) can be expressed as follow.

d(x, y) =

√

√

√

√

δ
∑

i=1

(xi − yi)
2 (2.7)

Another well-known dissimilarity measure is Manhattan (or city block) distance,

defined as
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d(x, y) =

δ
∑

i=1

|xi − yi| (2.8)

Generalization of Euclidean and Manhattan distance is known as Minkowski

distance [41,42].

Lp =

(

δ
∑

i=1

|xi − yi|p
)1/p

(2.9)

This is referred to as Lp norm. If p = 1, we call it as L1 norm or city block distance.

Similarly, Euclidean distance is called L2 norm. Euclidean distance has some well

known properties, which are given below. Let d be the Euclidean distance between a

pair of objects in D. Then d satisfies certain properties. For three points x, y, z ∈ D,

– Non-negativity: d(x, y) ≥ 0

– Reflexivity: d(x, y) = 0, if x = y

– Symmetry: d(x, y) = d(y, x)

– Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z)

A distance function that satisfy above all properties is called metric distance [43].

However, Euclidean distance cannot be used when features have different scales and

they are correlated among themselves. In this scenario, Mahalanobis distance [44]

is very useful. It considers distribution of entire data set. Mahalanobis distance

between x and y

dM (x, y) = (x− y)

−1
∑

(x− y)T (2.10)

where
∑

is the covariance matrix of the data set. Mahalanobis distance has time

complexity of O(Nδ2), where N is the size of the data set and δ is the dimension

of the data set. Therefore, this method is not suitable in large data set. Euclidean

distance takes O(δ) times to compute distance between a pair of objects. Euclidean

distance is independent of underlying data set. Outlier detection methods proposed

in this thesis use Euclidean distance as the dissimilarity measure.

Based on different similarity/dissimilarity measures many clustering methods have

been developed in various application domains, which are discussed in next section.
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2.3 Types of Clustering Methods

The essence of many fields such as statistics, object recognition, information retrieval,

machine learning, data mining, psychology and other social sciences is to find meaningful

groups of objects. Cluster analysis has been played an important role in these

fields [45]. Therefore, many clustering methods have been emerged for automatically

finding meaningful groups or clusters. It is very difficult to give crisp categorization

of clustering methods because methods in one category may share some characteristic

from other categories. One can categorize these clustering methods from different

perspectives [2, 14,45,46] and a brief description is presented for each category.

• Partitional and Hierarchical: Clustering methods can be divided on the basis

of clustering results viz., partitional clustering and hierarchical clustering methods.

Partitional clustering methods produce a single clustering (flat clustering) while

hierarchical clustering methods produce nested clustering of a data set. Most of

the partitional clustering methods need the desired number of clusters as the prior

knowledge. Hierarchical or taxonomic structures of data are discovered through

hierarchical clustering methods.

• Distance Based and Density Based: Clustering methods use optimization

technique to produce clustering results. Some clustering methods uses global criteria,

which is the function of distance between objects in a data set. These methods are

called distance based method. On the other hand, density based clustering method

optimize local criteria, which is based on density distribution of the data set. In

this approach, a dense region is considered as a cluster in the feature space. Both

distance and density based methods can produce flat as well as nested clusterings of

data.

• Hard and Soft : Clustering methods, which assign object to a cluster is called

hard clustering. Here, cluster boundary is crisp (hard or rigid) and clusters are

well separated. However, object may be required to place in more than one clusters

simultaneously in many applications. Here, clusters are overlapped, i.e. some objects

belong to more than one clusters. A different type of clustering method is proposed

to handle these applications. This is called soft clustering approach.

• Complete and Partial: Complete clustering methods assign each and every

object to a cluster. Partial clustering could not assign some of the objects to any

clusters because these objects do not belong to any meaningful groups in the data.
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2.3 Types of Clustering Methods

In the next subsections, we review widely used clustering methods with emphasizing

on the methods which can detect clusters in nearly linear time.

2.3.1 k-means clustering

The k-means [47, 48] is a distance based partitional clustering method. The k-means is

very popular clustering method and it is used in many application domains. It is an

iterative method. The k-means assumes that the desired number of clusters, k is a user

specified parameter. Initially, method selects k objects randomly from data set and treats

them initial centriods of k clusters. Centriod of a cluster is the center point of a cluster.

It needs not be object in the given data set. Each object of the data set is then assigned

to the closest centriods. Patterns assigned to a centriod form a new cluster and centriod

of each of the k clusters are recalculated. The step of assignments to and calculation of

centriod is repeated until all centriods remain unchanged in consecutive iterations.

The k-means has time complexity of O(i∗k ∗N), where i is the number of iterations,

N is the size of the data set. Since i is a small number as compared to N and k << N,

the method runs linearly in the size of the data set. The space requirement of the method

is O(N).

However, it has advantages and disadvantages. It is relatively efficient because the

time complexity of the method is linear if i, and k are small. It gives best result when

data set is distinct or well separated from each other. It can find only convexed shaped

clusters. It cannot detect noise point or outliers. It is applicable to only numeric data set

(vector space)and with different initial points, it produces different clustering results.

There are many improvements of this basic k-means method [49–51]. k-medoids is a

variation of k-means method. Here, a medoid represents a cluster. A medoid is a cluster

point, which locates close to center of the cluster. It can be applied to non-numeric data

set. However, it is computationally more expensive than the k-means method. Other

variation of k-means method are CLARA [52], CLARANS [53].

2.3.2 Leaders clustering

There exists a category of clustering method called sequential algorithm. These

methods are fast and create a single clustering of the data set [54]. Leaders clustering

method [45, 55–57] is one of this type. It is a distance based clustering method. It scans

the data set only once. Leaders clustering method has also been used in preclustering

phase in data mining applications [58].

19



2.4 Data Pruning

For a given threshold distance τ , it produces a single clustering of a data set D. Each
cluster is represented by object called leader. It produces a set of leaders L as follows.

First object x1 in the data set is considered as the first leader in L. For rest of the object

x ∈ D \ {x1}, if there is a leader l ∈ L such that ||x − l|| <= τ , then x is assigned to the

leader l. In this case, x is considered as a follower of the leader l. If no such leader is found

in the leader set, then x is added as a new leader to L. Main advantages of this method is

that it scans a data set once, it can be applicable to any data set where notion of distance is

defined and it is an incremental algorithm. However, it has the following drawbacks. It can

find only convex shaped clusters in data. Leaders method produces different clustering

results for two different scanning orders of the same data set,i.e., clustering results are

ordered dependent. Similarity (distance) between objects (followers) of different clusters

(leaders) may be more (less) than corresponding leaders. Let x and y be two followers

of two distinct leaders lx and ly, respectively. Distance between two leaders lx and ly is

always more than τ, however distance between x and ly or y and lx or x and y may be

less than τ .

The time complexity of leaders clustering is O(mN), where m = | L |. The space

complexity is O(m), if only leaders are stored; otherwise O(N).

Based on these clustering methods, how to reduce the distance computations from

the data set in order to find the outlier detection. The reduction of distance computations

can be achieved by data pruning. In the next Section, we discuss how data pruning is

applied in different areas.

2.4 Data Pruning

In classification based data mining techniques, the general belief for better generalization

is to have more training data. But in contrast it is proved that the learning algorithm

performs better off when some training data are discarded/pruned/removed. In other

words, the quality of the examples are important. Data reduction techniques can be

applied to obtain a reduced representation of the data set that is much smaller in volume,

yet closely maintains the integrity of the original data. That is, mining on the reduced

data set should be more efficient yet produce the same (or almost the same) analytical

results. In data reduction, the cluster representations of the data are used to replace the

actual data. The effectiveness of this technique depends on the nature of the data. It is

much more effective for data that can be organized into distinct clusters than for smeared

data. In the literature there are different strategies for data reduction some of them are
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described as follows:

1. Numerosity reduction, where the data is reduced by replacing or estimating

alternative smaller forms of data representations. In parametric models data are

represented by model parameters instead of storing the actual data. Non-parametric

methods do not assume any model and data are represented as clustering, sampling,

and histograms.

2. Attribute subset selection, where irrelevant, weakly relevant, or redundant attributes

or dimensions may be detected and removed.

2.4.1 Numerosity reduction

Techniques of numerosity reduction can indeed be applied to reduce the data volume

by choosing alternative, smaller forms of data representation. These techniques may be

parametric or non-parametric. For parametric methods, a model is used to estimate

the data, so that typically only the data parameters need to be stored, instead of the

actual data. (Outliers may also be stored.) Log-linear models, which estimate discrete

multidimensional probability distributions, are an example. Non-parametric methods for

storing reduced representations of the data include histograms, clustering, and sampling.

Clustering techniques consider data objects as objects. They partition the objects

into groups or clusters, so that objects within a cluster are similar to one another and

dissimilar to objects in other clusters. Similarity is commonly defined in terms of how

close the objects are in space, based on a distance function. The quality of a cluster may

be represented by its diameter, the maximum distance between any two objects in the

cluster.

In data reduction, the cluster representations of the data are used to replace the

actual data. The effectiveness of this technique depends on the nature of the data. It is

much more effective for data that can be organized into distinct clusters than for smeared

data. In database systems, multidimensional index trees are primarily used for providing

fast data access. They can also be used for hierarchical data reduction, providing a multi-

resolution clustering of the data. This can be used to provide approximate answers to

queries. An index tree recursively partitions the multidimensional space for a given set of

data objects, with the root node representing the entire space. Such trees are typically

balanced, consisting of internal and leaf nodes. Each parent node contains keys and

pointers to child nodes that, collectively, represent the space represented by the parent
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node. Each leaf node contains pointers to the data objects they represent (or to the actual

objects).

An index tree can therefore store aggregate and detail data at varying levels of

resolution or abstraction. It provides a hierarchy of clustering of the data set, where each

cluster has a label that holds for the data contained in the cluster. If we consider each

child of a parent node as a bucket, then an index tree can be considered as a hierarchical

histogram. The use of multidimensional index trees as a form of data reduction relies on an

ordering of the attribute values in each dimension. Two-dimensional or multidimensional

index trees include R-trees, quad-trees, and their variations. They are well suited for

handling both sparse and skewed data.

Sampling can be used as a data reduction technique because it allows a large data set

to be represented by a much smaller random sample (or subset) of the data. Suppose that

a large data set, D, contains N objects. The most common ways that we could sample D
for data reduction, as illustrated as follows:

1. Simple random sample without replacement (SRSWOR) of size s: This is created

by drawing s of the N objects from D (s < N), where the probability of drawing

any object in D is 1/N , that is, all objects are equally likely to be sampled. Simple

random sample with replacement (SRSWR) of size s: This is similar to SRSWOR,

except that each time a object is drawn from D, it is objected and then replaced.

That is, after object is drawn, it is placed back in D so that it may be drawn again.

2. Cluster sample: If the objects in D are grouped into M mutually disjoint clusters,

then an SRS of s clusters can be obtained, where s < M . For example, objects in a

database are usually retrieved a page at a time, so that each page can be considered a

cluster. A reduced data representation can be obtained by applying, say, SRSWOR

to the pages, resulting in a cluster sample of the objects. Other clustering criteria

conveying rich semantics can also be explored. For example, in a spatial database,

we may choose to define clusters geographically based on how closely different areas

are located.

An advantage of sampling for data reduction is that the cost of obtaining a sample

is proportional to the size of the sample, s, as opposed to N , the data set size. Hence,

sampling complexity is potentially sublinear to the size of the data. Other data reduction

techniques can require at least one complete pass through D. For a fixed sample size,

sampling complexity increases only linearly as the number of data dimensions, δ, increases.
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Data Summarization

Descriptive data summarization techniques can be used to identify the typical properties

of data and highlight which data values should be treated as noise or outliers. The basic

concepts of descriptive data summarization before getting into the concrete workings of

data preprocessing techniques. For many data preprocessing tasks, users would like to

learn about data characteristics regarding both central tendency and dispersion of the

data. Measures of central tendency include mean, median, mode, and midrange, while

measures of data dispersion include quartiles, interquartile range (IQR), and variance.

These descriptive statistics are of great help in understanding the distribution of the data.

Such measures have been studied extensively in the statistical literature. From the outlier

detection point of view, we need to examine how they can be computed efficiently in large

databases. In particular, it is necessary to introduce the notions of distributive measure,

algebraic measure, and holistic measure. Knowing what kind of measure we are dealing

with can help us to choose an efficient implementation for it. The standard deviation is

one of such measures for efficient summarization. The standard deviation is the measure

of spread in data. It is defined in the Equation (2.11).

σ =

√

√

√

√

1

N

[

∑

x2i −
1

N
(
∑

xi)2

]

(2.11)

The basic properties of the standard deviation, σ, are; (1) it measures spread about

the mean. (2) σ = 0 only when there is no spread, that is, when all observations have the

same value.

One way to handle data pruning of a data set is to use data summarization or data

compression technique. The main objective of this approach is to compress or summarize

the data into a small representative set called summarized set. Then, data pruning

techniques can be applied to this set.

Zhang et. al. [59] have proposed a method Balanced Iterative Reducing and

Clustering using Hierarchies (BIRCH) is an incremental clustering method. The main

idea of the BIRCH clustering method are Clustering Feature (CF) and CF-tree. The

summarized information of a sub-cluster is defined as a CF in triplet. More formally,

a CF for a sub-cluster C1 = {−→X1,
−→
X2, . . .

−→
Xq} is defined as CF = (q,

−→
LS, ss), where

−→
LS

is linear sum of objects in C1, i.e.,
−→
LS =

∑

i

−→
Xi, ss is square sum of data points, i.e.,

ss =
∑

i

−→
Xi

2
. Centriod, radius and diameter of sub-cluster C1 can be computed from

the CF values. CF-values satisfy additivity property, i.e. let CF1 = (q1,
−−→
LS1, ss1) and
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CF2 = (q2,
−−→
LS2, ss2) are two CF values of two sub-clusters C1 and C2, respectively. Then,

CF-value of C = C1 ∪C2 is CF (C) = (q1 + q2,
−−→
LS1 +

−−→
LS2, ss1 + ss2). A CF tree, which is

a height-balanced tree, is constructed incrementally from CF values of sub-clusters.

