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Abstract

Gastrointestinal (GI) cancers, specifically colorectal cancers (CRC), are prevalent and sig-

nificant contributors to global cancer-related deaths. CRC originates from pre-malignant

polyps, which can be detected through a colonoscopy procedure, during which videos of

a patient’s colon are captured. However, analyzing screening videos for related diagnosis

and treatment faces challenges due to a large proportion of low-quality data, risking human

review errors. Further, the low-quality data and the limited availability of large-scale an-

notated datasets pose significant hurdles in building automated computer-aided diagnostic

systems. This thesis addresses these challenges while aligning with standard clinical pro-

cedures. To maintain this uniformity, we mimic these manual procedures in our proposed

automated pipeline and present solutions to problems encountered at different stages.

A standard clinical analysis of colonoscopy videos generally begins with manually re-

viewing recordings and gradually confines the analysis to keyframes for retrospective treat-

ments. Hence, initially, this thesis focuses on automating this task to reduce the clinicians’

burden. However, the keyframe count could be significantly low in some video recordings

captured under extremely unfavorable conditions. Therefore, techniques to extract obscured

details of uninformative frames are proposed. Following the pre-processing stage, the the-

sis addresses issues related to automated diagnostic systems, enhancing lesion detection,

localization, segmentation, and classification outcomes. One of the crucial concerns in the

literature is the lack of reproducibility and fair comparison across different segmentation

techniques due to inconsistent evaluation datasets, as revealed in our case study. Moti-

vated by this, our focus is on resolving dataset availability issues, as a good-quality, diverse

dataset enhances lesion detection performance and promotes reproducibility. Thus, this

thesis incorporates effective keyframe selection and other pre-processing techniques, metic-

ulous dataset curation, and synthetic image generation. The four significant contributions

of the thesis are highlighted below.

First, a multi-stage framework is presented that focuses on keyframe extraction to select

good-quality, non-redundant frames and enforce diversity in the final frames for analysis.

The framework enhances polyp detection and polyp localization outcomes while reducing



processing time. Our novel multi-scale attention-based localization model, YcOLOn, further

improves the localization task within the framework.

Second, we propose two approaches to overcome the limitations of our keyframe ex-

traction framework. These techniques focus on obtaining obscured clinical details from

uninformative frames with artifacts. One method is an adversarial-based approach that

focuses on translating uninformative frames into clinically significant frames. This helps

in improved polyp localization. With a similar aim to deal with artifacts, a DWT-based

encoder-decoder architecture is designed to segment specular highlights while overcoming

the issue of overexposed regions in the colonoscopy images.

Third, a case study is presented that analyzes different polyp and instrument segmen-

tation algorithms involved in two competitions conducted in the years 2020 and 2021. Such

analysis provides an opportunity to compare different state-of-the-art techniques on the

same dataset for transparency and reproducibility. Additionally, we release an open-access

multi-class dataset, GastroVision, for computer-aided diagnosis of GI cancer. It comprises

8000 images from 27 classes covering pathological and normal findings, anatomical land-

marks, and cases from therapeutic interventions.

Fourth, two frameworks are proposed to generate synthetic medical images using dif-

fusion models, overcoming the lengthy procedures to acquire real medical datasets. The

first framework, ControlPolypNet, leverages easily accessible non-polyp frames and converts

them into hard-to-find polyp images. The generated polyp images are utilized to augment

a real dataset to perform a downstream task of polyp segmentation. The second frame-

work, PathoPolyp-Diff, is a text-controlled model to generate diverse polyp images covering

different pathologies, imaging modalities, and quality. The generated images are used to

augment real datasets to enhance pathology based polyp classification. Further, cross-class

label learning is introduced, which learns features from other classes without additional

annotations.
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1
Introduction

1.1 Overview

Medical image analysis is a field that has evolved over the intersection of healthcare and

technology. It leverages fast-growing technical advancements to provide automated image-

based solutions to routine clinical challenges. These challenges include but are not limited

to operator dependency in decision-making that ultimately relies on the skill set of the

concerned physician, manual measurements that are prone to detection errors, and the un-

availability of domain experts. As stated by ACR’s Data Science Institute, “Every patient

has annual follow-up exams, which can add up to about 100 exams per day for a mus-

culoskeletal radiologist who works with arthroplasty surgeons.”1 Manual examination and

reviewing of such enormous image data involves high risk of errors, delays in treatment, and

increase in lesion2 miss-rate. Thus, it becomes crucial to adopt automated tools to mitigate

the above-mentioned challenges.

The concept of automation in medical image analysis introduced Computer-Aided Di-

agnosis (CAD) systems [1]. These systems are built on computational algorithms which

enable the automatic interpretation of medical images for accurate predictions. CAD is

further endowed with rapidly evolving machine learning and deep learning techniques. Con-

sequently, in a short span of a few years, automation has revamped the medical imaging

domain, resulting in improved disease diagnosis, treatment planning, and patient outcomes.

The related research progress and reshaping of technologies can be inferred from Fig. 1.1.

This shows that integrating CAD with medical image analysis can provide decision sup-
1https://healthitanalytics.com/news/top-5-use-cases-for-artificial-intelligence-in-medical-imaging
2a region in an organ or tissue which has suffered damage through injury or disease.
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1.1. OVERVIEW

Figure 1.1: CAD research progress and its relation with AI booms and trending technologies.

port in various clinical activities, thus functioning as the second eye for clinicians. A block

diagram for a general CAD system is shown in Fig. 1.2.

In a clinical setting, there could be a wide range of tasks and associated imaging

modalities. An imaging modality can be preferred over the other, considering the type of

medical condition and the severity stage. For example, Magnetic Resonance Imaging (MRI)

is used for the detection of brain tumours, Computed Tomography (CT) scans are preferred

for pulmonary disorders and dental conditions, X-rays are suggested for bone fractures and

arthritis conditions, endoscopy is done for gastric ulcers and esophagitis, and colonoscopy is

performed to detect colon polyps and Colorectal Cancer (CRC). These imaging modalities

provide an internal view and structures of the infected region [2]. The CAD systems then

process the obtained images to recognize lesion patterns and classify them based on some

class (abnormal or normal) distinguishing features.

During the diagnosis process, CAD internally performs various subtasks that include

pre-processing of the acquired images, detection/segmentation [3] of the Region of Interest

(ROI), its feature extraction and classification of the detected/segmented lesion. CAD

systems, being automated, expedite these subtasks, which otherwise are time-consuming

and, hence, present the analysis results quickly. Consequently, the early detection of diseases

and medical conditions becomes attainable. Moreover, they maintain consistency in all

cases, no matter how long the patient list is, during the day. This is achieved because they
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1. INTRODUCTION

Figure 1.2: Block diagram of a general computer-aided diagnosis system.

do not experience fatigue or variations in performance and, thus, are less likely to encounter

errors in the medical image interpretations.

Despite compelling results, some dependencies are also involved in this automated pro-

cess. The quality of CAD outcomes significantly relies on the algorithms in the backend.

Therefore, it is crucial to develop robust algorithms that can handle significant variations,

including noisy data with corrupted images and can process a range of cases sampled from

varied populations in terms of race, age, sex and demographic changes [4]. Besides algo-

rithms, CAD’s performance is influenced by the input data. It learns patterns from past

case samples during training and uses them to associate with similar unknown future cases

during testing. Hence, low-quality and under-sampled classes in the training data can result

in biased predictions. Therefore, it can be inferred that high-quality input data representing

different anomalies is an essential part of CAD systems. Considering the criticality of these

concerns, our research encompasses medical data quality issues, unravelling their impact on

clinical outcomes and developing a methodology to deal with low-quality data. Addition-

ally, we provide solutions to data scarcity issues, subsequently addressing the challenges of

class imbalance [5].

In the context of our above-mentioned objectives, we conduct research in the field

of medical image analysis, particularly at the intersection of deep learning and medicine.

Among the different imaging modalities discussed above, we mainly focus on endoscopy

and colonoscopy data, i.e., the human Gastrointestinal (GI) tract. Endoscopy is a non-

invasive procedure that examines the GI tract for any abnormalities. During this test, a

thin tube mounted with a camera, known as an endoscope, is inserted through a natural

opening such as the mouth. When the same process is performed for screening the colon,
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1.1. OVERVIEW

Figure 1.3: A visual description of the procedure and associated role of CAD.

and a colonoscope is inserted into the colon, the procedure is termed a colonoscopy. These

medical examinations perform screening of the GI tract, which is a critical task to detect

potential problems such as GI cancers (associated with the colon, stomach, pancreas, liver

and esophagus), ulcerative colitis, colon polyps, inflammatory bowel disease, and gastroe-

sophageal reflux disease. A visual description of the procedure and associated role of CAD

are depicted in Fig. 1.3. According to a study [6], GI cancer cases are predicted to in-

crease by 58%, and related deaths could show a 73% rise by 2040. In 2018, there were

approximately 4.8 million new cases of GI cancer and 3.4 million deaths [6]. The five major

types of GI cancers are colorectal (1.93 million cases; third most common cancer), pancreas

(466,003 deaths; lowest survival rate), liver (905,677 cases), stomach (1.09 million cases),

and esophagus (604,100 cases) [7]. Our research primarily encompasses CRC because it is

the second leading cause of cancer-related mortalities and the third most common malig-

nancy in the world, which accounts for about 10% of all cancer cases. CRC is marked by

the growth of abnormal tissues called polyps. These polyps project out of the inner lining

of the colon, and their type and characteristics are the determining factors for CRC and

its level of risk. Timely identification of such biomarkers3 and related diagnosis is of vital

importance in reducing the rising CRC incidence and associated deaths.

3a measurable indicator of some biological state or condition.
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Figure 1.4: A flowchart describing the challenges associated with endoscopy/colonoscopy
data review and clinical diagnosis using both manual and automated procedures.

1.2 Problem Description

This section describes the challenges of analyzing endoscopy data, particularly colonoscopy

videos and images, in more detail. In addition, the objectives of this thesis and the under-

lying problem definitions are discussed. Further, the highlights of the thesis contributions

are included. Fig. 1.4 provides a visual summary of the challenges. These are explained in

detail below:

• Large amount of insignificant/uninformative video frames:

– Manual reviewing (cumbersome task): The widespread acceptance of

colonoscopy procedures as a gold standard for CRC screening is constrained

by the massive amount of data recorded. During a standard colonoscopy, video

encodings are done at 25 or 30 frames/sec. Such recordings impose a great chal-

lenge for clinicians to extract significant information expeditiously. If clinicians

directly feed the video with unwanted frames to the automated detection sys-
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tems, it would add to the computational cost. This is undesirable in case of

limited resource availability. Hence, manual removal of frames is generally car-

ried out by experts for better visualization and focused analysis. Such manual

procedures are burdensome and induce human diagnostic errors.

– Presence of artifacts (underperformance): During a colonoscopy, the ar-

bitrary movements of the camera induce noise and motion blur in the recorded

clips. Further, fecal depositions and food residues, even after bowel cleaning, in-

evitably introduce insignificant information [8]. It is estimated that around 25%

frames of a colonoscopy video are low-quality. Some other artifacts responsible

for low-quality frames include specular reflections, ghost colors, interlacing and

low illumination. The presence of these artifacts could deviate the focus of a

clinician or even lead to underperformance in automated techniques.

– Redundant frame processing: The slow motion of the camera during

colonoscopy results in substantial correlation among adjacent frames. There-

fore, a large proportion of the video frames carry redundant information and,

hence, do not add to clinical findings. Reviewing such frames imposes an unnec-

essary burden on clinicians and can negatively impact the CAD’s performance

by increasing computational costs and introducing noise in the input data.

• Data unavailability: As mentioned in Section 1.1, input data plays a pivotal role

in influencing the accuracy of automated tools. Hence, training CAD systems with a

significant amount of good-quality samples which can represent a considerably diverse

set of abnormalities and target a large population is crucial. The lack of a diverse

dataset impedes the fair comparison of deep learning models and reproducibility of

experimental results, thus obstructing research studies.

– Multi-class dataset: Most of the publicly available datasets [9–12] in the en-

doscopy domain are limited to a few classes, particularly the polyp class. Ac-

quiring some anomalies during an endoscopy procedure could be difficult. This

restricts the research to a few medical conditions. Therefore, the challenge is to

curate a good-quality multi-class endoscopy image dataset that can help study

a range of anomalies, improve deep learning models’ performance, enable re-

producibility, facilitate collaborations, and address bias. The term bias can be

related to demography (considering under-represented groups), sex or hard-to-

find anomalies.

6
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– Barriers in dataset curation: Medical data is generally sparsely available due

to privacy concerns, legal restrictions and the time-consuming task of conducting

manual annotations by multiple medical experts. Moreover, acquiring medical

data can result in an imbalanced dataset as one medical condition may be rarer

than another. For example, negative samples of colonoscopy images pertaining to

non-polyp frames are easily accessible, whereas polyp frames are comparatively

less acquired. Hence, the scarcity of large-scale datasets, especially that of the

pathologically significant class, makes studying lesions and biomarkers challeng-

ing. This scarcity affects both the manual training of junior physicians and the

automated training of diagnostic systems. Inadequate quality and distribution

of data samples used for training automated tools produce error-prone outcomes.

Therefore, it is crucial to train automated systems with ample amounts of good-

quality samples representing the respective class with adequate information.

• Polyp Detection, Segmentation and Classification: Regardless of the surveil-

lance using colonoscopy, the procedure suffers a high miss rate of polyps due to its

dependency on the operator’s ability. Moreover, the camouflage property of polyps

makes them indistinguishable from the background, and their varied sizes and shapes

make it difficult for clinicians to precisely identify polyps. Furthermore, flat or sessile

polyps and polyps with size < 5 mm also contribute to the low detection rate.

To overcome the challenges of manual polyp detection, several automated systems

have been proposed [13–15]. However, a lingering gap in CAD performance still needs

to be addressed. A few factors make these systems perform inadequately in some

aspects: a) Uncertain boundaries. These models fail to accurately demarcate the

polyp boundaries because these edges appear to be uncertain due to the polyp’s high

similarity with the background, b) Imaging artifacts. The inevitable introduction of

artifacts in the colonoscopy images due to imaging conditions makes polyp regions

fuzzy and vague, and this results in low performance of models in detecting polyps,

and c) Small-scale datasets. Annotating the exact location and precise demarcation

of polyps is a cumbersome task. This task requires domain expertise and an enormous

amount of time, which limits the existing systems from relying on a small-scale dataset

for learning the ability to detect and segment polyps.

In the last few years, augmentation techniques like random rotation, flipping, crop-

ping, and translation have become common to supplement the existing datasets with
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more samples. However, such inclusion does not enhance the diversity or variations in

the data samples. Moreover, prior works performed inferences on inconsistent splits,

making it difficult to compare the performance of different methods in the literature,

especially on small-sized datasets. Similarly, the challenges encountered in polyp clas-

sification are attributed to the low-quality data and significant class imbalance. The

imbalance in some pathology classes results in biased outcomes, which is a critical

issue. Due to the unavailability of good-quality image data with appropriate class

distribution, only a few existing works [16, 17] focus on polyp classification.

1.3 Our Contributions

We present four contributions in this thesis. Our first contribution is focused on proposing

solutions to reduce the manual effort of clinicians in reviewing a huge volume of colonoscopy

data. The second contribution encompasses solutions to get rid of artifacts from the

colonoscopy images and videos. As a third contribution, we curate a multi-class endoscopy

dataset that is made publicly available to the research community. Lastly, in the fourth

contribution, we propose a framework to generate synthetic data to overcome barriers en-

countered during real dataset curation. An overview of the contributions is illustrated in

Figure 1.5.

Keyframe Extraction for Enhanced Polyp Detection and Localization: We pro-

pose a multi-stage methodology to extract keyframes to reduce the burdensome task of

reviewing a large volume of colonoscopy data. Keyframes are the static summaries of

the key-events captured during a patient’s colonoscopy procedure. Prior works either

focused on conventional methods to extract keyframes or ignored many of the crucial

video attributes. The proposed framework aims to extract good-quality keyframes

and considers the important video attributes of colonoscopy. These attributes include

(a) low-quality, blurry frames with several artifacts, (b) high correlation in adjacent

frames, and (c) cropped or distant polyp views. As a result, our framework selects

keyframes that provide good-quality, non-redundant clinical information with multi-

views and closer shots of polyps. We show that extracting keyframes helps improve the

performance of state-of-the-art detection and localization deep learning models. It fur-

ther reduces the computational cost and time requirements for analyzing a patient’s

video. Experimental results report that our approach removes 96.3% and 94.02%

frames from the SUN Database [18] and the CVC-VideoClinicDB [19], respectively.
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Figure 1.5: An overview of the thesis contributions.

In this framework, we also propose YcOLOn, a novel multi-scale attention-based model

to localize polyps efficiently. We show that incorporating multi-scale attention blocks

in the network helps enhance polyp localization performance by about 5.5% compared

9
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to the baseline. Further, we develop a Graphical User Interface (GUI) application that

assists in navigating through different stages of our framework. It facilitates the users

with easy-to-use clickable options to load a video and obtain keyframes based on

several options provided in the GUI.

Artifacts Removal: The predominant portion of the literature that focuses on artifact

removal either deals only with specular highlights or completely removes unwanted

blurry frames before utilizing them for downstream tasks. In the former case, the most

common approach is threshold based which can easily fail in real scenarios. These

methods can mainly be divided into three categories: (a) color distribution, (b) low

rank & sparse decomposition, and (c) contrast based (explained in Section 2.3.2). The

latter case, which removes insignificant frames, either follows a manual approach or

completely removes such frames. The manual approach is a cumbersome task whereas

the complete removal could sometimes result in data loss if the entire video carries

corrupted frames due to inappropriate patient preparation or uncertain events.

To address these issues, in Sharma et al. [20], we propose an adversarial network

based approach that translates uninformative frames to clinically relevant frames.

This conversion helps extract the obscured details from blurry and corrupted frames.

The technique is validated by comparing the detection/localization performance with

and without the translation process. Preliminary results show that the detection

performance improved with our approach. This study also provides insights into the

effectiveness of generative models in artifacts removal, thus outlining pathways for

future possibilities to explore such techniques.

In the adversarial approach, the whole frame is targeted for conversion. Such an

approach is viable for artifacts like ghost colors, motion blur, low illumination, etc.

However, specular highlights need a different approach, as they can be present in

visually appealing, good-quality frames. These highlights are present in clusters in

small regions and are the result of reflections from the watery inner surface of the

colon. Therefore, to detect these highlights, in Sharma et al.[21], we propose an

encoder-decoder based segmentation method. Considering the small-sized target in

this case, we introduce the concept of Discrete Wavelet Transform (DWT) and use it

to replace the standard pooling layers. This modification helps preserve the details

pertaining to small regions of specular highlights. These layers are coupled with

dilated convolutions for the same reason, as these convolutions increase the receptive
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field while preserving input resolution. Further, we modify the standard low-frequency

sub-band of DWT to help deal with overexposed regions. These overexposed regions

are not categorized as specular highlights but can deviate an automated specularity

detection algorithm from its intended task. An ablation study reports an increase in

recall rate by about 1% with this modification while maintaining the precision, and

embedding dilated convolutions further improved the precision by about 1%.

Case study, Dataset Curation and Design: Despite a lot of research in the area of

polyp segmentation, there is a lack of fair comparison due to inconsistent splits fol-

lowed in the literature. Moreover, most such studies fail to support their outcomes

with transparency or interpretability validations. Further, some of the existing works

are developed on private data and closed sources, restricting the reproducibility of

results. Therefore, we present a case study on two competitions, namely, “Medico

Automatic Polyp Segmentation (Medico 2020)” and “MedAI: Transparency in Med-

ical Image Segmentation (MedAI 2021)” that performs a comprehensive analysis of

several submissions received during the competition. The first competition involves

two tasks: (a) polyp segmentation and (b) algorithm efficiency, and the second com-

petition involves three tasks: (a) polyp segmentation, (b) instrument segmentation,

and (c) transparency. This case study performs a fair comparison among different

methods on standard metrics, which helps validate their feasibility in clinical settings.

Also, the transparency task motivates for interpretable validations and open-source

research work for reproducibility.

Considering the existing datasets and the datasets used in the case study, it can be

inferred that prior datasets in the endoscopy domain comprise a limited number of

classes. Also, most of these datasets focus on a single lesion, i.e. polyps and are small

in size. Moreover, some of these datasets are accessible on request, which induces

unnecessary delays. Therefore, we develop GastroVision, an open-access multi-class

Gastrointestinal (GI) dataset that consists of 8000 images from 27 different classes.

Our dataset not only covers pathological abnormalities but also includes anatomi-

cal landmarks, normal findings and polyp removal cases. Most of the samples are

acquired through White Light Imaging (WLI), and a few images belong to Narrow

Band Imaging (NBI). The findings in GastroVision can broadly be categorized as up-

per GI and lower GI tract. A series of experiments are performed using six baseline

deep learning models. Our results are reported on standard multi-class classification

metrics that allow the research community to build more robust solutions for better
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outcomes. The findings in our dataset are annotated by experts and are acquired

from two different centers using standard equipment from Olympus and Pentax. The

curation process complies with the ethical and privacy norms. The dataset is publicly

available at https://osf.io/84e7f/.

Synthetic Dataset Creation: In recent years, the field of generative Artificial Intelli-

gence (AI) has gained prominence in the medical domain. The literature in the

colonoscopy domain covers many Generative Adversarial Network (GAN) based tech-

niques to generate synthetic images. However, these approaches show limited success

and suffer from convergence instability. More recently, diffusion models have gained

popularity for their realistic image generation. Considering these remarkable out-

comes, in Sharma et al. [22], we propose ControlPolypNet, a novel diffusion based

network that converts non-polyp images into polyp images using a custom binary

mask. Our method leverages easily accessible non-polyp frames to obtain hard-to-

find polyp frames. Additionally, this generation process is controlled using a novel

user-configurable input control map. This control map uses a non-polyp image over-

lapped with a polyp mask. The polyp mask is user-defined, and therefore, the polyp

location, size and shape can be easily controlled.

Limited works in the literature utilized diffusion models to obtain polyp images; how-

ever, these works use simple binary masks as input. Unlike such approaches, we

leverage non-polyp frames overlapped with binary masks to preserve other endolumi-

nal elements. This approach reduces the probability of obtaining unwanted structures

or noise in the background/endoluminal scene. Further, we introduce a detector in

our framework to ensure pathologically relevant data at the end. We validate the

quality and clinical significance of our synthetic data by using it to augment two pub-

licly available datasets in the polyp segmentation task. Experimental results show

that an average increase of 1.3% to 6.84% in the Jaccard Index (JI) is obtained using

our technique. Additionally, our above approach provides a pathway to address the

issue of class imbalance as one undersampled class can be expanded using synthetic

data. In our case, the positive class (polyp) has relatively fewer samples than the

negative class (non-polyp). We utilized negative class samples to produce positive

class samples, thus expanding the undersampled set.

Furthermore, we explore another control mechanism based on text prompts, which

has not yet been explored in the literature. While utilizing this control mechanism,
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in Sharma et al. [23], we propose PathoPolyp-Diff, a novel diffusion based model that

generates text-controlled synthetic images. The model is capable of generating colonic

polyps that cover a wide range of classes in terms of imaging modalities (NBI/WLI),

pathology (adenomatous/hyperplastic) and quality. These medical terminologies are

discussed in detail in Section 2.2. In this work, we also propose a cross-class la-

bel learning methodology that allows the model to learn characteristics from other

classes. This approach reduces the need for the burdensome task of data annotation

and provides flexibility in generating diverse sets of polyp types. We validate the per-

formance of our technique by augmenting a publicly available dataset with synthetic

data obtained using different text prompts. The results report an increase of 6% in

the Balanced Accuracy (BA) on a downstream task that classifies pathology classes

combined with different imaging modalities.

1.4 Thesis Outline

The thesis comprises seven chapters and is organized as follows:

In Chapter 2, we first describe essential terminologies and background, introducing

the basic concepts associated with the GI tract. We further provide a detailed review of

existing methods followed by an overview of evaluation metrics used in the thesis.

In Chapter 3, we present a multi-stage framework for keyframe extraction from

colonoscopy videos. It includes a patient-wise analysis and also shows how it becomes dif-

ficult to select keyframes for some patients with an unacceptable amount of uninformative

frames. This limitation serves as a motivation for the next chapter.

In Chapter 4, we present two solutions for artifacts removal from colonoscopy images

and videos. The first solution is based on an adversarial network and focuses on artifacts

such as ghost colors, low illumination, motion blur, interlacing, and fecal depositions. The

second solution mainly aims to perform the segmentation of specular highlights.

In Chapter 5, we present a case study that includes a comprehensive summary

and analysis of two competitions, namely, “Medico Automatic Polyp Segmentation (Medico

2020)” and “MedAI: Transparency in Medical Image Segmentation (MedAI 2021)”. Each

competition involves submissions from 17 different teams. The chapter showcases the analy-

sis of each contribution, highlights the best-performing methods and discusses their viability

in clinical settings.

Further, we present a multi-class open-access GI dataset with 8000 images and 27
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classes. The chapter provides a detailed description of the dataset, including class-wise

sample distribution, sample-wise resolution, and a broader set to which the 27 classes belong.

It also presents experimental results on six baseline deep learning models.

In Chapter 6, we present ControlPolypNet and PathoPolyp-Diff, two diffusion based

models for generating synthetic colonoscopy images. The chapter demonstrates the effec-

tiveness of these generative methods and the quality of synthetic samples by performing

downstream tasks of polyp segmentation and classification.

Finally, in Chapter 7, we conclude and discuss future research work.

;;=8=<<
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2
Background and Literature Survey

This chapter provides the background necessary to understand the thesis better. We

begin by describing essential terminologies and concepts, followed by a discussion on con-

ventional modelling approaches and standard evaluation metrics.

2.1 Gastrointestinal Tract and its Examination

The Gastrointestinal (GI) tract, also known as the digestive tract, comprises a series of

organs involved in the movement of food and liquid using a process called peristalsis. These

organs help to break food into smaller chunks, which allows the essential nutrients to get

absorbed by the body, and finally, the waste residue is expelled. The complete process is

associated with both upper and lower GI tracts. The upper GI tract refers to the esophagus,

the stomach and the duodenum (first part of the small intestine), whereas the lower GI tract

comprises the small intestine and the large intestine. Each organ has a different function

and manifests different symptoms in case of any disorder, but they are connected together

via a tubular pathway. During healthcare procedures, identifying the location of the affected

organ is essential for understanding anatomy, creating precise surgical plans and determining

optimal treatment strategies. Professionals track anatomical landmarks, such as the z-line,

pylorus and cecum, which serve as reference points to locate the site of interest. Some of

the anatomical and pathological findings (disorders) and the related examination techniques

are discussed below.

Upper GI tract: Fig. 2.1 shows sample images of different anatomical and pathological

findings of upper GI.
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(a) (b) (c) (d)

Figure 2.1: Upper GI tract: (a) Pylorus, (b) Normal esophagus, (c) Esophagitis, and (d) Gastric
polyps.

• Anatomical Landmarks: The three main anatomical landmarks include the nor-

mal z-line, the pylorus and retroflux stomach. The normal z-line represents the

transition between the squamous esophageal mucosa and columnar mucosa lin-

ing of the stomach. Pylorus demarcates the end part of the stomach and the

beginning region of the small intestine called the duodenum. Retroflex stomach

denotes the retroflexion of the endoscope that involves turning the camera to

visualize the upper part of the stomach.

• Pathological Findings: Pathological findings signify the abnormal modifications

in the tissues of mucosa indicative of a disease. Some of such conditions are

esophagitis, Barrett’s esophagus, ulcers, gastric polyps and cancer. Early detec-

tion of the pathological findings could assist in providing treatment before the

development of cancer.

• Examinations: Upper endoscopy or EGD (esophagogastroduodenoscopy) and the

upper GI series are the common procedures followed to examine upper GI for any

abnormality. The upper GI series is a radiographic test that uses fluoroscopy,

X-ray or CT scans to examine esophagus, stomach and duodenum. Fluoroscopy,

a special form of X-ray, sends a continuous radiation beam for a few seconds

to capture a video and, hence, can be considered an “X-ray movie”. During

these procedures, no tool enters the patient’s body. Contrarily, an endoscopy

requires the insertion of an endoscope through esophagus. An endoscope is a

thin, long, tube-like instrument with a camera mounted on the tip. The camera

captures video of the patient’s affected region and directs them to a monitor

screen. Compared to radiology-based tests, it provides more visual details.

Lower GI tract: Fig. 2.2 shows sample images of different anatomical and pathological

findings of lower GI.

16



2. BACKGROUND AND LITERATURE SURVEY

(a) (b) (c) (d)

Figure 2.2: Lower GI tract: (a) Cecum, (b) Ileocecal valve, (c) Colon polyp, and (d) CRC

• Anatomical Landmarks: Some examples of lower GI anatomical landmarks are

Cecum, Ileocecal valve, and Terminal ileum. Cecum is a large pouch that is

present at the proximity of the large intestine. Ileocecal valve is a valve forming

junction between Cecum and the Terminal ileum, which maintains flow between

the two anatomical landmarks.

• Pathological Findings: The pathological conditions that might occur in the lower

GI include Angiectasia, Colon polyps, and CRC. Among the lower GI pathological

findings, CRC is a severe condition with an estimated high rate of 1.6 million

mortalities per year, expected by 2040 [24]. In 2020, it contributed to 10%

and 9.4% of new cancer cases and cancer-related deaths, respectively. With

such critical statistics and numbers increasing at an alarming rate, it becomes

crucial to address the issue in the early stages to prevent any benign growth from

developing into CRC over time. A more detailed discussion of CRC is given in

the subsequent sections.

• Examinations: Similar to upper GI, a patient for lower GI screening is suggested

to undergo either a colonoscopy or a lower GI series. The lower GI series is a

radiology-based test, among which Barium X-ray is a commonly performed test.

During this process, the large intestine is filled with Barium liquid. It is an

X-ray absorber and appears white on the X-ray films, which helps enhance the

visibility of different GI characteristics. Another preferred test, called endoscopy,

which includes sigmoidoscopy and colonoscopy, is a widely adopted procedure for

examining the lower GI. Although sigmoidoscopy and colonoscopy are both used

for CRC screening, the former looks for any abnormality in the lower part of the

colon, whereas the latter tests the complete large intestine. Besides endoscopy,

other recommended tests are stool tests, virtual colonoscopy (CT colonography),

Fecal Occult Blood Test (FOBT) and Fecal Immunochemical Test (FIT).
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2.2 Colorectal Cancer (CRC)

CRC is the third most common malignancy and the second leading cause of cancer-related

mortalities. It begins as an abnormal growth on the inner lining of the colon, forming clumps

of cells called polyps. These polyps are generally non-cancerous but have the potential to

turn into cancer over time. In the earlier stages, CRC does not show any symptoms, and

therefore, it becomes critical to undergo regular screening tests to detect any precursor to

avoid severe CRC conditions. In the later stages, rectal bleeding, change in stool color, and

pain are some symptoms that might be observed.

How likely is it to develop CRC?

The statistics1 released by American Cancer Society report disparities in the chances of

someone developing CRC based on demographic and geographic variations. It mentions

that approximately 4.4% of men and 4.1% of women are likely to be diagnosed with CRC

in their lifetime. Men are at 30% more risk of CRC incidence compared to women. This

variation could be attributed to exposure to risk factors such as cigarette smoking. Besides

gender, it also varies across age groups. Although earlier studies state that older age groups

are susceptible to CRC risk, recent statistics show that the incidence rate of CRC among

people aged 50 and older is declining, whereas it is increasing among younger age groups.

Consequently, the median age of CRC diagnosis has shifted from 72 years (in the 2000s)

to 66 (in the current scenario). Such disparities are further related to ethnic and racial

differences. The non-Hispanic blacks (hereafter, blacks) are the most affected by the CRC

incidence and death rates, followed by American Indians and Alaska Natives (AIANs), and

the rate is lowest in Asians/ Pacific Islanders. Across geographic boundaries, socioeconomic

factors, dietary patterns and access to high-quality healthcare facilities are some of the

reasons for variations in CRC incidence rates. Currently, the poor countries observe 30%

to 40% higher CRC-related deaths compared to rich countries. The geographical factors

are more influential than the racial factors, as blacks and whites tend to show similar risks

when sharing the same geographic boundaries.

1Colorectal Cancer Facts & Figures 2020-2022. Link: https://www.cancer.org/content/dam/cancer-
org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-
figures-2020-2022.pdf
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2.2.1 Polyps and their Categorization

A polyp is a small abnormal growth in the form of excess tissues that project on the

inner lining of the colon. The majority of such occurrence is non-cancerous, but some of

the polyps pose the risk of cancer over time. Due to this reason, a physician looks for

such polyps during colonoscopy procedures to monitor any progression and analyze their

stage and associated treatments. For appropriate analysis and to plan treatment strategies,

different polyp characteristics are taken into account. Polyps can be categorized based

on multiple factors such as size, shape (Paris classification), texture and surface patterns

(NICE classification) and pathological condition.

Paris classification

The Paris classification [25] is a standard polyp classification system defined based on the

polyp shape. A broad categorization covers two types, namely, polypoid (type 0-I) and

non-polypoid (type 0-II and type 0-III). The polypoid class involve polyps with a protrusion

above the mucosa, whereas polyps under the non-polypoid class do not protrude. Type 0-I

can be divided into pedunculated (type 0-Ip), semi-pedunculated (type 0-Isp) or sessile (type

0-Is) polyps. Similarly, type 0-II also have subcategories, which include slightly elevated

(type 0-IIa), completely flat (type 0-IIb), and depressed (type IIc). Lastly, the second main

type of non-polypoid class includes excavated (type 0-III) form of polyps.

There are some distinguishing criteria for each category. For example, the Type 0-Ip is

different from the Type 0-Is in terms of the base and top diameter. In the former, the base is

narrow, whereas in the latter case, the polyp possesses the same diameter for both the base

and the top. In the non-polypoid subclasses, the distinguishing criterion is the amount of

elevation the polyp has compared to its surrounding mucosa. The type 0-IIa, being similar

to type 0-Is polyps, needs some further investigation to decide the actual type. Some non-

polypoid category polyps spread laterally (>10 mm) without increasing protrusion above

the mucosa. Such polyps are termed as Lateral spreading tumors. A flowchart illustrating

different shapes based on Paris classification is shown in Fig. 2.3.

NICE classification

NBI International Colorectal Endoscopic (NICE) classification considers the vascular and

surface patterns to divide polyps into three categories, i.e., hyperplastic (type 1), adenoma

(type 2) and deep submucosal invasive cancer (type 3). Type 1 polyps have lighter or similar
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Figure 2.3: A flowchart depicting Paris classification

(a) (b) (c)

Figure 2.4: NICE classification (a) Type 1, (b) Type 2, and (c) Type 3. Image Source: https:
//www.endoscopy-campus.com/en/classifications/polyp-classification-nice/

color as that of adjacent mucosa, have either no or some isolated lacy vessels and might

have uniform dark or white spots. Type 2 polyps appear more brown compared to the

background and have brown vessels surrounded with white structures. They also have

tubular, branched or oval white structures over the surface. Type 3 polyps have a brown to

dark brown color relative to the background and might have discontinued or broken vessel

structure. Their surface pattern is either amorphous or absent. Some sample images are

shown in Fig. 2.4.

