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Abstract

Gastrointestinal (GI) cancers, specifically colorectal cancers (CRC), are prevalent and sig-
nificant contributors to global cancer-related deaths. CRC originates from pre-malignant
polyps, which can be detected through a colonoscopy procedure, during which videos of
a patient’s colon are captured. However, analyzing screening videos for related diagnosis
and treatment faces challenges due to a large proportion of low-quality data, risking human
review errors. Further, the low-quality data and the limited availability of large-scale an-
notated datasets pose significant hurdles in building automated computer-aided diagnostic
systems. This thesis addresses these challenges while aligning with standard clinical pro-
cedures. To maintain this uniformity, we mimic these manual procedures in our proposed
automated pipeline and present solutions to problems encountered at different stages.

A standard clinical analysis of colonoscopy videos generally begins with manually re-
viewing recordings and gradually confines the analysis to keyframes for retrospective treat-
ments. Hence, initially, this thesis focuses on automating this task to reduce the clinicians’
burden. However, the keyframe count could be significantly low in some video recordings
captured under extremely unfavorable conditions. Therefore, techniques to extract obscured
details of uninformative frames are proposed. Following the pre-processing stage, the the-
sis addresses issues related to automated diagnostic systems, enhancing lesion detection,
localization, segmentation, and classification outcomes. One of the crucial concerns in the
literature is the lack of reproducibility and fair comparison across different segmentation
techniques due to inconsistent evaluation datasets, as revealed in our case study. Moti-
vated by this, our focus is on resolving dataset availability issues, as a good-quality, diverse
dataset enhances lesion detection performance and promotes reproducibility. Thus, this
thesis incorporates effective keyframe selection and other pre-processing techniques, metic-
ulous dataset curation, and synthetic image generation. The four significant contributions
of the thesis are highlighted below.

First, a multi-stage framework is presented that focuses on keyframe extraction to select
good-quality, non-redundant frames and enforce diversity in the final frames for analysis.

The framework enhances polyp detection and polyp localization outcomes while reducing



processing time. Our novel multi-scale attention-based localization model, YcOLOn, further
improves the localization task within the framework.

Second, we propose two approaches to overcome the limitations of our keyframe ex-
traction framework. These techniques focus on obtaining obscured clinical details from
uninformative frames with artifacts. One method is an adversarial-based approach that
focuses on translating uninformative frames into clinically significant frames. This helps
in improved polyp localization. With a similar aim to deal with artifacts, a DWT-based
encoder-decoder architecture is designed to segment specular highlights while overcoming
the issue of overexposed regions in the colonoscopy images.

Third, a case study is presented that analyzes different polyp and instrument segmen-
tation algorithms involved in two competitions conducted in the years 2020 and 2021. Such
analysis provides an opportunity to compare different state-of-the-art techniques on the
same dataset for transparency and reproducibility. Additionally, we release an open-access
multi-class dataset, GastroVision, for computer-aided diagnosis of GI cancer. It comprises
8000 images from 27 classes covering pathological and normal findings, anatomical land-
marks, and cases from therapeutic interventions.

Fourth, two frameworks are proposed to generate synthetic medical images using dif-
fusion models, overcoming the lengthy procedures to acquire real medical datasets. The
first framework, ControlPolypNet, leverages easily accessible non-polyp frames and converts
them into hard-to-find polyp images. The generated polyp images are utilized to augment
a real dataset to perform a downstream task of polyp segmentation. The second frame-
work, PathoPolyp-Diff, is a text-controlled model to generate diverse polyp images covering
different pathologies, imaging modalities, and quality. The generated images are used to
augment real datasets to enhance pathology based polyp classification. Further, cross-class
label learning is introduced, which learns features from other classes without additional

annotations.
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Introduction

1.1 Overview

Medical image analysis is a field that has evolved over the intersection of healthcare and
technology. It leverages fast-growing technical advancements to provide automated image-
based solutions to routine clinical challenges. These challenges include but are not limited
to operator dependency in decision-making that ultimately relies on the skill set of the
concerned physician, manual measurements that are prone to detection errors, and the un-
availability of domain experts. As stated by ACR’s Data Science Institute, “Fvery patient
has annual follow-up exams, which can add up to about 100 exams per day for a mus-
culoskeletal radiologist who works with arthroplasty surgeons.” Manual examination and
reviewing of such enormous image data involves high risk of errors, delays in treatment, and

2 miss-rate. Thus, it becomes crucial to adopt automated tools to mitigate

increase in lesion
the above-mentioned challenges.

The concept of automation in medical image analysis introduced Computer-Aided Di-
agnosis (CAD) systems [1]. These systems are built on computational algorithms which
enable the automatic interpretation of medical images for accurate predictions. CAD is
further endowed with rapidly evolving machine learning and deep learning techniques. Con-
sequently, in a short span of a few years, automation has revamped the medical imaging
domain, resulting in improved disease diagnosis, treatment planning, and patient outcomes.

The related research progress and reshaping of technologies can be inferred from Fig. 1.1.

This shows that integrating CAD with medical image analysis can provide decision sup-

"https://healthitanalytics.com/news/top-5-use-cases-for-artificial-intelligence-in-medical-imaging
2a region in an organ or tissue which has suffered damage through injury or disease.
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Figure 1.1: CAD research progress and its relation with AT booms and trending technologies.

port in various clinical activities, thus functioning as the second eye for clinicians. A block

diagram for a general CAD system is shown in Fig. 1.2.

In a clinical setting, there could be a wide range of tasks and associated imaging
modalities. An imaging modality can be preferred over the other, considering the type of
medical condition and the severity stage. For example, Magnetic Resonance Imaging (MRI)
is used for the detection of brain tumours, Computed Tomography (CT) scans are preferred
for pulmonary disorders and dental conditions, X-rays are suggested for bone fractures and
arthritis conditions, endoscopy is done for gastric ulcers and esophagitis, and colonoscopy is
performed to detect colon polyps and Colorectal Cancer (CRC). These imaging modalities
provide an internal view and structures of the infected region [2]. The CAD systems then
process the obtained images to recognize lesion patterns and classify them based on some

class (abnormal or normal) distinguishing features.

During the diagnosis process, CAD internally performs various subtasks that include
pre-processing of the acquired images, detection/segmentation [3] of the Region of Interest
(ROI), its feature extraction and classification of the detected/segmented lesion. CAD
systems, being automated, expedite these subtasks, which otherwise are time-consuming
and, hence, present the analysis results quickly. Consequently, the early detection of diseases
and medical conditions becomes attainable. Moreover, they maintain consistency in all

cases, no matter how long the patient list is, during the day. This is achieved because they
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Figure 1.2: Block diagram of a general computer-aided diagnosis system.

do not experience fatigue or variations in performance and, thus, are less likely to encounter
errors in the medical image interpretations.

Despite compelling results, some dependencies are also involved in this automated pro-
cess. The quality of CAD outcomes significantly relies on the algorithms in the backend.
Therefore, it is crucial to develop robust algorithms that can handle significant variations,
including noisy data with corrupted images and can process a range of cases sampled from
varied populations in terms of race, age, sex and demographic changes [4]. Besides algo-
rithms, CAD’s performance is influenced by the input data. It learns patterns from past
case samples during training and uses them to associate with similar unknown future cases
during testing. Hence, low-quality and under-sampled classes in the training data can result
in biased predictions. Therefore, it can be inferred that high-quality input data representing
different anomalies is an essential part of CAD systems. Considering the criticality of these
concerns, our research encompasses medical data quality issues, unravelling their impact on
clinical outcomes and developing a methodology to deal with low-quality data. Addition-
ally, we provide solutions to data scarcity issues, subsequently addressing the challenges of
class imbalance [5].

In the context of our above-mentioned objectives, we conduct research in the field
of medical image analysis, particularly at the intersection of deep learning and medicine.
Among the different imaging modalities discussed above, we mainly focus on endoscopy
and colonoscopy data, i.e., the human Gastrointestinal (GI) tract. Endoscopy is a non-
invasive procedure that examines the GI tract for any abnormalities. During this test, a
thin tube mounted with a camera, known as an endoscope, is inserted through a natural

opening such as the mouth. When the same process is performed for screening the colon,
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and a colonoscope is inserted into the colon, the procedure is termed a colonoscopy. These
medical examinations perform screening of the GI tract, which is a critical task to detect
potential problems such as GI cancers (associated with the colon, stomach, pancreas, liver
and esophagus), ulcerative colitis, colon polyps, inflammatory bowel disease, and gastroe-
sophageal reflux disease. A visual description of the procedure and associated role of CAD
are depicted in Fig. 1.3. According to a study [6], GI cancer cases are predicted to in-
crease by 58%, and related deaths could show a 73% rise by 2040. In 2018, there were
approximately 4.8 million new cases of GI cancer and 3.4 million deaths [6]. The five major
types of GI cancers are colorectal (1.93 million cases; third most common cancer), pancreas
(466,003 deaths; lowest survival rate), liver (905,677 cases), stomach (1.09 million cases),
and esophagus (604,100 cases) [7]. Our research primarily encompasses CRC because it is
the second leading cause of cancer-related mortalities and the third most common malig-
nancy in the world, which accounts for about 10% of all cancer cases. CRC is marked by
the growth of abnormal tissues called polyps. These polyps project out of the inner lining
of the colon, and their type and characteristics are the determining factors for CRC and
its level of risk. Timely identification of such biomarkers® and related diagnosis is of vital

importance in reducing the rising CRC incidence and associated deaths.

3a measurable indicator of some biological state or condition.
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1.2 Problem Description

This section describes the challenges of analyzing endoscopy data, particularly colonoscopy

videos and images, in more detail. In addition, the objectives of this thesis and the under-

lying problem definitions are discussed. Further, the highlights of the thesis contributions

are included. Fig. 1.4 provides a visual summary of the challenges. These are explained in

detail below:

o Large amount of insignificant /uninformative video frames:

— Manual reviewing

(cumbersome task):

The widespread acceptance of

colonoscopy procedures as a gold standard for CRC screening is constrained

by the massive amount of data recorded. During a standard colonoscopy, video

encodings are done at 25 or 30 frames/sec. Such recordings impose a great chal-

lenge for clinicians to extract significant information expeditiously. If clinicians

directly feed the video with unwanted frames to the automated detection sys-
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tems, it would add to the computational cost. This is undesirable in case of
limited resource availability. Hence, manual removal of frames is generally car-
ried out by experts for better visualization and focused analysis. Such manual

procedures are burdensome and induce human diagnostic errors.

— Presence of artifacts (underperformance): During a colonoscopy, the ar-
bitrary movements of the camera induce noise and motion blur in the recorded
clips. Further, fecal depositions and food residues, even after bowel cleaning, in-
evitably introduce insignificant information [8]. It is estimated that around 25%
frames of a colonoscopy video are low-quality. Some other artifacts responsible
for low-quality frames include specular reflections, ghost colors, interlacing and
low illumination. The presence of these artifacts could deviate the focus of a

clinician or even lead to underperformance in automated techniques.

— Redundant frame processing: The slow motion of the camera during
colonoscopy results in substantial correlation among adjacent frames. There-
fore, a large proportion of the video frames carry redundant information and,
hence, do not add to clinical findings. Reviewing such frames imposes an unnec-
essary burden on clinicians and can negatively impact the CAD’s performance

by increasing computational costs and introducing noise in the input data.

e Data unavailability: As mentioned in Section 1.1, input data plays a pivotal role
in influencing the accuracy of automated tools. Hence, training CAD systems with a
significant amount of good-quality samples which can represent a considerably diverse
set of abnormalities and target a large population is crucial. The lack of a diverse
dataset impedes the fair comparison of deep learning models and reproducibility of

experimental results, thus obstructing research studies.

— Multi-class dataset: Most of the publicly available datasets [9-12] in the en-
doscopy domain are limited to a few classes, particularly the polyp class. Ac-
quiring some anomalies during an endoscopy procedure could be difficult. This
restricts the research to a few medical conditions. Therefore, the challenge is to
curate a good-quality multi-class endoscopy image dataset that can help study
a range of anomalies, improve deep learning models’ performance, enable re-
producibility, facilitate collaborations, and address bias. The term bias can be
related to demography (considering under-represented groups), sex or hard-to-

find anomalies.
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— Barriers in dataset curation: Medical data is generally sparsely available due
to privacy concerns, legal restrictions and the time-consuming task of conducting
manual annotations by multiple medical experts. Moreover, acquiring medical
data can result in an imbalanced dataset as one medical condition may be rarer
than another. For example, negative samples of colonoscopy images pertaining to
non-polyp frames are easily accessible, whereas polyp frames are comparatively
less acquired. Hence, the scarcity of large-scale datasets, especially that of the
pathologically significant class, makes studying lesions and biomarkers challeng-
ing. This scarcity affects both the manual training of junior physicians and the
automated training of diagnostic systems. Inadequate quality and distribution
of data samples used for training automated tools produce error-prone outcomes.
Therefore, it is crucial to train automated systems with ample amounts of good-

quality samples representing the respective class with adequate information.

e Polyp Detection, Segmentation and Classification: Regardless of the surveil-

lance using colonoscopy, the procedure suffers a high miss rate of polyps due to its
dependency on the operator’s ability. Moreover, the camouflage property of polyps
makes them indistinguishable from the background, and their varied sizes and shapes
make it difficult for clinicians to precisely identify polyps. Furthermore, flat or sessile

polyps and polyps with size < 5 mm also contribute to the low detection rate.

To overcome the challenges of manual polyp detection, several automated systems
have been proposed [13-15]. However, a lingering gap in CAD performance still needs
to be addressed. A few factors make these systems perform inadequately in some
aspects: a) Uncertain boundaries. These models fail to accurately demarcate the
polyp boundaries because these edges appear to be uncertain due to the polyp’s high
similarity with the background, b) Imaging artifacts. The inevitable introduction of
artifacts in the colonoscopy images due to imaging conditions makes polyp regions
fuzzy and vague, and this results in low performance of models in detecting polyps,
and c¢) Small-scale datasets. Annotating the exact location and precise demarcation
of polyps is a cumbersome task. This task requires domain expertise and an enormous
amount of time, which limits the existing systems from relying on a small-scale dataset

for learning the ability to detect and segment polyps.

In the last few years, augmentation techniques like random rotation, flipping, crop-

ping, and translation have become common to supplement the existing datasets with
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more samples. However, such inclusion does not enhance the diversity or variations in
the data samples. Moreover, prior works performed inferences on inconsistent splits,
making it difficult to compare the performance of different methods in the literature,
especially on small-sized datasets. Similarly, the challenges encountered in polyp clas-
sification are attributed to the low-quality data and significant class imbalance. The
imbalance in some pathology classes results in biased outcomes, which is a critical
issue. Due to the unavailability of good-quality image data with appropriate class

distribution, only a few existing works [16, 17] focus on polyp classification.

1.3 Owur Contributions

We present four contributions in this thesis. Our first contribution is focused on proposing
solutions to reduce the manual effort of clinicians in reviewing a huge volume of colonoscopy
data. The second contribution encompasses solutions to get rid of artifacts from the
colonoscopy images and videos. As a third contribution, we curate a multi-class endoscopy
dataset that is made publicly available to the research community. Lastly, in the fourth
contribution, we propose a framework to generate synthetic data to overcome barriers en-
countered during real dataset curation. An overview of the contributions is illustrated in

Figure 1.5.

Keyframe Extraction for Enhanced Polyp Detection and Localization: We pro-
pose a multi-stage methodology to extract keyframes to reduce the burdensome task of
reviewing a large volume of colonoscopy data. Keyframes are the static summaries of
the key-events captured during a patient’s colonoscopy procedure. Prior works either
focused on conventional methods to extract keyframes or ignored many of the crucial
video attributes. The proposed framework aims to extract good-quality keyframes
and considers the important video attributes of colonoscopy. These attributes include
(a) low-quality, blurry frames with several artifacts, (b) high correlation in adjacent
frames, and (c) cropped or distant polyp views. As a result, our framework selects
keyframes that provide good-quality, non-redundant clinical information with multi-
views and closer shots of polyps. We show that extracting keyframes helps improve the
performance of state-of-the-art detection and localization deep learning models. It fur-
ther reduces the computational cost and time requirements for analyzing a patient’s
video. Experimental results report that our approach removes 96.3% and 94.02%

frames from the SUN Database [18] and the CVC-VideoClinicDB [19], respectively.
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Figure 1.5: An overview of the thesis contributions.

In this framework, we also propose YcOLOn, a novel multi-scale attention-based model
to localize polyps efficiently. We show that incorporating multi-scale attention blocks

in the network helps enhance polyp localization performance by about 5.5% compared
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to the baseline. Further, we develop a Graphical User Interface (GUI) application that
assists in navigating through different stages of our framework. It facilitates the users
with easy-to-use clickable options to load a video and obtain keyframes based on

several options provided in the GUI.

Artifacts Removal: The predominant portion of the literature that focuses on artifact
removal either deals only with specular highlights or completely removes unwanted
blurry frames before utilizing them for downstream tasks. In the former case, the most
common approach is threshold based which can easily fail in real scenarios. These
methods can mainly be divided into three categories: (a) color distribution, (b) low
rank & sparse decomposition, and (c) contrast based (explained in Section 2.3.2). The
latter case, which removes insignificant frames, either follows a manual approach or
completely removes such frames. The manual approach is a cumbersome task whereas
the complete removal could sometimes result in data loss if the entire video carries

corrupted frames due to inappropriate patient preparation or uncertain events.

To address these issues, in Sharma et al. [20], we propose an adversarial network
based approach that translates uninformative frames to clinically relevant frames.
This conversion helps extract the obscured details from blurry and corrupted frames.
The technique is validated by comparing the detection/localization performance with
and without the translation process. Preliminary results show that the detection
performance improved with our approach. This study also provides insights into the
effectiveness of generative models in artifacts removal, thus outlining pathways for

future possibilities to explore such techniques.

In the adversarial approach, the whole frame is targeted for conversion. Such an
approach is viable for artifacts like ghost colors, motion blur, low illumination, etc.
However, specular highlights need a different approach, as they can be present in
visually appealing, good-quality frames. These highlights are present in clusters in
small regions and are the result of reflections from the watery inner surface of the
colon. Therefore, to detect these highlights, in Sharma et al.[21], we propose an
encoder-decoder based segmentation method. Considering the small-sized target in
this case, we introduce the concept of Discrete Wavelet Transform (DWT) and use it
to replace the standard pooling layers. This modification helps preserve the details
pertaining to small regions of specular highlights. These layers are coupled with

dilated convolutions for the same reason, as these convolutions increase the receptive
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field while preserving input resolution. Further, we modify the standard low-frequency
sub-band of DWT to help deal with overexposed regions. These overexposed regions
are not categorized as specular highlights but can deviate an automated specularity
detection algorithm from its intended task. An ablation study reports an increase in
recall rate by about 1% with this modification while maintaining the precision, and

embedding dilated convolutions further improved the precision by about 1%.

Case study, Dataset Curation and Design: Despite a lot of research in the area of
polyp segmentation, there is a lack of fair comparison due to inconsistent splits fol-
lowed in the literature. Moreover, most such studies fail to support their outcomes
with transparency or interpretability validations. Further, some of the existing works
are developed on private data and closed sources, restricting the reproducibility of
results. Therefore, we present a case study on two competitions, namely, “Medico
Automatic Polyp Segmentation (Medico 2020)” and “MedAl: Transparency in Med-
ical Image Segmentation (MedAI 2021)” that performs a comprehensive analysis of
several submissions received during the competition. The first competition involves
two tasks: (a) polyp segmentation and (b) algorithm efficiency, and the second com-
petition involves three tasks: (a) polyp segmentation, (b) instrument segmentation,
and (c) transparency. This case study performs a fair comparison among different
methods on standard metrics, which helps validate their feasibility in clinical settings.
Also, the transparency task motivates for interpretable validations and open-source

research work for reproducibility.

Considering the existing datasets and the datasets used in the case study, it can be
inferred that prior datasets in the endoscopy domain comprise a limited number of
classes. Also, most of these datasets focus on a single lesion, i.e. polyps and are small
in size. Moreover, some of these datasets are accessible on request, which induces
unnecessary delays. Therefore, we develop GastroVision, an open-access multi-class
Gastrointestinal (GI) dataset that consists of 8000 images from 27 different classes.
Our dataset not only covers pathological abnormalities but also includes anatomi-
cal landmarks, normal findings and polyp removal cases. Most of the samples are
acquired through White Light Imaging (WLI), and a few images belong to Narrow
Band Imaging (NBI). The findings in Gastro Vision can broadly be categorized as up-
per GI and lower GI tract. A series of experiments are performed using six baseline
deep learning models. Our results are reported on standard multi-class classification

metrics that allow the research community to build more robust solutions for better
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outcomes. The findings in our dataset are annotated by experts and are acquired
from two different centers using standard equipment from Olympus and Pentax. The
curation process complies with the ethical and privacy norms. The dataset is publicly

available at https://osf.i0/84e7£/.

Synthetic Dataset Creation: In recent years, the field of generative Artificial Intelli-
gence (AI) has gained prominence in the medical domain. The literature in the
colonoscopy domain covers many Generative Adversarial Network (GAN) based tech-
niques to generate synthetic images. However, these approaches show limited success
and suffer from convergence instability. More recently, diffusion models have gained
popularity for their realistic image generation. Considering these remarkable out-
comes, in Sharma et al. [22], we propose ControlPolypNet, a novel diffusion based
network that converts non-polyp images into polyp images using a custom binary
mask. Our method leverages easily accessible non-polyp frames to obtain hard-to-
find polyp frames. Additionally, this generation process is controlled using a novel
user-configurable input control map. This control map uses a non-polyp image over-
lapped with a polyp mask. The polyp mask is user-defined, and therefore, the polyp

location, size and shape can be easily controlled.

Limited works in the literature utilized diffusion models to obtain polyp images; how-
ever, these works use simple binary masks as input. Unlike such approaches, we
leverage non-polyp frames overlapped with binary masks to preserve other endolumi-
nal elements. This approach reduces the probability of obtaining unwanted structures
or noise in the background/endoluminal scene. Further, we introduce a detector in
our framework to ensure pathologically relevant data at the end. We validate the
quality and clinical significance of our synthetic data by using it to augment two pub-
licly available datasets in the polyp segmentation task. Experimental results show
that an average increase of 1.3% to 6.84% in the Jaccard Index (JI) is obtained using
our technique. Additionally, our above approach provides a pathway to address the
issue of class imbalance as one undersampled class can be expanded using synthetic
data. In our case, the positive class (polyp) has relatively fewer samples than the
negative class (non-polyp). We utilized negative class samples to produce positive

class samples, thus expanding the undersampled set.

Furthermore, we explore another control mechanism based on text prompts, which

has not yet been explored in the literature. While utilizing this control mechanism,
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in Sharma et al. [23], we propose PathoPolyp-Diff, a novel diffusion based model that
generates text-controlled synthetic images. The model is capable of generating colonic
polyps that cover a wide range of classes in terms of imaging modalities (NBI/WLI),
pathology (adenomatous/hyperplastic) and quality. These medical terminologies are
discussed in detail in Section 2.2. In this work, we also propose a cross-class la-
bel learning methodology that allows the model to learn characteristics from other
classes. This approach reduces the need for the burdensome task of data annotation
and provides flexibility in generating diverse sets of polyp types. We validate the per-
formance of our technique by augmenting a publicly available dataset with synthetic
data obtained using different text prompts. The results report an increase of 6% in
the Balanced Accuracy (BA) on a downstream task that classifies pathology classes

combined with different imaging modalities.

1.4 Thesis Outline

The thesis comprises seven chapters and is organized as follows:

In Chapter 2, we first describe essential terminologies and background, introducing
the basic concepts associated with the GI tract. We further provide a detailed review of
existing methods followed by an overview of evaluation metrics used in the thesis.

In Chapter 3, we present a multi-stage framework for keyframe extraction from
colonoscopy videos. It includes a patient-wise analysis and also shows how it becomes dif-
ficult to select keyframes for some patients with an unacceptable amount of uninformative
frames. This limitation serves as a motivation for the next chapter.

In Chapter 4, we present two solutions for artifacts removal from colonoscopy images
and videos. The first solution is based on an adversarial network and focuses on artifacts
such as ghost colors, low illumination, motion blur, interlacing, and fecal depositions. The
second solution mainly aims to perform the segmentation of specular highlights.

In Chapter 5, we present a case study that includes a comprehensive summary
and analysis of two competitions, namely, “Medico Automatic Polyp Segmentation (Medico
2020)” and “MedAlI: Transparency in Medical Image Segmentation (MedAI 2021)”. Each
competition involves submissions from 17 different teams. The chapter showcases the analy-
sis of each contribution, highlights the best-performing methods and discusses their viability
in clinical settings.

Further, we present a multi-class open-access GI dataset with 8000 images and 27

13
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classes. The chapter provides a detailed description of the dataset, including class-wise
sample distribution, sample-wise resolution, and a broader set to which the 27 classes belong.
It also presents experimental results on six baseline deep learning models.

In Chapter 6, we present ControlPolypNet and PathoPolyp-Diff, two diffusion based
models for generating synthetic colonoscopy images. The chapter demonstrates the effec-
tiveness of these generative methods and the quality of synthetic samples by performing
downstream tasks of polyp segmentation and classification.

Finally, in Chapter 7, we conclude and discuss future research work.

Pen oS- Aoa
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Background and Literature Survey

This chapter provides the background necessary to understand the thesis better. We
begin by describing essential terminologies and concepts, followed by a discussion on con-

ventional modelling approaches and standard evaluation metrics.

2.1 Gastrointestinal Tract and its Examination

The Gastrointestinal (GI) tract, also known as the digestive tract, comprises a series of
organs involved in the movement of food and liquid using a process called peristalsis. These
organs help to break food into smaller chunks, which allows the essential nutrients to get
absorbed by the body, and finally, the waste residue is expelled. The complete process is
associated with both upper and lower GI tracts. The upper GI tract refers to the esophagus,
the stomach and the duodenum (first part of the small intestine), whereas the lower GI tract
comprises the small intestine and the large intestine. Each organ has a different function
and manifests different symptoms in case of any disorder, but they are connected together
via a tubular pathway. During healthcare procedures, identifying the location of the affected
organ is essential for understanding anatomy, creating precise surgical plans and determining
optimal treatment strategies. Professionals track anatomical landmarks, such as the z-line,
pylorus and cecum, which serve as reference points to locate the site of interest. Some of
the anatomical and pathological findings (disorders) and the related examination techniques

are discussed below.

Upper GI tract: Fig. 2.1 shows sample images of different anatomical and pathological
findings of upper GI.
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)

Figure 2.1: Upper GI tract: (a) Pylorus, (b) Normal esophagus, (¢) Esophagitis, and (d) Gastric
polyps.

o Anatomical Landmarks: The three main anatomical landmarks include the nor-
mal z-line, the pylorus and retroflux stomach. The normal z-line represents the
transition between the squamous esophageal mucosa and columnar mucosa lin-
ing of the stomach. Pylorus demarcates the end part of the stomach and the
beginning region of the small intestine called the duodenum. Retrofiex stomach
denotes the retroflexion of the endoscope that involves turning the camera to

visualize the upper part of the stomach.

e Pathological Findings: Pathological findings signify the abnormal modifications
in the tissues of mucosa indicative of a disease. Some of such conditions are
esophagitis, Barrett’s esophagus, ulcers, gastric polyps and cancer. Early detec-
tion of the pathological findings could assist in providing treatment before the

development of cancer.

o Ezaminations: Upper endoscopy or EGD (esophagogastroduodenoscopy) and the
upper GI series are the common procedures followed to examine upper GI for any
abnormality. The upper GI series is a radiographic test that uses fluoroscopy,
X-ray or CT scans to examine esophagus, stomach and duodenum. Fluoroscopy,
a special form of X-ray, sends a continuous radiation beam for a few seconds
to capture a video and, hence, can be considered an “X-ray movie”. During
these procedures, no tool enters the patient’s body. Contrarily, an endoscopy
requires the insertion of an endoscope through esophagus. An endoscope is a
thin, long, tube-like instrument with a camera mounted on the tip. The camera
captures video of the patient’s affected region and directs them to a monitor

screen. Compared to radiology-based tests, it provides more visual details.

Lower GI tract: Fig. 2.2 shows sample images of different anatomical and pathological

findings of lower GI.
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2.2: Lower GI tract: (a) Cecum, (b) Ileocecal valve, (¢) Colon polyp, and (d) CRC

Anatomical Landmarks: Some examples of lower GI anatomical landmarks are
Cecum, lIleocecal valve, and Terminal ileum. Cecum is a large pouch that is
present at the proximity of the large intestine. Ileocecal valve is a valve forming
junction between Cecum and the Terminal ileum, which maintains flow between

the two anatomical landmarks.

Pathological Findings: The pathological conditions that might occur in the lower
Gl include Angiectasia, Colon polyps, and CRC. Among the lower GI pathological
findings, CRC is a severe condition with an estimated high rate of 1.6 million
mortalities per year, expected by 2040 [24]. In 2020, it contributed to 10%
and 9.4% of new cancer cases and cancer-related deaths, respectively. With
such critical statistics and numbers increasing at an alarming rate, it becomes
crucial to address the issue in the early stages to prevent any benign growth from
developing into CRC over time. A more detailed discussion of CRC is given in

the subsequent sections.

Examinations: Similar to upper GI, a patient for lower GI screening is suggested
to undergo either a colonoscopy or a lower GI series. The lower GI series is a
radiology-based test, among which Barium X-ray is a commonly performed test.
During this process, the large intestine is filled with Barium liquid. It is an
X-ray absorber and appears white on the X-ray films, which helps enhance the
visibility of different GI characteristics. Another preferred test, called endoscopy,
which includes sigmoidoscopy and colonoscopy, is a widely adopted procedure for
examining the lower GI. Although sigmoidoscopy and colonoscopy are both used
for CRC screening, the former looks for any abnormality in the lower part of the
colon, whereas the latter tests the complete large intestine. Besides endoscopy,
other recommended tests are stool tests, virtual colonoscopy (CT colonography),

Fecal Occult Blood Test (FOBT) and Fecal Immunochemical Test (FIT).
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2.2 Colorectal Cancer (CRC)

CRC is the third most common malignancy and the second leading cause of cancer-related
mortalities. It begins as an abnormal growth on the inner lining of the colon, forming clumps
of cells called polyps. These polyps are generally non-cancerous but have the potential to
turn into cancer over time. In the earlier stages, CRC does not show any symptoms, and
therefore, it becomes critical to undergo regular screening tests to detect any precursor to
avoid severe CRC conditions. In the later stages, rectal bleeding, change in stool color, and

pain are some symptoms that might be observed.

How likely is it to develop CRC?

The statistics' released by American Cancer Society report disparities in the chances of
someone developing CRC based on demographic and geographic variations. It mentions
that approximately 4.4% of men and 4.1% of women are likely to be diagnosed with CRC
in their lifetime. Men are at 30% more risk of CRC incidence compared to women. This
variation could be attributed to exposure to risk factors such as cigarette smoking. Besides
gender, it also varies across age groups. Although earlier studies state that older age groups
are susceptible to CRC risk, recent statistics show that the incidence rate of CRC among
people aged 50 and older is declining, whereas it is increasing among younger age groups.
Consequently, the median age of CRC diagnosis has shifted from 72 years (in the 2000s)
to 66 (in the current scenario). Such disparities are further related to ethnic and racial
differences. The non-Hispanic blacks (hereafter, blacks) are the most affected by the CRC
incidence and death rates, followed by American Indians and Alaska Natives (AIANs), and
the rate is lowest in Asians/ Pacific Islanders. Across geographic boundaries, socioeconomic
factors, dietary patterns and access to high-quality healthcare facilities are some of the
reasons for variations in CRC incidence rates. Currently, the poor countries observe 30%
to 40% higher CRC-related deaths compared to rich countries. The geographical factors
are more influential than the racial factors, as blacks and whites tend to show similar risks

when sharing the same geographic boundaries.

!Colorectal Cancer Facts & Figures 2020-2022. Link: https://www.cancer.org/content/dam /cancer-
org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-
figures-2020-2022.pdf
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2.2.1 Polyps and their Categorization

A polyp is a small abnormal growth in the form of excess tissues that project on the
inner lining of the colon. The majority of such occurrence is non-cancerous, but some of
the polyps pose the risk of cancer over time. Due to this reason, a physician looks for
such polyps during colonoscopy procedures to monitor any progression and analyze their
stage and associated treatments. For appropriate analysis and to plan treatment strategies,
different polyp characteristics are taken into account. Polyps can be categorized based
on multiple factors such as size, shape (Paris classification), texture and surface patterns

(NICE classification) and pathological condition.

Paris classification

The Paris classification [25] is a standard polyp classification system defined based on the
polyp shape. A broad categorization covers two types, namely, polypoid (type 0-1) and
non-polypoid (type 0-II and type 0-III). The polypoid class involve polyps with a protrusion
above the mucosa, whereas polyps under the non-polypoid class do not protrude. Type 0-1
can be divided into pedunculated (type 0-Ip), semi-pedunculated (type 0-Isp) or sessile (type
0-1s) polyps. Similarly, type 0-II also have subcategories, which include slightly elevated
(type 0-I1a), completely flat (type 0-IIb), and depressed (type Ilc). Lastly, the second main
type of non-polypoid class includes excavated (type 0-1II) form of polyps.

There are some distinguishing criteria for each category. For example, the Type 0-Ip is
different from the Type 0-Is in terms of the base and top diameter. In the former, the base is
narrow, whereas in the latter case, the polyp possesses the same diameter for both the base
and the top. In the non-polypoid subclasses, the distinguishing criterion is the amount of
elevation the polyp has compared to its surrounding mucosa. The type 0-1Ia, being similar
to type 0-Is polyps, needs some further investigation to decide the actual type. Some non-
polypoid category polyps spread laterally (>10 mm) without increasing protrusion above
the mucosa. Such polyps are termed as Lateral spreading tumors. A flowchart illustrating

different shapes based on Paris classification is shown in Fig. 2.3.

NICE classification

NBI International Colorectal Endoscopic (NICE) classification considers the vascular and
surface patterns to divide polyps into three categories, i.e., hyperplastic (type 1), adenoma

(type 2) and deep submucosal invasive cancer (type 8). Type 1 polyps have lighter or similar
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Figure 2.3: A flowchart depicting Paris classification

Figure 2.4: NICE classification (a) Type 1, (b) Type 2, and (¢) Type 3. Image Source: https:
//www.endoscopy-campus.com/en/classifications/polyp-classification-nice/

color as that of adjacent mucosa, have either no or some isolated lacy vessels and might
have uniform dark or white spots. Type 2 polyps appear more brown compared to the
background and have brown vessels surrounded with white structures. They also have
tubular, branched or oval white structures over the surface. Type 3 polyps have a brown to
dark brown color relative to the background and might have discontinued or broken vessel
structure. Their surface pattern is either amorphous or absent. Some sample images are

shown in Fig. 2.4.