DuMouchel et. al. [60] have proposed a data summarization technique, which can be

used to scale up a set of machine learning and statistical modeling methods. The method

is called data squashing. Data squashing summarizes a large data set into smaller size

data set called squashed data with same number of dimensions as the original data set. It

has three sequential steps as follow. In the first step, data set is partitioned into a number

of compact sub regions or bins. Bins can be constructed by creating hyper-rectangles

in the original space or by creating different layers in the transformed data space. Let

p = (x1, . . . , xN ) be a point in the original space. The point p can be transformed into

p′ = (y1, . . . , yN ), where yi =
Ci − xi

standard deviation of ith feature
, Ci = ith component of

center C =

∑

D p

|D| of the whole data set. Layers are created based on the distance from p′

to origin. Having created the bins, next step computes moments for the data points falling

in a bin. Method computes different order moments like means, minima, maxima, second

order moments, third order moments, fourth order moments, etc. in each bin. These

moments are sufficient statistics of the points of a bin. Last step is to create a pseudo

data point corresponding to a bin from the above calculated statistics. A pseudo point

of a bin is the representative of all original data points falling in the bin. They showed

that data squashing outperform random sampling approach. These data summarization

schemes cannot compute effective distance between a pair of summarized units. Therefore,

these schemes cannot be directly applied to hierarchical clustering methods.

First successful data compression technique for hierarchical clustering method is

found in [61]. The compressed representation of a set of data points are called Data

Bubble (DB), which contains statistical information of the set of points. Data Bubble

initially selects a subset of objects randomly which requires one database scan. In next

step, it classifies each object to its nearest selected object and updates statistics of the

selected object by means of CF. Data Bubble utilizes Clustering Features (CF) introduced

in BIRCH clustering method as follows. Let CF = (k,
−→
LS, ss) be the Clustering Features

of a set of points X = {Xi} in N dimensions feature space. A Data Bubble B, which

describes X can be expressed as B = (k,
−→
M,e), where

−→
M =

−→
LS

k
is the center of X and

e =

√

2 ∗ n ∗ ss− 2 ∗ −→LS2

k ∗ (k − 1)
is called extent (spread) of X. More specifically, e is the radius

of a hyper-sphere centered at M , which covers most of the data points of X. Markus et.
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al. [61] proposed to apply Ordering Points to Identify the Clustering Structure (OPTICS)

method to the data bubbles of D. OPTICS clustering method always finds an unprocessed

closest data points from already processed item. However, distance between centers of a

pair of Data Bubbles does not reflect the distance between points of the Data Bubbles.

A suitable measure is introduced to calculate distance between a pair of Data Bubbles.

Finally, OPTICS clustering method is modified to work with Data Bubbles. Modified

OPTICS is found to be up to three order faster than classical OPTICS method applied

directly to data set with maintaining clustering quality.

Data Bubble [62] A Data Bubble for a set of points X = {Xi} ⊆ D is B =

(rep, k, extent, nnDist), where rep is representative object of X, k is the number of objects

inX, extent is the radius of hyper-sphere centered at rep which encloses most of the objects

in X. and nnDist(K,B) is a function that calculate average κ-nearest neighbor distances

in B.

Markus et. al. [62] have pointed out problems of applying OPTICS method

directly to Clustering Features (CF). Clustering quality deteriorates abruptly with high

compression ratio due to three key problems namely size distortion, lost objects and

structural distortion. Sizes of clusters are distorted with high compression ratio (number

of representative objects to the size of the data set), i.e., some clusters become larger

and other become smaller. This is called size distortion problem. OPTICS outputs a

reachability-plot, which is a two dimensional plot represents hierarchical structures of

clusters present in the data set. None of the original objects appears in the reachability plot

if CF is directly used in speeding up OPTICS method. This is called lost objects problem.

With high compression rate, clustering structures are distorted in the reachability plot,

this is called structural distortions. To alleviate all above problems, definition of Data

Bubble is redefined as follows.

Bidyut et. al. [63] have proposed a scheme to summarize the data set called data

sphere (ds). The data sphere (ds) collects sufficient statistics by applying the leaders

clustering method twice on the data set. Using ds = (m, l, µ + ασ, P ) statistics and

selected leaders as the representative points. A Single Link (SL)-clustering method is

applied on these points to get better clusters.

Data Sphere(ds), Let X = x1, x2, ....., xm ⊆ D be the followers of a leader l.

A data sphere(ds) for X is defined as a 4-object ds = (m, l, µ + ασ, P ), where m =

number of followers including the leader l; µ = ld/m = the average distance from

leader l to its followers; σ =
√

sd
m − µ2 standard deviation of distances from leader to

its followers; ld =
∑m

i=1 di; sd =
∑m

i=1 d
2
i ; α ∈ ℜ, 0 < α ≤ (τ − µ)/σ; P = a subset of
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followers of l, which lie outside the hyper-sphere of radius; µ+ ασ centered at l, i.e., P =

{pi ∈ C |‖ l − pi ‖> µ+ ασ}

2.4.2 Attribute subset selection

Data sets for analysis may contain hundreds of attributes, many of which may be irrelevant

to the mining task or redundant. Although it may be possible for a domain expert to pick

out some of the useful attributes, this can be a difficult and time-consuming task, especially

when behavior of the data is not well known. Leaving out relevant attributes or keeping

irrelevant attributes may be detrimental, causing confusion for the algorithm employed.

This can result in discovered objects of poor quality. In addition, the added volume of

irrelevant or redundant attributes can slow down the detection process. Attribute subset

selection reduces the data set size by removing irrelevant or redundant attributes (or

dimensions). The goal of attribute subset selection is to find a minimum set of attributes

such that the resulting probability distribution of the data classes is as close as possible to

the original distribution obtained using all attributes. Mining on a reduced set of attributes

has an additional benefit. It reduces the number of attributes appearing in the discovered

objects, helping to make the objects easier to understand. For δ attributes, there are

2δ possible subsets. An exhaustive search for the optimal subset of attributes can be

prohibitively expensive, especially as δ and the number of data classes increase. Therefore,

heuristic methods that explore a reduced search space are commonly used for attribute

subset selection. These methods are typically greedy, while searching through attribute

space, they always make what looks to be the best choice at the time. The strategy is

to make a locally optimal choice in such a way that leads to a globally optimal solution.

Such greedy methods are effective in practice and may come close to estimating an optimal

solution. The best (and worst) attributes are typically determined using tests of statistical

significance, which assume that the attributes are independent of one another. Many other

attribute evaluation measures can be used. Basic heuristic methods of attribute subset

selection include the following techniques.

1. Stepwise forward selection: The procedure starts with an empty set of attributes as

the reduced set. The best of the original attributes is determined and added to the

reduced set. At each subsequent iteration or step, the best of the remaining original

attributes is added to the set.

2. Stepwise backward elimination: The procedure starts with the full set of attributes.

At each step, it removes the worst attribute remaining in the set.

26



2.4 Data Pruning

3. Combination of forward selection and backward elimination: The stepwise forward

selection and backward elimination methods can be combined so that, at each step,

the procedure selects the best attribute and removes the worst from among the

remaining attributes.

The stopping criteria for these methods may vary. The procedure may employ a

threshold on the measure to determine when to stop the attribute selection process. In

the next subsection a correlation based attribute selection is described.

Correlation Coefficient

A correlation based subset selection is a step forward attribute subset selection heuristic

method. Correlation describes the relationship between two different factors (variables,

features). In statistics community it is called as correlation coefficient. Correlation

summarizes the relationship between two variables in a single number called the correlation

coefficient. The correlation coefficient is usually given the symbol r that describes direction

(positive or negative) and degree (strength) of relationship between two variables. A

correlation coefficient can vary from (-1 , +1). The higher the correlation coefficient, the

stronger the relationship. A correlation coefficient quite close to 0, but either positive or

negative, implies little or no relationship between the two variables. If the correlation value

is close to -1 then the variables are called negatively correlated that means one variable

increases other decreases. A correlation coefficient can be produced for different types of

variables like ordinal, interval or ratio variables. For ordinal attributes, the correlation

coefficient which is usually calculated is Spearman’s rho. For interval or ratio attributes,

the most commonly used correlation coefficient is Pearson’s correlation coefficient [64].

The Pearson correlation coefficient r can be defined as follows. Suppose that there

are two variables x and y , each having N values x1 , x2 , . . . , xN and y1 , y2 , . . . ,yN

respectively. Let the mean of x be x̄ and y be ȳ. Then the Pearson Correlation Coefficient

r(x, y) is given by:

r(x, y) :=

∑N
i=1(xi − x̄)(yi − ȳ)

√

∑N
i=1(xi − x̄)2

√

∑N
i=1(yi − ȳ)2

(2.12)

From Equation (2.12), the possible values of r range from -1 to +1. A correlation

coefficient r close to -1 indicates that the values of x and y are inversely associated. That

is, as x increases y decreases. When r is close to 0, either on the positive or the negative

side, then there is little or no association between x and y . So if r is close to 1, then x

and y are closely related.
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2.6 Outlier Detection Techniques

Till now we have introduced, discussed some of the important ways to measure the

dissimilarity for different types of data, types of clustering techniques, and to select the

data. In the next section we present few well popular definitions for outlier detection

techniques.

2.5 Definitions

There are very general and well accepted definitions for outliers in the outlier detection

research community.

Definition 2.1. [11] An outlier is an observation (or a set of observations) that differs

so much from other observations (or sets) as to arouse suspicion that it was generated by

a different mechanism.

Definition 2.2. [12] An observation (or subset of observations) which appears to be

inconsistent with the remainder of that set of data.

Definition 2.3. [65] An outlying observation, or outlier, is one that appears to deviate

markedly from other members of the sample in which it occurs.

Where as some more definitions that are applicable for outlier detection depending

on the application domain.

Definition 2.4. [26] An outlier is defined as a data point which has highest outlier score.

The score is the measure of a distance to its κth nearest neighbor.

Definition 2.5. [27] The data points having highest outlier scores are termed as outliers.

Outlier score of a data point is measured as the sum of its distances to all its κ nearest

neighbors in a given data set.

Definition 2.6. [1] An object p in a data set is outlier if it has less then q objects lying

within distance r from p.

From these definitions, it is observed that there are many ways in literature to define

an outlier. The fact is that, the problem of defining a unified notion of outliers is nontrivial.

2.6 Outlier Detection Techniques

In the literature outlier detection techniques [3, 6, 66, 67] are classified into four major

categories namely classification based, nearest neighbor based, clustering based and
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statistical based techniques. However, this thesis is focused on mainly two categories, i.e.

nearest neighbor based outlier detection techniques and clustering based outlier detection

techniques. We discuss these two techniques in two subsections 2.6.1 and 2.6.2.

2.6.1 Nearest neighbor based outlier detection techniques

A basic nearest neighbor outlier detection technique is based on the following definition:

The outlier score of a data object is defined as its distance to its κth nearest neighbor in a

given data set. This basic technique has been applied to detect land mines from satellite

ground images [26] and to detect shorted turns (outliers) in the DC field windings of large

synchronous turbine-generators [68]. Normally, a threshold is enforced on the outlier score

to determine a point is outlier or not. On other hand, select top-m with highest outlier

scores as outliers. These outlier detection techniques are based on the key assumption [3].

Assumption: Normal data points occur in dense neighborhoods, while outliers occur

far from their closest neighbors.

A distance measure for data containing a mix of categorical and continuous attributes

has been proposed for outlier detection by Otey et. al. [69]. The authors define

links between two objects by adding distance for categorical and continuous attributes

separately. For categorical attributes, the number of attributes for which the two objects

have the same values defines the distance between them. For continuous attributes, a

co-variance matrix is maintained to capture the dependencies between the continuous

values.

Several variants of distance based techniques have been proposed to improve the

efficiency. Some techniques prune the search space either by ignoring objects that cannot

be outlier or by focusing on objects that are most likely to be outlier.

Angiulli and Pizzuti [70–72] with the aim of taking into account the whole

neighborhood of the objects, have proposed to rank them on the basis of the sum of

the distances from the κ-nearest neighbors, rather than considering solely the distance to

the κth nearest neighbor. This sum is called the weight of the point, and it is used to

rank the points having the largest values of weight. The points which are having largest

weights are called outliers.

Edwin M. Knorr et. al. [1] deal with finding outliers (exceptions) in large,

multidimensional data sets (e.g. δ ≥ 5). They presented two simple algorithms, both

having a complexity of O(δN2), δ being the dimensionality and N being the number of

objects in the data set. They also presented an cell-based algorithm that has a complexity

that is linear with respect toN , but exponential with respect to δ. Finally, for disk-resident
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data sets, they presented another version of the cell-based algorithm that guarantees at

most three passes over a data set. Using experimental results it is showe that algorithms

significantly outperform the two simple algorithms for δ ≤ 4.

• Index-Based Algorithms: Let N be the number of objects in data set D, and let

d be the underlying distance function that gives the distance between any pair of

objects in D. For an object o, the d-neighborhood of o contains the set of objects

q ∈ D that are within distance d from o (i.e., q ∈ D | d(o, q) ≤ d). The fraction p is

the minimum fraction of objects in D that must be outside the d-neighborhood of

an outlier. For simplicity of discussion, let M be the maximum number of objects

within the d-neighborhood of an outlier, i.e.,M = N(1− p). From this, it is obvious

that given p and d, the problem of finding all Distance-Based, DB(p, d)-outliers can

be solved by answering a nearest neighbor or range query centered at each object

o. More specifically, based on a standard multidimensional indexing structure, they

executed a range search with radius d for each object o. As soon as (M+1) neighbors

are found in the d-neighborhood, the search stops, and o is declared a non-outlier;

otherwise, o is an outlier. The above analysis only considers search time. When

it comes to using an index-based algorithm, the index building cost alone, even

without counting the search cost, almost always renders the index-based algorithms

uncompetitive. The algorithm has worst case complexity of O(δN2)

• A Nested-Loop (NL) Algorithm: To avoid the cost of building an index for finding

all DB(p, d)-outliers, Algorithm NL uses a block-oriented, nested-loop design.

Assuming a total buffer size of B% of the data set size, the algorithm divides the

entire buffer space into two halves, called the first and second arrays. It reads the

data set in the arrays, and directly computes the distance between each pair of

objects. For each object o in the first array, a count of its d-neighbors is maintained.

Counting stops for a particular object whenever the number of d-neighbors exceeds

M . Algorithm NL avoids the explicit construction of any indexing structure, and its

complexity is O(δN2). Compared to a object-by-object brute force algorithm that

pays no attention to I/Os, Algorithm NL is superior because it tries to minimize

I/Os.

• A Cell-Based Approach: Suppose our data objects are 2-D and quantize each of the

data objects into a 2-D space that has been partitioned into cells or squares of length

l = d
2
√
2
. Let Cx,y denote the cell that is at the intersection of row x and column y.
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The Layer 1 (L1) neighbors of Cx,y are the immediate neighbor cells of Cx,y defined

in the usual sense, that is,

L1(Cx,y) = {Cu,v | u = x± 1, v = y ± 1, Cu,v 6= Cx,y}

L2(Cx,y) = {Cu,v | u = x± 3, v = y ± 3, Cu,v /∈ L1(Cx,y), Cu,v 6= Cx,y}

The following properties are useful in ruling out many objects as outlier candidates,

the same is depicted in the Figure 2.1.

– Property 1 Any pair of objects within the same cell is at most distance d
2

apart.