Pathological classification

Polyps can be broadly classified as neoplastic and non-neoplastic. Neoplastic polyps in-

clude adenomatous polyps (further classified as Tubular adenomas, Villous adenomas, and

Tubulovillous adenomas) and sessile serrated. Non-neoplastic polyps can be sub-categorized

as hyperplastic polyps, inflammatory polyps, and hamartomatous polyps. Among these

classes, adenoma and hyperplastic are the most common terms used to represent potentially

cancerous and non-cancerous lesions, respectively. A different aspect of polyp classification

introduces the term Serrated polyps, which include hyperplastic polyps, sessile serrated le-
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sions, traditional serrated adenomas, and unclassified serrated adenomas. Serrated polyps

have saw-toothed appearance at microscopic level and contribute to 25% of CRC cases2.

Tubular adenomas, being the most common type in the adenoma class, accounts for

80% of the adenomatous polyps. Only a small proportion of such polyps tend to convert

into cancer; however, CRC is most likely reported to start from this category of polyp.

Therefore, Adenoma Detection Rate (ADR) plays a significant role in determining the ef-

fectiveness of CRC preventive methods. Villous adenomas are more probable to become

cancerous, but they contribute to 5%-15% of all adenomatous polyps. A similar ratio is es-

timated for Tubulovillous adenomas. The findings and pathologic information about sessile

serrated has evolved drastically over the past few years. Initially, this category of polyps

was defined under hyperplastic class. However, in recent years, they were found to carry

some malignancy risk [26]. Here, the term “sessile” denotes the slightly elevated or flat

shape of the polyp. The incidence rate of traditional serrated adenomas is very low and

unclassified serrated adenomas covers those polyps which present a mixed sign, i.e., resem-

ble adenoma, but appear similar to sessile and serrated polyps. Contrary to the above

neoplastic examples, Inflammatory and hamartomatous polyps are much less probable to

become cancerous.

Size-based classification

Polyp size is considered an important factor in determining the cancer risk. According to

a study [27], cancer rates are correlated with polyp size. It was observed that out of all

polyps with adenomatous features, 25% were in the range of 1-9 mm size and 75% were

either 10 mm or larger than 10 mm. Based on the size, a polyp is categorized into three

divisions, namely, diminutive ( ≤ 5 mm), small ( ≥ 6 mm, ≤ 9 mm), and large ( ≥ 10 mm).

While diminutive and small polyps carry low CRC risk, large polyps if found with adenoma

histology, are recommended for short interval follow-ups (generally 1 year) for surveillance

colonoscopy [28].

2.2.2 Colonoscopy and CRC Treatment

Colonoscopy is a minimally invasive procedure to examine the colon and is considered the

gold standard for CRC screening. It is an endoscopy during which a colonoscope is passed

to the colon through the anus and rectum. A colonoscope is a long flexible tube with

a light and a camera at one end which streams the video from the inner regions of the
2https://my.clevelandclinic.org/health/diseases/17462-serrated-polyps
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(a) (b) (c) (d)

Figure 2.5: Colon polyp under: (a) WLI, (b) NBI, (c) Dye-spraying, and (d) AFI. Image Sources:
[29, 30]

colon on a monitor. Thereafter, the captured colon video is examined by a physician for

any irritated or swollen tissues, polyps or cancerous lesions. During a colonoscopy, the

colonoscope tube also helps clean the inner colon lining through a water jet and injects air

to improve visibility. While advancing the colonoscope through the colon, in addition to

video capturing, the physician may remove any abnormal tissue or can take any sample for

biopsy.

Imaging technologies

As discussed in Section 2.2.1, CRC polyps are characterized by three-dimensional surface

topographic features, which make them distinguishable from the surrounding mucosa. Such

differentiating polyp-specific features are significant and are essential to capture during

colonoscopy. To support this crucial requirement, various optical imaging technologies have

been adopted in colonoscopy. The most widely used imaging technology is White Light

Imaging (WLI) endoscopy because it is cost-effective, medical professionals are trained

in and accustomed to using WLI endoscopy, and it is readily available in most medical

facilities. While the standard WLI endoscopy can enhance coloration, it fails to capture

topographic contrast, such as polyp elevation and pit patterns that increase the lesion miss

rate. To alleviate this issue, other imaging technologies such as High-definition White Light

Imaging (HD-WLI), Narrow Band Imaging (NBI), Dye-based chromoendoscopy, Blue Light

Imaging (BLI) and Linked Color Imaging (LCI), I-scan digital contrast and Flexible Spectral

Imaging Color Enhancement (FICE), and Autofluorescence Imaging (AFI) were introduced

[29]. Some sample images captured using different modalities are shown in Fig. 2.5.

HD-WLI colonoscopy provides higher resolution images and comparatively more image

count per second compared to standard WLI. It has been reported that a 4.5%-12.6%

increase in ADR can be achieved by opting for HD-WLI over standard WLI [31]. In dye-
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based chromoendoscopy, contrast dyes are sprayed over the mucosa to improve the visibility

of polyp surface topography. The other remaining imaging techniques, like NBI, LCI, and I-

scan, are categorized under virtual chromoendoscopy, among which NBI is the most adopted

technique. NBI uses electronically activated filters to limit the wavelengths of red, green and

blue lights, which helps accentuate the superficial mucosa and vascular details. Similarly,

the I-scan enhances the mucosal vasculature and topographic details but achieves this using

three different modes, namely, surface, contrast and tone enhancements. With the same

objective, FICE is introduced, in which light bandwidth is narrowed down using a computed

spectral estimation system. Unlike the above-mentioned techniques, BLI and LCI utilize

laser light sources to highlight the abnormalities and provide bright images [31].

CRC Treatment

The treatment methods have evolved rapidly over time with advanced techniques in health-

care. Moreover, to decide on a specific treatment, various criteria such as tumor type,

location and patient characteristics are considered. In most cases, people with CRC un-

dergo surgery. However, the specific method followed depends on the cancer stage. For

example, if the CRC is in a localized stage, i.e., cancer has penetrated the colon wall but

not completely, the resection of the affected region is performed, and some normal tissues

from the surrounding region and nearby lymph nodes are removed. Contrarily, in a regional

stage, when cancer has infected the nearby lymph nodes and has penetrated into the colon

wall, then apart from the surgical resections, chemotherapy is usually recommended.

Therapeutic interventions: A polypectomy is a minimally invasive surgical pro-

cedure and the commonly adopted therapeutic intervention to remove polyps. During the

process, a clinician uses a forceps or a snare to snip off the polyp. The forceps-grasping tool

can be used to completely remove small polyps. The other instrument, the snare, comes

with a wire loop. This loop can be placed in a way that it tightens around the polyp’s base

so that it cuts the polyp region out. This procedure can be carried out using one of the

suitable treatments from the three options, which are Hot Snare Polypectomy (HSP), Cold

Snare Polypectomy (CSP), and cold or hot forceps polypectomy. In HSP, a heated snare is

used, which might be followed by electrocautery that helps burn the residue of any infected

tissue. Similarly, CSP involves cold snare and is adopted for diminutive polyps. The last

option is used for small polyps, which are pulled loose and then removed.
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2.3 CAD and CRC Diagnosis: A Review on Methods and

Metrics

This section presents a review of the different tasks undertaken by an ideal CAD system to

perform CRC diagnosis. The sequence of these tasks followed in this section can be given

by: keyframe selection –> artifacts removal –> polyp detection and localization –> polyp

segmentation –> polyp classification. We also discuss existing related works in the literature,

their proposed algorithms in brief and their shortcomings. In addition, we provide a detailed

description of existing datasets to highlight the need for our proposed multi-class dataset.

Also, we mention prior works focused on expanding real datasets with synthetic data and

describe their drawbacks. Further, we include a description of the standard metrics used

for assessing the different algorithms.

2.3.1 Keyframe Selection

A keyframe selection process allows to select keyframes (important frames) from colonoscopy

videos that can efficiently represent the clinically relevant information captured in the video

streams. For example, given a colonoscopy video (V ) represented as a sequence of m frames

([f1, f2, f3, ..., fm]), the goal of keyframe selection is to find a subset of frames that are

clinically significant and representative. We denote keyframes of the original video V as

Vkey = [f i1 , f i2 , f i3 , ..., f ik
], where k << m and Vkey ⊂ V . This procedure must take into

account important attributes of a colonoscopy video. These attributes are (a) low-quality

frames containing various artifacts (detailed explanation in Section 2.3.2 ), (b) a large

number of redundant frames, and (c) many frames with a cropped or distant view of the

polyp.

Related Work

In the colonoscopy domain, very few works are fully dedicated to keyframe selection. How-

ever, a common procedure generally followed for the pre-processing of colonoscopy videos

involves quality assessment, an initial step of keyframe selection. For example, Park et

al. [32] adopted two measures for frame quality: Shannon’s entropy and a range filter. In

a similar domain of Wireless Capsule Endoscopy (WCE), Yuan and Meng [33] performed

hierarchical keyframe extraction. They utilized the entropy change to find the local maxi-

mum to create sub-clots. It is then followed by an affinity propagation clustering approach

to select representative frames from each sub-clot. Oh et al. [34] proposed edge-based
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and clustering-based techniques to classify frames as informative/uninformative. They also

proposed a specularity detection method and used it further to improve informative frame

classification. Arnold et al. [35] carried out wavelet analysis to detect indistinct frames. A

recent work focusing on video summarization is proposed by Li et al. [36]. Some clustering-

based approaches are presented in [37, 38]. However, clustering-based methods are not

suitable in noisy environments. Colonoscopy frames are generally susceptible to noise.

Also, redundant frames are captured during the colonoscopy, making clustering methods

perform poorly. Saliency maps for finding keyframes of videos were presented in [39]. Mendi

et al. [40] adopted a color histogram comparison-based method, which compared the color

histogram of successive frames in a video. Keyframes were selected using k-means and

PCA whenever a significant change was observed. However, this model does not fit into

colonoscopy videos as most frames have similar color information. Recently, dictionary

learning based approaches have been proposed for video summarization [41]. Sasmal et al.

[42] utilized conventional methods, including image moments, Sobel operators, Oriented

FAST, and Rotated BRIEF methods. They also incorporated depth information obtained

using transfer learning.

Some other medical domains which focus on similar issues include laparoscopy, gas-

troscopy, and hysteroscopy. Ma et al. [43] extracted keyframes from laparoscopy videos.

They used deep features and formulated video summarization as a diverse and weighted

dictionary selection model. Loukas et al. [44] used an objectness model to segment the

laparoscopy videos; and then the representative frames were selected based on the highest

state-conditional probability. Xu et al. [45] considered eliminating uninformative frames

and skipped anatomy detection results in such frames. The approach processes all frames si-

multaneously for detection and informative/uninformative classification. Hence, it does not

reduce the processing time. Such related literature is included in a review study by Jin et

al. [46], which covers disease-related and non-disease-related work. The non-disease-related

papers are based on the frame quality for better lesion detection. In [47], a gastroscopic

video summarization technique based on a dictionary learning approach is proposed. Ejaz

et al. [39] proposed a visual attention-driven framework to perform video summarization

in the field of hysteroscopy.

Limitations: Most of the above approaches use hand-crafted features and do not

incorporate many video attributes leading to inefficacy in significant frame selection. Some

of the methods do not consider noisy frames with ghost colors, which is a common issue in

most endoscopy video recordings.
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(a) (b) (c) (d) (e)

Figure 2.6: (a) Specular highlights (marked by blue bounding boxes over polyp), (b) Low-
illumination, (c) Ghost colors, (d) Motion blur, and (e) Fecal depositions.

2.3.2 Artifacts Removal

The image-capturing environment and procedure (movements of colonoscope and watery

surface inside the colon), during a colonoscopy, introduces several artefacts in the video

stream, thus degrading the image quality. These artifacts can be in the form of low illumi-

nation, specular highlights, interlacing, ghost colors and motion blur. Some sample images

are shown in Fig. 2.6. Controllable up to a certain extent with device settings, these arte-

facts are nearly inevitable. Such artifacts can deviate a computational model’s intended

task, reducing its performance.

Related Work

Most of the existing artifacts removal approaches are focused on specular highlight segmen-

tation. Removal of other artifacts is an under-studied problem. The literature related to

specular highlight segmentation is summarised in this section in three categories: (a) Color

distribution, (b) Low rank & sparse decomposition, and (c) Contrast based methods.

Color distribution properties of colonoscopy images have been explored by [48, 49] to get a

more comprehensible view of the highlights. Stehle et al. [48] has examined two color spaces.

One color space can visualise both the textural and specular edges, while the other one is

sensitive only to the textural edges. The difference between the two obtained images, along

with saturation and brightness value tests, has been utilized to detect specular reflections.

Gross et al. [49] converted images into HSV color space because specular highlights are

characterised by low value and high saturation. Akbari et al. [50] proposed a method in

which statistical features are extracted from each channel of RGB and HSV color spaces.

Based on these features, a non-linear SVM selects one of the color spaces. RGB detection

method employs the voting scheme, and the other one uses thresholding that is adaptive to

the image statistics. Figueiredo et al. [51] computed the summation of respective intensities

in the three channels of RGB color space and then laid a threshold over it. Yu et al. [52]
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proposed an adaptive specular highlight detection method based on the ratio of the red

channel to the green and blue channels. They considered that in non-specular regions, the

value of the red channel is likely to be higher than the other two channels. On the contrary,

all three channels have similar and saturated values in the specular regions.

Limitations: In a colonoscopy, the amount of light incident determines the intensity

of bright spots. Consequently, these specular highlights seem to be darker in less illuminated

regions. Hence, intensity thresholding could not result in acceptable detection outcomes.

Moreover, these methods [48–52] are sensitive to noise and are highly dependent on the

selection of thresholds. Such approaches are not robust and can lead to under or over-

segmentation.

Low rank & sparse decomposition methods decompose the given image into low-rank and

sparse results. Specular reflections are represented by the sparse results as these methods

consider highlight pixels as noise. Li et al. [53] converted RGB images into HSV color

space and then applied adaptive thresholding on the intensity and saturation values. The

sparse results and the output obtained after applying adaptive thresholding are tested for

similarity. After computing similarity measurements, they are used for performing iterative

optimization in adaptive RPCA decomposition. This gives the final adaptive sparse results.

Limitations: The above method fails when there is too much specularity present in

the image as it does not treat specularity as a sparse part in such cases. Li et al. [53]

considered overexposed areas as specular regions, contrary to the ground truth provided by

the experts. This method only focuses on the absolute highlight pixels and cannot detect

relative highlight pixels.

Contrast-based methods search for high contrast regions and pixels corresponding to high

intensity. Park et al. [32] detected saturated as well as high contrast areas. They utilized

adaptive thresholding on the image intensity histogram to detect saturated regions. To

search for small bright regions, an open top-hat filter followed by a reconstruction operation

using a size-5 disk-shaped filter was adopted. In [54], it has been assumed that the specular

reflections’ intensity is more than its neighboring non-specular regions. The images and

their corresponding medians are subtracted, and thresholding is applied to detect the bright

spots. Sanchez et al. [55] proposed a method that focuses on high-contrast regions. The

detected regions are fed to an SVM classifier to discard overexposed areas.

Limitations: The above methods [32, 54] rely on the selected thresholds, which are

liable to fail in the case of relative highlight pixels. In [55], the overexposed regions are not

handled efficiently. As a result, the specular regions present within the overexposed regions
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(a) (b)

(c) (d)

Figure 2.7: Polyp detection: (a) Polyp images vs. (b) Non-polyp images, (c) Polyp localization:
denoted by bounding box, and (d) Polyp segmentation.

are not correctly detected and result in more false positives.

2.3.3 Detection and Localization

Detection and Localization are the core tasks in any computer vision based problem. Lo-

calization refers to locating the object of interest and then creating a bounding box around

it. Similarly, detection represents the task of identifying objects in an image and assigning

them some class. As our objective is to detect polyps, our work intends to perform these

two tasks in the following sequence:

Detection: Identify a set of frames containing polyps, from a huge volume of

colonoscopy videos. This process is a kind of binary classification which predicts a class of

the frame as polyp or non-polyp.

Localization: Mark the exact location of the polyp in a frame using a bounding box.

This process predicts a set of values {c, u, v, w, h} where c represents the class (polyp/non-

polyp), u, v, w, h denote the centre coordinates, width, and height of the bounding box

around the detected polyp.

In this thesis, we use these two terms to denote detection of polyp/non-polyp frames

from a complete colonoscopy video and localization of polyp in a given frame. The same is

illustrated in Fig. 2.7(a)-(c).
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Related Work

Polyp detection and localization have been considered independent problems for the past

many years and not as a sub-part of keyframe selection. Related existing works employed

handcrafted-based feature learning methodologies and relied on features like color, shape,

contour, texture, etc., for the characterization of polyps [56, 57]. However, manual feature

extraction needs vast domain knowledge and could be incapable of detecting polyps acquired

using different imaging techniques. Therefore, deep learning based approaches have been

adopted for their ability to extract hidden image features. For example, Thambawita et al.

[58] evaluated five machine learning based models in various settings to detect polyps and 15

other classes. They also performed cross-dataset evaluations to demonstrate the challenges

faced in developing a generalized model. Pacal et al. [59] embedded CSPNet into the

YOLOv3 and YOLOv4 architecture and replaced Leaky ReLU with the SiLU activation

function. They also investigated the effect of transfer learning and the inclusion of negative

samples in the training data.

Considering the importance of image pre-processing, Qian et al. [60] detected specular

reflections and adopted an image patching algorithm to remove these reflections. A tailored

version of faster R-CNN is then applied on these pre-processed images to perform polyp

detection. Similarly, Tian et al. [61] rejected frames with water-jet sprays and feces using

a binary classifier and detected polyp frames as a few-shot anomaly classification problem.

To benchmark various state-of-the-art methods, Jha et al. [62] carried out a comprehen-

sive comparison and also proposed ColonSegNet. Though their proposed model aims at

segmentation, they compared the predicted bounding boxes with other methods.

Limitations: The above detection and localization methods rarely conducted cross-

dataset or patient-wise validations, which is an important requirement in real-world scenar-

ios. Most methods have used manually selected good-quality images. Such manual refining

is a time-consuming job. Other approaches fed complete video in their proposed model,

which requires more computational resources.

2.3.4 Segmentation

Segmentation is a fundamental task in computer vision that partitions a given image into

meaningful regions. In the colonoscopy domain, polyp segmentation refers to the delineation

of the polyp region from its boundaries. In the process, labels are assigned at a pixel

level, which helps demarcate polyps in a colonoscopy image. Given an image set Q =

{Ii, Oi}mi=1, where Ii represents original RGB images, and Oi = {o
(i)
j , j = 1, 2, ..., |Ii|, o

(i)
j ∈
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{0, 1}} represents the corresponding masks. The pixels in the mask with o
(i)
j = 1 signify

polyp regions, whereas those with zeroes belong to the background. A sample of the polyp

segmentation task is shown in Fig. 2.7 (d).

Related Work

Conventional methods: In earlier years, the traditional methods adopted for polyp segmen-

tation relied on hand-crafted features, such as texture, color, and shape. Some of these

techniques are discussed in [10, 63]. However, their limited performance in handling the

complex segmentation task and the inability to capture polyp heterogeneity led to the

advent of deep learning approaches in this domain.

Deep Learning based methods: In recent years, several deep learning-based techniques have

been developed for polyp segmentation and have reported impressive outcomes. The in-

troduction of fully convolutional networks paved the way for many semantic segmentation

models [64, 65]. Subsequently, encoder-decoder structures dominated the field with the

popularity and success of U-Net [66] based architectures in biomedical image segmenta-

tion. Several studies have leveraged this concept; for example, Jha et al. [13] presented

ResUNet++, which integrates residual blocks with Atrous Spatial Pyramidal Pooling,

squeeze-and-excitation units, and attention blocks. Later, its extension [67] incorporated

Conditional Random Field and Test-Time Augmentation for improved polyp segmenta-

tion. DoubleU-Net [14] stacked two U-Net architectures, in which the first network used

a pre-trained encoder to generate features as input for the second network. Despite the

excellent performance of such models, the need for real-time systems emerged due to their

high resource requirements and inference time. With this focus, Jha et al. [68] proposed

ColonSegNet, which produces efficient output while achieving real-time performance. Sim-

ilarly, HarDNet-MSEG [15] used a low-memory traffic backbone and a cascaded partial

decoder to achieve fast polyp segmentation. Focus U-Net [69] also uses an encoder-decoder

architecture that embeds a dual-attention gated module and introduces hybrid focal loss.

Besides U-Net based models, several other architectures also exist that focus on bound-

ary details and consider the camouflage property for polyps. For example, PraNet [70]

comprise reverse attention modules to include boundary cues with a global feature map

obtained using a parallel partial decoder. Yue et al. [71] proposed a boundary constraint

network that utilizes a bilateral boundary extraction module to investigate polyp and non-

polyp regions. Ta et al. [72] designed BLE-Net with an encoder deployed with a boundary

learning module along with a boundary enhancement module at the decoder to consider
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edge details. Polyp-PVT [73] introduced a camouflage identification module with a Pyra-

mid Vision Transformer (PVT) encoder. This module aims to capture polyp cues concealed

in low-level features. Such transformer-based approaches’ excellent performance further

inspired similar works in this field. ColonFormer [74] proposed a residual axial attention

module and combined a hierarchical transformer with a hierarchical pyramid network for

efficient polyp segmentation. HSNet [75] used PVT as an encoder and embedded cross-

semantic attention module to bridge the semantic gap between low-level and high-level

features. GMSRF-Net [76] developed a cross multi-scale attention module and multi-scale

feature selection modules. Some other related works can be found in [77–80].

Limitations: Although the segmentation performance achieved by state-of-the-art

methods is noteworthy, the issue of reproducibility and fair comparison remains. Many of

the recent works have considered testing on unseen datasets. Still, the small test set size

makes the validation susceptible to the kind of dataset split scheme followed, yielding biased

results. Moreover, the split scheme followed in the literature is not uniform.

2.3.5 Classification

Classification is a task to identify the correct label for a given image. In the colonoscopy do-

main, this task can be used to recognize the pathology of a polyp that could be hyperplastic

(benign) or adenomatous (potentially malignant). So, given an image set Q = {Ii, Oi}mi=1,

where Ii represents original RGB images, Oi can be 0 or 1 depending on the pathology of

the polyp present in Ii.

Related Work

Most of the prior works focused on polyp detection, and only a few targeted classification

due to the unavailability of a large annotated dataset. This is why most of the methods

adopted hand-crafted feature extraction techniques, as enough data was not available for

training deep learning models. Only a few methods aimed at classifying polyps based on

pathology (adenomatous/hyperplastic). Some methods followed a pit-pattern classification

scheme to categorize normal mucosa and hyperplastic [81]. Uhl et al. [82] and Hafner et al.

[83] designed fractal dimension-based schemes. The former method used two filter masks for

this purpose, namely, an anisotropic Gaussian filter mask and an elliptic binary filter mask.

In [83], three extensions of the local fractal dimension based approach are presented, which

help in extracting shape and gradient details from the given image. Wimmer et al. [84]

utilized four types of filters, three of which are directional sensitive, whereas the fourth one is
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based on the maximal-minimal filter bank technique to achieve rotation invariance. Ribeiro

et al. [85] first time explored different deep learning models and reported results on various

model configurations (end-to-end training or transfer learning). Bora et al. [86] used the

Least Square Support Vector Machine and Multi-layer Perceptron to perform classification

along with different feature extraction approaches. More recently, Patel et al. [16] and Li et

al. [17] released a relatively large colonoscopy dataset which is composed of different small

datasets. They also provided experimental results on some baseline deep learning models.

Bhamre et al. [87] explored the advantages of performing classification using NBI instead of

WLI. This is achieved by translating images of WLI modality into NBI using CycleGAN.

Limitations: The literature indicates a paucity of research in the classification task,

primarily attributed to the scarcity of high-quality, large-scale annotated datasets. More-

over, a research gap still persists in exploring different imaging modalities and their specific

benefits in classifying polyps based on their pathology.

2.3.6 Dataset Description

Table 2.1 shows the list of the existing endoscopy datasets along with data type, size, and

accessibility. It can be observed that most of the existing datasets in the literature are

from colonoscopy procedures and consist of polyp still frames or videos. In this thesis,

we used datasets according to the task objectives and the type of annotations available.

For example, the datasets with segmentation mask and detection bounding box details are

used for polyp segmentation and detection, respectively. We also designed a novel multi-

class endoscopy dataset, which will be discussed in Chapter 5. The following related work

discusses the existing datasets in detail to provide an overview of the datasets used in this

thesis. These details also help relate to the need for our proposed dataset in Chapter 5 as

most of the existing datasets are small in size and do not capture some critical anatomical

landmarks or pathological findings.

Related Work

In the earlier GI detection works, the CVC-ClinicDB [10] and CVC-ColonDB [56] were

widely used. CVC-ClinicDB is developed from 23 colonoscopy video studies acquired

with white light. These videos provide 31 video sequences, each containing one polyp,

which finally generates 612 images of size 576 × 768. CVC-ColonDB consists of 300

different images obtained from 15 random cases. Similarly, ETIS-Larib Polyp DB [11]

is a colonoscopy dataset consisting of 196 polyp frames and their corresponding segmen-
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Table 2.1: List of the existing datasets within GI endoscopy.

Dataset Data type Size Accessibility
Kvasir-SEG [9] Polyps 1,000 images†♣ Public

HyperKvasir [88] GI findings 110,079 images
& 374 videos Public

Kvasir-Capsule [89] GI findings⋄ 4,741,504 images Public
Kvasir [90] GI findings 8,000 images Public
CVC-ColonDB [56] Polyps 380 images† ‡ As per request•

ETIS-Larib Polyp DB [11] Polyps 196 images† Public
EDD2020 [12, 91] GI lesions 386 images†♣ Public
CVC-ClinicDB [10] Polyps 612 images† Public
CVC-VideoClinicDB [19] Polyps 11,954 images† As per request
ASU-Mayo [92] Polyps 18,781 images† As per request•

KID [93]
Angiectasia,
bleeding,
inflammations⋄

> 2500 images,
47 videos Public•

PolypGen [94] Polyps
1,537 images†♣

& 2,225 video sequence,
4,275 negative frame

Public

SUN Database [95] Polyps 158,690 video frames♣ As per request
ISIT-UMR [96] Polyps 76 colonoscopy videos Public
†Segmentation ground truth •Not available now ‡Contour ⋄Video capsule endoscopy ♣ Bounding box information

tation masks. Recently, Kvasir-SEG [9] dataset has been introduced that comprises of

1,000 colonoscopy images with segmentation ground truth and bounding box coordinate

details. This dataset offers a diverse range of polyp frames, including multiple diminutive

polyps, small-sized and regular polyps, sessile or flat polyps collected from varied cohort

populations. The dataset is open-access and is one of the most commonly used datasets for

polyp segmentation.

The ASU-Mayo Clinic Colonoscopy Video (c) database [92] is a copyrighted

dataset and is considered the first largest collection of short and long video sequences. Its

training set is composed of 10 positive shots with polyps inside and 10 negative shots with

no polyps. The associated test set is provided with 18 different unannotated videos. CVC-

VideoClinicDB [19] is extracted from more than 40 long and short video sequences. Its

training set comprises 18 different sequences with an approximate segmentation ground

truth and Paris classification for each polyp. ISIT-UMR [96] is a video dataset with 76

colonoscopy videos available in both NBI and WLI. It contains annotations for pathology

classes, including hyperplastic (21 videos), adenomatous (40 videos), and serrated adenoma

(15 videos). SUN Colonoscopy Video Database [95] comprises 49,136 polyp frames and

109,554 non-polyp frames. Unlike the datasets described above, this dataset includes patho-

logical classification labels, polyp size, and shape information. It also includes bounding box

coordinate details. The PolypGen [94] dataset is an open-access dataset that comprises

1,537 polyp images, 2,225 positive video sequences, and 4,275 negative frames. The dataset
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is collected from six different centers in Europe and Africa. Altogether, the dataset provides

3,762 positive frames and 4,275 negative frames. These still images and video frames are

collected from varied populations, endoscopic systems, and surveillance experts in Norway,

France, the United Kingdom, Egypt, and Italy and is one of the comprehensive open-access

datasets for polyp detection and segmentation.

Apart from the lower GI-related datasets, there are a few datasets that provide com-

bined samples of upper and lower GI findings. For example, HyperKvasir [88] is a multi-

class GI endoscopy dataset that covers 23 classes of anatomical landmarks. It contains

110,079 images out of which 10,662 are labeled and 99,417 are unlabeled images. The

EDD2020 dataset [12, 91] is a collection of five classes and 386 still images with detection

and segmentation ground truth. The classes are divided into 160 non-dysplastic Barrett’s,

88 suspicious precancerous lesions, 74 high-grade dysplasia, 53 cancer, and 127 polyps with

overall 503 ground truth annotations. The Kvasir-Capsule [89] is a video capsule en-

doscopy dataset comprising 4,741,504 image frames extracted from 117 videos. From the

total frames, 4,694,266 are unlabeled, and 47,238 frames are annotated with a bounding

box for each of the 14 classes. Similarly, KID [93] is a capsule endoscopy dataset with 47

videos and over 2,500 images. The images are annotated for normal, vascular, inflammatory,

lymphangiectasias, and polypoid lesions.

Limitations: The literature review shows that most GI-related datasets focus on

a single specific finding, such as colon polyps. Some of the datasets are small in size

and have ignored non-lesion frames, which are essential for developing algorithms to be

integrated into clinical settings. Additionally, many of these datasets are available on request

and require approval from the data providers, resulting in further delays. A few datasets

like Kvasir, HyperKvasir, Kvasir-Capsule and KID provide multiple GI findings. However,

Kvasir-Capsule and KID are video capsule endoscopy datasets. The Kvasir dataset has only

eight classes, whereas Hyperkvasir has 23 classes.

2.3.7 Synthetic Dataset Generation

With the advent of generative artificial intelligence, several works have been proposed to

generate synthetic colonoscopy images. These synthetic data mimic the characteristics of

real data and fairly look similar to them. The techniques adopted so far can broadly be

divided into GANs, and Diffusion Models.
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Related Work

GAN based Techniques: The initial frameworks for polyp generation are based on the ad-

versarial concept and adopt different variants of GANs. For example, Shin et al. [97] used a

conditional-GAN approach to translate normal colonoscopy images to polyp images. This

translation is achieved using an input-conditioned image which is a combination of an edge

map and a polyp binary mask. A similar concept of converting normal frames to polyp

frames is proposed in [98]. They utilized a conditional GAN architecture to produce polyps

with varied characteristics by controlling the input-conditioned binary mask values. Such

conditional translation is also reported by Fagereng et al. [99]. They developed a framework

called PolypConnect which uses an EdgeConnect model to convert clean colon images to

polyps when given an edge map and a polyp mask. Sasmal et al. [100] performed polyp

generation using DCGAN and used the obtained synthetic polyps to enhance classifier per-

formance for differentiating adenoma and hyperplastic. An identical augmentation approach

is followed by Adjei et al. [101] using synthetic polyps generated using a Pix2Pix model.

Unlike the traditional GAN architecture, He et al. [102] introduced an attacker in the frame-

work to obtain false negative images. Sams and Shomee [103] utilized a StyleGAN2-ada

to generate random binary masks which are combined with colon images. This integrated

image is used as an input for a conditional GAN to obtain synthetic polyp images. The

above methods focused on polyp generation irrespective of the imaging modalities. How-

ever, a few works used GAN-based approaches to transfer style between different imaging

modalities like WLI and NBI. Golhar et al. [104] utilized the GAN inversion approach,

which uses a latent representation of images to perform translation between NBI and WLI

modalities. Following this technique, interpolation methods are used to change the polyp

size. Similarly, Bhamre et al. [87] used CycleGAN to convert WLI images to NBI images.

Diffusion Model based Techniques: The related literature involves only a few works focused

on polyp image generation. Machacek et al. [105] used a conditional diffusion probabilistic

model to produce synthetic polyp images using synthetic masks. They validated the effec-

tiveness of generated data by utilizing it for training polyp segmentation models. Pishva

et al. [106] performed polyp generation using two diffusion models. The two models are

fine-tuned on cropped-out polyps and clean colon images, respectively. This fine-tuning is

followed by performing an inpainting using the latter model and cropped-out images. Du

et al. [107] proposed an adaptive refinement semantic diffusion model which considers the

polyp and background ratio to adjust the diffusion loss. They also incorporated a pre-

trained segmentation model that modifies the refinement loss depending on the difference
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between the predicted mask of the synthetic polyp and the actual binary mask.

Limitations: Although a few existing works have established the significance of NBI

images over WLI images in polyp classification, the generation of new synthetic polyp images

with different imaging modalities has not been explored in the literature. Moreover, the

above-mentioned approaches followed a similar pattern of polyp generation using binary

masks. The impact of text prompt based training, particularly with different imaging

modalities, still remains unexplored.

2.4 Standard Metrics

Detection of polyp from a given set V of colonoscopy videos is a binary classification task,

i.e., we consider two classes, polyps and non-polyps. Let tp be the number of such samples

which are correctly detected as polyps and tn be the number of instances which are correctly

predicted as non-polyps (background). Similarly, let fp and fn be the incorrect predictions

erroneously considered polyps and background, respectively.

• Precision: Precision is the ratio of correctly predicted positive observations to all the

positive predicted observations. It can be defined as:

Precision = tp

tp + fp
(2.1)

• Recall/Sensitivity: Recall/Sensitivity presents the ratio of correctly predicted positive

observations to all the original observations in the actual class. It can be formulated

as:

Recall = tp

tp + fn
(2.2)

• F1-score: F1-score integrates both recall and precision and calculates a weighted

average/harmonic mean of these two metrics. It can be computed as:

F1-score = 2 × Precision × Recall

Precision + Recall
(2.3)

• Intersection over Union (IoU)/Jaccard Index (JI): IoU/JI quantifies the amount of

overlap between the predicted and ground truth region. It can be defined as:

JI(Pr, Gr) = |Pr ∩ Gr|
|Pr ∪ Gr|

(2.4)
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• Average Precision (AP) and mean Average Precision (mAP): AP can be defined as the

area under a precision-recall curve which helps summarize the curve in a single value.

It is a weighted sum of precisions computed over different thresholds, considering the

increase in recall as the weight. mAP is defined as the average values of APs over

different classes. These terms can be formulated as:

AP =
∫ 1

r′=0
p′(r′) dr′ (2.5)

mAP = 1
c

c∑
i=1

APi (2.6)

• Area under Precision-Recall Curve (AUPRC): AUPRC is the area under a precision-

recall curve. It is an important metric for problems with imbalanced data where

detecting positive class is the primary objective.

• Balanced Accuracy (BA): BA is also used with imbalanced datasets and can be cal-

culated as the arithmetic mean of specificity and sensitivity which is given by:

BA = Sensitivity + Specificity

2 (2.7)

where specificity = tn/(tn + fp).

Chapter Summary

In this chapter, we covered some of the key medical terminologies and the background

concepts required to understand the subsequent chapters. These concepts are followed by

literature survey pertaining to different phases of an ideal CAD system. These phases are

the fundamental tasks intertwined within our proposed methodologies. The survey of each

phase is accompanied by limitations, specifying the research gap in the current scenario.

Also, we discussed about the different datasets and some existing synthetic dataset creation

techniques, followed by their limitations. Lastly, we explained the standard metrics that

are used in this thesis.

