Design, Modeling and Optimization of
Large-Scale Disaggregated Memory
Systems

Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY

By
AMIT PURI

Under the Supervision of
Dr. JOHN JOSE

&
Prof. TAMARAPALLI VENKATESH

ST Ty,
K >,

£ %
& o
E Q:
3\ i
¢

%
“e of Tech\'\o\og

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

August, 2024

Declaration

This is to certify that the thesis entitled “Design, Modeling and Optimization of
Large-Scale Disaggregated Memory Systems”, submitted by me to the Indian
Institute of Technology Guwahati, for the award of the degree of Doctor of Philosophy,
is a bonafide work carried out by me under the supervision of Dr. John Jose and Prof.
Tamarapalli Venkatesh. The content of this thesis, in full or in parts, have not been
submitted to any other University or Institute for the award of any degree or diploma.
I also wish to state that to the best of my knowledge and understanding nothing in this
report amounts to plagiarism.

Signed:

Amit Puri

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati,
Guwahati-781039, Assam, India.

Date:

Certificate

This is to certify that the thesis entitled “Design, Modeling and Optimization of
Large-Scale Disaggregated Memory Systems”, submitted by Amit Puri (186101102),
a Ph.D student in the Department of Computer Science and Engineering, Indian Insti-
tute of Technology Guwahati, for the award of the degree of Doctor of Philosophy, is a
record of an original research work carried out by him under my supervision and guid-
ance. The thesis has fulfilled all requirements as per the regulations of the institute and,
in my opinion, has reached the standard needed for submission. The results embodied
in this thesis have not been submitted to any other University or Institute for the award
of any degree or diploma.

Signed:

Supervisor: Dr. John Jose

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati,
Guwahati-781039, Assam, India.

Signed:

Supervisor: Prof. Tamarapalli Venkatesh
Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati,
Guwahati-781039, Assam, India.

Date:

Acknowledgements

It has been a long journey at II'T Guwahati during my PhD. This Thesis would not
have been completed without the support of many well-wishers. The following is a
small attempt to acknowledge their support. First, I would like to express my deepest
gratitude to my Ph.D. supervisors, Dr. John Jose and Prof. Tamarapalli Venkatesh, for
their valuable guidance and advice and for giving me the opportunity to work with them.
Their constant support and guidance paved the way for my development as a researcher
and a professional with genuine skills. I am continually amazed at their clarity of thought
and ability to get a fundamental idea behind a given problem. I benefited immensely
from their unique advising style, which combines the correct balance between allowing
students to perform independent research versus guiding them to ensure they pick the

right topics of interest. It has been an honor to work with them.

Besides my supervisors, I would like to thank other members of my doctoral committee,
Prof. Jatindra Kumar Deka, Dr. Moumita Patra, and Dr. Salil Kashyap, for their
insightful comments and encouragement. Their comments and suggestions helped me to
widen my research from various perspectives. I want to express my heartful gratitude
to the director, the deans, and other management of IIT Guwahati, whose collective
efforts have made this institute a place for world-class studies and education. I am also
thankful to all faculty and staff of the Department of Computer Science and Engineering
for extending their cooperation in terms of technical and official support to complete my
research work successfully. I am incredibly thankful to Prof. Vijaykrishnan Narayanan
from Pennsylvania State University, USA, for his guidance and valuable and timely
input on many of my thesis-related contributions. His expertise in the topic has been
invaluable to me. I am thankful to the anonymous reviewers of my papers for their

critical reviews and for providing genuine suggestions and feedback.

No journey is complete without a group of friends, and thanking them is just not enough.
They are the support structure away from home. I am grateful to Abir Banerjee, Su-
varthi, Soumyadeep, Rohit, Neelmadhav, and Ajanta, who stood by me through my
difficult times. I would also like to wholeheartedly thank my lab mates from Multi-Core
ARchitecture and Systems (MARS) lab, with a special mention to Manju R, Dipika
Deb, Siva Kumar, Abhijit Das, Syam Sankar, Rajeshwari, Vivekananda, Ilina Sinha,
and Debarshi. Last, I thank my batch mates from the CSE and ECE departments, Sujit
Kumar, Karnish, Vanshali Sharma, and Yogesh, who were always available for me. I am
very thankful to the family of Dr. John Jose, who always treated the lab members like

a family friend and made us feel at home.

Most importantly, none of this would have been possible without the love and patience
of my family. I am grateful to my parents, especially my mother, for their unconditional
love, patience, and the sacrifices they have made for me. I will forever stay indebted to
them. I am also very grateful to my sister and brother-in-law for their support and for
taking great care of my parents in my absence, making it possible for me to focus on
work. Finally, my sweet nephew Arnav, who is the center of attraction of our family,
always cheered me up, even during my hard days. I dedicate this thesis to all of my

family members.

Sincerely

Amit Puri

Abstract

Modern server workloads continue to increase in their main memory requirements. How-
ever, the traditional server system fails to scale up with the memory requirements of these
workloads due to the memory capacity wall. The memory allocation in server systems is
based on peak requirements, which has led to the under-utilization of onboard memory
resources. Further, the hardware refresh cycles in data centers are compromised due
to rigid and coupled hardware resources in traditional server systems. Disaggregated
Memory Systems (DMS) have emerged as a strong alternative to monolithic servers,
where memory can be attached as remote memory nodes/pools and is connected to
compute nodes over high-speed memory-centric coherent interconnect. Memory alloca-
tion in DMS is more flexible as it allows on-demand memory allocation from the shared
memory pools. It also eliminates scalability and under-utilization issues while allowing
decoupled up-gradation of server memory resources, reducing the total cost of owner-
ship. However, DMS introduces new design and architectural challenges for properly
utilizing the multi-tiered memory system. Memory disaggregation also increases the
Average Memory Access Time (AMAT) due to a network interconnect between compute
nodes and remote memory pools. These delays can significantly impact the application
performance, which may further degrade in expected large-scale configurations of DMS.
Lastly, there is no architectural simulator for the performance evaluation of DMS.