– Property 2 If Cu,v is an L1 neighbor of Cx,y then any object P ∈ Cx,y and

any object Q ∈ Cu,v are at-most distance d apart.

– Property 3 If Cu,v 6= Cx,y is neither an L1 nor an L2 neighbor of Cx,y, then

any object P ∈ Cu,v and any object Q ∈ Cx,y must be greater distance d apart.

– Property 4

1. If there are > M objects in Cx,y, none of the objects in Cx,y is an outlier.

2. If there are > M objects in Cx,y ∪ L1(Cx,y), none of the objects in Cx,y is

an outlier.

3. If there are ≤ M objects in Cx,y∪L1(Cx,y)∪L2(Cx,y), every objects in Cx,y

is an outlier

The complexity of algorithm is O(cδN)

Ghoting et. al. [19] have proposed a two-phase algorithm for fast mining of distance-

based outliers, which capture only a points approximate nearest neighbors, and not its

nearest neighbors. They have divided the algorithm into two phases, in the first phase,

the data set is preprocessed into bins. The points which are close to each other in space

are likely to be placed in the same bin. In the second phase, an extension of the Nested

Loop [1] algorithm is used over bins for determination of outliers. So the pre-processing

performed in the first phase facilitates fast convergence to a points approximate nearest

neighbors.

Wu et. al. [73] use sampling to improve efficiency of the nearest neighbor-based

technique. The authors compute nearest neighbor of every object within a smaller sample

from the data set. Therefore the complexity of the proposed technique is reduced to

O(SN), where S is the sample size chosen.
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d
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Figure 2.1: A Cell Based Approach [1]

Density-based outlier detection techniques estimate density of neighborhood of each

data object. An object that lies in neighborhood with low density of objects is proposed

to be anomalous. Where as an object that lies in a dense neighborhood is proposed to be

normal.

Breunig et. al. [23] have proposed a local outlier factor (LOF ), which is the degree of

outlier-ness. This is measured as ratio of average local density of the κ nearest neighbors

of the point and the local density of the data point itself. This is the first concept of

an outlier which quantifies outlier-ness of an object on density of a point. The outlier

factor is local in the sense that only a restricted neighborhood of each object is taken into

account. The degree depends on how isolated the object is with respect to the surrounding

neighborhood. For a normal object lying in a dense region, its local density is similar to

that of its neighbors, while for an outlier object, its local density is lower than that of

its nearest neighbors. Hence the outlier object get a higher LOF score. Since the LOF

value of an object is obtained by comparing its density with those in its neighborhood,

it has stronger modeling capability than a distance based scheme, which is based only on

the density of the object itself. Note that the density based scheme does not explicitly

categorize the objects into either outliers or non-outliers(If desired, a user can do so by

choosing a threshold value to separate the LOF values of the two classes).

The following definitions give us the clear picture how authors have calculated outlier-

ness of an object.

• κ-distance of an object p: For any positive integer κ, the κ-distance of object p,

denoted as κ-distance(p), is defined as the distance d(p, o) between p and an object
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o ∈ D such that: (1) for at least κ objects o′ ∈ D\{p} it holds that d(p, o′) ≤ d(p, o),

and (2) for at least κ-1 objects o′ ∈ D \ {p} it holds that d(p, o′) < d(p, o).

• κ-distance neighborhood of an object p (Nκ-distance(p)(p)): Given κ-distance(p), the κ-

distance neighborhood of p contains every object whose distance from p is not greater

than the κ-distance, i.e. Nκ-distance(p)(p) = {q ∈ D \ {p} | d(p, q) ≤ κ-distance(p)}.

• reachability distance of an object p w.r.t object o:

reach-distκ(p, o) = max{κ-distance(o), d(p, o)}

• local reachability density of an object p:

lrdk(p) = 1/

[
∑

o∈Nκ-distance(p)(p)
reach-distk(p,o)

|Nκ-distance(p)(p)|

]

• local outlier factor (LOF ) of an object p:

LOFk(p) =

∑

o∈Nκ-distance(p)(p)
lrdk(o)
lrdk(p)

| Nκ-distance(p)(p) |

Several researchers have proposed variants of the LOF technique. Some variants

estimate the local density of an object in a different way. The other variants have adapted

original technique to more complex data types. Since the original LOF technique is O(N2)

(N is the data size), several techniques have been proposed that improve the efficiency

of LOF . Tang et. al. [74] have developed a measure which is the different from LOF ,

which is called Connectivity based outlier Factor(COF ). LOF and COF differ, in the way

k neighborhood for an object is calculated. In COF , the neighborhood for an object is

computed in an incremental mode. To start, the closest object to the given object is added

to the neighborhood set. The next object added to the neighborhood set is such that its

distance to the existing neighborhood set is minimum among all remaining data objects.

The distance between an object and a set of objects is defined as the minimum distance

between the given object and any object belonging to the given set. The neighborhood

is grown in this manner until it reaches size κ. Once the neighborhood is computed, the

Outlier score (COF ) is computed in the same manner as LOF . COF is able to capture

regions such as straight lines.

Papadimitriou et. al. [9] have proposed a new measure called Multi-Granularity

Deviation Factor (MDEF), which is also a variation of LOF . MDEF is measured based

on the standard deviation of the local densities of the nearest neighbors. The outlier score
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for the data object is the inverse of the standard deviation. The outlier detection technique

is called Local Correlation Integral (LOCI), which not only finds outlier objects but also

outlier micro-clusters.

Hautamaki et. al. [28] developed a measure, a simpler version of LOF , calculates a

quantity called Outlier Detection using In-degree Number (ODIN) for each data object.

For a given data object, ODIN is equal to the number of κ nearest neighbors of the data

object which have the given data object in their κ nearest neighbor list. The inverse of

ODIN is the outlier score for the data object.

2.6.2 Clustering Based Outlier Detection

Clustering is the unsupervised classification of objects (observations, data items, or feature

vectors) into groups (clusters) [45]. A semi-supervised clustering is also been explored by

Basu et. al. [75]. Even though clustering and outlier detection appear to be fundamentally

different from each other, several clustering-based Outlier detection techniques have been

developed. Clustering based outlier detection techniques are grouped into three classes

by Varun et. al. [3]. That is Class 1, Class 2 and Class 3 are based on the following

assumptions respectively:

Class 1: Normal data objects belong to a cluster in the data, while Outliers do not belong

to any cluster.

Class 2: Normal data objects lie close to their closest cluster centriod, while Outliers are

far away from their closest cluster centriod.

Class 3: Normal data objects belong to large and dense clusters, while Outliers either

belong to small or sparse clusters.

Techniques based on Class 1 assumption apply a known clustering algorithm to the

data set and declare any data object that does not belong to any cluster as outlier. Several

clustering algorithms that do not force every data object to belong to a cluster, such as

DBSCAN [76], ROCK [77], and SNN clustering [78] can be used. A disadvantage of

such techniques is that they are not optimized to find outliers, since the main aim of the

underlying clustering algorithm is to find clusters. Techniques based on Class 2 assumption

consist of two steps. In the first step, the data is clustered using a clustering algorithm.

In the second step, for each data object, its distance to its closest cluster centriod is

calculated as its outlier score. A number of outlier detection techniques that follow this two

step approach have been proposed using different clustering algorithms. Smith et. al. [79]
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studied Self-Organizing Maps (SOM), k-means Clustering, and Expectation Maximization

(EM) to cluster training data and then use the clusters to classify test data. In particular,

SOM [80] has been widely used to detect outliers in a semi-supervised mode in several

applications such as intrusion detection [79,81,82] and fault detection [83,84]. Barbara et.

al. [85] propose a technique that is robust to outliers in the training data. The authors first

separate normal objects from outliers in the training data, using frequent item-set mining,

and then use the clustering-based technique to detect Outliers. Techniques based on the

second assumption can also operate in semi-supervised mode, in which the training data

is clustered and objects belonging to the test data are compared against the clusters to

obtain an outlier score for the test data object. If the training data has objects belonging

to multiple classes, semi-supervised clustering can be applied to improve the clusters.

He et. al. [86] incorporated the knowledge of labels to improve on their unsupervised

clustering-based outlier detection technique [87] by calculating a measure called semantic

outlier factor, which is high if the class label of an object in a cluster is different from

the majority of the class labels in that cluster. A disadvantage of such techniques is that

if the outliers in the data form clusters by themselves, these techniques are not able to

detect such outliers. Techniques based on Class 3 assumption declare objects belonging

to clusters whose size and/or density is below a threshold, as outlier. Several variations

of the third category of techniques have been proposed [27,32,87–89].

The technique proposed by He et. al. [87], called FindCBLOF , assigns an outlier

score known as Cluster-Based Local Outlier Factor (CBLOF) for each data point. The

CBLOF score captures size of the cluster to which the data object belongs, as well as

distance of the data object to its cluster centriod. Initially they divided the data set to

set of clusters by squeezer algorithm and these clusters are into two groups, namely large

clusters and small clusters, based on number of points in each cluster. For each data

point they calculated the CBLOF and declare the outliers. The idea is clearly describe

as follows: Let A1, ..., Am be a set of attributes with domains D1, ...,Dm respectively. Let

the data set D be a set of objects where each object t : t ∈ D1× ....×Dm . The results of a

clustering algorithm executed on D is denoted as: C = {C1, C2, ..., Ck} where Ci∩Cj = ∅;
and C1 ∪ C2.....Ck = D. The number of clusters is k.

The clusters are divided into large and small clusters. Suppose C = {C1, C2, ..., Ck}
is the set of clusters in the sequence that |C1| > |C2|.... > |Ck|. Given two numeric

parameters α and β, we define b as the boundary of large and small cluster if one of the

following properties holds.
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(|C1|+ |C2|+ ...+ |Cb|) > |D| ∗ α

|Cb|/|Cb+1| > β

Then, the set of large cluster is defined as: LC = {Ci|i 6 b} and the set of small

cluster is defined as: SC = {Cj |j > b}.
Cluster-based local outlier factor: Suppose C = {C1, C2, ..., Ck} is the set of clusters

in the sequence that |C1| > |C2|.... > |Ck| and the meanings of α, β, b, LC ans SC are

same as they are formalized. For any object t, the cluster-based local outlier factor of t is

defined as:

CBLOF (t) =



















|Ci| ∗min(distance(t, Cj)) where t ∈ Ci, Ci ∈ SC and

Cj ∈ LC for j = 1 to b

|Ci| ∗ (distance(t, Ci)) where t ∈ Ci and Ci ∈ LC

H. Huang et. al. [90] have proposed a rank based detection algorithm (RBDA). In

this approach outliers are identified based on mutual closeness of a data point and its

neighbors. The mutual closeness of any two points p and q is defined as p ∈ D and

q ∈ Nκ(p). That means, q is close to p because it belongs to κ-neighborhood of p.

Hubballi et. al. [22] have proposed a nearest neighbor based outlier detection

algorithm (NDoT) works by a voting mechanism. They calculated nearest neighborhood

factor(NNF) for all the points in the data set, this factor is sorted and declared the highest

1/3 points as outliers.

Lian et. al. [91] have proposed a cluster-based outlier factor(CBOF). Their main

assumption is that not only a single point can be outlier but also a small cluster can

probably be an outlier cluster. They considered the local behavior of data. Initially used

LDBSCAN [92] to cluster the entire data set and based on cardinality of clusters they

divided the clusters into two classes. One class is outlier class of clusters which contain only

10% of data points in each cluster, another is non outlier class of clusters. Subsequently

for each point in the outlier clusters, they calculated local reachability density(LRD) [92]

for each point in a cluster. Finally using the CBOF parameter of a cluster they declare

whether the cluster is outlier cluster or not.

Papadimitriou et. al. [9] have proposed a method for evaluating outlierness, which is

called the local correlation integral (LOCI). Which is effective for detecting outliers and

groups of outliers (micro-clusters). It also provides an automatic, data-dictated cutoff to
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determine whether a point is an outlier. It can also provide a LOCI plot for each point;

this plot summarizes a wealth of information about the data in the vicinity of the point,

determining clusters, micro-clusters, their diameters and their inter-cluster distances.

Bay and Schwabacher [93] showed that for sufficiently randomized data, a simple

pruning step could result in the average complexity of the nearest neighbor search will

come down to nearly linear. After calculating the nearest neighbors for a data point,

the algorithm sets the outlier threshold for any data point to the score of the weakest

outlier found so far. Using this pruning procedure, the technique discards objects that are

close, and hence not interesting. The performance of this algorithm mainly depends on

the three assumptions, violations of which can lead to poor performance. First, assumes

that the data is in random order. If the data is not in random order and is sorted then

the performance can be poor. Second, depends on the independence of data objects.

Third, perform poorly when the data does not contain outliers. In the worst case, the

performance of the algorithm is very poor. Because of the nested loops, it could require

O(N2) distance computations.

Ramaswamy et. al. [18] have proposed partition based pruning method for outlier

detection. They proposed a method that partitions the input data set into disjoint subsets

based on BIRCH clustering algorithm [94], it stores a compact summarization for each

cluster in Clustering Featuring tree (CF-tree) which is a balanced tree structure similar

to an R-tree [95]. For each partition they calculated two boundaries lower and upper. If

the partition does not satisfy the boundary conditions, the partitions are pruned. This

results in substantial savings in computations. The steps are described below.

1. Generate Partition

• A clustering algorithm (BIRCH) is used to cluster the data, each cluster is a

separate partition.

2. Compute bounds on κth distance of a point (Dκ), for points in each partition.

3. Identify candidate partitions containing outliers.

• Compute minDkDist (the lower bound on Dκ for the n outliers)

• If P.upper for a partition P is less than minDkDist, none of the points in P

can possibly be outliers.

• Only partitions P for which P.upper >= minDkDist are candidate partitions.

4. Compute outliers from points in candidate partitions
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Table 2.2: Comparisons of different algorithms

Algorithm Data set size(N) Dimensions(δ) complexity

Index-based [1] 2,000,000 6 5 O(δN2)

Nested-based [1] 2,000,000 6 5 O(δN2)

Cell-based [1] 2,000,000 6 4 O(cδ +N)

RSS [18] 101000 10 O(δN2)

LDOF [21] 14500 32 O(δN2)

LOF [23] 375 64 O(δN2)

COF [74] 1700 40 O(δN2)

FindCBLOF [87] 798 38 O(δN2)

In [96], a feature bagging approach for detecting outliers has been proposed. It

combines results from multiple outlier detection algorithms that are applied using different

set of features. Every outlier detection algorithm uses a small subset of features that

are randomly selected from the original feature set. As a result, each outlier detector

identifies different outliers, and assigns to all data objects outlier scores that correspond

to their probability of being outliers. The outlier scores computed by the individual outlier

detection algorithms are then combined in order to find the better quality outliers.

In Table 2.2, the computational complexity of different outlier detection techniques

are presented from the literature.