;;=8=<<
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3
Keyframe Extraction for Enhanced Polyp

Detection and Localization

Chapter Highlights

• We hypothesised that reviewing only some adequate number of informative frames

instead of an entire colonoscopy video could yield enhanced outcomes, and significant

savings in manual effort, computational resources, and time.

• We propose a multi-stage keyframe extraction framework to select good-quality, dis-

tinct polyp frames covering multi-views of polyps with a high polyp-to-frame ratio.

• We also propose YcOLOn, a novel multi-scale attention-based model for enhanced

polyp localization performance.

• This chapter is based on the publications “A Multi-Scale Attention Framework for Au-

tomated Polyp Localization and Keyframe Extraction From Colonoscopy Videos” pub-

lished in IEEE Transactions on Automation Science and Engineering and “Keyframe

Selection from Colonoscopy Videos to Enhance Visualization for Polyp Detection”

presented at IV 2022.

This chapter addresses the problem of extracting meaningful clinical in-

formation from colonoscopy videos, which otherwise requires an enormous

amount of reviewing time and puts a considerable burden on the surgeons.
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The proposed solution presents a first end-to-end automated multi-stage

deep learning framework to extract an adequate number of clinically signif-

icant frames, i.e., keyframes from colonoscopy videos. The proposed frame-

work comprises multiple stages that employ different deep learning models

to select keyframes, which are high-quality, non-redundant polyp frames

capturing multi-views of polyps. In one of the stages of our framework,

we also propose a novel multi-scale attention-based model, YcOLOn, for

polyp localization, which generates ROI and prediction scores crucial for

obtaining keyframes. We further designed a GUI application to navigate

through different stages. Extensive evaluation in real-world scenarios in-

volving patient-wise and cross-dataset validations shows the efficacy of the

proposed approach. The framework removes 96.3% and 94.02% frames, re-

duces detection processing time by 38.28% and 59.99%, and increases mAP

by 2% and 5% on the SUN database and the CVC-VideoClinicDB, respec-

tively. The source code is available at https: // github. com/ Vanshali/

KeyframeExtraction .

3.1 Introduction

With about 14.2 million procedures performed in the US alone [108], colonoscopy is one

of the most common tests followed to reduce CRC-related mortality and morbidity. The

tremendous amount of medical data obtained from these medical examinations needs large

storage volumes and enormous time for manual reviewing. This time-consuming assessment

puts a considerable burden on the clinicians and introduces human errors in the diagnostic

results. Some recent research proposed automated polyp detection and classification tech-

niques [58, 62, 109–111] to reduce manual efforts. However, as many colonoscopy video

frames are clinically insignificant and do not contribute to pathological interpretations,

they provide distorted information to the automated systems. Hence, these systems often

underperform.

One possible solution to overcome these issues is to perform video skimming that ex-

tracts the essential and good-quality content of the video streams in the form of significant

and representative frames. These are called the keyframes, which preserve the static sum-

maries of the key-events corresponding to a patient’s colonoscopy procedure. In this way, an

adequate number of good-quality frames can be obtained. The automated systems can then
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(a) (b) (c) (d)

(e)

(f)-i (f)-ii (f)-iii (f)-iv

(g)

Figure 3.1: The figure illustrates example scenarios of frames captured in the colonoscopy procedure.
The first row displays low-quality frames: (a) motion blur, (b) low illumination, (c) ghost colors,
and (d) waste materials. The second row (e) displays redundant consecutive frames from a video
sequence. The third row (f) displays images of the same polyp, where (f)-i and (f)-ii show cropped
view, (f)-iii shows a distant view, and (f)-iv shows a clear view. The fourth row (g) displays frames
with multiple views of a polyp from different directions.

efficiently process the extracted keyframes and easily store them for clinical assessments.

The keyframes can save doctors a lot of reviewing time and allow them to go through many

case studies and surgeries quickly. Some keyframes can also be attached to a patient’s

medical record file for future reference and retrospective treatments.

An effective keyframe selection approach must consider various attributes of the

recorded colonoscopy videos [43]. Firstly, about 25% of the acquired video frames are

low-quality [35]. These frames can be blurry or have noise such as interlacing, ghost colors,

low illumination, fecal deposition, and overexposed regions (Fig. 3.1(a)-3.1(d)). Secondly,

most consecutive frames are redundant [112] and do not add to the clinical findings (Fig.

3.1(e)). Thirdly, not all polyp frames provide a satisfactory Polyp-to-frame ratio (PI), and

some present cropped or distant polyp views (Fig. 3.1(f)). A colonoscopy keyframe selection

procedure should consider these attributes to provide clinicians with essential data from a
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large set of recordings. In addition to the quality frames, a clinician looks for multiple views

of the detected polyps for efficient analysis and precise resection (Fig. 3.1(g)). Therefore,

keyframes must contain diverse views of each polyp.

Most polyp detection, localization, and classification methods in the literature [56, 62]

either use the raw form of videos or perform manual removal of noisy frames, which is a

very time-consuming task. Only a few methods [32, 33] have focused on keyframe selection

in the colonoscopy domain, and they have the following drawbacks:

1. They do not consider all essential video attributes.

2. They mainly depend on the hand-crafted features, such as threshold, entropy-based

frame quality assessment, sub-shot formation, and clustering-based representative

frames selection.

Thus, the existing methods are not robust enough to represent high-level semantic infor-

mation and overlook important colonoscopy video attributes.

In this chapter, we propose an automated deep learning based keyframe selection ap-

proach that extracts keyframes from colonoscopy videos, overcoming the above-mentioned

drawbacks. The proposed approach consists of five stages, wherein each stage introduces

different methods to ensure that the keyframes obtained are clinically significant. Stage-I

eliminates the uninformative frames containing motion blur, ghost colors, fecal deposition,

and low illumination using a deep learning based model. Stage-II performs polyp detec-

tion to retain only the polyp frames that are important for pathological interpretations.

In Stage-III, we group redundant and highly correlated frames, enforcing diversity among

the polyp frames. In Stage-IV, we localize the polyp region using our proposed multi-scale

attention-based localization model, YcOLOn. Lastly, we use the weighted score method to

Figure 3.2: Flowchart depicting the role of different stages in the proposed work.
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select one polyp frame from each group. The framework is evaluated on two publicly avail-

able datasets with patient-wise/case-wise or cross-dataset settings. The results illustrate

the enhanced polyp detection and localization performance with a significant reduction in

the total number of frames that need to be reviewed. The stage-wise outcomes could be

visualized using the GUI application that we developed for easy navigation. Figure 3.2

illustrates the complete overview of the proposed method.

3.1.1 Contributions

The contributions of this chapter are discussed below:

• First deep learning based framework for keyframe selection in colonoscopy

domain that considers all video attributes: To the best of our knowledge,

this is the first deep learning based framework that aims to extract keyframes from

colonoscopy videos while considering all the mentioned video attributes. Also, our

method selects the best frame from correlated frames and enforces diversity among

the keyframes. Such selection provides each polyp view from multiple directions and

helps surgeons determine the exact information for polyp resection.

• Cross-dataset validations and case-wise analysis: We performed all the experi-

ments either using patient-wise/case-wise data or in cross-dataset settings. This makes

the proposed framework generalized and suitable for different patients’ data acquired

in the same hospital (with similar imaging modalities but different patient-specific

characteristics) and also across different hospitals (with different imaging modalities).

We performed the exhaustive case-wise analysis with each video sequence results in-

terpreted using separate boxplots.

• Enhanced polyp detection performance with less processing time: We

achieved enhanced polyp detection rates along with reduced computational time by

adopting an approach to discard uninformative frames. (Stage-II)

• Proposed a novel attention-based model YcOLOn for enhanced polyp local-

ization performance: We introduced an attention fusion mechanism that provides

a more precise localization of polyps. The obtained predicted scores assist in selecting

the representative frames from each cluster. (Stage-IV)

• Annotated colonoscopy images based on the quality of the frames: We

annotated the polyp frames of SUN database [95] that could facilitate the researchers
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with training labels for future research.

3.2 Proposed Method

3.2.1 Stage-I: Quality Assessment

Many artifacts, including noise, ghost colors, motion blur, fecal depositions, and low il-

lumination, degrade the quality of colonoscopy frames leading to an incorrect diagnosis.

Such frames often distract the clinician’s focus and also make automated diagnostic sys-

tems underperform. We consider these frames uninformative as they do not hold clinically

important information. Such frames can not be a part of keyframes and could unneces-

sarily impact the outcomes of the subsequent stages of the proposed pipeline. To get rid

of them, we trained the existing architecture of the DenseNet-201 [113] model as a binary

classifier using manually annotated informative/uninformative frames. DenseNet-201 is a

Convolutional Neural Network (CNN) with 201 layers, in which each layer is connected to

every other layer for richer patterns and diversified features. This dense connectivity can

be illustrated as:

ol = wl ∗ (q0|q1|...|ql) (3.1)

where ol and wl denote the current feature map and the convolution weight, respectively.

qi represents each of the previous layers’ feature maps, and ‘|’ indicates the concatenation

operation. As an end result, we obtain:

VStage-I = V /Vinsignificant = {f ∈ V : f /∈ Vinsignificant} (3.2)

where Vinsignificant represents a set of insignificant frames.

As the output of this stage will affect the outcomes of subsequent stages, performance

evaluation is required at this point. Due to the unavailability of ground truth information

in one of our test datasets, two metrics, namely, the Fast Fourier Transform (FFT) [114]

and the Variance of Laplacian (VoL) [115], are adopted to validate the effectiveness of this

quality assessment step. These metrics quantify the blurriness content of the given image.

An image can be represented as real and imaginary components using FFT. The lower

the amount of high frequencies contained in these components, the higher the blurriness

content. Similarly, the second metric considers an image blurry based on the rapid intensity

changes. A high variance represents an image with sharp and clear content, whereas a low

variance indicates an indistinct image. Suppose ffti and voli are the mean of magnitude
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spectrum of FFT and focus measure of VoL, respectively, obtained on the set V . Similarly,

fftj and volj are associated with computations performed on VStage-I , i.e., on the frames

obtained after applying DenseNet-201. To obtain better quality frames in VStage-I compared

to the set of raw frames V , our objective is to achieve fftj > ffti and volj > voli.

3.2.2 Stage-II: Polyp Detection

The main pathological interpretations are performed on polyp frames to diagnose the correct

medical state. Therefore, after removing insignificant frames, we addressed the detection of

polyp frames, VP _frames, using a binary classification approach. The aim of this stage is to

obtain:

VStage-II = VStage-I/VNP _frames

= {f ∈ VStage-I : f /∈ VNP _frames}
(3.3)

where VNP _frames represents a set of non-polyp frames; P and NP stand for polyp and non-

polyp, respectively. Let D′ = {pt, xt, yt}|D′|
t=1 be the dataset, where pt is the patient/case

identification number, xt denotes the RGB colonoscopy frame and yt ∈ {0, 1} is the corre-

sponding frame label (either polyp or non-polyp). pt is mutually exclusive in the training

D′
train, validation D′

val, and test D′
test sets. Our motive is to find only that subset DP of

test data samples which contain polyps, i.e., DP = VP _frames ∩D′
test. This process provides

two-fold benefits: firstly, it refines the keyframe selection process by eliminating non-polyp

frames, and secondly, it validates the effectiveness of removing uninformative frames in

Stage-I. Different components of these two stages are shown in Fig. 3.3.

The input to the detection model is the output frames of the previous stage. This

ensures the model gets good-quality and significant data samples to avoid unnecessary

processing requirements. The model used here is the same CNN architecture that was

Figure 3.3: Different components of Stage-I and Stage-II.
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used in Stage-I, i.e., the DenseNet-201. This network is chosen because of its remarkable

performance in the detection problems [116, 117]. Moreover, during Stage-I and II, the

risk of missing a critical frame is less, and unwanted frames to be processed are large. To

keep it simple and less time-consuming, a basic existing CNN model is adopted, which is

efficient enough at the same time for the defined task. The model is trained using two loss

functions: Binary Cross Entropy (BCE) and focal loss, one at a time. Experiments with

the same settings are done using ResNet-152 [118] to evidently show that the enhancement

in polyp detection due to insignificant frames removal is not network or loss-dependent.

3.2.3 Stage-III: Redundancy Removal

The consecutive frames in a colonoscopy video share significantly correlated content. Com-

pared to the general videos, the similarities encountered in the adjacent colonoscopy frames

are more due to the slow motion of the cameras during the colonoscopy procedure. This

raises the amount of redundancy in the video sequences. As a majority of the non-polyp

frames are already removed during the previous stage, redundancy most likely exists in the

small video shots containing polyps. Therefore, Stage-III addresses the issue of redundant

polyp frames by training the existing architecture of the Siamese network. It is a CNN

architecture that comprises two identical sub-networks, both possessing the same config-

uration, parameters, and weights. All parameter updates are mirrored across both the

sub-networks. This ensures that two almost similar colonoscopy images are not mapped to

extremely different feature spaces.

Consider colonoscopy frames f i and f j and let y ∈ {0, 1} be the label that indicates the

similarity/dissimilarity between the two frames. The Siamese network uses a metric learning

approach to find the relative distance between the given input frames. In this context, a

dissimilarity score is generated using the contrastive loss, which can be computed as:

(1 − y)1
2J2 + y

1
2{max(0, z − J)}2 (3.4)

where J is the Euclidean distance that can be defined as (E′(f i) − E′(f j))
1
2 , where E is

the output of the network for one image. z is a margin value beyond which dissimilar pairs

will not contribute to the loss.

On the basis of the obtained dissimilarity scores, grouping is performed. Adjacent

frames f i and f j with dissimilarity score S < T are placed together under the same cluster

C, where T is a threshold that could be set according to the required number of distinct
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frames. This groups redundant frames in one cluster, providing us with:

VStage-III = VStage-IIC1
∪ VStage-IIC2

∪ ... ∪ VStage-IICk
(3.5)

where C1,C2,C3...Ck are different clusters. This approach provides two benefits: a) we get

distinct clusters with correlated frames in the same cluster, which signifies that one most

significant frame from each cluster would suffice our criteria of keyframe selection, and b)

polyp shots from different angles will be distributed in different clusters, and selecting one

representative frame per cluster would provide varied views of a polyp.

3.2.4 Stage-IV: Polyp Localization

The selection of representative frames from each cluster considerably depends on the extent

of polyp characterizing features contained within the frame. These features include the

texture, color, and shape of the polyps, which make them relatively distinguishable from

other endoluminal objects. One approach to quantify the presence of such features is to

compute the Confidence Score (CS) of polyp detection that generates the probability of

the polyp being detected in the frame. The higher the polyp detection CS in a frame,

the greater the probability that the polyp characterizing features exist in that particular

frame. Therefore, in Stage-IV, we perform polyp detection with localization, providing us

with both ROIs and the corresponding CSs.

This chapter treats the above-mentioned task as a regression problem. Consider a

dataset D′ = {pt, xt, bbt, yt}|D′|
t=1 , where pt, xt, and yt are same as defined in Section 3.2.2.

bbt ∈ R4 represents the 2-D coordinates of the bounding box containing polyp. A subset of

it is used to train a detector that predicts the bounding box coordinates and corresponding

CSs. Although many types of detectors are currently available, including one-stage, two-

stage, anchor-based, and anchor-free detectors, a general base structure is followed in all

the types. It comprises a backbone for feature extraction, a neck to make rational use

of the extracted feature maps, and a head to detect the location and class of objects.

Considering the one-stage detection capability with remarkable performance, we selected

YOLOv5 [119] as our baseline. Its architecture consists of CSPDarkNet with an Spatial

Pyramid Pooling (SPP) layer as the backbone, Path Aggregation Network (PANet) as the

neck and YOLO detection head. Here, PANet is used as a link between the backbone

and the head to boost information flow. It incorporates bottom-up paths and performs

concatenation, which helps propagate low-level features and perform bridging of features.
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However, adopting direct feature concatenation propagates features with fixed weights,

ignoring the variance of feature map contents.

Therefore, we proposed a novel attention-based model, YcOLOn, which is a modified

version of YOLOv5. The architectural details of YcOLOn are shown in Fig. 3.4. Unlike

YOLOv5, the YcOLOn embeds four Attention Feature Fusion (AFF) [120] modules into the

neck component. These modules replace the traditional method of feature concatenation

to improve feature fusion and ultimately enhance polyp localization.

Figure 3.4: Different components of the proposed model. AFF is the attention feature
fusion module, and MS-CAM is the multi-scale channel attention component of the AFF.

The different feature fusion strategies generally followed in deep learning include addi-

tion (ResNet, FPN), concatenation (U-Net, YOLOv5), attention-based refinement (SENet),

and modulation (GAU). The first two strategies are not context-aware, and the other two

are partially context-aware. Moreover, the channel attention module adopted in SENet

emphasizes large objects while the signals pertaining to small objects vanish. Such global

feature context-based components could not efficiently handle small objects like polyps.

The AFF module considers multi-scale feature contexts to overcome the issues related to

feature integration at different scales and vanishing signals of small objects. It incorporates

a Multi-scale Channel Attention (MS-CAM) component, which combines the local channel

context L(Y ) with the global channel context G(Y ), as expressed below:

Y ′ = Y ⊗ MS(Y ) = Y ⊗ σ(L(Y ) ⊕ G(Y )) (3.6)
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where Y ′, MS(Y ) ∈ RC×H×W indicate the refined feature map and attention-based weights,

respectively, generated by MS-CAM. ⊗, ⊕ represent the element-wise multiplication and

the broadcasting addition, respectively, and σ denotes the sigmoid function. L ∈ RC×H×W

can be computed as:

L(Y ) = BN(PwConv2(ReLU(BN(PwConv1(y))))) (3.7)

where BN is the batch normalization, PwConv1 and PwConv2 signify the point-wise con-

volutions that use the channel reduction ratio r. Similarly, G can be expressed as:

G(Y ) = BN(PwConv2(ReLU(BN(PwConv1(g(Y )))))) (3.8)

where g(Y ) = 1
H×W

∑H
i=1

∑W
j=1 Y[:,i,j] is the global average pooling. The same shape of L(A)

as that of the input helps preserve the fine details in the low-level features. Let Y be the

low-level feature map, and Z be the high-level semantic feature map, and Y, Z ∈ RC×H×W ,

the AFF can be computed as:

X = MS(Y + B) ⊗ Y + (1 − MS(Y + Z)) ⊗ Z (3.9)

where + is the element-wise summation and X ∈ RC×H×W is the fused feature. The fused

features get processed by the C3 blocks and are provided to the prediction heads for the

final localization of polyps.

3.2.5 Final Representative Frame Selection

The final selection of representative frames is performed by determining the most significant

frame from each cluster based on three parameters: a) High CS of ROI detection, b) Large

PI, and c) More centrally located ROI, i.e., less distance from image’s center (CD). Their

corresponding values are obtained as the output of our proposed localization model as

bbi ∈ R6 = {ci, ui, vi, wi, hi, csi}, where ci is the class, (ui, vi) is the 2-D coordinate of the

central pixel of the ROI, wi, hi are the width and height of the ROI, respectively and csi

is the confidence score. Here, CS defines the polyp characterizing features, making it the

most crucial parameter among all. However, besides the CS, the polyp area covered by

the predicted bbi and its location is also considerably important. The same polyp with

greater wi and hi values is probable to convey more clinical information than its redundant

counterpart with lower wi and hi values. Similarly, polyps closer to the central pixel of
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the colonoscopy image indicate a relatively more visible polyp area without any cropped

regions. Hence, we considered PI and CD, where PI ∝ wi × hi ensures larger ROI and

CD = ((ui − uc)2 + (vi − vc)2)
1
2 confirms a more centrally located ROI by computing

distance of (ui, vi) from the image’s center (uc, vc). Finally, a score is generated by jointly

considering these parameters using weights α, β, and γ assigned to them, and can be given

by:

FinalScore = α × CS + β × PI + γ × (1 − CD) (3.10)

where α, β, and γ are set to 0.5, 0.3, and 0.2, respectively, providing more significance to

CS followed by PI and CD.

3.3 Experimental Results

3.3.1 Dataset Details and Training Settings

The proposed work uses the publicly available SUN database [95, 121] and CVC-

VideoClinicDB dataset [122, 123]. We used the SUN database for training purposes in

all the experiments. It consists of annotated video frames, out of which 109, 554 are non-

polyp frames from 13 cases, and the remaining 49, 136 polyp frames pertain to 100 different

lesions. We split the dataset randomly into a ratio of approximately 80, 10, and 10 for

training, validation, and test set, respectively. These are case-wise splits, i.e., no two splits

hold data of the same case. Also, experts manually annotated polyp frames as informative

or uninformative for Stage-I processing. Thus, the polyp frames have additional annotations

where around 31% of the frames are uninformative. Though the proportion of each type

of artifact is unknown, random sampling and case-wise division avoid biased distribution

across splits. For cross-dataset performance validation, we used the CVC-VideoClinicDB,

which consists of 18 video sequences. As the CVC-VideoClinicDB test set does not contain

ground truths, we have used only training and validation sub-parts from Stage-II onwards.

The proposed method is implemented using PyTorch using the Titan Xp GPU. Stage

I and Stage II involve 20 epochs of training, a 0.001 initial learning rate, and an Adam

optimizer. In Stage III, the model is trained for 100 epochs using an Adam optimizer with

an initial learning rate of 0.0005. Our proposed model in Stage-IV is trained for 80 epochs

using an Stochastic Gradient Descent (SGD) optimizer with an initial learning rate set to

0.05.
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3.3.2 Performance Evaluation

Stage I

The models in this stage are trained using manually annotated informative/uninformative

frames of the SUN database. The validation is performed using FFT and VoL. The related

results are shown in Table 3.1. The higher values of the two metrics infer less blurriness

content and sharper and clearer images. It can be seen that after processing the raw frames

through Stage-I models, the overall dataset quality has improved in most of the cases. This

improvement is more when tested on the SUN database than the CVC-VideoClinicDB.

One reason could be the similar data distribution of the training samples and the former’s

test set. It could also be inferred that the SUN database consists of more uninformative

frames. Such low-quality frame count might be due to the large number of non-polyp frames

in this database, which are expected to carry more artifacts due to unfocused camera

movements. The importance of this stage is further validated in the subsequent stages,

where improvement in polyp detection and localization is reported in terms of performance

and computational requirements.

Table 3.1: Comparative analysis of frames quality after elimination of uninformative frames
in Stage-I. + and - signs represent the value by which the frame quality improved or de-
graded, respectively, using Stage-I as compared to the raw frames.

Method Model Loss CVC-VideoClinicDB CVC-VideoClinicDB SUN database
train_valid test

Stage-I output frames (± δ)

Variance of Laplacian
(Focus measure)

DenseNet-201 BCE 138.26 (+1.81) 162.63 (+6.17) 480.91 (+96.79)
Focal 140.49 (+4.04) 165.97 (+9.51) 487.73 (+103.61)

ResNet-152 BCE 135.87 (-0.58) 157.11 (+0.65) 480.32 (+96.2)
Focal 138.63 (+2.18) 167.11 (+10.65) 479.58 (+95.46)

FFT
(Mean of

magnitude spectrum)

DenseNet-201 BCE -16.59 (+0.7) -18.81 (+1.2) 34.98 (+19.05)
Focal -14.32 (+2.97) -18.97 (+1.04) 35.56 (+19.63)

ResNet-152 BCE -17.30 (-0.01) -20.00 (+0.01) 35.69 (+19.76)
Focal -16.10 (+1.19) -19.98 (+0.03) 34.66 (+18.73)

It is noteworthy that apart from the overall performance, patient-wise results are also

crucial. Similar to the empirical rule by Ma et al. [43], we followed a criterion to retain at

least 20% frames of each video sequence during Stage-I testing. The purpose of setting such

criteria is to avoid the lack of keyframes for correct clinical decision-making. This would be

of great help in case the collected video is extremely unacceptable in terms of frame quality

due to unsatisfactory patient preparation or unexpected events during the colonoscopy

procedure. Considering such scenarios, this condition is set only for this particular stage.

The criterion can be fulfilled by tuning the CS of the model during testing and can easily

be done by clinicians. We have not laid any upper limit on the number of frames in Stage-

I because of the elimination process associated with the subsequent stages. To test our
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approach without any tuning, we assessed the overall performance with default settings,

irrespective of the case-specific data. However, while analyzing the case-wise performance,

we inspected the number of frames in Stage-I and tweaked the CS so that 20% of the

patient’s frames were retained.

Table 3.2: Impact on polyp frame detection results after discarding uninformative frames.

Method Loss SUN database CVC-VideoClinicDBtrain_valid
Precision
(%)

Recall
(%)

F1-score
(%)

Time
(sec)

Precision
(%)

Recall
(%)

F1-
score
(%)

Time
(sec)

Before discarding
uninformative
frames (Raw

frames)

ResNet-152 BCE 78.17±1.45 78.94±1.88 78.53±0.20 985 85.11±0.21 95.37±1.68 89.94±0.632076
Focal 77.23±6.12 74.08±7.42 75.32±0.94 982 88.09±1.14 82.28±5.08 85.02±2.18 2078

DenseNet-201 BCE 63.81±16.6 83.80±11.6 71.03±6.43 389 87.03±0.74 88.59±2.89 87.78±1.05 600
Focal 82.30±0.16 73.94±0.03 77.89±0.06 734 88.26±2.95 89.07±10.43 88.40±3.69 1877

After discarding
uninformative

frames (Stage-I
output frames)

ResNet-152 BCE 84.28±2.34 75.59±2.79 79.65±0.51 374 82.63±0.03 96.96±1.25 89.22±0.55 821
Focal 80.14±6.16 71.98±9.62 75.42±2.59 388 84.89±1.43 87.95±0.29 86.39±0.62 820

DenseNet-201 BCE 70.51±15.0 83.93±16.8 75.01±1.85 156 84.44±1.41 93.40±2.21 88.68±0.22 292
Focal 83.51±0.98 76.38±1.07 79.78±0.13 453 85.28±2.40 92.86±6.67 88.80±1.76 751

Table 3.3: Comparative analysis of our polyp detection performance (Sensitivity %) with
state-of-the-art methods.

Method SUN database CVC Dataset

Case-90 Case-73 Case-61 Case-59 Case-51 Case-13 Case-11 CVC-VideoClinicDB

Misawa et al. [95] 97.7 93.5 92.1 96.9 91.5 92.2 95.6 -
Thambawita et al. [58] - - - - - - - 94.86
Ours 100 91.27 99.13 99.56 99.70 100 57.69 96.96

Stage-II

We carried out two types of polyp detection experiments: a) using raw frames and b)

using processed frames obtained from Stage-I. Table 3.2 and AUPRC in Fig. 3.5 (a)-3.5

(h) show the comparison between these two different scenarios. Results present compa-

rable or improved detection rates using our approach in terms of precision, recall, and

F1-score, along with less processing time involved. The substantial reduction in the compu-

tational time is due to a 38.16% and 61.62% decrease in the number of testing frames of the

CVC-VideoClinicDB and the SUN database, respectively. Fig. 3.6 provides a patient-wise

analysis of 18 video sequences in CVC-VideoClinicDBtrain_val. It can be observed that

for each patient, the number of frames and processing time drastically decreased. At the

same time, sensitivity is increased or is comparable to that obtained using raw frames. The

two models, DenseNet-201 and ResNet-152, demonstrate a similar trend of performance

improvement. However, we utilized the polyp frames obtained from the DenseNet-201 due

to its lower processing time and satisfactory detection results.

To illustrate the performance of Stage-II independently, we compared the results with
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(a) DenseNet-201 (Raw
frames)

(b) DenseNet-201 (Stage-I)(c) ResNet-152 (Raw
frames)

(d) ResNet-152 (Stage-I)

(e) DenseNet-201 (Raw
frames)

(f) DenseNet-201 (Stage-I) (g) ResNet-152 (Raw
frames)

(h) ResNet-152 (Stage-I)

(i) YOLOv5 (Stage-I) (j) YcOLOn (Stage-I) (k) YOLOv5 (Stage-II) (l) YcOLOn (Stage-II)

(m) YOLOv5 (Stage-I) (n) YcOLOn (Stage-I) (o) YOLOv5 (Stage-II) (p) YcOLOn (Stage-II)

Figure 3.5: The AUPRCs are associated with Stage-II (a)-(h) and Stage-IV (i)-(p) outcomes. (a)-
(d) and (i)-(l) present results using CVC-VideoClinicDB. Similarly, (e)-(h) and (m)-(p) show curves
for the SUN database outcomes.

the state-of-the-art polyp detection methods. Very few works [58, 95] have used the same

dataset as ours. Though not exactly comparable, we have tried to conduct a fair comparison

as shown in Table 3.3. Misawa et al. [95] have reported case-wise per-frame sensitivity on

the SUN database. As we used a subset of this dataset for testing purposes, we have shown

results on a common set of patients’ data. Thambawita et al. [58] experimented in multiple

settings, so we compared with their best outcome. The comparative analysis shows that

our approach outperformed other methods in all the cases except for cases 11 and 73. The

reason could be these patients’ very small-sized polyps (3mm) [95]. Nevertheless, the overall

improvement validates that Stage-I processing reduces the computational requirements and
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(a) (b) (c)

Figure 3.6: Graphs representing all patient-wise changes observed after keyframe selection. (a)
shows the decrease in the number of images that need to be tested for polyp detection, (b) presents
the reduction in both the models’ testing time, and (c) provides an overview of enhanced overall
polyp detection rate in terms of sensitivity of the two models.

also enhances the polyp detection rate and the dataset quality.

Figure 3.7: The graph plots the dissimilarity scores, CS, PI, CD, and final scores of a video shot
segmented from a patient’s video sequence. The two dotted boxes over the sub-plots represent two
independent clusters. The keyframe selected from each cluster is highlighted.

Stage-III

This stage computes the dissimilarity scores using pairs of two immediate adjacent frames.

An example is shown in the first sub-plot of Fig. 3.7. The graph depicts the dissimilarity

scores pertaining to the video shot of a patient in the SUN test set. The lower scores
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(a)

(b)

Figure 3.8: Sample images illustrating the comparative analysis of the localization performance: (a)
YOLOv5, and (b) YcOLOn. The green, yellow, and pink color bounding boxes denote the ground
truth, YOLOv5, and YcOLOn predictions, respectively.

Table 3.4: Comparative analysis of polyp localization results.

Method SUN database CVC-VideoClinicDBtrain_valid
Precision
(%)

Recall
(%)

F1-score
(%)

mAP
@0.5

mAP
@0.5:0.95

Precision
(%)

Recall
(%)

F1-
score
(%)

mAP
@0.5

mAP
@0.5:0.95

Before discarding
non-polyp frames

YOLOv5 93.08±1.80 89.57±0.52 91.28±0.59 94.51±0.24 58.43±1.41 74.88±4.75 58.35±2.12 65.51±1.84 63.26±3.9 31.09±1.64
YcOLOn 94.00±1.45 91.33±0.57 92.63±0.45 95.55±0.61 60.69±0.29 76.47±3.33 64.34±1.06 69.85±0.74 71.22±0.18 36.57±0.27

After discarding
non-polyp frames

YOLOv5 94.32±1.40 92.42±0.85 93.35±0.35 96.39±0.41 60.82±1.36 75.37±4.31 58.64±2.82 65.87±1.69 63.74±3.82 31.24±1.64
YcOLOn 95.22±1.17 93.32±1.19 94.25±0.60 96.81±0.63 62.88±0.14 74.88±4.26 65.99±2.01 70.07±0.67 71.41±0.10 36.6±0.37

indicate a higher correlation of the current frame with the previous one, and an abrupt

increase in the scores signifies a non-redundant frame. This behavior of the video sequence

scores helps form clusters of redundant frames. As this correlation is patient-specific and

setting the same threshold for all the video sequences will not provide relevant clusters, we

followed a case-wise approach to set cluster boundaries. For each case, an upper quartile

of dissimilarity scores is calculated. Any score above this value indicates a non-redundant

frame and the starting point of a new cluster. This process ensures that the number of

clusters obtained is about 25% of the total polyp frames. Thus, selecting one representative

frame from each cluster puts an upper limit on the number of keyframes, i.e., 25% of a

patient’s detected polyp frames.

Stage-IV

The experiments in this stage are conducted using our proposed model described in Section

3.2.4, and a comparison is drawn with the baseline model, YOLOv5.

Comparison with the baseline: To investigate the effect of the AFF module, we
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(a) Sequence-1 (b) Sequence-2 (c) Sequence-3 (d) Sequence-4 (e) Sequence-5 (f) Sequence-6

(g) Sequence-7 (h) Sequence-8 (i) Sequence-9 (j) Sequence-10(k) Sequence-11(l) Sequence-12

(m) Sequence-
13

(n) Sequence-14(o) Sequence-15(p) Sequence-16(q) Sequence-17(r) Sequence-18

(s) Number of frames at different stages

Figure 3.9: The box plots (a)-(r) are associated with CVC-VideoClinicDB outcomes. The frames
retained after different stages are represented by S-0: raw frames, S-I: frames obtained after Stage-I,
S-II: frames obtained after Stage-II. The vertical axis represents the mAP@0.5:0.95. (s) shows the
change in the number of frames at different stages. The dashed bars represent the updated frame
count after CS tweaking.

trained our model and the baseline model using the SUN database and presented the testing

results on the SUN test set and CVC-VideoClinicDB. The associated results are reported

in AUPRC (Fig. 3.5 (i)-3.5 (p)) and Table 3.4. The table includes two types of scenarios,

localization on test sets: a) before discarding non-polyp frames and b) after discarding

non-polyp frames. In both scenarios, the proposed model achieved 2% and 5% increase in

mAP@0.5:0.95 and an improvement of about 1% and 4% in F1-score when evaluated using

the SUN test set and CVC-VideoClinicDB, respectively. Some sample images demonstrating

the qualitative comparison of our model with the YOLOv5 are shown in Fig. 3.8. For a fair

56



3. KEYFRAME EXTRACTION FOR ENHANCED POLYP DETECTION AND
LOCALIZATION

(a) Number of frames at
different stages

(b) Case-11 (c) Case-13 (d) Case-51 (e) Case-59

(f) Case-61 (g) Case-73 (h) Case-90

Figure 3.10: (a) shows the change in the number of frames at different stages. The box plots (b)-
(h) demonstrate the performance of our proposed polyp localization model using frames of the SUN
database obtained at different stages. The frames retained after different stages are represented by
S-0: raw frames, S-I: frames obtained after Stage-I, S-II: frames obtained after Stage-II. The vertical
axis represents the mAP@0.5:0.95.

comparison, we have set the same confidence threshold of 0.5 while generating these sample

images. The superior performance of our model is evident from the undetected polyp frame

by YOLOv5. Moreover, our model predicts more accurate bounding boxes as compared to

that of the YOLOv5.

Validating the significance of Stage-II: The results in Table 4.1 not only present

the superior localization performance of our model but also indicate the effectiveness of

Stage-II in the proposed pipeline. After discarding non-polyp frames, our model and the

YOLOv5 achieved enhanced detection and localization in terms of precision, recall, F1-score,

and mAP. A significant increase of about 2% and a slight improvement in mAP@0.5:0.95

can be observed in the case of the SUN database and the CVC-VideoClinicDB, respectively.