This thesis addresses the new design challenges and focuses on reducing AMAT in
DMS by implementing various system-level or architectural optimizations. The DMS is
expected to be deployed inside data center racks in large-scale configurations. This led
to the first contribution of this thesis towards building an architectural simulator for
the performance evaluation of a scalable DMS. The proposed simulator models a fully
configurable DMS with all the required components. Next, we explore the possibility of
a hot-page migration system on a large-scale DMS, widely used in multi-tiered memory
systems, to bring frequently accessed pages into fast memory. We studied Epoch-based
and on-the-fly page migration techniques and proposed hardware mechanisms to accel-
erate the data movement between slow and fast memory, effectively reducing the AMAT
and improving application performance. In large-scale configurations, multiple compute
nodes access remote memory pools simultaneously, introducing the possibility of mem-
ory bandwidth contention. Due to uninformed memory allocation, the memory access
traffic can become skewed towards a particular memory pool at every interval. This
motivates the need for smart remote memory allocation techniques such that memory
traffic is load-balanced among different pools. Finally, we study the implications of net-
work resource allocation in providing Quality of Service (QoS) to different applications
running at compute nodes. We first measure the impact of scheduling remote memory
requests of different compute nodes on the application performance. We perform the
experiment analysis with various data-centric and HPC workloads on our proposed sim-
ulator. The results show that the proposed mechanisms can significantly improve the
application performance for large-scale DMS.

Contents

Contents iii
List of Figures vii
List of Tables xi
List of Abbreviations xiii
1 Introduction 1
1.1 Traditional Server System Design 1
1.2 Disaggregated Memory Systems 4
1.2.1 Performance Improvement with Disaggregated Memory System . . 7
1.3 Challenges in Disaggregated Memory System 8
1.3.1 System Design 8
1.3.2 High Average Memory Access Time 9
1.3.3 Remote Memory Management and Control 9
1.3.4 Architectural Simulation L. 10
1.4 Thesis Contribution 10
1.4.1 DRackSim: Simulating CXL-enabled Large-Scale Disaggregated
Memory Systems 10
1.4.2 A Practical approach for workload-aware data movement in Dis-
aggregated Memory Systems 11
1.4.3 CosMoS: Architectural Support for Cost-Effective Data Movement
in a Scalable Disaggregated Memory Systems 11
1.4.4 Design and Analysis of Memory Allocation Policies for Disaggre-
gated Memory Systemo oo 12
1.4.5 QoS Management in Large-Scale Disaggregated Memory Systems . 12
1.5 Thesis Organization 13
2 Background and Literature Survey 15

2.1 Existing Solutions for Memory Scalability 16

iii

2.1.1 Scaling Memory Locally 16

2.1.2 Scaling Memory Remotely 16
2.2 Imterconnects 18
2.3 Disaggregated Memory Systemso 19
2.4 Reducing Memory Delays with Page Migration 23
2.4.1 Page Migration Overheads and Parameters 26
2.4.2 Different mechanisms for Hot Page Migration 27
2.5 Fairness and QoS in Large-Scale Systems 28
2.6 Performance Evaluation of Large-Scale DMS 28
2.6.1 Simulation Tools and Techniques 28
2.6.2 Binary Instrumentation with Intel PIN. 29
2.7 Summaryo 30

DRackSim: Simulating CXL-enabled Large-Scale Disaggregated Mem-

ory Systems 33
3.1 Introduction e 33
3.2 Motivation L 35
3.3 Baseline Hardware Disaggregated Memory Systems 36
3.3.1 Remote Memory Organization 37
3.4 DRackSim Design and Operations 38
3.4.1 Trace-Based Model 39
3.4.2 Cycle-Level Simulation Model 40
3.4.3 Back-end Modeling Lo 42
3.5 Validation 46
3.6 Evaluation. e 49
3.6.1 Design Space Exploration, . 50
3.6.2 Multi-Node Disaggregated Memory Systems 55
3.6.3 Sensitivity to Local Memory Footprint 57
3.6.4 Network Latency and Bandwidth Test 58
3.6.5 Simulator Performance oL 59
3.7 Summary ... e e 59

A Practical Approach For Workload-Aware Data Movement in Disag-

gregated Memory Systems 61
4.1 Introduction 62
4.2 System Design 64
4.2.1 Hot Page Tracking oL 65
4.2.2 Performing Migration and Using Page Buffers 66

4.2.3 Access Controller 66

4.2.4 Pending Block Accesses 67

4.3 Remote Memory Access Data Path 68
4.4 Hardware Overheads 69
4.5 Characterizing Workloads with Training 69
4.6 Experimental Analysis L 71

4.6.1 Results 71

4.6.2 Sensitivity Analysiso o oo 74
4.7 SUMMATY . . . v o e e e e e e e 76

CosMoS: Architectural Support for Cost-Effective Data Movement in

a Scalable Disaggregated Memory Systems 79
5.1 Introduction 80
5.2 Background and Motivation L oo 81
5.2.1 Workload Characterization 82
5.2.2 Analysis and Limitations 84
5.3 CosMoS Architecture 85
5.3.1 Design Modules 86
5.3.2 CosMoS Complete Design 89
5.4 Experiment Analysis oo 91
54.1 Results e 92
5.5 Summary e e 98

Design and Analysis of Memory Allocation Policies for Disaggregated

Memory System 101
6.1 Introduction 101
6.2 Memory Allocation Policies 102
6.2.1 Conventional Allocation Policy 103
6.2.2 Smart-idle Selection L Lo 104
6.2.3 Uniform Load Partitioning 106
6.3 Experimentation Methodology and Results 107
6.3.1 Impact on Memory Latency 108
6.3.2 Impact on Tail Latency 110
6.3.3 Overall Latency Breakdown 111
6.3.4 Performance Slowdown 111
6.3.5 Impact on HPC workloads 112
6.3.6 Complexity Analysis and Performance Impact 113