Pathological classification

Polyps can be broadly classified as neoplastic and non-neoplastic. Neoplastic polyps in-
clude adenomatous polyps (further classified as Tubular adenomas, Villous adenomas, and
Tubulovillous adenomas) and sessile serrated. Non-neoplastic polyps can be sub-categorized
as hyperplastic polyps, inflammatory polyps, and hamartomatous polyps. Among these
classes, adenoma and hyperplastic are the most common terms used to represent potentially
cancerous and non-cancerous lesions, respectively. A different aspect of polyp classification

introduces the term Serrated polyps, which include hyperplastic polyps, sessile serrated le-
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sions, traditional serrated adenomas, and unclassified serrated adenomas. Serrated polyps
have saw-toothed appearance at microscopic level and contribute to 25% of CRC cases®.
Tubular adenomas, being the most common type in the adenoma class, accounts for
80% of the adenomatous polyps. Only a small proportion of such polyps tend to convert
into cancer; however, CRC is most likely reported to start from this category of polyp.
Therefore, Adenoma Detection Rate (ADR) plays a significant role in determining the ef-
fectiveness of CRC preventive methods. Villous adenomas are more probable to become
cancerous, but they contribute to 5%-15% of all adenomatous polyps. A similar ratio is es-
timated for Tubulovillous adenomas. The findings and pathologic information about sessile
serrated has evolved drastically over the past few years. Initially, this category of polyps
was defined under hyperplastic class. However, in recent years, they were found to carry
some malignancy risk [26]. Here, the term “sessile” denotes the slightly elevated or flat
shape of the polyp. The incidence rate of traditional serrated adenomas is very low and
unclassified serrated adenomas covers those polyps which present a mixed sign, i.e., resem-
ble adenoma, but appear similar to sessile and serrated polyps. Contrary to the above
neoplastic examples, Inflammatory and hamartomatous polyps are much less probable to

become cancerous.

Size-based classification

Polyp size is considered an important factor in determining the cancer risk. According to
a study [27], cancer rates are correlated with polyp size. It was observed that out of all
polyps with adenomatous features, 25% were in the range of 1-9 mm size and 75% were
either 10 mm or larger than 10 mm. Based on the size, a polyp is categorized into three
divisions, namely, diminutive ( < 5 mm), small ( > 6 mm, < 9 mm), and large ( > 10 mm).
While diminutive and small polyps carry low CRC risk, large polyps if found with adenoma
histology, are recommended for short interval follow-ups (generally 1 year) for surveillance

colonoscopy [28].

2.2.2 Colonoscopy and CRC Treatment

Colonoscopy is a minimally invasive procedure to examine the colon and is considered the
gold standard for CRC screening. It is an endoscopy during which a colonoscope is passed
to the colon through the anus and rectum. A colonoscope is a long flexible tube with

a light and a camera at one end which streams the video from the inner regions of the

*https://my.clevelandclinic.org/health/diseases/17462-serrated-polyps
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(d)

Figure 2.5: Colon polyp under: (a) WLI, (b) NBI, (¢) Dye-spraying, and (d) AFI. Image Sources:
29, 30]

colon on a monitor. Thereafter, the captured colon video is examined by a physician for
any irritated or swollen tissues, polyps or cancerous lesions. During a colonoscopy, the
colonoscope tube also helps clean the inner colon lining through a water jet and injects air
to improve visibility. While advancing the colonoscope through the colon, in addition to
video capturing, the physician may remove any abnormal tissue or can take any sample for

biopsy.

Imaging technologies

As discussed in Section 2.2.1, CRC polyps are characterized by three-dimensional surface
topographic features, which make them distinguishable from the surrounding mucosa. Such
differentiating polyp-specific features are significant and are essential to capture during
colonoscopy. To support this crucial requirement, various optical imaging technologies have
been adopted in colonoscopy. The most widely used imaging technology is White Light
Imaging (WLI) endoscopy because it is cost-effective, medical professionals are trained
in and accustomed to using WLI endoscopy, and it is readily available in most medical
facilities. While the standard WLI endoscopy can enhance coloration, it fails to capture
topographic contrast, such as polyp elevation and pit patterns that increase the lesion miss
rate. To alleviate this issue, other imaging technologies such as High-definition White Light
Imaging (HD-WLI), Narrow Band Imaging (NBI), Dye-based chromoendoscopy, Blue Light
Imaging (BLI) and Linked Color Imaging (LCI), I-scan digital contrast and Flexible Spectral
Imaging Color Enhancement (FICE), and Autofluorescence Imaging (AFI) were introduced
[29]. Some sample images captured using different modalities are shown in Fig. 2.5.
HD-WLI colonoscopy provides higher resolution images and comparatively more image
count per second compared to standard WLI. It has been reported that a 4.5%-12.6%
increase in ADR can be achieved by opting for HD-WLI over standard WLI [31]. In dye-
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based chromoendoscopy, contrast dyes are sprayed over the mucosa to improve the visibility
of polyp surface topography. The other remaining imaging techniques, like NBI, LCI, and I-
scan, are categorized under virtual chromoendoscopy, among which NBI is the most adopted
technique. NBI uses electronically activated filters to limit the wavelengths of red, green and
blue lights, which helps accentuate the superficial mucosa and vascular details. Similarly,
the I-scan enhances the mucosal vasculature and topographic details but achieves this using
three different modes, namely, surface, contrast and tone enhancements. With the same
objective, FICE is introduced, in which light bandwidth is narrowed down using a computed
spectral estimation system. Unlike the above-mentioned techniques, BLI and LCI utilize

laser light sources to highlight the abnormalities and provide bright images [31].

CRC Treatment

The treatment methods have evolved rapidly over time with advanced techniques in health-
care. Moreover, to decide on a specific treatment, various criteria such as tumor type,
location and patient characteristics are considered. In most cases, people with CRC un-
dergo surgery. However, the specific method followed depends on the cancer stage. For
example, if the CRC is in a localized stage, i.e., cancer has penetrated the colon wall but
not completely, the resection of the affected region is performed, and some normal tissues
from the surrounding region and nearby lymph nodes are removed. Contrarily, in a regional
stage, when cancer has infected the nearby lymph nodes and has penetrated into the colon

wall, then apart from the surgical resections, chemotherapy is usually recommended.

Therapeutic interventions: A polypectomy is a minimally invasive surgical pro-
cedure and the commonly adopted therapeutic intervention to remove polyps. During the
process, a clinician uses a forceps or a snare to snip off the polyp. The forceps-grasping tool
can be used to completely remove small polyps. The other instrument, the snare, comes
with a wire loop. This loop can be placed in a way that it tightens around the polyp’s base
so that it cuts the polyp region out. This procedure can be carried out using one of the
suitable treatments from the three options, which are Hot Snare Polypectomy (HSP), Cold
Snare Polypectomy (CSP), and cold or hot forceps polypectomy. In HSP, a heated snare is
used, which might be followed by electrocautery that helps burn the residue of any infected
tissue. Similarly, CSP involves cold snare and is adopted for diminutive polyps. The last

option is used for small polyps, which are pulled loose and then removed.
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2.3 CAD and CRC Diagnosis: A Review on Methods and
Metrics

This section presents a review of the different tasks undertaken by an ideal CAD system to
perform CRC diagnosis. The sequence of these tasks followed in this section can be given
by: keyframe selection —> artifacts removal —> polyp detection and localization —> polyp
segmentation —> polyp classification. We also discuss existing related works in the literature,
their proposed algorithms in brief and their shortcomings. In addition, we provide a detailed
description of existing datasets to highlight the need for our proposed multi-class dataset.
Also, we mention prior works focused on expanding real datasets with synthetic data and
describe their drawbacks. Further, we include a description of the standard metrics used

for assessing the different algorithms.

2.3.1 Keyframe Selection

A keyframe selection process allows to select keyframes (important frames) from colonoscopy
videos that can efficiently represent the clinically relevant information captured in the video
streams. For example, given a colonoscopy video (V') represented as a sequence of m frames
([f1, f2, f3, .-y fm]), the goal of keyframe selection is to find a subset of frames that are
clinically significant and representative. We denote keyframes of the original video V as
Viey = [fiys figs figs - fir], where k << m and Vi, C V. This procedure must take into
account important attributes of a colonoscopy video. These attributes are (a) low-quality
frames containing various artifacts (detailed explanation in Section 2.3.2 ), (b) a large

number of redundant frames, and (¢) many frames with a cropped or distant view of the

polyp.

Related Work

In the colonoscopy domain, very few works are fully dedicated to keyframe selection. How-
ever, a common procedure generally followed for the pre-processing of colonoscopy videos
involves quality assessment, an initial step of keyframe selection. For example, Park et
al. [32] adopted two measures for frame quality: Shannon’s entropy and a range filter. In
a similar domain of Wireless Capsule Endoscopy (WCE), Yuan and Meng [33] performed
hierarchical keyframe extraction. They utilized the entropy change to find the local maxi-
mum to create sub-clots. It is then followed by an affinity propagation clustering approach

to select representative frames from each sub-clot. Oh et al. [34] proposed edge-based
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and clustering-based techniques to classify frames as informative/uninformative. They also
proposed a specularity detection method and used it further to improve informative frame
classification. Arnold et al. [35] carried out wavelet analysis to detect indistinct frames. A
recent work focusing on video summarization is proposed by Li et al. [36]. Some clustering-
based approaches are presented in [37, 38]. However, clustering-based methods are not
suitable in noisy environments. Colonoscopy frames are generally susceptible to noise.
Also, redundant frames are captured during the colonoscopy, making clustering methods
perform poorly. Saliency maps for finding keyframes of videos were presented in [39]. Mendi
et al. [40] adopted a color histogram comparison-based method, which compared the color
histogram of successive frames in a video. Keyframes were selected using k-means and
PCA whenever a significant change was observed. However, this model does not fit into
colonoscopy videos as most frames have similar color information. Recently, dictionary
learning based approaches have been proposed for video summarization [41]. Sasmal et al.
[42] utilized conventional methods, including image moments, Sobel operators, Oriented
FAST, and Rotated BRIEF methods. They also incorporated depth information obtained

using transfer learning.

Some other medical domains which focus on similar issues include laparoscopy, gas-
troscopy, and hysteroscopy. Ma et al. [43] extracted keyframes from laparoscopy videos.
They used deep features and formulated video summarization as a diverse and weighted
dictionary selection model. Loukas et al. [44] used an objectness model to segment the
laparoscopy videos; and then the representative frames were selected based on the highest
state-conditional probability. Xu et al. [45] considered eliminating uninformative frames
and skipped anatomy detection results in such frames. The approach processes all frames si-
multaneously for detection and informative/uninformative classification. Hence, it does not
reduce the processing time. Such related literature is included in a review study by Jin et
al. [46], which covers disease-related and non-disease-related work. The non-disease-related
papers are based on the frame quality for better lesion detection. In [47], a gastroscopic
video summarization technique based on a dictionary learning approach is proposed. Ejaz
et al. [39] proposed a visual attention-driven framework to perform video summarization

in the field of hysteroscopy.

Limitations: Most of the above approaches use hand-crafted features and do not
incorporate many video attributes leading to inefficacy in significant frame selection. Some
of the methods do not consider noisy frames with ghost colors, which is a common issue in

most endoscopy video recordings.
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(d)

Figure 2.6: (a) Specular highlights (marked by blue bounding boxes over polyp), (b) Low-
illumination, (c¢) Ghost colors, (d) Motion blur, and (e) Fecal depositions.

2.3.2 Artifacts Removal

The image-capturing environment and procedure (movements of colonoscope and watery
surface inside the colon), during a colonoscopy, introduces several artefacts in the video
stream, thus degrading the image quality. These artifacts can be in the form of low illumi-
nation, specular highlights, interlacing, ghost colors and motion blur. Some sample images
are shown in Fig. 2.6. Controllable up to a certain extent with device settings, these arte-
facts are nearly inevitable. Such artifacts can deviate a computational model’s intended

task, reducing its performance.

Related Work

Most of the existing artifacts removal approaches are focused on specular highlight segmen-
tation. Removal of other artifacts is an under-studied problem. The literature related to
specular highlight segmentation is summarised in this section in three categories: (a) Color
distribution, (b) Low rank & sparse decomposition, and (c¢) Contrast based methods.

Color distribution properties of colonoscopy images have been explored by [48, 49] to get a
more comprehensible view of the highlights. Stehle et al. [48] has examined two color spaces.
One color space can visualise both the textural and specular edges, while the other one is
sensitive only to the textural edges. The difference between the two obtained images, along
with saturation and brightness value tests, has been utilized to detect specular reflections.
Gross et al. [49] converted images into HSV color space because specular highlights are
characterised by low value and high saturation. Akbari et al. [50] proposed a method in
which statistical features are extracted from each channel of RGB and HSV color spaces.
Based on these features, a non-linear SVM selects one of the color spaces. RGB detection
method employs the voting scheme, and the other one uses thresholding that is adaptive to
the image statistics. Figueiredo et al. [51] computed the summation of respective intensities

in the three channels of RGB color space and then laid a threshold over it. Yu et al. [52]
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proposed an adaptive specular highlight detection method based on the ratio of the red
channel to the green and blue channels. They considered that in non-specular regions, the
value of the red channel is likely to be higher than the other two channels. On the contrary,

all three channels have similar and saturated values in the specular regions.

Limitations: In a colonoscopy, the amount of light incident determines the intensity
of bright spots. Consequently, these specular highlights seem to be darker in less illuminated
regions. Hence, intensity thresholding could not result in acceptable detection outcomes.
Moreover, these methods [48-52] are sensitive to noise and are highly dependent on the
selection of thresholds. Such approaches are not robust and can lead to under or over-

segmentation.

Low rank & sparse decomposition methods decompose the given image into low-rank and
sparse results. Specular reflections are represented by the sparse results as these methods
consider highlight pixels as noise. Li et al. [53] converted RGB images into HSV color
space and then applied adaptive thresholding on the intensity and saturation values. The
sparse results and the output obtained after applying adaptive thresholding are tested for
similarity. After computing similarity measurements, they are used for performing iterative

optimization in adaptive RPCA decomposition. This gives the final adaptive sparse results.

Limitations: The above method fails when there is too much specularity present in
the image as it does not treat specularity as a sparse part in such cases. Li et al. [53]
considered overexposed areas as specular regions, contrary to the ground truth provided by
the experts. This method only focuses on the absolute highlight pixels and cannot detect
relative highlight pixels.

Contrast-based methods search for high contrast regions and pixels corresponding to high
intensity. Park et al. [32] detected saturated as well as high contrast areas. They utilized
adaptive thresholding on the image intensity histogram to detect saturated regions. To
search for small bright regions, an open top-hat filter followed by a reconstruction operation
using a size-5 disk-shaped filter was adopted. In [54], it has been assumed that the specular
reflections’ intensity is more than its neighboring non-specular regions. The images and
their corresponding medians are subtracted, and thresholding is applied to detect the bright
spots. Sanchez et al. [55] proposed a method that focuses on high-contrast regions. The

detected regions are fed to an SVM classifier to discard overexposed areas.

Limitations: The above methods [32, 54] rely on the selected thresholds, which are
liable to fail in the case of relative highlight pixels. In [55], the overexposed regions are not

handled efficiently. As a result, the specular regions present within the overexposed regions
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(©)

Figure 2.7: Polyp detection: (a) Polyp images vs. (b) Non-polyp images, (c) Polyp localization:
denoted by bounding box, and (d) Polyp segmentation.

are not correctly detected and result in more false positives.

2.3.3 Detection and Localization

Detection and Localization are the core tasks in any computer vision based problem. Lo-
calization refers to locating the object of interest and then creating a bounding box around
it. Similarly, detection represents the task of identifying objects in an image and assigning
them some class. As our objective is to detect polyps, our work intends to perform these

two tasks in the following sequence:

Detection: Identify a set of frames containing polyps, from a huge volume of
colonoscopy videos. This process is a kind of binary classification which predicts a class of

the frame as polyp or non-polyp.

Localization: Mark the exact location of the polyp in a frame using a bounding box.
This process predicts a set of values {c¢, u,v,w,h} where c represents the class (polyp/non-
polyp), u,v,w,h denote the centre coordinates, width, and height of the bounding box
around the detected polyp.

In this thesis, we use these two terms to denote detection of polyp/non-polyp frames
from a complete colonoscopy video and localization of polyp in a given frame. The same is

illustrated in Fig. 2.7(a)-(c).
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Related Work

Polyp detection and localization have been considered independent problems for the past
many years and not as a sub-part of keyframe selection. Related existing works employed
handcrafted-based feature learning methodologies and relied on features like color, shape,
contour, texture, etc., for the characterization of polyps [56, 57]. However, manual feature
extraction needs vast domain knowledge and could be incapable of detecting polyps acquired
using different imaging techniques. Therefore, deep learning based approaches have been
adopted for their ability to extract hidden image features. For example, Thambawita et al.
[58] evaluated five machine learning based models in various settings to detect polyps and 15
other classes. They also performed cross-dataset evaluations to demonstrate the challenges
faced in developing a generalized model. Pacal et al. [59] embedded CSPNet into the
YOLOv3 and YOLOv4 architecture and replaced Leaky ReLLU with the SiLU activation
function. They also investigated the effect of transfer learning and the inclusion of negative
samples in the training data.

Considering the importance of image pre-processing, Qian et al. [60] detected specular
reflections and adopted an image patching algorithm to remove these reflections. A tailored
version of faster R-CNN is then applied on these pre-processed images to perform polyp
detection. Similarly, Tian et al. [61] rejected frames with water-jet sprays and feces using
a binary classifier and detected polyp frames as a few-shot anomaly classification problem.
To benchmark various state-of-the-art methods, Jha et al. [62] carried out a comprehen-
sive comparison and also proposed ColonSegNet. Though their proposed model aims at
segmentation, they compared the predicted bounding boxes with other methods.

Limitations: The above detection and localization methods rarely conducted cross-
dataset or patient-wise validations, which is an important requirement in real-world scenar-
ios. Most methods have used manually selected good-quality images. Such manual refining
is a time-consuming job. Other approaches fed complete video in their proposed model,

which requires more computational resources.

2.3.4 Segmentation

Segmentation is a fundamental task in computer vision that partitions a given image into
meaningful regions. In the colonoscopy domain, polyp segmentation refers to the delineation
of the polyp region from its boundaries. In the process, labels are assigned at a pixel
level, which helps demarcate polyps in a colonoscopy image. Given an image set () =

{I;,0;},, where I; represents original RGB images, and O; = {oy),j =12,.., |Ii|,0§-i) IS
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{0,1}} represents the corresponding masks. The pixels in the mask with og.i) = 1 signify
polyp regions, whereas those with zeroes belong to the background. A sample of the polyp

segmentation task is shown in Fig. 2.7 (d).

Related Work

Conventional methods: In earlier years, the traditional methods adopted for polyp segmen-
tation relied on hand-crafted features, such as texture, color, and shape. Some of these
techniques are discussed in [10, 63]. However, their limited performance in handling the
complex segmentation task and the inability to capture polyp heterogeneity led to the
advent of deep learning approaches in this domain.
Deep Learning based methods: In recent years, several deep learning-based techniques have
been developed for polyp segmentation and have reported impressive outcomes. The in-
troduction of fully convolutional networks paved the way for many semantic segmentation
models [64, 65]. Subsequently, encoder-decoder structures dominated the field with the
popularity and success of U-Net [66] based architectures in biomedical image segmenta-
tion. Several studies have leveraged this concept; for example, Jha et al. [13] presented
ResUNet++, which integrates residual blocks with Atrous Spatial Pyramidal Pooling,
squeeze-and-excitation units, and attention blocks. Later, its extension [67] incorporated
Conditional Random Field and Test-Time Augmentation for improved polyp segmenta-
tion. DoubleU-Net [14] stacked two U-Net architectures, in which the first network used
a pre-trained encoder to generate features as input for the second network. Despite the
excellent performance of such models, the need for real-time systems emerged due to their
high resource requirements and inference time. With this focus, Jha et al. [68] proposed
ColonSegNet, which produces efficient output while achieving real-time performance. Sim-
ilarly, HarDNet-MSEG [15] used a low-memory traffic backbone and a cascaded partial
decoder to achieve fast polyp segmentation. Focus U-Net [69] also uses an encoder-decoder
architecture that embeds a dual-attention gated module and introduces hybrid focal loss.
Besides U-Net based models, several other architectures also exist that focus on bound-
ary details and consider the camouflage property for polyps. For example, PraNet [70]
comprise reverse attention modules to include boundary cues with a global feature map
obtained using a parallel partial decoder. Yue et al. [71] proposed a boundary constraint
network that utilizes a bilateral boundary extraction module to investigate polyp and non-
polyp regions. Ta et al. [72] designed BLE-Net with an encoder deployed with a boundary

learning module along with a boundary enhancement module at the decoder to consider
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edge details. Polyp-PVT [73] introduced a camouflage identification module with a Pyra-
mid Vision Transformer (PVT) encoder. This module aims to capture polyp cues concealed
in low-level features. Such transformer-based approaches’ excellent performance further
inspired similar works in this field. ColonFormer [74] proposed a residual axial attention
module and combined a hierarchical transformer with a hierarchical pyramid network for
efficient polyp segmentation. HSNet [75] used PVT as an encoder and embedded cross-
semantic attention module to bridge the semantic gap between low-level and high-level
features. GMSRF-Net [76] developed a cross multi-scale attention module and multi-scale
feature selection modules. Some other related works can be found in [77-80].
Limitations: Although the segmentation performance achieved by state-of-the-art
methods is noteworthy, the issue of reproducibility and fair comparison remains. Many of
the recent works have considered testing on unseen datasets. Still, the small test set size
makes the validation susceptible to the kind of dataset split scheme followed, yielding biased

results. Moreover, the split scheme followed in the literature is not uniform.

2.3.5 Classification

Classification is a task to identify the correct label for a given image. In the colonoscopy do-
main, this task can be used to recognize the pathology of a polyp that could be hyperplastic
(benign) or adenomatous (potentially malignant). So, given an image set @ = {I;,0;}*,,
where I; represents original RGB images, O; can be 0 or 1 depending on the pathology of
the polyp present in I;.

Related Work

Most of the prior works focused on polyp detection, and only a few targeted classification
due to the unavailability of a large annotated dataset. This is why most of the methods
adopted hand-crafted feature extraction techniques, as enough data was not available for
training deep learning models. Only a few methods aimed at classifying polyps based on
pathology (adenomatous/hyperplastic). Some methods followed a pit-pattern classification
scheme to categorize normal mucosa and hyperplastic [81]. Uhl et al. [82] and Hafner et al.
[83] designed fractal dimension-based schemes. The former method used two filter masks for
this purpose, namely, an anisotropic Gaussian filter mask and an elliptic binary filter mask.
In [83], three extensions of the local fractal dimension based approach are presented, which
help in extracting shape and gradient details from the given image. Wimmer et al. [84]

utilized four types of filters, three of which are directional sensitive, whereas the fourth one is
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based on the maximal-minimal filter bank technique to achieve rotation invariance. Ribeiro
et al. [85] first time explored different deep learning models and reported results on various
model configurations (end-to-end training or transfer learning). Bora et al. [86] used the
Least Square Support Vector Machine and Multi-layer Perceptron to perform classification
along with different feature extraction approaches. More recently, Patel et al. [16] and Li et
al. [17] released a relatively large colonoscopy dataset which is composed of different small
datasets. They also provided experimental results on some baseline deep learning models.
Bhamre et al. [87] explored the advantages of performing classification using NBI instead of
WLI. This is achieved by translating images of WLI modality into NBI using CycleGAN.
Limitations: The literature indicates a paucity of research in the classification task,
primarily attributed to the scarcity of high-quality, large-scale annotated datasets. More-
over, a research gap still persists in exploring different imaging modalities and their specific

benefits in classifying polyps based on their pathology.

2.3.6 Dataset Description

Table 2.1 shows the list of the existing endoscopy datasets along with data type, size, and
accessibility. It can be observed that most of the existing datasets in the literature are
from colonoscopy procedures and consist of polyp still frames or videos. In this thesis,
we used datasets according to the task objectives and the type of annotations available.
For example, the datasets with segmentation mask and detection bounding box details are
used for polyp segmentation and detection, respectively. We also designed a novel multi-
class endoscopy dataset, which will be discussed in Chapter 5. The following related work
discusses the existing datasets in detail to provide an overview of the datasets used in this
thesis. These details also help relate to the need for our proposed dataset in Chapter 5 as
most of the existing datasets are small in size and do not capture some critical anatomical

landmarks or pathological findings.

Related Work

In the earlier GI detection works, the CVC-ClinicDB [10] and CVC-ColonDB [56] were
widely used. CVC-ClinicDB is developed from 23 colonoscopy video studies acquired
with white light. These videos provide 31 video sequences, each containing one polyp,
which finally generates 612 images of size 576 x 768. CVC-ColonDB consists of 300
different images obtained from 15 random cases. Similarly, ETIS-Larib Polyp DB [11]

is a colonoscopy dataset consisting of 196 polyp frames and their corresponding segmen-
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Table 2.1: List of the existing datasets within GI endoscopy.

Dataset Data type Size Accessibility
Kvasir-SEG [9] Polyps 1,000 imagest* Public
. . 110,079 images .

HyperKvasir [88] GI findings & 374 vi deoi; Public
Kvasir-Capsule [89] GI findings® 4,741,504 images Public
Kvasir [90] GI findings 8,000 images Public
CVC-ColonDB [56] Polyps 380 images' As per request®
ETIS-Larib Polyp DB [11] Polyps 196 images' Public
EDD2020 [12, 91] GI lesions 386 images’® Public
CVC-ClinicDB [10] Polyps 612 images! Public
CVC-VideoClinicDB [19] Polyps 11,954 imagesf As per request
ASU-Mayo [92] Polyps 18,781 images' As per request®

Angiectasia, .
KID [93] bleeding, > 2500 images, Public*

. . 47 videos

inflammations®

1,537 images’®
PolypGen [94] Polyps & 2,225 video sequence, Public
4,275 negative frame

SUN Database [95] Polyps 158,690 video frames® As per request
ISIT-UMR [96] Polyps 76 colonoscopy videos Public

TSegmentation ground truth *Not available now 'Contour °Video capsule endoscopy * Bounding box information

tation masks. Recently, Kvasir-SEG [9] dataset has been introduced that comprises of
1,000 colonoscopy images with segmentation ground truth and bounding box coordinate
details. This dataset offers a diverse range of polyp frames, including multiple diminutive
polyps, small-sized and regular polyps, sessile or flat polyps collected from varied cohort
populations. The dataset is open-access and is one of the most commonly used datasets for

polyp segmentation.

The ASU-Mayo Clinic Colonoscopy Video (c) database [92] is a copyrighted
dataset and is considered the first largest collection of short and long video sequences. Its
training set is composed of 10 positive shots with polyps inside and 10 negative shots with
no polyps. The associated test set is provided with 18 different unannotated videos. CVC-
VideoClinicDB [19] is extracted from more than 40 long and short video sequences. Its
training set comprises 18 different sequences with an approximate segmentation ground
truth and Paris classification for each polyp. ISIT-UMR [96] is a video dataset with 76
colonoscopy videos available in both NBI and WLI. It contains annotations for pathology
classes, including hyperplastic (21 videos), adenomatous (40 videos), and serrated adenoma
(15 videos). SUN Colonoscopy Video Database [95] comprises 49,136 polyp frames and
109,554 non-polyp frames. Unlike the datasets described above, this dataset includes patho-
logical classification labels, polyp size, and shape information. It also includes bounding box
coordinate details. The PolypGen [94] dataset is an open-access dataset that comprises

1,537 polyp images, 2,225 positive video sequences, and 4,275 negative frames. The dataset
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is collected from six different centers in Europe and Africa. Altogether, the dataset provides
3,762 positive frames and 4,275 negative frames. These still images and video frames are
collected from varied populations, endoscopic systems, and surveillance experts in Norway,
France, the United Kingdom, Egypt, and Italy and is one of the comprehensive open-access

datasets for polyp detection and segmentation.

Apart from the lower Gl-related datasets, there are a few datasets that provide com-
bined samples of upper and lower GI findings. For example, HyperKvasir [88] is a multi-
class GI endoscopy dataset that covers 23 classes of anatomical landmarks. It contains
110,079 images out of which 10,662 are labeled and 99,417 are unlabeled images. The
EDD2020 dataset [12, 91] is a collection of five classes and 386 still images with detection
and segmentation ground truth. The classes are divided into 160 non-dysplastic Barrett’s,
88 suspicious precancerous lesions, 74 high-grade dysplasia, 53 cancer, and 127 polyps with
overall 503 ground truth annotations. The Kvasir-Capsule [89] is a video capsule en-
doscopy dataset comprising 4,741,504 image frames extracted from 117 videos. From the
total frames, 4,694,266 are unlabeled, and 47,238 frames are annotated with a bounding
box for each of the 14 classes. Similarly, KID [93] is a capsule endoscopy dataset with 47
videos and over 2,500 images. The images are annotated for normal, vascular, inflammatory,

lymphangiectasias, and polypoid lesions.

Limitations: The literature review shows that most Gl-related datasets focus on
a single specific finding, such as colon polyps. Some of the datasets are small in size
and have ignored non-lesion frames, which are essential for developing algorithms to be
integrated into clinical settings. Additionally, many of these datasets are available on request
and require approval from the data providers, resulting in further delays. A few datasets
like Kvasir, HyperKvasir, Kvasir-Capsule and KID provide multiple GI findings. However,
Kvasir-Capsule and KID are video capsule endoscopy datasets. The Kvasir dataset has only

eight classes, whereas Hyperkvasir has 23 classes.

2.3.7 Synthetic Dataset Generation

With the advent of generative artificial intelligence, several works have been proposed to
generate synthetic colonoscopy images. These synthetic data mimic the characteristics of
real data and fairly look similar to them. The techniques adopted so far can broadly be

divided into GANs, and Diffusion Models.
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Related Work

GAN based Techniques: The initial frameworks for polyp generation are based on the ad-
versarial concept and adopt different variants of GANs. For example, Shin et al. [97] used a
conditional-GAN approach to translate normal colonoscopy images to polyp images. This
translation is achieved using an input-conditioned image which is a combination of an edge
map and a polyp binary mask. A similar concept of converting normal frames to polyp
frames is proposed in [98]. They utilized a conditional GAN architecture to produce polyps
with varied characteristics by controlling the input-conditioned binary mask values. Such
conditional translation is also reported by Fagereng et al. [99]. They developed a framework
called PolypConnect which uses an EdgeConnect model to convert clean colon images to
polyps when given an edge map and a polyp mask. Sasmal et al. [100] performed polyp
generation using DCGAN and used the obtained synthetic polyps to enhance classifier per-
formance for differentiating adenoma and hyperplastic. An identical augmentation approach
is followed by Adjei et al. [101] using synthetic polyps generated using a Pix2Pix model.
Unlike the traditional GAN architecture, He et al. [102] introduced an attacker in the frame-
work to obtain false negative images. Sams and Shomee [103] utilized a StyleGAN2-ada
to generate random binary masks which are combined with colon images. This integrated
image is used as an input for a conditional GAN to obtain synthetic polyp images. The
above methods focused on polyp generation irrespective of the imaging modalities. How-
ever, a few works used GAN-based approaches to transfer style between different imaging
modalities like WLI and NBI. Golhar et al. [104] utilized the GAN inversion approach,
which uses a latent representation of images to perform translation between NBI and WLI
modalities. Following this technique, interpolation methods are used to change the polyp
size. Similarly, Bhamre et al. [87] used CycleGAN to convert WLI images to NBI images.
Diffusion Model based Techniques: The related literature involves only a few works focused
on polyp image generation. Machacek et al. [105] used a conditional diffusion probabilistic
model to produce synthetic polyp images using synthetic masks. They validated the effec-
tiveness of generated data by utilizing it for training polyp segmentation models. Pishva
et al. [106] performed polyp generation using two diffusion models. The two models are
fine-tuned on cropped-out polyps and clean colon images, respectively. This fine-tuning is
followed by performing an inpainting using the latter model and cropped-out images. Du
et al. [107] proposed an adaptive refinement semantic diffusion model which considers the
polyp and background ratio to adjust the diffusion loss. They also incorporated a pre-

trained segmentation model that modifies the refinement loss depending on the difference
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between the predicted mask of the synthetic polyp and the actual binary mask.
Limitations: Although a few existing works have established the significance of NBI
images over WLI images in polyp classification, the generation of new synthetic polyp images
with different imaging modalities has not been explored in the literature. Moreover, the
above-mentioned approaches followed a similar pattern of polyp generation using binary
masks. The impact of text prompt based training, particularly with different imaging

modalities, still remains unexplored.

2.4 Standard Metrics

Detection of polyp from a given set V' of colonoscopy videos is a binary classification task,
i.e., we consider two classes, polyps and non-polyps. Let tp be the number of such samples
which are correctly detected as polyps and ¢n be the number of instances which are correctly
predicted as non-polyps (background). Similarly, let fp and fn be the incorrect predictions

erroneously considered polyps and background, respectively.

e Precision: Precision is the ratio of correctly predicted positive observations to all the

positive predicted observations. It can be defined as:

ip
tp+ fp

Precision = (2.1)

o Recall/Sensitivity: Recall/Sensitivity presents the ratio of correctly predicted positive

observations to all the original observations in the actual class. It can be formulated

as:

tp
Recall = ———— 2.2
eca bt In (2.2)

e Fli-score: Fl-score integrates both recall and precision and calculates a weighted

average/harmonic mean of these two metrics. It can be computed as:

2 X Precision x Recall
F1- = 2.3
seore Precision + Recall (2:3)

o Intersection over Union (IoU)/Jaccard Index (JI): TIoU/JI quantifies the amount of
overlap between the predicted and ground truth region. It can be defined as:

_|[PrnGr

JI(PT,GT') = m

(2.4)
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o Awerage Precision (AP) and mean Average Precision (mAP): AP can be defined as the
area under a precision-recall curve which helps summarize the curve in a single value.
It is a weighted sum of precisions computed over different thresholds, considering the
increase in recall as the weight. mAP is defined as the average values of APs over

different classes. These terms can be formulated as:

1
AP — / P dr! (2.5)
r’'=0
ap=1yap, (2.6)
m = - 2 3 .

o Area under Precision-Recall Curve (AUPRC): AUPRC is the area under a precision-
recall curve. It is an important metric for problems with imbalanced data where

detecting positive class is the primary objective.

o Balanced Accuracy (BA): BA is also used with imbalanced datasets and can be cal-

culated as the arithmetic mean of specificity and sensitivity which is given by:

_ Sensitivity + Speci ficity

BA
2

where speci ficity = tn/(tn + fp).

Chapter Summary

In this chapter, we covered some of the key medical terminologies and the background
concepts required to understand the subsequent chapters. These concepts are followed by
literature survey pertaining to different phases of an ideal CAD system. These phases are
the fundamental tasks intertwined within our proposed methodologies. The survey of each
phase is accompanied by limitations, specifying the research gap in the current scenario.
Also, we discussed about the different datasets and some existing synthetic dataset creation
techniques, followed by their limitations. Lastly, we explained the standard metrics that

are used in this thesis.

DRUCES (St
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Keyframe Extraction for Enhanced Polyp

Detection and Localization

Chapter Highlights

o We hypothesised that reviewing only some adequate number of informative frames
instead of an entire colonoscopy video could yield enhanced outcomes, and significant

savings in manual effort, computational resources, and time.

o We propose a multi-stage keyframe extraction framework to select good-quality, dis-

tinct polyp frames covering multi-views of polyps with a high polyp-to-frame ratio.

e We also propose YcOLOn, a novel multi-scale attention-based model for enhanced

polyp localization performance.

e This chapter is based on the publications “A Multi-Scale Attention Framework for Au-
tomated Polyp Localization and Keyframe Extraction From Colonoscopy Videos” pub-
lished in IEEE Transactions on Automation Science and Engineering and “ Keyframe
Selection from Colonoscopy Videos to Enhance Visualization for Polyp Detection”

presented at IV 2022.