Case-wise Statistical Analysis

In real-world settings, the keyframe selection process is majorly patient-specific. Therefore,

we analyzed our approach statistically using each case in the test sets independently. We

executed our proposed localization model five times and assessed each of them using indi-

vidual cases. The related box plots are shown in Fig. 3.10 and Fig. 3.9. The box plots

present a comparative analysis of the localization performance on a) raw frames (S-0), b)

frames obtained after Stage-I (high-quality frames; S-I), and c) frames obtained from Stage-

II (only polyp frames; S-II) in terms of mAP@0.5:0.95. It is noteworthy that the results

are not cherry-picked, and box plots of every case from the test sets (SUN database and
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(a) Case-59

(b) Case-13

(c) Case-51

Figure 3.11: The figure shows the diverse view of polyps (ROIs) obtained from the final keyframes.
Each row displays ROIs of a specific case.

CVC-VideoClinicDB) are included.

The results show that in 60% of the box plots, either the interquartile range or the

median of S-I and S-II is present above that of the S-0. This signifies that in all such cases,

S-I and S-II perform significantly better than S-0. In 20% of the cases, the boxes of S-0, S-I,

and S-II overlap, representing insignificant differences, i.e., all are comparable. It is observed

that S-I and S-II performed significantly superior or comparable to S-0 in all the cases of

the SUN test set. The remaining 20% plots (5 cases from the CVC-VideoClinicDB) present

better results with S-0. One of the reasons for the slightly low performance in the case of

CVC-VideoClinicDB is the cross-dataset evaluation. Another important noticeable point is

that out of these 5 cases, 3 are such cases (cases 5, 13, and 15) that required tweaking of the

CS in Stage-I. This signifies that the video quality of these patients is relatively low. Still,

our proposed attention-based localization model was able to identify polyps in low-quality

frames when more such frames were presented to it in S-0. Nevertheless, the majority of

the cases support the importance of Stage-I and Stage-II for keyframe selection.

Final Keyframes

Before this step, we discarded objects with CS lower than 0.5 to retain relatively more

crucial frames that carry relevant polyp-characterizing features. This is followed by a score

generation process based on the three criteria mentioned in Section 3.2.5. An example is
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(a) Case-13 (b) Case-51 (c) Case-90

Figure 3.12: The graphs depict the relation between the CS, PI, and CD. Polyp frames with
PI> PIavg and CD < CDavg are likely to be detected with higher CSs.

shown in Fig. 3.7. The first sub-plot is obtained from Stage-III, and the next three are

generated using Stage-IV outcomes. The objective of the dissimilarity scores is to form

clusters, and the other three contribute to the selection of the most significant frame from

each obtained cluster. To determine the keyframe from a group of redundant frames, we

considered the highest CS followed by the highest PI and the lowest CD. The final scores

thus generated are shown in the last sub-plot of Fig. 3.7. The frame with the highest final

score within a cluster is chosen as the keyframe. As we get a collection of non-redundant

representative frames at the end, diverse polyp views captured from different directions are

obtained. Some samples are shown in Fig. 3.11.

In this work, the results corresponding to each stage are validated by the subsequent

stages, and in each case, we received positive outcomes. Similarly, to validate the effective-

ness of the score-based approach used in the final stage, we investigated the general trend

followed by the CSs, PIs, and CDs. We collected frames with CS> 0.5 and computed the

average, PIavg and CDavg, over the PIs and CDs, respectively. We then counted the num-

ber of frames with PI > PIavg and CD < CDavg. We observed that the number of such

frames tends to increase with higher values of reported CSs. It implies that the automated

localization model also detects polyps with high probability when they are centrally located

and cover more image area. The related graphs of some cases are shown in Fig. 3.12.

Number of Keyframes and overall performance

The final keyframes extracted by our complete pipeline present a reduction of 96.3% and

94.02% frames in the SUN database and the CVC-VideoClinicDB, respectively. These

representative frames are capable of achieving enhanced or comparable diagnoses with low

resource requirements. This could be validated from the intermediate stages’ results in

which we obtained improved localization with 81.54% and 40.89% decrease in the total

number of frames of the SUN database and the CVC-VideoClinicDB, respectively. A similar
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(a) All frames

(b) Informative frames with ROIs marked

(c) Keyframes with ROIs marked

Figure 3.13: Some screenshots of the proposed GUI. It consists of several options to easily navigate
through different proposed stages.
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trend is seen in the polyp detection outcomes. The change in the number of frames during

the intermediate stages is shown in Fig. 3.10 (a) and Fig. 3.9 (s).

GUI for keyframes visualization and easy navigation

We designed a GUI to allow clinicians to navigate through the different stages of our pro-

posed framework. It has three panes: the left pane displays frames, the right pane consists

of different stage navigating options, and the bottom pane has buttons to scroll through

the frames of a single video. The number of selected frames could be modified using a slider

that changes the CS of the models. The bottom pane’s Back and Forward buttons help

switch to previously visited and yet-to-be-visited frames, respectively. The Clear button

unloads the left pane. Screenshots of the GUI presenting visual results of some options

are shown in Fig. 3.13. To the best of our knowledge, no GUI is designed in our research

community that facilitates keyframe selection from colonoscopy videos with such a wide

range of navigating options.

3.4 Limitations and Discussion

Although our proposed framework achieved promising outcomes with multiple validation

checks, the approach requires human intervention for customized settings. Control of clin-

icians over some settings could be useful many times, but there is a trade-off between the

benefits of clinician control and full automation. For example, in Stage-I, the proportion of

frames to be preserved is handled manually and is decided on a predefined criterion. These

settings are required for some patients’ data in which not enough frames are retained. Such

situations could arise during testing in real-world scenarios and are attributed to various

factors. These factors include inadequate patient preparation, inappropriate recordings due

to unexpected events, and limitations of the automated model in identifying informative

frames from videos acquired using different imaging modalities. The last factor could be

verified from the case-wise analysis in Stage-IV, which shows impressive results when train-

ing and testing are conducted on the same source domain using the SUN database. On the

contrary, few failure cases are reported on cross-dataset evaluation.

The lingering gap due to the above limitations creates opportunities for a system with

more automated settings and, more specifically, for a single-stage model that can integrate

all capabilities present in our proposed multi-stage framework. Furthermore, domain adap-

tation could also be explored for better performance, thus reducing the need for frequent
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tuning of settings. In the future, we will also conduct a small study on the users’ experience

with GUI and will incorporate the obtained feedback for improvement. Despite the few lim-

itations, our work attains compelling results and could save clinicians from the burdensome

task of manual frame selection.

3.5 Chapter Summary

In this chapter, we addressed the issue of the massive archival of colonoscopy videos and the

huge amount of manual effort involved in reviewing these video streams. In this context, we

proposed an automated system with a four-stage keyframe extraction pipeline. Our work

adopted deep learning models that consider the image quality and select clinically signif-

icant data. We also reduced the correlated frames, providing diversity among keyframes

along with a multi-view of polyps. In addition, our proposed multi-scale attention-based

model has shown improved polyp localization outcomes with a 2% and 5% increase in mAP

results using the SUN database and the CVC-VideoClinicDB, respectively. To validate the

effectiveness of the proposed pipeline, we conducted extensive experiments with case-wise

and cross-dataset evaluations. The results present the superiority of the proposed approach

with enhanced polyp detection and localization. Furthermore, the detection processing time

is lowered by 33.28% and 59.99%, and a substantial reduction of 96.3% and 94.02% in the

total number of frames is achieved using the SUN database and the CVC-VideoClinicDB,

respectively.

;;=8=<<
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4
Artifacts Removal

Chapter Highlights

• We observe that some patients’ data required confidence score tuning and human

interventions to obtain a sufficient number of keyframes for analysis.

• The primary reason behind the need for confidence score tuning is the inappropriate

video recording with an enormous amount of uninformative frames.

• Such cases need to be handled appropriately, as keyframe selection alone may not

provide sufficient information for a comprehensive diagnosis.

• We propose an adversarial network based solution to translate uninformative frames to

clinically significant frames. Such translation helps uncover obscured clinical details.

• We further propose a specularity segmentation technique involving a DWT based

encoder-decoder network.

• This chapter is based on the publications “Can Adversarial Networks Make Uninfor-

mative Colonoscopy Video Frames Clinically Informative? (Student Abstract)” pre-

sented at AAAI 2023 and “A DWT-based encoder-decoder network for Specularity

segmentation in colonoscopy images” published in Multimedia Tools and Applica-

tions.
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4.1. INTRODUCTION

This chapter addresses the problem of artifacts that cover a large propor-

tion of colonoscopy video data. As inappropriate video recordings could

lead to an insufficient number of keyframes and need manual interven-

tions, we propose two automated solutions to deal with such cases. In the

first solution, we propose an adversarial network based framework to con-

vert uninformative frames to clinically relevant frames. We examine the

effectiveness of the proposed approach by evaluating the translated frames

for polyp detection using YOLOv5. Preliminary results present improved

detection performance along with elegant qualitative outcomes. We also ex-

amine the failure cases to determine the directions for the research commu-

nity in the related domain. In the second solution, we perform specularity

segmentation, which is a crucial pre-processing step for efficient computa-

tional diagnosis. The presence of these specular highlights could mislead the

detectors that are intended to identify biomarkers precisely. Conventional

methods adopted so far do not provide satisfactory results, especially in the

overexposed regions. In this chapter, we propose a novel deep learning based

approach that performs segmentation following a multi-resolution analysis.

This is achieved by introducing DWT into the proposed model. We replace

the standard pooling layers with DWTs, which helps preserve information

and circumvent the effect of overexposed regions. All analytical experi-

ments are performed using a publicly available benchmark dataset, and an

F1-score (%) of 83.10 ± 0.14 is obtained on the test set. The experimental

results show that this technique outperforms state-of-the-art methods and

performs significantly better in overexposed regions.

4.1 Introduction

In the existing works, the well-trained models intended for polyp detection, segmentation,

and classification still report limited diagnostic success. This limited success of automated

methods is attributed to low-quality frames in the video samples, which contain various arti-

facts, namely, ghost colors, low-illumination, motion blur, interlacing, and fecal depositions

(discussed in Chapter 1). Our keyframe selection approach deals with most such scenarios;

however, cases involving inadequate patient preparation and images with specular high-

lights need specific handling. As stated in the previous chapter (Section 3.4, Chapter 1),
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(a) (b)

Figure 4.1: Specular highlights in a colonoscopy image. (a) Original image, (b) Image representing
specular highlights in purple. Polyp is shown in green with some highlights on its surface. Red
frame shows specular reflections in overexposed regions.

inadequate patient preparation and low-quality video recordings due to unexpected events

might need manual intervention to perform keyframe selection. Such scenarios signify that

obtaining informative frames for appropriate diagnosis could be difficult at times. Like our

approach to keyframe selection, some other related fields of laparoscopy and endoscopy fol-

lowed keyframe selection [43] or performed super-resolution [124] to overcome similar issues,

but no work in the colonoscopy domain explored the idea of extracting obscured clinical

details from such low-quality uninformative video frames. Apart from the artifacts like

ghost colors, low-illumination, motion blur, interlacing, and fecal depositions, the problem

of specular highlights also needs to be addressed. Unlike other artifacts, specular highlights

could be present in small regions even in visually clear and non-blurred images. Therefore,

they are dealt with separately in this chapter. The basic details of other artifacts are al-

ready discussed in the previous chapter, while a concise overview of specular highlights is

presented in this section.

Specular reflections are the bright spots that give a highly contrasted appearance in

colonoscopy images. The watery shiny surface, also called mucosa, generates specular high-

lights when the colonoscope illuminates its surface in a perpendicular direction. These

highlights distort the pixel values and yield erroneous outcomes. An instance with high-

lights on polyp’s surface is shown in Fig. 4.1. Bernal et al. [10] illustrated the supporting

role of specularity detection while executing the polyp detection algorithms. Such high-

lights mislead detectors, thus becoming the source of errors. According to Sanchez et al.

[55], the presence of specular highlights could even lead to inaccurate polyp histology anal-

ysis. This could sometimes classify a non-adenomatous polyp as an adenomatous polyp,

leading to incorrect histological results. Moreover, the performance of deep learning based

cancer detectors majorly depends on the quality of data. That’s why the pre-processing of
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(a) (b) (c)

Figure 4.2: (a) Polyp with specular highlights, (b) Polyp (same as in (a)) without specular high-
lights, (c) Polyp’s textural patterns partially corrupted by specular reflections

colonoscopy images is the first and most important step before feeding them to automated

cancer detectors. Figure 4.1 presents an example with highlights in overexposed areas. In

Fig. 4.2 (a) and Fig. 4.2(b), difference can be noticed between a polyp with specular high-

tlights and the one without them. Fig. 4.2 (c) shows the obstruction caused by specular

highlights in clearly visualizing the polyp’s textural patterns. Considering the scenarios

above, it becomes imperative to detect specular highlights in order to aid computational

diagnostic methods. The related methods in the literature are dependent on thresholds and

handcrafted features. Such approaches are liable to failures, and the results obtained so far

are not satisfactory.

In this chapter, two solutions are presented:

• We investigate whether GANs can convert uninformative frames to informative

frames. In this direction, we propose a GAN-based image-to-image translation ap-

proach to generate informative frames from the degraded frames of the colonoscopy

videos.

• We propose a novel automated approach that aims at performing specularity segmen-

tation in colonoscopy images. This method could assist clinicians to get better-pre-

processed images and could lead to better performance of cancer detectors.

4.1.1 Contributions

The main contributions of this chapter are summarised below:

• Solution-1: Adversarial Network to translate uninformative colonoscopy

frames to clinically significant frames (Translation approach)

– To the best of our knowledge, this is the first framework to address the issue of

uninformative colonoscopy frames using adversarial networks.

66



4. ARTIFACTS REMOVAL

– We investigate the impact of translating uninformative frames on polyp detection

performance and discuss future directions in this context.

• Solution-2: DWT-based encoder-decoder network for segmentation of

specular highlights (Specularity segmentation approach)

– We propose a fully automated and efficient method to perform specularity seg-

mentation in colonoscopy images. To the best of our knowledge, this is the first

work that has explored deep learning architectures in this domain.

– Our method outperforms the state-of-the-art methods and has shown satisfactory

improvements over the limitations encountered in earlier works. These limita-

tions include the failure to perform precise specular reflection segmentation in

overexposed regions and inaccurate relative highlight pixel detection.

– The proposed approach combines hierarchical scale-based Wavelet Packet Trans-

form (WPT) with encoder-decoder architecture. This assists in extracting multi-

resolution-based features. Utilizing the concept of DWT in place of pooling layers

helps preserve image contextual and spatial information.

– Our work proposes a change in the standard low-frequency sub-band of DWT,

and this has shown significant improvement in segmentation results in overex-

posed areas. This improvement is supported by an ablation study for thorough

analysis.

4.2 Solution-1: Translation Approach

The overview of the proposed framework is shown in Fig. 4.3. Given the uninforma-

tive colonoscopy frames {ai}M
i=1 from domain A, the aim is to learn a mapping function

GAB : A → B to generate frames such that the data distribution of obtained frames is

indistinguishable from that of informative colonoscopy frames {bj}M ′
j=1 of domain B. Due to

the unavailability of paired data, our work is inspired by the unpaired translation approach

of CycleGAN [125]. Hence, another mapping function GBA : B → A is also introduced.

Our implementation involves ResNet-based generators and PatchGAN discriminators DA

and DB. The CycleGAN objective integrates adversarial loss and cycle-consistency loss.
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Figure 4.3: The proposed framework contains two generators GAB and GBA and two dis-
criminators DA and DB.

The adversarial loss can be expressed as:

Ladv(GAB, DB) = Eb∼pdata(b)[(DB(b) − 1)2]

+ Ea∼pdata(a)[(DB(GAB(a)))2]
(4.1)

GAB aims to translate uninformative frames such that they appear similar to the infor-

mative frames, while DB tries to distinguish the translated frames from the high-quality,

informative frames of domain B. In other words, DB is trained to minimize Ladv(GAB, DB)

and GAB is trained to minimize Ea∼pdata(a)[(DB(GAB(a)) − 1)2].

To ensure cycle-consistency and to reduce randomness in mapping, a cycle-consistency

loss is used, which is given by:

Lcyc(GAB, GBA) = Ea∼pdata(a)[∥GBA(GAB(a)) − a∥1]

+ Eb∼pdata(b)[∥GAB(GBA(b)) − b∥1]
(4.2)

An identity mapping loss is also added to help preserve color in translated images. With

this model, we intend to determine the clinically relevant details obscured by the artifacts.

Furthermore, we carried out the following investigations:

1. Polyp detection is performed using YOLOv5 [126] to determine the impact of GAN-

translated frames.

68



4. ARTIFACTS REMOVAL

SUN Database
Metrics Raw Frames Translated Frames

Precision (%) 92.03±0.60 93±0.87
Recall (%) 88.9±3.12 90.2±1.3

F1-score (%) 90.4±1.51 91.57±0.38
mAP@0.5 (%) 95.37±0.95 95.6±0.21

mAP@0.5:0.95 (%) 57.53±0.32 57.07±0.31

Table 4.1: Comparative analysis of polyp detection results

2. Qualitative analysis is done to identify the artifacts successfully handled by the Cy-

cleGAN and analyze the ones that still persist in the translated frames.

4.2.1 Experiments

Dataset and Training Details

To assess the effectiveness of the adversarial approach in mitigating the impact of arti-

facts, we conducted experiments using a publicly available SUN database [95] consisting of

1, 09, 554 non-polyp and 49, 136 polyp frames. In addition to the localization information,

the polyp frames are manually annotated by experts as informative or uninformative. We

used only the polyp frames with a patient-wise split. The translation is done on a Titan

Xp GPU at 14 frames per second.

Performance Evaluation

We report the results based on visual perception and consider feature space representation

by evaluating the polyp detection outcomes using YOLOv5. We conducted training and

testing in two scenarios using: a) Raw frames comprising both high and low-quality frames

and b) Translated frames along with high-quality frames. The results in Table 4.1 show that

the translated frames complement the detection ability of YOLOv5 in terms of precision,

recall, F1-score, and mAP@0.5. The detector correctly identified more polyps with lower

deviations, presenting a more robust model. However, this is achieved with slightly less pre-

cise bounding boxes, as indicated by a minor decrease in mAP@0.5:0.95. Fecal depositions,

ghost colors, and low-illumination are significantly reduced using CycleGAN, as shown in

Fig. 4.4. However, motion blur and interlacing are not handled adequately in the process.

This could be overcome by adopting blur removal approaches.
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(a)

(b)

Figure 4.4: Detection performance using: (a) Raw frames and (b) Translated frames. Green
bounding boxes denote the ground truth. Ticks and cross marks represent the successful
and unsuccessful artifacts translations, respectively.

4.3 Solution-2: Specularity Segmentation Approach

Fig. 4.5 provides an overall idea of the steps involved. Inspired by the competent perfor-

mance of U-Net[66] and other diverse sets of deep learning architectures based on it [127–

130], we adopted the encoder-decoder architecture of U-Net as the basic structure of our

proposed model. Further improvements have been incorporated to make it more suitable

for the experimental requirements related to our problem definition. The encoder takes the

blue channel of the given image as input and extracts the corresponding features. These

features are passed to the decoder that performs reconstruction and provides a binary image

with segmented specular highlights. A detailed explanation of the complete architecture,

with reasoning, is provided in the subsequent sections. A summary of the methodology

followed in our work has been depicted in Fig. 4.6.

While using deep learning models, the feature maps are generally progressively down-

sampled via max-pooling to attain a large valid receptive field. This is crucial to capture

enough information to make correct decisions, but this compromises image resolution. As

the resolution decreases with downsampling, information pertaining to small objects gets
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Figure 4.5: Flowchart depicting the steps followed in the proposed work

exhausted. Thus, the coarse features obtained from deep layers could miss small objects’

cues, which could be difficult to recover even by using skip connections [131]. As stated in

[55], most of the specular regions in colonoscopy images are confined to only a few pixels,

making these regions very small in size. To make such regions discernible and prevent dis-

tortion of spatial acuity, a specific method is required to increase the receptive field without

losing the resolution. Another problem to be considered is the presence of overexposed

regions in colonoscopy images. Overexposed regions have not been categorized as specu-

lar highlights by experts. They are not eligible as per the conditions [55] specified for a

region to be considered specular. However, these regions impose a negative impact on the

performance of specularity detection algorithms.

Considering the limitations of the conventional architecture and the requirements of

the specified problem, the proposed model is intended to preserve maximal information

during feature extraction. At the same time, it adopts a method to circumvent the ef-

fect of overexposed regions, up-to some extent. Our model replaces pooling layers with

multi-level Haar wavelet and hence, combines spectral analysis with CNNs. Moreover, the

frequency and localization properties of DWT help in extracting discriminative features in
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Figure 4.6: Summary of the methodology followed for the segmentation of specular highlights

the frequency domain, at hierarchical scale levels, while preserving image details.

4.3.1 Problem Definition

Given a colonoscopy image set Q, our motive is to assign each pixel of an image to a class

belonging to either specular regions or non-specular regions. We have Q = {Ii, Oi}mi=1,

where Ii represents original RGB images, and Oi = {o
(i)
j , j = 1, 2, ..., |Ii|, o

(i)
j ∈ {0, 1}}

denotes their corresponding ground truth results/masks. Every mask has each pixel labelled

as o
(i)
j = 1 for representing specular regions and o

(i)
j = 0 for representing non-specular

regions.

In [55], it is assumed that the diffuse component is likely to appear reddish in

colonoscopy images; thus, the specular component could be better observed in the blue

channel. Considering this observation, we have used blue channel Iblue
i of the corresponding

original image Ii as our model’s input. The aim is to train a pixel-wise classifier to learn

the following mapping function:

Ôi = Mwspec(Iblue
i ) (4.3)

where Mwspec represents our proposed model and Ôi is the segmented output.
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Figure 4.7: Detailed architecture of the proposed model. The model consists of DWTs and IDWTs
at each level of encoder and decoder, respectively.

4.3.2 Proposed Architecture

As shown in Fig. 4.7, the backbone architecture used is based on encoder-decoder structure,

and the inclusion of DWT is inspired by the model MWCNN [132]. As per the reason

mentioned in Section 4.3.1, the original images’ blue channel is provided as input to the

model. Our model has a total of 36 layers. Every individual CNN block comprises 4

convolutional layers, each with 3×3 filter size, followed by BN and ReLU. Among the 4

convolutional layers, the two perform the dilated convolutions [133] with a rate of 2. Though

DWT is expected to be effective in increasing the receptive field, introducing dilation in a

few convolutional layers in our model prevents the missing of small crowded specular regions.

Small objects in an image carry little signals, which could be lost in the later layers. For

accurate detection of such small regions, especially those present in the close grouping, the

most crucial factor to be considered is the context [134]. As most of the specular regions in

colonoscopy images are very small in size and are crowded as well, adopting dilation along

with DWT has shown better results.

On the encoder side, a DWT is placed as a link between two CNN blocks. The low-

frequency sub-band is first processed to subdue the effect of overexposed regions. The

related details are mentioned further in this section. After this processing, all the sub-

bands are taken as input to the next CNN block. According to Li et al. [127], the sub-

bands obtained after DWT are dependent, and this dependency should not be ignored for

the purpose of attaining adequate restoration results. After applying DWT, the number of
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feature maps increases, and the immediate next convolutional layer reduces these feature

maps to provide a compact representation of features to the subsequent layers. On the

decoder side, IDWT is deployed between two consecutive CNN blocks. The feature maps

obtained after applying DWT are directly concatenated with the IDWT output presented

one level below in the expanding sub-network, using skip connections. The last convolution

performed is not followed by BN or ReLU.

In 2D DWT, a given image Iblue
i is decomposed into four sub-band images, namely,

low-low (ill), high-low (ihl), low-high (ilh) and high-high (ihh). For brevity and clarity,

Iblue
i is replaced with a Greek i at some places. The decomposition process is illustrated

in Fig. 4.6. The low-frequency component, ill, also known as approximation coefficients,

contains the average information of Iblue
i and other high-frequency components or the detail

coefficients, ihl, ilh and ihh constitute the edge details, thus provide a refined image. This

DWT procedure could be considered as a convolution operation between the image i and

four filters fll, fhl, flh and fhh, which is followed by downsampling. This can be represented

by the given equation:

i(k)
s = (i ⊗ fs) ↓2 (4.4)

where s ∈ {ll, hl, lh, hh}. This process is similar to the pooling operation up to some

extent. The downside of pooling lies in the information loss encountered during down-

sampling, which negatively affects the reconstruction process. In the case of DWT, even

though downsampling is performed, the biorthogonal property of DWT makes it possible

to accurately reconstruct the image by using inverse discrete wavelet transform (IDWT) as:

i = IDWT (ill, ihl, ilh, ihh) (4.5)

During reconstruction, upsampling is performed over the four sub-bands, and then the

corresponding filters are deployed for convolution on the upsampled output. This provides

us with a segmented image of the same spatial size as that of the input image.

The above-mentioned procedure could be extended to multi-level WPT. For this, the

previously obtained sub-bands are further decomposed using DWT. In case of two-level

WPT, each of the four sub-bands obtained in the first-level is decomposed into another four

sub-bands. This process could be carried out recursively in a similar manner to get higher

levels of WPT.

The 2D DWT used in the proposed model is specifically focused on the Haar wavelet

due to its simplicity and satisfactory speed performance. The four filters used in Haar
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Wavelet can be defined as:

fll =

1 1

1 1

 , fhl =

−1 1

−1 1

 ,

flh =

−1 −1

1 1

 , fhh =

 1 −1

−1 1


(4.6)

Low-frequency and high-frequency sub-bands of an image Iblue
i can be obtained by convolv-

ing the above filters with it. (p′, q′)th value of low-frequency component ill can be computed

as:

ill(p′, q′) = i(2p′ − 1, 2q′ − 1) + i(2p′ − 1, 2q′)+

i(2p′, 2q′ − 1) + i(2p′, 2q′)
(4.7)

The ill sub-band contains the main base information. When applied to a given image,

the low-pass filter, fll, determines the averages of pairs of nearby values; hence, smooth

variations in the image are portrayed by the approximation coefficients present in ill. Over-

exposed regions are also visible in the same sub-band. To overcome these regions, each

value in the component, ill, is squared, as shown in Eq. 4.8. Squaring each coefficient in

this component almost maintains the relationship among pixels with similar values, but at

the same time, it increases the difference among dissimilar nearby pixels. Due to this, the

specular highlights show a greater difference relative to the overexposed regions. The result

of this processing is shown in Fig. 4.8

îll = ill .× ill (4.8)

where .× is the element-wise multiplication. Similar to Eq. 4.7, high-frequency components

ihl, ilh and ihh, can also be computed. These components are comprised of sharp variations,

and as a result, abrupt intensity changes on borders of specular highlights are easily captured

by these sub-bands. For integrating all the sub-bands in the proposed model, they are

concatenated as depicted by Eq. 4.9. This concatenated output is made to proceed to

subsequent layers.

isub_cat = îll ⊕ ihl ⊕ ilh ⊕ ihh (4.9)

Although DWT helps in the expansion of the receptive field, the small-sized, crowded

specular regions are liable to vanish in the subsequent layers. According to Zhou et al.
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Figure 4.8: Suppressed overexposed regions obtained by squaring the Low-frequency sub-band
coefficients

[135], the receptive field’s true size is much smaller than the theoretical size, mainly in the

last layers. To solve this problem, Yu and Koltun [133] proposed dilated convolutions using

which the receptive field increases exponentially while the number of parameters follows a

linear growth.

When compared to the conventional encoder-decoder structure, the proposed model

replaces the pooling layers in the encoder part with DWTs. Accordingly, the transposed

convolutions in the decoder part are replaced with IDWTs, ensuring accurate image recon-

struction. Each level of transform is followed by CNN blocks. Every CNN block gets all

the sub-bands together as input, which helps in maintaining inter-sub-band dependency.

Moreover, DWT’s frequency and localization properties are supposed to preserve textural

and structural details, which is another advantage over the usual pooling layers. Another

important benefit of using DWT in our model is its ability to handle overexposed regions

in images. Many research studies have explored the role of DWT in image domain in the

context of correcting overexposed areas as well as in other image enhancement-related tasks

[136, 137]. In this work, we experimented with DWT in deep learning models to investigate

the impact of Eq. 4.8 in overexposed regions. The obtained results provide improved spec-

ular detection performance in such areas. The evidence of the same is provided in Section

4.3.4 (Fig. 4.12, Table 4.4).

In our work, DWT has been embedded into the model to preserve specularity-relevant

contextual and spatial information. The low and high-frequency sub-bands together form

the same frequency content as that of the input colonoscopy images. In the decomposition
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process, DWT also helps to increase the data, similar to data augmentation, which enhances

the training process. Besides this, DWT can increase the receptive field of CNNs, hence

making it easier to detect small specular highlights. The dilated filtering and pooling

operations could be interpreted as closely related to DWT [132]. A general average pooling

operation with a factor of 2 on an image Iblue
i is defined as:

ipooling(p′, q′) = i(2p′ − 1, 2q − 1) + i(2p′ − 1, 2q′) + i(2p′, 2q′ − 1) + i(2p′, 2q′)
4 (4.10)

which is similar to Eq. 4.4 except a fixed constant 1/4. This implies that decomposing

images into sub-bands using DWT is related to dilated filtering.

4.3.3 Loss Function and Evaluation Metrics

Let {Ii, Oi}T N
i=1 ⊂ Q be the training input-target pairs, where TN is the number of training

samples used. on ∈ Oi is associated with ground truth pixel labels representing the two

classes and has value in {0,1}. The predicted probabilities of the two classes can be rep-

resented by pn ∈ [0, 1]. The loss function used is a weighted sum of Dice Loss (DL) and

BCE loss with logits. Reasons for using these loss functions include wide use of BCE in

binary segmentation problems and superior performance shown by DL in case of imbalanced

datasets, similar to what we are dealing with. In our dataset, the pixels of non-specular

regions are much higher than those of specular regions. To tackle this issue, dice loss is

used, as can be described by the given equation:

DL = 1 − 2
∑

n pnon + γ′∑
n pn +

∑
n on + γ′ (4.11)

where γ′ is a factor added for smoothing purposes and is initialized as γ′ = 1.0

We have used three metrics for comparing our segmentation results with state-of-the-

art methods. These metrics are precision, recall, and F1-score. As the negative samples

in our case are much higher than the positive samples, using accuracy as the metric is

inappropriate. Precision computes the number of true positives out of the samples predicted

as positive; hence, a high number of negative samples does not affect the precision results.

High precision leads to high performance towards accurate highlight detection. On the

other hand, recall accounts for the number of positive samples predicted correctly out of

the total positive samples presented by the ground truth. In this way, missed positive pixels

are indicated. A high recall rate ensures the detection of more specular pixels. F1-score

captures both precision and recall values and combines them into a single score.
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4.3.4 Experiments and Results

Dataset and Training Details

The proposed model is evaluated on a publicly available dataset, CVC-ClinicSpec [55]. It

contains 612 annotated specular highlight images related to colonoscopy. The ground truth

of each image is labelled manually by experts. 57.43% of the specular regions are quite

small, and their size ranges from 1 to 10 pixels. Only 3.70% of the specular regions are

more than 100 pixels in size and can be considered large-sized specular highlights. To train

our model, a training set of 367 images is constructed from the available 612 images of the

CVC-ClinicSpec Dataset. From the remaining images, 123 are used as the Validation set,

and 122 images are reserved for testing. The model is fed with resized images of size 272

× 272. During processing, the proposed model uses only the blue channel of the original

images. Implementation and experiments are performed using Pytorch 1.4.0. Training is

carried out on TITAN Xp GPU. We have used the SGD optimizer with momentum set

to 0.9 in combination with the ReduceLRonPlateau scheduler. The batch size used is 10,

and our model converges after 60 epochs. The model is initialized with a learning rate of

0.1 which is decayed by the scheduler in case the validation loss increases for 4 consecutive

epochs.

Ablation Study

To study the role of different architecture segments, we have performed an ablation study

by introducing them gradually with each new step. The results can be visualized in the

graph shown in Fig. 4.9.

1) Encoder-Decoder + DWT in original form & IDWT: First, we considered the basic

encoder-decoder architecture. It consists of DWT instead of pooling layers and IDWT

instead of the usual upsampling or transposed convolutions. Initially, the low-frequency

components are considered in their original form without squaring them. The F1-score

obtained in this case is 82.17%.

2) Encoder-Decoder + DWT with îll & IDWT: To test the effect of the changes made

in the low-frequency components of DWT, we further replaced the normal DWT functions

with the updated DWT as defined in Section 4.3.2. This modification raised the F1-score

by 0.59% and recall by 1.01%.

3) Encoder-Decoder + DWT with îll & IDWT + 2 dilated convolutions: To analyze

the performance of dilation in our model, we changed two of the standard convolutions to
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Figure 4.9: Ablation study related to the proposed model on the basis of precision, recall and
F1-score

Table 4.2: Comparison with State-of-the-art methods

Method Precision (%) Recall (%) F1-score(%)

BSSC [55] 72.33 78.89 75.47
RPCA [53] 34.38 - -
Proposed 88.23 ± 0.58 78.53 ± 0.68 83.10 ± 0.14

dilated convolution with rate 2. This improved the F1-score further by 0.34% and precision

by 0.74%.

Comparison with State-of-the-Art Methods

Comparative results of specularity segmentation are presented in Table 4.2. The results are

based on the pixel-wise analysis, which takes into account the number of pixels correctly or

wrongly detected by the algorithm. The segmentation results indicate that our proposed

method has outperformed the state-of-the-art results in terms of F1-score and precision.

The recall results obtained are also comparable. The methods considered for comparison

are those which have particularly focused on colonoscopy images. This ensures that the

analysis is done on the images acquired in similar environmental conditions and problems

encountered by all the methods are also identical.

Sanchez et al. [55] discussed the impact of overexposed regions on the specularity seg-

mentation algorithms. To analyze this impact, they excluded the images with overexposed

regions and performed a validation experiment. Their results showed an improvement of
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(a) Original (b) BSSC[55] (c) Proposed

Figure 4.10: Comparison of the proposed method with BSSC [55]: True positive pixels, false
positive pixels and false negative pixels are represented in green, blue and red color, respectively

8.30% in precision, 2.14% in recall, and 5.36% in F1-score. This clearly indicates the neg-

ative impact that overexposed regions impose on the correctness of segmentation results.

Considering such high increase in precision, it can be inferred that their method experienced

difficulty in detecting specular highlights which are present within the overexposed regions.

This makes the images more susceptible to false positives, as can be seen in Fig. 4.10 (b).

Li et al. [53] considered two divisions of highlight pixels: absolute and relative. Their

work has mainly focused on detecting absolute pixels, while the latter, being more com-

plicated to detect, are not appropriately handled. It has not strictly followed the ground

truth of the CVC-ClinicSpec database, prepared by the experts. Contrary to the available

ground truths, the overexposed areas are also included in the category of highlights and are

segmented by their algorithm.

In our proposed method, we have considered the fact that computational diagnosis

procedures in the colonoscopy domain rely on texture and color features, as stated in [138,

139]. More false positives due to overexposed areas can lead to loss of texture and color-

related information. By dealing with such areas, false positives could be reduced during

specularity detection. Later, these overexposed regions could be processed with some en-

hancement techniques to obtain informative features. The comparison shown in Fig. 4.10

indicates better performance of our model in the overexposed regions as it fetches less false

positive pixels compared to BSSC.