6.4 Summary e e 114

7 Understanding the Performance Impact of Queue-Based Resource Al-

location in Scalable Disaggregated Memory Systems

7.1 Introduction .

7.2 Background and Motivation oo oo

7.3 Design

7.3.1 Weighted Round-Robin Scheduling
7.3.2 Round-Robin Scheduling
7.3.3 Priority Scheduling
7.3.4 Priority-based Weighted Scheduling
7.4 Methodology and Results

7.5 Summary . .

8 Conclusion and Future Work

8.1 Summary . .
8.2 Future Work

Bibliography

List of Publications

115
116
116
118
118
119
119
120
121
125

127
127
129

131

143

List of Figures

1.1
1.2
1.3
14

1.5
1.6

2.1

3.1
3.2

3.3
3.4

3.5

3.6
3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14
3.15

Comparison of Parameter Count in AI models and Memory Capacity

Growth in Accelerators over the years [1].
Recent trends in performance improvement of Compute (CPU/GPU/Ac-

celerators) and Memory over time [2] L
Stranded memory resources due to fragmentation in traditional servers . .
(a) Traditional Server Design (b) Disaggregated Memory System Design .
Improved resource utilization with Disaggregation

Performance Difference Local vs RDMA vs DMS
Binary Instrumentation through PIN

Overview of DMS and its Interface with Host Compute Nodes
Remote Memory Exposure to Compute Nodes (a) Shared Organization
(b) Distributed Organization
Address Translation at Remote Memory Controller
DRackSim infrastructure overview; "LM" Local memory, "MMU" Memory
management unit, "IF" Interface
Trace Generation (a) Recording Main-memory access (b) Final Multi-
Threaded Trace o
Out-of-Order Core Modeling Subsystem
(a) Interconnect Simulation Model detail (b) Packet Structure for Remote
Memory ACCESS . . . v v v v i e e
Validation on Splash-3 benchmarks (a) Normalized IPC (b) Normalized
LLC Misses (¢) DRackSim vs DirectCXL
Last Level Cache Misses normalized against Gem) over different cache
configurations L
Impact on system performance (top) and memory cost (bottom) on all
the workloads over all four configurations
Impact on system performance for all workloads on changing the network
latency and bandwidth parameters
Impact on system performance for all the workloads on increasing the
number of memory pools with a single compute pool (Top) or by increas-
ing the number of compute nodes with a single memory pool (Bottom) . .
Impact on system performance with different compute-to-memory node
configurations and workload combinations over 4 Compute Nodes (Top)
and 16 Compute Nodes (Bottom)
Impact on system performance on changing the local memory footprint
IPC (Top) and Average memory access delay (Bottom) for STREAM
benchmark on changing the network bandwidth and latency

vii

o6

3.16 Simulator Performance Compared to Gem5

3.17 Increase in simulation time DRackSim for large-scale simulations for one
million instructions per node (Normalized against the performance of a
singlenode)

4.1 Baseline Hardware Disaggregated Memory System
4.2 Centralized Page Migration Support with Workload-Aware Efficient Data
Movement, 'R’ represents a Request Selector
4.3 (a) Hot Page Tracking Table structure (b) Page Buffer structure
4.4 Access Controller to control Multi-granularity Access
4.5 Flowchart representing the data path for remote memory access
4.6 Performance Slowdown for all the workloads with different data movement
policies L
4.7 Increase in memory access cost for all the workloads with different data
movement policies L
4.8 Percentage of memory access at local memory due to migration of pages .
4.9 Performance slowdown on changing the local memory footprint
4.10 Performance slowdown on using multiple memory pools over different
network configurations Lo
4.11 Performance Slowdown with Multiple Compute and Memory Nodes over
different network configurations

5.1 Memory Controller at Compute and Memory Node
5.2 %age of pages with different access frequency for different workloads . . .
5.3 Rolling Average Access Frequency plot for majority of Pages in different
Workloads (same colors as depicted in Fig. 5.2), X-axis represents nth
access to a Page, Y-Axis represents the number of CPU Cycles
5.4 Access order within the pages in different workloads (using page offset),
X-axis represents nth access to a Page, Y-Axis represents the percentage
of the occurrence of the majority offset
5.5 Design Components in CosMoS
5.6 (a) Complete Design of Memory Controllers in CosMoS, 'P’: Page Re-
quest, 'B’: Block Request | (b),(c) Possible Placement of Scheduling Page
Queues (PQ) and Bandwidth Partition Controller (BP) — (b) at the Mem-
ory Node (Mnode, MN) (c) at the Compute Node (Cnode, CN)
5.7 Flowchart representing the data path for remote memory access
5.8 Performance Speed-Up with CosMos vs Daemon vs TPP, Normalized to
Baselineo
5.9 Improvement in Memory Latency for CosMos vs Daemon vs TPP, Nor-
malized to Baseline oL oo

94

5.10 Local Hit-Ratio with CosMos vs Daemon vs TPP, Normalized to Baseline 94

5.11 CosMoS vs Daemon vs TPP in Large-Scale Configurations
5.12 Performance Impact of Page Scheduling and Bandwidth Partitioning . . .
5.13 Impact of changing Bandwidth Parameters
5.14 Impact of changing Latency Parameters
5.15 Impact of Changing Remote Memory Footprint

6.1 Contention at remote memory node-1 due to an imbalance in the number
of memory accesses across memory nodes

95
97
97

6.2

6.3

6.4

6.5
6.6
6.7

6.8

6.9

7.1
7.2

7.3
7.4
7.5

7.6

7.7

7.8

8.1

Random selection with alternate local-remote page allocation (a) Average
memory access latency (b) Remote memory access latency (c) memory
access latency distribution (d) Access variation in memory nodes
Average memory access latency with Local-First allocation over workload
WL-Miz! (a) Round-Robin selection (b) Smart-Idle selection (c¢) Uniform
load partition (d) Average remote memory latency
Average memory access latency with Alternate Local-Remote allocation
over workload WL-Mix1 (a) Round-Robin selection (b) Smart-Idle pool
selection (c¢) Uniform load partition (d) Average remote memory latency .
Distribution of remote memory accesses based on access latency
Local/Remote/Network Latency breakdown
Execution times normalized against entirely local memory (as 1) vs. DMS
with two different scenarios (256MB and 512MB of local memory at each
compute node)
Average memory latency for HPC workloads and mini-apps with different
proportions of local and remote memory using alternate local-remote and
uniform-load partition o
Normalized execution time for HPC workloads and mini-apps with differ-
ent proportions of local and remote memory using alternate local-remote
and uniform-load partition L