2.7 Outlier Score

In this thesis outlier score of a point is used to measure the degree of outlierness. The

score gives the level of deviation of a point from its neighbors. Based on score of the data

points the selection of top-m points as outliers.

Zhang et. al. [21] proposed a local distance-based outlier detection(ldof) for scattered

real-world data sets. This is measured as a ratio of average distance of the κ nearest

neighbors of the points and the average distance among the neighbors of the point. The

outlier factor of an object determine the degree to which the object deviates from its

neighborhood. Calculating ldof for all points in the data set, makes overall complexity

O(N2). They have analyzed theoretically the properties of ldof like lower bound, false

detection probability and parameter settings.
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The local distance-based outlier factor of p is defined as:

ldof(p) :=
d̄p
D̄p

(2.13)

d̄p (KNN distance of p): Let Np be the set of κ-nearest neighbors of object p (excluding

p). The κ-nearest neighbors distance of p equals the average distance from p to all objects

in Np. More formally, let d(p, q) ≥ 0 be a distance measure between objects p and q. The

κ-nearest neighbors distance of object p is defined as:

d̄p :=
1

κ

∑

q∈Np

d(p, q) (2.14)

D̄p (KNN inner distance of p): Given Np of object p, the κ-nearest neighbors inner distance

of p is defined as the average distance among objects in Np.

D̄p :=
1

κ(κ− 1)

∑

q,q′∈Np,q 6=q′

d(q, q′) (2.15)

The definition of ldof parameter indicates that, if the average distance of the point

from the nearest neighborhood set is high then the point lies away from the neighbors,

other wise point lies close to neighbors.

Lower bound of ldof(ldoflb): In any data set, an object is outlier if ldof > 1

has been proved by the authors. However, the threshold is problem dependent due to

the complex structure of real-world data sets. Under some continuity assumption, we

can calculate an asymptotic lower bound on ldof , denoted as ldoflb . ldoflb indicates

that an object is an inlier (or normal) if its ldof is smaller than ldoflb. Even with the

theoretical analysis, the authors claimed that it is still hard to determine a threshold for

ldof to identify outliers in an arbitrary data set. Hence forth they employed top-m style

outlier detection, which ranks the m objects with the highest ldofs, and for choosing κ,

it is beneficial to use a large neighborhood size κ. The complexity of this ldof method is

O(N2).

From Table 2.2, it is evident that the computational complexity of outlier detection

methods is directly related to the the number of data points N and the number of

attributes δ of the data set. Therefore, if these two quantities could be reduced by

removing some irrelevant data for outlier detection then the computation time can be

reduced considerably.

Next chapter onwards, we present details of the research work done for this thesis.

We start with the clustering and cluster pruning; and three methods based on cluster

pruning are presented in Chapter 3.
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Chapter 3

Cluster based pruning for Outlier

Detection

3.1 Introduction

Outlier detection is an important task in many fields. A data set may contain data objects

that do not comply with the general behavior or model of the data. These data objects are

called outliers. Most data mining methods discard outliers as noise or exception. However,

in some applications such as fraud detection, the rare events can be more interesting

than the more regularly occurring ones. Outlier detection is very interesting, because

outlier may get introduced into the data for various reasons. Detecting outliers in various

applications using different techniques is a non-trivial task. Identifying outliers based on

distance computation is computationally intensive because the distance computations are

to be computed for all the data points present in the data set. In literature, clustering

techniques have been used to reduce the computations. Initially, a clustering algorithm is

used to partition the data set into clusters and data points with high similarity generally

fall in one cluster. Subsequently exploiting the properties or behaviors of clusters to

identify the clusters which probably do not contain any outliers and prune such clusters.

Zhang, et. al. [21] have proposed a parameter namely local distance based outlier factor

(ldof) and depending on the value of the ldof of a point, one can take a decision about

the outlier-ness of that point. Finally ldof values are calculated for all the unpruned data

points.

In Chapter 2, we have discussed many classifications, categories of outliers detection

techniques and dissimilarity measures for different data types. We have also discussed
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some of the important clustering techniques that are used in our work. In Subsection 2.6

of Chapter 2 we have presented some of well accepted outlier detection techniques that

are related to our work. In this chapter we present three methods to prune some of the

clusters depending on the properties of the clusters. Further ldof values are calculated

for unpruned points to identify the outliers.

First Method: We calculate the ldof of the centriods of all the clusters. High ldof

value of a centriod basically indicates that this cluster is away from other clusters

and probably outliers are present in this cluster. Depending on the ldof values of

centriods, we prune some of the clusters whose ldof value of the centriod is low.

Second Method: We calculate the radius of each cluster. If the radius of a cluster is

less it indicates that the points of this cluster are uniformly distributed and it is a

dense cluster. Probably this cluster may not contain outliers. So, we can prune such

clusters.

Third Method: We calculate the distance of the centriods of all the clusters from the

overall centriod of the given data set. If this distance is more, it indicates that

the points of this cluster is deviating from the normal points and that cluster may

contain outliers. So, depending on the distance of the centriod, we may prune some

of the clusters.

The experimental results show that these methods able to identify the outliers though

some of the points are pruned from the data set before calculating the ldof value. The

results are comparable to the results reported by Zhang et. al. [21].

3.2 Proposed Methods

The main emphasis of our proposed methods is to reduce the number of computations

while detecting outliers of a given data set. To declare a point as an outlier we need to use

some parameters to classify an object as outlier. Some of the outlier detection techniques

are based on two steps. In the first step, the data is clustered using a clustering algorithm.

In the second step, for each data point an outlier score is calculated, to classify the data

point as outlier or inlier.

Clustering a data set, enables to visualize the data in terms of groups. The data

which exist in terms of a group helps to distinguish between inlier and outlier points. So

the clustering algorithm which partition the data into different groups is used. We use one
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of the most popular distance based clustering method, k-means [48] and which gives the

clusters along with its centriods. Centriod is the mean position of all the points in all of

the coordinate directions. The radius of a cluster is the average distance of all the points

from the centriod. If the radius is small the points are close to the centriod otherwise they

are well spread around the centriod.

For a given cluster C, of m δ-dimensional data points −→pi where i = 1, 2, .....m, the

centriod −→gc , radius RC [59, 97] are defined as:

−→gc =

∑m
i=1
−→pi

m
(3.1)

RC =

√

(

∑m
i=1(
−→pi −−→gc )2
m

) (3.2)

The outlier score of a point is calculated using the parameter proposed in [21]. The

definition of ldof parameter indicates that, if the average distance of the point from the

nearest neighborhood set is high then the point lies away from the neighbors, other wise

point lies close to neighbors. The parameters centriod of a cluster, radius of a cluster and

ldof of a point are used in our proposed methods.

The method one (M-1), which is based on ldof value of the centriod of a cluster.

The ldof values of the centriod of a cluster indicates how much a cluster is deviated from

its neighbors. High ldof value of the centriod of a cluster means the cluster is away from

its neighbors. So we calculated ldof values of centriods of the clusters. Few clusters are

pruned depending on the ldof values of the centriods and the number of clusters to be

pruned is decided by the user. For simplicity, half of the clusters are pruned.

To find the number of clusters to be pruned depending on the distribution of data

points, we propose method two (M-2). This method is based on the radius of clusters.

Small radius of a cluster indicates that it is a dense cluster and distribution of points are

uniform. In such clusters chances of having outliers are less. We calculate the average

radius of all the clusters and clusters having radius less than average are pruned.

As the number of clusters increases the number of points inside a cluster is less and

the radius of the cluster is also small. In this case percentage of pruning of points may be

less. So we proposed method three (M-3) based on the centriod of the data points. The

clusters whose centriods are close to the centriod of the data points are pruned.
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3.2.1 Method based on ldof of centriod of cluster

The use of the ldof parameter efficiently to capture the outliers is the main idea behind the

proposed method. Calculating ldof values for all the points in a data set is computationally

intensive. So by clustering we identify a group of points that are close to each other.

Identifying the group that contains outliers is one of the objectives. The group center (i.e.

centriod of the group) acts as a representative point of the group/cluster. The ldof score

of the centriod of the cluster tells the degree of outlierness of the cluster. So identifying

the outlierness of the centriod projects the degree of outlierness of the cluster with respect

to all other clusters. For example, as presented in Figure 3.1 the data set is divided into

k clusters (namely C1, C2, ......, C10). Based on clustering algorithm, the clusters have

different number of points in each cluster. It is observed from Figure 3.1, some of the

clusters are shaded which are lying inside and are surrounded by other clusters. Since

these clusters are surrounded by the other clusters these clusters have low ldof values

compared with the other clusters. Hence the clusters C3, C5, C6, C7, C8 are pruned.

The degree of outlierness of the cluster is calculated based on ldof , assuming the points

present in these clusters are inliers as they are also surrounded by the other cluster of

points. Clusters having high ldof values have high probability to contain the outliers, this

is because the neighborhood of these clusters are less when compared to the neighborhood

of the clusters whose ldof is low. Therefore the clusters having low ldof values may not

contain outliers in these clusters. Hence half of the clusters (C3, C5, C6, C7, C8) with

low ldof values are removed as shown in Figure 3.1. The proposed method is presented

in Algorithm 3.1. We briefly describe the steps.

• Generating clusters: Initially, we cluster the entire data set into k clusters using

k-means clustering algorithm.

• Pruning some clusters: The ldof value for all the centriods of the clusters are

calculated. If the total number of points inside any cluster is less than the number

of outliers, the cluster pruning is not performed on those clusters even though the

ldof value of the cluster’s centriod is low. Based on the ldof values of the centriods,

we prune half of the clusters whose ldof values are low.

• Computing outlier points: From the remaining unpruned clusters, calculate

ldof values for all the remaining points. The m points having high ldof values

are reported as top-m outliers.
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Algorithm 3.1 Cluster Pruning Based Outlier Detection Algorithm (Method-1)

Input : D-Data Set, k-number of clusters, i-number of iterations, n-number of outliers

Output: m-points having high ldof value.

Begin

U ← ∅ ; // U set of unpruned data points

UG ← ∅ ; // UG set of unpruned centriods

Set 〈C,G〉 ← kmeans(k, i,D)
// C set of k clusters and G set of k centriods

// C = {c1, c2, ......, ck};G = {g1, g2, ......., gk}
For ∀gj ∈ G do

ldof(gj) ; // calculating ldof value of all cluster centriods

end

For j = 1 to k do

If |cj | < n then
add points of cj to U add gj to UG

end

end

Set C ← C \ U
Set G← G \ UG

For ∀gj ∈ G do

Sort the ldof(gj) values ; // increasing order of ldof(gj) values

end

For j = 1 to ⌈k2⌉ do
Set C ← C \ cj) ; // prune cj whose ldof(gj) is low

end

Add points of C to U

For ∀pi ∈ U do
calculate ldof(pi)

end

Sort the points in descending order according to their ldof(pi) values.

First m points with high ldof(pi) values are the desired outliers.

End
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Figure 3.1: Half of the clusters pruned based on ldof values of the centriods

3.2.2 Method based on radius of clusters

In the method presented in Section 3.2.1, half of the clusters are pruned irrespective of the

number of clusters generated. Pruning half of clusters is not very obvious solution for a

problem. Learning from the clusters itself is the better solution for identifying the clusters

that are to be pruned. So in this method average radius parameter is used to identify

the clusters for pruning. The radius of a cluster is the average distance of all points to

the centriod. If the radius of a cluster is small it indicates that the points are uniformly

distributed around the centriod and also lie close to the centriod. From Figure 3.2, there

are two clusters (C3, C7) of equal size, but distribution of the points in that clusters

are different so the radius are also different. The clusters with small radius have less

possibility to containing outliers. Pruning these clusters reduces the computations. So the

clusters whose radius is less than average radius are pruned in this method. For example

as shown in Figure 3.2 we divide entire data set into seven clusters (C1, C2,....., C7) using

a clustering algorithm. For each cluster a radius is calculated (the dotted concentric circle

for each cluster represents the range of radius of the clusters). If the radius value is high,

the spread or distribution of the points in the cluster is wide (i.e. majority of the points lie

well apart from the centriod of the cluster). Other wise the most of the points lie close to

the centriod. The average value of all radius of the clusters give us approximate value that

can be used as a threshold to take the decision for pruning some of the clusters. Hence
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based on the average value of the radius, some of the clusters are pruned which are having

smaller radius than average value. The method is depicted in Algorithm 3.2 and briefly

describe the steps as follows.

Data point

Centriod of the cluster

Radius of the cluster

C1

C2
C3

C7

C6

C5

C4

Figure 3.2: Average Radius Based Pruning

• Generating clusters: Initially, we cluster the entire data set into k clusters using

k-means clustering algorithm.

• Radius calculation: We calculate radius of each cluster. Next, we calculate average

radius.

• Pruning clusters: If the number of points inside any cluster is less than number

of outliers, the cluster pruning is not performed on those clusters even radius of the

cluster is less than average radius. For rest of the clusters, if radius of the cluster is

less than average radius, we prune the cluster.

• Computing outlier points: Calculate ldof values for all the points that are left

in the unpruned clusters. The m points with highest ldof values are reported as

top-m outliers.

3.2.3 Method based on centriod of the clusters

The method presented in Section 3.2.2 uses radius of clusters to identify clusters for

pruning. The method does not prune more number of clusters as the number of clusters
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Algorithm 3.2 Cluster Pruning Based Outlier Detection Algorithm (Method-2)

Input : D-Data set, k-required number of clusters, i-number of iterations, n-number of

outliers.

Output: m-points having high ldof value.

Begin

U ← ∅ ; // U set of unpruned data points

Set 〈C,G〉 ← kmeans(k, i,D)
// C set of k clusters and G set of k centriods

// C = {c1, c2, ......, ck};G = {g1, g2, ......., gk}
For ∀cj ∈ C do

Set Rcj ← (
√∑m

i=1(pi−gj)2

|cj| ) ; // Rcj radius of clustercj

end

Set AvgRad←
∑k

j=1 Rcj

k ; // AvgRad average radius

For ∀cj ∈ C do

If |cj | < n then
add points of cj to U

end

Else

If Rcj < AvgRad then
prune(cj)

end

Else
add points of cj to U

end

end

end

For ∀pi ∈ U do
calculate ldof(pi)

end

Sort the points in descending order according to their ldof(pi) values.

First m points with high ldof(pi) values are the desired outliers.

End
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increases, this is because average radius becomes very small. In order to obtain better

pruning, an idea is proposed based on the assumption that inliers are the points which

lie close to the centriod and outliers are the points which lie away from the centriod.