Comparative Study with Some Deep Learning Models

The proposed work has not directly adopted the conventional encoder-decoder architecture

but has made appropriate changes to the architecture according to the aforementioned

objectives. To analyze our model’s performance with respect to some other deep learning

models which are commonly used in other domains related to semantic segmentation, we
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Table 4.3: Comparative results with other deep learning models. The mean values of the
experimental results along with the standard deviation are reported

Method Precision (%) Recall (%) F1-score (%)

DeeplabV3+
[140]

73.48 ± 4.7 69.24 ± 3.13 71.28 ± 3.77

U-Net [66] 88.25 ± 1.32 76.58 ± 1.5 81.99 ± 0.92
Proposed 88.23 ± 0.58 78.53 ± 0.68 83.10 ± 0.14

have done some comparative study, which is presented below.

Models’ Details and Training Settings

To compare the performance of our model with other models, we have considered two dif-

ferent architectures. The first one is U-Net, and the other one is DeepLabV3+ [140]. The

motive behind choosing U-Net is mentioned in Section 4.3. The same can be justified for

DeepLabV3+ by considering its adequate performance in semantic segmentation [141, 142]

and its ability to extract features at arbitrary resolutions using atrous separable convolu-

tions. In DeepLabV3+, Modified Aligned Xception is used as the backbone. To maintain

uniformity and based on some prior experiments with the dataset, we have used the same

hyper-parameters values as mentioned in Section 4.3.4. Both models are provided directly

with the original images. As per the model’s architecture and the paddings used, the input

images are resized to 280 × 280 for both U-Net and DeepLabV3+.

Experimental Results

As shown in Table 4.3, our model has outperformed other chosen deep learning models in

terms of precision, recall, and F1-score. The heatmaps shown in Fig. 4.11 provide an idea

about the segmentation performance of different models. As observed from the respective

images, DeepLabV3+ has performed better in some overexposed areas as compared to U-

Net, but at the same time, it has missed some small specular regions. Few closely grouped

areas are over-segmented and are merged into one region, ignoring their distinct boundaries.

Considering the heatmaps associated with U-Net, it can be noticed that though more small

highlights are detected, there are many false positives encountered in overexposed regions.

The proposed model is observed to perform better than both the models.
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(a)

(b)

(c)

(d)

(e)

Figure 4.11: Heatmaps associated with segmentation results obtained from different deep learning
models. (a) Original images; (b) Ground Truth; (c) DeepLabV3+[140]; (d) U-Net[66] and; (e) Our
method

Analysis of Overexposed Regions

We considered some image patches affected by overexposure to study each model’s potential

in dealing with specular detection in such regions. We selected 19 images from the Test

set and divided them into 6 equal-sized patches of 128 × 144. From the obtained patches,

23 patches are selected, which contain specular highlights within overexposed regions. The
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Figure 4.12: Performance of some deep learning models in overexposed regions

Table 4.4: Results in Overexposed regions

Method Precision (%) Recall (%) F1-score (%)

DeeplabV3+ [140] 62.02 42.58 50.49
U-Net [66] 53.98 76.54 63.31
Proposed 76.64 72.31 74.41

segmented outputs of these patches are pixel-wise compared, and the corresponding preci-

sion, recall, and F1-score are noted. It can be observed from Table 4.4 that our model is

more precise as compared to the other two models and hence reports fewer false positives.

U-Net has achieved more recall rates, but its low precision rate indicates more false posi-

tives. DeepLabV3+ has attained the least recall value, but it has shown better performance

in terms of precision and can be considered to be efficient in reducing false positives when

compared to U-Net. The same can be seen in the heatmaps shown in Fig. 4.12.

Table 4.5: Histogram-based comparison with U-Net

Method Overall Overexposed regions
Chi-square Hellinger Chi-square Hellinger

U-Net [66] 0.0036 0.0232 0.2026 0.0666
Proposed 0.0019 0.0213 0.0280 0.0442

Evaluating Statistical Significance

As U-Net performed far better than DeeplabV3+, we performed a statistical comparison

between U-Net and the proposed model to understand the results better. We generated

heatmaps, each for the ground truth and the segmented results obtained from our proposed

model and U-Net. For each heatmap, a corresponding histogram is plotted, based on which
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Figure 4.13: Comparative distribution of the number of images within the specified range of Chi-
square values obtained from histogram comparison

statistical comparison is carried out. This involves matching the histogram of the ground

truth heatmap with that of the U-Net’s and the proposed model’s corresponding heatmap.

Chi-square (χ) distance and Hellinger (HG) distance are the two metrics adopted to express

the matching of two histograms in terms of numerical values. Let h1 and h2 be the two

histograms to be compared. χ and HG can be computed as:

χ(h1, h2) =
∑

I

(h1(I) − h2(I))2

h1(I) (4.12)

HG(h1, h2) =
√√√√1 − 1√

h̄1h̄2b′2

∑
I

√
h1(I)h2(I) (4.13)

where h̄j = 1
b′

∑
J ′ hj(J ′) and b′ is the number of histogram bins. Low values of the specified

metrics indicate a better match of the two histograms. Table 4.5 is comprised of related

numerical values obtained after computing the average over all the test set images. The

reported results illustrate the statistically better performance of our model over U-Net.

To compare the image distribution with these outcomes, we divided the χ values into

three ranges. Figure 4.13 shows that 78.69% of the images significantly match with their

corresponding ground truths and attain a χ distance of less than 0.005. In the case of

U-Net, the results are inferior to that of ours, with only 70.49% test images assigned within

the range of 0.005. Further, the proposed model achieved better results, with 99.18% of

the images reporting a χ distance of less than 0.05. Similarly, we compared histograms

of different patches obtained during the analysis of the overexposed regions. The results

84



4. ARTIFACTS REMOVAL

achieved by the proposed method are observed to be statistically more significant, with

smaller χ as well as HG distance.

4.4 Chapter Summary

In this chapter, we proposed a GAN-based framework to translate uninformative

colonoscopy frames into clinically significant frames. We showed that the translated

frames improve polyp detection F1-score and mAP@0.5, with negligible reduction in

mAP@0.5:0.95. We analyzed the types of artifacts where the CycleGAN performed well

and identified the scope of improvements. Since the artifacts in colonoscopy video frames

alter the various aspects of images, such as structure, texture, and color, this work lays the

foundation for a more interesting future work of developing a standalone model to address

all the artifacts in one go.

We also proposed a deep learning model to segment specular highlights in colonoscopy

images. Our model integrates spectral information with CNNs and helps in extracting fea-

tures at multi-resolution. The proposed method has adopted encoder-decoder architecture.

Further, we have introduced DWTs and IDWTs instead of max-pooling and upsampling op-

erations, respectively. This prevents loss of contextual and spatial information and assists

in accurate segmented image reconstruction. We have modified the low-frequency sub-band

obtained from DWT to lower the impact of overexposed regions. This improves specularity

detection in those areas which suffer from overexposure due to illumination conditions. Our

method has shown satisfactory results and has improved detection performance in overex-

posed regions, but there is a scope for improvement at the specular regions’ boundaries.

The boundaries could be more crisply segmented to reduce false positives. Analysis done

in the overexposed regions indicates that there are some undetected highlights which have

affected the recall rate.

;;=8=<<

85





5
Case Study and Dataset Design

Chapter Highlights

• The existing polyp segmentation (a task carried out after pre-processing of

colonoscopy frames) literature lacks accurate algorithm comparisons due to incon-

sistent test data and closed source code.

• We demonstrate that for the reproducibility of different algorithms, we need an open-

access dataset that covers a wide range of medical conditions.

• We present a case study that analyzes different algorithms developed on the same

dataset and submitted to two challenges in the year 2020 and 2021.

• The case study highlights the advancements in polyp segmentation and encourages

qualitative evaluation for building more transparent AI-based colonoscopy systems.

• We also curated and designed an open-access GI multi-class dataset acquired from

two centers. It includes cases from pathological and normal findings, anatomical

landmarks, and polyp removal.

• This chapter is based on the publications “Validating Polyp and Instrument Segmen-

tation Methods in Colonoscopy Through Medico 2020 and MedAI 2021 Challenges”,

accepted for publication in Medical Image Analysis and “GastroVision: A Multi-class

Endoscopy Image Dataset for Computer Aided Gastrointestinal Disease Detection”,

presented at ICML (ML4MHD) 2023.
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This chapter studies the shortcomings of the existing polyp segmenta-

tion approaches and provides a detailed analysis of the related solutions.

The segmentation is ideally performed over the keyframes after they are

pre-processed for artifacts removal. Most existing polyp segmentation al-

gorithms are developed using inconsistent dataset splits or private data,

closed source or proprietary software, and methods that lack reproducibil-

ity. Therefore, to promote the development of efficient and transparent

methods, we presented a case study on two challenges, namely, “Medico

Automatic Polyp Segmentation (Medico 2020)” and “MedAI: Transparency

in Medical Image Segmentation (MedAI 2021)” competitions. The Medico

2020 challenge received submissions from 17 teams, while the MedAI 2021

challenge also gathered submissions from another 17 distinct teams in the

following year. We present a comprehensive summary and analyze each

contribution, highlight the strength of the best-performing methods, and dis-

cuss the possibility of clinical translations of such methods. Our analysis

revealed that the participants improved dice coefficient metrics from 0.8607

in 2020 to 0.8993 in 2021 despite adding diverse and challenging frames

frequently missed during a routine clinical examination. The best team ob-

tained a final transparency score of 21 out of 25. Moreover, this case study

highlights the need for datasets that can cover a range of medical conditions

and are easily accessible to the research community for better comparative

analysis and reproducibility. However, the medical domain encounters a

scarcity of large-scale, precisely labeled, and diverse datasets. This scarcity

is attributed to the legal restrictions and extensive manual efforts required

for accurate annotations from clinicians. To address these challenges, in

this chapter, we further present GastroVision, a multi-class open-access

Gastrointestinal (GI) endoscopy dataset that includes different anatomi-

cal landmarks, pathological abnormalities, polyp removal cases and normal

findings (a total of 27 classes) from the GI tract. The dataset comprises

8,000 images acquired from Bærum Hospital in Norway and Karolinska

University Hospital in Sweden and was annotated and verified by experi-

enced GI endoscopists. Furthermore, we validate the significance of our

dataset with extensive benchmarking based on the popular deep learning

based baseline models. We believe our dataset can facilitate the develop-
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ment of AI-based algorithms for GI disease detection and classification.

Our dataset is available at https: // osf. io/ 84e7f/ .

5.1 Introduction

With the advent of deep learning, several solutions for polyp detection, segmentation, and

classification have been proposed. These are the tasks that a CAD system performs to pre-

dict the diagnostic outcomes. The sequence of tasks undertaken by an ideal CAD system

(discussed in Section 2.3) follows polyp detection, segmentation, and classification after per-

forming keyframe selection and artifacts removal (discussed in the previous two chapters).

Among these tasks, the most common and well-explored is the polyp segmentation. Despite

numerous existing works, generating a comparative analysis of all these methods is difficult

to achieve as they are not directly comparable. Some of the reasons for such an issue include

inconsistent dataset split, use of private datasets, and closed sources, making reproducibil-

ity difficult. Moreover, most methods lack the interpretability and transparency required

to understand the predictions made by the model. Therefore, we present a comprehen-

sive analysis of the results of the two prominent challenges in the field of automatic polyp

segmentation, namely, “Medico Automatic Polyp Segmentation (Medico 2020)” 1 challenge

and the “MedAI: Transparency in Medical Image Segmentation (MedAI 2021)” 2 challenge.

These challenges were designed to foster the development of CAD solutions on the same

datasets, with a focus on transparency, explainability, robustness, speed, and generalization,

aiming to evaluate the relevance of such algorithms in clinical workflows. The challenges

provided posed four distinct tasks:

• Accurate polyp segmentation task to develop state-of-the-art algorithms for early

detection and treatment of colon cancer (Medico 2020, MedAI 2021).

• Algorithm efficiency task to develop methods with the least Frames Per Second (FPS)

on predetermined hardware (Medico 2020).

• Surgical instrument segmentation task to enable tracking and localization of essential

tools in endoscopy and help to improve targeted biopsies and surgeries in complex GI

tract organs (MedAI 2021).

1https://multimediaeval.github.io/editions/2020/tasks/medico/
2https://www.nora.ai/competition/image-segmentation.html
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• Transparency task to evaluate the proposed system from a transparency point of view

(for example, explanations of the training procedure, amount of data used and model’s

predictions interpretation) (MedAI 2021).

There are several other challenges conducted in the past such as GIANA 2017 [143],

GIANA 2018 [122, 123], EndoCV 2021 [94, 144], and Medico 2021 [145]. These challenges

motivate to have such platforms to develop state-of-the-art algorithms for critical medical

issues. However, dataset availability is an important aspect of successfully organising these

challenges. To design a system with accurate comparison and to provide the research

community with the possibility of reproducibility, it is necessary to make medical data

easily accessible. This allows researchers to contribute in the area and assess their work

with respect to state-of-the-art techniques on comparable grounds. Although our case study

is based on a single class (particularly polyp) and provides opportunity for reproducibility

and transparency, it would be more beneficial from both research and clinical perspective

if we could extend this practice to multi-class problems. As already discussed in Section

2.3.6, the currently available endoscopy datasets mainly focus on a single lesion, i.e., polyps.

Moreover, some of these datasets are available on request and cover a few pathological

classes. Therefore, our case study is followed by curating and designing of a multi-class GI

dataset. Some more facts supporting the purpose of developing this dataset are discussed

below.

• Most existing AI models depend on data acquired from a single center, which makes

them less valid when faced with a varied patient population. This leads to spectrum

bias under which AI systems encounter performance drops due to the significant shift

in the original clinical context and the test sample population. In such cases, unex-

pected outcomes and diagnostic accuracy could be obtained using automated tools.

Such bias issues could reach the clinical systems at any point of the process, including

data collection, study design, data entry and pre-processing, algorithm design, and

implementation. The very beginning of the process, i.e., data collection, is of utmost

importance for reproducibility and to perform validations on images from a diverse

population, different centers, and imaging modalities.

• To develop scalable healthcare systems, it is vital to consider performing real-time

validations. However, the scarcity of comprehensive data covering a range of real-

time imaging scenarios arising during endoscopy or colonoscopy makes it difficult

to develop a robust AI-based model. Although much progress has been made on

90



5. CASE STUDY AND DATASET DESIGN

automated cancer detection and classification [17, 62], it is still challenging to adapt

such models into real-time clinical settings as they are tested on small-sized datasets

with limited classes.

Some classes in the dataset could be scarce because some conditions or diseases occur

less often. Consequently, such findings are not frequently captured and remain unexplored

despite requiring medical attention. AI-based detection of these findings, even with a small

sample count, can significantly benefit from techniques like one-shot or few-shot learning.

These techniques allow the AI models to learn patterns and features indicative of the con-

dition, thus, enabling accurate diagnosis with minimal training data. Therefore, in this

chapter, we publish GastroVision, an open-access multi-class endoscopy image dataset for

automated GI disease detection that does not require prior consenting and can be down-

loaded easily with a single click. The data covers a wide range of classes that can allow

initial exploration of many anatomical landmarks and pathological findings.

5.1.1 Contributions

The main contributions of this chapter are summarized below:

• Case Study

– We present a comprehensive and detailed analysis of all participant results.

– We provide an overview and comparative analysis of the developed methods.

– We obtain and discuss new insights into the current state of AI in the field of GI

endoscopy including open challenges and future directions.

– We provide a detailed discussion of issues such as generalizability issues, multi-

center and out-of-distribution testing in context to current limitations of CAD

systems.

• Dataset Curation and Design

– We present an open-access multi-class GI endoscopy dataset, namely, Gastro-

vision, containing 8,000 images with 27 classes from two hospitals in Norway

and Sweden. The dataset exhibits a diverse range of classes, including anatomi-

cal landmarks, pathological findings, polyp removal cases and normal or regular

findings. It covers a wide range of clinical scenarios encountered in endoscopic

procedures.
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– We evaluated a series of deep learning baseline models on standard evaluation

metrics using our proposed dataset. With this baseline, we invite the research

community to improve our results and develop novel GI endoscopy solutions on

our comprehensive set of GI finding classes. Additionally, we encourage com-

puter vision and machine learning researchers to validate their methods on our

open-access data for a fair comparison. This can aid in developing state-of-the-

art solutions and automated systems for GI disease detection and other general

machine learning classification tasks.

These contributions are explained in detail in the subsequent sections. Section 5.2

delves into the case study, while Section 5.3 provides a detailed description of the dataset.

5.2 Case Study

5.2.1 Challenge Description

Medico 2020 Automatic Polyp Segmentation Challenge

Medico 2020 Automatic Polyp Segmentation Challenge, hosted through MediaEval platform

(Multimedia Evaluation Workshop), is aimed at benchmarking automated polyp segmenta-

tion algorithms. The participating teams involving researchers from medical image analysis,

multimedia, machine learning, and computer vision were provided with the same dataset.

Participants could use any method, focusing on creating automated solutions. The sub-

missions were open for two tasks, namely, automatic polyp segmentation and algorithmic

efficiency tasks.

Automatic Polyp Segmentation Task: This task was based on developing inno-

vative and efficient polyp segmentation algorithms which at the same time, were expected

to be fast enough for clinical deployments. To participate in the challenge, participants

were required to train their segmentation models on an available training set. Once the test

set was released, participants could test their models and submit their predicted segmen-

tation maps to the organizers in a .zip file with the name of each segmentation map image

matching the colonoscopy image in the test set.

Algorithmic Efficiency Task: CAD systems deployed in clinical settings need to

operate in real-time; however, such systems often have fewer parameters and lower accuracy

than computationally intensive algorithms. To address this trade-off, we encouraged the

teams to propose a solution that is lightweight but also prioritizes segmentation accuracy.
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Figure 5.1: The overview of the “Medico 2020 Polyp” and “MedAI 2021 Transparency
” challenges. We describe each task along with the number of training and testing datasets
and the evaluation metrics used in the tasks.

Participants were asked to submit docker images of their proposed algorithms. These al-

gorithms were then evaluated on a dedicated Nvidia GeForce GTX1080 graphics card. A

threshold for mIoU was set for the validity of an algorithm’s efficiency. After this validation

check, the teams were ranked based on the FPS.

MedAI: Transparency in Medical Image Segmentation Challenge

MedAI: Transparency in Medical Image Segmentation Challenge was held at the Nordic AI

Meet 2021 (Nordic Young Researchers Symposium). It focused on segmentation tasks and

transparency in machine learning based solutions. The two segmentation tasks included

polyp segmentation and instrument segmentation. Similar to the other challenge, partic-

ipants were granted the flexibility to use any method, focusing on developing automated

solutions.

Automatic Polyp Segmentation Task: The main objective of this task was similar
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to that of the first task of the previous competition. The participants were asked to submit

a .zip file with predicted binary masks in a .png format. The test data provided to the

participants was without a ground truth. Hence, with such hidden test data, the results

were reliable and provided a valuable benchmark for the field.

Automatic Instrument Segmentation Task: This task also focused on segmenta-

tion, but the ROIs considered here are the GI accessory instruments such as biopsy forceps

or polyp snares used during live endoscopy procedures. Performing segmentation of these

instruments helps with the tracking and localization of essential tools in endoscopy that

could aid endoscopists during interventions (such as polypectomies). The submission and

evaluation procedure was the same as that of the previous task.

Transparency Task: This task is targeted to assess the submissions from a trans-

parency perspective. It included evaluation on the basis of the interpretation of the model’s

predictions and the use of explainable AI methods. To achieve this goal, the participants

were encouraged to perform ablation studies and share their code on the GitHub repository

with detailed procedures on how to reproduce the results. Additionally, the teams were

asked to provide a one-page document with explanations related to their transparency task

outcomes.

Figure 5.1 provides an overview of both challenges along with the total number of

images used for training and testing in each task. Ground truth samples with their cor-

responding original images are also presented for the segmentation tasks. In addition,

task-specific metrics are presented (for example, FPS for “Algorithm efficiency”).

5.2.2 Challenge Datasets and Methods

Challenge Datasets

The datasets contain 1,000 polyp images and their corresponding ground truth mask taken

from Kvasir-SEG [9]. The datasets were acquired from real routine clinical examinations at

Vestre Viken Health Trust (VV) in Norway by a team of expert gastroenterologists. The

resolution of images varies from 332 × 487 to 1920 × 1072 pixels. Some images contain

green thumbnails in the lower-left corner of the images showing the position marking from

the ScopeGuide (Olympus). To extend the dataset to the segmentation class, a team of

experienced engineers and expert gastroenterologists annotated the polyp images using the

label box tool. Once the ground truth was created, the images and ground truths were

combined to facilitate the review process. These images were sent to a team of expert

gastroenterologists for validation through a web-based interface. The data proportion for
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(a) Examples samples from the test data of Medico 2020 (first three columns) and MedAI 2021 (last
three columns) for the polyp segmentation task.

(b) Example samples from the MedAI 2021 Instrument segmentation task.

Figure 5.2: Example of the test datasets from the Medico 2020 and MedAI 2021 datasets.

each training and test set followed the general split ratio used in the literature. The training

dataset has been made publicly available as open access and is widely available3. This

dataset was used as a training set in both challenges. The other dataset details pertaining

to individual challenges are given below:

Medico 2020: The test dataset contains unique polyp images encompassing a wide

range of diverse clinical scenarios with different polyp characteristics, varying lighting con-

ditions and image resolution, low-quality images, as well as complex polyp images (for

example, with instruments and residual stool) that the model has never encountered be-

fore. Only the organizers had access to the test case labels. Currently, the test data can be

downloaded from4. Some samples are shown in Figure 5.2a.

MedAI 2021: The Kvasir-SEG [9] dataset was used as the development set for the

polyp segmentation task. Similarly, Kvasir-Instrument [146] was used as the training dataset

for the instrument segmentation task. It can be downloaded from5. Some sample images

for polyp segmentation and instrument segmentation tasks are presented in Figure 5.2a and

Figure 5.2b.

3https://datasets.simula.no/kvasir-seg/
4https://drive.google.com/file/d/1uP2W2g0iCCS3T6Cf7TPmNdSX4gayOrv2
5https://datasets.simula.no/kvasir-instrument/
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(a) Train and test sample proportion for
Medico 2020 and MedAI 2021

(b) Train data (Medico 2020 and MedAI
2021 Task 1)

(c) Test data (Medico 2020) (d) Test data (MedAI 2021 Task 1)

(e) Train data (MedAI 2021 Task 2) (f) Test data (MedAI 2021 Task 2)

Figure 5.3: Data distribution details of train and test sets used in Medico 2020 and MedAI
2021 challenges. Large, medium, and small represent the distribution information of regions
of interest in the data samples.

Figure 5.3 shows the data distribution of the train and test datasets used in Medico

2020 and MedAI 2021. We have categorized the images into “small”, “medium” and “large”

according to the size of ROI using a randomly selected threshold of 0.3 and 0.1 and plotted

the normalized height versus normalized width of each data point. This is to visualize the

dimension of each data point and observe the diversity and complexity of the dataset used

in the study. The information about the size categories and the dataset’s dimensions is

crucial for assessing the performance and robustness of the proposed algorithms.
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Methods

The Medico 2020 challenge received submissions from 17 teams, while the MedAI 2021

challenge also gathered submissions from 17 teams in the following year. Table 5.1 and

Table 5.2 present details of algorithms developed and used by different teams. These details

include the overall method, the backbone architecture, the loss function, and the optimizer

adopted by the individual team. In the Medico 2020 challenge, all teams participated in Task

1, whereas only 9 teams provided submissions for Task 2. In the MedAI 2021 challenge,

most of the teams participated in all three tasks except for four, which participated in

either one or two sub-tasks. Most participating teams have used the same architecture

in their submission for both subtasks. However, two teams, namely Vyobotics [147] and

MedSeg_JU [148] have participated in only one of the subtasks. The team Vyobotics [147]

has participated in the polyp segmentation task whereas the team MedSeg_JU [148] has

participated in the accessory instrument segmentation task.

5.2.3 Results

In this section, we present a summary of the evaluated results obtained on the test dataset

by all the participating teams in the two challenges: “Medico 2020” and “MedAI 2021”.

Each challenge consists of tasks with a specific focus and evaluation metrics. There were

two tasks for the Medico 2020 challenge, namely polyp segmentation and algorithm efficiency

tasks. In the MedAI 2021, there were three tasks, namely polyp segmentation, endoscopic

accessory instrument segmentation and transparency task. The teams were evaluated based

on standard evaluation metrics such as mIoU, DSC, Rec, Pre, Acc, F1, F2, and FPS. We

emphasized mIoU, DSC, and FPS more, whereas we also acknowledged the importance of

recall and precision as they are useful metrics in clinical settings.

Medico 2020 Results

Polyp Segmentation Task

In Table 5.3, we provide the results for the polyp segmentation task. It can be observed

that Team “PRML2020GU” outperforms other participating teams in the polyp segmenta-

tion task. It achieves a mIoU of 0.7897, DSC of 0.8607, recall of 0.9031, precision of 0.8673,

and F2 of 0.8748. Team “HBKU_UNITN_SIMULA” was the second best-performing team

with mIoU of 0.7773. similarly, “AI-TCE” was the third best-performing team with mIoU

of 0.7773. The best-performing team, “PRML2020GU,” used an encoder-decoder struc-
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Table 5.3: Performance comparison on Polyp segmentation task (Medico 2020). ‘Bold’
refers to the best score, and ‘underline’ refers to the second-best score. We follow this
consistently in all the Tables. ↑ indicates a higher value is better.

Team Name mIoU ↑ DSC ↑ Recall ↑ Precision ↑ F2 ↑

PRML2020GU 0.78975 0.86076 0.90312 0.86731 0.87481
HBKU_UNITN_

SIMULA 0.77736 0.84768 0.85034 0.88971 0.84483
AI-TCE 0.77733 0.85030 0.91646 0.83897 0.87901
HGV-HCMUS 0.76597 0.84050 0.89439 0.84455 0.85768
IIAI-Med 0.76195 0.83854 0.83049 0.90121 0.82837
SBS 0.75503 0.83162 0.83168 0.88513 0.82490
ML-MMIV

Saruar 0.75168 0.82289 0.83908 0.88228 0.82492
AI-JMU 0.73742 0.81437 0.82661 0.87432 0.81038
MedSeg_JU 0.71330 0.80195 0.83542 0.82864 0.81240
VT 0.70578 0.79264 0.88353 0.78784 0.82368
NKT 0.68473 0.78012 0.80771 0.81264 0.78546
UNITRK 0.64379 0.72878 0.70989 0.85726 0.71312
GeorgeBatch 0.63511 0.73276 0.75003 0.82294 0.73615
AMI Lab 0.61958 0.70889 0.72865 0.79140 0.71226
IRIS-NSYSU 0.50353 0.64173 0.87915 0.58498 0.75089
UiO-Zero 0.43814 0.56185 0.69721 0.55587 0.61102
FAST-NU-DS 0.18344 0.26691 0.27447 0.29184 0.26762

ture with EfficientNet as the backbone and a U-Net decoder with channel-spatial attention

and deep supervision. This architecture had an improvement of 1.23% and 1.30% over the

mIoU and DSC achieved by the Team “HBKU_UNITN_SIMULA”, which used an average

of three PraNet and five ResUNet++ trained on different training and validation datasets.

Table 5.4: Algorithm efficiency task for polyp segmentation (Medico 2020). Note that some
teams provided the same solution for this task as used in Task 1, whereas others designed
different architecture specifically for the efficiency task (Task 2). ↑ indicates a higher value
is better.

Team Name mIoU ↑ DSC ↑ Recall ↑ Precision ↑ F2 ↑ FPS ↑

HCMUS 0.7364 0.8074 0.8164 0.8646 0.8067 33.27
SBS 0.7341 0.8148 0.8764 0.8145 0.8354 26.66
NKT 0.6847 0.7801 0.8077 0.8126 0.7854 80.60
FAST-NU-DS 0.6582 0.7556 0.8982 0.7171 0.8109 67.51
UNITRK 0.6437 0.7287 0.7098 0.8572 0.7131 116.79
GeorgeBatch 0.6351 0.7327 0.7500 0.8229 0.7361 196.79
AMI Lab 0.6195 0.7088 0.7286 0.7914 0.7122 107.87
AI-JMU 0.7213 0.8017 0.8359 0.8495 0.8056 3.36
PRML2020GU 0.5083 0.6265 0.6003 0.7870 0.6029 2.25
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Algorithm Efficiency Task

For the second task, as in Table 5.4, team “PRML2020GU” has poor speed performance

with a processing speed of only 2.25 fps, which is not desirable for a real-time efficient model.

An interesting observation is that Team “GeorgeBatch” outperforms other participating

teams in the algorithm efficiency task with a processing speed of 196.79 fps, as seen from

Table 5.4. However, it is worth noting that the team obtained a low mIoU of 0.6351 for

the polyp segmentation task, even though we are considering it as the winner in this task.

Team “UNITRK” obtained a second-best fps of 116.79. Similarly, team “NKT” obtained a

balanced mIoU of 0.6847 and a high speed of 80.60 fps, and was ranked third for this task.

Despite the two teams, “UNITRK” and “GeorgeBatch”, achieving the highest evaluation

fps values, there is a trade-off between speed and mIoU. Low FPS cannot be used for real-

time medical processing applications, and low overlap evaluation metrics cannot generate

precise segmentation masks.

MedAI 2021 Challenge Results

Polyp Segmentation Task

In Tables 5.5, we tabulated the evaluation results of all the participating teams in

MedAI 2021 for polyp segmentation task. The table shows that team “agaldran” outper-

forms other teams in the polyp segmentation task with mIoU of 0.8522 and DSC of 0.8965.

Team “CV&Med IIAI” also showed good performance and was ranked 2nd in the polyp

segmentation task with a mIoU of 0.8484, a very small difference from the best-performing

team.

Instrument Segmentation Task

From Table 5.6, it can be observed that the same team, “agaldran”, also outperforms

other participating teams in the instrument segmentation task with a high mIoU of 0.9364

and DSC of 0.9635. Team “NYCity” was ranked 2nd in this task with a mIoU of 0.9326

and DSC of 0.9586. However, Team “NYCity” obtained the highest recall of 0.9712, which

signifies it has low false negative (FN) regions in the predicted segmentation mask compared

to team “agaldran”. Another interesting observation is the team “agaldran” also achieved

higher metric values for the instrument segmentation task as compared to the polyp seg-

mentation task, as instrument segmentation is relatively easier than polyp extraction due

to the greater variability of the latter regarding color and appearance.

Transparency Task

We present the transparency results in Table 5.7. Team “agaldran” outperformed
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Table 5.5: Performance evaluation for the participating teams for the polyp segmentation
task in MedAI 2021 Challenge. ↑ indicates a higher value is better.

Team Name mIoU ↑ DSC ↑ Recall ↑ Precision ↑

agaldran 0.8522 0.8965 0.9009 0.9242
NYCity 0.8418 0.8885 0.8794 0.9319
IIAI-CV&Med 0.8361 0.8927 0.9195 0.8963
mTEC 0.8334 0.8892 0.9010 0.9096
CV&Med IIAI 0.8213 0.8612 0.8602 0.8814
PRML 0.8116 0.8669 0.8852 0.8922
CamAI 0.8083 0.8701 0.8702 0.9052
The Arctic 0.8022 0.8533 0.8604 0.8821
Polypixel 0.7997 0.8567 0.8868 0.8659
MAHUNM 0.7495 0.8189 0.8397 0.8568
OXGastroVision 0.7334 0.7966 0.8158 0.8374
Vyobotics 0.7220 0.7967 0.8214 0.8359
NAAMII 0.6041 0.6940 0.7499 0.7334
leen 0.4595 0.5531 0.6389 0.5860
The Segmentors 0.3789 0.4205 0.4178 0.4640
TeamAIKitchen 0.2904 0.4100 0.7152 0.4910

Table 5.6: Performance of participating teams for instrument segmentation task of MedAI
2021 Challenge. ↑ indicates a higher value is better.

TeamName mIoU ↑ DSC ↑ Recall ↑ Precision ↑

agaldran 0.9364 0.9635 0.9692 0.9632
NYCity 0.9326 0.9586 0.9712 0.9516
mTEC 0.9245 0.9553 0.9687 0.9490
PRML 0.9178 0.9528 0.9687 0.9441
IIAI-CV&Med 0.9148 0.9490 0.9612 0.9473
CV&Med IIAI 0.9136 0.9512 0.9605 0.9500
Polypixel 0.9114 0.9478 0.9591 0.9438
CamAI 0.9079 0.9442 0.9527 0.9468
The Arctic 0.9078 0.9448 0.9735 0.9231
OXGastroVision 0.8692 0.9073 0.9236 0.9096
MAHUNM 0.8523 0.9080 0.9535 0.8864
MedSeg_JU 0.8205 0.8632 0.9005 0.8464
TeamAIKitchen 0.7257 0.7980 0.7955 0.8510
leen 0.6991 0.7845 0.7963 0.8232
NAAMII 0.6857 0.7741 0.8321 0.7669
The Segmentors 0.3668 0.3971 0.3985 0.4040

other competitors with a final score of 21 out of 25. Similarly, “mTEC” obtained a score

of 17 out of 25 and was ranked 2nd. Likewise, team “CamAI” obtained a score of 16

out of 25 and was ranked third in the transparency task. There were also efforts from
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teams such as “The Arctic”, which obtained a score of 13, and “IIAI-CV&Med”, which

obtained a score of 10. These scores show their effort to provide a transparent solution to

the polyp and instrument segmentation tasks. We provide the final ranking and task-wise

scores in Figure 5.4. Notably, team “agaldran” outperformed others in all three tasks

and overall challenge and emerged as the winner of the MedAI 2021 challenge. Overall,

“mTec” secured the second position. Following closely behind, “CamAI” showcased the

third-best solution. The overall rank was computed by combining the mIoU scores of polyp

and instrument segmentation tasks with the transparency score.

Table 5.7: Evaluation of the ‘Transparency tasks’ for MedAI 2021 Challenge. For this
task, a team of experts accessed the submission based on several criteria and provided
a score based on the availability and quality of the source code (for e.g., open access,
public availability, and documentation for reproducibility), model evaluation (for e.g., failure
analysis, ablation study, explainability, and metrics used) and qualitative evaluation from
clinical experts (e.g., usefulness and understandability of the results). Here, ‘0’ refers to no
submissions. Doctor evaluation was only calculated for the team whose manuscripts were
accepted.

Open Source Model Evaluation Doctor Evaluation

Team Name Publicly
available
(0 or 1)

Code
Quality
(0-3)

Readme
(0-3)

Failure
Analysis
(0-3)

Ablation
Study
(0-3)

Explainability
(0-3)

Metrics
Used
(0 or 1)

Usefulness
(0-3)

Understandable
(0-5)

Final Score

agaldran 1 2 3 3 3 3 1 2 3 21
CamAI 1 1 1 2 1 2 1 2 5 16
CV&Med IIAI 0 1 0 1 0 0 1 3
IIAI-CV&Med 1 1 2 0 0 0 1 1 4 10
leen 0 1 0 0 0 2 1 4
MAHUNM 1 1 0 0 0 0 1 3
mTEC 1 1 3 3 1 0 1 3 4 17
NYCity 0 0 0 0 0 0 1 1
OXGastroVision 0 2 0 0 0 0 1 3
Polypixel 1 1 2 0 0 0 1 5
PRML 0 1 0 0 0 0 1 2
TeamAIKitchen 0 1 0 0 0 0 1 2
The Arctic 1 2 1 1 0 3 1 1 3 13
The Segmentors 0 0 0 0 0 0 1 1

Figure 5.5a illustrates the plot of mIoU reported by each team in their submissions in

the two challenges with three different tasks. It can be observed that the polyp segmentation

task from 2020 to 2021 gained improvement with a larger number of submissions, achieving a

mIoU of more than 0.80 and the best-performing team with a mIoU of around 0.85. Similar

progress can be observed in Figure 5.5b where an overall mIoU increased by 4.93% when

an average score is computed over all participating teams’ individual best mIoU in the 2021

polyp segmentation challenge. We further compared all segmentation metrics, including

DSC, recall, precision, mIoU score, accuracy, and F2 score, as shown in Figure 5.5c. Notably,

the different evaluation metrics scores are consistent with instrument segmentation tasks in

the MedAI challenge. However, there is a high variation in the mIoU between the different

teams in the polyp segmentation tasks of Medico 2020 and MedAI 2021 challenges.