This chapter addresses the problem of extracting meaningful clinical in-
formation from colonoscopy videos, which otherwise requires an enormous

amount of reviewing time and puts a considerable burden on the surgeons.
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3.1. INTRODUCTION

The proposed solution presents a first end-to-end automated multi-stage
deep learning framework to extract an adequate number of clinically signif-
icant frames, i.e., keyframes from colonoscopy videos. The proposed frame-
work comprises multiple stages that employ different deep learning models
to select keyframes, which are high-quality, non-redundant polyp frames
capturing multi-views of polyps. In one of the stages of our framework,
we also propose a novel multi-scale attention-based model, YcOLOn, for
polyp localization, which generates ROI and prediction scores crucial for
obtaining keyframes. We further designed a GUI application to navigate
through different stages. Extensive evaluation in real-world scenarios in-
volving patient-wise and cross-dataset validations shows the efficacy of the
proposed approach. The framework removes 96.3% and 94.02% frames, re-
duces detection processing time by 38.28% and 59.99%, and increases mAP
by 2% and 5% on the SUN database and the CVC-VideoClinicDB, respec-
tively. The source code is available at https: // github. com/ Vanshali/

KeyframeExtraction.

3.1 Introduction

With about 14.2 million procedures performed in the US alone [108], colonoscopy is one
of the most common tests followed to reduce CRC-related mortality and morbidity. The
tremendous amount of medical data obtained from these medical examinations needs large
storage volumes and enormous time for manual reviewing. This time-consuming assessment
puts a considerable burden on the clinicians and introduces human errors in the diagnostic
results. Some recent research proposed automated polyp detection and classification tech-
niques [58, 62, 109-111] to reduce manual efforts. However, as many colonoscopy video
frames are clinically insignificant and do not contribute to pathological interpretations,
they provide distorted information to the automated systems. Hence, these systems often
underperform.

One possible solution to overcome these issues is to perform video skimming that ex-
tracts the essential and good-quality content of the video streams in the form of significant
and representative frames. These are called the keyframes, which preserve the static sum-
maries of the key-events corresponding to a patient’s colonoscopy procedure. In this way, an

adequate number of good-quality frames can be obtained. The automated systems can then
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Figure 3.1: The figure illustrates example scenarios of frames captured in the colonoscopy procedure.
The first row displays low-quality frames: (a) motion blur, (b) low illumination, (c) ghost colors,
and (d) waste materials. The second row (e) displays redundant consecutive frames from a video
sequence. The third row (f) displays images of the same polyp, where (f)-i and (f)-ii show cropped
view, (f)-iii shows a distant view, and (f)-iv shows a clear view. The fourth row (g) displays frames
with multiple views of a polyp from different directions.

efficiently process the extracted keyframes and easily store them for clinical assessments.
The keyframes can save doctors a lot of reviewing time and allow them to go through many
case studies and surgeries quickly. Some keyframes can also be attached to a patient’s

medical record file for future reference and retrospective treatments.

An effective keyframe selection approach must consider various attributes of the
recorded colonoscopy videos [43]. Firstly, about 25% of the acquired video frames are
low-quality [35]. These frames can be blurry or have noise such as interlacing, ghost colors,
low illumination, fecal deposition, and overexposed regions (Fig. 3.1(a)-3.1(d)). Secondly,
most consecutive frames are redundant [112] and do not add to the clinical findings (Fig.
3.1(e)). Thirdly, not all polyp frames provide a satisfactory Polyp-to-frame ratio (PI), and
some present cropped or distant polyp views (Fig. 3.1(f)). A colonoscopy keyframe selection

procedure should consider these attributes to provide clinicians with essential data from a
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large set of recordings. In addition to the quality frames, a clinician looks for multiple views
of the detected polyps for efficient analysis and precise resection (Fig. 3.1(g)). Therefore,
keyframes must contain diverse views of each polyp.

Most polyp detection, localization, and classification methods in the literature [56, 62]
either use the raw form of videos or perform manual removal of noisy frames, which is a
very time-consuming task. Only a few methods [32, 33] have focused on keyframe selection

in the colonoscopy domain, and they have the following drawbacks:
1. They do not consider all essential video attributes.

2. They mainly depend on the hand-crafted features, such as threshold, entropy-based
frame quality assessment, sub-shot formation, and clustering-based representative

frames selection.

Thus, the existing methods are not robust enough to represent high-level semantic infor-
mation and overlook important colonoscopy video attributes.

In this chapter, we propose an automated deep learning based keyframe selection ap-
proach that extracts keyframes from colonoscopy videos, overcoming the above-mentioned
drawbacks. The proposed approach consists of five stages, wherein each stage introduces
different methods to ensure that the keyframes obtained are clinically significant. Stage-1
eliminates the uninformative frames containing motion blur, ghost colors, fecal deposition,
and low illumination using a deep learning based model. Stage-II performs polyp detec-
tion to retain only the polyp frames that are important for pathological interpretations.
In Stage-I11, we group redundant and highly correlated frames, enforcing diversity among
the polyp frames. In Stage-IV, we localize the polyp region using our proposed multi-scale

attention-based localization model, YcOLOn. Lastly, we use the weighted score method to
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Discards Polyp Detection Redundancy --° i - .
Uninformative =3 " —» Y, — GuUl
frames (: polyp Check [ > w
T T T
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frames containing motion e g s Clustering assists to ' ¥

blur, ghost colours, fecal remove redundancy.

deposition, and low polyp frames.
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the imp: of D;”;;‘es;"(zne g from each cluster i1 GUlhepsin
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Figure 3.2: Flowchart depicting the role of different stages in the proposed work.
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select one polyp frame from each group. The framework is evaluated on two publicly avail-
able datasets with patient-wise/case-wise or cross-dataset settings. The results illustrate
the enhanced polyp detection and localization performance with a significant reduction in
the total number of frames that need to be reviewed. The stage-wise outcomes could be
visualized using the GUI application that we developed for easy navigation. Figure 3.2

illustrates the complete overview of the proposed method.

3.1.1 Contributions

The contributions of this chapter are discussed below:

o First deep learning based framework for keyframe selection in colonoscopy
domain that considers all video attributes: To the best of our knowledge,
this is the first deep learning based framework that aims to extract keyframes from
colonoscopy videos while considering all the mentioned video attributes. Also, our
method selects the best frame from correlated frames and enforces diversity among
the keyframes. Such selection provides each polyp view from multiple directions and

helps surgeons determine the exact information for polyp resection.

e Cross-dataset validations and case-wise analysis: We performed all the experi-
ments either using patient-wise/case-wise data or in cross-dataset settings. This makes
the proposed framework generalized and suitable for different patients’ data acquired
in the same hospital (with similar imaging modalities but different patient-specific
characteristics) and also across different hospitals (with different imaging modalities).
We performed the exhaustive case-wise analysis with each video sequence results in-

terpreted using separate boxplots.

e« Enhanced polyp detection performance with less processing time: We
achieved enhanced polyp detection rates along with reduced computational time by

adopting an approach to discard uninformative frames. (Stage-1I)

e Proposed a novel attention-based model YcOLOn for enhanced polyp local-
ization performance: We introduced an attention fusion mechanism that provides
a more precise localization of polyps. The obtained predicted scores assist in selecting

the representative frames from each cluster. (Stage-IV)

« Annotated colonoscopy images based on the quality of the frames: We

annotated the polyp frames of SUN database [95] that could facilitate the researchers
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with training labels for future research.

3.2 Proposed Method

3.2.1 Stage-I: Quality Assessment

Many artifacts, including noise, ghost colors, motion blur, fecal depositions, and low il-
lumination, degrade the quality of colonoscopy frames leading to an incorrect diagnosis.
Such frames often distract the clinician’s focus and also make automated diagnostic sys-
tems underperform. We consider these frames uninformative as they do not hold clinically
important information. Such frames can not be a part of keyframes and could unneces-
sarily impact the outcomes of the subsequent stages of the proposed pipeline. To get rid
of them, we trained the existing architecture of the DenseNet-201 [113] model as a binary
classifier using manually annotated informative/uninformative frames. DenseNet-201 is a
Convolutional Neural Network (CNN) with 201 layers, in which each layer is connected to
every other layer for richer patterns and diversified features. This dense connectivity can

be illustrated as:

0] = Wy * (CJO|Q1\-~-’C]1) (31)

where o; and w; denote the current feature map and the convolution weight, respectively.
q; represents each of the previous layers’ feature maps, and ‘|” indicates the concatenation

operation. As an end result, we obtain:

VStage—I = V/Wnsignificant = {f eV: f ¢ Vrinsignificant} (32)

where Vi, signi ficant T€presents a set of insignificant frames.

As the output of this stage will affect the outcomes of subsequent stages, performance
evaluation is required at this point. Due to the unavailability of ground truth information
in one of our test datasets, two metrics, namely, the Fast Fourier Transform (FFT) [114]
and the Variance of Laplacian (VoL) [115], are adopted to validate the effectiveness of this
quality assessment step. These metrics quantify the blurriness content of the given image.
An image can be represented as real and imaginary components using FFT. The lower
the amount of high frequencies contained in these components, the higher the blurriness
content. Similarly, the second metric considers an image blurry based on the rapid intensity
changes. A high variance represents an image with sharp and clear content, whereas a low

variance indicates an indistinct image. Suppose f ft; and vol; are the mean of magnitude
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spectrum of FFT and focus measure of Vol., respectively, obtained on the set V. Similarly,
fftj and vol; are associated with computations performed on Vsigge.s, i.e., on the frames
obtained after applying DenseNet-201. To obtain better quality frames in Vgyqge-r compared

to the set of raw frames V', our objective is to achieve fft; > fft; and vol; > vol;.

3.2.2 Stage-II: Polyp Detection

The main pathological interpretations are performed on polyp frames to diagnose the correct
medical state. Therefore, after removing insignificant frames, we addressed the detection of
polyp frames, Vp f,qmes, using a binary classification approach. The aim of this stage is to

obtain:

VStage-II = vStage-I/vNPiframes

= {f € VStage—I : f ¢ VNPiframes}

(3.3)

where VNP frames represents a set of non-polyp frames; P and NP stand for polyp and non-
polyp, respectively. Let D' = {pt,xt,yt}l‘gl‘ be the dataset, where p; is the patient/case
identification number, x; denotes the RGB colonoscopy frame and y; € {0,1} is the corre-

sponding frame label (either polyp or non-polyp). p; is mutually exclusive in the training

/

train, validation D! = and test D, sets. Our motive is to find only that subset Dp of

val? tes

test data samples which contain polyps, i.e., Dp = Vp  frames N Dj.s- This process provides
two-fold benefits: firstly, it refines the keyframe selection process by eliminating non-polyp
frames, and secondly, it validates the effectiveness of removing uninformative frames in
Stage-1. Different components of these two stages are shown in Fig. 3.3.

The input to the detection model is the output frames of the previous stage. This

ensures the model gets good-quality and significant data samples to avoid unnecessary

processing requirements. The model used here is the same CNN architecture that was
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Frames
e T u
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l‘ﬂ i i g : -

Mean of itude Value
using FFT
(a) Blur (b) Ghost colour (c) Low lllumination (d) Waste

—
—

Figure 3.3: Different components of Stage-I and Stage-II.
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used in Stage-I, i.e., the DenseNet-201. This network is chosen because of its remarkable
performance in the detection problems [116, 117]. Moreover, during Stage-I and II, the
risk of missing a critical frame is less, and unwanted frames to be processed are large. To
keep it simple and less time-consuming, a basic existing CNN model is adopted, which is
efficient enough at the same time for the defined task. The model is trained using two loss
functions: Binary Cross Entropy (BCE) and focal loss, one at a time. Experiments with
the same settings are done using ResNet-152 [118] to evidently show that the enhancement

in polyp detection due to insignificant frames removal is not network or loss-dependent.

3.2.3 Stage-III: Redundancy Removal

The consecutive frames in a colonoscopy video share significantly correlated content. Com-
pared to the general videos, the similarities encountered in the adjacent colonoscopy frames
are more due to the slow motion of the cameras during the colonoscopy procedure. This
raises the amount of redundancy in the video sequences. As a majority of the non-polyp
frames are already removed during the previous stage, redundancy most likely exists in the
small video shots containing polyps. Therefore, Stage-I11 addresses the issue of redundant
polyp frames by training the existing architecture of the Siamese network. It is a CNN
architecture that comprises two identical sub-networks, both possessing the same config-
uration, parameters, and weights. All parameter updates are mirrored across both the
sub-networks. This ensures that two almost similar colonoscopy images are not mapped to
extremely different feature spaces.

Consider colonoscopy frames f; and f; and let y € {0, 1} be the label that indicates the
similarity /dissimilarity between the two frames. The Siamese network uses a metric learning
approach to find the relative distance between the given input frames. In this context, a

dissimilarity score is generated using the contrastive loss, which can be computed as:
L o 1 2
(1-— y)iJ + yg{max(o, z—J)} (3.4)

where J is the Euclidean distance that can be defined as (E'(f;) — E'( fj))%, where F is
the output of the network for one image. z is a margin value beyond which dissimilar pairs
will not contribute to the loss.

On the basis of the obtained dissimilarity scores, grouping is performed. Adjacent
frames f; and f; with dissimilarity score S < T" are placed together under the same cluster

¢, where T is a threshold that could be set according to the required number of distinct
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frames. This groups redundant frames in one cluster, providing us with:

VStage—[]] = VStage—]I¢1 U VStage—[I¢2 u..u VStage—I[gk (35)

where €1, Cq, €3...¢ are different clusters. This approach provides two benefits: a) we get
distinct clusters with correlated frames in the same cluster, which signifies that one most
significant frame from each cluster would suffice our criteria of keyframe selection, and b)
polyp shots from different angles will be distributed in different clusters, and selecting one

representative frame per cluster would provide varied views of a polyp.

3.2.4 Stage-1V: Polyp Localization

The selection of representative frames from each cluster considerably depends on the extent
of polyp characterizing features contained within the frame. These features include the
texture, color, and shape of the polyps, which make them relatively distinguishable from
other endoluminal objects. One approach to quantify the presence of such features is to
compute the Confidence Score (CS) of polyp detection that generates the probability of
the polyp being detected in the frame. The higher the polyp detection C'S in a frame,
the greater the probability that the polyp characterizing features exist in that particular
frame. Therefore, in Stage-1V, we perform polyp detection with localization, providing us
with both ROIs and the corresponding C'Ss.

This chapter treats the above-mentioned task as a regression problem. Consider a
dataset D' = {p, zy, bbt,yt}g,ﬂ, where p;, x;, and y; are same as defined in Section 3.2.2.
bb; € R?* represents the 2-D coordinates of the bounding box containing polyp. A subset of
it is used to train a detector that predicts the bounding box coordinates and corresponding
CSs. Although many types of detectors are currently available, including one-stage, two-
stage, anchor-based, and anchor-free detectors, a general base structure is followed in all
the types. It comprises a backbone for feature extraction, a neck to make rational use
of the extracted feature maps, and a head to detect the location and class of objects.
Considering the one-stage detection capability with remarkable performance, we selected
YOLOvV5 [119] as our baseline. Its architecture consists of CSPDarkNet with an Spatial
Pyramid Pooling (SPP) layer as the backbone, Path Aggregation Network (PANet) as the
neck and YOLO detection head. Here, PANet is used as a link between the backbone
and the head to boost information flow. It incorporates bottom-up paths and performs

concatenation, which helps propagate low-level features and perform bridging of features.
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However, adopting direct feature concatenation propagates features with fixed weights,

ignoring the variance of feature map contents.

Therefore, we proposed a novel attention-based model, YcOLOn, which is a modified
version of YOLOv5. The architectural details of YcOLOn are shown in Fig. 3.4. Unlike
YOLOV5, the YcOLOn embeds four Attention Feature Fusion (AFF) [120] modules into the
neck component. These modules replace the traditional method of feature concatenation

to improve feature fusion and ultimately enhance polyp localization.
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Figure 3.4: Different components of the proposed model. AFF is the attention feature
fusion module, and MS-CAM is the multi-scale channel attention component of the AFF.

The different feature fusion strategies generally followed in deep learning include addi-
tion (ResNet, FPN), concatenation (U-Net, YOLOv5), attention-based refinement (SENet),
and modulation (GAU). The first two strategies are not context-aware, and the other two
are partially context-aware. Moreover, the channel attention module adopted in SENet
emphasizes large objects while the signals pertaining to small objects vanish. Such global
feature context-based components could not efficiently handle small objects like polyps.
The AFF module considers multi-scale feature contexts to overcome the issues related to
feature integration at different scales and vanishing signals of small objects. It incorporates
a Multi-scale Channel Attention (MS-CAM) component, which combines the local channel
context L(Y) with the global channel context G(Y'), as expressed below:

Y =Y @MS(Y)=Y @a(L(Y)®G(Y)) (3.6)
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where Y/, MS(Y) € RE*>*W indicate the refined feature map and attention-based weights,

respectively, generated by MS-CAM. ®, @ represent the element-wise multiplication and

the broadcasting addition, respectively, and o denotes the sigmoid function. L € RE*HxW
can be computed as:
L(Y) = BN(PwConve(ReLU (BN (PwConv1(y))))) (3.7)

where BN is the batch normalization, PwConv; and PwConvy signify the point-wise con-

volutions that use the channel reduction ratio r. Similarly, G can be expressed as:

G(Y) = BN(PwConva(ReLU (BN (PwConvi(g9(Y)))))) (3.8)

where g(Y') = Hxlw S ijil Y[.i,j) is the global average pooling. The same shape of L(A)

as that of the input helps preserve the fine details in the low-level features. Let Y be the
low-level feature map, and Z be the high-level semantic feature map, and Y, Z € REXHxW

the AFF can be computed as:
X=MSY+B)oY+(1-MSY +2)®Z (3.9)

where + is the element-wise summation and X € RE*#XW ig the fused feature. The fused
features get processed by the C3 blocks and are provided to the prediction heads for the

final localization of polyps.

3.2.5 Final Representative Frame Selection

The final selection of representative frames is performed by determining the most significant
frame from each cluster based on three parameters: a) High CS of ROI detection, b) Large
PI, and c¢) More centrally located ROI, i.e., less distance from image’s center (CD). Their
corresponding values are obtained as the output of our proposed localization model as
bb; € RS = {¢;, u;, v, ws, hi, cs;}, where ¢; is the class, (u;,v;) is the 2-D coordinate of the
central pixel of the ROI, w;, h; are the width and height of the ROI, respectively and cs;
is the confidence score. Here, CS defines the polyp characterizing features, making it the
most crucial parameter among all. However, besides the CS, the polyp area covered by
the predicted bb; and its location is also considerably important. The same polyp with
greater w; and h; values is probable to convey more clinical information than its redundant

counterpart with lower w; and h; values. Similarly, polyps closer to the central pixel of
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the colonoscopy image indicate a relatively more visible polyp area without any cropped
regions. Hence, we considered PI and CD, where PI o w; X h; ensures larger ROI and
CD = ((u; — ue)? + (v; — 00)2)% confirms a more centrally located ROI by computing
distance of (u;,v;) from the image’s center (uc,v.). Finally, a score is generated by jointly
considering these parameters using weights «, 3, and y assigned to them, and can be given
by:

FinalScore =a x CS+ x PI+~vx (1 —-CD) (3.10)

where «, £, and v are set to 0.5, 0.3, and 0.2, respectively, providing more significance to

CS followed by PI and CD.

3.3 Experimental Results

3.3.1 Dataset Details and Training Settings

The proposed work uses the publicly available SUN database [95, 121] and CVC-
VideoClinicDB dataset [122, 123]. We used the SUN database for training purposes in
all the experiments. It consists of annotated video frames, out of which 109,554 are non-
polyp frames from 13 cases, and the remaining 49, 136 polyp frames pertain to 100 different
lesions. We split the dataset randomly into a ratio of approximately 80, 10, and 10 for
training, validation, and test set, respectively. These are case-wise splits, i.e., no two splits
hold data of the same case. Also, experts manually annotated polyp frames as informative
or uninformative for Stage-I processing. Thus, the polyp frames have additional annotations
where around 31% of the frames are uninformative. Though the proportion of each type
of artifact is unknown, random sampling and case-wise division avoid biased distribution
across splits. For cross-dataset performance validation, we used the CVC-VideoClinicDB,
which consists of 18 video sequences. As the CVC-VideoClinicDB test set does not contain

ground truths, we have used only training and validation sub-parts from Stage-1I onwards.

The proposed method is implemented using PyTorch using the Titan Xp GPU. Stage
I and Stage II involve 20 epochs of training, a 0.001 initial learning rate, and an Adam
optimizer. In Stage III, the model is trained for 100 epochs using an Adam optimizer with
an initial learning rate of 0.0005. Our proposed model in Stage-IV is trained for 80 epochs
using an Stochastic Gradient Descent (SGD) optimizer with an initial learning rate set to

0.05.
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3.3.2 Performance Evaluation
Stage 1

The models in this stage are trained using manually annotated informative/uninformative
frames of the SUN database. The validation is performed using FFT and VoL. The related
results are shown in Table 3.1. The higher values of the two metrics infer less blurriness
content and sharper and clearer images. It can be seen that after processing the raw frames
through Stage-I models, the overall dataset quality has improved in most of the cases. This
improvement is more when tested on the SUN database than the CVC-VideoClinicDB.
One reason could be the similar data distribution of the training samples and the former’s
test set. It could also be inferred that the SUN database consists of more uninformative
frames. Such low-quality frame count might be due to the large number of non-polyp frames
in this database, which are expected to carry more artifacts due to unfocused camera
movements. The importance of this stage is further validated in the subsequent stages,
where improvement in polyp detection and localization is reported in terms of performance
and computational requirements.

Table 3.1: Comparative analysis of frames quality after elimination of uninformative frames

in Stage-1. + and - signs represent the value by which the frame quality improved or de-
graded, respectively, using Stage-I as compared to the raw frames.

Method Model Loss CVC-VideoClinicDB CVC-VideoClinicDB SUN database
train__valid test

Stage-I output frames (£ 9)

DenseNet.201 BCE 138.26 (+1.81) 162.63 (+6.17) 480.91 (+96.79)
Variance of Laplacian U Focal 140.49 (+4.04) 165.97 (+9.51) 487.73 (+103.61)
(Focus measure) ResNet-152 BCE 135.87 (-0.58) 157.11 (+0.65) 480.32 (+96.2)
siet-L! Focal 138.63 (+2.18) 167.11 (+10.65) 479.58 (+95.46)
, BCE 16.59 (+0.7) 18.81 (+1.2) 31,98 (+19.05)
(hiifof DenseNet-201 Focal -14.32 (+2.97) -18.97 (+1.04) 35.56 (+19.63)
magnituds spectrum)  ResNet-152 BCE -17.30 (-0.01) -20.00 (+0.01) 35.69 (+19.76)
' Focal -16.10 (+1.19) -19.98 (+0.03) 34.66 (+18.73)

It is noteworthy that apart from the overall performance, patient-wise results are also
crucial. Similar to the empirical rule by Ma et al. [43], we followed a criterion to retain at
least 20% frames of each video sequence during Stage-I testing. The purpose of setting such
criteria is to avoid the lack of keyframes for correct clinical decision-making. This would be
of great help in case the collected video is extremely unacceptable in terms of frame quality
due to unsatisfactory patient preparation or unexpected events during the colonoscopy
procedure. Considering such scenarios, this condition is set only for this particular stage.
The criterion can be fulfilled by tuning the CS of the model during testing and can easily
be done by clinicians. We have not laid any upper limit on the number of frames in Stage-

I because of the elimination process associated with the subsequent stages. To test our
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approach without any tuning, we assessed the overall performance with default settings,
irrespective of the case-specific data. However, while analyzing the case-wise performance,
we inspected the number of frames in Stage-I and tweaked the CS so that 20% of the

patient’s frames were retained.

Table 3.2: Impact on polyp frame detection results after discarding uninformative frames.

SUN database CVC-VideoClinicDBtrain__valid
Method Loss
Precision Recall Fl-score Time Precision  Recall F1- Time
(%) (%) (%) (sec) (%) (%) score (sec)
(%)

Before discarding ResNet-152 BCE 78.17+1.45 78.94+1.88 78.53+0.20 985 85.114£0.21  95.37+1.68  89.94+0.632076
uninformative i i Focal 77.23+£6.12 74.08+£7.42 75.32+0.94 982 88.09£1.14  82.28+5.08  85.02+2.18 2078
frames (Raw DPmeNet-ZOlBCE 63.81£16.6 83.80£11.6 71.03+£6.43 389 87.03+0.74  88.59+2.89  87.78%+1.05 600

frames) e Focal 82.30+0.16 73.9440.03 77.89+0.06 734 88.26+2.95 89.07+10.43 88.40+3.69 1877

After discarding ResNet-152 BCE 84.28+2.34 75.59+2.79 79.65+0.51 374 82.63+£0.03  96.96+1.25 89.224+0.55 821
uninformative T Focal 80.14+6.16 71.984+9.62 75.424+2.59 388 84.89+1.43  87.954+0.29  86.394+0.62 820
frames (Stage-I DenseNet-201 BCE 70.51+£15.0 83.93+16.8 75.01+1.85 156 84.44+1.41  93.40+2.21  88.68+0.22 292
output frames) o Focal 83.51+0.98 76.38+1.07 79.78+0.13 453 85.2842.40 92.864+6.67 88.80+1.76 751

Table 3.3: Comparative analysis of our polyp detection performance (Sensitivity %) with
state-of-the-art methods.

Method SUN database CVC Dataset
Case-90 Case-73 Case-61 Case-59 Case-51 Case-13 Case-11 CVC-VideoClinicDB
Misawa et al. [95] 97.7 93.5 92.1 96.9 91.5 92.2 95.6 -
Thambawita et al. [58] - - - - - - - 94.86
Ours 100 91.27 99.13 99.56 99.70 100 57.69 96.96
Stage-I1

We carried out two types of polyp detection experiments: a) using raw frames and b)
using processed frames obtained from Stage-I. Table 3.2 and AUPRC in Fig. 3.5 (a)-3.5
(h) show the comparison between these two different scenarios. Results present compa-
rable or improved detection rates using our approach in terms of precision, recall, and
F1-score, along with less processing time involved. The substantial reduction in the compu-
tational time is due to a 38.16% and 61.62% decrease in the number of testing frames of the
CVC-VideoClinicDB and the SUN database, respectively. Fig. 3.6 provides a patient-wise
analysis of 18 video sequences in CVC-VideoClinicDBtrain_val. It can be observed that
for each patient, the number of frames and processing time drastically decreased. At the
same time, sensitivity is increased or is comparable to that obtained using raw frames. The
two models, DenseNet-201 and ResNet-152, demonstrate a similar trend of performance
improvement. However, we utilized the polyp frames obtained from the DenseNet-201 due
to its lower processing time and satisfactory detection results.

To illustrate the performance of Stage-II independently, we compared the results with
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Figure 3.5: The AUPRCs are associated with Stage-II (a)-(h) and Stage-IV (i)-(p) outcomes. (a)-
(d) and (i)-(1) present results using CVC-VideoClinicDB. Similarly, (e)-(h) and (m)-(p) show curves
for the SUN database outcomes.

the state-of-the-art polyp detection methods. Very few works [58, 95] have used the same
dataset as ours. Though not exactly comparable, we have tried to conduct a fair comparison
as shown in Table 3.3. Misawa et al. [95] have reported case-wise per-frame sensitivity on
the SUN database. As we used a subset of this dataset for testing purposes, we have shown
results on a common set of patients’ data. Thambawita et al. [58] experimented in multiple
settings, so we compared with their best outcome. The comparative analysis shows that
our approach outperformed other methods in all the cases except for cases 11 and 73. The
reason could be these patients’ very small-sized polyps (3mm) [95]. Nevertheless, the overall

improvement validates that Stage-I processing reduces the computational requirements and
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Figure 3.6: Graphs representing all patient-wise changes observed after keyframe selection. (a)
shows the decrease in the number of images that need to be tested for polyp detection, (b) presents
the reduction in both the models’ testing time, and (c¢) provides an overview of enhanced overall
polyp detection rate in terms of sensitivity of the two models.

also enhances the polyp detection rate and the dataset quality.
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Figure 3.7: The graph plots the dissimilarity scores, CS, PI, CD, and final scores of a video shot
segmented from a patient’s video sequence. The two dotted boxes over the sub-plots represent two
independent clusters. The keyframe selected from each cluster is highlighted.

Stage-II1

This stage computes the dissimilarity scores using pairs of two immediate adjacent frames.
An example is shown in the first sub-plot of Fig. 3.7. The graph depicts the dissimilarity

scores pertaining to the video shot of a patient in the SUN test set. The lower scores
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Figure 3.8: Sample images illustrating the comparative analysis of the localization performance: (a)
YOLOV5, and (b) YcOLOn. The green, yellow, and pink color bounding boxes denote the ground
truth, YOLOvV5, and YcOLOn predictions, respectively.

Table 3.4: Comparative analysis of polyp localization results.

Method SUN database CVC-VideoClinicDBtrain_ valid
Precision Recall Fl-score mAP mAP Precision Recall F1- mAP mAP
(%) (%) (%) @0.5 @0.5:0.95 (%) (%) score @0.5 @0.5:0.95
(%)

Before discarding YOLOv5 93.08+1.80 89.57+0.52 91.28+0.59 94.51+0.24 58.43+1.41 74.88+4.75 58.35+2.12 65.51+1.84 63.26+3.9  31.09+1.64
non-polyp frames YcOLOn 94.00+£1.45 91.33+0.57 92.63£0.45 95.55£0.61 60.69+0.29 76.47+3.33 64.34£1.06 69.85+0.74 71.22+0.18 36.57+£0.27
After discarding YOLOvSH 94.32+£1.40 92.42+0.85 93.35£0.35 96.39+£0.41 60.82+1.36 75.37+4.31 58.64£2.82 65.87+1.69 63.74+3.82 31.24£1.64
non-polyp frames YcOLOn 95.22+1.17 93.3241.19 94.25+0.60 96.81+0.63 62.88+0.14 74.88+4.26 65.99+2.01 70.07+£0.67 71.41+0.10 36.6+0.37

indicate a higher correlation of the current frame with the previous one, and an abrupt
increase in the scores signifies a non-redundant frame. This behavior of the video sequence
scores helps form clusters of redundant frames. As this correlation is patient-specific and
setting the same threshold for all the video sequences will not provide relevant clusters, we
followed a case-wise approach to set cluster boundaries. For each case, an upper quartile
of dissimilarity scores is calculated. Any score above this value indicates a non-redundant
frame and the starting point of a new cluster. This process ensures that the number of
clusters obtained is about 25% of the total polyp frames. Thus, selecting one representative
frame from each cluster puts an upper limit on the number of keyframes, i.e., 25% of a

patient’s detected polyp frames.

Stage-I1V

The experiments in this stage are conducted using our proposed model described in Section
3.2.4, and a comparison is drawn with the baseline model, YOLOV5.

Comparison with the baseline: To investigate the effect of the AFF module, we
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Figure 3.9: The box plots (a)-(r) are associated with CVC-VideoClinicDB outcomes. The frames
retained after different stages are represented by S-0: raw frames, S-I: frames obtained after Stage-I,
S-II: frames obtained after Stage-II. The vertical axis represents the mAP@0.5:0.95. (s) shows the
change in the number of frames at different stages. The dashed bars represent the updated frame
count after CS tweaking.

trained our model and the baseline model using the SUN database and presented the testing
results on the SUN test set and CVC-VideoClinicDB. The associated results are reported
in AUPRC (Fig. 3.5 (i)-3.5 (p)) and Table 3.4. The table includes two types of scenarios,
localization on test sets: a) before discarding non-polyp frames and b) after discarding
non-polyp frames. In both scenarios, the proposed model achieved 2% and 5% increase in
mAP@0.5:0.95 and an improvement of about 1% and 4% in F1-score when evaluated using
the SUN test set and CVC-VideoClinicDB, respectively. Some sample images demonstrating

the qualitative comparison of our model with the YOLOv5 are shown in Fig. 3.8. For a fair
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Figure 3.10: (a) shows the change in the number of frames at different stages. The box plots (b)-
(h) demonstrate the performance of our proposed polyp localization model using frames of the SUN
database obtained at different stages. The frames retained after different stages are represented by
S-0: raw frames, S-I: frames obtained after Stage-I, S-II: frames obtained after Stage-II. The vertical
axis represents the mAP@0.5:0.95.

comparison, we have set the same confidence threshold of 0.5 while generating these sample
images. The superior performance of our model is evident from the undetected polyp frame
by YOLOv5. Moreover, our model predicts more accurate bounding boxes as compared to
that of the YOLOVS5.

Validating the significance of Stage-II: The results in Table 4.1 not only present
the superior localization performance of our model but also indicate the effectiveness of
Stage-II in the proposed pipeline. After discarding non-polyp frames, our model and the
YOLOVS5 achieved enhanced detection and localization in terms of precision, recall, F1-score,
and mAP. A significant increase of about 2% and a slight improvement in mAP@0.5:0.95
can be observed in the case of the SUN database and the CVC-VideoClinicDB, respectively.

Case-wise Statistical Analysis

In real-world settings, the keyframe selection process is majorly patient-specific. Therefore,
we analyzed our approach statistically using each case in the test sets independently. We
executed our proposed localization model five times and assessed each of them using indi-
vidual cases. The related box plots are shown in Fig. 3.10 and Fig. 3.9. The box plots
present a comparative analysis of the localization performance on a) raw frames (S-0), b)
frames obtained after Stage-I (high-quality frames; S-I), and ¢) frames obtained from Stage-
IT (only polyp frames; S-II) in terms of mAP@0.5:0.95. It is noteworthy that the results

are not cherry-picked, and box plots of every case from the test sets (SUN database and
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(a) Case-59

(c) Case-51

Figure 3.11: The figure shows the diverse view of polyps (ROIs) obtained from the final keyframes.
Each row displays ROIs of a specific case.

CVC-VideoClinicDB) are included.

The results show that in 60% of the box plots, either the interquartile range or the
median of S-I and S-1I is present above that of the S-0. This signifies that in all such cases,
S-I and S-II perform significantly better than S-0. In 20% of the cases, the boxes of S-0, S-I,
and S-II overlap, representing insignificant differences, i.e., all are comparable. It is observed
that S-I and S-II performed significantly superior or comparable to S-0 in all the cases of
the SUN test set. The remaining 20% plots (5 cases from the CVC-VideoClinicDB) present
better results with S-0. One of the reasons for the slightly low performance in the case of
CVC-VideoClinicDB is the cross-dataset evaluation. Another important noticeable point is
that out of these 5 cases, 3 are such cases (cases 5, 13, and 15) that required tweaking of the
CS in Stage-1. This signifies that the video quality of these patients is relatively low. Still,
our proposed attention-based localization model was able to identify polyps in low-quality
frames when more such frames were presented to it in S-0. Nevertheless, the majority of

the cases support the importance of Stage-I and Stage-II for keyframe selection.

Final Keyframes

Before this step, we discarded objects with CS lower than 0.5 to retain relatively more
crucial frames that carry relevant polyp-characterizing features. This is followed by a score

generation process based on the three criteria mentioned in Section 3.2.5. An example is
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Figure 3.12: The graphs depict the relation between the CS, PI, and CD. Polyp frames with
PI> Pl,,q and CD < CDgyg are likely to be detected with higher CSs.

shown in Fig. 3.7. The first sub-plot is obtained from Stage-III, and the next three are
generated using Stage-IV outcomes. The objective of the dissimilarity scores is to form
clusters, and the other three contribute to the selection of the most significant frame from
each obtained cluster. To determine the keyframe from a group of redundant frames, we
considered the highest CS followed by the highest PI and the lowest CD. The final scores
thus generated are shown in the last sub-plot of Fig. 3.7. The frame with the highest final
score within a cluster is chosen as the keyframe. As we get a collection of non-redundant
representative frames at the end, diverse polyp views captured from different directions are
obtained. Some samples are shown in Fig. 3.11.