Overview of Global Memory Controller
Increase in Memory latency on changing the nodes sharing same memory
node e
Drop in IPC on changing the nodes sharing the same memory node
Multiple queues at Global Memory Controller
Normalized memory latency for Mix-4A with 60% of workloads footprint
at remote to a system with entirely local memory (a) 1-shared memory
node (b) 2-shared memory nodes
Normalized IPC on workload Mix-4A with 60% of workloads footprint at
remote to a system with entirely local memory (a) 1-shared memory node
(b) 2-shared memory nodes L
Workload Mix-4B using 2-shared memory node with 60% of workloads
footprint at remote to a system with entirely local memory (a) Normalized
memory latency (b) Normalized IPC
Workload Mix-8 using 4-shared memory node with 50% of workloads foot-
print at remote to a system with entirely local memory (a) Normalized
memory latency (b) Normalized IPC

Thesis Summary

List of Tables

3.1 Validation Parameters 47
3.2 Benchmarks 49
3.3 Simulation Parameters e 50
4.1 Simulation Parameters 71
4.2 Benchmarks e 71
5.1 Benchmarks e 92
5.2 Simulation Parameters 92
6.1 Benchmarks 107
6.2 Simulation Parameters e 107
7.1 Simulation Parameters Lo 121
7.2 Benchmarks 121
7.3 Workload Mixes o 121

X1

List of Abbreviations

TCO Total Cost of Ownership
HPC High-Performance Computing
DSM Distributed Shared Memory
RDMA Remote Direct Memory Access
DMS Disaggregated Memory System
LLC Last-Level cache

AMAT Average Memory Access Time
QoS Quality-of-Service

HBM High-Bandwidth Memory

SCI Scalable Coherent Interconnect
NTB Non-Transparent Bridge
RoCE RDMA over Convereged Ethernet
NIC Network Interface Card

0ocCl1 On-Chip Interconnect

VMM Virtual Memory Manager
DMC Disaggregated Memory Controller
PEBS Precise Event-Based Sampling
MMU Memory Management Unit
ARF Architecture Register File
RAT Register Alias Table

ROB Re-Order Buffer

AGU Address Generation Unit
MSHR Miss-Status Handling Register
PTE Page-Table Entry

TLB Translation Look-aside Buffer
IPI Inter-Processor Interuppt
MPKI Miss Per Kilo Instructions
FIFO First-In-First-Out

PEBS Precise Event-Based Sampling

xiii

Chapter 1

Introduction

IN this era of computing, a large amount of data is generated endlessly from billions
of Internet users through social media, e-commerce websites, mobile devices, and so
on. This data is processed at large computing facilities such as data centers to produce
meaningful information. These data centers have sizes bigger than a football stadium and
host lots amount of computing infrastructure such as server systems where the number
of servers can go as high as 1 million at a single facility. The computer servers are
managed inside racks housing multiple servers depending on their size. Over the past
few years, the demand for such computing infrastructure has continuously increased,
and more such hyper-scale facilities are being constructed worldwide. Considering the
importance of data centers that involve substantial economic costs, it is observed that
there lies a good scope for improvement and opportunity to perform research in this
area. The architecture of futuristic data centers will decide whether or not the rising
demand for hardware infrastructure will be met smoothly. Plenty of architectural and
system-level design concerns exist in the current generation of data center hardware.
So, these hardware designs require an upgrade with more efficient designs to reduce the
total cost of ownership (TCO).

1.1 Traditional Server System Design

The traditional servers in the data centers have a fixed set of memory units that cannot
be upgraded once manufactured, as the CPU socket count limits memory expansion. On
the other hand, workloads arising out of Machine Learning, Artificial Intelligence, Big
Data, Graph/Video/Text Analytics, and scientific computing applications have large re-
quirements for both computing power and memory. The requirements are ever-increasing
with every new application in this category. Although computing power is growing

rapidly in modern systems, memory is not growing at the same rate. The trend can be

1

Chapterl: Introduction 2

Al and Memory Wall

b 10TB Baidu RecSys
10000 []
E Transformer Size: 240x /2 yrs 2TB Baidu RecSys
] . []
1000 Al HW Memory: 2x/2yrs i
T ¢
S GPT-3
= A [)
2 100+
E E
S Microsoft T-NLG
o 1 A100-80 (80GB)
o Megatron LM ¢]
o 10
2 E V100 (32GB) TPUV3 (32GB) - L
] i L4 L] A100 (40GB)
g 1 @ P100 (1268) @ TPUV2 (16GB) GP.T-Z
=
© 1
*] BERL ALBERT
GPT-1 4 L .
0_1_: Incepgon va ResNext101 Transformer .- AiRuIBG
; ResNet50 DenseNet L4
[] T
0.01 T
2016 2017 2018 2019 2020 2021
YEAR

F1cURE 1.1: Comparison of Parameter Count in Al models and Memory Capacity
Growth in Accelerators over the years [1]

understood from the graph in Fig. 1.1. The graph explains the emerging challenge of
training and serving state-of-the-art neural network models. The LLM model sizes have
increased by 410x every two years in their parameter count. However, the accelerator
DRAM memory has only scaled at a rate of 2x per two years. The memory requirements
of these large models are several times larger than the number of parameters during the
training. These challenges are commonly referred to as the memory wall problem. A
similar trend can be observed from the graph in Fig. 1.2. While the CPU performance
increases at the rate of 50% per year, it is only 7% for the memory. This results in an
increasing gap between CPU and memory performance, which is growing at 50% per
year. The gap is even more when compared to GPUs and Deep Learning accelerators.
As a consequence of the memory wall, there is a limit to both memory capacity and
bandwidth that significantly impacts the application performance. The imbalance be-
tween the memory capacity /bandwidth and workload demands has introduced multiple

problems in traditional server systems. We summarize these problems below:

¢ Memory Under-utilization: The data-centric workloads have unpredictable
memory demands [3] and require over-provisioning during memory allocation to
meet the peak requirements. This results in under-utilization of onboard memory
resources as the memory remains stranded with the applications even if it is not
used. A study on Google Cloud [4] reported that an average of 30% memory was
idle during 70% of the running time, and only 50% on average was used out of the
80% memory allocated. Similarly, when workloads are allocated to different server
nodes, fragments of memory get stranded in the nodes and become unusable. The

problem of memory under-utilization can be observed with a hypothetical example

Chapterl: Introduction 3

Deep learning
processor DEI’fO[I‘I"iEI nce

60%
GPU performance ’

Performance (log)

CPU performance

Gap grows at
50% per year 7%

Time

FIGURE 1.2: Recent trends in performance improvement of Compute (CPU/GPU/Ac-
celerators) and Memory over time [2]

shown in Fig. 1.3, where multiple requests with specific CPU/memory demands
are to be allocated resources from the available server nodes. Three server nodes
are assumed to be available, each with a 4-memory and 3-compute unit capacity.
However, due to a lack of flexibility in resource allocation, only three requests could
be allocated out of four. Even though enough memory was available in fragments,

W4 could not be allocated due to constraints in the underlying server architecture.

Workloads
[Wl: 3Mem, 1CPU]

MEM\

FIGURE 1.3: Stranded memory resources due to fragmentation in traditional servers

e« Memory Scalability: Traditional server systems fail to scale up with the increas-
ing memory requirements of modern workloads that can expand to terabytes. This
causes a significant performance impact as application data must be frequently re-
trieved from the disk to the main memory which is very slow. Some efforts have
been made in the past to improve memory scalability, such as software/hard-
ware Distributed Shared Memory (DSM) [5] and Remote Direct Memory Access
(RDMA) [6, 7] that allows memory sharing among server nodes. However, these
systems suffer from significant data movement overhead and have lower perfor-
mance due to high tail latency. We discusses more about these systems in section

2.1.

Chapterl: Introduction 4

e Energy Loss and Increased TCO: The unpredictable memory usage in large
data center facilities requires extra investment in purchasing more server nodes
to handle the same level of workloads. This increases energy consumption and
requires more cooling equipment to remove excess heat production, significantly

increasing the TCO.

e Impact on Data Center Refresh Cycle: The fixed box architecture of tra-
ditional servers also constrains the data center hardware up-gradation cycle. If
there is a requirement to upgrade the main memory in the server nodes due to
the availability of new technology in the market, it requires replacing of complete
server unit. This is because the hardware resources inside a server node are tightly
coupled, and the exclusive replacement of the main memory is not feasible. This

results in the shortening of data center refresh cycles.

1.2 Disaggregated Memory Systems

A fundamental change in the data center’s server architecture is long-awaited due to the
above-discussed problems. Hardware Disaggregated Memory Systems (HDMS or simply
DMS) [8-12] have emerged as a strong alternative to traditional server system architec-
ture. Unlike monolithic servers completely relying on local onboard memory resources
or using DSM/RDMA with memory sharing among server nodes, DMS introduces a
memory pooling system. A large amount of remote memory (DRAM) can be connected
to the compute nodes (or server nodes) as independent memory pools via a high-speed
interconnect. Fig. 1.4 shows the high-level comparison of system design in traditional
servers and DMS. The compute nodes in DMS have a small local memory and rely on
remote memory for most of their application requirements. DMS supports on-demand
allocation of remote memory to the compute nodes, which is added as an extension to
the local memory address space in a flat address structure. The DMS is expected to be
configured in large-scale configurations, as shown in Fig. 1.4b, where multiple compute
nodes share the remote memory pools/nodes 1 for memory allocation. Remote memory
management is performed through an in-network memory manager and is separate from

the memory management at the compute node.

The memory-centric fabric supports cache coherent access to the remote memory and
allows memory access at cache block granularity on a last-level cache (LLC) miss. Such
interconnects have been proposed earlier for low latency and high bandwidth access to
remote memory [13-15]. CXL 3.0 [16, 17] is the latest industry standard for similar
remote memory binding fabric supporting coherent access to pooled memory systems

using CXL.mem protocol. It also includes a CXL switch supporting multiple hosts

1Memory nodes and memory pools are used interchangeably in this thesis

Chapterl: Introduction 5

__ ServerNode
(a)

FIGURE 1.4: (a) Traditional Server Design (b) Disaggregated Memory System Design

and CXL devices through the CXL (PCle 6.0) interface. The host interface (or CXL
root port) holds the memory access logic controller and is integrated into the on-chip

interconnect bus.

In Fig. 1.5, we illustrate the earlier example for allocating four workloads on disaggre-
gated hardware resources. The CPU and memory are now decoupled with each other
and available as independent resource pools. The workloads are free to be allocated
CPU/memory from any of the available pools. As we can see, all four workloads can get
the required CPU/memory from the same hardware resources as in the example shown
in Fig. 1.3, where W4 could not be served. Our work in this thesis focuses on having
separate pools of memory while the compute units still have a small amount of local
onboard memory with them. The application can allocate memory from local DRAM
or remote memory pools at any ratio, depending on the availability and suitability for

best performance.