These values pertain to the best score corresponding to a particular metric the indi-
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Figure 5.4: Task-wise scores achieved by participating teams of MedAI 2021 challenge.
Team rankings are decided on the basis of overall scores in all three tasks.

vidual team obtained in different executions. It is to be noted that each team was given the

opportunity to submit five different submissions, and the best results for the best submis-

sion are reported in the Tables here. From here, it can be observed that most teams in the

MedAI 2021 challenge reported overall high scores in terms of various segmentation met-

rics when compared to Medico 2020 outcomes, thus highlighting the improved performance

trends in automated systems over time. Furthermore, it can also be visualized that unlike

the high variations shown by teams’ scores in the polyp segmentation task, better perfor-

mance and smaller deviations in scores are reported in the instrument segmentation task.

The high variations in the polyp segmentation results also show that polyp segmentation

is more challenging because of the presence of variations in the size, structure and appear-

ance of the polyps, and the presence of the artifacts and lighting conditions deteriorate the

algorithm’s performance.

5.2.4 Discussions

The rapid advancement in the AI-based techniques that support CAD systems has resulted

in the introduction of numerous algorithms in the domain of medical image analysis, in-

cluding colonoscopy. To assess the performance of these algorithms, it is important to

benchmark on the particular set of datasets. It enables the comparison and analysis of

different techniques and assists in identifying challenging cases that need to be targeted

using improved methodologies. This also includes cases that are misled by the presence

of artifacts and occlusion by surgical instruments [180]. Besides developing and analyzing
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(a)

(b)

(c)

Figure 5.5: (a) Violin plots with overlaid swarm plots depicting statistics of submissions
received for different tasks for the two challenges, (b) Dice score comparison of different
teams in three tasks of Medico 2020 (polyp segmentation) and MedAI 2021 (Task 1: Polyp
segmentation and Task 2: Instrument segmentation), and (c) Strip plots for all segmentation
metrics (Dice score (DSC), recall, precision, mIoU score, accuracy, F1 score, and F2 score
) reported by different teams in both challenges for all test data samples.
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AI-based algorithms, it is crucial to include explainability and interpretability to infuse

trust and reliance during the adoption of automated systems in clinical settings. Therefore,

the challenges discussed in this chapter focus on lesion and instrument segmentation and

emphasize the importance of transparency in medical image analysis. This section covers

the findings, limitations, analysis of failing cases, trust, safety and interpretability of the

methods, and future steps and strategies covering both challenges, Medico 2020 and MedAI

2021.

Medico 2020 Challenge Methods

Most of the methods reported in the Medico 2020 challenge focus on encoder-decoder ar-

chitecture for example, U-Net, ResUNet++, PraNet, Efficient UNet, etc). Other networks

used include conditional GAN and Faster R-CNN. The overview of the methods is pro-

vided in Table 5.1. For more detailed architectural information, we have also included

the backbone and algorithm used by each team. Further, we also report the nature of

the algorithm and the choice basis of evaluation, such as mIoU, DSC or FPS. Addition-

ally, we provide information about the augmentation and hyperparameters, such as loss

function and optimizers. It is noteworthy that all the top three teams “PRML2020GU”,

“HBKU_UNITN_SIMULA” and “AI-TCE” used the encoder-decoder architecture. Out of

17 participating teams, only three teams adopted some other architectures. Comparative

analysis shows that the highest-scoring encoder-decoder network outperforms the GAN-

based approach by a significant margin of 0.3517 in mIoU and 0.2989 in DSC score. Simi-

larly, compared to the R-CNN-inspired networks (team “IRIS-NSYSU”), the best approach

(team “PRML2020GU”) achieves an improvement of 0.2863 in mIoU score and 0.2191 DSC

score.

Medico 2020 challenges provide valuable insight and trends for the polyp segmentation

and biomedical image analysis challenges. Most deep learning frameworks submitted for the

challenge used the Adam optimizer to optimize their network. However, a handful of teams

used other optimizers, such as SGD or RMSProp. Additionally, most of the teams used data

augmentation to boost the number of training samples prior to training their frameworks

to improve the performance of their architecture. There have been different preferences

in loss function where most of the team used “BCE + DSC loss”, “binary cross-entropy”,

IoU loss, etc. However, from the results of the top three teams, it can be concluded that

“BCE + DSC loss” is best for this dataset. Similarly, in terms of the backbone for the

model architecture, the EfficientNet variant (selected by PRML2020GU) or EfficientNetB4
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(selected by AI-TCE) were most favorable.

MedAI 2021 Challenge Methods

The summary of the different approaches adopted by the participating teams of the

MedAI2021 Challenge is presented in Table 5.2. To provide a brief overview of the general

techniques adopted by the different teams, they can be categorized based on the nature

of the approach followed, such as ensemble models, encoder-decoder based architectures,

CNN, and hybrid CNN models. Almost all the teams presented the same model for both the

tasks proposed in the challenge. Most teams explored ensemble modelling, encoder-decoder

networks, or a combination of both in the polyp segmentation task. Another criterion of

categorization could be CNN or transformed-based approaches. It is observed that the top-

ranked team “agaldran” utilized two encoder-decoder networks and reported a mIoU score

of 0.8522. Similarly, “CV&Med IIAI” was ranked second, and Team “NYCity” was ranked

third in the polyp segmentation task with a competitive mIoU value of 0.8484 and 0.8418,

respectively. Similar to the Medico 2020 polyp segmentation challenge, where GAN-based

methods were adopted by teams (for example, Team “leen”) failed to perform well in this

challenge for polyp and instrument segmentation tasks. It is to be noted that the winning

team, “agaldran” used a double encoder-decoder structure with two U-Net, where they in-

corporated FPN and Resnext101 as the pretrained decoder. They also used SAM and Adam

optimizer to optimize the model further. The other competitive team “CV&Med IIAI” used

the SINetv2 algorithm with PVTv2 as the backbone, and NYCity used the combination of

HarDNet-85 ResNet101.

In the MedAI2021 instrument challenge, participants mainly focused on either en-

semble models or encoder-decoder networks similar to the polyp segmentation task. As

the majority of the teams utilized the same model that they proposed for the polyp seg-

mentation problem in this task, the categorization of overall methods remains the same

as that of the first task described above. The top rank is secured by Team “agaldran”,

with encoder-decoder architecture, pyramid network as the decoder, and Resnext101 as the

pre-trained decoder. The second-ranked model by Team “NYCity” is the CNN and trans-

former based ensemble model, which achieved only a slight difference in the scores from the

leading model. mTec was ranked third in the challenge, which used dual parallel reverse

attention edge network (DPRA-EdgeNet) [168]. The architecture used HardNet [181] as

the backbone.

The challenge shows that most of the teams were reluctant to share their method (refer
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to Table 5.7). From the table, it can be seen that only five teams were qualified for the

doctor evaluation. Additionally, the quality of the code submitted by most of the team

was not satisfactory. Most of the participants did not put much effort into the readme file.

Additionally, most teams neglected the failure analysis, ablation study and explainability

in their submission. Moreover, based on the doctor’s evaluation, only the solution provided

by a few teams (for example, “agaldran”, “mTEC” “CamAI”, “The Arctic”, and “IIAI-

CV&Med”) was considered useful and understandable.

Analysis of the Failed Cases

We have analyzed the regular and failing cases in polyp and surgical tool segmentation

to highlight the limitations of the current methods so that these cases can be considered

during further algorithm development. From the results on the test dataset, it was observed

that most of the algorithms failed on diminutive and flat polyps located in the left colon.

These are the challenging classes in the colon and require effective detection and diagnosis

systems. Similarly, although most of the methods performed well on the diagnostic and

therapeutic surgical tool, there were issues with the images having caps and forceps. This

happens as algorithms could still struggle with difficult and rare cases like sessile polyps,

even if they perform well on overall quantitative metrics. Therefore, investigating the cause

for misclassification for such samples in the dataset and failure analysis will be critical

to focus for future research. This can include generalization performance evaluation on

unseen test data from different hospitals. Such investigations can reduce the chances of

underperformance on rare cases.

Trust, Safety, and Interpretability of Methods

Integrating CAD in clinical settings necessitates addressing factors such as trust, safety, and

interpretability to ensure its adoption. The high variations and potential bias in the curated

datasets used to train such models and the actual scenarios in which they are adopted create

a high chance of biases, impacting the generalizability of the method. Such bias ultimately

makes it challenging to infuse trust while adopting CAD tools and questions the safety

of patients. To tackle this issue, we introduced a transparency task in the MedAI2021

challenge that underscores the need for interpretability, reproducibility, and explainability

in medical AI research, including polyp and instrument segmentation.

Our initiative aimed to light the potential risk that can arise from wrong decisions

based on model and algorithmic bias. Our dataset contained polyp cases with varied ap-
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pearances in terms of shapes, sizes, the presence of artifacts, lightning conditions, textures,

and the different numbers of polyps per image that are encountered in real-world clinical

settings. Additionally, we have included frames containing surgical instruments to support

the cases of occluded endoluminal elements or polyps that could arise in general. Some

of the methods adopted by the participating teams include the submission of intermediate

heatmaps using approaches like layer-wise relevance propagation that showed visual ex-

planation and highlighted the model decision-making process. Team “agaldran” provided

detailed ablation studies in support of the predictions obtained. By promoting transparency

through subjective analysis and addressing potential biases, the MedAI challenge aimed to

foster trust in the presented solution and ensure safety in adopting such methods in the

clinic.

Limitation of the Medico 2020 and MedAI 2021

In our study, we aimed to standardize the challenge of polyp and instrument segmentation

by providing the same test sets and evaluation metrics to all participants. To achieve this,

we introduced variable polyp cases, including polyps with different sizes, noisy frames with

artifacts, blurry images, and occlusion. We also added regular frames to the test set to

ensure that participants drew the ground truth manually and did not cheat. However, our

study has some limitations. Although we used datasets collected from four medical centers

in Norway, these images are from a single country, limiting the ethnicity variance though

there are very limited differences, if any, in the mucosal appearance between ethnicities.

Nevertheless, there is a need for a more diverse dataset that includes multiple ethnicities and

countries also because the prevalence of various diseases varies between regions. Moreover,

the current models should be tested on multi-center datasets to assess their generalization

ability.

There was no online leaderboard in our challenge due to the Mediaeval policy. There-

fore, we manually calculated the predictions submitted by each team. Each team had

limitations of 5 submissions for each task, which restricted further optimization opportu-

nities. Although we have also introduced normal findings from the GI tract to trick the

participants and models, our challenge only used still frames and did not incorporate video

sequence datasets. Even when the best-performing algorithms are tested on a temporal

video sequence dataset, it is possible that the performance can drop. Most of the images

are only from WLI. Although our dataset was annotated by one annotator and checked by

two gastroenterologists, there is still a possibility of bias in the labels. In the accessory in-
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strument challenge, we had more images from the stomach class than accessory instruments

such as biopsy forceps or snares due to the lack of availability of datasets. Finally, despite

including diverse cases in the polyp and instrument segmentation challenge, we still had

limited flat and sessile polyps, frequently missed during routine colonoscopy examinations.

Incorporating multi-center data and video sequences data and addressing label biases will

lead to more comprehensive and reliable evaluations of AI-based colonoscopy systems.

Future Steps and Strategies

In our study, we aimed to promote transparency and interpretability in machine learning

models for the GI tract setting. However, more work is needed to understand how decisions

are made and identify potential biases or errors in a quantitative manner to build trust

in such systems in a clinical setting. To achieve this, we plan to test the best-performing

algorithms on large-scale datasets to observe their scalability. We will consider metrics

that weigh speed, accuracy, and robustness for better objective assessments and introduce

more distance-based metrics such as Hausdorff distance and normalized surface distance for

improved fairness.

We will emphasize more transparent decision-making methods and visualize inter-

pretability results while focusing on clinical relevance rated by expert clinicians instead of

just one objective metric. To achieve this, we have already started collecting large-scale

datasets and plan to build a tool if the algorithms are robust enough and verified by our

gastroenterologists. Next, we will propose a challenge to polyp video sequences analysis.

We will explore the integration of state space models, such as Video Vision Mamba-based

framework [182], to capture the temporal information in video sequences that affect the

efficiency and accuracy of segmentation tasks. It is worth noting that there has been

innovation within hardware (colonoscope) for safer medical colonoscopy devices, such as

developing fully flexible automated colonoscopes to offer expanded fields of view rather

than 120 − 170◦ visualization, which can capture dead spots, improving the lesions’ miss-

rate. These scopes are currently in the final stage of development. This hardware would

require high processing speed to locate potential lesions in real time for a smooth workflow.

We believe these solutions from our challenge could help address the complexities with the

improved hardware and improved image quality.
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5.3 GastroVision

Here, we provide detailed information about the dataset, acquisition protocol, ethical and

privacy aspects of data and suggested metrics.

5.3.1 Dataset Details

GastroVision is an open-access dataset that incorporates 8,000 images pertaining to 27

different labeled classes (Fig. 5.6). Most image are obtained through WLI, while a few

samples are acquired using NBI. These classes are categorized into two broad categories:

Upper GI tract and Lower GI tract. The number of images under each class is presented

in Fig. 5.7. These classes indicate findings acquired from the GI tract. It can be observed

that the sample count is not balanced across classes, which is generally experienced in the

medical image acquisition process as some findings occur less often. Releasing these classes

in the dataset will allow the researchers to leverage the fast-emerging AI techniques to

develop methods for detecting such rare but clinically significant anomalies. All the images

are stored in JPG format, and the overall size is around 1.8 GB. The resolution details of

the images can be found in Fig. 5.8. GastroVision is provided as a structured directory,

with each class having a specific folder. For example, the ‘Accessory tools’ folder contains

all images featuring diagnostic and therapeutic tools.

Upper GI Tract:

Upper GI endoscopy examines the esophagus, stomach, and duodenum. The various classes

covered in this GI tract are discussed below as three subcategories: normal findings, anatom-

ical landmarks, and pathological findings. A detailed categorization is shown in Fig. 5.6. The

normal stomach serves as a critical site for initial digestion, while the duodenal bulb,

the first part of the small intestine, is critical for nutrient absorption. Anatomical land-

marks are used as reference points to indicate a specific location and assist in navigating

during endoscopy procedures. The gastroesophageal junction is an anatomical area

where esophagus joins the stomach also alining to the normal z-line, a transitional

point where the esophagus’s squamous epithelium and the stomach’s columnar mucosa lin-

ing join. Pylorus is a sphincter connecting the stomach and the duodenum, the first part

of the small intestine.

Apart from these anatomical landmarks, any pathological conditions may be encoun-

tered during endoscopy. Esophagitis, the most common abnormality, is characterized by
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Figure 5.6: Example images from the gastrointestinal tract showing distinct findings from
the upper and lower GI tract.
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Figure 5.7: The figure shows the number of images per class. Some classes have few samples
because of the rarity of the findings and the technical challenges associated with obtaining
such samples in endoscopic settings.

an inflammation of the esophagus. This disease is graded based on its severity according

to the Los Angeles classification. For example, grade B refers to the condition when the

mucosal break is limited to the mucosal fold and is more than 5 mm long. In grade D,
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Figure 5.8: Resolutions of the 8,000 images of GastroVision.

mucosal break affects 75% of the esophageal circumference. Long standing esophagitis may

cause Barett’s esophagus, a condition in which the cells of the esophagus’s lining start

to change, and tissues appear red. This is a precancerous condition. Other frequent lesions

observed are polyps, abnormal tissue growth or ulcers. Gastric polyps are abnormal

growths in the stomach lining. Ulcers are the open sores in the stomach or duodenum

that can lead to discomfort and bleeding. Esophageal varices result from portal hy-

pertension, causing swollen veins in the esophagus. Erythema refers to redness, often

indicating inflammation and blood in the lumen denotes bleeding. Accessory tools aid

in investigating and diagnosing upper and lower GI tract conditions for targeted treatment.

Lower GI Tract:

The lower GI tract is examined by colonoscopy to investigate any abnormalities in the colon,

the rectum, and the terminal ileum (the last part of the small bowel). Here, we covered

one more subcategory, therapeutic interventions, in addition to normal findings, anatomical

landmarks, and pathological findings. A detailed class-wise division is shown in Fig. 5.6.

The normal mucosa and vascular pattern in the large bowel is essential for

absorbing water and electrolytes. The different anatomical landmarks associated with lower

GI include cecum (first part of the large intestine), visualizing the appendiceal orifice,

ileocecal valve (sphincter muscle between ileum and colon), and the small bowel. During

the colonoscopy, these anatomical landmarks act as reference points to prove complete

examination. Retroflexion in the rectum is performed to visualize a blind zone, using
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the bending section of the colonoscope to visualize the distal area of the colon, called

rectroflex-rectum. The terminal ileum, the last part of the small intestine, aids in

nutrient absorption. Colon diverticula, small pouch-like protrusions, can form along the

colon’s weakened wall, often in the sigmoid colon [183].

During the colonoscopy, the endoscopist navigates through these landmarks and looks

for abnormalities such as polyps, angiectasia, and inflammation like ulcerative colitis.

Angiectasia is a common lesion representing abnormal blood vessels and is responsible for

obscure recurrent lower GI bleeding. These can easily be distinguished from the normal

vessels shown in Fig. 5.6. Colorectal cancer occurs in the colon or rectum. One of

the early signs of this colorectal cancer can be detected through colon polyps. Mucosal

inflammation in the large bowel may be caused by different factors, such as infections

or chronic inflammatory conditions.

Apart from the aforementioned pathological conditions, several therapeutic interven-

tions are adopted to treat the detected anomalies effectively. It frequently involves the

removal of the lesion/polyp. The surrounding of such resected polyps, also called the

resection margins or resection sites, are then considered for biopsies. To enhance le-

sion demarcation, a solution containing indigo carmine is injected, making resection easier.

The appearance of blue color underneath the dyed-lifted-polyp provides accurate polyp

margins. After resecting such polyps, the underlying region, known as dyed-resection-

margin, appears blue. These margins are important to examine for any remaining tissue

of the resected polyp.

5.3.2 Dataset Acquisition, Collection and Construction

Data Acquisition and Collection:

The dataset images are acquired from two centers (Department of Gastroenterology, Bærum

Hospital, Vestre Viken Hospital Trust (VV), Norway and Karolinska University Hospital,

Stockholm, Sweden) using standard endoscopy equipment from Olympus (Olympus Europe,

Germany) and Pentax (Pentax Medical Europe, Germany). A team of expert gastroenterol-

ogists, one junior doctor, and two computational scientists were involved in the labelling of

the images and the related review process. It is worth noting that for dataset collection, we

labeled some of the unlabeled images from the HyperKvasir dataset and included them in

our dataset. Additionally, we labeled the images acquired from the Karolinska University

Hospital to their respective classes for developing a diverse and multi-center “GastroVision”

dataset.
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Ethical and Privacy Aspects of the Data:

The dataset is constructed while preserving the patients’ anonymity and privacy. All videos

and images from Bærum hospitals were fully anonymized, following the GDPR requirements

for full anonymization. Hence, it is exempted from patient consent. The files were renamed

using randomly generated filenames. The Norwegian Privacy Data Protection Authority

approved this export of anonymized images for research purposes. As the dataset develop-

ment procedure involved no interference with the medical treatment or care of the patient,

it has also been granted an exemption for approval by the Regional Committee for Medical

and Health Research Ethics - South East Norway. Similarly, the data collection process

at Karolinska University Hospital, Sweden, is completely anonymized as per the GDPR

requirements.

5.3.3 Suggested Metrics

Standard multi-class classification metrics, such as Matthews Correlation Coefficient

(MCC), micro and macro averages of recall/sensitivity, precision, and F1-score, can be

used to validate the performance using our dataset. MCC provides a balanced measure

even in cases with largely varying class sizes. A macro-average will compute the metric

independently for each class and then take the average, whereas a micro-average will ag-

gregate the contributions of all classes to compute the metric. Recall presents the ratio of

correctly predicted positive observations to all the original observations in the actual class.

Precision is the ratio of correctly predicted positive observations to all the positive pre-

dicted observations. F1-score integrates both recall and precision and calculates a weighted

average/harmonic mean of these two metrics.

5.3.4 Experiments and Results

In this section, we describe the implementation details, technical validation and the limita-

tion of the dataset.

Implementation Details

All deep learning diagnostic models are trained on NVIDIA TITAN Xp GPU using PyTorch

1.12.1 framework. A stratified sampling is performed to preserve the similar distribution of

each class during 60:20:20 training, validation, and testing split formation. The images are

resized to 224 × 224 pixels, and simple data augmentations, including random rotation and
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Table 5.8: Results for all classification experiments on the Gastrovision dataset.

Macro Average Micro Average
Method Prec. Recall F1 Prec. Recall F1 MCC

ResNet-50 [118] 0.4373 0.4379 0.4330 0.6816 0.6816 0.6816 0.6416
Pre-trained ResNet-152 [118] 0.5258 0.4287 0.4496 0.6879 0.6879 0.6879 0.6478

Pre-trained EfficientNet-B0 [184] 0.5285 0.4326 0.4519 0.6759 0.6759 0.6759 0.6351
Pre-trained DenseNet-169 [113] 0.6075 0.4603 0.4883 0.7055 0.7055 0.7055 0.6685

Pre-trained ResNet-50 [118] 0.6398 0.6073 0.6176 0.8146 0.8146 0.8146 0.7921
Pre-trained DenseNet-121 [113] 0.7388 0.6231 0.6504 0.8203 0.8203 0.8203 0.7987

random horizontal flip, are applied. All models are configured with similar hyperparameters,

and a learning rate of 1e−4 is initially set with 150 epochs. An Adam optimizer is used with

the ReduceLROnPlateau scheduler. More description about the implementation details and

dataset can be found on our GitHub page 6.

Technical Validation

To evaluate the presented data for technical quality and classification tasks, we performed a

series of experiments using some state-of-the-art deep learning models. The purpose of this

preliminary validation is to provide baseline results that can be referred to for comparison

by future researchers. We carried out multi-class classification using CNN-based models,

namely, ResNet-50 [118], ResNet-152 [118], EfficientNet-B0 [184], DenseNet-121 [113], and

DenseNet-169 [113], considering their competent performance in GI-related image-based

tasks in the literature [185]. Note that we have only included classes with more than 25

samples in the experiments, which resulted in 22 classes in total. However, we also release

the other classes with fewer samples to welcome new interesting findings in areas similar to

one-shot learning.

The different experiments performed include (a) ResNet-50 : The model is randomly

initialized, and an end-to-end training is done, (b) Pre-trained ResNet-50 and (c) Pre-

trained DenseNet-121 : The models are initialized with pre-trained weights, and then all

layers are fine-tuned, (d) Pre-trained ResNet-152, (e) Pre-trained EfficientNet-B0 and (f)

Pre-trained DenseNet-169 : The models are initialized with pre-trained weights, and only

the updated last layer is fine-tuned. All the above pre-trained models use ImageNet weights.

The associated results are shown in Table 5.8. It can be observed that the best outcome is

obtained using the pre-trained DenseNet-121. A class-wise analysis using the same model

is provided in Table 5.9 and Fig. 5.9. It shows that while most classes achieved satisfactory

prediction outcomes, a few proved to be very challenging for the classification model. For
6https://github.com/DebeshJha/GastroVision
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Class Precision Recall F1-score Support
Accessory tools 0.93 0.96 0.95 253
Barrett’s esophagus 0.55 0.32 0.4 19
Blood in lumen 0.86 0.91 0.89 34
Cecum 0.33 0.17 0.23 23
Colon diverticula 1 0.33 0.5 6
Colon polyps 0.78 0.87 0.82 163
Colorectal cancer 0.63 0.41 0.5 29
Duodenal bulb 0.72 0.76 0.74 41
Dyed-lifted-polyps 0.86 0.86 0.86 28
Dyed-resection-margins 0.94 0.92 0.93 49
Esophagitis 0.5 0.23 0.31 22
Gastric polyps 0.6 0.23 0.33 13
Gastroesophageal_junction_normal z-line 0.65 0.85 0.74 66
Ileocecal valve 0.74 0.7 0.72 40
Mucosal inflammation large bowel 1 0.33 0.5 6
Normal esophagus 0.72 0.82 0.77 28
Normal mucosa and vasular pattern in the
large bowel 0.81 0.87 0.84 293

Normal stomach 0.9 0.86 0.88 194
Pylorus 0.8 0.92 0.86 78
Resected polyps 0.33 0.11 0.17 18
Retroflex rectum 0.75 0.43 0.55 14
Small bowel_terminal ileum 0.86 0.85 0.85 169

Table 5.9: Class-wise performance associated with the best outcome obtained using pre-
trained DenseNet-121.

a more detailed analysis, we plotted a two-dimensional t-SNE embedding for GastroVision

(Fig. 5.10). The classes like Normal stomach, Dyed-resection-margins, which present a clear

distinction in the t-SNE embedding, are less often misclassified. The above points could

be the reasons for the F1-score of 0.88 and 0.93 in the case of Dyed-resection-margins and

Normal stomach classes, respectively. On the other hand, there are some overlapping classes

such as Cecum and Normal mucosa and vascular pattern in the large bowel or Colorectal

cancer and Colon polyps which do not present clear demarcation with each other and hence,

are likely to be misclassified.

Considering the overall results and many overlapping classes (without distinct cluster-

ing), it can be inferred that classifying GI-related anatomical landmarks and pathological

findings is very challenging. Many abnormalities are hard to differentiate, and the rarely

occurring findings have higher chances of getting misclassified. This presents the challenge

of developing a robust AI system that could address multiple aspects important for GI im-

age classification, e.g., many findings are subtle and difficult to identify, and some findings
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Figure 5.9: Confusion matrix for the best outcome obtained using pre-trained DenseNet-
121.

are not easily acquired during the endoscopy procedure, which results in less number of

data samples. Such underrepresented classes need to be explored with some specific algo-

rithms specially designed to leverage the availability of a few hard-to-find samples. Thus,

the potential of the baseline results and associated issues and challenges motivate the need

to publish this dataset for further investigations.
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Figure 5.10: Two-dimensional t-SNE embedding for GastroVision. The pre-trained
DenseNet-121 model, which is further trained on our training set, is used to extract fea-
tures. Some sample images are shown with either a specific or a broader (due to multiple
overlapping classes) categorization.

Limitation of the Dataset

Our dataset, GastroVision, is a unique and diverse dataset with the potential to explore a

wide range of anatomical and pathological findings using automated diagnosis. Although

this labeled image data can enable the researchers to develop methods to detect GI-related

abnormalities and other landmarks, the current version lacks segmented annotations, which

could further enhance the treatment experience and surgical procedures. It is important

to note that some classes (for example, colon diverticula, erythema, cecum, esophagitis,

esophageal varices, ulcer and pylorus) have only a few images. Despite this limitation,

our dataset is well suited for one-shot and few-shot learning approaches to explore some

GI-related conditions that have still not received attention in medical image analysis. In

the future, we plan to extend the dataset by including more classes and a larger number of

samples, along with ground truth for some of the classes that could be used for segmentation

purposes as well as images with higher resolution from the most recent endoscopy systems.
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5.4 Chapter Summary

In this chapter, we presented a case study with the aim of providing a comprehensive anal-

ysis of the methods used by participants in the Medico 2020 and MedAI 2021 competitions

for different medical image analysis tasks. We designed the tasks and datasets to demon-

strate that the best-performing approaches were relatively robust and efficient for automatic

polyp and instrument segmentation. We evaluated the challenge based on several standard

metrics. In MedAI 2021, we also used a quantitative approach, where a multi-disciplinary

team, including gastroenterologists, accessed each submission and evaluated the usefulness

and understandability of their results. Through the qualitative results, we found that more

generalizable and transparent methods are needed to be integrated into real-world clini-

cal settings. During the “performance task” and “algorithm efficiency” tasks, we observed

a trade-off between accuracy and inference time when tested across unseen still frames.

For the instrument segmentation challenge, we observed that almost all teams performed

relatively well, as segmenting instruments is easier than polyp segmentation. From the

transparency task, we observed that more effort is required from the community to enhance

the transparency of their work. Overall, we also observed that several teams demonstrated

the use of data augmentation and optimization techniques to improve performance on spe-

cific tasks. Our study highlights the need for multi-center dataset collection from larger

and more diverse populations, including experts from various clinics worldwide.

Further, we presented a new multi-class endoscopy dataset, GastroVision, for GI

anomalies and disease detection. We have made the dataset available for the research

community along with the implementation details of our method. The labeled image data

can allow researchers to formulate methodologies for classifying different GI findings, such

as important pathological lesions, endoscopic polyp removal cases, and anatomical land-

marks found in the GI tract. We evaluated the dataset using some baseline models and

standard multi-class classification metrics. The results motivate the need to investigate

specific techniques for GI-related data better. Having a diverse set of categories labeled

by expert endoscopists from two different centers, GastroVision is unique and valuable

for computer-aided GI anomaly and disease detection, patient examinations, and medical

training.

;;=8=<<

121





6
Synthetic Dataset Creation: Towards

Improved Polyp Segmentation and
Classification

Chapter Highlights

• We address the issues associated with medical data acquisition, including legal restric-

tions and manual effort for acquisition and annotations.

• We develop two methods to generate synthetic medical data that eliminate the need

to undergo long data acquisition and annotation procedures.

• The generated data can be controlled using two mechanisms: image-based and text-

based input controls.

• We also introduce the concept of cross-class labels that allow learning features from

other classes and generate images from combinations of text prompts without addi-

tional labels.

• This chapter is based on the publications “ControlPolypNet: Towards Controlled

Colon Polyp Synthesis for Improved Polyp Segmentation”, presented at the CVPR

(DCAMI) 2024 and “Generating Diverse Modality Colonoscopy Images Leveraging

Cross-Class Labels”, currently under review.
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This chapter addresses the issue of expensive manual effort and privacy

concerns associated with medical data acquisition and annotation. Such

hurdles result in medical data scarcity, impacting the performance of deep

learning methods as it depends on the quality and number of samples pre-

sented during training. Existing lesion detection and diagnosis tasks of a

CAD system, such as polyp segmentation and classification methods, typi-

cally rely on conventional augmentation techniques such as rotation, flip-

ping, etc. Simply relying on traditional augmentation techniques restricts

the scale-up of the dataset to a certain extent, depending on the dataset

size, and limits diversity among samples. Moreover, the existing classifi-

cation techniques fail to capture different imaging modalities (NBI/WLI)

that are paired with colonoscopy procedures for accurate classification of

two major types of polyps: adenomatous (malignant potential) and hyper-

plastic (benign). The reason for such failures stems from the same issue of

diverse data unavailability in the medical domain. To overcome these is-

sues, synthetically generated images can be utilized to complement the hard-

to-obtain annotated authentic medical data. Recently, generative artificial

intelligence has been gaining prominence in this domain. Additionally,

various generation-controlling mechanisms using text prompts and images

have been introduced to obtain visually appealing and desired outcomes in

a better-controlled manner. Therefore, we develop two frameworks; one

explores the image-based control mechanism, and the other framework ex-

plores the text-controlled generation mechanism. Our first model, Con-

trolPolypNet is a novel, stable diffusion based framework. We control the

generation process (polyp size, shape and location) using a novel custom-

masked input control, which generates images preserving important endolu-

minal information. Additionally, our model comprises a detection module,

which discards some of the generated images that do not possess lesion-

characterizing features, ensuring clinically relevant data. We further utilize

the generated polyp frames to improve performance in the downstream task

of polyp segmentation. Using these generated images, we found an average

improvement of 6.84% and 1.3% (JI) on CVC-ClinicDB and Kvasir-

SEG, respectively, in the polyp segmentation task. Further, we develop our

second model, PathoPolyp-Diff, that generates text-controlled synthetic im-

124



6. SYNTHETIC DATASET CREATION: TOWARDS IMPROVED POLYP
SEGMENTATION AND CLASSIFICATION

ages with diverse characteristics in terms of pathology, imaging modalities,

and quality. In the process, we leverage the cross-class labels to make the

model learn features from other classes and, hence, reduce the burdensome

task of data annotation. We validate the effectiveness of text-controlled

synthesis and cross-class label learning by performing polyp classification

(adenomatous/hyperplastic) with different imaging modalities (NBI/WLI)

and text prompts. The experimental results report an improvement of up

to 7.91% in BA using a publicly available dataset. Moreover, the cross-

class label learning achieves a statistically significant improvement of up to

18.33% in BA during video-level analysis.

6.1 Introduction

In this chapter, we propose two frameworks that focus on generating synthetic medical data,

thus overcoming the long procedures involved in clinical data acquisition and labeling. The

dataset curated and designed in our previous chapter involved expert gastroenterologists

and computational scientists for the labelling and reviewing procedures. These procedures

took a long time and extensive effort. Moreover, one must be cautious about annotation,

as labelling medical data is critical. Considering these scenarios, one possible solution is

to expand the training data by incorporating synthetic data. This solution is viable and

offers various benefits: (1) It does not require the time-consuming task of manual labelling.

(2) It eliminates the long process of obtaining data privacy informed consent, accelerating

dataset development. (3) It provides an opportunity to obtain hard-to-find anomalies that

are difficult to observe during routine colonoscopy.

To generate realistic-looking synthetic data, in recent years, GANs have been widely

used in various fields, including medical imaging [102, 111]. Despite the improved perfor-

mance in the downstream tasks, the issue of convergence instability of GANs and their

limited contributions in such tasks resulted in the development of currently trending diffu-

sion models [186, 187]. Diffusion models are expected to generate more realistic images and

support text-to-image generation, thus facilitating automated systems with text prompts

for better control. These models have been explored in many medical applications, such

as image-to-image translation [188], reconstruction [189], image generation [190], segmenta-

tion [191], and classification [192], especially using radiology images. However, colonoscopy

images are not much explored and require validations on the diffusion models’ ability to
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Figure 6.1: Controlling polyp generation using custom masks while leveraging largely
accessible non-polyp/negative images. We turned negative samples into positive ones with
controlled polyp shape, size and location, simultaneously enforcing diversity in generated
samples.

learn and generate complex patterns. Besides visually satisfactory image formations, these

models must be evaluated on their ability to retain clinically significant information and

the usefulness of generated data for downstream tasks such as polyp segmentation.