In this work, the results corresponding to each stage are validated by the subsequent
stages, and in each case, we received positive outcomes. Similarly, to validate the effective-
ness of the score-based approach used in the final stage, we investigated the general trend
followed by the CSs, Pls, and CDs. We collected frames with CS> 0.5 and computed the
average, Pl,,, and CDg,4, over the Pls and CDs, respectively. We then counted the num-
ber of frames with PI > Pl,,, and CD < CDy,. We observed that the number of such
frames tends to increase with higher values of reported CSs. It implies that the automated
localization model also detects polyps with high probability when they are centrally located

and cover more image area. The related graphs of some cases are shown in Fig. 3.12.

Number of Keyframes and overall performance

The final keyframes extracted by our complete pipeline present a reduction of 96.3% and
94.02% frames in the SUN database and the CVC-VideoClinicDB, respectively. These
representative frames are capable of achieving enhanced or comparable diagnoses with low
resource requirements. This could be validated from the intermediate stages’ results in
which we obtained improved localization with 81.54% and 40.89% decrease in the total
number of frames of the SUN database and the CVC-VideoClinicDB, respectively. A similar
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Figure 3.13: Some screenshots of the proposed GUI. It consists of several options to easily navigate
through different proposed stages.
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trend is seen in the polyp detection outcomes. The change in the number of frames during

the intermediate stages is shown in Fig. 3.10 (a) and Fig. 3.9 (s).

GUI for keyframes visualization and easy navigation

We designed a GUI to allow clinicians to navigate through the different stages of our pro-
posed framework. It has three panes: the left pane displays frames, the right pane consists
of different stage navigating options, and the bottom pane has buttons to scroll through
the frames of a single video. The number of selected frames could be modified using a slider
that changes the CS of the models. The bottom pane’s Back and Forward buttons help
switch to previously visited and yet-to-be-visited frames, respectively. The Clear button
unloads the left pane. Screenshots of the GUI presenting visual results of some options
are shown in Fig. 3.13. To the best of our knowledge, no GUI is designed in our research
community that facilitates keyframe selection from colonoscopy videos with such a wide

range of navigating options.

3.4 Limitations and Discussion

Although our proposed framework achieved promising outcomes with multiple validation
checks, the approach requires human intervention for customized settings. Control of clin-
icians over some settings could be useful many times, but there is a trade-off between the
benefits of clinician control and full automation. For example, in Stage-I, the proportion of
frames to be preserved is handled manually and is decided on a predefined criterion. These
settings are required for some patients’ data in which not enough frames are retained. Such
situations could arise during testing in real-world scenarios and are attributed to various
factors. These factors include inadequate patient preparation, inappropriate recordings due
to unexpected events, and limitations of the automated model in identifying informative
frames from videos acquired using different imaging modalities. The last factor could be
verified from the case-wise analysis in Stage-IV, which shows impressive results when train-
ing and testing are conducted on the same source domain using the SUN database. On the
contrary, few failure cases are reported on cross-dataset evaluation.

The lingering gap due to the above limitations creates opportunities for a system with
more automated settings and, more specifically, for a single-stage model that can integrate
all capabilities present in our proposed multi-stage framework. Furthermore, domain adap-

tation could also be explored for better performance, thus reducing the need for frequent
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tuning of settings. In the future, we will also conduct a small study on the users’ experience
with GUI and will incorporate the obtained feedback for improvement. Despite the few lim-
itations, our work attains compelling results and could save clinicians from the burdensome

task of manual frame selection.

3.5 Chapter Summary

In this chapter, we addressed the issue of the massive archival of colonoscopy videos and the
huge amount of manual effort involved in reviewing these video streams. In this context, we
proposed an automated system with a four-stage keyframe extraction pipeline. Our work
adopted deep learning models that consider the image quality and select clinically signif-
icant data. We also reduced the correlated frames, providing diversity among keyframes
along with a multi-view of polyps. In addition, our proposed multi-scale attention-based
model has shown improved polyp localization outcomes with a 2% and 5% increase in mAP
results using the SUN database and the CVC-VideoClinicDB, respectively. To validate the
effectiveness of the proposed pipeline, we conducted extensive experiments with case-wise
and cross-dataset evaluations. The results present the superiority of the proposed approach
with enhanced polyp detection and localization. Furthermore, the detection processing time
is lowered by 33.28% and 59.99%, and a substantial reduction of 96.3% and 94.02% in the
total number of frames is achieved using the SUN database and the CVC-VideoClinicDB,

respectively.

SRS St
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Artifacts Removal

Chapter Highlights

We observe that some patients’ data required confidence score tuning and human

interventions to obtain a sufficient number of keyframes for analysis.

The primary reason behind the need for confidence score tuning is the inappropriate

video recording with an enormous amount of uninformative frames.

Such cases need to be handled appropriately, as keyframe selection alone may not

provide sufficient information for a comprehensive diagnosis.

We propose an adversarial network based solution to translate uninformative frames to

clinically significant frames. Such translation helps uncover obscured clinical details.

We further propose a specularity segmentation technique involving a DWT based

encoder-decoder network.

This chapter is based on the publications “Can Adversarial Networks Make Uninfor-
mative Colonoscopy Video Frames Clinically Informative? (Student Abstract)” pre-
sented at AAAT 2023 and “A DWT-based encoder-decoder network for Specularity
segmentation in colonoscopy images” published in Multimedia Tools and Applica-

tions.
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4.1. INTRODUCTION

This chapter addresses the problem of artifacts that cover a large propor-
tion of colonoscopy video data. As inappropriate video recordings could
lead to an insufficient number of keyframes and need manual interven-
tions, we propose two automated solutions to deal with such cases. In the
first solution, we propose an adversarial network based framework to con-
vert uninformative frames to clinically relevant frames. We examine the
effectiveness of the proposed approach by evaluating the translated frames
for polyp detection using YOLOwvS. Preliminary results present improved
detection performance along with elegant qualitative outcomes. We also ex-
amine the failure cases to determine the directions for the research commu-
nity in the related domain. In the second solution, we perform specularity
segmentation, which is a crucial pre-processing step for efficient computa-
tional diagnosis. The presence of these specular highlights could mislead the
detectors that are intended to identify biomarkers precisely. Conventional
methods adopted so far do not provide satisfactory results, especially in the
overexposed regions. In this chapter, we propose a novel deep learning based
approach that performs segmentation following a multi-resolution analysis.
This is achieved by introducing DWT into the proposed model. We replace
the standard pooling layers with DWTs, which helps preserve information
and circumvent the effect of overexposed regions. All analytical experi-
ments are performed using a publicly available benchmark dataset, and an
F1-score (%) of 83.10 & 0.14 is obtained on the test set. The experimental
results show that this technique outperforms state-of-the-art methods and

performs significantly better in overexposed regions.

4.1 Introduction

In the existing works, the well-trained models intended for polyp detection, segmentation,
and classification still report limited diagnostic success. This limited success of automated
methods is attributed to low-quality frames in the video samples, which contain various arti-
facts, namely, ghost colors, low-illumination, motion blur, interlacing, and fecal depositions
(discussed in Chapter 1). Our keyframe selection approach deals with most such scenarios;
however, cases involving inadequate patient preparation and images with specular high-

lights need specific handling. As stated in the previous chapter (Section 3.4, Chapter 1),
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(a) (b)

Figure 4.1: Specular highlights in a colonoscopy image. (a) Original image, (b) Image representing
specular highlights in purple. Polyp is shown in green with some highlights on its surface. Red
frame shows specular reflections in overexposed regions.

inadequate patient preparation and low-quality video recordings due to unexpected events
might need manual intervention to perform keyframe selection. Such scenarios signify that
obtaining informative frames for appropriate diagnosis could be difficult at times. Like our
approach to keyframe selection, some other related fields of laparoscopy and endoscopy fol-
lowed keyframe selection [43] or performed super-resolution [124] to overcome similar issues,
but no work in the colonoscopy domain explored the idea of extracting obscured clinical
details from such low-quality uninformative video frames. Apart from the artifacts like
ghost colors, low-illumination, motion blur, interlacing, and fecal depositions, the problem
of specular highlights also needs to be addressed. Unlike other artifacts, specular highlights
could be present in small regions even in visually clear and non-blurred images. Therefore,
they are dealt with separately in this chapter. The basic details of other artifacts are al-
ready discussed in the previous chapter, while a concise overview of specular highlights is

presented in this section.

Specular reflections are the bright spots that give a highly contrasted appearance in
colonoscopy images. The watery shiny surface, also called mucosa, generates specular high-
lights when the colonoscope illuminates its surface in a perpendicular direction. These
highlights distort the pixel values and yield erroneous outcomes. An instance with high-
lights on polyp’s surface is shown in Fig. 4.1. Bernal et al. [10] illustrated the supporting
role of specularity detection while executing the polyp detection algorithms. Such high-
lights mislead detectors, thus becoming the source of errors. According to Sanchez et al.
[55], the presence of specular highlights could even lead to inaccurate polyp histology anal-
ysis. This could sometimes classify a non-adenomatous polyp as an adenomatous polyp,
leading to incorrect histological results. Moreover, the performance of deep learning based

cancer detectors majorly depends on the quality of data. That’s why the pre-processing of
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(b)

Figure 4.2: (a) Polyp with specular highlights, (b) Polyp (same as in (a)) without specular high-
lights, (c) Polyp’s textural patterns partially corrupted by specular reflections

colonoscopy images is the first and most important step before feeding them to automated
cancer detectors. Figure 4.1 presents an example with highlights in overexposed areas. In
Fig. 4.2 (a) and Fig. 4.2(b), difference can be noticed between a polyp with specular high-
tlights and the one without them. Fig. 4.2 (c) shows the obstruction caused by specular
highlights in clearly visualizing the polyp’s textural patterns. Considering the scenarios
above, it becomes imperative to detect specular highlights in order to aid computational
diagnostic methods. The related methods in the literature are dependent on thresholds and
handcrafted features. Such approaches are liable to failures, and the results obtained so far
are not satisfactory.

In this chapter, two solutions are presented:

e We investigate whether GANs can convert uninformative frames to informative
frames. In this direction, we propose a GAN-based image-to-image translation ap-
proach to generate informative frames from the degraded frames of the colonoscopy

videos.

e We propose a novel automated approach that aims at performing specularity segmen-
tation in colonoscopy images. This method could assist clinicians to get better-pre-

processed images and could lead to better performance of cancer detectors.

4.1.1 Contributions

The main contributions of this chapter are summarised below:

e Solution-1: Adversarial Network to translate uninformative colonoscopy

frames to clinically significant frames (Translation approach)

— To the best of our knowledge, this is the first framework to address the issue of

uninformative colonoscopy frames using adversarial networks.
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We investigate the impact of translating uninformative frames on polyp detection

performance and discuss future directions in this context.

e Solution-2: DWT-based encoder-decoder network for segmentation of

specular highlights (Specularity segmentation approach)

We propose a fully automated and efficient method to perform specularity seg-
mentation in colonoscopy images. To the best of our knowledge, this is the first

work that has explored deep learning architectures in this domain.

Our method outperforms the state-of-the-art methods and has shown satisfactory
improvements over the limitations encountered in earlier works. These limita-
tions include the failure to perform precise specular reflection segmentation in

overexposed regions and inaccurate relative highlight pixel detection.

The proposed approach combines hierarchical scale-based Wavelet Packet Trans-
form (WPT) with encoder-decoder architecture. This assists in extracting multi-
resolution-based features. Utilizing the concept of DW'T in place of pooling layers

helps preserve image contextual and spatial information.

Our work proposes a change in the standard low-frequency sub-band of DW'T,
and this has shown significant improvement in segmentation results in overex-
posed areas. This improvement is supported by an ablation study for thorough

analysis.

4.2 Solution-1: Translation Approach

The overview of the proposed framework is shown in Fig. 4.3. Given the uninforma-

tive colonoscopy frames {a;}£; from domain A, the aim is to learn a mapping function

Gap : A — B to generate frames such that the data distribution of obtained frames is

indistinguishable from that of informative colonoscopy frames {b; }jj\ill of domain B. Due to

the unavailability of paired data, our work is inspired by the unpaired translation approach

of CycleGAN [125]. Hence, another mapping function Gp4 : B — A is also introduced.

Our implementation involves ResNet-based generators and PatchGAN discriminators D 4

and Dp. The CycleGAN objective integrates adversarial loss and cycle-consistency loss.
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Figure 4.3: The proposed framework contains two generators G4p and Gpa and two dis-
criminators D4 and Dp.

The adversarial loss can be expressed as:

Ladv(GAByDB) = Ebwpdata(b)[(DB(b) - 1)2]

(4.1)
+ Eapyara (@) [(DB(GaB()))?]

Gap aims to translate uninformative frames such that they appear similar to the infor-
mative frames, while Dpg tries to distinguish the translated frames from the high-quality,
informative frames of domain B. In other words, Dp is trained to minimize Lyg4,(Gap, Dp)
and G 4p is trained to minimize By, , (o [(D(Gap(a)) — 1)2].

To ensure cycle-consistency and to reduce randomness in mapping, a cycle-consistency

loss is used, which is given by:

Leye(GaB, GBA) = Eanpya(o)1GBA(GaB(0) — all1]
+ By (0) |G AB(GBa (D)) — b[1]

(4.2)

An identity mapping loss is also added to help preserve color in translated images. With
this model, we intend to determine the clinically relevant details obscured by the artifacts.

Furthermore, we carried out the following investigations:

1. Polyp detection is performed using YOLOvV5 [126] to determine the impact of GAN-

translated frames.
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SUN Database

Metrics Raw Frames Translated Frames
Precision (%) 92.03+£0.60 93+0.87
Recall (%) 88.943.12 90.2+1.3
F1-score (%) 90.4+1.51 91.57+0.38
mAP@O0.5 (%) 95.37+£0.95 95.6+0.21
mAP@O0.5:0.95 (%) 57.53+0.32 57.07+0.31

Table 4.1: Comparative analysis of polyp detection results

2. Qualitative analysis is done to identify the artifacts successfully handled by the Cy-

cleGAN and analyze the ones that still persist in the translated frames.

4.2.1 Experiments
Dataset and Training Details

To assess the effectiveness of the adversarial approach in mitigating the impact of arti-
facts, we conducted experiments using a publicly available SUN database [95] consisting of
1,09, 554 non-polyp and 49, 136 polyp frames. In addition to the localization information,
the polyp frames are manually annotated by experts as informative or uninformative. We
used only the polyp frames with a patient-wise split. The translation is done on a Titan

Xp GPU at 14 frames per second.

Performance Evaluation

We report the results based on visual perception and consider feature space representation
by evaluating the polyp detection outcomes using YOLOv5. We conducted training and
testing in two scenarios using: a) Raw frames comprising both high and low-quality frames
and b) Translated frames along with high-quality frames. The results in Table 4.1 show that
the translated frames complement the detection ability of YOLOvV5 in terms of precision,
recall, Fl-score, and mAP@Q0.5. The detector correctly identified more polyps with lower
deviations, presenting a more robust model. However, this is achieved with slightly less pre-
cise bounding boxes, as indicated by a minor decrease in mAP@0.5:0.95. Fecal depositions,
ghost colors, and low-illumination are significantly reduced using CycleGAN, as shown in
Fig. 4.4. However, motion blur and interlacing are not handled adequately in the process.

This could be overcome by adopting blur removal approaches.
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Figure 4.4: Detection performance using: (a) Raw frames and (b) Translated frames. Green
bounding boxes denote the ground truth. Ticks and cross marks represent the successful
and unsuccessful artifacts translations, respectively.

4.3 Solution-2: Specularity Segmentation Approach

Fig. 4.5 provides an overall idea of the steps involved. Inspired by the competent perfor-
mance of U-Net[66] and other diverse sets of deep learning architectures based on it [127-
130], we adopted the encoder-decoder architecture of U-Net as the basic structure of our
proposed model. Further improvements have been incorporated to make it more suitable
for the experimental requirements related to our problem definition. The encoder takes the
blue channel of the given image as input and extracts the corresponding features. These
features are passed to the decoder that performs reconstruction and provides a binary image
with segmented specular highlights. A detailed explanation of the complete architecture,
with reasoning, is provided in the subsequent sections. A summary of the methodology

followed in our work has been depicted in Fig. 4.6.

While using deep learning models, the feature maps are generally progressively down-
sampled via max-pooling to attain a large valid receptive field. This is crucial to capture
enough information to make correct decisions, but this compromises image resolution. As

the resolution decreases with downsampling, information pertaining to small objects gets
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Figure 4.5: Flowchart depicting the steps followed in the proposed work

exhausted. Thus, the coarse features obtained from deep layers could miss small objects’
cues, which could be difficult to recover even by using skip connections [131]. As stated in
[55], most of the specular regions in colonoscopy images are confined to only a few pixels,
making these regions very small in size. To make such regions discernible and prevent dis-
tortion of spatial acuity, a specific method is required to increase the receptive field without
losing the resolution. Another problem to be considered is the presence of overexposed
regions in colonoscopy images. Overexposed regions have not been categorized as specu-
lar highlights by experts. They are not eligible as per the conditions [55] specified for a
region to be considered specular. However, these regions impose a negative impact on the

performance of specularity detection algorithms.

Considering the limitations of the conventional architecture and the requirements of
the specified problem, the proposed model is intended to preserve maximal information
during feature extraction. At the same time, it adopts a method to circumvent the ef-
fect of overexposed regions, up-to some extent. Our model replaces pooling layers with
multi-level Haar wavelet and hence, combines spectral analysis with CNNs. Moreover, the

frequency and localization properties of DW'T help in extracting discriminative features in
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Figure 4.6: Summary of the methodology followed for the segmentation of specular highlights

the frequency domain, at hierarchical scale levels, while preserving image details.

4.3.1 Problem Definition

Given a colonoscopy image set (), our motive is to assign each pixel of an image to a class
belonging to either specular regions or non-specular regions. We have @ = {I;,O;}",
where I; represents original RGB images, and O; = {og-i),j =12, .. \Ii],ogi) € {0,1}}

denotes their corresponding ground truth results/masks. Every mask has each pixel labelled

as og-i) = 1 for representing specular regions and ogi) = 0 for representing non-specular
regions.

In [55], it is assumed that the diffuse component is likely to appear reddish in
colonoscopy images; thus, the specular component could be better observed in the blue
channel. Considering this observation, we have used blue channel I'“¢ of the corresponding
original image I; as our model’s input. The aim is to train a pixel-wise classifier to learn

the following mapping function:
Os = Myspeo(197) (43)

where M,spec Tepresents our proposed model and O; is the segmented output.
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Figure 4.7: Detailed architecture of the proposed model. The model consists of DWTs and IDWTs
at each level of encoder and decoder, respectively.

4.3.2 Proposed Architecture

As shown in Fig. 4.7, the backbone architecture used is based on encoder-decoder structure,
and the inclusion of DWT is inspired by the model MWCNN [132]. As per the reason
mentioned in Section 4.3.1, the original images’ blue channel is provided as input to the
model. Our model has a total of 36 layers. Every individual CNN block comprises 4
convolutional layers, each with 3x3 filter size, followed by BN and ReLU. Among the 4
convolutional layers, the two perform the dilated convolutions [133] with a rate of 2. Though
DWT is expected to be effective in increasing the receptive field, introducing dilation in a
few convolutional layers in our model prevents the missing of small crowded specular regions.
Small objects in an image carry little signals, which could be lost in the later layers. For
accurate detection of such small regions, especially those present in the close grouping, the
most crucial factor to be considered is the context [134]. As most of the specular regions in
colonoscopy images are very small in size and are crowded as well, adopting dilation along
with DWT has shown better results.

On the encoder side, a DW'T is placed as a link between two CNN blocks. The low-
frequency sub-band is first processed to subdue the effect of overexposed regions. The
related details are mentioned further in this section. After this processing, all the sub-
bands are taken as input to the next CNN block. According to Li et al. [127], the sub-
bands obtained after DW'T are dependent, and this dependency should not be ignored for
the purpose of attaining adequate restoration results. After applying DWT, the number of

73



4.3. SOLUTION-2: SPECULARITY SEGMENTATION APPROACH

feature maps increases, and the immediate next convolutional layer reduces these feature
maps to provide a compact representation of features to the subsequent layers. On the
decoder side, IDWT is deployed between two consecutive CNN blocks. The feature maps
obtained after applying DWT are directly concatenated with the IDWT output presented
one level below in the expanding sub-network, using skip connections. The last convolution

performed is not followed by BN or ReL.U.

In 2D DWT, a given image If’l“e is decomposed into four sub-band images, namely,
low-low (ij), high-low (i;), low-high (i;;,) and high-high (i55,). For brevity and clarity,
Ifl“e is replaced with a Greek i at some places. The decomposition process is illustrated
in Fig. 4.6. The low-frequency component, i;;, also known as approximation coefficients,
contains the average information of If)l“e and other high-frequency components or the detail
coefficients, iy, i;5, and iy, constitute the edge details, thus provide a refined image. This
DWT procedure could be considered as a convolution operation between the image i and
four filters fy, fni, fin and fun, which is followed by downsampling. This can be represented
by the given equation:

il = (i@f,) |2 (4.4)

where s € {ll,hl,lh,hh}. This process is similar to the pooling operation up to some
extent. The downside of pooling lies in the information loss encountered during down-
sampling, which negatively affects the reconstruction process. In the case of DW'T, even
though downsampling is performed, the biorthogonal property of DW'T makes it possible

to accurately reconstruct the image by using inverse discrete wavelet transform (IDWT) as:
i=IDWT(iy,int, in, inn) (4.5)

During reconstruction, upsampling is performed over the four sub-bands, and then the
corresponding filters are deployed for convolution on the upsampled output. This provides

us with a segmented image of the same spatial size as that of the input image.

The above-mentioned procedure could be extended to multi-level WPT. For this, the
previously obtained sub-bands are further decomposed using DWT. In case of two-level
WPT, each of the four sub-bands obtained in the first-level is decomposed into another four
sub-bands. This process could be carried out recursively in a similar manner to get higher

levels of WPT.

The 2D DWT used in the proposed model is specifically focused on the Haar wavelet

due to its simplicity and satisfactory speed performance. The four filters used in Haar

74



4. ARTIFACTS REMOVAL

Wavelet can be defined as:

fu= = ;
1 1 1

-1 -1 1 -1
fin = [ ] s Thn = [ ]
1 1 -1 1

Low-frequency and high-frequency sub-bands of an image I f’lue can be obtained by convolv-

(4.6)

ing the above filters with it. (p/, ¢’)** value of low-frequency component i;; can be computed

as:

(', qd)=1i2p — 1,2¢' = 1) +i(2p' — 1,2¢")+

i(2p,7 2q/ - 1) + 1(2]9/, 2q,)

(4.7)

The i;; sub-band contains the main base information. When applied to a given image,
the low-pass filter, f;;, determines the averages of pairs of nearby values; hence, smooth
variations in the image are portrayed by the approximation coefficients present in i;;. Over-
exposed regions are also visible in the same sub-band. To overcome these regions, each
value in the component, i, is squared, as shown in Eq. 4.8. Squaring each coefficient in
this component almost maintains the relationship among pixels with similar values, but at
the same time, it increases the difference among dissimilar nearby pixels. Due to this, the
specular highlights show a greater difference relative to the overexposed regions. The result

of this processing is shown in Fig. 4.8

{ll =1 .X iy (4.8)

where . X is the element-wise multiplication. Similar to Eq. 4.7, high-frequency components
ins, in and iy, can also be computed. These components are comprised of sharp variations,
and as a result, abrupt intensity changes on borders of specular highlights are easily captured
by these sub-bands. For integrating all the sub-bands in the proposed model, they are
concatenated as depicted by Eq. 4.9. This concatenated output is made to proceed to
subsequent layers.

Lsub,_cat = 1 @ in @ ip © inn (4.9)

Although DWT helps in the expansion of the receptive field, the small-sized, crowded

specular regions are liable to vanish in the subsequent layers. According to Zhou et al.
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Figure 4.8: Suppressed overexposed regions obtained by squaring the Low-frequency sub-band
coefficients

[135], the receptive field’s true size is much smaller than the theoretical size, mainly in the
last layers. To solve this problem, Yu and Koltun [133] proposed dilated convolutions using
which the receptive field increases exponentially while the number of parameters follows a
linear growth.

When compared to the conventional encoder-decoder structure, the proposed model
replaces the pooling layers in the encoder part with DWTs. Accordingly, the transposed
convolutions in the decoder part are replaced with IDW'T5s, ensuring accurate image recon-
struction. Each level of transform is followed by CNN blocks. Every CNN block gets all
the sub-bands together as input, which helps in maintaining inter-sub-band dependency.
Moreover, DW'T’s frequency and localization properties are supposed to preserve textural
and structural details, which is another advantage over the usual pooling layers. Another
important benefit of using DWT in our model is its ability to handle overexposed regions
in images. Many research studies have explored the role of DWT in image domain in the
context of correcting overexposed areas as well as in other image enhancement-related tasks
[136, 137]. In this work, we experimented with DWT in deep learning models to investigate
the impact of Eq. 4.8 in overexposed regions. The obtained results provide improved spec-
ular detection performance in such areas. The evidence of the same is provided in Section
4.3.4 (Fig. 4.12, Table 4.4).

In our work, DWT has been embedded into the model to preserve specularity-relevant
contextual and spatial information. The low and high-frequency sub-bands together form

the same frequency content as that of the input colonoscopy images. In the decomposition
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process, DWT also helps to increase the data, similar to data augmentation, which enhances
the training process. Besides this, DWT can increase the receptive field of CNNs, hence
making it easier to detect small specular highlights. The dilated filtering and pooling
operations could be interpreted as closely related to DWT [132]. A general average pooling
operation with a factor of 2 on an image If’l“e is defined as:

(2 — 1,29 - 1) +i(2p' — 1,2¢) +i(2p,2¢' — 1) + (20, 2¢")
4

ipooling (p/a q/) = (4.10)

which is similar to Eq. 4.4 except a fixed constant 1/4. This implies that decomposing
images into sub-bands using DW'T is related to dilated filtering.

4.3.3 Loss Function and Evaluation Metrics

Let {I;, Oi};fp:]\lf C @ be the training input-target pairs, where TN is the number of training
samples used. o, € O; is associated with ground truth pixel labels representing the two
classes and has value in {0,1}. The predicted probabilities of the two classes can be rep-
resented by p, € [0,1]. The loss function used is a weighted sum of Dice Loss (DL) and
BCE loss with logits. Reasons for using these loss functions include wide use of BCE in
binary segmentation problems and superior performance shown by DL in case of imbalanced
datasets, similar to what we are dealing with. In our dataset, the pixels of non-specular
regions are much higher than those of specular regions. To tackle this issue, dice loss is

used, as can be described by the given equation:

2 Zn Pnon + 7,

DL=1-
ann+zn0n+7/

(4.11)

where 7/ is a factor added for smoothing purposes and is initialized as v = 1.0

We have used three metrics for comparing our segmentation results with state-of-the-
art methods. These metrics are precision, recall, and Fl-score. As the negative samples
in our case are much higher than the positive samples, using accuracy as the metric is
inappropriate. Precision computes the number of true positives out of the samples predicted
as positive; hence, a high number of negative samples does not affect the precision results.
High precision leads to high performance towards accurate highlight detection. On the
other hand, recall accounts for the number of positive samples predicted correctly out of
the total positive samples presented by the ground truth. In this way, missed positive pixels
are indicated. A high recall rate ensures the detection of more specular pixels. Fl-score

captures both precision and recall values and combines them into a single score.
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4.3.4 Experiments and Results
Dataset and Training Details

The proposed model is evaluated on a publicly available dataset, CVC-ClinicSpec [55]. Tt
contains 612 annotated specular highlight images related to colonoscopy. The ground truth
of each image is labelled manually by experts. 57.43% of the specular regions are quite
small, and their size ranges from 1 to 10 pixels. Only 3.70% of the specular regions are
more than 100 pixels in size and can be considered large-sized specular highlights. To train
our model, a training set of 367 images is constructed from the available 612 images of the
CVC-ClinicSpec Dataset. From the remaining images, 123 are used as the Validation set,
and 122 images are reserved for testing. The model is fed with resized images of size 272
x 272. During processing, the proposed model uses only the blue channel of the original
images. Implementation and experiments are performed using Pytorch 1.4.0. Training is
carried out on TITAN Xp GPU. We have used the SGD optimizer with momentum set
to 0.9 in combination with the ReduceLRonPlateau scheduler. The batch size used is 10,
and our model converges after 60 epochs. The model is initialized with a learning rate of
0.1 which is decayed by the scheduler in case the validation loss increases for 4 consecutive

epochs.

Ablation Study

To study the role of different architecture segments, we have performed an ablation study
by introducing them gradually with each new step. The results can be visualized in the
graph shown in Fig. 4.9.

1) Encoder-Decoder + DWT in original form € IDWT: First, we considered the basic
encoder-decoder architecture. It consists of DWT instead of pooling layers and IDWT
instead of the usual upsampling or transposed convolutions. Initially, the low-frequency
components are considered in their original form without squaring them. The Fl-score
obtained in this case is 82.17%.

2) Encoder-Decoder + DWT with iy & IDWT: To test the effect of the changes made
in the low-frequency components of DWT, we further replaced the normal DWT functions
with the updated DWT as defined in Section 4.3.2. This modification raised the F1l-score
by 0.59% and recall by 1.01%.

3) Encoder-Decoder + DWT with iy & IDWT + 2 dilated convolutions: To analyze

the performance of dilation in our model, we changed two of the standard convolutions to
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Figure 4.9: Ablation study related to the proposed model on the basis of precision, recall and
F1-score

Table 4.2: Comparison with State-of-the-art methods

Method Precision (%) Recall (%) F1-score(%)
BSSC [55] 72.33 78.89 75.47

RPCA [53] 34.38 ] -

Proposed 88.23 + 0.58 78.53 + 0.68 83.10+0.14

dilated convolution with rate 2. This improved the Fl-score further by 0.34% and precision
by 0.74%.

Comparison with State-of-the-Art Methods

Comparative results of specularity segmentation are presented in Table 4.2. The results are
based on the pixel-wise analysis, which takes into account the number of pixels correctly or
wrongly detected by the algorithm. The segmentation results indicate that our proposed
method has outperformed the state-of-the-art results in terms of Fl-score and precision.
The recall results obtained are also comparable. The methods considered for comparison
are those which have particularly focused on colonoscopy images. This ensures that the
analysis is done on the images acquired in similar environmental conditions and problems
encountered by all the methods are also identical.

Sanchez et al. [55] discussed the impact of overexposed regions on the specularity seg-
mentation algorithms. To analyze this impact, they excluded the images with overexposed

regions and performed a validation experiment. Their results showed an improvement of
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(a) Original (b) BSSCI[55] (c) Proposed

Figure 4.10: Comparison of the proposed method with BSSC [55]: True positive pixels, false
positive pixels and false negative pixels are represented in green, blue and red color, respectively

8.30% in precision, 2.14% in recall, and 5.36% in Fl-score. This clearly indicates the neg-
ative impact that overexposed regions impose on the correctness of segmentation results.
Considering such high increase in precision, it can be inferred that their method experienced
difficulty in detecting specular highlights which are present within the overexposed regions.
This makes the images more susceptible to false positives, as can be seen in Fig. 4.10 (b).

Li et al. [53] considered two divisions of highlight pixels: absolute and relative. Their
work has mainly focused on detecting absolute pixels, while the latter, being more com-
plicated to detect, are not appropriately handled. It has not strictly followed the ground
truth of the CVC-ClinicSpec database, prepared by the experts. Contrary to the available
ground truths, the overexposed areas are also included in the category of highlights and are
segmented by their algorithm.

In our proposed method, we have considered the fact that computational diagnosis
procedures in the colonoscopy domain rely on texture and color features, as stated in [138,
139]. More false positives due to overexposed areas can lead to loss of texture and color-
related information. By dealing with such areas, false positives could be reduced during
specularity detection. Later, these overexposed regions could be processed with some en-
hancement techniques to obtain informative features. The comparison shown in Fig. 4.10
indicates better performance of our model in the overexposed regions as it fetches less false

positive pixels compared to BSSC.

Comparative Study with Some Deep Learning Models

The proposed work has not directly adopted the conventional encoder-decoder architecture
but has made appropriate changes to the architecture according to the aforementioned
objectives. To analyze our model’s performance with respect to some other deep learning

models which are commonly used in other domains related to semantic segmentation, we
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Table 4.3: Comparative results with other deep learning models. The mean values of the
experimental results along with the standard deviation are reported

Method Precision (%) Recall (%) F1-score (%)
DeeplabV3+ 73.48 £4.7 69.24 £+ 3.13 71.28 £ 3.77
[140]

U-Net [66] 88.25 £ 1.32 76.58 £ 1.5 81.99 +0.92
Proposed 88.23 £ 0.58 78.53 £ 0.68 83.10+0.14

have done some comparative study, which is presented below.

Models’ Details and Training Settings

To compare the performance of our model with other models, we have considered two dif-
ferent architectures. The first one is U-Net, and the other one is DeepLabV3+ [140]. The
motive behind choosing U-Net is mentioned in Section 4.3. The same can be justified for
DeepLabV3+ by considering its adequate performance in semantic segmentation [141, 142]
and its ability to extract features at arbitrary resolutions using atrous separable convolu-
tions. In DeepLabV3+, Modified Aligned Xception is used as the backbone. To maintain
uniformity and based on some prior experiments with the dataset, we have used the same
hyper-parameters values as mentioned in Section 4.3.4. Both models are provided directly
with the original images. As per the model’s architecture and the paddings used, the input

images are resized to 280 x 280 for both U-Net and DeepLabV3+.

Experimental Results

As shown in Table 4.3, our model has outperformed other chosen deep learning models in
terms of precision, recall, and F1l-score. The heatmaps shown in Fig. 4.11 provide an idea
about the segmentation performance of different models. As observed from the respective
images, DeepLLabV3+ has performed better in some overexposed areas as compared to U-
Net, but at the same time, it has missed some small specular regions. Few closely grouped
areas are over-segmented and are merged into one region, ignoring their distinct boundaries.
Considering the heatmaps associated with U-Net, it can be noticed that though more small
highlights are detected, there are many false positives encountered in overexposed regions.

The proposed model is observed to perform better than both the models.
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Figure 4.11: Heatmaps associated with segmentation results obtained from different deep learning
models. (a) Original images; (b) Ground Truth; (¢) DeepLabV3+-[140]; (d) U-Net[66] and; (e) Our
method

Analysis of Overexposed Regions

We considered some image patches affected by overexposure to study each model’s potential
in dealing with specular detection in such regions. We selected 19 images from the Test
set and divided them into 6 equal-sized patches of 128 x 144. From the obtained patches,

23 patches are selected, which contain specular highlights within overexposed regions. The
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(a) Ground Truth (b) DeepLabV3+ (c) U-Net (d) Proposed

Figure 4.12: Performance of some deep learning models in overexposed regions

Table 4.4: Results in Overexposed regions

Method Precision (%) Recall (%) Fl-score (%)
DeeplabV3+ [140] 62.02 42.58 50.49
U-Net [66] 53.98 76.54 63.31
Proposed 76.64 72.31 74.41

segmented outputs of these patches are pixel-wise compared, and the corresponding preci-
sion, recall, and Fl-score are noted. It can be observed from Table 4.4 that our model is
more precise as compared to the other two models and hence reports fewer false positives.
U-Net has achieved more recall rates, but its low precision rate indicates more false posi-
tives. DeepLabV3+ has attained the least recall value, but it has shown better performance
in terms of precision and can be considered to be efficient in reducing false positives when

compared to U-Net. The same can be seen in the heatmaps shown in Fig. 4.12.