Workloads

W1: sMem, 1cPU|

FI1GURE 1.5: Improved resource utilization with Disaggregation

DMS eliminates the issues in traditional server system architecture and supports addi-

tional use case benefits. We explain below how a DMS can overcome those challenges:

e Improved memory scalability and no under-utilization: The workloads
running on compute nodes can be allocated as much memory as required from the
on-network memory pools. The CPU socket count no longer limits the memory

scalability, and the remotely connected memory increases memory bandwidth and

Chapterl: Introduction 6

capacity [18]. A large amount of memory is now available as remote memory pools.
Thus, the applications running on the compute node need not over-provision the
memory for peak requirements, as it can always be allocated whenever required.
This reduces the memory under-utilization as memory is not stranded with differ-

ent workloads or at different compute nodes.

e Online memory upgrade: Another feature of DMS is that the pooled memory
capacity can be dynamically increased or upgraded with new technology without
affecting the compute nodes and workloads running on it. This allows the server

activities to continue without any shutdown during the upgrade process.

e Improved energy consumption, data center refresh cycle, and TCO: The
improved memory utilization optimizes the overall energy consumption in a data
center and reduces the expense of the cooling system. Further, the hardware refresh
cycle is improved as the CPUs or memory can be upgraded independently, which
normally have different refresh cycles. All these advantages reduce the data center

TCO and support modern workloads to scale up easily with improved performance.

The recent trends in the industry and the latest research work go in the direction of
seriously considering the DMS architecture for the next generation of data centers. Sam-
sung had recently launched a CXL-based rack scale memory module [19] with all the
software toolkits being open-sourced. It offers around 569ns on CPU-based load-store
access to remote memory. The latest server processors from Intel and AMD also have
added support for the CXL v1.1 [20, 21]. Even though the remote memory latency is
3x-5x slower than the local memory, it is still faster compared to RDMA-based memory
expansion. The memory latency can be improved by implementing system optimizations
like page migration [22, 23] and cache block prefetching [24, 25], some of which we will

explore in the subsequent chapters.

On the other hand, authors in [26] presented a contrary view on the cost-effectiveness of
CXL-based memory pooling. The argument is based on the higher hardware cost, lesser
utility and requirement of new complex software systems for implementing disaggregated
memory design. However, the experimentation conducted is very limited, which uses
the VM traces from data centers to perform cost-based analysis and determine the
utilization. Further, logical pools over a CXL interconnect have been proposed as a
better alternative to physical memory pools [27]. The server design remains the same
as the present, but each of them flexibly shares some part of its memory to form shared
logical memory pools. The benefit is the early adoption of CXL and lesser TCO, as
there is no need to invest in separate memory-only modules. However, the proposed
solution fails to attract due to multiple reasons. Firstly, when a server flexibly shares the
memory, it may withdraw the shared memory regions, forcing the shared data to move

to another server. This causes irrelevant data movement in already congested networks.

Chapterl: Introduction 7

Secondly, the software managing the shared memory within a cluster becomes complex.
It will not be able to make optimal decisions due to multiple trade-offs (optimal memory
usage, less network traffic, allocation near the computing node). Lastly, the memory
capacity and bandwidth remain limited within a cluster. With each server node running
memory-demanding workloads, the memory expansion will only be possible by adding
more servers. However, servers usually hold enough processing power and only fall short

of memory. Therefore, the idea is not feasible in the long run for reducing the TCO.

Similar to main memory, servers’ storage capacity is also limited due to fixed PCle slots.
Therefore, disaggregated storage is also popular for creating common networked storage
pools. The existing mechanism, like software-defined storage, can also combine the stor-
age capacity of individual servers to create virtual storage pools. But it also adds extra
layers of complexity and high CPU load, limiting the total storage that can be pooled.
With storage disaggregation, the storage hardware is physically separated from the com-
pute resources and is provisioned logically to servers based on requirements. Although
DMS and disaggregated storage are based on the same underlying technology, their use
cases differ. Cloud-based disaggregated storage is used to back up the contents of main
memory to the shared networked disks (by emulating network-attached Storage (NAS))
and is not a replacement for DMS. The large capacity disks cannot support load/store
operations at the cache block level without significantly reducing the system perfor-
mance due to high latency access and lesser bandwidth. With DMS, a last-level cache
miss can be directly forwarded to remote memory pools. The disaggregated memory and
memory can both be implemented on the cloud data center. To be precise, both these
can be implemented in any data center providing cloud services or high-performance
computing (HPC) facilities. The memory/storage capacity and memory bandwidth re-
quirement of cloud and HPC workloads can be really high, so the workloads can get

significant performance gain with memory/storage disaggregation.

1.2.1 Performance Improvement with Disaggregated Memory System

In a data center, server systems running multiple workloads will have to share the main
memory and cannot allocate all the required pages due to limited memory capacity. In
this section, we compare the performance of three different systems. Local, a hypothetical
system that always has free local memory available to allocate to workloads. RDMA,
A state-of-the-art mechanism where server systems share free main memory with each
other, and the memory transfer happens in large page granularity, which can be slow and
degrade performance. DMS, a disaggregated memory system with pooled main memory
that can be accessed as load /store at cache block granularity of 64KB using CXL. RDMA
and DMS both allocate 50% of the workload pages at local and remote memory each.
Figure 1.6 shows the performance difference of RDMA and DMS normalized against IPC

Chapterl: Introduction 3

Olocal mRDMA mDMS

1, ~ _ — — _ — — _ — - _ — — _ - -

0.75

0.5

SC NW BT FT HPCG KD KC 1} MG FE PR PF PEN SM SR XSB

FIGURE 1.6: Performance Difference Local vs RDMA vs DMS

(Instructions per cycle) of local only system. We measure the performance of all three
mechanisms over cloud and HPC workloads as mentioned in 3.2. As we can see, DMS
performs much better as compared to RDMA, and performance reaches up to 80% of
what we see with hypothetical system Local. The mean performance degradation across
all the workloads is 52% with RDMA and just 28% with DMS. The significant reason
behind this is the granularity of remote data access with this mechanism. The remote
page access in RDMA is slower due to kernel-level calls that add long delays. Whereas
DMS utilizes the CXL support for low-latency remote memory access directly on a cache

miss without any system calls.