In this chapter, we develop two diffusion based frameworks that generate synthetic

colonoscopy images based on two different control mechanisms: a) image-based and b)

text-based. Considering the former control mechanism, we propose ControlPolypNet, based

on ControlNet [193] architecture to generate realistic-looking polyp frames. The framework

has a novel input control map, which converts non-polyp frames with normal mucosa to

polyp frames. This process is summarized in Fig. 6.1. Additionally, we employ a detector in

ControlPolypNet that discards frames that do not carry lesion-characterizing features. We

evaluate the generated frame’s quality in preserving the endoluminal scenes by calculating

Frechet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and Structural Sim-

ilarity Index Measure (SSIM) metrics. Also, we evaluated the impact of the generated data

on downstream tasks of polyp segmentation. Our method offers a more practical approach

to data augmentation, which is expected to represent clinically relevant data with diverse

characteristics.

Using the second control mechanism, we propose PathoPolyp-diff, a novel diffusion
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based framework that generates a wide range of colonoscopy image types covering differ-

ent pathologies, imaging modalities and quality. This model aims to assist endoscopists in

better-automated diagnosis, as the current methods mainly rely on a single imaging modal-

ity. A generative model, which can generate a wide range of image classes, generally requires

a well-designed dataset with comprehensive annotations that are essential for training. This

ensures they can grasp intricate patterns linked to polyp-characterizing features and their

associated pathological conditions. However, obtaining labels for each subtask, considering

pathology, quality, and imaging modality, could be significantly expensive. Therefore, in this

framework, we develop a method to perform cross-class label learning that helps leverage

annotations from other classes and produce synthetic images representing a combination of

text prompts. This approach ensures obtaining synthetic polyp images with different patho-

logical characteristics (adenoma/hyperplastic) captured with different imaging techniques

(WLI/NBI). This diverse set is obtained while maintaining the quality, overcoming the gen-

eral artifacts present in a colonoscopy video: ghost colors, motion blur, low illumination,

and fecal depositions.

6.1.1 Contributions

The main contributions of this chapter are summarized below:

• ControlPolypNet (A diffusion model with image-based control mechanism)

– Framework with novel user-configurable input control map: We pro-

pose a novel approach using user-configurable input control to generate polyps

while leveraging the largely accessible non-polyp frames. This control map can

control the endoluminal objects and polyp generation (in terms of shape, size

and location) using customized masks and non-polyp frames.

– Additional examination to avoid irrelevant synthetic information: We

employ a detector that verifies the quality of generated polyps and selects clini-

cally appropriate synthetic polyps that carry lesion-characterizing features. The

detector eliminates the risk of adding noise and irrelevant information to the

generated data.

– Improved polyp segmentation performance: We report enhanced polyp

segmentation performance by augmenting two publicly available datasets using

our synthetic images. This has been achieved without additional expensive man-

ual annotation requirements.
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• PathoPolyp-Diff (A diffusion model with text-based control mechanism)

– A novel approach to generate a diverse set of colonoscopy images: We

develop PathoPolyp-Diff, a novel model to generate text-controlled synthetic im-

ages that cover a wide range of categories, including pathology, imaging modali-

ties, and quality. It can generate adenomatous and hyperplastic polyps combined

with the desired imaging modalities, including NBI and WLI.

– Introduced cross-class label learning: We introduce the concept of cross-

class label learning that allows the model to learn labels from different classes,

hence expanding the diversity of data generation and reducing the cumbersome

task of dataset annotation.

6.1.2 Preliminaries

The architecture of the two proposed approaches is inspired by the concepts of Stable

Diffusion Models (SD) and ControlNet. These models are discussed in detail below.

Stable Diffusion Models (SD): SD is a text-to-image model built upon the basic

functionality of Latent Diffusion Models (LDM) [194]. It has been introduced to circumvent

the issue of the high computational requirements of standard Diffusion Models (DM) [186].

This improvement is achieved by executing the diffusion process on latent space instead of

pixel level using an autoencoding procedure. To understand the advantages of using LDM

over DM, some basic details about the two concepts are given below.

Standard DMs: The standard DMs follow a parameterized backward process of a fixed

Markov Chain to gradually denoise a noisy image at. It acts as a sequence of autoencoders

ϵθ(at, t) that serves as a denoising framework to predict the denoised version of at. Here, t

is uniformly sampled between [1, T ′], and T ′ denotes the noise steps. The related objective

can be defined in a refined form as:

LDM := Ea,ϵ,t[∥ϵ − ϵθ(at, t)∥2
2] (6.1)

where ϵ ∼ N (0, 1).

Standard LDMs: These models leverage the ability of encoder and decoder architec-

tures to represent significant information in compressed form and reconstruct it back in its

original form. Such an attempt to use latent space enables the model to focus on important

semantic details and perform efficiently with low computational resources. LDMs also keep

track of time steps ti, further embedded with the U-Net architecture. However, instead of
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directly using an RGB image a ∈ RH×W ×3, it is processed through encoder E to obtain al.

This representation is reconstructed into a′
l using a decoder D. The corresponding objective

is given below:

LLDM := EE(a),ϵ,t[∥ϵ − ϵθ(alt, t)∥2
2] (6.2)

The SD further utilizes a text encoder, which is a pre-trained CLIP [195]. It allows

encoding the text prompts into embeddings. These text embeddings are then fused with the

encoder and decoder of U-Net using cross-attention layers. This cross-attention mechanism

helps condition the model using a text prompt b after processing the embeddings through

an encoder Z.

LLDMb
:= EE(a),b,ϵ,t[∥ϵ − ϵθ(alt, t, Zθ(b))∥2

2] (6.3)

ControlNet: ControlNet is designed to control the diffusion models to enable them

to perform a specific downstream task. It uses an input control map that provides an

opportunity to manipulate the generated output. ControlNet, in its standard form, supports

control maps with different conditions, such as edge maps, scribbles, segmentation maps,

pose, etc. It preserves the weights of the SD by making a locked copy of it. Simultaneously, it

uses a trainable copy with task-specific conditional control for a downstream task. These two

copies are connected via 1 × 1 zero convolution layers with both bias and weight initialized

as zero. The convolutional weights of these layers gradually optimize starting from zero,

which gives the benefit of no extra added noise with faster training at the same time. Let

parameters of locked copy be denoted as ϕ and those of trainable copy as ϕc. If zero

convolution operation is C(.; .) which uses two instances of parameters {ϕc1, ϕc2}, then

combining it into the ControlNet network blocks H(.; .) could be represented as:

dc = H(e, ϕ) + C(H(e + C(c, ϕc1); ϕc); ϕc1) (6.4)

where dc is the output and e is the input feature map. The overall objective after including

the downstream task can be modified as shown below:

LCN := EE(a),b,b′,ϵ,t[∥ϵ − ϵθ(alt, t, Zθ(b), Zθ(b′))∥2
2] (6.5)

where Zθ(b′) is the intermediate representation of the task-specific conditional text prompt.
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6.2 ControlPolypNet

6.2.1 Methodology

Overview

The objective of the proposed method is to generate polyp frames to increase the sam-

ple count for training and enhance the performance of deep learning models. Given a set

of images with two subsets, polyp/positive (P ) and non-polyp/negative (N), our goal is

to utilize images in N to expand the subset P . This is achieved by transforming images

N = {n1, n2, ..., ns} into P ′ = {p′
i|p′

i is similar in distribution to pj}, where pj ∈ P . More-

over, during this transformation, polyp shape, location, and size are user-configurable and

integrating P ′ with P should diversify the overall set. This signifies that the synthetic polyp

set P ′ should be diverse and possess qualities similar to real images in set P .

Architectural Details

The architectural details of our model ControlPolypNet are depicted in Fig. 6.2. It consists

of three main parts: (a) an SD U-Net architecture loaded with pre-trained weights of SD

v1-5, (b) ControlNet, and (c) YOLOv8, a detector pre-trained on the polyp images. The

decoder part of the SD U-Net is kept unlocked, and only its encoder part is left locked

during the complete training process. This unlocking is done to obtain better performance

on medical imaging tasks like ours, as the initial weights are more inclined toward general

images. Instead of adopting standard control map options presented by ControlNet, we

tailored the input condition map to fit the necessary requirements.

We utilized the negative colonoscopy frames, which are relatively easily accessible in

sufficiently large amounts. We overlapped these frames with random custom masks to

obtain N ′, which are the regions targeted for polyp generation to obtain P ′. To make the

model learn the mapping N ′ → P ′, we prepared our training set such that initially, it learns

M → P , where M is obtained by overlapping P with its binary mask ground truth. By

providing P as the target image and M as the source image (control image), the model

learns the mapping M → P . While learning this mapping, the model learns the complex

patterns in data, and when given a random mask over non-polyp image n′
i, it transforms

it into p′
i when given the text prompt “polyp”. This mapping allows the usage of custom

masks with controllable polyp positions and shapes. Also, this reduces the probability of

obtaining unwanted structures or noise in the background/endoluminal scene.

When given a polyp image pi, the standard diffusion process progressively adds noise
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Figure 6.2: The proposed framework uses custom-masked images as control input with a
“polyp” text prompt. The below pipeline shows the pre-processing of negative samples to
remove uninformative frames and then using custom masks to generate polyps during the
evaluation phase of ControlPolypNet. The complete process helps to enhance the segmen-
tation task by providing the possibility of data augmentation, which ultimately validates
the significance of synthetic polyp images.

to the image in its latent representation pl to obtain a noisy version plt. This input is

combined with conditions in the form of mask-overlapped image mi ∈ M and text prompt b,

i.e., “polyp”. mi is further converted into an intermediate representation mf by performing

encoding on mi to match the input size of SD. The objective of ControlPolypNet can be

defined as:

LCP N := EE(pi),b,mf ,ϵ,t[∥ϵ − ϵθ(plt, t, Zθ(b), mf )∥2
2] (6.6)

The proposed input control ensures that the other endoluminal scene remains intact,

which could be beneficial to capturing and differentiating polyp regions during downstream

tasks. As stated in [16], considering some regions from background aids in improving

classification results. This outcome could be attributed to polyps exhibiting a distinct color
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and texture, setting them apart from the normal mucosal regions. Unwanted noise and

irrelevant objects in the generated outputs create unrealistic data that could deviate the

segmentation models from the intended tasks. Therefore, we utilized the negative frames

instead of relying on the standard binary masks. However, these negative frames can have

some artifacts, as general colonoscopy videos are prone to motion blur, interlacing, ghost

colors, etc. Hence, we used an approach given in Chapter 1 to eliminate such uninformative

negative frames before using them for the translation.

Pathological Validation Setup: Although generative models are now common in the

medical imaging domain, various studies [196, 197] show that they are liable to generate

unrealistic medical conditions or structures. As pathological patterns are significantly cru-

cial, we performed an elimination step instead of directly integrating them into the segmen-

tation task training. This elimination step validates the presence of lesion-characterizing

features in the synthetic images and simultaneously prepares a clinically valid set of images

appropriate for data augmentation. We integrated a polyp detector, YOLOv8 [198], in the

proposed framework for this process. This detector is pre-trained on polyp images with a

confidence score set in the range of 0.7 and 0.8 for inference. This integration helps choose

only valid, visually appealing frames with lesion-characterizing features. We used these

selected generated polyp frames to augment the training set for the segmentation task.

6.2.2 Experiments and Results

Dataset Details and Training Settings

We used three publicly available datasets, namely, SUN Database [95] (49,136 polyp frames

and 109,554 non-polyp frames), CVC-ClinicDB [10] (612 polyp images) and Kvasir-SEG [9]

(1000 polyp images), to validate the performance of our proposed framework. The seg-

mentation ground truth of the SUN Database, released in the form of SUN-SEG [199], is

also used. The SUN Database and SUN-SEG are used in the training of ControlPolypNet,

whereas CVC-ClinicDB and Kvasir-SEG are used to validate generated image quality in the

downstream tasks of polyp segmentation.

During ControlPolypNet training, we used 38,284 polyp images in the train set, and the

rest were used for validation purposes. To translate non-polyp images into polyp images, we

custom-masked 10,000 negative images obtained after pre-processing five non-polyp video

sequence cases with the informative/uninformative frame detector given by [200]. The

official split of CVC-ClinicDB and Kvasir-SEG is used. The implementation is done us-

ing PyTorch and PyTorch lightning frameworks. ControlPolypNet and downstream tasks
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Figure 6.3: Epoch-wise sample images along with their corresponding negative images and
input control images (custom-masked negative samples). E stands for epochs.

Table 6.1: Quantitative comparison of synthetic polyp images with different sets of real
images over different epochs. Bold values represent the ‘best’ metrics score, and E, P, NP
stand for ‘epoch’, ‘polyp’, and ‘non-polyp’. ↓ and ↑ denote ‘lower is best’ and ‘higher is
best’, respectively.

Metrics Trend Comparsion (with) E-15 E-25 E-35 E-45 E-55

FID ↓ Real P images 104.52 106.70 102.46 99.35 94.07
Real NP images 92.10 93.77 91.16 89.22 82.95

PSNR ↑ Masked NP images 67.70 67.22 67.66 67.57 68.39
SSIM ↑ Masked NP images 0.9987 0.9984 0.9986 0.9986 0.9988

training are executed using NVIDIA A100 and NVIDIA Titan-Xp GPU, respectively. Con-

trolPolypNet is trained for 55 epochs with a batch size of 32 and a learning rate of 2e−6.

Evaluation Metrics

The quality of the generated images is accessed using three metrics: FID, PSNR, and SSIM.

FID quantifies the quality of synthetic data for realism and diversity. PSNR is focused on

the reconstruction quality of images, and SSIM quantifies the similarity between two images.

Additionally, we used task-specific metrics for segmentation which include precision, recall,

F1-score and JI. The JI determines the overlap between the ground truth and prediction

masks.

133



6.2. CONTROLPOLYPNET

(a)
(b) (c) (d) (e)

Figure 6.4: (a) Two-dimensional t-SNE embedding pertaining to real polyp images, and images
generated by Pix2Pix and ControlPolypNet, (b)-(e) show negative images, masked negative images,
synthetic images obtained using Pix2Pix and ControlPolypNet, respectively.

Performance Evaluation

We evaluated our model on different epochs and examined the quality of the generated im-

ages using the quality assessment metrics. The related results are shown in Table 6.1. While

using FID, we considered two comparison scenarios: synthetic vs. real polyp images and

synthetic vs. real non-polyp images. As expected, the latter case presented a better score

because the related non-polyp images are translated into synthetic polyp with background

details substantially preserved. It can be observed that the quality of images in both cases

gradually increased with the epoch counts. Due to the high computational requirements

of diffusion models, we considered training till the point where visually appealing results

were obtained. We further explored the structure and information-preserving ability of our

approach using PSNR and SSIM. We masked the generated images’ polyp region for this

assessment and compared them with the masked non-polyp images. The results show that

the quality of the endoluminal scene is satisfactorily preserved and is improved with the

increasing epochs.

Besides quantitative outcomes, we observed the qualitative results, shown in Fig. 6.3.

In the initial epochs, especially in epoch 15, the image details are not precisely generated

and are obstructed by artifacts. Moreover, the color transfer ability from the input control

image to synthetic images is higher in the later epochs. The randomness in polyp color and

close mapping of the polyp shape and its location with the custom mask demonstrates our

approach’s potential to achieve data diversity and successful control over synthetic polyp

shape and location. Although the results demonstrate the scope of improvement in color-

preservation ability, structural-preservation outcomes are impressive. Further, we compared

134



6. SYNTHETIC DATASET CREATION: TOWARDS IMPROVED POLYP
SEGMENTATION AND CLASSIFICATION

Table 6.2: Performance of the U-Net [66], ColonSegNet [62], and TransNetR[202] models on
the downstream task of polyp segmentation. RI stands for Real Images. The best results
are highlighted in bold and the second best are underlined.

Dataset: CVC-ClinicDB

Training sample count (x = 490) U-Net ColonSegNet TransNetR
Jaccard Recall Precision F1-score Jaccard Recall Precision F1-score Jaccard Recall Precision F1-score

RI (x) 0.4682 0.5211 0.8509 0.5523 0.3429 0.3834 0.8256 0.4424 0.6952 0.7431 0.9399 0.7737
RI + Random Rotation (x+x) 0.4748 0.5244 0.8909 0.5568 0.4352 0.4859 0.8161 0.5312 0.7015 0.7450 0.9468 0.7805
RI + Gaussian Blur (x+x) 0.4447 0.4809 0.8705 0.5215 0.3467 0.3779 0.8291 0.4453 0.6960 0.7433 0.9357 0.7762
RI + Vertical Flip (x+x) 0.4589 0.5027 0.9218 0.5354 0.3666 0.3976 0.8412 0.4585 0.6675 0.7094 0.9283 0.7442
RI + Horizontal Flip (x+x) 0.4348 0.5138 0.8447 0.5198 0.4296 0.4696 0.8991 0.5080 0.6991 0.7581 0.9279 0.7823
RI + Elastic Transformation (x+x) 0.4296 0.4696 0.8991 0.5080 0.3867 0.4275 0.8019 0.4874 0.5907 0.6197 0.9439 0.6691
RI + Pix2Pix Synthetic Images (x+x) 0.4493 0.4964 0.7917 0.5474 0.3872 0.4019 0.8343 0.4661 0.7076 0.7406 0.9469 0.7872
RI + ControlPolypNet Synthetic Images (x+x) 0.5356 0.5781 0.9096 0.6232 0.4360 0.4831 0.8211 0.5359 0.7191 0.7731 0.9366 0.7967
RI + Pix2Pix Synthetic Images (x+2x) 0.3363 0.4323 0.6736 0.4429 0.4196 0.4465 0.7680 0.5065 0.6953 0.7299 0.9570 0.7719
RI + ControlPolypNet Synthetic Images (x+2x) 0.5424 0.6390 0.8292 0.6365 0.4272 0.4828 0.7782 0.5267 0.7322 0.7837 0.9366 0.8113
RI + Pix2Pix Synthetic Images (x+3x) 0.4763 0.4975 0.8752 0.5570 0.4283 0.4531 0.8683 0.5192 0.6875 0.7174 0.9571 0.7599
RI + ControlPolypNet Synthetic Images (x+3x) 0.5375 0.5802 0.8660 0.6149 0.4726 0.5432 0.8093 0.5760 0.6900 0.7287 0.9505 0.7628
RI + 5 aug. (x+5x) 0.5518 0.6252 0.9002 0.6353 0.4928 0.5307 0.8623 0.5855 0.7214 0.7639 0.9426 0.7963
RI + 5 aug. + ControlPolypNet Synthetic Images
(x+5x+2x) 0.6298 0.7132 0.8900 0.7160 0.5928 0.6308 0.9167 0.6874 0.7486 0.7968 0.9365 0.8198

Dataset: Kvasir-SEG

Training sample count (x= 880) U-Net ColonSegNet TransNetR
Jaccard Recall Precision F1-score Jaccard Recall Precision F1-score Jaccard Recall Precision F1-score

RI (x) 0.6668 0.7796 0.8420 0.7508 0.5782 0.7148 0.7610 0.6869 0.7454 0.8273 0.9058 0.8267
RI + Random Rotation (x+x) 0.6852 0.7679 0.8702 0.7669 0.6143 0.7280 0.8045 0.7148 0.7469 0.8289 0.9005 0.8298
RI + Gaussian Blur (x+x) 0.6704 0.7736 0.8521 0.7563 0.5677 0.7116 0.7705 0.6793 0.7596 0.8426 0.8956 0.8399
RI + Vertical Flip (x+x) 0.6738 0.7693 0.8614 0.7580 0.6129 0.7504 0.7965 0.7184 0.7749 0.8552 0.8946 0.8501
RI + Horizontal Flip (x+x) 0.6837 0.7984 0.8390 0.7743 0.6039 0.7202 0.8105 0.7115 0.7629 0.8357 0.9120 0.8370
RI + Elastic Transformation (x+x) 0.6667 0.7996 0.8239 0.7538 0.6163 0.7399 0.8088 0.7208 0.7369 0.8265 0.8806 0.8160
RI + Pix2Pix Synthetic Images (x+x) 0.6550 0.7516 0.8353 0.7357 0.5757 0.6976 0.7920 0.6824 0.7659 0.8482 0.9020 0.8425
RI + ControlPolypNet Synthetic Images (x+x) 0.6795 0.8032 0.8498 0.7688 0.6262 0.7532 0.8098 0.7345 0.7579 0.8497 0.8801 0.8373
RI + Pix2Pix Synthetic Images (x+2x) 0.6127 0.7258 0.8103 0.7060 0.5820 0.7123 0.7783 0.6887 0.7651 0.8539 0.8984 0.8439
RI + ControlPolypNet Synthetic Images (x+2x) 0.6680 0.8465 0.7971 0.7640 0.6065 0.7508 0.7913 0.7209 0.7797 0.8665 0.9010 0.8523
RI + Pix2Pix Synthetic Images (x+3x) 0.6580 0.7624 0.8440 0.7441 0.6048 0.7353 0.7916 0.7113 0.7747 0.8524 0.9109 0.8497
RI + ControlPolypNet Synthetic Images (x+3x) 0.6997 0.8331 0.8464 0.7879 0.6326 0.7603 0.8121 0.7379 0.7760 0.8677 0.8938 0.8517
RI + Pix2Pix Synthetic Images (x+4x) 0.6720 0.7665 0.8633 0.7564 0.6021 0.7231 0.7961 0.6986 0.7346 0.8550 0.8441 0.8208
RI + ControlPolypNet Synthetic Images (x+4x) 0.6750 0.8126 0.8339 0.7651 0.6341 0.7835 0.7967 0.7440 0.7432 0.8139 0.9039 0.8245
RI + 5 aug. (x+5x) 0.7069 0.8131 0.8465 0.7912 0.6958 0.8086 0.8515 0.7907 0.7960 0.8518 0.9366 0.8641
RI + 5 aug. + ControlPolypNet Synthetic Images
(x+5x+3x) 0.7301 0.8368 0.8657 0.8153 0.7215 0.8191 0.8638 0.8129 0.7861 0.8622 0.9024 0.8584

the outcomes of ControlPolypNet with the synthetic images generated using Pix2Pix [201].

We selected Pix2Pix because it uses a mechanism to translate images from one domain to

another, suitable for our objective to translate N ′ → P ′. A qualitative comparison is shown

in Fig. 6.4 where the images in Fig. 6.4(b)-(e) clearly show that although Pix2Pix retained

the polyp location and shape, more realistic polyp images with texture were generated by

ControlPolypNet while preserving the shape and location. However, compared to our model,

Pix2Pix was better at retaining the original colors of background regions. Additionally, we

generated a t-SNE plot (shown in Fig. 6.4(a)) using a DenseNet-201 that is trained to

differentiate polyp and non-polyp images [200]. Plotting feature embeddings of real polyp

images and synthetic polyp images generated by Pix2Pix and ControlPolypNet clearly depict

the closeness of our model’s outcomes with real images. Contrarily, generated images of

Pix2Pix barely show any overlap with real data.

Clinical Significance Validation and Downstream Tasks Evaluation

The clinical significance validation step employs a detector, as discussed in Section 6.2.1.

The synthetic images that were detected by YOLOv8 with confidence scores in the range of

0.7 and 0.8 are used to augment the dataset of the downstream task. This approach of using
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synthetic images to augment medical data provides two-fold benefits: a) It validates the

quality and clinical significance of the generated data, and b) It allows enhancing segmen-

tation outcomes. We carried out experiments with different proportions of synthetic images

and five general augmentations, namely, random rotation, Gaussian blur, elastic transfor-

mations and horizontal and vertical flips. The associated results are shown in Table 6.2.

We used three state-of-the-art polyp segmentation models, U-Net [66], ColonSegNet [62],

and TransNetR [202] to experiment with different data augmentation combinations.

(a) Impact of different data augmentation ratios. The polyp
segmentation performance achieves a significant increase with
small ratios, and then with increasing ratios, the improve-
ment is either minimal or absent.

(b) Comparison between the two average JI obtained using
conventional augmentations with and without images gener-
ated by ControlPolypNet.

Figure 6.5: Comparative analysis of average JI obtained after computing mean over all three
segmentation models in different scenarios.
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Figure 6.6: Qualitative results of polyp segmentation outcomes. The figure illustrates that in most
cases when ControlPolypNet’s output is combined with conventional augmentation techniques, it
predicts masks closer to ground truth. Also, the mask obtained using ControlPolypNet’s generated
images performs better than synthetic images obtained using Pix2Pix.

Table 6.3: Quality assessment of generated images using Pix2Pix and ControlPolypNet.
This assessment is conducted using U-Net [66], ColonSegNet [62], and TransNetR[202] mod-
els trained on real images. The best results are highlighted in bold.

Training
Dataset

Generation
Method

U-Net ColonSegNet TransNetR
Jaccard Recall Precision F1-score Jaccard Recall Precision F1-score Jaccard Recall Precision F1-score

CVC-ClinicDB Pix2Pix 0.2048 0.6943 0.2562 0.3054 0.2323 0.7129 0.2934 0.3414 0.4517 0.6510 0.6219 0.5662
ControlPolypNet 0.2613 0.7792 0.3088 0.3802 0.2633 0.7353 0.3328 0.3876 0.4761 0.7729 0.5991 0.6149

Kvasir-SEG Pix2Pix 0.5802 0.6994 0.7450 0.6597 0.4778 0.7508 0.5814 0.5814 0.6037 0.6414 0.9109 0.6657
ControlPolypNet 0.6285 0.8128 0.7394 0.7362 0.4039 0.7973 0.4842 0.5354 0.7580 0.8537 0.8749 0.8454

During augmentation, we increased the ratio of synthetic images as a multiple of x,

where x is the original training set size. It can be observed that adding synthetic images

in x proportion performs comparable to adding a single conventional augmentation. We

gradually increased synthetic images in ix proportion, where i={1,2,3,4}. The results show

that the polyp segmentation performance achieves a significant increase with small ratios,

and then, with increasing ratios, the improvement is either minimal or absent. The same

can be inferred from Fig. 6.5(a). The value of i is incremented until the metrics values

start to decrease. The proportion ix that performs the best is combined further with con-

ventional augmentations. The outcomes from this integration show that synthetic images

complement conventional augmentation techniques as the average performance increased

compared to cases where only conventional augmentations were used. Additionally, we com-

pared ControlPolypNet with Pix2Pix using the same proportion of their generated data for

augmentation. An average Jaccard index over all the different proportions (x, 2x, 3x or 4x)

is 5.61% and 2.3% higher using ControlPolypNet compared to Pix2Pix on CVC-ClinicDB

and Kvasir-SEG, respectively. This increase can be observed in Fig. 6.5(b). Moreover,

the individual performance with different data proportions and models has reported en-
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hanced performance using our augmentation approach. It is noteworthy that even though

the synthetic images are generated using a different larger dataset, they are performing

effectively on a small out-of-distribution dataset. This observation supports both quality

and diverse information possessed by the generated images. Adopting traditional augmen-

tation techniques is limited by the actual size of the dataset as they can only be scaled

up by its multiple. Also, this scaling up produces redundant information in some form.

Contrarily, adding our diverse set of synthetic images can complement this information and

is independent of real dataset size, thus providing enhanced segmentation outcomes. These

results are supported by some qualitative outcomes, shown in Fig. 6.6. It can be observed

that, in most cases, combining conventional techniques with ControlPolypNet’s synthetic

data provides results closer to the ground truth. We further tested the synthetic images

obtained using ControlPolypNet and Pix2Pix using the three segmentation models (trained

using only real data). The results shown in Table 6.3 signify that our proposed approach

generates more realistic images with polyp-specific characteristics.

Although our proposed approach provides an opportunity to obtain customized polyp

images using negative images, some lingering gaps still need to be addressed. Controlling

polyp location, size, and shape enables us to obtain diverse polyp images. However, control

over colors remains unexplored. In medical images, color is one of the criteria considered

for domain shift issues, as color variations across inter-hospital and inter-patient data bring

performance drops in segmentation. Control over colonoscopy image color can expand the

possibility of domain transfer and even enhance segmentation outcomes.

6.3 PathoPolyp-Diff

6.3.1 Methodology

An overview of our approach is illustrated in Fig. 6.7. Our model PathoPolyp-Diff utilizes

dual-stage training. The two stages, Step-I and Step-II, aim at generating colonoscopy im-

ages with diverse polyp types in different imaging modalities. They perform complementary

tasks, and the difference between the two lies in their training process. The Step-I network

distils knowledge into the Step-II model in the form of a large set of features that enables it

to differentiate between polyp and non-polyp characteristics and further helps to generate

images for cross-class labels. Complementary to it, the training process in Step-II allows

the model to learn pathological details and different imaging modality-related patterns.
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Step-I: The Step-I uses a pre-trained SD v1-41 model and further fine-tunes it with

some text conditions to generate desired colonoscopy images. This stage is focused on

developing a model that learns the basic features to differentiate polyp and non-polyp

characteristics. In the process, text prompts are used as the conditioning mechanism to

control the model output. These text prompts comprise the embeddings pertaining to the

strings presented at the first to third levels in Fig. 6.8, starting from the top. During the

fine-tuning of the model, a relatively large-scale dataset is used with polyp/non-polyp classes

wherein the polyps have an additional annotation of low-quality/artifacts (uninformative)

and good-quality/clear (informative). This process allows the model to generate polyp and

non-polyp images with specific quality criteria.

Step-II: In this stage, the pre-trained model of Step-I is used with the first block

locked. The other blocks are further fine-tuned on our desired text conditioning. These

conditions are shown in the fourth and fifth levels of Fig. 6.8. For a successful implementa-

tion of cross-class label learning, we undersampled the non-polyp set and informative set of

polyps and included them in the training iterations of Step-II. Presenting these undersam-

pled images allows the model to retain the features pertaining to Step-I without undergoing

overfitting with the new dataset.

6.3.2 Results

Dataset Details and Training Settings

We used two publicly available datasets, namely, SUN Database [95, 203] and ISIT-UMR

Colonoscopy Dataset [96], to evaluate the performance of our proposed model. SUN

Database comprises 49,136 polyp frames and 109,554 non-polyp frames, where polyp frames

have additional annotations for informative/uninformative classes (annotated in Chapter 1).

The dataset consists of 31% uninformative polyp frames and is used to train our model in

step-I. ISIT-UMR Colonoscopy Dataset is an NBI and WLI video dataset and consists of

labels for hyperplastic, adenoma and sessile classes. We used the first two of these classes

to train our model in step-II. The same dataset is used for validation purposes during clas-

sification. We converted 40 adenoma and 21 hyperplastic video streams of each NBI and

WLI modalities into frames. 29 adenoma and 15 hyperplastic videos of both modalities are

used for training PathoPolyp-Diff. During the classification task, 15 videos and 6 videos

(2281 frames of adenoma class, 1618 frames of hyperplastic class) of each pathology and

modality are used in the train set and test set, respectively.
1https://github.com/CompVis/stable-diffusion
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Figure 6.7: Overview of the proposed framework. It consists of two steps and uses various
text conditioning to control the generation process. In Step-II, some undersampled data
from Step-I is used for a smoother learning process. Also, the first block of U-Net is kept
locked in the second step. The performance of the proposed model is validated using a
classification process which uses a combination of real and synthetic images in different
proportions.

During PathoPolyp-Diff training in Step-I, a pre-trained Stable Diffusion v1-4 model

was loaded which was further fine-tuned on the SUN Database with a learning rate, batch

size and resolution set to 1e-06, 15, and 512, respectively. The best model chosen for

subsequent fine-tuning in Step-II was identified after 8,000 iterations. In step-II, ISIT-

UMR Colonoscopy Dataset is used for training along with the same learning rate and

one block of U-Net locked. All the implementations are carried out using the PyTorch

framework and experiments are executed on NVIDIA A100 and NVIDIA Titan-Xp GPU

for PathoPolyp-Diff and classification tasks, respectively.

Evaluation Metrics: In this work, we adopted some standard metrics used for clas-

sification. It includes precision, recall, F1-score, and BA. The first three are commonly used

to evaluate any classification model. The last metric, i.e. BA, is generally used when an
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Figure 6.8: Flowchart depicting the different combinations of text prompt and cross-class
labels used to generate images. The solid arrows denote the labels already present in the
dataset, whereas the dashed arrows represent the labels learnt from other classes (cross-class
labels). Each number on a solid/dashed line represents the combination of strings used to
form tokens for text prompts used in training/inference. For instance, following number
‘8’, we obtain the text prompt “colonoscopy image with a hyperplastic polyp, narrow band
imaging, good quality, clear”, where “good quality, clear" are part of indirectly inferred
tokens and other are already present in the training annotations.

imbalance is encountered in data distribution, and the objective focuses on both minority

and majority classes with equal importance during evaluation. This scenario aligns with

our case, where we consider both adenomatous and hyperplastic classes to be equally im-

portant, as the clinical treatments depend on the diagnosed pathology class. The BA can

be defined as an arithmetic mean of specificity (true negative rate) and sensitivity (true

positive rate). In addition, we used Kernel Inception Index (KID) [204] for quality assess-

ment of the generated images. It quantifies the dissimilarity between the generated and real

data distributions.

Model Performance

Step-I: To evaluate the performance of our model in generating polyp and non-polyp

images and to select the best model for the subsequent training process, we used four

assessment metrics, namely, KID, precision, recall, and F1-score. Initially, we trained the
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Table 6.4: Iteration-wise quality assessment of generated images in Step-I. This assessment
is done using KID (similarity with real images), precision, recall, and F1-score (polyp/non-
polyp characterizing features). ↓ and ↑ denote ‘lower is best’ and ‘higher is best’, respec-
tively.

IterationsPrompt Metrics Behavior 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Precision ↑ 0.8671 0.9085 0.9617 0.9720 0.9850 0.9858 0.9961 0.9859 0.9761 0.9899

Recall ↑ 0.9567 0.9933 0.8367 0.9267 0.8733 0.9267 0.8467 0.9300 0.9533 0.9800colonoscopy image with
polyp, good-quality, clear F1-score ↑ 0.9097 0.9490 0.8948 0.9488 0.9258 0.9553 0.9153 0.9571 0.9646 0.9849

KID ↓ 0.045 0.059 0.055 0.075 0.053 0.071 0.048 0.051 0.049 0.064
colonoscopy image
without polyp KID ↓ 0.027 0.041 0.037 0.034 0.067 0.051 0.051 0.045 0.055 0.057

Average KID ↓ 0.036 0.05 0.046 0.0545 0.06 0.061 0.0495 0.048 0.052 0.0605

model for 10,000 iterations and selected the model after every 1,000 iterations for testing.

The corresponding assessment results are given in Table 6.4. As our main focus is to

obtain good-quality polyp images, we generated and validated images with substring “good-

quality, clear”. Additionally, we used a DenseNet-201 [113], pre-trained to detect polyp

frames (proposed in Chapter 3), to validate the polyp-characterizing features existing in

the generated polyp images. Therefore, we tested generated polyp and non-polyp images

using DenseNet-201. It can be observed that the lowest (also the best) average KID of 0.036

is obtained at 1, 000th iteration; however, it reported a low F1-score. Similar outcomes are

achieved with the next lowest KID. Contrarily, the highest F1-score in 10, 000th iteration is

obtained with 0.0605 KID, the second lowest among all iterations.