Table 4.5: Histogram-based comparison with U-Net

Method Overall Overexposed regions
Chi-square Hellinger Chi-square Hellinger

U-Net [66] 0.0036 0.0232 0.2026 0.0666

Proposed 0.0019 0.0213 0.0280 0.0442

Evaluating Statistical Significance

As U-Net performed far better than DeeplabV3+, we performed a statistical comparison
between U-Net and the proposed model to understand the results better. We generated
heatmaps, each for the ground truth and the segmented results obtained from our proposed

model and U-Net. For each heatmap, a corresponding histogram is plotted, based on which
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Figure 4.13: Comparative distribution of the number of images within the specified range of Chi-
square values obtained from histogram comparison

statistical comparison is carried out. This involves matching the histogram of the ground
truth heatmap with that of the U-Net’s and the proposed model’s corresponding heatmap.
Chi-square (x) distance and Hellinger (HG) distance are the two metrics adopted to express
the matching of two histograms in terms of numerical values. Let h; and hg be the two

histograms to be compared. x and HG can be computed as:

x(h1,hg) =) (hl(I)hl_(;L)z(I))Q (4.12)

I

HG(hy, hs) = $ 1— —— \/hi(D)ha(I) (4.13)

where h; = & Y h;(J') and b’ is the number of histogram bins. Low values of the specified
metrics indicate a better match of the two histograms. Table 4.5 is comprised of related
numerical values obtained after computing the average over all the test set images. The
reported results illustrate the statistically better performance of our model over U-Net.
To compare the image distribution with these outcomes, we divided the y values into
three ranges. Figure 4.13 shows that 78.69% of the images significantly match with their
corresponding ground truths and attain a x distance of less than 0.005. In the case of
U-Net, the results are inferior to that of ours, with only 70.49% test images assigned within
the range of 0.005. Further, the proposed model achieved better results, with 99.18% of
the images reporting a x distance of less than 0.05. Similarly, we compared histograms

of different patches obtained during the analysis of the overexposed regions. The results
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achieved by the proposed method are observed to be statistically more significant, with

smaller x as well as HG distance.

4.4 Chapter Summary

In this chapter, we proposed a GAN-based framework to translate uninformative
colonoscopy frames into clinically significant frames. We showed that the translated
frames improve polyp detection Fl-score and mAP@Q.5, with negligible reduction in
mAP@O0.5:0.95. We analyzed the types of artifacts where the CycleGAN performed well
and identified the scope of improvements. Since the artifacts in colonoscopy video frames
alter the various aspects of images, such as structure, texture, and color, this work lays the
foundation for a more interesting future work of developing a standalone model to address
all the artifacts in one go.

We also proposed a deep learning model to segment specular highlights in colonoscopy
images. Our model integrates spectral information with CNNs and helps in extracting fea-
tures at multi-resolution. The proposed method has adopted encoder-decoder architecture.
Further, we have introduced DWTs and IDWTs instead of max-pooling and upsampling op-
erations, respectively. This prevents loss of contextual and spatial information and assists
in accurate segmented image reconstruction. We have modified the low-frequency sub-band
obtained from DW'T to lower the impact of overexposed regions. This improves specularity
detection in those areas which suffer from overexposure due to illumination conditions. Our
method has shown satisfactory results and has improved detection performance in overex-
posed regions, but there is a scope for improvement at the specular regions’ boundaries.
The boundaries could be more crisply segmented to reduce false positives. Analysis done
in the overexposed regions indicates that there are some undetected highlights which have

affected the recall rate.

DRUCES (St
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Case Study and Dataset Design

Chapter Highlights

The existing polyp segmentation (a task carried out after pre-processing of
colonoscopy frames) literature lacks accurate algorithm comparisons due to incon-

sistent test data and closed source code.

We demonstrate that for the reproducibility of different algorithms, we need an open-

access dataset that covers a wide range of medical conditions.

We present a case study that analyzes different algorithms developed on the same

dataset and submitted to two challenges in the year 2020 and 2021.

The case study highlights the advancements in polyp segmentation and encourages

qualitative evaluation for building more transparent Al-based colonoscopy systems.

We also curated and designed an open-access GI multi-class dataset acquired from
two centers. It includes cases from pathological and normal findings, anatomical

landmarks, and polyp removal.

This chapter is based on the publications “ Validating Polyp and Instrument Segmen-
tation Methods in Colonoscopy Through Medico 2020 and MedAI 2021 Challenges”,
accepted for publication in Medical Image Analysis and “ Gastro Vision: A Multi-class
Endoscopy Image Dataset for Computer Aided Gastrointestinal Disease Detection”,

presented at ICML (ML4MHD) 2023.
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This chapter studies the shortcomings of the existing polyp segmenta-
tion approaches and provides a detailed analysis of the related solutions.
The segmentation is ideally performed over the keyframes after they are
pre-processed for artifacts removal. Most existing polyp segmentation al-
gorithms are developed using inconsistent dataset splits or private data,
closed source or proprietary software, and methods that lack reproducibil-
ity. Therefore, to promote the development of efficient and transparent
methods, we presented a case study on two challenges, namely, “Medico
Automatic Polyp Segmentation (Medico 2020)” and “MedAl: Transparency
in Medical Image Segmentation (MedAI 2021)” competitions. The Medico
2020 challenge received submissions from 17 teams, while the MedAI 2021
challenge also gathered submissions from another 17 distinct teams in the
following year. We present a comprehensive summary and analyze each
contribution, highlight the strength of the best-performing methods, and dis-
cuss the possibility of clinical translations of such methods. Our analysis
revealed that the participants improved dice coefficient metrics from 0.8607
in 2020 to 0.8993 in 2021 despite adding diverse and challenging frames
frequently missed during a routine clinical examination. The best team ob-
tained a final transparency score of 21 out of 25. Moreover, this case study
highlights the need for datasets that can cover a range of medical conditions
and are easily accessible to the research community for better comparative
analysis and reproducibility. However, the medical domain encounters a
scarcity of large-scale, precisely labeled, and diverse datasets. This scarcity
is attributed to the legal restrictions and extensive manual efforts required
for accurate annotations from clinicians. To address these challenges, in
this chapter, we further present GastroVision, a multi-class open-access
Gastrointestinal (GI) endoscopy dataset that includes different anatomi-
cal landmarks, pathological abnormalities, polyp removal cases and normal
findings (a total of 27 classes) from the GI tract. The dataset comprises
8,000 images acquired from Beerum Hospital in Norway and Karolinska
University Hospital in Sweden and was annotated and verified by experi-
enced GI endoscopists. Furthermore, we validate the significance of our
dataset with extensive benchmarking based on the popular deep learning

based baseline models. We believe our dataset can facilitate the develop-
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ment of Al-based algorithms for GI disease detection and classification.

Our dataset is available at https: // osf. 10/ 84e7f/.

5.1 Introduction

With the advent of deep learning, several solutions for polyp detection, segmentation, and
classification have been proposed. These are the tasks that a CAD system performs to pre-
dict the diagnostic outcomes. The sequence of tasks undertaken by an ideal CAD system
(discussed in Section 2.3) follows polyp detection, segmentation, and classification after per-
forming keyframe selection and artifacts removal (discussed in the previous two chapters).
Among these tasks, the most common and well-explored is the polyp segmentation. Despite
numerous existing works, generating a comparative analysis of all these methods is difficult
to achieve as they are not directly comparable. Some of the reasons for such an issue include
inconsistent dataset split, use of private datasets, and closed sources, making reproducibil-
ity difficult. Moreover, most methods lack the interpretability and transparency required
to understand the predictions made by the model. Therefore, we present a comprehen-
sive analysis of the results of the two prominent challenges in the field of automatic polyp
segmentation, namely, “Medico Automatic Polyp Segmentation (Medico 2020)” * challenge
and the “MedAI: Transparency in Medical Image Segmentation (MedAI 2021)”? challenge.
These challenges were designed to foster the development of CAD solutions on the same
datasets, with a focus on transparency, explainability, robustness, speed, and generalization,
aiming to evaluate the relevance of such algorithms in clinical workflows. The challenges

provided posed four distinct tasks:

e Accurate polyp segmentation task to develop state-of-the-art algorithms for early

detection and treatment of colon cancer (Medico 2020, MedAlI 2021).

o Algorithm efficiency task to develop methods with the least Frames Per Second (FPS)
on predetermined hardware (Medico 2020).

e Surgical instrument segmentation task to enable tracking and localization of essential
tools in endoscopy and help to improve targeted biopsies and surgeries in complex GI

tract organs (MedAlI 2021).

"https://multimediaeval.github.io/editions/2020/tasks/medico/
*https://www.nora.ai/competition/image-segmentation.html
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e Transparency task to evaluate the proposed system from a transparency point of view
(for example, explanations of the training procedure, amount of data used and model’s

predictions interpretation) (MedAlI 2021).

There are several other challenges conducted in the past such as GIANA 2017 [143],
GIANA 2018 [122, 123], EndoCV 2021 [94, 144], and Medico 2021 [145]. These challenges
motivate to have such platforms to develop state-of-the-art algorithms for critical medical
issues. However, dataset availability is an important aspect of successfully organising these
challenges. To design a system with accurate comparison and to provide the research
community with the possibility of reproducibility, it is necessary to make medical data
easily accessible. This allows researchers to contribute in the area and assess their work
with respect to state-of-the-art techniques on comparable grounds. Although our case study
is based on a single class (particularly polyp) and provides opportunity for reproducibility
and transparency, it would be more beneficial from both research and clinical perspective
if we could extend this practice to multi-class problems. As already discussed in Section
2.3.6, the currently available endoscopy datasets mainly focus on a single lesion, i.e., polyps.
Moreover, some of these datasets are available on request and cover a few pathological
classes. Therefore, our case study is followed by curating and designing of a multi-class GI
dataset. Some more facts supporting the purpose of developing this dataset are discussed

below.

o Most existing Al models depend on data acquired from a single center, which makes
them less valid when faced with a varied patient population. This leads to spectrum
bias under which Al systems encounter performance drops due to the significant shift
in the original clinical context and the test sample population. In such cases, unex-
pected outcomes and diagnostic accuracy could be obtained using automated tools.
Such bias issues could reach the clinical systems at any point of the process, including
data collection, study design, data entry and pre-processing, algorithm design, and
implementation. The very beginning of the process, i.e., data collection, is of utmost
importance for reproducibility and to perform validations on images from a diverse

population, different centers, and imaging modalities.

e To develop scalable healthcare systems, it is vital to consider performing real-time
validations. However, the scarcity of comprehensive data covering a range of real-
time imaging scenarios arising during endoscopy or colonoscopy makes it difficult

to develop a robust Al-based model. Although much progress has been made on
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automated cancer detection and classification [17, 62], it is still challenging to adapt
such models into real-time clinical settings as they are tested on small-sized datasets

with limited classes.

Some classes in the dataset could be scarce because some conditions or diseases occur
less often. Consequently, such findings are not frequently captured and remain unexplored
despite requiring medical attention. Al-based detection of these findings, even with a small
sample count, can significantly benefit from techniques like one-shot or few-shot learning.
These techniques allow the AI models to learn patterns and features indicative of the con-
dition, thus, enabling accurate diagnosis with minimal training data. Therefore, in this
chapter, we publish GastroVision, an open-access multi-class endoscopy image dataset for
automated GI disease detection that does not require prior consenting and can be down-
loaded easily with a single click. The data covers a wide range of classes that can allow

initial exploration of many anatomical landmarks and pathological findings.

5.1.1 Contributions

The main contributions of this chapter are summarized below:

e Case Study

— We present a comprehensive and detailed analysis of all participant results.
— We provide an overview and comparative analysis of the developed methods.

— We obtain and discuss new insights into the current state of Al in the field of GI

endoscopy including open challenges and future directions.

— We provide a detailed discussion of issues such as generalizability issues, multi-
center and out-of-distribution testing in context to current limitations of CAD

systems.
¢ Dataset Curation and Design

— We present an open-access multi-class GI endoscopy dataset, namely, Gastro-
vision, containing 8,000 images with 27 classes from two hospitals in Norway
and Sweden. The dataset exhibits a diverse range of classes, including anatomi-
cal landmarks, pathological findings, polyp removal cases and normal or regular
findings. It covers a wide range of clinical scenarios encountered in endoscopic

procedures.
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— We evaluated a series of deep learning baseline models on standard evaluation
metrics using our proposed dataset. With this baseline, we invite the research
community to improve our results and develop novel GI endoscopy solutions on
our comprehensive set of GI finding classes. Additionally, we encourage com-
puter vision and machine learning researchers to validate their methods on our
open-access data for a fair comparison. This can aid in developing state-of-the-
art solutions and automated systems for GI disease detection and other general

machine learning classification tasks.

These contributions are explained in detail in the subsequent sections. Section 5.2

delves into the case study, while Section 5.3 provides a detailed description of the dataset.

5.2 Case Study

5.2.1 Challenge Description
Medico 2020 Automatic Polyp Segmentation Challenge

Medico 2020 Automatic Polyp Segmentation Challenge, hosted through MediaEval platform
(Multimedia Evaluation Workshop), is aimed at benchmarking automated polyp segmenta-
tion algorithms. The participating teams involving researchers from medical image analysis,
multimedia, machine learning, and computer vision were provided with the same dataset.
Participants could use any method, focusing on creating automated solutions. The sub-
missions were open for two tasks, namely, automatic polyp segmentation and algorithmic
efficiency tasks.

Automatic Polyp Segmentation Task: This task was based on developing inno-
vative and efficient polyp segmentation algorithms which at the same time, were expected
to be fast enough for clinical deployments. To participate in the challenge, participants
were required to train their segmentation models on an available training set. Once the test
set was released, participants could test their models and submit their predicted segmen-
tation maps to the organizers in a .zip file with the name of each segmentation map image
matching the colonoscopy image in the test set.

Algorithmic Efficiency Task: CAD systems deployed in clinical settings need to
operate in real-time; however, such systems often have fewer parameters and lower accuracy
than computationally intensive algorithms. To address this trade-off, we encouraged the

teams to propose a solution that is lightweight but also prioritizes segmentation accuracy.
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Figure 5.1: The overview of the “ Medico 2020 Polyp” and “MedAI 2021 Transparency
” challenges. We describe each task along with the number of training and testing datasets
and the evaluation metrics used in the tasks.

Participants were asked to submit docker images of their proposed algorithms. These al-
gorithms were then evaluated on a dedicated Nvidia GeForce GTX1080 graphics card. A
threshold for mIoU was set for the validity of an algorithm’s efficiency. After this validation
check, the teams were ranked based on the FPS.

MedAlI: Transparency in Medical Image Segmentation Challenge

MedAl: Transparency in Medical Image Segmentation Challenge was held at the Nordic Al
Meet 2021 (Nordic Young Researchers Symposium). It focused on segmentation tasks and
transparency in machine learning based solutions. The two segmentation tasks included
polyp segmentation and instrument segmentation. Similar to the other challenge, partic-
ipants were granted the flexibility to use any method, focusing on developing automated

solutions.

Automatic Polyp Segmentation Task: The main objective of this task was similar
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to that of the first task of the previous competition. The participants were asked to submit
a .zip file with predicted binary masks in a .png format. The test data provided to the
participants was without a ground truth. Hence, with such hidden test data, the results
were reliable and provided a valuable benchmark for the field.

Automatic Instrument Segmentation Task: This task also focused on segmenta-
tion, but the ROIs considered here are the GI accessory instruments such as biopsy forceps
or polyp snares used during live endoscopy procedures. Performing segmentation of these
instruments helps with the tracking and localization of essential tools in endoscopy that
could aid endoscopists during interventions (such as polypectomies). The submission and
evaluation procedure was the same as that of the previous task.

Transparency Task: This task is targeted to assess the submissions from a trans-
parency perspective. It included evaluation on the basis of the interpretation of the model’s
predictions and the use of explainable Al methods. To achieve this goal, the participants
were encouraged to perform ablation studies and share their code on the GitHub repository
with detailed procedures on how to reproduce the results. Additionally, the teams were
asked to provide a one-page document with explanations related to their transparency task
outcomes.

Figure 5.1 provides an overview of both challenges along with the total number of
images used for training and testing in each task. Ground truth samples with their cor-
responding original images are also presented for the segmentation tasks. In addition,

task-specific metrics are presented (for example, FPS for “Algorithm efficiency”).

5.2.2 Challenge Datasets and Methods
Challenge Datasets

The datasets contain 1,000 polyp images and their corresponding ground truth mask taken
from Kvasir-SEG [9]. The datasets were acquired from real routine clinical examinations at
Vestre Viken Health Trust (VV) in Norway by a team of expert gastroenterologists. The
resolution of images varies from 332 x 487 to 1920 x 1072 pixels. Some images contain
green thumbnails in the lower-left corner of the images showing the position marking from
the ScopeGuide (Olympus). To extend the dataset to the segmentation class, a team of
experienced engineers and expert gastroenterologists annotated the polyp images using the
label box tool. Once the ground truth was created, the images and ground truths were
combined to facilitate the review process. These images were sent to a team of expert

gastroenterologists for validation through a web-based interface. The data proportion for
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(a) Examples samples from the test data of Medico 2020 (first three columns) and MedAT 2021 (last
three columns) for the polyp segmentation task.

(b) Example samples from the MedATI 2021 Instrument segmentation task.

Figure 5.2: Example of the test datasets from the Medico 2020 and MedAI 2021 datasets.

each training and test set followed the general split ratio used in the literature. The training
dataset has been made publicly available as open access and is widely available?. This
dataset was used as a training set in both challenges. The other dataset details pertaining
to individual challenges are given below:

Medico 2020: The test dataset contains unique polyp images encompassing a wide
range of diverse clinical scenarios with different polyp characteristics, varying lighting con-
ditions and image resolution, low-quality images, as well as complex polyp images (for
example, with instruments and residual stool) that the model has never encountered be-
fore. Only the organizers had access to the test case labels. Currently, the test data can be
downloaded from®*. Some samples are shown in Figure 5.2a.

MedATI 2021: The Kvasir-SEG [9] dataset was used as the development set for the
polyp segmentation task. Similarly, Kvasir-Instrument [146] was used as the training dataset
for the instrument segmentation task. It can be downloaded from®. Some sample images
for polyp segmentation and instrument segmentation tasks are presented in Figure 5.2a and

Figure 5.2b.

Shttps://datasets.simula.no/kvasir-seg/
‘https://drive.google.com/file/d/1uP2W2g0iCCS3T6CE 7TPmNASX4gayOrv2
Shttps://datasets.simula.no/kvasir-instrument/
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Figure 5.3: Data distribution details of train and test sets used in Medico 2020 and MedAl
2021 challenges. Large, medium, and small represent the distribution information of regions
of interest in the data samples.

Figure 5.3 shows the data distribution of the train and test datasets used in Medico
2020 and MedAI 2021. We have categorized the images into “small”, “medium” and “large”
according to the size of ROI using a randomly selected threshold of 0.3 and 0.1 and plotted
the normalized height versus normalized width of each data point. This is to visualize the
dimension of each data point and observe the diversity and complexity of the dataset used
in the study. The information about the size categories and the dataset’s dimensions is

crucial for assessing the performance and robustness of the proposed algorithms.
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Methods

The Medico 2020 challenge received submissions from 17 teams, while the MedAI 2021
challenge also gathered submissions from 17 teams in the following year. Table 5.1 and
Table 5.2 present details of algorithms developed and used by different teams. These details
include the overall method, the backbone architecture, the loss function, and the optimizer
adopted by the individual team. In the Medico 2020 challenge, all teams participated in Task
1, whereas only 9 teams provided submissions for Task 2. In the MedAl 2021 challenge,
most of the teams participated in all three tasks except for four, which participated in
either one or two sub-tasks. Most participating teams have used the same architecture
in their submission for both subtasks. However, two teams, namely Vyobotics [147] and
MedSeg JU [148] have participated in only one of the subtasks. The team Vyobotics [147]
has participated in the polyp segmentation task whereas the team MedSeg JU [148] has

participated in the accessory instrument segmentation task.

5.2.3 Results

In this section, we present a summary of the evaluated results obtained on the test dataset
by all the participating teams in the two challenges: “Medico 2020” and “MedAl 2021
Each challenge consists of tasks with a specific focus and evaluation metrics. There were
two tasks for the Medico 2020 challenge, namely polyp segmentation and algorithm efficiency
tasks. In the MedAlI 2021, there were three tasks, namely polyp segmentation, endoscopic
accessory instrument segmentation and transparency task. The teams were evaluated based
on standard evaluation metrics such as mloU, DSC, Rec, Pre, Acc, F1, F2, and FPS. We
emphasized mloU, DSC, and FPS more, whereas we also acknowledged the importance of

recall and precision as they are useful metrics in clinical settings.

Medico 2020 Results

Polyp Segmentation Task

In Table 5.3, we provide the results for the polyp segmentation task. It can be observed
that Team “PRML2020GU” outperforms other participating teams in the polyp segmenta-
tion task. It achieves a mIoU of 0.7897, DSC of 0.8607, recall of 0.9031, precision of 0.8673,
and F2 of 0.8748. Team “HBKU__UNITN__SIMULA” was the second best-performing team
with mIoU of 0.7773. similarly, “AI-TCE” was the third best-performing team with mIoU
of 0.7773. The best-performing team, “PRML2020GU,” used an encoder-decoder struc-

97



5.2. CASE STUDY

Table 5.1: Summary of the participating teams algorithm for Medico 2020.

Team Name Algorithm Backbone Nature Choice basis Aug., Loss Optimizer,
FAST-NU-DS [149] Depth-wise separa- | ResUNet+—+ Cascade of depth- | mloU and DSC | Yes | IoU Adam
ble convolution and wise separable con-
ASPP volutions
AI-TCE [150] Multi-Supervision EfficientNetB4 | Encoder-Multi Su- | Acc and DSC Yes | Categorical Adam
Net pervision Decoder cross-entropy
4+ DSC loss
ML-MMIV Encoder-decoder ResNet50 Cascade of residual | mIoU and DSC | Yes cross-entropy Adam
SARUAR [151] based architecture blocks
based on ResNet50
UiO-Zero [152] GAN None GAN with CNN | Image-to- No Standard con- | Adam
based generator | image transla- ditional GAN
and discriminator tion adversarial loss
HBKU UNITN SIM- | Residual module, | U-Net and | Cascade of residual | mloU and DSC | Yes Bce + Dsc loss Adam
ULA [153] Inception module, | Resnet50 blocks and incep-
Adaptive CNN with tion module
U-Net and PralNet
AI-JMU [154] Cascade Mask R- | ResNeSt Deep CNN DSC and mIoU | Yes | Binary cross- | SGD
CNN backbone, entropy
Cascade Ar-
chitecture
SSB [155] U-Net ResNet-34, Ensemble DSC and mIoU | Yes | Tversky loss Adam
EfficientNet-
B2
AMI LAB [156] Knowledge distilla- | ResUNet+4+ Ensemble mloU and DSC | Yes | Distillation loss | Adam
tion on ResUNet++
UNITRK [157] Knowledge transfer | Pre-trained Encoder-decoder mloU and DSC | Yes | Compound loss | Adam
using UNet U-Net model of DSC and
MedSeg_JU [158] Conditional GAN | None Encoder-decoder mloU and DSC | Yes W\mmrﬁom loss | Adam
(cGAN) of MSE and
BCE
ITAI-Med [159] PraNet Res2Net Encoder-decoder mloU, DSC | No weighted IoU | Adam
and FPS loss + BCE
HGV-HCMUS [160] PraNet and Re- | ResUNet++ Encoder-decoder mloU Yes _%wwmmoiom_ Adam
sUNet+-+ with crossentropy
triple path
GS-CDT [161] U-Net None Encoder-decoder Acc and Speed | Yes | Non-Binarized Adam
PRML20202GU [162] | Efficient-UNet Variants  of | Encoder-decoder mloU and DSC | Yes Wmo% + DSC | Adam
+Channel-Spatial EfficientNet loss
Attention 4 Deep
Supervision
VT [163] U-Net coupled with | None Encoder-decoder mloU and DSC | Yes | BCEWithLogits | RMSprop
IRISNSYSU [164] WW%%ST@U@S& Faster-RCNN | Hybrid attention in- | AP Yes _Oowwmm entropy Adam
Attention Model terface
NTK [165] Residual blocks | None Encoder-decoder DSC, mlIoU | No BCE + DSC | Adam
combined with SE and FPS loss

network
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5.2. CASE STUDY

Table 5.3: Performance comparison on Polyp segmentation task (Medico 2020). ‘Bold’
refers to the best score, and ‘underline’ refers to the second-best score. We follow this
consistently in all the Tables. 1 indicates a higher value is better.

Team Name mloU 1 DSC 1 Recallt Precision? F2 71
PRML2020GU 0.78975 0.86076 0.90312  0.86731 0.87481
HBKU__UNITN__

SIMULA 0.77736  0.84768  0.85034  0.88971 0.84483
AI-TCE 0.77733  0.85030 0.91646 0.83897 0.87901
HGV-HCMUS 0.76597  0.84050  0.89439  0.84455 0.85768
ITAT-Med 0.76195  0.83854  0.83049  0.90121 0.82837
SBS 0.75503  0.83162  0.83168  0.88513 0.82490
ML-MMIV

Saruar 0.75168  0.82289  0.83908  0.88228 0.82492
AI-JMU 0.73742  0.81437  0.82661  0.87432 0.81038
MedSeg_ JU 0.71330  0.80195 0.83542  0.82864 0.81240
vT 0.70578  0.79264  0.88353  0.78784 0.82368
NKT 0.68473  0.78012 0.80771  0.81264 0.78546
UNITRK 0.64379  0.72878  0.70989  0.85726 0.71312
GeorgeBatch 0.63511  0.73276  0.75003  0.82294 0.73615
AMI Lab 0.61958  0.70889  0.72865  0.79140 0.71226
IRIS-NSYSU 0.50353  0.64173  0.87915  0.58498 0.75089
UiO-Zero 0.43814  0.56185  0.69721  0.55587 0.61102
FAST-NU-DS 0.18344  0.26691  0.27447  0.29184 0.26762

ture with EfficientNet as the backbone and a U-Net decoder with channel-spatial attention
and deep supervision. This architecture had an improvement of 1.23% and 1.30% over the
mloU and DSC achieved by the Team “HBKU__UNITN__ SIMULA”, which used an average
of three PraNet and five ResUNet++ trained on different training and validation datasets.

Table 5.4: Algorithm efficiency task for polyp segmentation (Medico 2020). Note that some
teams provided the same solution for this task as used in Task 1, whereas others designed
different architecture specifically for the efficiency task (Task 2). 1 indicates a higher value
is better.

Team Name mloU1 DSC 1 Recallt Precision{ F21 FPS 1

HCMUS 0.7364 0.8074 0.8164 0.8646 0.8067  33.27
SBS 0.7341 0.8148 0.8764 0.8145 0.8354 26.66
NKT 0.6847 0.7801  0.8077 0.8126 0.7854  80.60
FAST-NU-DS  0.6582 0.7556  0.8982 0.7171 0.8109  67.51
UNITRK 0.6437 0.7287  0.7098 0.8572 0.7131  116.79
GeorgeBatch 0.6351 0.7327  0.7500 0.8229 0.7361  196.79
AMI Lab 0.6195 0.7088  0.7286 0.7914 0.7122  107.87
AI-JMU 0.7213 0.8017  0.8359 0.8495 0.8056  3.36
PRML2020GU  0.5083 0.6265  0.6003 0.7870 0.6029  2.25
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Algorithm Efficiency Task

For the second task, as in Table 5.4, team “PRML2020GU” has poor speed performance
with a processing speed of only 2.25 fps, which is not desirable for a real-time efficient model.
An interesting observation is that Team “GeorgeBatch” outperforms other participating
teams in the algorithm efficiency task with a processing speed of 196.79 fps, as seen from
Table 5.4. However, it is worth noting that the team obtained a low mloU of 0.6351 for
the polyp segmentation task, even though we are considering it as the winner in this task.
Team “UNITRK” obtained a second-best fps of 116.79. Similarly, team “NKT” obtained a
balanced mlIoU of 0.6847 and a high speed of 80.60 fps, and was ranked third for this task.
Despite the two teams, “UNITRK” and “GeorgeBatch”, achieving the highest evaluation
fps values, there is a trade-off between speed and mloU. Low FPS cannot be used for real-
time medical processing applications, and low overlap evaluation metrics cannot generate

precise segmentation masks.

MedAI 2021 Challenge Results

Polyp Segmentation Task

In Tables 5.5, we tabulated the evaluation results of all the participating teams in
MedAT 2021 for polyp segmentation task. The table shows that team “agaldran” outper-
forms other teams in the polyp segmentation task with mIoU of 0.8522 and DSC of 0.8965.
Team “CV&Med IIAI” also showed good performance and was ranked 2" in the polyp
segmentation task with a mIoU of 0.8484, a very small difference from the best-performing
team.
Instrument Segmentation Task

From Table 5.6, it can be observed that the same team, “agaldran”, also outperforms
other participating teams in the instrument segmentation task with a high mlIoU of 0.9364
and DSC of 0.9635. Team “NYCity” was ranked 2" in this task with a mIoU of 0.9326
and DSC of 0.9586. However, Team “NYCity” obtained the highest recall of 0.9712, which
signifies it has low false negative (FN) regions in the predicted segmentation mask compared
to team “agaldran”. Another interesting observation is the team “agaldran” also achieved
higher metric values for the instrument segmentation task as compared to the polyp seg-
mentation task, as instrument segmentation is relatively easier than polyp extraction due
to the greater variability of the latter regarding color and appearance.
Transparency Task

We present the transparency results in Table 5.7. Team “agaldran” outperformed
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Table 5.5: Performance evaluation for the participating teams for the polyp segmentation
task in MedAI 2021 Challenge. 1 indicates a higher value is better.

Team Name mloU 1 DSC 1T Recall 1 Precision 1

agaldran 0.8522  0.8965 0.9009 0.9242
NYCity 0.8418 0.8885  0.8794 0.9319
ITAI-CV&Med 0.8361 0.8927 0.9195 0.8963
mTEC 0.8334 0.8892  0.9010 0.9096
CV&Med ITAI 0.8213 0.8612  0.8602 0.8814
PRML 0.8116 0.8669  0.8852 0.8922
CamAl 0.8083 0.8701  0.8702 0.9052
The Arctic 0.8022 0.8533  0.8604 0.8821
Polypixel 0.7997 0.8567  0.8868 0.8659
MAHUNM 0.7495 0.8189  0.8397 0.8568
OXGastroVision 0.7334 0.7966  0.8158 0.8374
Vyobotics 0.7220 0.7967  0.8214 0.8359
NAAMII 0.6041 0.6940  0.7499 0.7334
leen 0.4595 0.5531  0.6389 0.5860

The Segmentors  0.3789 0.4205  0.4178 0.4640
TeamAlIKitchen  0.2904 0.4100 0.7152 0.4910

Table 5.6: Performance of participating teams for instrument segmentation task of MedAl
2021 Challenge. 1 indicates a higher value is better.

TeamName mloU 1 DSC T Recall T Precision 1

agaldran 0.9364 0.9635 0.9692 0.9632
NYCity 0.9326 0.9586  0.9712 0.9516
mTEC 0.9245 0.9553  0.9687 0.9490
PRML 0.9178 0.9528  0.9687 0.9441

ITAI-CV&Med 0.9148 0.9490 0.9612 0.9473
CV&Med ITAI 0.9136 0.9512  0.9605 0.9500

Polypixel 0.9114  0.9478  0.9591  0.9438
CamAlI 0.9079  0.9442  0.9527  0.9468
The Arctic 0.9078  0.9448 0.9735  0.9231
OXGastroVision 0.8692  0.9073  0.9236  0.9096
MAHUNM 0.8523  0.9080 0.9535  0.8864
MedSeg JU 0.8205  0.8632  0.9005  0.8464
TeamAlIKitchen 0.7257  0.7980  0.7955  0.8510
leen 0.6991  0.7845 0.7963  0.8232
NAAMII 0.6857  0.7741 0.8321  0.7669

The Segmentors 0.3668 0.3971  0.3985 0.4040

other competitors with a final score of 21 out of 25. Similarly, “mTEC” obtained a score
of 17 out of 25 and was ranked 2"¢. Likewise, team “CamAlI” obtained a score of 16

out of 25 and was ranked third in the transparency task. There were also efforts from
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teams such as “The Arctic”, which obtained a score of 13, and “IIAI-CV&Med”, which
obtained a score of 10. These scores show their effort to provide a transparent solution to
the polyp and instrument segmentation tasks. We provide the final ranking and task-wise
scores in Figure 5.4. Notably, team “agaldran” outperformed others in all three tasks
and overall challenge and emerged as the winner of the MedAI 2021 challenge. Overall,
“mTec” secured the second position. Following closely behind, “CamAI” showcased the
third-best solution. The overall rank was computed by combining the mlIoU scores of polyp
and instrument segmentation tasks with the transparency score.

Table 5.7: Evaluation of the ‘Transparency tasks’ for MedAlI 2021 Challenge. For this
task, a team of experts accessed the submission based on several criteria and provided
a score based on the availability and quality of the source code (for e.g., open access,
public availability, and documentation for reproducibility), model evaluation (for e.g., failure
analysis, ablation study, explainability, and metrics used) and qualitative evaluation from
clinical experts (e.g., usefulness and understandability of the results). Here, ‘0’ refers to no

submissions. Doctor evaluation was only calculated for the team whose manuscripts were
accepted.

Open Source Model Evaluation Doctor Evaluation
Team Name Pu‘.)hdy Code. Readme Fallure. Ablation Explainability Metrics Usefulness Understandable Final Score

available Quality (0-3) Analysis Study (0-3) Used (0-3) (0-5)

(0or1) (0-3) (0-3) (0-3) (0 or 1)
agaldran 1 2 3 3 3 3 1 2 3 21
CamAI 1 1 2 1 2 1 2 5 16
CV&Med ITAI 0 1 0 1 0 0 1 3
ITAI-CV&Med 1 1 2 0 0 0 1 1 4 10
leen 0 1 0 0 0 2 1 4
MAHUNM 1 1 0 0 0 0 1 &)
mTEC 1 1 3 3 1 0 1 3 4 17
NYCity 0 0 0 0 0 0 1 1
OXGastroVision 0 2 0 0 0 0 1 3
Polypixel 1 1 2 0 0 0 1 5
PRML 0 1 0 0 0 0 1 2
TeamAlIKitchen 0 1 0 0 0 0 1 2
The Arctic 1 2 1 1 0 3 1 1 3 13
The Segmentors 0 0 0 0 0 0 1 1

Figure 5.5a illustrates the plot of mloU reported by each team in their submissions in
the two challenges with three different tasks. It can be observed that the polyp segmentation
task from 2020 to 2021 gained improvement with a larger number of submissions, achieving a
mloU of more than 0.80 and the best-performing team with a mIoU of around 0.85. Similar
progress can be observed in Figure 5.5b where an overall mIoU increased by 4.93% when
an average score is computed over all participating teams’ individual best mIoU in the 2021
polyp segmentation challenge. We further compared all segmentation metrics, including
DSC, recall, precision, mIoU score, accuracy, and F2 score, as shown in Figure 5.5¢. Notably,
the different evaluation metrics scores are consistent with instrument segmentation tasks in
the MedAlI challenge. However, there is a high variation in the mIoU between the different
teams in the polyp segmentation tasks of Medico 2020 and MedAI 2021 challenges.