From Figure 3.3 it is observed that the possibility of the clusters containing outliers is

high if the clusters are away from the center of the data set. The same is observed from

Figure 3.3 the chances of having outliers in clusters C1, C8 and C10 is very high. In the

same way the clusters which are close to center of the data set have very less probability

to contain outliers. So pruning these clusters is good for reducing computations. The

distance and average distance determined by the centriods of the clusters with respect to

the center of the data set is used in identifying possible clusters containing outliers. From

Figure 3.3 there are three clusters C1, C8 and C10 which are having distance from the

overall centriod is greater than average distance from the overall centriod. The points

present in these clusters which are well separated from the center of the data set are

the candidate outliers. The other clusters can be pruned as the distance is small when

compared with average distance from the overall centriod (i.e. the clusters centriods

which fall below the dotted circle are pruned). The proposed algorithm is depicted in

Algorithm 3.3. The proposed method is briefly describe in the following steps.

Centriod of the cluster
Data point

Centriod of centriods

C1

C2

C3

C4

C5

C6C7

C8
C9

C10

Figure 3.3: Data set center based Pruning
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• Generating clusters: Initially, we cluster the entire data set into k clusters using

k-means clustering algorithm.

• Calculating overall centriod: Using only the centriod points of all the clusters

we calculate overall centriod.

• Calculate average distance from the overall centriod. Using centriods of all

the clusters we calculate average distance from overall centriod. It is average sum of

distances between the overall centriod and the centriods of the clusters.

• Pruning some clusters: If the number of points in any cluster is less than number

of outliers, the cluster pruning is not applied. For rest of the clusters if the distance

between centriod of cluster to overall centriod is less than average distance from

overall centriod, we prune the cluster.

• Computing outlier points: From the remaining clusters, calculate ldof value for

all the unpruned points. Them points having high ldof values are reported as top-m

outliers.

3.3 Computational Analysis

The computational complexity of the ldof method proposed by [21] is N2, because ldof

values are calculated for all the data points. As we are reducing size of the data set by

pruning, computational complexity of the proposed methods is reduced considerably than

N2. Initially for clustering the computational complexity of k-means algorithm is k∗ i∗N ,

where k is the number of clusters to be formed, i is the number of iterations and N is

the number of data points. After pruning we left out with few points (set of unpruned

points U). Calculating ldof values for all these points, the computation complexity is

(U)2. So the total computation of our method is k ∗ i ∗ N + k ∗ k + (w ∗ N)2, where

w indicates the fraction of data points that we have after pruning, which is around 0.5.

Since k and i are small, so the total computations of our methods are reduced considerably.

The computational complexity for the second method is little bit more than the other two

methods because of the radius calculation of all the clusters.
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Algorithm 3.3 Cluster Pruning Based Outlier Detection Algorithm (Method-3)

Input : D-Data set, k-number of clusters, i-number of iterations,n-number of outliers

Output: m-points having high ldof value.

Begin
U ← ∅
Set 〈C,G〉 ← kmeans(k, i,D)
// C set of k clusters and G set of k centriods

// C = {c1, c2, ......, ck};G = {g1, g2, ......., gk}

Set AvgG ← (

√∑k
j=1(gj−Ḡ)2

k )

// AvgG average distance of all gj from overall centriod Ḡ

For ∀cj ∈ C do

If |cj | < n then
add points of cj to U

end

Else

If d(gj , Ḡ) < AvgG then
prune(cj)

end

Else
add points of cj to U

end

end

end

For ∀pi ∈ U do
calculate ldof(pi)

end

Sort the points in descending order according to their ldof(pi) values.

First m points with high ldof(pi) values are the desired outliers.

End
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3.4 Experimental Results

Performance of an algorithm is evaluated based on the number of outliers detected by the

algorithm. We perform experiment for all the three methods that have been proposed in

this Chapter and compare our findings with the result reported in [21] by Zhang, et. al.

In an outlier detection algorithm, if there are n true outliers in a data set and if an

algorithm can detect nt outliers among top-m points then these are termed as true positive

(TP ). The true outliers that cannot be detected by an algorithm are false negative (FN);

so n = TP + FN . If the algorithm reports some inliers in top-m points then these are

false positive (FP ); so top-m = TP + FP [90, 98–100]. Then, Precision, which measures

the proportion of true outliers in the top-m suspicious instances, is defined as:

Precision =
nt

top-m
=

TP

TP + FP

Recall, which measures the accuracy of an algorithm, is defined as:

Recall =
nt

n
=

TP

TP + FN

Precision Recall (PR) curves are increasingly used in the machine learning community,

particularly for imbalanced data sets where one class is observed more frequently than the

other class. On these imbalanced or skewed data sets, PR curves are a useful alternative

to Receiver Operating Characteristic (ROC) curves that can highlight performance

differences that are lost in ROC curves [101]. Besides visual inspection of a PR curve,

algorithm assessment often uses the area under curve-PR (AUCPR) as a general measure

of performance irrespective of any particular threshold or operating point. To evaluate

the performance of each method, we used the area under the curve-precision-recall

(AUCPR), which is a typical criterion to measure the effectiveness of outlier detection

methods [102, 103]. It takes values from 0 to 1. The value 1 is the best score, and

quantifies whether the algorithm is able to retrieve outliers correctly.

In real-world data repositories, it is hard to find a data set to measure the performance

of an outlier detection algorithm, because most of the data sets are having data of similar

behaviors or collection of different classes of data items. So, in our experiment we use four

real data sets.

IRIS data set: It is a data set of type of Iris plant. The data set contains 3 classes

with 4 attributes of 50 instances each: Iris setosa, Iris versicolour and Iris virginica.

The Iris setosa is iris plant that is linearly separable from each other class. We took
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Iris versicolour and Iris virginica as inliers and added five Iris setosa (outliers) to the

inliers.

Ionosphere data set: It is called Johns Hopkins University Ionosphere data set.

Its contains 351 data points with 35 attributes (34 attributes are continuous, one

attribute which classify the data point as good or bad). For our experiment we have

taken all the 225 good data points as normal points. Out of 116 bad data points we

took 10 points and added into good data points as outliers. So for our experiment

we took total of 235 data points (225 (inliers)+10 (outliers)).

WDBC data set: It is a medical data set, WDBC (Diagnosis), which has been used

for nuclear feature extraction for breast tumour diagnosis. The data set contains

569 medical diagnosis records (objects), each with 32 attributes (ID, diagnosis, 30

real-valued input features). The diagnosis is binary: Benign and Malignant. We

considered the objects labeled Benign as normal data and added 10 numbers of

Malignant diagnosis records into normal points as outliers.

Shuttle data set: It is originally used for classification, named Shuttle Data (STATLOG

VERSION). The data set contains 58000 objects (Training set contains 43500 objects

and test set contain 14500 objects). Each object has 9 real-valued features and an

integer label (1-7). We consider the objects (only 13) with label 2 as outliers, and

consider the objects with labels 1 as normal data, in total the number of points used

for the experiment is 11491.

In all the data sets, one class is used as normal points and other class as abnormal

points. We took all the normal points and injected few abnormal points into the normal

class as outliers. All the data sets used in this thesis are taken from UCI repository [104].

We carried out experiments for three methods that we have proposed in this chapter:

• M-1: Based on ldof of centriod of cluster.

• M-2: Based on radius of the clusters.

• M-3: Based on centriod of the clusters.

3.4.1 Iris Data Set

By varying the number of clusters, we measured the percentage of pruning of the data

points that are presented in Table 3.1. It is observed from Table 3.1, the percentage of
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Table 3.1: Pruning ratio for IRIS data set

k number % of data points % of data points % of data points

of clusters pruned for M-1 pruned for M-2 pruned for M-3

8 67.61 47.61 83.80

12 60.95 25.71 74.28

16 50.47 8.57 68.57

20 46.66 0 54.28
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Figure 3.4: Precision Recall Curve for IRIS data set for M-1

pruning for the method M-1 varies from 67% to 46%. Even though we prune these many

percentage of points, we could able to find out outliers from the data set. Similarly for the

method M-2, we could able to find all the outliers but the pruning percentage is very low

when the number of clusters are more. As mentioned in Section 3.2.3, there is a increase

percentage of pruning in the method M-3 in comparison to the method M-2. Finally the

Precision-Recall Curve is used to compare the performance of the proposed method with

the existing method proposed by Zhang, et. al. [21]. Figure 3.4 shows that AUCPR for

the method M-1 is same as that of the ldof method, even though we have pruned 67%

to 46% of points from the data set. The performance in terms of detecting outliers of the

method M-1 is same as that of existing method. The AUCPR for the method M-2 and

method M-3 are presented in Figure 3.5 and Figure 3.6 respectively. It is observed that

the performance of the method M-2 and M-3 are also same as that of existing method

though there is a considerable pruning of data points.
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Figure 3.5: Precision Recall Curve for IRIS data set for M-2
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Figure 3.6: Precision Recall Curve for IRIS data set for M-3

3.4.2 Ionosphere Data Set

The percentage of pruning for this data set is presented in Table 3.2 for all the three

methods. The data pruning behavior for this data set is also similar to the data pruning

pattern for Iris data set. The pruning percentage is less in the method M-2 while there

is an increase in the number of clusters. The comparisons of our proposed methods with

reference to the existing method are given in Figure 3.7, Figure 3.8 and Figure 3.9 for

the methods M-1, M-2 and M-3 respectively. The AUCPR for all the three methods are

more than the existing method, so the proposed methods performed in a better way than

the existing method though there is a considerable reduction in data points after pruning.

The number of attributes of a point and the number of data points in Ionosphere data set

is more than that of Iris data set. Therefore, for bigger data set, data pruning helps to
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Table 3.2: Pruning ratio for Ionosphere data set

k number % of data points % of data points % of data points

of clusters pruned for M-1 pruned for M-2 pruned for M-3

8 51.91 61.89 65.10

10 47.97 59.57 62.00

15 42.97 41.70 53.61

20 39.14 10.63 49.78

25 20.85 9.36 46.80
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Figure 3.7: Precision Recall Curve for Inosphere data set for M-1

get a better performance for outlier detection.

3.4.3 Medical Diagnosis Data Set

Table 3.3 presents the percentage of pruning for all the three methods by varying the size

of the clusters from 8 to 25. We see that in the method M-1 the percentage of pruning is

varying from 44% to 63%, where as in the method M-2 the percentage of pruning varies

from 12% to 53% and in the method M-3 the percentage of pruning is from 62% to 79%.

We observed that when we create 8 clusters the pruning is almost maximum and while

considering 25 clusters the pruning percentage is minimum. We also observed the similar

pattern that was observed in the two earlier data sets. The PR curve for the methods M-1,

M-2 and M-3 are presented in Figure 3.10, Figure 3.11 and Figure 3.12 respectively. The

AUCPR is more for all the three proposed methods than the existing method, so for this

data set also we observe a better performance for all the three methods than the existing
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Figure 3.8: Precision Recall Curve for Inosphere data set for M-2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

P
re

ci
si

on

Recall

ldof
proposed method

Figure 3.9: Precision Recall Curve for Ionosphere data set for M-3

one.

3.4.4 Shuttle Data Set

The percentage of data objects pruned for the proposed methods are given in Table 3.4.

The percentage of pruning is very high for the M-3, and is very low for M-2 where as

percentage of pruning for M-1 is medium. The AUCPR for the method M-1 is given

in Figure 3.13, which shows that even after pruning 55% to 59% of data points the

performance of the proposed methods is better than the existing method. Figure 3.14

shows the performance of the method M-2 and observed that it also performs better

than the existing method. In the method M-3 the percentage of pruning is very high in

comparison to the other two methods but from Figure 3.15 it is clear that the area covered
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Table 3.3: Pruning ratio for WDBC data set

k number % of data points % of data points % of data points

of clusters pruned for M-1 pruned for M-2 pruned for M-3

8 63.76 53.40 79.29

10 59.67 52.04 78.74

15 58.78 47.95 72.47

20 52.76 38.69 71.11

25 44.41 12.26 62.12
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Figure 3.10: Precision Recall Curve for WDBC data set for M-1

under the PR curve is substantially more and so its performance is also good. Also it is

clear that for this data set method M-3 performs far better than existing method.

IRIS data set has three classes and out of which two classes are similar and one

class is dissimilar, dissimilar class is taken as abnormal point and other class of points

as normal points whereas, Ionosphere data set has two classes (good, bad) which is also

well separated data set. WDBC data set has two classes (Benign, Malignant) which is

also well separated data set. Whereas Shuttle data set has 7 classes out of these classes

we randomly select two classes for our experiment. Since these two classes are not well

separated, so the precision of both the methods are not good with respect to the shuttle

data set.
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Figure 3.11: Precision Recall Curve for WDBC data set for M-2
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Figure 3.12: Precision Recall Curve for WDBC data set for M-3

3.5 Conclusion

In this chapter we proposed three different heuristics to identify the clusters which may

not contain any outliers. Without loss of the precision of the outlier detection methods, we

pruned those clusters and use the remaining unpruned points to detect the outliers. We

used the parameter ldof [21] to identify the outliers in the unpruned data set. We carried

out experiments using four different benchmark data sets. We used k-means clustering

algorithm in our experiments and perform experiments with different values of k: the

number of clusters needs to be generated by the clustering method. It is observed that

more number of clusters leads to less data pruning. The results of our experiment indicate

that performance of our methods are comparable with the performance of the method
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Table 3.4: Pruning ratio for Shuttle data set

k number % of data points % of data points % of data points

of clusters pruned for M-1 pruned for M-2 pruned for M-3

40 59.16 56.79 99.73

80 61.73 50.62 99.58

120 58.38 25.34 99.51

160 56.79 7.98 99.43

200 55.57 0 99.40
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Figure 3.13: Precision Recall Curve for Shuttle data set for M-1

reported by Zhang et. al. [21]. The ldof parameter is used by Zhang et. al. [21] to

identify outliers, the same parameter has been used in the proposed methods. It is also

observed that for a data set of less number of points, data pruning may not be effective.

Our proposed methods performed better than the existing method [21] for data set having

more number of data points with more attributes. In the proposed methods, pruning

entire cluster may have a chance of pruning few outlier points. So as to avoid any outliers

get pruned while pruning the clusters, we propose a new method in the next chapter.