1.3 Challenges in Disaggregated Memory System

1.3.1 System Design

Memory disaggregation is still under research, and there is no clear understanding of how
the final prototypes will be conceptualized [3, 10-12, 28]. The next generation of Intel
[29] and AMD [30] processors are expected to support CXL 1.1 protocol for memory
scaling. The limitation of CXL 1.1 is that it only supports a single CXL memory
node to be connected with one compute node. The current state of research suggests
that the DMS will be initially deployed at rack scale with a single-hop remote memory
access (intra-rack) [10, 11, 28, 31, 32]. Currently, no agreement exists on the number
of memory pools and compute nodes that can be configured together to optimally scale
the memory bandwidth/capacity in a large-scale DMS. Further, remote memory address
management, memory allocation, address translation, etc, are the key elements to be
taken care of. This presents a key challenge to present a system design addressing all
the issues and describing the working of various system components in a fully functional
DMS.

Chapterl: Introduction 9

1.3.2 High Average Memory Access Time

Although DMS solves memory scalability, the additional DRAM is present across an
interconnection network. Due to this, the remote memory access time is 2x to 3x of
local memory [8, 9, 33] in a single node (one compute node and one memory pool)
configuration with CXL 1.1 protocol. In a scalable DMS configuration with CXL 3.0
protocol, the remote memory access is performed through a CXL switch. The network
and remote memory bandwidth in large-scale configurations (such as in a rack) will
be shared between multiple compute nodes. The remote memory access delays will be
defined by the overall memory access traffic passing through the switch. The network
and memory may face additional congestion/contention depending on the workloads

running on different compute nodes.

For example, suppose memory is allocated to an application in a ratio of 30:70 at local
and remote DRAM. In that case, the Average Memory Access Time (AMAT) will be
significantly larger than a hypothetical system with a large enough local DRAM. If the
memory traffic is distributed across local and remote memory in the same ratio, then
with a remote access time of 3x of local memory access, the AMAT will still be 2.4x
of local memory access time. However, if multiple compute nodes run simultaneously,
the total switch and remote memory bandwidth will be divided among them. This will
further increase the AMAT more than 2.4x, impacting the application performance.
DMS presents a unique challenge to reduce the AMAT, which is somewhat similar to
multi-tiered memory systems except for the scalability and memory /network bandwidth

sharing involved in DMS.

1.3.3 Remote Memory Management and Control

In a large-scale DMS, multiple compute nodes can run a range of workloads with dis-
similar memory demands. The compute nodes may perform remote memory allocations
unevenly across all the remote memory pools. This may cause a bottleneck at some of the
memory pool which gets more memory allocations and consequently faces more memory
traffic. This increases the queuing delay at particular network lanes and the memory
pool’s controller queues, directly impacting the AMAT and the workload performance.
Further, the impact of extra remote memory latency will differ on the workload’s perfor-
mance due to their memory access patterns and dependency on memory operations. In
such a scenario, it also becomes essential to treat the remote memory requests of com-
pute nodes differently based on their urgency/priority and deliver Quality-of-Service

(QoS) to critical applications in a bandwidth-constrained system.

Chapterl: Introduction 10

1.3.4 Architectural Simulation

As the DMS is still at the prototype stage, no standard tool exists for performance
evaluation. The existing literature relies on completely different methodologies such as
FPGA prototyping [13-15, 34, 35], emulation [31, 36] and simulation [37, 38|, which has
many shortcomings. The lack of standard methodology constrains the modeling and
comparison of different state-of-the-art mechanisms and introduces unwanted challenges

for the evolution of best designs.

1.4 Thesis Contribution

The work in this thesis deals with the research challenges described in section 1.3. Here,
we briefly describe the contributions of our thesis. An architectural simulator is of fore-
most importance for the performance evaluation of DMS. As our first contribution, we
develop a simulator DRackSim to evaluate the performance of large-scale DMS with a
baseline system design. Our simulator supports multiple simulation modes with differ-
ent details that can be used as required. Our second and third contributions focus on
workload performance improvement through AMAT optimization in a large-scale DMS
by implementing cost-effective hot-page migration systems. Considering the constraints
in a DMS, an epoch-based page migration is implemented in the second contribution,
where the focus is on improving data movement. In the third contribution, we focus
on the shortcomings of the epoch-based mechanism and implement an on-the-fly page
migration while fine-tuning the data movement through workload characterization. In
the fourth contribution, we improve the QoS in large-scale DMS by two different mecha-
nisms. Firstly, we propose novel remote memory allocation policies that can load-balance
the memory access traffic across remote memory pools. Secondly, we implement different
memory request scheduling mechanisms to understand their impact on QoS on different

workloads. We discuss the contributions of the thesis as follows:

1.4.1 DRackSim: Simulating CXL-enabled Large-Scale Disaggregated
Memory Systems

Research in disaggregated memory systems requires a simulator to evaluate new de-
signs with the practical configurations of the latest memory systems connected through
a network interconnect. This work develops DRackSim a simulator to model scalable
hardware DMS. It models multiple compute nodes, memory pools, and a network inter-
connect for coherent memory access. An application-level simulation approach simulates
an out-of-order x86 multi-core processor with a multi-level cache hierarchy at compute

nodes. DRackSim follows a queue-based approach to model the network interface at

Chapterl: Introduction 11

the end nodes and the central switch and simulates remote memory access at multi-
ple granularities. DRackSim also models a global memory manager to manage address
space in the remote memory pools. We integrate a widely accepted memory simulator
DRAMSim2 [39] to perform DDR4 simulation at local and remote memory by initiat-
ing multiple instances of the DRAMSim2 memory system. We followed an incremental
approach to validate the core and cache subsystems of DRackSim against Gemd [40].
Further, we model various use-case scenarios for disaggregated memory systems and
evaluate their performance over various HPC and cloud benchmarks. We rigorously
evaluate DRackSim for many configurations to simulate real-world deployment models

and their impact on system performance.

1.4.2 A Practical approach for workload-aware data movement in Dis-

aggregated Memory Systems

This work presents a hardware mechanism for page migration from remote memory
pools to the local memory at the compute nodes. Hot page migration is mostly used
in tiered memory systems to place hot pages from slow to fast memory and exploit the
locality in memory access in those pages. However, DMS presents a unique challenge as
multiple compute nodes share the memory pools, and the underlying hot page detection
mechanism differs. Further, the network/memory bandwidth is shared among multiple
nodes, which is not true with single-node, multi-tiered memory systems such as DRAM-
NVM. Transferring hot pages from remote to local memory consumes extra bandwidth
and delays the other cache misses being serviced from the remote memory. The memory
read for a page, and the large packet size (e.g., 4KB page vs. 64B block) in the network
significantly slow down the application performance. Our approach used an epoch-
based page migration policy using an in-network hardware mechanism with efficient data
movement between local and remote memory. Our design performs 10% to 100% better
than traditional RDMA-based DMS that access remote memory at page granularity and
5% to 35% better than baseline DMS.