To study the reasoning behind the contradictory results, we plotted t-SNE embeddings,

shown in Fig. 6.9. It can be observed that in the initial iterations (1,000 to 5000), the polyp

and non-polyp features of synthetic data are not entirely distinct; therefore, the associated

F1-scores are relatively low. At the same time, they are finely overlapping with their real

counterparts, therefore resulting in lower KID. To establish a trade-off between the KID

and F1-score, we leveraged the visualization capabilities of t-SNE plots. Finally, the model

at 8000th iteration is selected as its KID score (in terms of all categories, i.e., polyp, non-

polyp and average) is higher than the average score computed over each corresponding KID

category. For instance, the average KIDpolyp is calculated as KIDpolyp1k
+ KIDpolyp2k

+

KIDpolyp3k
...+KIDpolyp10k

, which comes out to be 0.57. It can be noted that KIDpolyp8k
<

KIDpolyp, and a similar observation can be identified in other categories. Moreover, the

t-SNE plots signify that after 8000th iteration, the synthetic polyp and non-polyp features

start to deviate from the feature space, representing their real counterparts. As one class of

synthetic features is still far apart from the other class of synthetic features, the F1-score

is higher at the last iterations.

Impact of Negative Prompt: Negative prompt is an additional parameter which
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(a) Iteration-1K (b) Iteration-2K (c) Iteration-3K

(d) Iteration-4K (e) Iteration-5K (f) Iteration-6K

(g) Iteration-7K (h) Iteration-8K (i) Iteration-9K

(j) Iteration-10K

Figure 6.9: Iteration-wise two-dimensional t-SNE embeddings to visualize the data points pertain-
ing to synthetic and real polyp/non-polyp images.

guides the process of generating synthetic images not to include some specific objects or

characteristics. It can assist in eliminating unwanted elements from the synthetic images.

Hence, to further improve the quality of generated images, we evaluated our model on

various negative prompts, including “low-quality”, “blur” and “low-quality, blur”. This

approach is experimented with both polyp and non-polyp frames, and quality assessment is

performed using the fast Fourier transform (FFT). The results shown in Fig. 6.10 present a

significant improvement when a normal text prompt is combined with our specific quality-

based negative prompt. The best combination is achieved when we club text prompt with

“blur, low-quality”. Therefore, the subsequent experiments include this specific negative
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Figure 6.10: Quality assessment for validating the impact of negative prompt using FFT.

Table 6.5: Class-wise quality assessment of generated images after every 1000 iterations
during Step-II. ↑ denotes ‘higher is best’.

IterationsClass Metrics Behavior 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
Precision ↑ 0.50 0.54 0.57 0.65 0.69 0.71 0.65 0.59 0.61 0.58

Recall ↑ 0.99 0.98 0.99 0.99 0.98 0.97 0.98 0.99 0.99 0.99Adenoma
F1-score ↑ 0.67 0.69 0.73 0.79 0.81 0.82 0.78 0.74 0.76 0.73
Precision ↑ 0.75 0.90 0.98 0.97 0.97 0.96 0.95 0.96 0.98 0.95

Recall ↑ 0.02 0.15 0.26 0.48 0.55 0.61 0.48 0.33 0.37 0.29Hyperplastic
F1-score ↑ 0.04 0.26 0.42 0.64 0.70 0.74 0.64 0.49 0.54 0.45

prompt to enhance quality, as it helps the model avoid generating blurred or low-quality

images.

Step-II: To assess the quality of images generated in Step-II, specifically in terms of patho-

logical characteristics, we performed binary classification. This binary classification is done

for two different purposes: (a) To select the best model among different iterations (valida-

tion similar to Step-I) and (b) To verify how the synthetic images impact the classification

performance if used for augmentation. In the first case, we used a pre-trained DenseNet-

201 model intended to classify adenomatous and hyperplastic classes from WLI and NBI

modalities. The synthetic images generated from every 1000th epoch are evaluated using

this model and the related results are shown in Table 6.5. Similar to Step-I, we plotted

t-SNE feature embeddings in Step-II, to analyze the overlay and proximity of synthetic fea-

tures to real images. As illustrated in Fig. 6.11, in the initial epochs, the pathology-specific

features are not learnt, and hence, a significant overlap is observed among the generated

images from different classes. It can also be inferred from the findings presented in Table

6.5, where DenseNet-201 exhibited significant challenges in effectively distinguishing be-

tween the two classes until 3000th iteration. These outcomes are further supported by the

confusion matrices in Fig. 6.12. These matrices demonstrate the biased shift of the model
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(a) Iteration-1K (b) Iteration-2K (c) Iteration-3K

(d) Iteration-4K (e) Iteration-5K (f) Iteration-6K

(g) Iteration-7K (h) Iteration-8K (i) Iteration-9K

(j) Iteration-10K

Figure 6.11: Iteration-wise two-dimensional t-SNE embeddings to visualize the data points pertain-
ing to synthetic and real adenomatous/hyperplastic images involving NBI/WLI imaging modalities.

Figure 6.12: Confusion matrices to validate the iteration-wise performance of our model in
generating adenomatous/hyperplastic polyp images with NBI/WLI imaging modalities.

towards the adenomatous class, which gradually improves with increasing epochs and, after

some epochs, again shows the same biased performance. This trend is observed due to the
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deviation of synthetic data from the expected pathological behavior as we train the model

after a certain number of iterations. This analysis is based on the last few plots in Fig.

6.11. Considering the results in Table 6.5, Fig. 6.11, and Fig. 6.12, we selected the model

at 6000th iteration which reports the highest F1-score for both the classes (adenoma: 0.82,

hyperplastic: 0.74).

In the second case (i.e. case (b)), we used the synthetic images to augment the real

data. The effectiveness of using synthetic images is validated using a binary classifier,

EfficientNet-B0 [184]. In addition to validating the synthetic data inclusion, we also com-

pared the quality of synthetic images obtained using two different text prompts. Table 6.6

shows the associated frame-wise results with various data proportions. Starting with real

data samples of 16, 32 and 64 per video, we subsequently increased the sample count by

adding synthetic images in ix proportion, where i = {1, 2, 3}. This procedure is followed for

‘A’ and ‘B’ text prompts, which can be defined as “colonoscopy image with p_type polyp,

p_mod” and “colonoscopy image with p_type polyp, p_mod, good-quality, clear”, respec-

tively where p_type denote adenomatous/hyperplastic and p_mod denote NBI/WLI. It

is noteworthy that the label “good-quality, clear” used in the text prompt ‘B’ is not directly

related to the training samples provided to PathoPolyp-Diff during Step-II; instead, they

are learnt from a different dataset through cross-class label learning during Step-I. The

comparative analysis of synthetic images pertaining to the two text prompts aims to assess

the effectiveness of cross-class label learning. As shown in Table 6.6, with 16 real images per

video, adding an equal number of synthetic images improves the frame-wise BA by 1.14% to

4.75% with NBI and WLI. A similar increase of 2.66% to 3.93% is reported when the ratio

of synthetic data is doubled. With a further increase, i.e., when the proportion of synthetic

data is three times, the results are enhanced by up to 7.91%. However, with 32 or 64 real

images per video, the performance increase is relatively less significant and limited to about

3.5%. Therefore, it can be inferred that a relatively significant performance gain is achieved

when a substantially small real dataset is merged with synthetic data. Further increasing

the real dataset shows comparatively less improvement (without a monotonic trend) with

a similar data augmentation approach.

Impact of Cross-class Label Learning: We further performed validation and anal-

ysis for the cross-label learning approach. It can be observed that in most cases, the BA and

class-wise F1-scores using text prompt ‘B’ are comparatively higher than that of text prompt

A. Some notable improvements in BA include 0.6192 to 0.6614 (difference of +4.22%, 95%

CI: 1.5%, 6.91%, p-value = 0.0068) using 64 real samples per video with an equal proportion

146



6. SYNTHETIC DATASET CREATION: TOWARDS IMPROVED POLYP
SEGMENTATION AND CLASSIFICATION

of synthetic data, 0.5561 to 0.6254 (difference of +6.93%, 95% CI: 5.01%, 8.85%, p-value

< 0.0001 ) using 16 real samples per video with two times samples of synthetic data, and

0.6228 to 0.6983 (difference of +7.55%, 95% CI: 2.88%, 12.22%, p-value = 0.0058) using

16 real samples per video with three times samples of synthetic data. These outcomes sig-

nify that the quality of generated data can be improved with variations in the input text

prompts. Moreover, the labels used in these text prompts can be indirectly inferred from

other classes, thus reducing the requirements of annotated data for each scenario.

Table 6.6: Classification results using different proportions of real and synthetic images.
Text prompt Aand Bstand for “colonoscopy image with p_type polyp, p_mod” and
“colonoscopy image with p_type polyp, p_mod, good-quality, clear”, respectively, where
p_type denote adenomatous/hyperplastic and p_mod denote NBI/WLI.

Adenoma HyperplasticImaging
Modality

Training sample count
(Real + Synthetic)

Text
Prompt Precision Recall F1-score Precision Recall F1-score Balanced Accuracy

x - 0.8173±0.026 0.2897±0.035 0.4266±0.037 0.4757±0.009 0.9079±0.020 0.6242±0.007 0.5988±0.012
A 0.7876±0.122 0.3194±0.111 0.4360±0.099 0.4689±0.006 0.8449±0.121 0.6005±0.026 0.5821±0.007x+x
B 0.8146±0.080 0.3295±0.050 0.4671±0.056 0.4853±0.023 0.8910±0.059 0.6281±0.031 0.6102±0.037
A 0.6596±0.020 0.4131±0.025 0.5077±0.021 0.4580±0.012 0.6991±0.029 0.5533±0.016 0.5561±0.015x+2x
B 0.8299±0.042 0.3569±0.032 0.4977±0.027 0.4965±0.007 0.8939±0.040 0.6382±0.012 0.6254±0.011
A 0.7359±0.059 0.3529±0.055 0.4730±0.046 0.4712±0.014 0.8133±0.076 0.5959±0.028 0.5831±0.022

x=16 images
per video

x+3x
B 0.8133±0.113 0.3524±0.047 0.4857±0.027 0.4867±0.010 0.8680±0.097 0.6227±0.033 0.6102±0.025

x - 0.8099±0.083 0.3320±0.036 0.4690±0.040 0.4840±0.020 0.8843±0.068 0.6253±0.032 0.6082±0.034
A 0.7713±0.078 0.3970±0.073 0.5170±0.051 0.4909±0.007 0.8192±0.093 0.6124±0.025 0.6081±0.014x+x
B 0.7634±0.055 0.3980±0.015 0.5222±0.008 0.4917±0.011 0.8221±0.054 0.6151±0.023 0.6101±0.021
A 0.7562±0.029 0.4155±0.024 0.5358±0.022 0.4958±0.012 0.8101±0.033 0.6150±0.017 0.6128±0.017x+2x
B 0.8240±0.066 0.4160±0.041 0.5510±0.035 0.5137±0.018 0.8700±0.064 0.6455±0.028 0.6430±0.029
A 0.7797±0.083 0.3841±0.036 0.5115±0.024 0.4905±0.013 0.8371±0.074 0.6180±0.028 0.6106±0.024

x=32 images
per video

x+3x
B 0.8464±0.090 0.3805±0.043 0.5221±0.040 0.5060±0.020 0.8948±0.068 0.6460±0.030 0.6377±0.031

x - 0.8889±0.035 0.3698±0.022 0.5216±0.019 0.5124±0.005 0.9338±0.025 0.6615±0.007 0.6516±0.008
A 0.7704±0.026 0.4129±0.032 0.5368±0.027 0.4995±0.011 0.8255±0.033 0.6221±0.014 0.6192±0.014x+x
B 0.8463±0.062 0.4405±0.021 0.5780±0.011 0.5277±0.010 0.8823±0.060 0.6601±0.024 0.6614±0.022
A 0.7964±0.031 0.4120±0.016 0.5426±0.011 0.5062±0.007 0.8501±0.034 0.6344±0.014 0.6310±0.013x+2x
B 0.7818±0.056 0.4033±0.013 0.5314±0.014 0.4988±0.013 0.8381±0.051 0.6252±0.024 0.6207±0.023
A 0.8348±0.080 0.4086±0.012 0.5477±0.023 0.5132±0.021 0.8810±0.069 0.6483±0.035 0.6448±0.036

NBI

x=64 images
per video

x+3x
B 0.7900±0.078 0.3922±0.028 0.5218±0.014 0.4959±0.013 0.8447±0.073 0.6245±0.029 0.6185±0.025

x - 0.7856±0.064 0.5689±0.084 0.6583±0.072 0.4237±0.068 0.6695±0.096 0.5176±0.074 0.6192±0.073
A 0.7869±0.057 0.6247±0.058 0.6937±0.031 0.4373±0.041 0.6268±0.129 0.5126±0.062 0.6257±0.051x+x
B 0.8563±0.039 0.5296±0.051 0.6521±0.031 0.4444±0.010 0.8037±0.070 0.5714±0.015 0.6667±0.013
A 0.7709±0.037 0.7551±0.049 0.7616±0.028 0.4944±0.054 0.5144±0.111 0.5013±0.073 0.6348±0.048x+2x
B 0.8385±0.044 0.5635±0.113 0.6658±0.072 0.4504±0.028 0.7534±0.119 0.5593±0.026 0.6585±0.020
A 0.7652±0.017 0.7196±0.052 0.7407±0.028 0.4687±0.029 0.5260±0.066 0.4937±0.035 0.6228±0.023

x=16 images
per video

x+3x
B 0.8621±0.053 0.6302±0.156 0.7154±0.099 0.5079±0.079 0.7665±0.130 0.6010±0.040 0.6983±0.039

x - 0.8460±0.033 0.6760±0.089 0.7475±0.046 0.5188±0.047 0.7291±0.089 0.6018±0.019 0.7026±0.016
A 0.7983±0.030 0.7695±0.089 0.7801±0.034 0.5493±0.050 0.5751±0.126 0.5514±0.046 0.6723±0.024x+x
B 0.8328±0.034 0.7009±0.023 0.7605±0.020 0.5199±0.017 0.6952±0.080 0.5939±0.039 0.6981±0.032
A 0.7868±0.024 0.7011±0.093 0.7395±0.059 0.4920±0.075 0.5957±0.051 0.5351±0.047 0.6484±0.044x+2x
B 0.8454±0.040 0.5983±0.092 0.6963±0.057 0.4728±0.037 0.7591±0.097 0.5793±0.032 0.6787±0.032
A 0.7960±0.015 0.7799±0.089 0.7857±0.045 0.5628±0.079 0.5714±0.068 0.5602±0.029 0.6756±0.025

x=32 images
per video

x+3x
B 0.8542±0.056 0.5664±0.186 0.6626±0.113 0.4701±0.072 0.7675±0.157 0.5696±0.020 0.6670±0.023

x - 0.8007±0.053 0.5690±0.149 0.6574±0.120 0.4432±0.084 0.7023±0.095 0.5389±0.073 0.6357±0.075
A 0.7657±0.035 0.7225±0.066 0.7408±0.019 0.4634±0.018 0.5171±0.139 0.4824±0.073 0.6198±0.038x+x
B 0.8445±0.029 0.4436±0.062 0.5792±0.052 0.4096±0.019 0.8229±0.050 0.5463±0.019 0.6333±0.022
A 0.7767±0.025 0.6606±0.100 0.7107±0.060 0.4570±0.054 0.5928±0.083 0.5112±0.037 0.6267±0.035x+2x
B 0.8183±0.062 0.4888±0.120 0.6016±0.086 0.4086±0.027 0.7499±0.143 0.5247±0.042 0.6194±0.036

WLI

A 0.7559±0.011 0.6762±0.023 0.7135±0.012 0.4343±0.013 0.5320±0.038 0.4778±0.020 0.6041±0.013

x=64 images
per video

x+3x
B 0.8230±0.043 0.5547±0.075 0.6589±0.044 0.4362±0.021 0.7361±0.113 0.5451±0.042 0.6454±0.033

Video-wise Analysis with Statistical Significance Test

A comparative study has been conducted on patient-wise results. Although the training

experiments are performed on the frame level, the inference is computed on both the frame

and video levels. A majority voting scheme has been adopted for such computations. For

instance, a video is labelled as the class ‘adenomatous’ if the majority of frames (> mean

number of total video frames) are predicted as adenomatous. These results are provided
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Figure 6.13: p-value obtained using two-tailed t-test for statistical significance analysis of
video-wise (WLI) outcomes. The values are rounded off to 3 decimal places. The label
names used in rows and columns can be read as “Text Prompt_Sample Count per Video
(Real Image Count + Synthetic Image Count)”.

in the Table 6.7 and Table 6.8. Additionally, a statistical significance test is conducted

using a two-tailed t-test, which signifies the significance of an increase or decrease in video-

wise outcomes and reports if this change is insignificant. This test calculates the p-values

between all possible combinations of the data proportions used in our work. The associated

p-values are depicted in Fig. 6.13 and 6.15. Using the WLI modality, we observed that the

best outcomes are obtained using 32 real images per video, 16 or 32 real images per video
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Training sample count
(Real + Synthetic) Text Prompt Balanced Accuracy

x - 0.6333±0.126
A 0.6±0.137x+x
B 0.7833±0.046
A 0.6167±0.046x+2x
B 0.7167±0.046
A 0.6±0.109

x=16 images
per video

x+3x
B 0.75±0.083

x - 0.7833±0.046
A 0.7167±0.119x+x
B 0.7833±0.047
A 0.6333±0.095x+2x
B 0.7333±0.037
A 0.6333±0.046

x=32 images
per video

x+3x
B 0.7167±0.046

x - 0.6833±0.109
A 0.6±0.070x+x
B 0.7167±0.075
A 0.5667±0.037x+2x
B 0.6167±0.095
A 0.5333±0.046

x=64 images
per video

x+3x
B 0.6333±0.095

Table 6.7: Video-wise results using WLI modality.

Training sample count
(Real + Synthetic) Text Prompt Balanced Accuracy

x - 0.6667
A 0.7167±0.095x+x
B 0.75±0.059
A 0.6833±0.037x+2x
B 0.7667±0.037
A 0.7833±0.046

x=16 images
per video

x+3x
B 0.75

x - 0.7333±0.070
A 0.7333±0.070x+x
B 0.7667±0.037
A 0.8±0.046x+2x
B 0.7833±0.046
A 0.7667±0.037

x=32 images
per video

x+3x
B 0.7833±0.046

x - 0.8167±0.037
A 0.8167±0.037x+x
B 0.8±0.046
A 0.8167±0.037x+2x
B 0.7667±0.037
A 0.8167±0.037

x=64 images
per video

x+3x
B 0.7667±0.037

Table 6.8: Video-wise results using NBI modality.

combined with synthetic images generated from text prompt ‘B’ (either in equal or in double

proportion). The last two cases align with the second-best results in frame-level evaluation

presented in Table 6.6. Moreover, considering the case with 16 real images per video and an

equal proportion of synthetic samples, video-level analysis reports a significant improvement

of 15% (p-value = 0.037). Similar to frame-level analysis, the video-level validations signify
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Figure 6.14: Heatmaps for the video-wise best outcomes obtained for both real and aug-
mented data.

that the performance improvement with synthetic data reduces with increasing real sample

count. Although with 64 real images per video, an increase of 3.34% is observed, this increase
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Figure 6.15: p-value obtained using two-tailed t-test for statistical significance analysis of
video-wise (NBI) outcomes. The values are rounded off to 3 decimal places. The label
names used in rows and columns can be read as “Text Prompt_Sample Count per Video
(Real Image Count + Synthetic Image Count)”.

is not statistically significant (p-value = 0.587). We further examined the performance

difference between the two text prompts, ‘A’ and ‘B’, to evaluate the video-level cross-class

label learning ability. Our analysis demonstrates that synthetic images generated using text

prompt ‘B’ are superior and statistically significant to those generated using text prompt

‘A’. This observation is supported by some of the notable improvements that include 0.6

to 0.7833 (difference of +18.33%, 95% CI: 3.43%, 33.23%, p-value = 0.022) using 16 real
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Figure 6.16: Heatmaps for the best outcomes obtained for both real and augmented data.

samples per video with an equal number of synthetic samples, 0.6 to 0.7167 (difference of

+11.67%, 95% CI: 1.09%, 22.25%, p-value = 0.034) using 64 real samples per video with

an equal number of synthetic samples, and 0.6333 to 0.7167 (difference of +8.34%, 95% CI:

1.63%, 15.05%, p-value = 0.020) using 32 real samples per video combined with three times
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 6.17: Sample generated images depicting (a)-(b) adenomatous polyp in WLI (using text
prompt B) (c)-(d) hyperplastic polyp in WLI (using text prompt B), (e)-(f) adenomatous polyp
in NBI (using text prompt B), (g)-(h) hyperplastic polyp in NBI (using text prompt B), (i)-(j)
adenomatous polyp in WLI (using text prompt A), (k)-(l) hyperplastic polyp in WLI (using text
prompt A), (m)-(n) adenomatous polyp in NBI (using text prompt A), (o)-(p) hyperplastic polyp in
NBI (using text prompt A), and (q)-(r) shows some undesired images generated using text prompt
Bwith NBI.

as many synthetic samples.

Using the NBI modality, the overall performance trend with data proportion is similar.

Also, the comparison between the real data and a combination of real and synthetic data

shows a similar trend as observed using the WLI modality. However, in the NBI modality,

the synthetic data generated using text prompt ‘A’ presented better outcomes than text

prompt ‘B‘ in some cases. Although the best results are obtained using text prompt A, the

average performance over all data proportions is the same for both text prompts. Moreover,

it is noteworthy that the difference is not statistically significant in almost every case. Some

such examples include the improvement from 0.7167 to 0.75 (difference of +3.33%, 95% CI:

-8.2028% to 14.86%, p-value = 0.524) using 16 real images per video and an equal number

of synthetic images, 0.7833 to 0.80 (difference of +1.67%, 95% CI: -5.04%, 8.38%, p-value

= 0.580) using 32 real images per video and twice as many synthetic images, and 0.8167 to

0.7667 (difference of +5%, 95% CI: -0.40%, 10.40%, p-value = 0.067) using 64 real images

per video and twice/thrice as many synthetic images. Despite such change in trend in video-

wise analysis, it can be observed from Table 6.6 that on a frame-wise level, most of the cases
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favored text prompt ‘B’ over text prompt ‘A’. This inconsistent shift can be due to the

fact that control over diffusion models is limited and also depends on the seed value. The

original dataset used in Step-I with annotations based on the quality (good-quality, clear/

low-quality) comprises WLI images, whereas the WLI and NBI images used in Step-II lack

such annotations. It was a relatively simple task for the model to generate a combination

of WLI and good-quality data. On the contrary, the constrained control over the generated

data occasionally resulted in blending WLI characteristics into some NBI images. This

inconsistency emerged from the association between WLI and quality learned during Stage-

I training. Random seed initialization and limited control over diffusion models resulted in

some arbitrary outcomes with text prompt ‘B’ in the case of NBI images. This justification

is supported by the qualitative outcomes (shown in Fig. 6.17 (q)-(t)) discussed in the next

section.

Qualitative Results and Interpretability through Visualization

In addition to the quantitative analysis, we examined the qualitative results and further

studied the related heatmaps for visualization and interpretability. The heatmaps pertaining

to the scenarios involving real images and also those related to the best model (with each

16, 32 or 64 cases) involving synthetic images are shown in Fig. 6.14 and Fig. 6.16.

These heatmaps illustrate the region the classification model focuses on before providing

the final prediction scores. It can be observed that the classifier learns the complex polyp-

specific features better when trained using a more diverse set of polyp images obtained using

PathoPolyp-Diff. However, the classifier’s performance drops in identifying polyp features

when the count of synthetic images increases. This decline in performance could be because

synthetic images might carry noise and can not exactly replicate real image characteristics;

thus, added noise could deviate the model after a certain limit.

Further, we analyzed the generated images for qualitative analysis. It can be observed

that the synthetic images obtained using text prompt ‘B’ are more visually appealing than

those produced with text prompt A. The texture is more prominent and clear in images

shown in Fig. 6.17(a) to Fig. 6.17(h) compared to those presented in Fig. 6.17(i) to

Fig. 6.17(p). Moreover, in both scenarios, qualitatively, the generated images are close to

real images in terms of structure, color and texture. The fundamental color criteria that

differentiate NBI and WLI remain consistently evident in the images, making them eas-

ily distinguishable. However, as already discussed, text prompt ‘B’ with NBI images fails

for some samples, as can be inferred from Fig. 6.17(q) and Fig. 6.17(r). This failure is
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.18: Sample images depicting (a)-(b) adenomatous polyps in NBI, and (c)-(d) hyperplastic
polyps in NBI using weighted control mechanism. The boxplots (e) to (g) demonstrate the compari-
son between text prompt B with and without a weighted control mechanism when synthetic images
are added in equal proportion or twice or thrice in proportion to the real images, respectively. The
former and latter text prompts are denoted by green and red color, respectively.

attributed to the limited control over the image generation and dependency on seed ini-

tialization. Note that the pathology-focused data used in Step-II has both WLI and NBI

images, but none of the images have annotations based on quality. Still, the model learnt the

relation between quality and WLI easily because of the relation developed earlier in Step-I.

Therefore, in Step-II, our model more precisely established the relation between WLI, qual-

ity, and pathology. Due to the development of this direct relationship, the model sometimes

recollects WLI characteristics when it assigns more weightage to the tokens “good-quality,

clear” in the given text prompt “colonoscopy image with adenomatous polyp, narrow band

imaging, good-quality, clear” or “colonoscopy image with hyperplastic polyp, narrow band

imaging, good-quality, clear”. Consequently, some samples present a combination of WLI

and NBI images or complete WLI images.

To overcome this issue, we assigned more weight to the tokens representing

“colonoscopy image with p_type polyp, narrow band imaging” where p_type can be hyper-

plastic/adenomatous. This modification resulted in better qualitative outcomes, as depicted

in Fig. 6.18(a) to Fig. 6.18(d). However, the related quantitative outcomes are reduced

in most of the cases covered by Fig. 6.18(e) to Fig. 6.18(g). One possible reason for such

a decline in results could be due to a lack of pathology-specific features when images are
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generated using a weighted approach. Such outcomes signify that slight modifications in

the text prompt could impact synthetic images’ characteristics and visual properties.

6.4 Chapter Summary

In this chapter, we propose two different diffusion based techniques to generate synthetic im-

ages. In the first technique, we proposed a stable diffusion based framework, ControlPolyp-

Net, to generate polyp frames utilizing non-polyp frames. We showed that the polyp gener-

ation process can be customized, and different controls can be used to get more fine-grained

data. The generated frames also capture pathological features with visually impressive

results and help enhance the downstream tasks of polyp segmentation. A detector is intro-

duced to ensure the retention of pathological features in our proposed framework. Using

our approach, an average increase of 6.84% and 1.3% (JI) over three models is achieved on

CVC-ClinicDB and Kvasir-SEG, respectively.

In the second technique, we developed a novel diffusion based model, PathoPolyp-Diff,

which generates a realistic-looking diverse set of polyp images in a two-stage process. This

set of polyps covers multiple categories, including pathology (adenomatous/hyperplastic),

imaging modality (NBI/WLI), and quality (informative/uninformative). We validated the

pathological content of the synthetic images by using the generated images to augment the

real images of a public dataset. This augmented dataset is then used for the downstream

task of binary classification on adenomatous/hyperplastic polyps. We compared our aug-

mentation approach with the baseline (only real data) using different proportions of the

dataset. The best result reported an increase of 7.91% (0.6983±0.039 vs. 0.6192±0.073).

With a similar comparison approach (using different data proportions), we also examined

the synthetic images generated using different variations of text prompts. It is observed that

the text prompts formulated using the cross-class label concept outperformed those without

such labels in most of the cases (for both NBI and WLI). In addition to frame-level analysis,

we conducted video-level investigations. The associated quantitative results are supported

by a statistical significance test (two-tailed t-test) and heatmaps. At video-level analysis, a

statistically significant difference can be observed in favor of the cross-class label concept.

Although the text prompts without cross-class labels achieved the best outcomes for NBI

cases, the overall performance of both text prompts was similar, and the difference was

not statistically significant. In addition, we explored the concept of weighted text prompts

and presented both qualitative outcomes and quantitative analysis through box plots. We
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also provide a roadmap for the research community to build upon our work, extending the

synthetic polyp dataset and experimenting with text prompts to enhance overall outcomes.

;;=8=<<
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7
Conclusions and Future Directions

This thesis explores avenues to address several challenges that may arise during the

deployment of CAD systems in clinical settings. For this purpose, our research examines var-

ious phases involved in an automated system. We investigate the quality of the colonoscopy

video frames and demonstrate their effect on clinical outcomes. In this context, we proposed

solutions for extracting good-quality and clinically informative data for accurate diagnosis

and effective treatment. Besides the quality assessment, this thesis addresses the critical

issue of limited data availability by releasing a multi-class GI dataset. Moreover, we pro-

posed techniques to generate synthetic data to mitigate the challenges associated with data

scarcity and ethical aspects of the medical domain. Furthermore, a case study is incorpo-

rated to provide new insights into the current AI methodologies in the domain. It also takes

into account the important aspects of transparency and interpretability.

7.1 Conclusions

This section concludes the thesis with a summary of the objectives achieved.

In Chapter 3, we proposed a multi-stage keyframe extraction framework and a novel

polyp localization model, YcOLOn. Our framework reduces the burden of processing

colonoscopy videos by eliminating redundant and uninformative frames. Besides reducing

the processing time and effort, it enhances the polyp detection and localization performance.

This framework is integrated with a GUI application that can help extract frames using a

wide range of clickable options. In addition to the technical contributions, our work facil-

itates the research community with additional annotations of 49,136 polyp frames. These
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annotations classify these polyp frames into informative/uninformative classes and are ac-

cessible on request.

In Chapter 4, we proposed two solutions to deal with artifacts. One solution en-

tirely translates an uninformative frame to an informative frame and the other solution

performs segmentation of specular highlights. The translation process is performed using

CycleGAN, a GAN-based architecture. Our approach successfully removed artifacts like

ghost colors, fecal depositions and low illuminations. This translation is followed by a

validation procedure which uses the YOLOv5 detector to localize polyps before and after

translation. Experimental results show that more polyps were captured when translated

frames were used. Hence, it could be inferred that our methodology enhanced the obscured

polyp-specific features.

Similarly, in the second solution, a DWT-based encoder-decoder network is proposed

to perform the segmentation of specular highlights. This particular artifact is handled

using a separate framework as these highlights can even arise in visually clear and good-

quality images. To extract clinical information from such images, we proposed a method

to segment out specular highlights from them. Also, we modified one of the sub-bands in

DWT to enhance our model’s performance in overexposed regions. It is noteworthy that

we used only the blue channel of the image as a specular component is easier to observe

in this channel. Our approach performed superior to the state-of-the-art models even in

overexposed regions.

In Chapter 5, we provide a detailed summary and analysis of various techniques pro-

posed by a total of 34 teams from two competitions. This study discussed two tasks (polyp

segmentation, and algorithm efficiency) and three tasks (polyp segmentation, instrument

segmentation, and transparency) of competitions from 2020 and 20221, respectively. These

tasks are aimed at developing state-of-the-art algorithms including performance evaluation,

resource utilization (efficiency) and transparency.

Further, considering the important aspects of the above competition platforms (such as

fair comparison at the algorithm level in terms of standard metrics and interpretability), we

focused on developing a multi-class dataset that can be utilized by the research community.

Such a dataset would help conduct fair comparisons and reproducibility for different lesion

types. Our dataset consists of 8000 GI images with 27 classes. These classes include

normal, anatomical and pathological findings. We also provide experimental results using

our dataset on baseline deep learning models.

In Chapter 6, we proposed two approaches with different control mechanisms to
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generate synthetic colonoscopy images. The first approach used an image-based input con-

trol map whereas the second method used a text-based control. The image-based input

control map is obtained by overlapping the non-polyp images with a custom user-defined

mask. Leveraging the non-polyp images which are relatively easy to access, we developed

a diffusion-based method to convert non-polyp images into polyp images. Consequently,

we obtained polyp frames along with ground truth (which were user-defined) without addi-

tional manual labeling effort. We further used the generated images to expand the training

data for polyp segmentation. We observed that the segmentation performance improved by

incorporating synthetic data with real data.

In the second approach, we proposed a diffusion-based method to generate a diverse set

of polyp data that involves different pathology types (adenomatous/hyperplastic), and imag-

ing techniques (NBI/WLI) and possesses good-quality. Our method used a text-controlled

mechanism which takes a text prompt as input and outputs the desired image, matching the

description provided in the text prompt. Further, we proposed a concept of cross-class label

learning which allows the model to learn patterns from other classes. The generated images

are combined with real images in different proportions and are used to perform polyp clas-

sification (adenomatous/hyperplastic). We observed that synthetic images obtained using a

text-controlled mechanism along with cross-label learning enhanced the polyp classification

performance.

7.2 Limitations of the Proposed Work

The proposed work achieves enhanced performance on the respective tasks and can con-

tribute to different phases of the CAD system for clinical use. However, there are some

limitations of the proposed work, which are discussed below.

Multiple stages and requirements of human involvement: The proposed work in

Chapter 3 uses a multi-stage framework which creates opportunities for a single-stage

system with similar or enhanced automation in dealing with uninformative frames.

Our method requires some manual tuning based on the extent of low-quality or good-

quality content in the input data. Although such manual management provides flexi-

bility but at the same time increases overhead.

Persistence of some artifacts: The translation technique proposed work in Chapter 4

tackles various artifacts as desired, however, there are still some artifacts for which the

method fails. These artifacts include motion blur and interlacing. This motivates the
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research community to apply some blur removal algorithms or to develop a standalone

system to deal with all artifacts using a single model.

Segmentation ground truth and sample count: The dataset proposed in Chapter 5

provides labels for multiple classes, however, it lacks annotations for segmentation.

Also, there are a few classes for which the sample count is low as these anomalies are

rare-to-find and difficult to capture during endoscopy.

Improper color retention in generated images: The synthetic data generation tech-

nique in Chapter 6 converts non-polyp images to polyp images and allows controlling

the polyp location, size and shape. Additionally, the endoluminal scene structure of

non-polyp frames remains intact. However, during the conversion process, the color

is not retained in the generated images. Color could be an important attribute con-

sidered for domain shift problems.

7.3 Future Work Directions

While the dissertation has made significant progress in the endoscopy domain, several un-

resolved issues persist. Many of these are worth pursuing as future work and are discussed

below.

Standalone system with fewer human interventions: For full automation and fewer

human interventions for the process of keyframe selection, there is a need for a stan-

dalone system that considers all video attributes, and at the same time adapts to

the input data. This adaptation would eliminate the need for any tuning of settings

during inference. Also, the system can focus on improving generalizability capabilities

for clinical use.

One system for several types of artifacts: As an endoscopy video is susceptible to

many quality degrading factors, various artifacts may appear in the recordings. These

artifacts have varied characteristics and handling them with a single model is difficult

but an interesting problem. Such systems would be helpful in data pre-processing and

indirectly could save manual effort.

Inpainting of specular highlights: The thesis provides a methodology to perform spec-

ularity segmentation but the process of inpainting to reconstruct the missing regions

has not been discussed. This opens the possibility to develop an inpainting method.
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Also, these two steps of specularity segmentation and inpainting can be combined in

a single model or could be handled in a different manner, such as by using adversarial

networks.

Unmapped or unlabeled data learning and color transfer: The existing works in

synthetic image generation in endoscopy domain rely on a training dataset that con-

tains input data mapped with its ground truth. However, obtaining such a fully

mapped dataset or a labeled dataset could be very costly. Therefore, some methods

could be proposed to generate synthetic data without such requirements. Also, the

limitation of our work in Chapter 6 in retaining colors provides an opportunity to

explore and develop some control mechanisms for colors in this domain.
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