Instead of pruning entire cluster we prune some points from each clusters based on the

properties of the data points present in the respective clusters.
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Figure 3.14: Precision Recall Curve for Shuttle data set for M-2
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Figure 3.15: Precision Recall Curve for Shuttle data set for M-3
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Chapter 4

Point Pruning based Outlier

Detection Method

4.1 Introduction

In Chapter 3, the points are pruned as a group of points called clusters. Pruning entire

clusters may have a chance of pruning outlier points from the data set. So in order to

obtain efficient pruning from every cluster we propose a new method called point pruning

based outlier detection. In this method instead of pruning entire cluster we prune only

the inliers points from every cluster. Identifying the inlier points is based on the radius

of the cluster. Clustering is a grouping of the similar data points, where as separating

data points into two classes with the use of radius is an efficient idea for picking up the

candidate outliers from each cluster. For each cluster a radius is calculated. The data

points which are close to the centriod with respect to the radius are the inlier points. From

Figure 4.1 it is observed that there are two concentric circles, one is bold circle and other

is the dotted circle. The inner dotted circle is the radius of the cluster, that is the average

distance of all the points from the centriod. We also observe from Figure 4.1, few points

lie outside the radius and some lie inside the radius. The points lie close to the centriod

are possibly the inlier points that are to be removed from all the clusters and the points

which are not removed from different clusters are considered as the candidate outliers.
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Radius= Sum of all black lines
number of points

Figure 4.1: Point pruning from each cluster

4.2 Point Pruning Based Outlier Detection

In our propose method, we use k-means algorithm to cluster the data set. k-means

algorithm produces a set of clusters. From each of these clusters we identified inlier

points and remove the points. Given a cluster of points, centriod is the point which is the

center of the cluster. The points which are close to the centriod, have very less probability

of being outliers. The radius is calculated for each cluster. The radius of the cluster is

the average distance of all points from the centriod. Based on the radius of each cluster,

prune the points whose distance from the centriod is less than radius. For a given cluster

c, of q δ-dimensional data points −→pi where i = 1, 2, .....q, the centriod −→gc , radius Rc are

defined as: [59]

−→gc =

∑q
i=1
−→pi

q
(4.1)

Rc =

√

(

∑q
i=1(
−→pi −−→gc)2
q

) (4.2)

Therefore, for all unpruned points in every cluster we calculate the ldof values and

report the top-m points with high ldof values as outliers.

As presented in Section 2.7 the outlier score of point is calculated using the parameter

64



4.3 Computational Analysis

proposed by Zhang et. al. [21]. The proposed method is presented in Algorithm 4.1. We

briefly describe the steps.

• Generating clusters: Initially, we cluster the entire data set into k clusters using

k-means clustering algorithm and calculate radius of each cluster.

• Clusters having less number of points: If the clusters contain less number of

points than the number of outliers. Point pruning is avoided for all such clusters.

As there are very few points in the clusters, which may be the possible outliers.

• Pruning points inside each cluster: Calculate distance between point (pi) and

centriod (gc). If the distance of a point (pi) is less than the radius of a cluster (Rc),

the point is pruned.

• Computing outlier points: Calculate ldof values for all the points that are left

unpruned in all the clusters. The m points having high ldof values are reported as

top-m outliers.

4.3 Computational Analysis

The computational complexity of the ldof method proposed in [21] is N2, because ldof

values are calculated for all the data points. As we are reducing the size of the data set by

pruning, the computational complexity of the proposed method is reduced considerably

than N2. Initially for clustering the computational complexity of k-means algorithm is

k ∗ i ∗N , where k is the number of clusters to be formed, i is the number of iterations and

N is the number of data points. After pruning we left out with few points(set of unpruned

points U). Calculating ldof values for all these points, the computation complexity is

(U)2. So the total computation of our method is k ∗ i ∗ N + k ∗ np + (w ∗ N)2, where

w indicates the fraction of data points that we have after pruning, which is around 0.5

and np represents average number of points in each cluster. The component k ∗ i ∗ N is

for k-means algorithm, k ∗ np is for radius calculatin and (w ∗N)2 is for ldof calculation.

Since k and i are small, so the total computations of our method is reduced considerably.

4.4 Experimental Results

The Precision and Recall as discussed in Chapter 3 is also used to evaluate the performance

of this method. The experiments are conducted on the same data sets (Iris, Ionosphere,
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Algorithm 4.1 Point Pruning Based Outlier Detection Algorithm

Input : D-Data Set, k-number of clusters, i-number of iterations, n-number of outliers

Output: m-points having high ldof value.

Begin

U ← ∅ ; // U set of unpruned data points

Set 〈C,G〉 ← kmeans(k, i,D)
// C set of k clusters and G set of k centriods

// C = {c1, c2, ......, ck};G = {g1, g2, ......., gk}
For ∀cj ∈ C do

Set Rcj ← (
√∑m

i=1(pi−gj)2

|cj| ) ; // Rcj radius of cluster cj

end

For j = 1 to k do

If |cj | > n then

For ∀pi ∈ cj do

If d(pi, gj) < Rcj then
prune(pi)

end

Else
add pi to U

end

end

end

Else

For ∀pi ∈ cj do
add pi to U

end

end

end

For each point pi ∈ U do
calculate ldof(pi)

end

Sort the points in descending order according to their ldof(pi) values.

First m points with high ldof(pi) values are the desired outliers.

End
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Table 4.1: Pruning ratio for IRIS data set

k number % of data points pruned

of clusters for proposed method

8 46.66

12 32.38

16 11.42

20 5.71

WDBC and Shuttle) that are presented in Chapter 3. These data sets are taken from UCI

repository. The number of data points and number of attributes are different for each of

the data sets. The performance of the method is measured based on the AUCPR.

4.4.1 Iris Data Set

By varying the number of clusters, we measured the percentage of pruning of the data

points that are presented in Table 4.1. It is observed from Table 4.1, the percentage

of pruning for the method varies from 46% to 6%. Even though we prune these many

percentage of points, we could able to find out outliers from the data set. Finally the

Precision-Recall Curve is used to compare the performance of the proposed method with

the existing method proposed by Zhang, et. al. [21]. Figure 4.2 shows that AUCPR for

the proposed method is same as that of the ldof method, even though we have pruned

46% to 6% of points from the data set. The performance in terms of detecting outliers of

the proposed method is same as that of existing method.
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Figure 4.2: Precision Recall Curve for IRIS data set
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Table 4.2: Pruning ratio for Ionosphere data set

k number % of data points pruned

of clusters for proposed method

8 61.70

10 60.42

15 50.63

20 45.53

25 40.85

4.4.2 Ionosphere Data Set

By varying the number of clusters, we measured the percentage of pruning of the data

points that are presented in Table 4.2. It is observed from Table 4.2, the percentage

of pruning for the method varies from 61% to 40%. Even though we prune these many

percentage of points, we could able to find out outliers from the data set. The data pruning

behavior for this data set is also similar to the data pruning pattern for Iris data set. The

pruning percentage is less for Iris data set with the increase in the number of clusters.

The comparisons of our proposed method with reference to the existing method are given

in Figure 4.3. The AUCPR for the proposed method is at par with the existing method,

so the proposed method’s performance is similar to the existing method though there is a

considerable reduction in data points after pruning. The number of attributes of a point

and the number of data points in Ionosphere data set in more than that of Iris data set.

Therefore, for bigger data set, data pruning helps to get a better performance for outlier

detection.

4.4.3 Medical Diagnosis Data Set

Table 4.3 presents the percentage of pruning for the proposed method by varying the size

of the clusters from 8 to 25. It is observed from Table 4.3, the percentage of pruning for the

method varies from 55% to 47%. Even though we prune these many percentage of points,

we could able to find out outliers from the data set. Finally the Precision-Recall Curve

is used to compare the performance of the proposed method with the existing method

proposed by Zhang, et. al. [21]. Figure 4.4 shows that AUCPR for the proposed method

is same as that of the ldof method, even though we have pruned 55% to 47% of points

from the data set.
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Figure 4.3: Precision Recall Curve for Ionosphere data set

Table 4.3: Pruning ratio for WDBC data set

k number % of data points pruned

of clusters for proposed method

8 55.31

10 53.67

15 50.68

20 49.59

25 47.95

4.4.4 Shuttle Data Set

By varying the size of the clusters from 40 to 200, we measured the percentage of pruning

of the data points that are presented in Table 4.4. It is observed from Table 4.4, the

percentage of pruning for the method varies from 56% to 53%. Even though we prune

these many percentage of points, we could able to find out outliers from the data set.

Finally the Precision-Recall Curve is used to compare the performance of the proposed

method with the existing method proposed by Zhang, et. al. [21]. Figure 4.5 shows that

AUCPR for the proposed method is relatively higher than that of ldof method, even

though we have pruned 56% to 53% of points from the data set. The low precision of

Shuttle data set is explained in Section 3.4.4.
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Figure 4.4: Precision Recall Curve for WDBC data set

Table 4.4: Pruning ratio for Shuttle data set

k number % of data points pruned

of clusters for proposed method

40 56.79

80 54.38

120 53.36

160 53.46

200 53.42

4.5 Conclusion

In this chapter, we have proposed an efficient outlier detection method. We used a local

distance-based outlier factor to measure the degree to which an object deviates from its

neighbor. It is observed that we can prune out on an average 50% of the data points,

which are probably not outliers. The precision of detecting outliers is at par with the

existing method using ldof proposed by Zhang et.al. [21]. In this method, removing inlier

data points from the respective cluster is the new idea when compared with the methods

proposed in Chapter 3. Pruning data points from data set improves the computation time

of detecting outliers, but may effect the precision of the method if more number of points

get pruned. Some information about the distribution of data points may lose due to the

pruning of entire cluster from data set. It is possible to retain some information about

the pruned clusters by including a representative data point for each pruned cluster. To

incorporate this idea, we propose a new method in the next chapter that uses both point

70



4.5 Conclusion

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1  0.2  0.3  0.4  0.5  0.6

P
re

ci
si

on

Recall

ldof
proposed method
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pruning and cluster pruning.
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Chapter 5

Effective data summarization

based pruning for Outlier

Detection

5.1 Introduction

In the method proposed in Chapter 4, point pruning from different clusters has improved

the percentage of pruning, resulting in the sparse data set as compared with the

methods proposed in Chapter 3. Combining cluster pruning and point pruning with

data summarization helps in pruning more relevant inliers data points by retaining some

information of pruned clusters. Data summarization is a key data mining concept which

involves techniques for finding a compact description of a data set. Data summarization

of a data set is useful to identify the characteristics of the data set. Simple summarization

methods such as tabulating the mean and standard deviations are often applied for

data analysis, data visualization and automated report generation [105, 106]. Data

summarization techniques can reduce the size and complexity of large multidimensional

data sets to more manageable proportions. They can also highlight the relevant aspects of

the data more clearly, leading to more coherent visualizations, and also facilitating more

accurate and efficient visual analysis [107]. Summarization is performed using various

techniques. These techniques are designed for the automated and unsupervised analysis

and exploration of raw data, followed by the generation of effective summaries based on

the analysis [106]. A summary of a data is essentially a concise version of the original and

it is very useful for the data analysis.
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The main aim of data summarization is, given an input data set, to provide a

more concise view. Summarization has been widely explored in many domains, including

transactional databases [108], network data streams [108,109], Intrusion Detection Systems

(IDS) [110–112], Point of Sales data (POS) [113] and natural text [114]. The data

summarization techniques can give an idea of how the techniques can be applied in many

domains. They have proven to be effective in obtaining knowledge out of large data sets,

that is easier to interpret. A summary of the input data could be easier and faster to

analyze and still obtain similar knowledge.

5.2 Data summarization Based Pruning

This section presents a new outlier detection method for effective pruning of data points.

To improve the pruning of data points we propose a method that summarizes the group

of data points. The summarization is done on the cluster using the statistics of a cluster.

The statistics are presented in the form a single unit called Data Entity (DE). In this

proposed scheme, a leaders clustering method is used to obtain set of clusters of the whole

data set. The summary of each cluster is made as a single unit called data entity (DE).

A DE is defined as follow.

Definition 5.1. Data Entity(DE). A data entity corresponding to a leader l is defined

as a 6-tuple DE = 〈s, l, dµ, dσ, g, d(l, g)〉, where,
s= number of followers including the leader l.

dµ= the average distance from the leader to its followers.

dσ= standard deviation of the distances from leader to its followers.

g= centriod of the data entity.

d(l, g)= the distance between the leader l and the centriod g.

The leaders clustering method is used to cluster the data set, each cluster represents

a data entity. The parameters obtained from each data entity are used for further analysis.

Figure 5.1 shows the affinity of a DE, the inner concentric circle is the scope of dσ. If

the centriod and the leader lie within the distance of dσ , then we can understand that the

followers of the leader are uniformly distributed around the leader. So we can infer that

the chances of having outliers in this DE is very low. Similarly from Figure 5.2, if the

centriod and leader are separated more than dσ distance away from each other, then the

points inside the DE are not uniformly distributed and the probability of having outliers
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leader

centroid

τ

d(l, g)

dσ

Figure 5.1: Distance between centriod and leader is less than σ; (i.e. d(l, g) < σ)

leader

centroid

τ
d(l, g)

d2σ

Figure 5.2: Distance between centriod and leader is greater than σ; (i.e. d(l, g) > σ)
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the values lie in the shaded
area

µ

qσ qσ

µ + qσµ− qσ

At least 1− 1/q2 of

Figure 5.3: Chebyshev Inequality illustration

in these clusters are very high. For pruning inliers points from these clusters/data entities,

Chebyshev inequality is used.

Chebyshev’s Inequality: For any number q greater than 1, at-least (1 − 1/q2) of

the data values lie within q standard deviations (σ) of the mean(µ) [115,116].

The chebyshev inequality states that the probability of data points distributed around

the mean are q standard deviations away from the mean. The same is explain in Figure 5.3.

In other words if the data distribution is unknown, Chebyshev’s inequality can be stated

as: If x is a random variable with finite mean µ and standard deviation σ, then, for any

value q > 0.

P{|x− µ| > qσ} ≤ 1

q2
(5.1)

or

P{|x− µ| < qσ} ≥ (1− 1

q2
) (5.2)

In Equation (5.1), x represents a data point, µ is the data mean, σ is the standard

deviation and P is the probability distribution of data points. Equation (5.1) states that

the probability of data points lie away from µ within qσ is 1
q2
. For example if (q = 2), the

probability distribution of the points whose distance is greater than qσ from µ is less than
1
q2 (i.e. 25%). and from Equation (5.2), the probability distribution of the points whose

distance is less than qσ from µ is greater than 1− 1
q2 (i.e. 75%). So for any distribution,

using chebyshev inequality [115, 116] we can shown that at least 75%(i.e. 3
4 fraction of

points) of the data would fall below two standard deviations (q = 2) from the mean and

25% (i.e. 1
4 fraction of points) of the data fall above the two standard deviations from the
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mean. Using chebyshev inequality, we obtain 25% of points from each data entity (i.e. the

data points 2 ∗ dσ away from the leader).

In this data summarization based pruning method, the data set is clustered into a

set of clusters. Few clusters are pruned based on the parameters/statistics as defined in

DE. For the remaining unpruned clusters chebyshev inequality is applied to prune some

points from these clusters. Finally based on outlier score of the unpruned points declare

the top-m outliers.