These values pertain to the best score corresponding to a particular metric the indi-
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Figure 5.4: Task-wise scores achieved by participating teams of MedAI 2021 challenge.
Team rankings are decided on the basis of overall scores in all three tasks.

vidual team obtained in different executions. It is to be noted that each team was given the
opportunity to submit five different submissions, and the best results for the best submis-
sion are reported in the Tables here. From here, it can be observed that most teams in the
MedAT 2021 challenge reported overall high scores in terms of various segmentation met-
rics when compared to Medico 2020 outcomes, thus highlighting the improved performance
trends in automated systems over time. Furthermore, it can also be visualized that unlike
the high variations shown by teams’ scores in the polyp segmentation task, better perfor-
mance and smaller deviations in scores are reported in the instrument segmentation task.
The high variations in the polyp segmentation results also show that polyp segmentation
is more challenging because of the presence of variations in the size, structure and appear-
ance of the polyps, and the presence of the artifacts and lighting conditions deteriorate the

algorithm’s performance.

5.2.4 Discussions

The rapid advancement in the Al-based techniques that support CAD systems has resulted
in the introduction of numerous algorithms in the domain of medical image analysis, in-
cluding colonoscopy. To assess the performance of these algorithms, it is important to
benchmark on the particular set of datasets. It enables the comparison and analysis of
different techniques and assists in identifying challenging cases that need to be targeted
using improved methodologies. This also includes cases that are misled by the presence

of artifacts and occlusion by surgical instruments [180]. Besides developing and analyzing
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Figure 5.5: (a) Violin plots with overlaid swarm plots depicting statistics of submissions
received for different tasks for the two challenges, (b) Dice score comparison of different
teams in three tasks of Medico 2020 (polyp segmentation) and MedATI 2021 (Task 1: Polyp
segmentation and Task 2: Instrument segmentation), and (c) Strip plots for all segmentation
metrics (Dice score (DSC), recall, precision, mloU score, accuracy, F1 score, and F2 score
) reported by different teams in both challenges for all test data samples.
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Al-based algorithms, it is crucial to include explainability and interpretability to infuse
trust and reliance during the adoption of automated systems in clinical settings. Therefore,
the challenges discussed in this chapter focus on lesion and instrument segmentation and
emphasize the importance of transparency in medical image analysis. This section covers
the findings, limitations, analysis of failing cases, trust, safety and interpretability of the
methods, and future steps and strategies covering both challenges, Medico 2020 and Med Al
2021.

Medico 2020 Challenge Methods

Most of the methods reported in the Medico 2020 challenge focus on encoder-decoder ar-
chitecture for example, U-Net, ResUNet++, PraNet, Efficient UNet, etc). Other networks
used include conditional GAN and Faster R-CNN. The overview of the methods is pro-
vided in Table 5.1. For more detailed architectural information, we have also included
the backbone and algorithm used by each team. Further, we also report the nature of
the algorithm and the choice basis of evaluation, such as mloU, DSC or FPS. Addition-
ally, we provide information about the augmentation and hyperparameters, such as loss
function and optimizers. It is noteworthy that all the top three teams “PRML2020GU”,
“HBKU UNITN SIMULA” and “AI-TCE” used the encoder-decoder architecture. Out of
17 participating teams, only three teams adopted some other architectures. Comparative
analysis shows that the highest-scoring encoder-decoder network outperforms the GAN-
based approach by a significant margin of 0.3517 in mloU and 0.2989 in DSC score. Simi-
larly, compared to the R-CNN-inspired networks (team “IRIS-NSYSU”), the best approach
(team “PRML2020GU”) achieves an improvement of 0.2863 in mIoU score and 0.2191 DSC
score.

Medico 2020 challenges provide valuable insight and trends for the polyp segmentation
and biomedical image analysis challenges. Most deep learning frameworks submitted for the
challenge used the Adam optimizer to optimize their network. However, a handful of teams
used other optimizers, such as SGD or RMSProp. Additionally, most of the teams used data
augmentation to boost the number of training samples prior to training their frameworks
to improve the performance of their architecture. There have been different preferences
in loss function where most of the team used “BCE + DSC loss”, “binary cross-entropy”,
IoU loss, etc. However, from the results of the top three teams, it can be concluded that
“BCE + DSC loss” is best for this dataset. Similarly, in terms of the backbone for the
model architecture, the EfficientNet variant (selected by PRML2020GU) or EfficientNetB4
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(selected by AI-TCE) were most favorable.

MedAI 2021 Challenge Methods

The summary of the different approaches adopted by the participating teams of the
MedAI2021 Challenge is presented in Table 5.2. To provide a brief overview of the general
techniques adopted by the different teams, they can be categorized based on the nature
of the approach followed, such as ensemble models, encoder-decoder based architectures,
CNN, and hybrid CNN models. Almost all the teams presented the same model for both the
tasks proposed in the challenge. Most teams explored ensemble modelling, encoder-decoder
networks, or a combination of both in the polyp segmentation task. Another criterion of
categorization could be CNN or transformed-based approaches. It is observed that the top-
ranked team “agaldran” utilized two encoder-decoder networks and reported a mloU score
of 0.8522. Similarly, “CV&Med ITAI” was ranked second, and Team “NYCity” was ranked
third in the polyp segmentation task with a competitive mIoU value of 0.8484 and 0.8418,
respectively. Similar to the Medico 2020 polyp segmentation challenge, where GAN-based
methods were adopted by teams (for example, Team “leen”) failed to perform well in this
challenge for polyp and instrument segmentation tasks. It is to be noted that the winning
team, “agaldran” used a double encoder-decoder structure with two U-Net, where they in-
corporated FPN and Resnext101 as the pretrained decoder. They also used SAM and Adam
optimizer to optimize the model further. The other competitive team “CV&Med ITAI” used
the SINetv2 algorithm with PVTv2 as the backbone, and NYCity used the combination of
HarDNet-85 ResNet101.

In the MedAI2021 instrument challenge, participants mainly focused on either en-
semble models or encoder-decoder networks similar to the polyp segmentation task. As
the majority of the teams utilized the same model that they proposed for the polyp seg-
mentation problem in this task, the categorization of overall methods remains the same
as that of the first task described above. The top rank is secured by Team “agaldran”,
with encoder-decoder architecture, pyramid network as the decoder, and Resnext101 as the
pre-trained decoder. The second-ranked model by Team “NYCity” is the CNN and trans-
former based ensemble model, which achieved only a slight difference in the scores from the
leading model. mTec was ranked third in the challenge, which used dual parallel reverse
attention edge network (DPRA-EdgeNet) [168]. The architecture used HardNet [181] as
the backbone.

The challenge shows that most of the teams were reluctant to share their method (refer
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to Table 5.7). From the table, it can be seen that only five teams were qualified for the
doctor evaluation. Additionally, the quality of the code submitted by most of the team
was not satisfactory. Most of the participants did not put much effort into the readme file.
Additionally, most teams neglected the failure analysis, ablation study and explainability
in their submission. Moreover, based on the doctor’s evaluation, only the solution provided
by a few teams (for example, “agaldran”, “mTEC” “CamAI”, “The Arctic”, and “ITAI-
CV&Med”) was considered useful and understandable.

Analysis of the Failed Cases

We have analyzed the regular and failing cases in polyp and surgical tool segmentation
to highlight the limitations of the current methods so that these cases can be considered
during further algorithm development. From the results on the test dataset, it was observed
that most of the algorithms failed on diminutive and flat polyps located in the left colon.
These are the challenging classes in the colon and require effective detection and diagnosis
systems. Similarly, although most of the methods performed well on the diagnostic and
therapeutic surgical tool, there were issues with the images having caps and forceps. This
happens as algorithms could still struggle with difficult and rare cases like sessile polyps,
even if they perform well on overall quantitative metrics. Therefore, investigating the cause
for misclassification for such samples in the dataset and failure analysis will be critical
to focus for future research. This can include generalization performance evaluation on
unseen test data from different hospitals. Such investigations can reduce the chances of

underperformance on rare cases.

Trust, Safety, and Interpretability of Methods

Integrating CAD in clinical settings necessitates addressing factors such as trust, safety, and
interpretability to ensure its adoption. The high variations and potential bias in the curated
datasets used to train such models and the actual scenarios in which they are adopted create
a high chance of biases, impacting the generalizability of the method. Such bias ultimately
makes it challenging to infuse trust while adopting CAD tools and questions the safety
of patients. To tackle this issue, we introduced a transparency task in the MedAI2021
challenge that underscores the need for interpretability, reproducibility, and explainability
in medical Al research, including polyp and instrument segmentation.

Our initiative aimed to light the potential risk that can arise from wrong decisions

based on model and algorithmic bias. Our dataset contained polyp cases with varied ap-
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pearances in terms of shapes, sizes, the presence of artifacts, lightning conditions, textures,
and the different numbers of polyps per image that are encountered in real-world clinical
settings. Additionally, we have included frames containing surgical instruments to support
the cases of occluded endoluminal elements or polyps that could arise in general. Some
of the methods adopted by the participating teams include the submission of intermediate
heatmaps using approaches like layer-wise relevance propagation that showed visual ex-
planation and highlighted the model decision-making process. Team “agaldran” provided
detailed ablation studies in support of the predictions obtained. By promoting transparency
through subjective analysis and addressing potential biases, the MedAlI challenge aimed to
foster trust in the presented solution and ensure safety in adopting such methods in the

clinic.

Limitation of the Medico 2020 and MedAI 2021

In our study, we aimed to standardize the challenge of polyp and instrument segmentation
by providing the same test sets and evaluation metrics to all participants. To achieve this,
we introduced variable polyp cases, including polyps with different sizes, noisy frames with
artifacts, blurry images, and occlusion. We also added regular frames to the test set to
ensure that participants drew the ground truth manually and did not cheat. However, our
study has some limitations. Although we used datasets collected from four medical centers
in Norway, these images are from a single country, limiting the ethnicity variance though
there are very limited differences, if any, in the mucosal appearance between ethnicities.
Nevertheless, there is a need for a more diverse dataset that includes multiple ethnicities and
countries also because the prevalence of various diseases varies between regions. Moreover,
the current models should be tested on multi-center datasets to assess their generalization
ability.

There was no online leaderboard in our challenge due to the Mediaeval policy. There-
fore, we manually calculated the predictions submitted by each team. Each team had
limitations of 5 submissions for each task, which restricted further optimization opportu-
nities. Although we have also introduced normal findings from the GI tract to trick the
participants and models, our challenge only used still frames and did not incorporate video
sequence datasets. Even when the best-performing algorithms are tested on a temporal
video sequence dataset, it is possible that the performance can drop. Most of the images
are only from WLI. Although our dataset was annotated by one annotator and checked by

two gastroenterologists, there is still a possibility of bias in the labels. In the accessory in-
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strument challenge, we had more images from the stomach class than accessory instruments
such as biopsy forceps or snares due to the lack of availability of datasets. Finally, despite
including diverse cases in the polyp and instrument segmentation challenge, we still had
limited flat and sessile polyps, frequently missed during routine colonoscopy examinations.
Incorporating multi-center data and video sequences data and addressing label biases will

lead to more comprehensive and reliable evaluations of Al-based colonoscopy systems.

Future Steps and Strategies

In our study, we aimed to promote transparency and interpretability in machine learning
models for the GI tract setting. However, more work is needed to understand how decisions
are made and identify potential biases or errors in a quantitative manner to build trust
in such systems in a clinical setting. To achieve this, we plan to test the best-performing
algorithms on large-scale datasets to observe their scalability. We will consider metrics
that weigh speed, accuracy, and robustness for better objective assessments and introduce
more distance-based metrics such as Hausdorff distance and normalized surface distance for

improved fairness.

We will emphasize more transparent decision-making methods and visualize inter-
pretability results while focusing on clinical relevance rated by expert clinicians instead of
just one objective metric. To achieve this, we have already started collecting large-scale
datasets and plan to build a tool if the algorithms are robust enough and verified by our
gastroenterologists. Next, we will propose a challenge to polyp video sequences analysis.
We will explore the integration of state space models, such as Video Vision Mamba-based
framework [182], to capture the temporal information in video sequences that affect the
efficiency and accuracy of segmentation tasks. It is worth noting that there has been
innovation within hardware (colonoscope) for safer medical colonoscopy devices, such as
developing fully flexible automated colonoscopes to offer expanded fields of view rather
than 120 — 170° visualization, which can capture dead spots, improving the lesions’ miss-
rate. These scopes are currently in the final stage of development. This hardware would
require high processing speed to locate potential lesions in real time for a smooth workflow.
We believe these solutions from our challenge could help address the complexities with the

improved hardware and improved image quality.
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5.3 GastroVision

Here, we provide detailed information about the dataset, acquisition protocol, ethical and

privacy aspects of data and suggested metrics.

5.3.1 Dataset Details

GastroVision is an open-access dataset that incorporates 8,000 images pertaining to 27
different labeled classes (Fig. 5.6). Most image are obtained through WLI, while a few
samples are acquired using NBI. These classes are categorized into two broad categories:
Upper GI tract and Lower GI tract. The number of images under each class is presented
in Fig. 5.7. These classes indicate findings acquired from the GI tract. It can be observed
that the sample count is not balanced across classes, which is generally experienced in the
medical image acquisition process as some findings occur less often. Releasing these classes
in the dataset will allow the researchers to leverage the fast-emerging Al techniques to
develop methods for detecting such rare but clinically significant anomalies. All the images
are stored in JPG format, and the overall size is around 1.8 GB. The resolution details of
the images can be found in Fig. 5.8. GastroVision is provided as a structured directory,
with each class having a specific folder. For example, the ‘Accessory tools’ folder contains

all images featuring diagnostic and therapeutic tools.

Upper GI Tract:

Upper GI endoscopy examines the esophagus, stomach, and duodenum. The various classes
covered in this GI tract are discussed below as three subcategories: normal findings, anatom-
ical landmarks, and pathological findings. A detailed categorization is shown in Fig. 5.6. The
normal stomach serves as a critical site for initial digestion, while the duodenal bulb,
the first part of the small intestine, is critical for nutrient absorption. Anatomical land-
marks are used as reference points to indicate a specific location and assist in navigating
during endoscopy procedures. The gastroesophageal junction is an anatomical area
where esophagus joins the stomach also alining to the normal z-line, a transitional
point where the esophagus’s squamous epithelium and the stomach’s columnar mucosa lin-
ing join. Pylorus is a sphincter connecting the stomach and the duodenum, the first part
of the small intestine.

Apart from these anatomical landmarks, any pathological conditions may be encoun-

tered during endoscopy. Esophagitis, the most common abnormality, is characterized by
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Figure 5.7: The figure shows the number of images per class. Some classes have few samples
because of the rarity of the findings and the technical challenges associated with obtaining
such samples in endoscopic settings.

an inflammation of the esophagus. This disease is graded based on its severity according
to the Los Angeles classification. For example, grade B refers to the condition when the

mucosal break is limited to the mucosal fold and is more than 5 mm long. In grade D,
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Figure 5.8: Resolutions of the 8,000 images of GastroVision.

mucosal break affects 75% of the esophageal circumference. Long standing esophagitis may
cause Barett’s esophagus, a condition in which the cells of the esophagus’s lining start
to change, and tissues appear red. This is a precancerous condition. Other frequent lesions
observed are polyps, abnormal tissue growth or ulcers. Gastric polyps are abnormal
growths in the stomach lining. Ulcers are the open sores in the stomach or duodenum
that can lead to discomfort and bleeding. Esophageal varices result from portal hy-
pertension, causing swollen veins in the esophagus. Erythema refers to redness, often
indicating inflammation and blood in the lumen denotes bleeding. Accessory tools aid

in investigating and diagnosing upper and lower GI tract conditions for targeted treatment.

Lower GI Tract:

The lower GI tract is examined by colonoscopy to investigate any abnormalities in the colon,
the rectum, and the terminal ileum (the last part of the small bowel). Here, we covered
one more subcategory, therapeutic interventions, in addition to normal findings, anatomical
landmarks, and pathological findings. A detailed class-wise division is shown in Fig. 5.6.
The normal mucosa and vascular pattern in the large bowel is essential for
absorbing water and electrolytes. The different anatomical landmarks associated with lower
GI include cecum (first part of the large intestine), visualizing the appendiceal orifice,
ileocecal valve (sphincter muscle between ileum and colon), and the small bowel. During
the colonoscopy, these anatomical landmarks act as reference points to prove complete

examination. Retroflexion in the rectum is performed to visualize a blind zone, using
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the bending section of the colonoscope to visualize the distal area of the colon, called
rectroflex-rectum. The terminal ileum, the last part of the small intestine, aids in
nutrient absorption. Colon diverticula, small pouch-like protrusions, can form along the
colon’s weakened wall, often in the sigmoid colon [183].

During the colonoscopy, the endoscopist navigates through these landmarks and looks
for abnormalities such as polyps, angiectasia, and inflammation like ulcerative colitis.
Angiectasia is a common lesion representing abnormal blood vessels and is responsible for
obscure recurrent lower GI bleeding. These can easily be distinguished from the normal
vessels shown in Fig. 5.6. Colorectal cancer occurs in the colon or rectum. One of
the early signs of this colorectal cancer can be detected through colon polyps. Mucosal
inflammation in the large bowel may be caused by different factors, such as infections
or chronic inflammatory conditions.

Apart from the aforementioned pathological conditions, several therapeutic interven-
tions are adopted to treat the detected anomalies effectively. It frequently involves the
removal of the lesion/polyp. The surrounding of such resected polyps, also called the
resection margins or resection sites, are then considered for biopsies. To enhance le-
sion demarcation, a solution containing indigo carmine is injected, making resection easier.
The appearance of blue color underneath the dyed-lifted-polyp provides accurate polyp
margins. After resecting such polyps, the underlying region, known as dyed-resection-
margin, appears blue. These margins are important to examine for any remaining tissue

of the resected polyp.

5.3.2 Dataset Acquisition, Collection and Construction
Data Acquisition and Collection:

The dataset images are acquired from two centers (Department of Gastroenterology, Baerum
Hospital, Vestre Viken Hospital Trust (VV), Norway and Karolinska University Hospital,
Stockholm, Sweden) using standard endoscopy equipment from Olympus (Olympus Europe,
Germany) and Pentax (Pentax Medical Europe, Germany). A team of expert gastroenterol-
ogists, one junior doctor, and two computational scientists were involved in the labelling of
the images and the related review process. It is worth noting that for dataset collection, we
labeled some of the unlabeled images from the HyperKvasir dataset and included them in
our dataset. Additionally, we labeled the images acquired from the Karolinska University
Hospital to their respective classes for developing a diverse and multi-center “GastroVision”

dataset.
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Ethical and Privacy Aspects of the Data:

The dataset is constructed while preserving the patients’ anonymity and privacy. All videos
and images from Bzerum hospitals were fully anonymized, following the GDPR requirements
for full anonymization. Hence, it is exempted from patient consent. The files were renamed
using randomly generated filenames. The Norwegian Privacy Data Protection Authority
approved this export of anonymized images for research purposes. As the dataset develop-
ment procedure involved no interference with the medical treatment or care of the patient,
it has also been granted an exemption for approval by the Regional Committee for Medical
and Health Research Ethics - South East Norway. Similarly, the data collection process
at Karolinska University Hospital, Sweden, is completely anonymized as per the GDPR

requirements.

5.3.3 Suggested Metrics

Standard multi-class classification metrics, such as Matthews Correlation Coefficient
(MCC), micro and macro averages of recall/sensitivity, precision, and F1l-score, can be
used to validate the performance using our dataset. MCC provides a balanced measure
even in cases with largely varying class sizes. A macro-average will compute the metric
independently for each class and then take the average, whereas a micro-average will ag-
gregate the contributions of all classes to compute the metric. Recall presents the ratio of
correctly predicted positive observations to all the original observations in the actual class.
Precision is the ratio of correctly predicted positive observations to all the positive pre-
dicted observations. F1l-score integrates both recall and precision and calculates a weighted

average/harmonic mean of these two metrics.

5.3.4 Experiments and Results

In this section, we describe the implementation details, technical validation and the limita-

tion of the dataset.

Implementation Details

All deep learning diagnostic models are trained on NVIDIA TITAN Xp GPU using PyTorch
1.12.1 framework. A stratified sampling is performed to preserve the similar distribution of
each class during 60:20:20 training, validation, and testing split formation. The images are

resized to 224 x 224 pixels, and simple data augmentations, including random rotation and
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Table 5.8: Results for all classification experiments on the Gastrovision dataset.

Macro Average Micro Average
Method Prec. Recall F1 Prec. Recall F1 MCC
ResNet-50 [118]  0.4373  0.4379  0.4330 0.6816 0.6816 0.6816 0.6416
Pre-trained ResNet-152 [118]  0.5258  0.4287  0.4496  0.6879 0.6879 0.6879 0.6478
Pre-trained EfficientNet-B0 [184] 0.5285  0.4326  0.4519  0.6759 0.6759 0.6759 0.6351
Pre-trained DenseNet-169 [113]  0.6075  0.4603  0.4883  0.7055 0.7055 0.7055 0.6685
]
]

Pre-trained ResNet-50 [118]  0.6398  0.6073  0.6176  0.8146 0.8146 0.8146 0.7921
Pre-trained DenseNet-121 [113] 0.7388 0.6231 0.6504 0.8203 0.8203 0.8203 0.7987

random horizontal flip, are applied. All models are configured with similar hyperparameters,
and a learning rate of le~* is initially set with 150 epochs. An Adam optimizer is used with
the ReduceL ROnPlateau scheduler. More description about the implementation details and

dataset can be found on our GitHub page 6.

Technical Validation

To evaluate the presented data for technical quality and classification tasks, we performed a
series of experiments using some state-of-the-art deep learning models. The purpose of this
preliminary validation is to provide baseline results that can be referred to for comparison
by future researchers. We carried out multi-class classification using CNN-based models,
namely, ResNet-50 [118], ResNet-152 [118], EfficientNet-B0 [184], DenseNet-121 [113], and
DenseNet-169 [113], considering their competent performance in Gl-related image-based
tasks in the literature [185]. Note that we have only included classes with more than 25
samples in the experiments, which resulted in 22 classes in total. However, we also release
the other classes with fewer samples to welcome new interesting findings in areas similar to
one-shot learning.

The different experiments performed include (a) ResNet-50: The model is randomly
initialized, and an end-to-end training is done, (b) Pre-trained ResNet-50 and (c¢) Pre-
trained DenseNet-121: The models are initialized with pre-trained weights, and then all
layers are fine-tuned, (d) Pre-trained ResNet-152, (e) Pre-trained EfficientNet-B0 and (f)
Pre-trained DenseNet-169: The models are initialized with pre-trained weights, and only
the updated last layer is fine-tuned. All the above pre-trained models use ImageNet weights.
The associated results are shown in Table 5.8. It can be observed that the best outcome is
obtained using the pre-trained DenseNet-121. A class-wise analysis using the same model
is provided in Table 5.9 and Fig. 5.9. It shows that while most classes achieved satisfactory

prediction outcomes, a few proved to be very challenging for the classification model. For

Shttps://github.com/DebeshJha/GastroVision
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Class Precision Recall F1l-score Support
Accessory tools 0.93 0.96 0.95 253
Barrett’s esophagus 0.55 0.32 0.4 19
Blood in lumen 0.86 0.91 0.89 34
Cecum 0.33 0.17 0.23 23
Colon diverticula 1 0.33 0.5 6
Colon polyps 0.78 0.87 0.82 163
Colorectal cancer 0.63 0.41 0.5 29
Duodenal bulb 0.72 0.76 0.74 41
Dyed-lifted-polyps 0.86 0.86 0.86 28
Dyed-resection-margins 0.94 0.92 0.93 49
Esophagitis 0.5 0.23 0.31 22
Gastric polyps 0.6 0.23 0.33 13
Gastroesophageal junction normal z-line 0.65 0.85 0.74 66
Tleocecal valve 0.74 0.7 0.72 40
Mucosal inflammation large bowel 1 0.33 0.5 6
Normal esophagus 0.72 0.82 0.77 28
Normal mucosa and vasular pattern in the 0.81 0.87 0.84 993
large bowel
Normal stomach 0.9 0.86 0.88 194
Pylorus 0.8 0.92 0.86 78
Resected polyps 0.33 0.11 0.17 18
Retroflex rectum 0.75 0.43 0.55 14
Small bowel terminal ileum 0.86 0.85 0.85 169

Table 5.9: Class-wise performance associated with the best outcome obtained using pre-
trained DenseNet-121.

a more detailed analysis, we plotted a two-dimensional t-SNE embedding for Gastro Vision
(Fig. 5.10). The classes like Normal stomach, Dyed-resection-margins, which present a clear
distinction in the t-SNE embedding, are less often misclassified. The above points could
be the reasons for the Fl-score of 0.88 and 0.93 in the case of Dyed-resection-margins and
Normal stomach classes, respectively. On the other hand, there are some overlapping classes
such as Cecum and Normal mucosa and vascular pattern in the large bowel or Colorectal
cancer and Colon polyps which do not present clear demarcation with each other and hence,

are likely to be misclassified.

Considering the overall results and many overlapping classes (without distinct cluster-
ing), it can be inferred that classifying GI-related anatomical landmarks and pathological
findings is very challenging. Many abnormalities are hard to differentiate, and the rarely
occurring findings have higher chances of getting misclassified. This presents the challenge
of developing a robust Al system that could address multiple aspects important for GI im-

age classification, e.g., many findings are subtle and difficult to identify, and some findings
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Figure 5.9: Confusion matrix for the best outcome obtained using pre-trained DenseNet-

121.

are not easily acquired during the endoscopy procedure, which results in less number of

data samples. Such underrepresented classes need to be explored with some specific algo-

rithms specially designed to leverage the availability of a few hard-to-find samples. Thus,

the potential of the baseline results and associated issues and challenges motivate the need

to publish this dataset for further investigations.
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Figure 5.10: Two-dimensional t-SNE embedding for GastroVision. The pre-trained
DenseNet-121 model, which is further trained on our training set, is used to extract fea-
tures. Some sample images are shown with either a specific or a broader (due to multiple
overlapping classes) categorization.

Limitation of the Dataset

Our dataset, GastroVision, is a unique and diverse dataset with the potential to explore a
wide range of anatomical and pathological findings using automated diagnosis. Although
this labeled image data can enable the researchers to develop methods to detect GI-related
abnormalities and other landmarks, the current version lacks segmented annotations, which
could further enhance the treatment experience and surgical procedures. It is important
to note that some classes (for example, colon diverticula, erythema, cecum, esophagitis,
esophageal varices, ulcer and pylorus) have only a few images. Despite this limitation,
our dataset is well suited for one-shot and few-shot learning approaches to explore some
Gl-related conditions that have still not received attention in medical image analysis. In
the future, we plan to extend the dataset by including more classes and a larger number of
samples, along with ground truth for some of the classes that could be used for segmentation

purposes as well as images with higher resolution from the most recent endoscopy systems.
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5.4 Chapter Summary

In this chapter, we presented a case study with the aim of providing a comprehensive anal-
ysis of the methods used by participants in the Medico 2020 and MedAI 2021 competitions
for different medical image analysis tasks. We designed the tasks and datasets to demon-
strate that the best-performing approaches were relatively robust and efficient for automatic
polyp and instrument segmentation. We evaluated the challenge based on several standard
metrics. In MedAT 2021, we also used a quantitative approach, where a multi-disciplinary
team, including gastroenterologists, accessed each submission and evaluated the usefulness
and understandability of their results. Through the qualitative results, we found that more
generalizable and transparent methods are needed to be integrated into real-world clini-
cal settings. During the “performance task” and “algorithm efficiency” tasks, we observed
a trade-off between accuracy and inference time when tested across unseen still frames.
For the instrument segmentation challenge, we observed that almost all teams performed
relatively well, as segmenting instruments is easier than polyp segmentation. From the
transparency task, we observed that more effort is required from the community to enhance
the transparency of their work. Overall, we also observed that several teams demonstrated
the use of data augmentation and optimization techniques to improve performance on spe-
cific tasks. Our study highlights the need for multi-center dataset collection from larger
and more diverse populations, including experts from various clinics worldwide.

Further, we presented a new multi-class endoscopy dataset, GastroVision, for GI
anomalies and disease detection. We have made the dataset available for the research
community along with the implementation details of our method. The labeled image data
can allow researchers to formulate methodologies for classifying different GI findings, such
as important pathological lesions, endoscopic polyp removal cases, and anatomical land-
marks found in the GI tract. We evaluated the dataset using some baseline models and
standard multi-class classification metrics. The results motivate the need to investigate
specific techniques for Gl-related data better. Having a diverse set of categories labeled
by expert endoscopists from two different centers, GastroVision is unique and valuable
for computer-aided GI anomaly and disease detection, patient examinations, and medical

training.
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Synthetic Dataset Creation: Towards
Improved Polyp Segmentation and

Classification

Chapter Highlights

We address the issues associated with medical data acquisition, including legal restric-

tions and manual effort for acquisition and annotations.

We develop two methods to generate synthetic medical data that eliminate the need

to undergo long data acquisition and annotation procedures.

The generated data can be controlled using two mechanisms: image-based and text-

based input controls.

We also introduce the concept of cross-class labels that allow learning features from
other classes and generate images from combinations of text prompts without addi-

tional labels.

This chapter is based on the publications “ControlPolypNet: Towards Controlled
Colon Polyp Synthesis for Improved Polyp Segmentation”, presented at the CVPR
(DCAMI) 2024 and “Generating Diverse Modality Colonoscopy Images Leveraging

Cross-Class Labels”, currently under review.
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This chapter addresses the issue of expensive manual effort and privacy
concerns associated with medical data acquisition and annotation. Such
hurdles result in medical data scarcity, impacting the performance of deep
learning methods as it depends on the quality and number of samples pre-
sented during training. Fxisting lesion detection and diagnosis tasks of a
CAD system, such as polyp segmentation and classification methods, typi-
cally rely on conventional augmentation techniques such as rotation, flip-
ping, etc. Simply relying on traditional augmentation techniques restricts
the scale-up of the dataset to a certain extent, depending on the dataset
size, and limits diversity among samples. Moreover, the existing classifi-
cation techniques fail to capture different imaging modalities (NBI/WLI)
that are paired with colonoscopy procedures for accurate classification of
two major types of polyps: adenomatous (malignant potential) and hyper-
plastic (benign). The reason for such failures stems from the same issue of
diverse data unavailability in the medical domain. To overcome these is-
sues, synthetically generated images can be utilized to complement the hard-
to-obtain annotated authentic medical data. Recently, generative artificial
intelligence has been gaining prominence in this domain. Additionally,
various generation-controlling mechanisms using text prompts and images
have been introduced to obtain visually appealing and desired outcomes in
a better-controlled manner. Therefore, we develop two frameworks; one
explores the image-based control mechanism, and the other framework ex-
plores the text-controlled generation mechanism. QOur first model, Con-
trolPolypNet is a novel, stable diffusion based framework. We control the
generation process (polyp size, shape and location) using a novel custom-
masked input control, which generates images preserving important endolu-
minal information. Additionally, our model comprises a detection module,
which discards some of the generated images that do mot possess lesion-
characterizing features, ensuring clinically relevant data. We further utilize
the generated polyp frames to improve performance in the downstream task
of polyp segmentation. Using these generated images, we found an average
improvement of 6.84% and 1.3% (JI) on CVC-ClinicDB and Kvasir-
SEG, respectively, in the polyp segmentation task. Further, we develop our
second model, PathoPolyp-Diff, that generates text-controlled synthetic im-
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ages with diverse characteristics in terms of pathology, imaging modalities,
and quality. In the process, we leverage the cross-class labels to make the
model learn features from other classes and, hence, reduce the burdensome
task of data annotation. We validate the effectiveness of text-controlled
synthesis and cross-class label learning by performing polyp classification
(adenomatous/hyperplastic) with different imaging modalities (NBI/WLI)
and text prompts. The experimental results report an improvement of up
to 7.91% in BA using a publicly available dataset. Moreover, the cross-
class label learning achieves a statistically significant improvement of up to

18.33% in BA during video-level analysis.

6.1 Introduction

In this chapter, we propose two frameworks that focus on generating synthetic medical data,
thus overcoming the long procedures involved in clinical data acquisition and labeling. The
dataset curated and designed in our previous chapter involved expert gastroenterologists
and computational scientists for the labelling and reviewing procedures. These procedures
took a long time and extensive effort. Moreover, one must be cautious about annotation,
as labelling medical data is critical. Considering these scenarios, one possible solution is
to expand the training data by incorporating synthetic data. This solution is viable and
offers various benefits: (1) It does not require the time-consuming task of manual labelling.
(2) It eliminates the long process of obtaining data privacy informed consent, accelerating
dataset development. (3) It provides an opportunity to obtain hard-to-find anomalies that
are difficult to observe during routine colonoscopy.

To generate realistic-looking synthetic data, in recent years, GANs have been widely
used in various fields, including medical imaging [102, 111]. Despite the improved perfor-
mance in the downstream tasks, the issue of convergence instability of GANs and their
limited contributions in such tasks resulted in the development of currently trending diffu-
sion models [186, 187]. Diffusion models are expected to generate more realistic images and
support text-to-image generation, thus facilitating automated systems with text prompts
for better control. These models have been explored in many medical applications, such
as image-to-image translation [188], reconstruction [189], image generation [190], segmenta-
tion [191], and classification [192], especially using radiology images. However, colonoscopy

images are not much explored and require validations on the diffusion models’ ability to
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Non-polyp / Input Control Images /
Negative Images Source Images Text Prompt = "Polyp"

Figure 6.1: Controlling polyp generation using custom masks while leveraging largely
accessible non-polyp/negative images. We turned negative samples into positive ones with
controlled polyp shape, size and location, simultaneously enforcing diversity in generated
samples.

learn and generate complex patterns. Besides visually satisfactory image formations, these
models must be evaluated on their ability to retain clinically significant information and

the usefulness of generated data for downstream tasks such as polyp segmentation.

In this chapter, we develop two diffusion based frameworks that generate synthetic
colonoscopy images based on two different control mechanisms: a) image-based and b)
text-based. Considering the former control mechanism, we propose ControlPolypNet, based
on ControlNet [193] architecture to generate realistic-looking polyp frames. The framework
has a novel input control map, which converts non-polyp frames with normal mucosa to
polyp frames. This process is summarized in Fig. 6.1. Additionally, we employ a detector in
ControlPolypNet that discards frames that do not carry lesion-characterizing features. We
evaluate the generated frame’s quality in preserving the endoluminal scenes by calculating
Frechet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and Structural Sim-
ilarity Index Measure (SSIM) metrics. Also, we evaluated the impact of the generated data
on downstream tasks of polyp segmentation. Our method offers a more practical approach
to data augmentation, which is expected to represent clinically relevant data with diverse

characteristics.