For pruning clusters and points from the cluster, the distance between leader and

centriod is the main important parameter considered. To prune clusters, distance between

leader and centriod d(l, g) is compared with the standard deviation of the distances of

the points present in the cluster. If the distance d(l, g) < dσ prune the entire set of

followers/points of the leader l, because if distance between leader and centriod is less

than the standard deviation of the cluster, then the probability of points distributed

around leader and centriod are uniformly distributed. Even the centriod and leader are

relatively very close and all the points are equiv distance away from leader and centriod

i.e. τ distance. So we prune the entire cluster which is shown in Figure 5.1.

Similarly if the distance between leader and centriod is greater than one standard

deviation, then from chebyshev inequality Equation (5.2), we can say that leader and

centriod are not close to each other. So pruning the points which are below two standard

deviation from the leader. Henceforth capturing the 25% of points lying away from the

leader. From Figure 5.2 we see that centriod is more than one standard deviation distance

away from the leader. So we pruned all the points which lie below two standard deviations.

So using chebyshev’s inequality, centriod, mean, standard deviation and ldof values a

new method of detection of outlier is presented here. This method is divided into 3 steps;

1) clustering 2) data summarization with pruning and 3) outlier score. In clustering step

we use well known leaders-followers clustering algorithm to find out leaders-followers. In

pruning step few clusters are pruned based on distance between leader and centriod, and

pruning few points/followers from remaining unpruned clusters based on the chebyshev’s

inequality. For the remaining unpruned points we calculate ldof and declare the top-m

points as outliers in the outlier score step. Algorithm 5.1 describes how we have detected

the outliers using data summarization method.

We briefly describe the steps.

• Generating clusters: Initially, we cluster the entire data set into different clusters

using leaders clustering algorithm. Each cluster is summarized as a data entity.

77



5.4 Experimental Results

• Cardinality: If the cardinality of a cluster is less than the number of outliers, we

use all the points of the cluster as candidate points.

• Pruning some clusters/points: Pruning (removing possible inliers), is based on

two important parameters

– If the distance between leader and centriod of the cluster d(l, g) is smaller than

one standard deviation of the cluster, add only leader of the cluster to the

candidate points.

– If the distance between leader and centriod of the cluster d(l, g) is greater than

one standard deviation of the cluster, add all the points whose distance from

the leader is greater than two standard deviations.

• Computing outlier points: Calculate ldof values for all the candidate points.

The points having top-m ldof values are outliers.

5.3 Computational Analysis

The computational complexity of the ldof method proposed in [21] is N2, because ldof

values are calculated for all the data points. As we are reducing the size of the data set by

pruning, the computational complexity of the proposed method is reduced considerably

than N2. Initially for clustering the computational complexity of leaders clustering is

O(pN), where p = | L |, and N is the number of data points. After pruning we left

out with few points (set of unpruned points U). Calculating ldof values for all these

points, the computation complexity is (U)2. So the total computation of our method is

p∗N +(w ∗N)2, where w indicates the fraction of data points that we have after pruning,

which is around 0.2. Since p is small, so the total computations of our methods are reduced

considerably.

5.4 Experimental Results

The experiments are conducted on the same data sets as described in Chapter 3 and

the same performance metrics are used to show the performance of our method. The

number of cluster pruned, number of points pruned and total percentage of pruning are

presented. AUCPR that described in the Chapter 3 is used to compare the performance

of our proposed method with reference to the method proposed in [21].
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Algorithm 5.1 Data Summarization Based Pruning for Outlier Detection

Input : D-DataSet, τ -leaders threshold distance, n-number of outliers.

Output: m-points having high ldof value.

Begin

U ← ∅ ; // U set of unpruned data points

Set 〈C,L, G〉 ← leaders(D, τ);
// C set of clusters, L set of leaders and G set of centriods

// C = {c1, c2, ......, ck};L = {l1, l2, ......., lk};G = {g1, g2, ......., gk}
For ∀ci ∈ C do

If |ci| < n then
add points of ci to U

end

// dσi
= standard deviation of the distances of a cluster ci

Else

If d(li, gi) < dσi
then

add li into U

end

Else

For ∀pi ∈ ci do

If d(pi, li) > 2dσi
then

add pi to U

end

end

end

end

end

For ∀pi ∈ U do
calculate ldof(pi)

end

Sort the points in descending order according to their ldof(pi) values.

First m points with high ldof(pi) values are the desired outliers.

End
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5.4.1 Iris Data Set

By varying the τ value from 0.20 to 0.45 we measured the percentage of pruning of the

data points that are presented in Table 5.1. It is observed from Table 5.1, the percentage

of pruning for the method varies from 85% to 38%. Even though we prune these many

percentage of points, we could able to find out outliers from the data set. Finally the

Precision-Recall Curve is used to compare the performance of the proposed method with

the existing method proposed by Zhang, et. al. [21]. Figure 5.4 shows that AUCPR for

the proposed method is same as that of the ldof method, even though we have pruned

85% to 38% of points from the data set.

Table 5.1: Precision and Pruning ratio for IRIS data set

τ k-number clusters number pruned points candidate % of

of clusters pruned d(l, g) < σ d(p, l) < 2σ points pruning

0.20 90 0 0 90 15 85.71

0.25 78 0 0 78 27 74.28

0.30 67 1 3 64 38 63.80

0.35 56 1 5 51 49 53.33

0.40 49 0 0 49 56 46.66

0.45 40 1 5 35 65 38.09
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Figure 5.4: Precision Recall Curve for IRIS data set
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5.4.2 Ionosphere Data Set

By varying the τ value from 1.0 to 3.0 we measured the percentage of pruning of the

data points that are presented in Table 5.2. It is observed from Table 5.2, the percentage

of pruning for the method varies from 89% to 61%. Even though we prune these many

percentage of points, we could able to find out outliers from the data set. Finally the

Precision-Recall Curve is used to compare the performance of the proposed method with

the existing method proposed by Zhang, et. al. [21]. Figure 5.5 shows that AUCPR for

the proposed method is same as that of the ldof method, even though we have pruned

89% to 61% of points from the data set.

Table 5.2: Precision and Pruning ratio for Ionosphere data set

τ k-number clusters number pruned points candidate % of

of clusters pruned d(l, g) < σ d(p, l) < 2σ points pruning

1.0 90 0 0 145 90 61.70

1.5 49 3 24 162 49 79.14

2.0 30 3 41 160 34 85.53

2.5 17 2 45 165 25 89.36

3.0 13 1 18 185 32 86.38
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Figure 5.5: Precision Recall Curve for Ionosphere data set
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5.4.3 Medical Diagnosis Data Set

By varying the τ value from 25 to 45 we measured the percentage of pruning of the data

points that are presented in Table 5.3. It is observed from Table 5.3, the percentage of

pruning for the method varies from 79% to 66%. Even though we prune these many

percentage of points, we could able to find out outliers from the data set. Finally the

Precision-Recall Curve is used to compare the performance of the proposed method with

the existing method proposed by Zhang, et. al. [21]. Figure 5.6 shows that AUCPR for

the proposed method is same as that of the ldof method, even though we have pruned

79% to 66% of points from the data set.

Table 5.3: Precision and Pruning ratio for WDBC data set

τ k-number clusters number pruned points candidate % of

of clusters pruned d(l, g) < σ d(p, l) < 2σ points pruning

25 114 8 43 202 122 66.75

30 87 6 42 225 100 72.75

35 71 3 21 248 98 73.29

40 56 5 64 217 86 76.56

45 48 2 32 260 75 79.56
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Figure 5.6: Precision Recall Curve for WDBC data set
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Table 5.4: Precision and Pruning ratio for Shuttle data set

τ k-number clusters number pruned points candidate % of

of clusters pruned d(l, g) < σ d(p, l) < 2σ points pruning

10 390 27 1346 9194 951 91.72

20 111 8 1315 9325 851 92.59

30 76 4 657 9563 1271 88.93

40 58 5 2003 8673 815 92.90

50 46 3 1001 9623 867 92.45
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Figure 5.7: Precision Recall Curve for Shuttle data set

5.4.4 Shuttle Data Set

By varying the τ value from 10 to 50 we measured the percentage of pruning of the data

points that are presented in Table 5.4. It is observed from Table 5.4, the percentage of

pruning for the method varies from 92% to 88%. Even though we prune these many

percentage of points, we could able to find out outliers from the data set. Finally the

Precision-Recall Curve is used to compare the performance of the proposed method with

the existing method proposed by Zhang, et. al. [21]. Figure 5.7 shows that AUCPR for

the proposed method is same as that of the ldof method, even though we have pruned

92% to 88% of points from the data set. The low precision of Shuttle data set is explained

in Section 3.4.4.
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5.5 Conclusion

In this chapter we proposed a new data summarization method to identify the clusters

which may or may not contain any outliers. Initially we grouped the data using leaders

clustering method, and then we estimated the spread of data in a cluster based on the

distance between the leader and the centriod of the cluster. This method is a combination

of cluster pruning proposed in Chapter 3 and point pruning proposed in Chapter 4.

Without loss of the precision of the outlier detection methods, we pruned those clusters

which may not contain outliers, but to retain some information of the pruned cluster

we include a representative data points for such clusters. The clusters which may contain

outliers are processed to separate possible inlier points from outlier points and the probable

inliers are removed from the clusters. The remaining unpruned points are used to detect

the outliers. We used the parameter ldof [21] to identify the outliers in the unpruned data

set. We carried out experiments using four different benchmark data sets. The results

of our experiments indicate that performances of our methods are comparable with the

performance of the method reported by Zhang et. al. [21]. Till now we have proposed

methods to reduce the computation time while detecting outliers by removing some of

the data points from the data set. The distance computations also take more time if the

dimensions/attributes of data points are more. It is also an interesting issue to investigate

whether computation time can be reduced or not while detecting outliers by reducing the

number of attributes in the data set. In the next chapter we introduce a new method for

outlier detection that involves attribute pruning.
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Chapter 6

Correlation based Pruning

Method for Outlier Detection

6.1 Introduction

In the previous chapters the proposed methods are based on the objects pruning (pruning

in the form of set of objects (cluster) or data object itself) from the data set. That is most

of the outlier detection algorithms attempt to detect outliers by computing the distances in

full dimensional space [96]. Even the methods proposed in the previous chapters attempt

to find out outliers in the full dimensional space. However, in very high dimensional

spaces, the data are very redundant and the concept of similarity may not be meaningful.

Examining the behavior of the data in sub-spaces, it is possible to develop more effective

algorithms and similarity search in high dimensional spaces [117, 118]. It can be shown

that this is also true for the problem of outlier detection, since in many applications only

the subset of attributes is very useful for detecting anomalous behavior. In addition, when

significant number of features in a data set is considered noisy [119], finding outliers in all

dimensions typically do not result in effective detection of outliers, while at the same time

it is difficult to identify a few relevant dimensions where the outliers may be observed.

To select the features that are relevant for any detection technique is an important

problem. In general, a feature is good if it is relevant, but is not redundant to any of the

other relevant features [120]. So the correlation between two variables/features is used as

a goodness measure. Therefore a feature is good if it is highly correlated to the set of

attributes/features but not highly correlated to any of the other features.

For example the euclidean distance calculation between pair of data point x and y
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6.2 Correlation Based Method

in δ dimension is given in Equation (6.1). In order calculate the distance between two

points we have to perform addition, subtraction, square and square root. Selecting few

attributes and calculating distance between two points on these attributes reduces the

number of additions, subtractions and square operations.

d(x, y) =

√

√

√

√

δ
∑

i=1

(xi − yi)
2 (6.1)

Therefore for distance computation in δ dimensional has high computation than

calculating same distance computation in smaller dimension.

So, we propose a method to select small set of attributes using correlation coefficient.

Correlation coefficient is used to identify the correlation factor between the pair of

attributes.

6.2 Correlation Based Method

In this section, we discuss how to select the features. The attribute is selected from a

set of attributes having similar correlation value. Correlation summarizes the relationship

between two variables in a single number called the correlation coefficient. There is one

classical well known measure called linear correlation coefficient (also called as Pearson

correlation coefficient [64]). It is a symmetrical measure for two variables [120]. Other

measures in this category are basically variations of the correlation formula, such as least

square regression error and maximal information compression index [121]. Correlation

describes the relationship between two different variables/features [120]. In statistics

community it is called as correlation coefficient. The correlation coefficient is usually

given the symbol r that describes direction (positive or negative) and degree (strength)

of relationship between two variables. A correlation coefficient can vary from (-1 , +1).

The relationship between the two variables X and Y is explained as shown in Figure 6.1,

in sub figure (a) the two variables X and Y are directly proportional to each other as X

increases Y also increases, in (b) X and Y are inversely proportional as X increases Y

decreases, in (c) X and Y are highly correlated, they are proportional to each other, in (d)

the two variables are not proportional to each other, (e) and (f) are not at all correlated

to each other there is no relationship between the two variables.

The correlation between all pair of features/attributes is calculated based on

Equation (6.2), where X and Y are two attributes, x̄ is the mean of X, and ȳ is the

mean of Y .
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X X

XX

XX

Y Y

YY

YY

Perfect Positive Correlation (r = +1)

Low Correlation (r = 0.05)High Correlation (r = 0.96)

No Correlation (r = 0)No Correlation (r = 0)

Perfect Negative Correlation (r =−1)

(a) (b)

(c)
(d)

(e) (f)

Figure 6.1: Pearson correlated coefficient. (a) perfect positive correlation (r = +1), (b)
perfect negative correlation (r = -1), (c) high correlation (r = 0.96), (d) low correlation (r
= 0.05), (e) no correlation (r = 0), and (f) no correlation (r = 0).

r :=

∑N
i=1(xi − x̄)(yi − ȳ)

√

∑N
i=1(xi − x̄)2

√

∑N
i=1(yi − ȳ)2

(6.2)

There are several benefits of choosing linear correlation as a feature selection measure.

It reduces redundancy among selected features [122]. However, linear correlation measures

may not be able to capture correlations that are not linear in nature. Another limitation

is that the calculation requires all features must be numerical values.

The proposed method is divided into two steps. First step, correlation step, finding

the subset of attributes having similar correlation value. In the second step, outlier score

is calculated with only the selected attributes. From the correlated set of features, one

feature is selected as a representative feature and is used to determine the outliers from the
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data set. In outlier score step, outlier score is calculated for all the data points with only

the representative features that are selected from the correlation coefficient. Removing

some of these features help to reduce the computational time when compared with the

existing ldof method in full attributes. Algorithm 6.1 describes our method.

We briefly describe the steps needed to detect outliers.

• Correlation coefficient calculation: Initially, select few number of objects/instances

(user defined), to calculate pair wise correlation between all the pair of attribute.

• Group the set of attributes based on the correlation value: Based on the

required correlation value (threshold value) group the set of attributes.

• Select the representative attribute: Select one attribute from each correlated set

of attributes. The one selected is used as a representative attribute of the correlated

set.

• Computing outlier points: Calculate ldof values for all the points using only

the selected representative attributes. The top-m points with high ldof values are

reported as outliers.

6.3 Computational Analysis

The computational complexity of the ldof method proposed by Zhang et. al. [21] in full

δ dimensions is O(δN2), because ldof values are calculated for all the data points in δ

dimensions. As we are reducing the number of attributes by selecting few attributes based

on correlation, the computational time of the proposed method is reduced considerably.

Initially calculating correlation coefficient for all pair of attributes based on very few

randomly selected data points has very less computational time.

After removing some attributes, the few selected features (set of unpruned features

UA) are used for calculating ldof values. All the points with only UA attributes have less

computational time than calculating ldof in full dimensions/attributes.

6.4 Experimental Results

The performance of an algorithm is evaluated based on the number of outliers detected

by the algorithm. We use the same performance metrics described in Chapter 3 to
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Algorithm 6.1 Attribute Pruning Based Outlier Detection Algorithm

Input : D-data set, tc : threshold correlation value, n-number of outliers

Output: m-points having high ldof value.

Begin

UA ← ∅ ; // UA : Set of selected attributes

select T ⊂ D ; // T : contains n random points

// fp Pearson Correlation Coefficient

// A = {a1, a2, ......, aδ}; δ-number of attributes

For ∀(ai, aj), ai, aj ∈ A, with elements of T do

M [i, j] = fp(ai, aj) ; // M Correlation Matrix

end

Construct subsets S1, S2, ....., Sl of A,

such that for all pair of attributes (ai, aj) ∈ Si is fp(ai, aj) > tc

For ∀Sl ⊂ A do
add one attribute a1 ∈ Sl to UA

end

For ∀pi ∈ D using attributes of UA do
calculate ldof(pi)

end

Sort the points in descending order according to their ldof(pi) values.

First m points with high ldof(pi) values are the desired outliers.

End
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Table 6.1: Computation time for Libras Movement data set

Threshold (tc) Percentage of Computation time (secs) for ldof

correlation coefficient attributes pruned in full δ in reduced attributes

0.9 75.55 0.257717 0.2063 + 0.013644

0.8 83.33 0.257717 0.2098 + 0.012765

0.7 86.66 0.257717 0.2114 + 0.012026

evaluate the performance. However the data sets use in this chapter are different from

previous chapters. The different data sets are used in this method because, the data set

must contain more number of attributes. The three real data sets are taken from UCI

repository [104]. The correlation coefficient is only calculated for all pair of attributes

with a sample of 10 objects from each data set. A subset of similar correlation values

are formed based on the threshold correlation coefficient (tc). In all our experiments we

consider different values for tc and use threshold as 0.9, 0.8 and 0.7. We present the

performance results in terms of percentage of pruning, computation time and AUCPR.

The computational time is presented in seconds, i.e. how much time the method has taken

for calculating ldof score for all the points (without attribute pruning and with attribute

pruning). The computational time for calculating correlation coefficient is also considered

in our experiment. The total time requirement for our method is time for calculating the

correlation coefficient and the time for calculating ldof score. Computational time for

calculating correlation coefficient for all pair of attributes is comparatively less because we

use a randomly selected small sample of data points from the data set. In our experiments

the sample of data points selected for calculating correlation coefficient is 10 (i.e. equal to

number of outliers).

6.4.1 Libras Movement Data Set

In this experiment, we use the data set LIBRAS, acronym of the Portuguese name LIngua

BRAsileira de Sinais, is the official Brazilian sign language. The data set (movement

libras) contains 15 classes of 24 instances each, where each class references to a hand

movement type in LIBRAS. The hand movement is represented as a bi-dimensional curve

performed by the hand in a period of time. The curves were obtained from videos of

hand movements, with the Libras performance from 4 different people, during 2 sessions.

Each video corresponds to only one hand movement and has about 7 seconds. Each video

corresponds to a function F in a functions space which is the continual version of the
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input data set. In the video pre-processing, a time normalization is carried out selecting

45 frames from each video, in according to an uniform distribution. In each frame, the

centriod pixels of the segmented objects (the hand) are found, which compose the discrete

version of the curve F with 45 points. All curves are normalized in the unitary space. In

order to prepare these movements to be analyzed by algorithms, they have carried out a

mapping operation, that is, each curve F is mapped in a representation with 90 features,

with representing the coordinates of movement. The data set contains 360 (24 in each of

fifteen classes) instances, each with 91 attributes (90 numeric (double) and 1 for the class

(integer)). We regard the class (integer/class = 15) as outlier, added only 10 points, and

remaining classes as inliers.

The attribute pruning is presented in terms of percentage of pruning for different

correlation values is shown in Table 6.1. The performance in terms of Precision and Recall

is shown in Figure 6.2. The proposed method performs better than the ldof method. Even

though 75% to 86 % of attributes are pruned, the AUCPR is better than the method

without attribute pruning.
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Figure 6.2: Precision Recall Curve for Libras Movement data set

6.4.2 Musk Data Set

This data set describes a set of 102 molecules of which 39 are judged by human experts

to be musks and the remaining 63 molecules are judged to be non-musks. The goal is to

predict whether new molecules are musks or non-musks. However, the 166 features that

describe these molecules depend upon the exact shape, or conformation, of the molecule.

Because bonds can rotate, a single molecule can adopt many different shapes. The data
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Table 6.2: Computation time for Musk data set

Threshold (tc) Percentage of Computation time (secs) for ldof

correlation coefficient attributes pruned in full δ in reduced attributes

0.9 72.89 6.604828 0.6714 + 3.628507

0.8 79.51 6.604828 0.6798 + 3.405509

0.7 82.53 6.604828 0.6859 + 3.308946

set is generated by all the low-energy conformations of the molecules were generated to

produce 6,598 conformations.

The data set describes whether a molecules is a musk or non-musk. It contains 6598

(with two classes, musk and nonmusk) instances, each with 167 attributes (166 numeric

(double) and 1 for the class (1,0)). We consider the class-0 points as outliers and the class-

1 data points as inliers. Out of 6598 objects we separated class-0 and class-1 instances.

We added 10 outliers that is class-0 instances into 5581 class-1 instances.

The performance of the method is shown using AUCPR. It is observed from Figure 6.3

after pruning 72% to 82% of attributes, the AUCPR for the method is also better than the

method without attribute pruning. The percentage if pruning is also good for different

values of correlation as presented in Table 6.2. The computation time as presented in

Table 6.2 is less when compared to computation time in full dimension.
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Figure 6.3: Precision Recall Curve for Musk data set
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Table 6.3: Computation time for Isolet data set

Threshold (tc) Percentage of Computation time (secs) for ldof

correlation coefficient attributes pruned in full δ in reduced attributes

0.9 53.16 31.618082 8.7038 + 17.348010

0.8 82.01 31.618082 8.7350 + 9.957266

0.7 95.62 31.618082 8.7499 + 6.791235

6.4.3 Isolet Data Set

The data set ISOLET predicts which letter-name that was spoken. The data set contains

7797 data objects with 617 attributes. There 26 classes of data, each class has 300 data

points. As the data is very similar, we separated one class (class-1) and multiplied the

class of points with a value (1.6) to make that class of points as outliers. We selected 10

points from this class and added into other class of points as outliers. We performed the

experiments to find out the outlier points from the data set with attribute pruning and

without pruning.

In Table 6.3 we presented the percentage pruning of attributes for different values

of correlation coefficient. There is a wide range of pruning percentage for different values

of correlation values. Even the computation time without pruning and with pruning also

have wide difference in seconds as shown in Table 6.3. Finally the performance of the

method in terms of AUCPR is very good as shown in Figure 6.4. This is because of the

small factor (constant value) multiplied to a class of data points to make them as outliers.
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Figure 6.4: Precision Recall Curve for Isolet data set

The number of attributes present in data sets Libras, Musk and Isolet are 90, 166 and
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617 respectively. From the experiments it is observed that for more number of attributes,

there is a considerable reduction in time for detecting outliers with reference to the method

of outlier detection without attribute pruning by Zhang et. al. [21]. So, attribute pruning

method is useful for big data set with large number of attributes.

6.5 Conclusion

In this chapter, we proposed an outlier detection method based on correlation. Initially

correlation coefficient between all pair of attributes is calculated and based on correlation

value, subsets of attributes are formed. All the attributes in the subset are similar based

on correlation value. Selecting one attribute from the set of correlated attributes provides

a representative attribute for the set and it reduces the number of attributes for calculating

ldof value. Using ldof parameter the outlier score of each point is calculated considering

only the selected/representative attributes. The computational time is reduced as we are

reducing the size of the attributes. The precision of detecting outliers of our method is

far better than the method without pruning [21] though we pruned out some redundant

features.
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Chapter 7

Conclusion and Future Works

The work presented in this thesis puts forward algorithms to detect outliers from a data set.

The main direction of this work is for reducing the computations while detecting outliers

from a data set. The reduction in computations can be achieved for outlier detection

from a big data set if the data set is reduced by pruning some of the data points for

which chances of being outlier is less. Also for data set which consists of large number of

attributes, the computation can be reduced by selecting some attributes that are closely

related to other attributes. The main contributions of the thesis are as follows:

7.1 Contributions

Cluster Based Pruning In Chapter 3, we proposed three cluster based pruning

methods. In the first method, we used the behaviors of the centriods of the clusters.

The high ldof value of a centriod indicates that it is away from other clusters and

chances of having outliers are more. We kept such type of clusters for outlier

detection and pruned the other clusters. The second and third methods are an

improvement of the first method. In the first method we pruned half of the clusters,

but in other two methods the number of clusters that are to be pruned were decided

depending on the behaviors of the clusters. In the second method the radius of

clusters were used as a deciding factor to pruned clusters; but if we divided the data

set into a large number of clusters it had a affect on the pruning percentage. To

overcome this difficulty, in third method we used the distance of cluster’s centriod

to the centriod of the complete data set as a deciding factor whether to prune a

cluster or not. The cluster pruning helped us to remove around 60% of points from

the data set, even then we achieved similar precision for the proposed methods with

95



7.2 Discussions

respect to the existing method [21].

Point Based Pruning The second contribution of this work is based on point pruning.

Instead of pruning the entire cluster, in this method we pruned some points from

each clusters. The points that are away from the cluster’s center are deviating from

normal points and these are the probable outliers. We have used the radius of the

cluster as deciding factor. The points that lie inside the radius are pruned. The

experiment results showed that we got a considerable reduction in the data set and

eventually reduced the computation for calculating the ldof value.

Data Summarization Based Pruning The third contribution of this work is a new

data summarization scheme. It is proposed to prune both the clusters and the points

depending on the behaviors of the clusters. The clusters are represented as a Data

Entity. The Data Entity summarizes the properties of the cluster. Depending on

the properties of Data Entity, either we have pruned the entire cluster or pruned

some data points from the cluster. When we pruned the entire clusters, then a

representative data point is included in the data set. Experiment results showed

that this method is also comparable with the existing method [21].

Attribute Based Pruning This contribution is to handle data set with large number of

attributes. The Pearson correlation factor has been used to find the set of correlated

attributes. From the set of correlated attributes, only one attribute has been

considered for further use. This selected attribute considered as the representative

attribute for the set of correlated attributes. So the number of attributes reduced

considerably and eventually reduced the distance computation while calculating the

ldof value.

7.2 Discussions

The main objective of this work is to find the outliers from a given data set using

less number of computations. The basic computations involved in outlier detection is

distance computations between data points. Our main emphasis is to reduce the distance

computations. So, if we can remove the data points from the data set, which are not

outliers, then it leads to the reduction in distance computations. We used clustering

techniques to identify the data points that can be pruned. The formation of clusters

depends on the behaviors of the data set and the distributions of data points in the data
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set. In our work it is observed that a particular method is not effective for all kind of data

sets.

For a dense data set it has been observed that the formation of most of the clusters

are also dense in nature. Possibilities of having outliers in a dense cluster is less because

most of the data points are of similar nature and these are closely related. So, without

effecting the precision of the outlier detection methods, these dense clusters can be pruned.

In our cluster pruning method, the entire cluster is pruned if the cluster is dense in nature.

Therefore, this cluster pruning method is more effective for dense data set. On the other

hand if the nature of formed clusters is relatively sparse in nature. In such situations

pruning the entire clusters is not an effective decision. In our work we proposed a method

based on point pruning. On the basis of the properties of the data points of a clusters, we

pruned some of the points.

In case of cluster pruning, it has been observed that for some data sets the pruning

percentage is very high and as a result some of the outliers got pruned. In cluster pruning

the entire cluster has been pruned and we do not have any information about those point

during outlier detection phase. To overcome these difficulties, we proposed a new method

based on data summarization. In this method we applied both cluster pruning and point

pruning methods. Each cluster is represented by Data Entity. The properties of data

entity indicate whether we should go for data pruning or cluster pruning. If the decision

is for a cluster pruning, then the information of that data entity is kept in the data set as

a representative point.

Finally we considered the data set with large number of attributes. Due to the

presence of large number of attributes, the distance computations are very high. To reduce

the number of distance computations, we proposed attribute pruning in our last method.

We used Pearson Correlation Coefficient to find the correlated attributes of the data set.

We considered one attributes from the set of correlated attributes. Due to the reduction

in attributes in the data set, the distance computations reduced drastically. Finally we

calculate the ldof value of each point using reduced attributes set to identify the outliers.

We performed several experiments using bench mark data sets and found that our

methods performed at per with the existing method [21]. Due to pruning (data points or

attributes), the computation reduced significantly.
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7.3 Future Directions

The work presented in this thesis is to reduce the number of computations while detecting

outliers from a given data set. To reduce the computations, we used cluster pruning and

attributes pruning. For better performance this work can be extended in the following

directions.

• In our work, we used K-means and leader selection clustering algorithms to divide

the data set into clusters. It will be an useful study to identify the appropriate

clustering algorithm for a given data set, because the properties of clusters depend

on the clustering algorithm and the distribution of data points in the data set.

• In our proposed data pruning methods, we used ldof value [21] to calculate the

outlier score of a data point. Study may be carried out to check the effectiveness of

other methods to calculate the outlier score of a data point.

• In our proposed attribute pruning method, we used Pearson Correlation Coefficients

to identify the set of correlated attributes. Study may be performed by using other

correlation coefficients and measure the performance of the method. There is also

a possibility to apply the pruning methods (cluster pruning or data point pruning)

after selecting the relevant attributes.

• There is a scope to apply this pruning technique to find the outliers in streaming data

sets. Since in streaming data set all data points are not available at the same time,

so the use of incremental clustering techniques may be explored for the clustering

step of our outlier detection methods.

• Another important direction is to identify the proper method for a particular data

set. Because the effectiveness of outlier detection methods depends on the behaviors

of the data set; particularly distribution of data points, number of attributes,

properties of attributes, etc.
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