Using the second control mechanism, we propose PathoPolyp-diff, a novel diffusion
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based framework that generates a wide range of colonoscopy image types covering differ-
ent pathologies, imaging modalities and quality. This model aims to assist endoscopists in
better-automated diagnosis, as the current methods mainly rely on a single imaging modal-
ity. A generative model, which can generate a wide range of image classes, generally requires
a well-designed dataset with comprehensive annotations that are essential for training. This
ensures they can grasp intricate patterns linked to polyp-characterizing features and their
associated pathological conditions. However, obtaining labels for each subtask, considering
pathology, quality, and imaging modality, could be significantly expensive. Therefore, in this
framework, we develop a method to perform cross-class label learning that helps leverage
annotations from other classes and produce synthetic images representing a combination of
text prompts. This approach ensures obtaining synthetic polyp images with different patho-
logical characteristics (adenoma/hyperplastic) captured with different imaging techniques
(WLI/NBI). This diverse set is obtained while maintaining the quality, overcoming the gen-
eral artifacts present in a colonoscopy video: ghost colors, motion blur, low illumination,

and fecal depositions.

6.1.1 Contributions

The main contributions of this chapter are summarized below:

o ControlPolypNet (A diffusion model with image-based control mechanism)

— Framework with novel user-configurable input control map: We pro-
pose a novel approach using user-configurable input control to generate polyps
while leveraging the largely accessible non-polyp frames. This control map can
control the endoluminal objects and polyp generation (in terms of shape, size

and location) using customized masks and non-polyp frames.

— Additional examination to avoid irrelevant synthetic information: We
employ a detector that verifies the quality of generated polyps and selects clini-
cally appropriate synthetic polyps that carry lesion-characterizing features. The
detector eliminates the risk of adding noise and irrelevant information to the

generated data.

— Improved polyp segmentation performance: We report enhanced polyp
segmentation performance by augmenting two publicly available datasets using
our synthetic images. This has been achieved without additional expensive man-

ual annotation requirements.

127



6.1. INTRODUCTION

o PathoPolyp-Diff (A diffusion model with text-based control mechanism)

— A novel approach to generate a diverse set of colonoscopy images: We
develop PathoPolyp-Diff, a novel model to generate text-controlled synthetic im-
ages that cover a wide range of categories, including pathology, imaging modali-
ties, and quality. It can generate adenomatous and hyperplastic polyps combined

with the desired imaging modalities, including NBI and WLI.

— Introduced cross-class label learning: We introduce the concept of cross-
class label learning that allows the model to learn labels from different classes,
hence expanding the diversity of data generation and reducing the cumbersome

task of dataset annotation.

6.1.2 Preliminaries

The architecture of the two proposed approaches is inspired by the concepts of Stable
Diffusion Models (SD) and ControlNet. These models are discussed in detail below.

Stable Diffusion Models (SD): SD is a text-to-image model built upon the basic
functionality of Latent Diffusion Models (LDM) [194]. It has been introduced to circumvent
the issue of the high computational requirements of standard Diffusion Models (DM) [186].
This improvement is achieved by executing the diffusion process on latent space instead of
pixel level using an autoencoding procedure. To understand the advantages of using LDM
over DM, some basic details about the two concepts are given below.

Standard DMs: The standard DMs follow a parameterized backward process of a fixed
Markov Chain to gradually denoise a noisy image a;. It acts as a sequence of autoencoders
eg(ag, t) that serves as a denoising framework to predict the denoised version of a;. Here, t
is uniformly sampled between [1,7”], and 7" denotes the noise steps. The related objective

can be defined in a refined form as:

Lpy = Eqepllle — eplar, )]]3] (6.1)

where € ~ N(0,1).

Standard LDMs: These models leverage the ability of encoder and decoder architec-
tures to represent significant information in compressed form and reconstruct it back in its
original form. Such an attempt to use latent space enables the model to focus on important
semantic details and perform efficiently with low computational resources. LDMs also keep

track of time steps t;, further embedded with the U-Net architecture. However, instead of
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RIXWX3 it is processed through encoder E to obtain q;.

directly using an RGB image a €
This representation is reconstructed into a; using a decoder D. The corresponding objective

is given below:

e — eq(ai, 1)l13] (6.2)

Loy = Eggg)eql

The SD further utilizes a text encoder, which is a pre-trained CLIP [195]. It allows
encoding the text prompts into embeddings. These text embeddings are then fused with the
encoder and decoder of U-Net using cross-attention layers. This cross-attention mechanism
helps condition the model using a text prompt b after processing the embeddings through

an encoder Z.

le — eo(ans, t, Z9(b))|3] (6.3)

Lipr, = Eg@) el

ControlNet: ControlNet is designed to control the diffusion models to enable them
to perform a specific downstream task. It uses an input control map that provides an
opportunity to manipulate the generated output. ControlNet, in its standard form, supports
control maps with different conditions, such as edge maps, scribbles, segmentation maps,
pose, etc. It preserves the weights of the SD by making a locked copy of it. Simultaneously, it
uses a trainable copy with task-specific conditional control for a downstream task. These two
copies are connected via 1 x 1 zero convolution layers with both bias and weight initialized
as zero. The convolutional weights of these layers gradually optimize starting from zero,
which gives the benefit of no extra added noise with faster training at the same time. Let
parameters of locked copy be denoted as ¢ and those of trainable copy as ¢.. If zero
convolution operation is C(.;.) which uses two instances of parameters {¢c1,¢c2}, then

combining it into the ControlNet network blocks #(.;.) could be represented as:

d. = H(ea¢) —{—C('H(G—FC(C, ¢c1)§¢c)§¢c1) (64)

where d. is the output and e is the input feature map. The overall objective after including

the downstream task can be modified as shown below:
2
Lon = Ega)pp eillle = eolan, t, Z9(b), Zo(V))]l3) (6.5)
where Zg(b') is the intermediate representation of the task-specific conditional text prompt.
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6.2 ControlPolypNet

6.2.1 Methodology
Overview

The objective of the proposed method is to generate polyp frames to increase the sam-
ple count for training and enhance the performance of deep learning models. Given a set
of images with two subsets, polyp/positive (P) and non-polyp/negative (N), our goal is
to utilize images in N to expand the subset P. This is achieved by transforming images
N = {n1,na,...,ns} into P’ = {p}|p} is similar in distribution to p;}, where p; € P. More-
over, during this transformation, polyp shape, location, and size are user-configurable and
integrating P’ with P should diversify the overall set. This signifies that the synthetic polyp

set P’ should be diverse and possess qualities similar to real images in set P.

Architectural Details

The architectural details of our model ControlPolypNet are depicted in Fig. 6.2. It consists
of three main parts: (a) an SD U-Net architecture loaded with pre-trained weights of SD
v1-5, (b) ControlNet, and (c) YOLOVS, a detector pre-trained on the polyp images. The
decoder part of the SD U-Net is kept unlocked, and only its encoder part is left locked
during the complete training process. This unlocking is done to obtain better performance
on medical imaging tasks like ours, as the initial weights are more inclined toward general
images. Instead of adopting standard control map options presented by ControlNet, we
tailored the input condition map to fit the necessary requirements.

We utilized the negative colonoscopy frames, which are relatively easily accessible in
sufficiently large amounts. We overlapped these frames with random custom masks to
obtain N’, which are the regions targeted for polyp generation to obtain P’. To make the
model learn the mapping N’ — P’, we prepared our training set such that initially, it learns
M — P, where M is obtained by overlapping P with its binary mask ground truth. By
providing P as the target image and M as the source image (control image), the model
learns the mapping M — P. While learning this mapping, the model learns the complex
patterns in data, and when given a random mask over non-polyp image n}, it transforms
it into p, when given the text prompt “polyp”. This mapping allows the usage of custom
masks with controllable polyp positions and shapes. Also, this reduces the probability of
obtaining unwanted structures or noise in the background/endoluminal scene.

When given a polyp image p;, the standard diffusion process progressively adds noise
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Figure 6.2: The proposed framework uses custom-masked images as control input with a
“polyp” text prompt. The below pipeline shows the pre-processing of negative samples to
remove uninformative frames and then using custom masks to generate polyps during the
evaluation phase of ControlPolypNet. The complete process helps to enhance the segmen-
tation task by providing the possibility of data augmentation, which ultimately validates
the significance of synthetic polyp images.

to the image in its latent representation p; to obtain a noisy version p;,. This input is
combined with conditions in the form of mask-overlapped image m; € M and text prompt b,
i.e., “polyp” m; is further converted into an intermediate representation my by performing
encoding on m; to match the input size of SD. The objective of ControlPolypNet can be
defined as:

e = co(pug, t, Zo(b), myp)13) (6.6)

Lepn = Epp) by el

The proposed input control ensures that the other endoluminal scene remains intact,
which could be beneficial to capturing and differentiating polyp regions during downstream
tasks. As stated in [16], considering some regions from background aids in improving

classification results. This outcome could be attributed to polyps exhibiting a distinct color
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and texture, setting them apart from the normal mucosal regions. Unwanted noise and
irrelevant objects in the generated outputs create unrealistic data that could deviate the
segmentation models from the intended tasks. Therefore, we utilized the negative frames
instead of relying on the standard binary masks. However, these negative frames can have
some artifacts, as general colonoscopy videos are prone to motion blur, interlacing, ghost
colors, etc. Hence, we used an approach given in Chapter 1 to eliminate such uninformative
negative frames before using them for the translation.

Pathological Validation Setup: Although generative models are now common in the
medical imaging domain, various studies [196, 197] show that they are liable to generate
unrealistic medical conditions or structures. As pathological patterns are significantly cru-
cial, we performed an elimination step instead of directly integrating them into the segmen-
tation task training. This elimination step validates the presence of lesion-characterizing
features in the synthetic images and simultaneously prepares a clinically valid set of images
appropriate for data augmentation. We integrated a polyp detector, YOLOvS8 [198], in the
proposed framework for this process. This detector is pre-trained on polyp images with a
confidence score set in the range of 0.7 and 0.8 for inference. This integration helps choose
only valid, visually appealing frames with lesion-characterizing features. We used these

selected generated polyp frames to augment the training set for the segmentation task.

6.2.2 Experiments and Results
Dataset Details and Training Settings

We used three publicly available datasets, namely, SUN Database [95] (49,136 polyp frames
and 109,554 non-polyp frames), CVC-ClinicDB [10] (612 polyp images) and Kvasir-SEG [9]
(1000 polyp images), to validate the performance of our proposed framework. The seg-
mentation ground truth of the SUN Database, released in the form of SUN-SEG [199], is
also used. The SUN Database and SUN-SEG are used in the training of ControlPolypNet,
whereas CVC-ClinicDB and Kvasir-SEG are used to validate generated image quality in the
downstream tasks of polyp segmentation.

During ControlPolypNet training, we used 38,284 polyp images in the train set, and the
rest were used for validation purposes. To translate non-polyp images into polyp images, we
custom-masked 10,000 negative images obtained after pre-processing five non-polyp video
sequence cases with the informative/uninformative frame detector given by [200]. The
official split of CVC-ClinicDB and Kvasir-SEG is used. The implementation is done us-
ing PyTorch and PyTorch lightning frameworks. ControlPolypNet and downstream tasks
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Figure 6.3: Epoch-wise sample images along with their corresponding negative images and
input control images (custom-masked negative samples). E stands for epochs.

Table 6.1: Quantitative comparison of synthetic polyp images with different sets of real
images over different epochs. Bold values represent the ‘best’ metrics score, and E, P, NP
stand for ‘epoch’, ‘polyp’, and ‘non-polyp’ | and 1 denote ‘lower is best’ and ‘higher is
best’, respectively.

| Metrics Trend | Comparsion (with) | E-15 E-25 E-35 E-45 E-55 |
FID I Real P images 104.52 106.70 102.46  99.35  94.07
Real NP images 92.10  93.77  91.16 89.22  82.95
PSNR T Masked NP images 67.70  67.22  67.66 67.57  68.39
SSIM 0 Masked NP images 0.9987 0.9984 0.9986 0.9986 0.9988

training are executed using NVIDIA A100 and NVIDIA Titan-Xp GPU, respectively. Con-
trolPolypNet is trained for 55 epochs with a batch size of 32 and a learning rate of 2e 5.

Evaluation Metrics

The quality of the generated images is accessed using three metrics: FID, PSNR, and SSIM.
FID quantifies the quality of synthetic data for realism and diversity. PSNR is focused on
the reconstruction quality of images, and SSIM quantifies the similarity between two images.
Additionally, we used task-specific metrics for segmentation which include precision, recall,
Fl-score and JI. The JI determines the overlap between the ground truth and prediction

masks.
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Figure 6.4: (a) Two-dimensional t-SNE embedding pertaining to real polyp images, and images
generated by Pix2Pix and ControlPolypNet, (b)-(e) show negative images, masked negative images,
synthetic images obtained using Pix2Pix and ControlPolypNet, respectively.

Performance Evaluation

We evaluated our model on different epochs and examined the quality of the generated im-
ages using the quality assessment metrics. The related results are shown in Table 6.1. While
using FID, we considered two comparison scenarios: synthetic vs. real polyp images and
synthetic vs. real non-polyp images. As expected, the latter case presented a better score
because the related non-polyp images are translated into synthetic polyp with background
details substantially preserved. It can be observed that the quality of images in both cases
gradually increased with the epoch counts. Due to the high computational requirements
of diffusion models, we considered training till the point where visually appealing results
were obtained. We further explored the structure and information-preserving ability of our
approach using PSNR and SSIM. We masked the generated images’ polyp region for this
assessment and compared them with the masked non-polyp images. The results show that
the quality of the endoluminal scene is satisfactorily preserved and is improved with the
increasing epochs.

Besides quantitative outcomes, we observed the qualitative results, shown in Fig. 6.3.
In the initial epochs, especially in epoch 15, the image details are not precisely generated
and are obstructed by artifacts. Moreover, the color transfer ability from the input control
image to synthetic images is higher in the later epochs. The randomness in polyp color and
close mapping of the polyp shape and its location with the custom mask demonstrates our
approach’s potential to achieve data diversity and successful control over synthetic polyp
shape and location. Although the results demonstrate the scope of improvement in color-

preservation ability, structural-preservation outcomes are impressive. Further, we compared
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Table 6.2: Performance of the U-Net [66], ColonSegNet [62], and TransNetR[202] models on
the downstream task of polyp segmentation. RI stands for Real Images. The best results
are highlighted in bold and the second best are underlined.

‘ Dataset: CVC-ClinicDB ‘

Training sample count (x = 490) U-Net ColonSegNet TransNetR
Jaccard Recall Precision Fl-score | Jaccard Recall Precision Fl-score | Jaccard Recall Precision Fl-score
RI (x) 0.4682 0.5211  0.8509 0.5523 0.3429 0.3834  0.8256 0.4424 0.6952 0.7431  0.9399 0.7737
RI + Random Rotation (x+x) 0.4748 0.5244  0.8909 0.5568 0.4352 0.4859  0.8161 0.5312 0.7015 0.7450  0.9468 0.7805
RI + Gaussian Blur (x+x) 0.4447 0.4809  0.8705 0.5215 0.3467 0.3779  0.8291 0.4453 0.6960 0.7433  0.9357 0.7762
RI + Vertical Flip (x+x) 0.4589 0.5027  0.9218 0.5354 0.3666 0.3976  0.8412 0.4585 0.6675 0.7094  0.9283 0.7442
RI + Horizontal Flip (x+x) 0.4348 0.5138  0.8447 0.5198 0.4296 0.4696  0.8991 0.5080 0.6991 0.7581  0.9279 0.7823
RI + Elastic Transformation (x+x) 0.4296 0.4696  0.8991 0.5080 0.3867 0.4275  0.8019 0.4874 0.5907 0.6197  0.9439 0.6691
RI + Pix2Pix Synthetic Images (x+x) 0.4493 0.4964  0.7917 0.5474 0.3872 0.4019  0.8343 0.4661 0.7076 0.7406  0.9469 0.7872
RI + ControlPolypNet Synthetic Images (x+x) 0.5356 0.5781  0.9096 0.6232 0.4360 0.4831  0.8211 0.5359 0.7191 0.7731  0.9366 0.7967
RI + Pix2Pix Synthetic Images (x+2x) 0.4323  0.6736 0.4429 0.4196 0.4465  0.7680 0.5065 0.6953 0.7299  0.9570 0.7719
RI + ControlPolypNet Synthetic Images (x+2x) 0.6390  0.8292 0.6365 0.4272 0.4828  0.7782 0.5267 0.7322 0.7837  0.9366 0.8113
RI + Pix2Pix Synthetic Images (x+3x 0.4975  0.8752 0.5570 0.4283 0.4531  0.8683 0.5192 0.6875 0.7174  0.9571 0.7599
RI + ControlPolypNet Synthetic Images (x+3x) 0.5802  0.8660 0.6149 0.4726 0.5432  0.8093 0.5760 0.6900 0.7287  0.9505 0.7628
RI + 5 aug. (x+5x) 0.6252  0.9002 0.6353 0.4928 0.5307  0.8623 0.5855 0.7214 0.7639  0.9426 0.7963
RI + 5 aug. + ControlPolypNet Synthetic Images -
(x+5x42x) 0.6298 0.7132  0.8900 0.7160 0.5928 0.6308 0.9167 0.6874 0.7486 0.7968 0.9365 0.8198
Dataset: Kvasir-SEG
Training sample count (x= 880) U-Net ColonSegNet TransNetR
Jaccard Recall Precision Fl-score | Jaccard Recall Precision Fl-score | Jaccard Recall Precision Fl-score

RI (x) 0.6668 0.7796  0.8420 0.7508 0.5782 0.7148  0.7610 0.6869 0.7454 0.8273  0.9058 0.8267
RI + Random Rotation (x+x) 0.6852 0.7679  0.8702 0.7669 0.6143 0.7280  0.8045 0.7148 0.7469 0.8289  0.9005 0.8298
RI + Gaussian Blur (x+x) 0.6704 0.7736  0.8521 0.7563 0.5677 0.7116  0.7705 0.6793 0.7596 0.8426  0.8956 0.8399
RI + Vertical Flip (x+x) 0.6738 0.7693  0.8614 0.7580 0.6129 0.7504  0.7965 0.7184 0.7749 0.8552  0.8946 0.8501
RI + Horizontal Flip (x+x) 0.6837 0.7984  0.8390 0.7743 0.6039 0.7202  0.8105 0.7115 0.7629 0.8357  0.9120 0.8370
RI + Elastic Transformation (x+x) 0.6667 0.7996  0.8239 0.7538 0.6163 0.7399  0.8088 0.7208 0.7369 0.8265  0.8806 0.8160
RI + Pix2Pix Synthetic Images (x-+x) 0.6550 0.7516  0.8353 0.7357 0.5757 0.6976  0.7920 0.6824 0.7659 0.8482  0.9020 0.8425
RI + ControlPolypNet Synthetic Images (x+x) 0.6795 0.8032  0.8498 0.7688 0.6262 0.7532  0.8098 0.7345 0.7579 0.8497  0.8801 0.8373
RI + Pix2Pix Synthetic Images (x+2x) 0.6127 0.7258  0.8103 0.7060 0.5820 0.7123  0.7783 0.6887 0.7651 0.8539  0.8984 0.8439
RI + ControlPolypNet Synthetic Images (x+2x) | 0.6680 0.8465 0.7971 0.7640 0.6065 0.7508  0.7913 0.7209 0.7797 0.8665  0.9010 0.8523
RI + Pix2Pix Synthetic Images (x+3x) 0.6580 0.7624  0.8440 0.7441 0.6048 0.7353  0.7916 0.7113 0.7747 0.8524  0.9109 0.8497
RI + ControlPolypNet Synthetic Images (x+3x) | 0.6997 0.8331  0.8464 0.7879 0.6326 0.7603  0.8121 0.7379 0.7760 0.8677 0.8938 0.8517
RI + Pix2Pix Synthetic Images (x+4x) 0.6720 0.7665  0.8633 0.7564 0.6021 0.7231  0.7961 0.6986 0.7346 0.8550  0.8441 0.8208
RI + ControlPolypNet Synthetic Images (x+4x) | 0.6750 0.8126  0.8339 0.7651 0.6341 0.7835  0.7967 0.7440 0.7432 0.8139  0.9039 0.8245
RI + 5 aug. (x+5x) 0.7069 0.8131  0.8465 0.7912 0.6958 0.8086  0.8515 0.7907 0.7960 0.8518  0.9366 0.8641

55 “ontr pNet Synthetic Image
il++5x]+§‘§ + ControlPolypNet Synthetic Images | o 7351 g8368  0.8657 0.8153 | 0.7215 0.8191 0.8638  0.8129 | (0.7861 08622 0.9024 0.8584

the outcomes of ControlPolypNet with the synthetic images generated using Pix2Pix [201].
We selected Pix2Pix because it uses a mechanism to translate images from one domain to
another, suitable for our objective to translate N’ — P’. A qualitative comparison is shown
in Fig. 6.4 where the images in Fig. 6.4(b)-(e) clearly show that although Pix2Pix retained
the polyp location and shape, more realistic polyp images with texture were generated by
ControlPolypNet while preserving the shape and location. However, compared to our model,
Pix2Pix was better at retaining the original colors of background regions. Additionally, we
generated a t-SNE plot (shown in Fig. 6.4(a)) using a DenseNet-201 that is trained to
differentiate polyp and non-polyp images [200]. Plotting feature embeddings of real polyp
images and synthetic polyp images generated by Pix2Pix and ControlPolypNet clearly depict
the closeness of our model’s outcomes with real images. Contrarily, generated images of

Pix2Pix barely show any overlap with real data.

Clinical Significance Validation and Downstream Tasks Evaluation

The clinical significance validation step employs a detector, as discussed in Section 6.2.1.
The synthetic images that were detected by YOLOvS8 with confidence scores in the range of

0.7 and 0.8 are used to augment the dataset of the downstream task. This approach of using
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synthetic images to augment medical data provides two-fold benefits: a) It validates the
quality and clinical significance of the generated data, and b) It allows enhancing segmen-
tation outcomes. We carried out experiments with different proportions of synthetic images
and five general augmentations, namely, random rotation, Gaussian blur, elastic transfor-
mations and horizontal and vertical flips. The associated results are shown in Table 6.2.
We used three state-of-the-art polyp segmentation models, U-Net [66], ColonSegNet [62],

and TransNetR [202] to experiment with different data augmentation combinations.
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(a) Impact of different data augmentation ratios. The polyp
segmentation performance achieves a significant increase with
small ratios, and then with increasing ratios, the improve-
ment is either minimal or absent.
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(b) Comparison between the two average JI obtained using
conventional augmentations with and without images gener-
ated by ControlPolypNet.

Figure 6.5: Comparative analysis of average JI obtained after computing mean over all three
segmentation models in different scenarios.
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Figure 6.6: Qualitative results of polyp segmentation outcomes. The figure illustrates that in most
cases when ControlPolypNet’s output is combined with conventional augmentation techniques, it
predicts masks closer to ground truth. Also, the mask obtained using ControlPolypNet’s generated
images performs better than synthetic images obtained using Pix2Pix.

Table 6.3: Quality assessment of generated images using Pix2Pix and ControlPolypNet.
This assessment is conducted using U-Net [66], ColonSegNet [62], and TransNetR[202] mod-
els trained on real images. The best results are highlighted in bold.

Training Generation U-Net ColonSegNet TransNetR
Dataset Method Jaccard Recall Precision Fl-score | Jaccard Recall Precision Fl-score | Jaccard Recall Precision Fl-score
CVC-ClinicDB Pix2Pix 0.2048 0.6943  0.2562 0.3054 0.2323 0.7129  0.2934 0.3414 0.4517 0.6510  0.6219 0.5662
ControlPolypNet | 0.2613 0.7792 0.3088 0.3802 0.2633 0.7353 0.3328 0.3876 0.4761 0.7729 0.5991 0.6149
Kvasit-SEG Pix2Pix 0.5802 0.6994  0.7450 0.6597 0.4778  0.7508  0.5814 0.5814 0.6037 0.6414  0.9109 0.6657
ControlPolypNet | 0.6285  0.8128 0.7394 0.7362 0.4039 0.7973 0.4842 0.5354 0.7580  0.8537 0.8749 0.8454

During augmentation, we increased the ratio of synthetic images as a multiple of x,
where x is the original training set size. It can be observed that adding synthetic images
in x proportion performs comparable to adding a single conventional augmentation. We
gradually increased synthetic images in ix proportion, where i={1,2,3,4}. The results show
that the polyp segmentation performance achieves a significant increase with small ratios,
and then, with increasing ratios, the improvement is either minimal or absent. The same
can be inferred from Fig. 6.5(a). The value of i is incremented until the metrics values
start to decrease. The proportion ix that performs the best is combined further with con-
ventional augmentations. The outcomes from this integration show that synthetic images
complement conventional augmentation techniques as the average performance increased
compared to cases where only conventional augmentations were used. Additionally, we com-
pared ControlPolypNet with Pix2Pix using the same proportion of their generated data for
augmentation. An average Jaccard index over all the different proportions (x, 2x, 3x or 4x)
is 5.61% and 2.3% higher using ControlPolypNet compared to Pix2Pix on CVC-ClinicDB
and Kvasir-SEG, respectively. This increase can be observed in Fig. 6.5(b). Moreover,

the individual performance with different data proportions and models has reported en-
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hanced performance using our augmentation approach. It is noteworthy that even though
the synthetic images are generated using a different larger dataset, they are performing
effectively on a small out-of-distribution dataset. This observation supports both quality
and diverse information possessed by the generated images. Adopting traditional augmen-
tation techniques is limited by the actual size of the dataset as they can only be scaled
up by its multiple. Also, this scaling up produces redundant information in some form.
Contrarily, adding our diverse set of synthetic images can complement this information and
is independent of real dataset size, thus providing enhanced segmentation outcomes. These
results are supported by some qualitative outcomes, shown in Fig. 6.6. It can be observed
that, in most cases, combining conventional techniques with ControlPolypNet’s synthetic
data provides results closer to the ground truth. We further tested the synthetic images
obtained using ControlPolypNet and Pix2Pix using the three segmentation models (trained
using only real data). The results shown in Table 6.3 signify that our proposed approach

generates more realistic images with polyp-specific characteristics.

Although our proposed approach provides an opportunity to obtain customized polyp
images using negative images, some lingering gaps still need to be addressed. Controlling
polyp location, size, and shape enables us to obtain diverse polyp images. However, control
over colors remains unexplored. In medical images, color is one of the criteria considered
for domain shift issues, as color variations across inter-hospital and inter-patient data bring
performance drops in segmentation. Control over colonoscopy image color can expand the

possibility of domain transfer and even enhance segmentation outcomes.

6.3 PathoPolyp-Diff

6.3.1 Methodology

An overview of our approach is illustrated in Fig. 6.7. Our model PathoPolyp-Diff utilizes
dual-stage training. The two stages, Step-I and Step-1I, aim at generating colonoscopy im-
ages with diverse polyp types in different imaging modalities. They perform complementary
tasks, and the difference between the two lies in their training process. The Step-I network
distils knowledge into the Step-II model in the form of a large set of features that enables it
to differentiate between polyp and non-polyp characteristics and further helps to generate
images for cross-class labels. Complementary to it, the training process in Step-II allows

the model to learn pathological details and different imaging modality-related patterns.
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Step-I: The Step-I uses a pre-trained SD v1-4' model and further fine-tunes it with
some text conditions to generate desired colonoscopy images. This stage is focused on
developing a model that learns the basic features to differentiate polyp and non-polyp
characteristics. In the process, text prompts are used as the conditioning mechanism to
control the model output. These text prompts comprise the embeddings pertaining to the
strings presented at the first to third levels in Fig. 6.8, starting from the top. During the
fine-tuning of the model, a relatively large-scale dataset is used with polyp/non-polyp classes
wherein the polyps have an additional annotation of low-quality /artifacts (uninformative)
and good-quality/clear (informative). This process allows the model to generate polyp and
non-polyp images with specific quality criteria.

Step-II: In this stage, the pre-trained model of Step-I is used with the first block
locked. The other blocks are further fine-tuned on our desired text conditioning. These
conditions are shown in the fourth and fifth levels of Fig. 6.8. For a successful implementa-
tion of cross-class label learning, we undersampled the non-polyp set and informative set of
polyps and included them in the training iterations of Step-II. Presenting these undersam-
pled images allows the model to retain the features pertaining to Step-I without undergoing

overfitting with the new dataset.

6.3.2 Results
Dataset Details and Training Settings

We used two publicly available datasets, namely, SUN Database [95, 203] and ISIT-UMR
Colonoscopy Dataset [96], to evaluate the performance of our proposed model. SUN
Database comprises 49,136 polyp frames and 109,554 non-polyp frames, where polyp frames
have additional annotations for informative/uninformative classes (annotated in Chapter 1).
The dataset consists of 31% uninformative polyp frames and is used to train our model in
step-1. ISIT-UMR, Colonoscopy Dataset is an NBI and WLI video dataset and consists of
labels for hyperplastic, adenoma and sessile classes. We used the first two of these classes
to train our model in step-II. The same dataset is used for validation purposes during clas-
sification. We converted 40 adenoma and 21 hyperplastic video streams of each NBI and
WLI modalities into frames. 29 adenoma and 15 hyperplastic videos of both modalities are
used for training PathoPolyp-Diff. During the classification task, 15 videos and 6 videos
(2281 frames of adenoma class, 1618 frames of hyperplastic class) of each pathology and

modality are used in the train set and test set, respectively.

"https://github.com/CompVis/stable-diffusion
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Figure 6.7: Overview of the proposed framework. It consists of two steps and uses various
text conditioning to control the generation process. In Step-II, some undersampled data
from Step-I is used for a smoother learning process. Also, the first block of U-Net is kept
locked in the second step. The performance of the proposed model is validated using a
classification process which uses a combination of real and synthetic images in different
proportions.
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During PathoPolyp-Diff training in Step-I, a pre-trained Stable Diffusion v1-4 model
was loaded which was further fine-tuned on the SUN Database with a learning rate, batch
size and resolution set to 1le-06, 15, and 512, respectively. The best model chosen for
subsequent fine-tuning in Step-II was identified after 8,000 iterations. In step-1I, ISIT-
UMR Colonoscopy Dataset is used for training along with the same learning rate and
one block of U-Net locked. All the implementations are carried out using the PyTorch
framework and experiments are executed on NVIDIA A100 and NVIDIA Titan-Xp GPU
for PathoPolyp-Diff and classification tasks, respectively.

Evaluation Metrics: In this work, we adopted some standard metrics used for clas-
sification. It includes precision, recall, F1-score, and BA. The first three are commonly used

to evaluate any classification model. The last metric, i.e. BA, is generally used when an
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Figure 6.8: Flowchart depicting the different combinations of text prompt and cross-class
labels used to generate images. The solid arrows denote the labels already present in the
dataset, whereas the dashed arrows represent the labels learnt from other classes (cross-class
labels). Each number on a solid/dashed line represents the combination of strings used to
form tokens for text prompts used in training/inference. For instance, following number
‘8’, we obtain the text prompt “colonoscopy image with a hyperplastic polyp, narrow band
imaging, good quality, clear”, where “good quality, clear” are part of indirectly inferred
tokens and other are already present in the training annotations.

imbalance is encountered in data distribution, and the objective focuses on both minority
and majority classes with equal importance during evaluation. This scenario aligns with
our case, where we consider both adenomatous and hyperplastic classes to be equally im-
portant, as the clinical treatments depend on the diagnosed pathology class. The BA can
be defined as an arithmetic mean of specificity (true negative rate) and sensitivity (true
positive rate). In addition, we used Kernel Inception Index (KID) [204] for quality assess-
ment of the generated images. It quantifies the dissimilarity between the generated and real

data distributions.

Model Performance

Step-1: To evaluate the performance of our model in generating polyp and non-polyp
images and to select the best model for the subsequent training process, we used four

assessment metrics, namely, KID, precision, recall, and Fl-score. Initially, we trained the

141



6.3. PATHOPOLYP-DIFF

Table 6.4: Iteration-wise quality assessment of generated images in Step-I. This assessment
is done using KID (similarity with real images), precision, recall, and F1-score (polyp/non-
polyp characterizing features). | and 1 denote ‘lower is best’ and ‘higher is best’, respec-
tively.

Iterations

Prompt Metrics Behavior e 5K IR PiTe TR e K 5K IR 0K
colomoscopy fmage with Precision T 0.8671 0.9085 0.9617 0.0720 0.9850 0.9858 0.9961 0.9859 0.9761 0.9899
bolyp, good-quality, cloar Recall + 0.9567 0.9933 0.8367 0.9267 0.8733 0.9267 0.8467 0.9300 0.9533 0.9800

P ¥ Fl-score + 0.9097 0.9490 0.8948 0.9488 0.9258 0.9553 0.9153 0.9571 0.9646 0.9849

KID ! 0.045 0.059 0055 0.075 0.053 0071 0.048 0.051 0.049  0.064

colonoscopy image KID ! 0.027 0.041 0037 0.034 0067 0051 0051 0045 0.055 0.057
without polyp

Average KID T 0.036 005 0046 00545 006 0061 00495 0048 0.052 0.0605

model for 10,000 iterations and selected the model after every 1,000 iterations for testing.
The corresponding assessment results are given in Table 6.4. As our main focus is to
obtain good-quality polyp images, we generated and validated images with substring “good-
quality, clear”. Additionally, we used a DenseNet-201 [113], pre-trained to detect polyp
frames (proposed in Chapter 3), to validate the polyp-characterizing features existing in
the generated polyp images. Therefore, we tested generated polyp and non-polyp images
using DenseNet-201. It can be observed that the lowest (also the best) average KID of 0.036
is obtained at 1,000 iteration; however, it reported a low Fl-score. Similar outcomes are
achieved with the next lowest KID. Contrarily, the highest Fl-score in 10,000 iteration is
obtained with 0.0605 KID, the second lowest among all iterations.

To study the reasoning behind the contradictory results, we plotted t-SNE embeddings,
shown in Fig. 6.9. It can be observed that in the initial iterations (1,000 to 5000), the polyp
and non-polyp features of synthetic data are not entirely distinct; therefore, the associated
Fl-scores are relatively low. At the same time, they are finely overlapping with their real
counterparts, therefore resulting in lower KID. To establish a trade-off between the KID
and Fl-score, we leveraged the visualization capabilities of t-SNE plots. Finally, the model
at 8000%" iteration is selected as its KID score (in terms of all categories, i.e., polyp, non-
polyp and average) is higher than the average score computed over each corresponding KID
category. For instance, the average KI1D,oy, is calculated as KIDyoyp,, + KIDpoyp,, +
K IDyporyps,, -+ KIDpopyp,,, » Which comes out to be 0.57. It can be noted that KI1Dppp,, <
K1Dypoyp, and a similar observation can be identified in other categories. Moreover, the
t-SNE plots signify that after 8000%" iteration, the synthetic polyp and non-polyp features
start to deviate from the feature space, representing their real counterparts. As one class of
synthetic features is still far apart from the other class of synthetic features, the F1l-score
is higher at the last iterations.

Impact of Negative Prompt: Negative prompt is an additional parameter which
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Figure 6.9: Iteration-wise two-dimensional t-SNE embeddings to visualize the data points pertain-
ing to synthetic and real polyp/non-polyp images.

guides the process of generating synthetic images not to include some specific objects or
characteristics. It can assist in eliminating unwanted elements from the synthetic images.
Hence, to further improve the quality of generated images, we evaluated our model on
various negative prompts, including “low-quality”, “blur” and “low-quality, blur”. This
approach is experimented with both polyp and non-polyp frames, and quality assessment is
performed using the fast Fourier transform (FFT). The results shown in Fig. 6.10 present a
significant improvement when a normal text prompt is combined with our specific quality-
based negative prompt. The best combination is achieved when we club text prompt with

“blur, low-quality”. Therefore, the subsequent experiments include this specific negative
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Figure 6.10: Quality assessment for validating the impact of negative prompt using FFT.

Table 6.5: Class-wise quality assessment of generated images after every 1000 iterations
during Step-II. 1 denotes ‘higher is best’.

. . Iterations
Class Metrics  Behavior —p——r——sp—— 55K 6k 7K 8K 9K 10K
Precision 050 054 057 065 069 0.71 065 059 061 058

T
Adenoma Recall T 0.99 098 0.99 0.99 098 097 098 0.99 0.99 0.99
F1-score T 0.67 0.69 073 0.79 081 0.82 078 0.74 0.76 0.73
Precision T 0.75 090 0.98 097 097 096 095 096 0.98 0.95
T
T

Hyperplastic =~ Recall 0.02 015 026 048 055 0.61 048 033 037 0.29
F1-score 0.04 026 042 064 070 0.74 0.64 049 054 045

prompt to enhance quality, as it helps the model avoid generating blurred or low-quality
images.

Step-II: To assess the quality of images generated in Step-1I, specifically in terms of patho-
logical characteristics, we performed binary classification. This binary classification is done
for two different purposes: (a) To select the best model among different iterations (valida-
tion similar to Step-I) and (b) To verify how the synthetic images impact the classification
performance if used for augmentation. In the first case, we used a pre-trained DenseNet-
201 model intended to classify adenomatous and hyperplastic classes from WLI and NBI
modalities. The synthetic images generated from every 1000"" epoch are evaluated using
this model and the related results are shown in Table 6.5. Similar to Step-I, we plotted
t-SNE feature embeddings in Step-II, to analyze the overlay and proximity of synthetic fea-
tures to real images. As illustrated in Fig. 6.11, in the initial epochs, the pathology-specific
features are not learnt, and hence, a significant overlap is observed among the generated
images from different classes. It can also be inferred from the findings presented in Table
6.5, where DenseNet-201 exhibited significant challenges in effectively distinguishing be-
Oth

tween the two classes until 3000*" iteration. These outcomes are further supported by the

confusion matrices in Fig. 6.12. These matrices demonstrate the biased shift of the model
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Figure 6.11: Tteration-wise two-dimensional t-SNE embeddings to visualize the data points pertain-
ing to synthetic and real adenomatous/hyperplastic images involving NBI/WLI imaging modalities.

Iteration-1K Iteration-2K Iteration-3K lteration-4K Iteration-5K
v un u u u
ELY 2051 [RUNN I EY 5050 JECIN IS -H 2050 [EIN £ o0 3
Yo PIEW] 58 100 3o PLUEY 451 10 So PRIgY 793 1 Lg 000 g 1000
= ) = ) = : = = :
AD HP AD HP AD HP AD HP AD HP
Predicted labels Predicted labels Predicted labels Predicted labels Predicted labels
Iteration-6K Iteration-7K Iteration-8K Iteration-9K Iteration-10K
»n un 0 0 0
EEY 2917 BB Im% o 52 BRI 43 I2°°° EE] 2972 [ IZ""” EEY 2955 [0 IZ""”
$o 1172 pkepds] 1000 § o NLEGINGER F1000 S o pltpaY 979 1000 So WEE{01120 100 $ o ekl 878 1000
= . = = . = . = .
AD HP AD Hp AD Hp AD Hp AD Hp

Predicted labels Predicted labels Predicted labels Predicted labels Predicted labels

Figure 6.12: Confusion matrices to validate the iteration-wise performance of our model in
generating adenomatous/hyperplastic polyp images with NBI/WLI imaging modalities.

towards the adenomatous class, which gradually improves with increasing epochs and, after

some epochs, again shows the same biased performance. This trend is observed due to the
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deviation of synthetic data from the expected pathological behavior as we train the model
after a certain number of iterations. This analysis is based on the last few plots in Fig.
6.11. Considering the results in Table 6.5, Fig. 6.11, and Fig. 6.12, we selected the model
at 6000 iteration which reports the highest Fl-score for both the classes (adenoma: 0.82,

hyperplastic: 0.74).

In the second case (i.e. case (b)), we used the synthetic images to augment the real
data. The effectiveness of using synthetic images is validated using a binary classifier,
EfficientNet-B0 [184]. In addition to validating the synthetic data inclusion, we also com-
pared the quality of synthetic images obtained using two different text prompts. Table 6.6
shows the associated frame-wise results with various data proportions. Starting with real
data samples of 16, 32 and 64 per video, we subsequently increased the sample count by
adding synthetic images in ix proportion, where i = {1,2,3}. This procedure is followed for
‘A’ and ‘B’ text prompts, which can be defined as “colonoscopy image with p__type polyp,
p__mod” and “colonoscopy image with p__type polyp, p__mod, good-quality, clear”, respec-
tively where p__type denote adenomatous/hyperplastic and p__mod denote NBI/WLI. It
is noteworthy that the label “good-quality, clear” used in the text prompt ‘B’ is not directly
related to the training samples provided to PathoPolyp-Diff during Step-1I; instead, they
are learnt from a different dataset through cross-class label learning during Step-I. The
comparative analysis of synthetic images pertaining to the two text prompts aims to assess
the effectiveness of cross-class label learning. As shown in Table 6.6, with 16 real images per
video, adding an equal number of synthetic images improves the frame-wise BA by 1.14% to
4.75% with NBI and WLI. A similar increase of 2.66% to 3.93% is reported when the ratio
of synthetic data is doubled. With a further increase, i.e., when the proportion of synthetic
data is three times, the results are enhanced by up to 7.91%. However, with 32 or 64 real
images per video, the performance increase is relatively less significant and limited to about
3.5%. Therefore, it can be inferred that a relatively significant performance gain is achieved
when a substantially small real dataset is merged with synthetic data. Further increasing
the real dataset shows comparatively less improvement (without a monotonic trend) with

a similar data augmentation approach.

Impact of Cross-class Label Learning: We further performed validation and anal-
ysis for the cross-label learning approach. It can be observed that in most cases, the BA and
class-wise F1-scores using text prompt ‘B’ are comparatively higher than that of text prompt
A. Some notable improvements in BA include 0.6192 to 0.6614 (difference of +4.22%, 95%
CI: 1.5%, 6.91%, p-value = 0.0068) using 64 real samples per video with an equal proportion
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of synthetic data, 0.5561 to 0.6254 (difference of +6.93%, 95% CI: 5.01%, 8.85%, p-value
< 0.0001 ) using 16 real samples per video with two times samples of synthetic data, and
0.6228 to 0.6983 (difference of +7.55%, 95% CI: 2.88%, 12.22%, p-value = 0.0058) using
16 real samples per video with three times samples of synthetic data. These outcomes sig-
nify that the quality of generated data can be improved with variations in the input text
prompts. Moreover, the labels used in these text prompts can be indirectly inferred from

other classes, thus reducing the requirements of annotated data for each scenario.

Table 6.6: Classification results using different proportions of real and synthetic images.
Text prompt Aand Bstand for “colonoscopy image with p__type polyp, p__mod” and
“colonoscopy image with p__type polyp, p__mod, good-quality, clear”, respectively, where
p__type denote adenomatous/hyperplastic and p__mod denote NBI/WLI.

Imaging  Training sample count Text Adenoma Hyperplastic Balanced Accuracy
Modality (Real + Synthetic) Prompt Precision Recall Fl-score Precision Recall Fl-score Y

X - 0.8173£0.026  0.2897+0.035  0.4266+0.037 0.4757£0.009  0.9079+0.020 0.6242+0.007 0.5988+0.012

xx A 0.7876+0.122 0.3194+0.111  0.4360+0.099 0.4689-+0.006 0.8449+0.121 0.6005+0.026 0.5821+0.007

o B 0.8146+0.080 0.3295+0.050  0.4671+£0.056 0.4853+0.023 0.891040.059 0.628140.031 0.6102+0.037

x=16 images . A 0.6596+0.020 0.4131+0.025 0.5077+0.021 0.4580+0.012 0.6991+0.029 0.5533+0.016 0.5561+0.015
per video x+2x B 0.8299+0.042 0.3569+0.032  0.4977+0.027 0.4965+0.007 0.8939+0.040 0.6382+0.012 0.6254+0.011
3x A 0.7359+0.059  0.3529+0.055  0.473040.046 0.4712+0.014 0.8133+0.076 0.595940.028 0.5831+0.022

) B 0.8133+0.113  0.3524+0.047  0.4857+0.027 0.4867+0.010 0.8680+0.097 0.6227+0.033 0.6102:+0.025

X - 0.8099+0.083 0.3320+0.036  0.4690+0.040 0.4840+£0.020 0.8843+0.068 0.6253+0.032 0.6082+0.034

cix A 0.7713£0.078  0.3970£0.073  0.517040.051 0.4909+0.007 0.8192+0.093 0.612440.025 0.6081+0.014

B 0.7634£0.055  0.3980+0.015  0.5222+0.008 0.4917+0.011 0.8221+0.054 0.6151+0.023 0.6101+£0.021

x=32 images L9x A 0.7562+0.029 0.4155+0.024  0.53584-0.022 0.4958+0.012 0.8101+0.033 0.6150+0.017 0.6128+0.017
NBI per video ) B 0.8240+0.066 0.4160+0.041 0.5510+0.035  0.5137+0.018 0.8700+0.064 0.645540.028 0.6430+0.029
. A 0.7797+0.083  0.3841+0.036  0.5115+0.024 0.4905+0.013 0.8371+0.074 0.6180+0.028 0.6106£0.024

hsx B 0.8464+0.090 0.3805+0.043  0.5221+£0.040 0.5060£0.020 0.8948+0.068 0.6460+0.030 0.6377£0.031

X - 0.8889+0.035  0.3698+0.022  0.5216+0.019 0.5124+0.005  0.9338+0.025  0.6615+0.007 0.6516-0.008

xx A 0.7704+0.026 0.412940.032  0.5368+0.027 0.4995+0.011 0.8255+0.033 0.6221+0.014 0.6192+0.014

o B 0.8463+0.062 0.4405+0.021 0.5780+0.011 0.5277+0.010 0.882340.060 0.6601+0.024 0.6614+0.022

x=64 images . A 0.7964+0.031 0.412040.016  0.542640.011 0.50620.007 0.8501+0.034 0.6344+0.014 0.6310£0.013
per video x2x B 0.7818+0.056 0.4033+0.013  0.5314+0.014 0.4988+0.013 0.83814+0.051 0.6252+0.024 0.6207+0.023
4 3x A 0.8348+0.080  0.4086+0.012  0.547740.023 0.513240.021 0.8810+0.069 0.6483+0.035 0.6448+0.036

) B 0.7900+£0.078  0.3922+0.028  0.521840.014 0.4959+0.013 0.8447+0.073 0.6245+0.029 0.6185+0.025

X - 0.7856+0.064 0.5689+0.084  0.6583+0.072 0.4237+0.068 0.6695+0.096 0.5176+0.074 0.6192+0.073

ix A 0.7869+0.057  0.6247£0.058  0.693740.031 0.4373+0.041 0.6268+0.129 0.512640.062 0.6257+0.051

B 0.8563+0.039  0.5296+0.051  0.652140.031 0.4444+0.010  0.8037+0.070 0.571440.015 0.6667+0.013

x=16 images ) A 0.7709+0.037  0.7551+0.049 0.7616+0.028 0.4944+40.054 0.5144+0.111 0.5013+0.073 0.6348+0.048
per video oh2x B 0.8385+0.044  0.5635+0.113  0.6658+0.072 0.4504+0.028 0.7534+0.119 0.5593+0.026 0.6585+0.020
3% A 0.7652+0.017  0.7196+0.052  0.7407+0.028 0.4687+0.029 0.5260+0.066 0.4937+0.035 0.6228+0.023
) B 0.8621+0.053 0.6302+0.156  0.71544-0.099 0.5079+0.079 0.7665+0.130 0.6010+0.040 0.6983+0.039
X - 0.8460£0.033  0.6760+0.089  0.747540.046 0.5188+0.047 0.7291+0.089  0.6018+0.019 0.7026+0.016

xbx A 0.7983+0.030  0.7695:+0.089  0.7801+0.034 0.5493+0.050 0.5751+0.126 0.6723+0.024

o B 0.8328+0.034 0.7009+£0.023  0.7605+0.020 0.5199+0.017 0.695240.080 0.6981+£0.032

x=32 images . A 0.7868+0.024  0.7011£0.093  0.739540.059 0.4920+0.075 0.5957+0.051 0.6484+0.044
WLI per video x2x B 0.8454+0.040 0.5983+0.092  0.6963+0.057 0.4728+0.037 0.75914+0.097 0.5793+0.032 0.6787+0.032
b3 A 0.7960£0.015  0.7799+0.089 0.7857+0.045 0.5628+0.079 0.571440.068 0.5602+0.029 0.6756+0.025

) B 0.8542+0.056  0.5664+0.186  0.6626+0.113 0.4701£0.072  0.767540.157 0.5696+0.020 0.6670+0.023

X - 0.8007+0.053 0.5690+0.149  0.6574+0.120 0.4432+0.084 0.7023+0.095 0.5389+0.073 0.6357+0.075

xx A 0.7657+0.035 0.7225+0.066 0.7408+0.019 0.4634+0.018 0.517140.139 0.4824+0.073 0.6198+0.038

B 0.8445+0.029  0.4436+0.062  0.5792+0.052 0.4096+0.019  0.82294+0.050  0.5463+0.019 0.6333+£0.022

x=64 images o A 0.7767£0.025 0.6606+£0.100  0.710740.060 0.4570+£0.054 0.5928+0.083 0.5112+0.037 0.6267£0.035
per video ok2x B 0.8183+0.062  0.4888+0.120  0.6016+0.086 0.4086+0.027 0.7499+0.143 0.5247+0.042 0.6194+0.036
. A 0.7559+0.011  0.6762+0.023  0.7135+0.012 0.4343+0.013 0.5320+0.038 0.4778+0.020 0.6041+0.013
xh3x B 0.8230+0.043 0.5547+0.075  0.658940.044 0.4362+0.021 0.7361+0.113 0.5451+0.042 0.6454+0.033

Video-wise Analysis with Statistical Significance Test

A comparative study has been conducted on patient-wise results. Although the training
experiments are performed on the frame level, the inference is computed on both the frame
and video levels. A majority voting scheme has been adopted for such computations. For
instance, a video is labelled as the class ‘adenomatous’ if the majority of frames (> mean

number of total video frames) are predicted as adenomatous. These results are provided

147



6.3. PATHOPOLYP-DIFF

RI_16 -
A_16 (x+x)-
B_16 (x+x)-

A_16 (x+2x)- 0,242 0.667

B_16 (x+2x)-

A_16 (x+3x)- 0.260

B_16 (x+3x)- 08 0.4 0.694 0.455 0.308

RI_32-

A_32 (x+x)- 0.252 0.240/ 0.760 [0:161
B_32 (x+x)-
A_32 (x+2x)- 0.461 0.545 [0.161 0.18

B_32 (x+2x)- 0.545 0.359

Images per Video

A_32 (x+3x)-

B_32 (x+3x) -

RI_64 -

A_B4 (x+x)-

B_64 (x+x)-

A_64 (x+2x) - 0.305 0.242 0.182

B_64 (x+2x)-

A_64 (x+3x)-

B_64 (x+3x) -

RI_16 -
RI_32-
RI_64 -

A_16 (x+x)-

B_16 (x+x)-

B_32 (x+x)-

A 32 (x+x)-

B 64 (x+x)-

A 64 (x+x)-

B_32 (x+2x)-

A 16 (x+2x)-

B_16 (x+2x)-
A 16 (x+3x)-
B_16 (x+3x)-
A 32 (x+2x)-
A 32 (x+3x)-
B 32 (x+3x)-
A 64 (x+2x)-
B_64 (x+2x)-
A 64 (x+3x)-
B_64 (x+3x)-

Images per Video

Figure 6.13: p-value obtained using two-tailed t-test for statistical significance analysis of
video-wise (WLI) outcomes. The values are rounded off to 3 decimal places. The label
names used in rows and columns can be read as “Text Prompt_ Sample Count per Video
(Real Image Count + Synthetic Image Count)”.

in the Table 6.7 and Table 6.8. Additionally, a statistical significance test is conducted
using a two-tailed t-test, which signifies the significance of an increase or decrease in video-
wise outcomes and reports if this change is insignificant. This test calculates the p-values
between all possible combinations of the data proportions used in our work. The associated
p-values are depicted in Fig. 6.13 and 6.15. Using the WLI modality, we observed that the

best outcomes are obtained using 32 real images per video, 16 or 32 real images per video
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Training sample count

(Real + Synthetic) Text Prompt Balanced Accuracy

0.6333+0.126

X

i A 0.640.137
B 0.7833+0.046
x=16 images 2x A 0.616740.046
per video B 0.71670.046
A 0.640.109
xh3x B 0.7540.083
x - 0.7833+0.046
x A 0.7167+0.119
B 0.7833+0.047
x=32 images A 0.6333+0.095
per video x+2x B 0.73330.037
A 0.63330.046
x+3x B 0.71670.046
x - 0.6833+0.109
. A 0.640.070
B 0.7167+0.075
x=64 (ilmages < A 0.5667+0.037
per video B 0.6167+0.095
i3 A 0.53330.046
B 0.63330.095

Table 6.7: Video-wise results using WLI modality.

Training sample count

Text P Balanced Accurac,
(Real + Synthetic) ext Prompt alanced Accuracy

0.6667
0.716740.095
0.75+0.059
0.6833%0.037
0.766740.037
0.7833+0.046
0.75
0.733340.070
0.733340.070
0.766740.037
0.8+0.046
0.783340.046
0.7667%0.037
0.783340.046
0.8167+0.037
0.8167+0.037
0.840.046
0.8167+0.037
0.7667+0.037
0.8167+0.037
0.7667+0.037
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Table 6.8: Video-wise results using NBI modality.

combined with synthetic images generated from text prompt ‘B’ (either in equal or in double
proportion). The last two cases align with the second-best results in frame-level evaluation
presented in Table 6.6. Moreover, considering the case with 16 real images per video and an
equal proportion of synthetic samples, video-level analysis reports a significant improvement

of 15% (p-value = 0.037). Similar to frame-level analysis, the video-level validations signify
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B 64 (x+x)

B_16 (x+x) B 32 (x+x)

Figure 6.14: Heatmaps for the video-wise best outcomes obtained for both real and aug-
mented data.

that the performance improvement with synthetic data reduces with increasing real sample

count. Although with 64 real images per video, an increase of 3.34% is observed, this increase
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Figure 6.15: p-value obtained using two-tailed t-test for statistical significance analysis of
video-wise (NBI) outcomes. The values are rounded off to 3 decimal places. The label
names used in rows and columns can be read as “Text Prompt_ Sample Count per Video
(Real Image Count + Synthetic Image Count)”.

is not statistically significant (p-value = 0.587). We further examined the performance

difference between the two text prompts, ‘A’ and ‘B’, to evaluate the video-level cross-class

label learning ability. Our analysis demonstrates that synthetic images generated using text

prompt ‘B’ are superior and statistically significant to those generated using text prompt

‘A’. This observation is supported by some of the notable improvements that include 0.6

to 0.7833 (difference of +18.33%, 95% CI: 3.43%, 33.23%, p-value = 0.022) using 16 real
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Test Image Test Image with Rol
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Figure 6.16: Heatmaps for the best outcomes obtained for both real and augmented data.

samples per video with an equal number of synthetic samples, 0.6 to 0.7167 (difference of
+11.67%, 95% CI: 1.09%, 22.25%, p-value = 0.034) using 64 real samples per video with
an equal number of synthetic samples, and 0.6333 to 0.7167 (difference of +8.34%, 95% CI:
1.63%, 15.05%, p-value = 0.020) using 32 real samples per video combined with three times
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Figure 6.17: Sample generated images depicting (a)-(b) adenomatous polyp in WLI (using text
prompt B) (c)-(d) hyperplastic polyp in WLI (using text prompt B), (e)-(f) adenomatous polyp
in NBI (using text prompt B), (g)-(h) hyperplastic polyp in NBI (using text prompt B), (i)-(j)
adenomatous polyp in WLI (using text prompt A), (k)-(1) hyperplastic polyp in WLI (using text
prompt A), (m)-(n) adenomatous polyp in NBI (using text prompt A), (0)-(p) hyperplastic polyp in
NBI (using text prompt A), and (q)-(r) shows some undesired images generated using text prompt
Bwith NBI.

as many synthetic samples.

Using the NBI modality, the overall performance trend with data proportion is similar.
Also, the comparison between the real data and a combination of real and synthetic data
shows a similar trend as observed using the WLI modality. However, in the NBI modality,
the synthetic data generated using text prompt ‘A’ presented better outcomes than text
prompt ‘B‘ in some cases. Although the best results are obtained using text prompt A, the
average performance over all data proportions is the same for both text prompts. Moreover,
it is noteworthy that the difference is not statistically significant in almost every case. Some
such examples include the improvement from 0.7167 to 0.75 (difference of +3.33%, 95% CI:
-8.2028% to 14.86%, p-value = 0.524) using 16 real images per video and an equal number
of synthetic images, 0.7833 to 0.80 (difference of +1.67%, 95% CI: -5.04%, 8.38%, p-value
= 0.580) using 32 real images per video and twice as many synthetic images, and 0.8167 to
0.7667 (difference of +5%, 95% CI: -0.40%, 10.40%, p-value = 0.067) using 64 real images
per video and twice/thrice as many synthetic images. Despite such change in trend in video-

wise analysis, it can be observed from Table 6.6 that on a frame-wise level, most of the cases
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favored text prompt ‘B’ over text prompt ‘A’ This inconsistent shift can be due to the
fact that control over diffusion models is limited and also depends on the seed value. The
original dataset used in Step-I with annotations based on the quality (good-quality, clear/
low-quality) comprises WLI images, whereas the WLI and NBI images used in Step-II lack
such annotations. It was a relatively simple task for the model to generate a combination
of WLI and good-quality data. On the contrary, the constrained control over the generated
data occasionally resulted in blending WLI characteristics into some NBI images. This
inconsistency emerged from the association between WLI and quality learned during Stage-
I training. Random seed initialization and limited control over diffusion models resulted in
some arbitrary outcomes with text prompt ‘B’ in the case of NBI images. This justification
is supported by the qualitative outcomes (shown in Fig. 6.17 (q)-(t)) discussed in the next

section.

Qualitative Results and Interpretability through Visualization

In addition to the quantitative analysis, we examined the qualitative results and further
studied the related heatmaps for visualization and interpretability. The heatmaps pertaining
to the scenarios involving real images and also those related to the best model (with each
16, 32 or 64 cases) involving synthetic images are shown in Fig. 6.14 and Fig. 6.16.
These heatmaps illustrate the region the classification model focuses on before providing
the final prediction scores. It can be observed that the classifier learns the complex polyp-
specific features better when trained using a more diverse set of polyp images obtained using
PathoPolyp-Diff. However, the classifier’s performance drops in identifying polyp features
when the count of synthetic images increases. This decline in performance could be because
synthetic images might carry noise and can not exactly replicate real image characteristics;
thus, added noise could deviate the model after a certain limit.

Further, we analyzed the generated images for qualitative analysis. It can be observed
that the synthetic images obtained using text prompt ‘B’ are more visually appealing than
those produced with text prompt A. The texture is more prominent and clear in images
shown in Fig. 6.17(a) to Fig. 6.17(h) compared to those presented in Fig. 6.17(i) to
Fig. 6.17(p). Moreover, in both scenarios, qualitatively, the generated images are close to
real images in terms of structure, color and texture. The fundamental color criteria that
differentiate NBI and WLI remain consistently evident in the images, making them eas-
ily distinguishable. However, as already discussed, text prompt ‘B’ with NBI images fails
for some samples, as can be inferred from Fig. 6.17(q) and Fig. 6.17(r). This failure is
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Figure 6.18: Sample images depicting (a)-(b) adenomatous polyps in NBI, and (c¢)-(d) hyperplastic
polyps in NBI using weighted control mechanism. The boxplots (e) to (g) demonstrate the compari-
son between text prompt B with and without a weighted control mechanism when synthetic images
are added in equal proportion or twice or thrice in proportion to the real images, respectively. The
former and latter text prompts are denoted by green and red color, respectively.

attributed to the limited control over the image generation and dependency on seed ini-
tialization. Note that the pathology-focused data used in Step-II has both WLI and NBI
images, but none of the images have annotations based on quality. Still, the model learnt the
relation between quality and WLI easily because of the relation developed earlier in Step-I.
Therefore, in Step-11, our model more precisely established the relation between WLI, qual-
ity, and pathology. Due to the development of this direct relationship, the model sometimes
recollects WLI characteristics when it assigns more weightage to the tokens “good-quality,
clear” in the given text prompt “colonoscopy image with adenomatous polyp, narrow band
imaging, good-quality, clear” or “colonoscopy image with hyperplastic polyp, narrow band
imaging, good-quality, clear”. Consequently, some samples present a combination of WLI

and NBI images or complete WLI images.

To overcome this issue, we assigned more weight to the tokens representing
“colonoscopy image with p__type polyp, narrow band imaging” where p__type can be hyper-
plastic/adenomatous. This modification resulted in better qualitative outcomes, as depicted
in Fig. 6.18(a) to Fig. 6.18(d). However, the related quantitative outcomes are reduced
in most of the cases covered by Fig. 6.18(e) to Fig. 6.18(g). One possible reason for such

a decline in results could be due to a lack of pathology-specific features when images are
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generated using a weighted approach. Such outcomes signify that slight modifications in

the text prompt could impact synthetic images’ characteristics and visual properties.

6.4 Chapter Summary

In this chapter, we propose two different diffusion based techniques to generate synthetic im-
ages. In the first technique, we proposed a stable diffusion based framework, ControlPolyp-
Net, to generate polyp frames utilizing non-polyp frames. We showed that the polyp gener-
ation process can be customized, and different controls can be used to get more fine-grained
data. The generated frames also capture pathological features with visually impressive
results and help enhance the downstream tasks of polyp segmentation. A detector is intro-
duced to ensure the retention of pathological features in our proposed framework. Using
our approach, an average increase of 6.84% and 1.3% (JI) over three models is achieved on
CVC-ClinicDB and Kvasir-SEG, respectively.

In the second technique, we developed a novel diffusion based model, PathoPolyp-Diff,
which generates a realistic-looking diverse set of polyp images in a two-stage process. This
set of polyps covers multiple categories, including pathology (adenomatous/hyperplastic),
imaging modality (NBI/WLI), and quality (informative/uninformative). We validated the
pathological content of the synthetic images by using the generated images to augment the
real images of a public dataset. This augmented dataset is then used for the downstream
task of binary classification on adenomatous/hyperplastic polyps. We compared our aug-
mentation approach with the baseline (only real data) using different proportions of the
dataset. The best result reported an increase of 7.91% (0.698340.039 vs. 0.6192+0.073).
With a similar comparison approach (using different data proportions), we also examined
the synthetic images generated using different variations of text prompts. It is observed that
the text prompts formulated using the cross-class label concept outperformed those without
such labels in most of the cases (for both NBI and WLI). In addition to frame-level analysis,
we conducted video-level investigations. The associated quantitative results are supported
by a statistical significance test (two-tailed t-test) and heatmaps. At video-level analysis, a
statistically significant difference can be observed in favor of the cross-class label concept.
Although the text prompts without cross-class labels achieved the best outcomes for NBI
cases, the overall performance of both text prompts was similar, and the difference was
not statistically significant. In addition, we explored the concept of weighted text prompts

and presented both qualitative outcomes and quantitative analysis through box plots. We
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also provide a roadmap for the research community to build upon our work, extending the

synthetic polyp dataset and experimenting with text prompts to enhance overall outcomes.
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Conclusions and Future Directions

This thesis explores avenues to address several challenges that may arise during the
deployment of CAD systems in clinical settings. For this purpose, our research examines var-
ious phases involved in an automated system. We investigate the quality of the colonoscopy
video frames and demonstrate their effect on clinical outcomes. In this context, we proposed
solutions for extracting good-quality and clinically informative data for accurate diagnosis
and effective treatment. Besides the quality assessment, this thesis addresses the critical
issue of limited data availability by releasing a multi-class GI dataset. Moreover, we pro-
posed techniques to generate synthetic data to mitigate the challenges associated with data
scarcity and ethical aspects of the medical domain. Furthermore, a case study is incorpo-
rated to provide new insights into the current AI methodologies in the domain. It also takes

into account the important aspects of transparency and interpretability.

7.1 Conclusions

This section concludes the thesis with a summary of the objectives achieved.

In Chapter 3, we proposed a multi-stage keyframe extraction framework and a novel
polyp localization model, YcOLOn. Our framework reduces the burden of processing
colonoscopy videos by eliminating redundant and uninformative frames. Besides reducing
the processing time and effort, it enhances the polyp detection and localization performance.
This framework is integrated with a GUI application that can help extract frames using a
wide range of clickable options. In addition to the technical contributions, our work facil-

itates the research community with additional annotations of 49,136 polyp frames. These
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annotations classify these polyp frames into informative/uninformative classes and are ac-

cessible on request.

In Chapter 4, we proposed two solutions to deal with artifacts. Omne solution en-
tirely translates an uninformative frame to an informative frame and the other solution
performs segmentation of specular highlights. The translation process is performed using
CycleGAN, a GAN-based architecture. Our approach successfully removed artifacts like
ghost colors, fecal depositions and low illuminations. This translation is followed by a
validation procedure which uses the YOLOv5 detector to localize polyps before and after
translation. Experimental results show that more polyps were captured when translated
frames were used. Hence, it could be inferred that our methodology enhanced the obscured

polyp-specific features.

Similarly, in the second solution, a DWT-based encoder-decoder network is proposed
to perform the segmentation of specular highlights. This particular artifact is handled
using a separate framework as these highlights can even arise in visually clear and good-
quality images. To extract clinical information from such images, we proposed a method
to segment out specular highlights from them. Also, we modified one of the sub-bands in
DWT to enhance our model’s performance in overexposed regions. It is noteworthy that
we used only the blue channel of the image as a specular component is easier to observe
in this channel. Our approach performed superior to the state-of-the-art models even in

overexposed regions.

In Chapter 5, we provide a detailed summary and analysis of various techniques pro-
posed by a total of 34 teams from two competitions. This study discussed two tasks (polyp
segmentation, and algorithm efficiency) and three tasks (polyp segmentation, instrument
segmentation, and transparency) of competitions from 2020 and 20221, respectively. These
tasks are aimed at developing state-of-the-art algorithms including performance evaluation,

resource utilization (efficiency) and transparency.

Further, considering the important aspects of the above competition platforms (such as
fair comparison at the algorithm level in terms of standard metrics and interpretability), we
focused on developing a multi-class dataset that can be utilized by the research community.
Such a dataset would help conduct fair comparisons and reproducibility for different lesion
types. Our dataset consists of 8000 GI images with 27 classes. These classes include
normal, anatomical and pathological findings. We also provide experimental results using

our dataset on baseline deep learning models.

In Chapter 6, we proposed two approaches with different control mechanisms to
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generate synthetic colonoscopy images. The first approach used an image-based input con-
trol map whereas the second method used a text-based control. The image-based input
control map is obtained by overlapping the non-polyp images with a custom user-defined
mask. Leveraging the non-polyp images which are relatively easy to access, we developed
a diffusion-based method to convert non-polyp images into polyp images. Consequently,
we obtained polyp frames along with ground truth (which were user-defined) without addi-
tional manual labeling effort. We further used the generated images to expand the training
data for polyp segmentation. We observed that the segmentation performance improved by
incorporating synthetic data with real data.

In the second approach, we proposed a diffusion-based method to generate a diverse set
of polyp data that involves different pathology types (adenomatous/hyperplastic), and imag-
ing techniques (NBI/WLI) and possesses good-quality. Our method used a text-controlled
mechanism which takes a text prompt as input and outputs the desired image, matching the
description provided in the text prompt. Further, we proposed a concept of cross-class label
learning which allows the model to learn patterns from other classes. The generated images
are combined with real images in different proportions and are used to perform polyp clas-
sification (adenomatous/hyperplastic). We observed that synthetic images obtained using a
text-controlled mechanism along with cross-label learning enhanced the polyp classification

performance.

7.2 Limitations of the Proposed Work

The proposed work achieves enhanced performance on the respective tasks and can con-
tribute to different phases of the CAD system for clinical use. However, there are some

limitations of the proposed work, which are discussed below.

Multiple stages and requirements of human involvement: The proposed work in
Chapter 3 uses a multi-stage framework which creates opportunities for a single-stage
system with similar or enhanced automation in dealing with uninformative frames.
Our method requires some manual tuning based on the extent of low-quality or good-
quality content in the input data. Although such manual management provides flexi-

bility but at the same time increases overhead.

Persistence of some artifacts: The translation technique proposed work in Chapter 4
tackles various artifacts as desired, however, there are still some artifacts for which the

method fails. These artifacts include motion blur and interlacing. This motivates the
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research community to apply some blur removal algorithms or to develop a standalone

system to deal with all artifacts using a single model.

Segmentation ground truth and sample count: The dataset proposed in Chapter 5
provides labels for multiple classes, however, it lacks annotations for segmentation.
Also, there are a few classes for which the sample count is low as these anomalies are

rare-to-find and difficult to capture during endoscopy.

Improper color retention in generated images: The synthetic data generation tech-
nique in Chapter 6 converts non-polyp images to polyp images and allows controlling
the polyp location, size and shape. Additionally, the endoluminal scene structure of
non-polyp frames remains intact. However, during the conversion process, the color
is not retained in the generated images. Color could be an important attribute con-

sidered for domain shift problems.

7.3 Future Work Directions

While the dissertation has made significant progress in the endoscopy domain, several un-
resolved issues persist. Many of these are worth pursuing as future work and are discussed

below.

Standalone system with fewer human interventions: For full automation and fewer
human interventions for the process of keyframe selection, there is a need for a stan-
dalone system that considers all video attributes, and at the same time adapts to
the input data. This adaptation would eliminate the need for any tuning of settings
during inference. Also, the system can focus on improving generalizability capabilities

for clinical use.

One system for several types of artifacts: As an endoscopy video is susceptible to
many quality degrading factors, various artifacts may appear in the recordings. These
artifacts have varied characteristics and handling them with a single model is difficult
but an interesting problem. Such systems would be helpful in data pre-processing and

indirectly could save manual effort.

Inpainting of specular highlights: The thesis provides a methodology to perform spec-
ularity segmentation but the process of inpainting to reconstruct the missing regions

has not been discussed. This opens the possibility to develop an inpainting method.
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Also, these two steps of specularity segmentation and inpainting can be combined in
a single model or could be handled in a different manner, such as by using adversarial

networks.

Unmapped or unlabeled data learning and color transfer: The existing works in
synthetic image generation in endoscopy domain rely on a training dataset that con-
tains input data mapped with its ground truth. However, obtaining such a fully
mapped dataset or a labeled dataset could be very costly. Therefore, some methods
could be proposed to generate synthetic data without such requirements. Also, the
limitation of our work in Chapter 6 in retaining colors provides an opportunity to

explore and develop some control mechanisms for colors in this domain.
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