1.4.3 CosMoS: Architectural Support for Cost-Effective Data Move-

ment in a Scalable Disaggregated Memory Systems

Epoch-based page migration has the advantage of transferring multiple pages together
after every small interval, and the system overheads are low. However, it misses the
benefits of accessing remote pages in local memory until they are migrated. The On-
the-fly mechanism eliminates this problem by instantly migrating a hot page, but it
usually has more system overheads. In this work, we propose CosMoS that is built

upon the insights gained from the previous contribution to improve the performance

Chapterl: Introduction 12

further. CosMoS is an architectural solution for on-the-fly page migration to support
Cost-effective data Movement in a Scalable Disaggregated Memory System. CosMoS
does not only predict the hot pages but also schedules and optimizes their movement
between local and remote memory. The results show 20% performance improvement
with CosMoS compared to state-of-the-art and 86% improvement compared to baseline
large-scale DMS. On a single node, CosMoS performs 10% better than state-of-the-art
and 57% better than the baseline.

1.4.4 Design and Analysis of Memory Allocation Policies for Disag-
gregated Memory System

Within a pooled memory (DMS), the global memory manager handles remote memory
allocation. Upon receiving a request from a compute node to allocate remote mem-
ory, the memory manager selects a suitable memory node. Sub-optimal selection may
increase memory latency, consequently affecting application performance. This study in-
troduces a two-phase memory allocation policy for DMS, aiming to improve fairness in
memory allocation. Fairness enforce equal distribution of memory allocations and mem-
ory access traffic to all the remote memory pools, resulting in reduced latency compared
to conventional methods. Through comparisons across diverse benchmarks, our research
demonstrates promising outcomes simply by integrating minor logic adjustments into the

global memory manager for remote memory allocation.

1.4.5 QoS Management in Large-Scale Disaggregated Memory Sys-

tems

Accessing networked memory resources in DMS incurs additional access costs and sig-
nificantly impacts performance, especially when multiple compute nodes share the same
memory nodes. Fairness among compute nodes during network and remote memory
queue allocation is crucial to mitigate these issues. This study delves into evaluating the
performance of multi-node DMS using various queue allocation methods for network and
memory bandwidth partitioning. Our proposal employs an in-network global memory
controller that regulates the flow of memory requests from different compute nodes based
on its priorities, thereby enforcing QoS. Additionally, we leverage the memory request
rate of each compute node to determine their weights or priorities for different queue
allocation methods. We evaluate all scheduling policies through a trace-based disaggre-
gated memory simulator across diverse benchmarks with varying access patterns. Our
findings demonstrate that these policies significantly influence average memory latency

and system performance across different configurations.

Chapterl: Introduction 13

1.5 Thesis Organization

The thesis chapters are organized as follows:

Chapter 2 presents a survey on the evolution of memory scalability mechanisms and
the usage of remote memory for expansion. We also discusses the widely used solutions
for improving the memory latency in multi-tiered memory systems. Finally, we briefly

describe the tools and techniques for developing a new architectural simulator.

Chapter 3 presents DRackSim [41] , a simulator for performance evaluation of a large-
scale DMS. It discusses the proposed system design of our baseline DMS and demon-
strates the working of DRackSim on multiple use case scenarios over different configu-

rations.

Chapter 4 presents a mechanism for workload-aware data movement [42] to improve the
AMAT in a large-scale DMS. It describes implementing an epoch-based centralized page
migration system that can effectively transmit hot pages from remote to local memory

and utilize the locality in hot pages for future memory accesses.

Chapter 5 presents COSMOS, another mechanism to implement a hot page migration
system built upon the learning gained from the previous work. It discusses the shortcom-
ings of the state-of-the-art mechanisms. It presents a workload characterization to help
design an on-the-fly page migration mechanism for accelerated data movement between

local and remote memory.

Chapter 6 proposes new memory allocation policies [43] for DMS to eliminate network
congestion and remote memory contention. The policies perform the load-balancing of
memory requests among different memory nodes, effectively reducing memory latency

and improving application performance.

Chapter 7 discusses QoS management in a scalable DMS [44]. With multiple compute
nodes running a variety of workloads, some of the remote memory requests might need
prioritized treatment over others. We propose a scheduling mechanism for the global
memory requests from different compute nodes and compare multiple request scheduling

algorithms that use simple heuristics for parameter tuning.

Chapter 8 summarizes all the contributions presented in the thesis and discusses a few

future possible research directions.

Chapter 2

Background and Literature
Survey

THIS chapter reviews the studies conducted in the past for memory scalability and
improving the performance of multi-tier memory. Section 2.1 discusses different meth-
ods to scaleup the memory capacity and bandwidth. Some solutions focus on extending
memory locally using multiple memory tiers, while others try to expand local memory
through remote memory sharing. Remote memory is not a new concept, and it has been
used in the past with DSM and memory-sharing servers for improving memory scalabil-
ity. However, with the evolution in the interconnects, the way for remote memory access
and its performance has changed significantly. This is mainly due to how interconnects
are integrated into the overall system design to allow different kinds of remote memory
access. Section 2.2 discusses the evolution of interconnects and protocols that drive
different generations of solutions for memory scalability. In section 2.3, we present an
overview of works related to DMS. In section 2.4, we discuss the different mechanisms
proposed in the past for improving AMAT on multi-tiered memory systems. Section
2.5 presents a brief overview of mechanisms such as fairness and QoS, which are equally
crucial for any large-scale system to rationalize the distribution of available resources.
We finally discuss the simulation tools and techniques in section 2.6 for performance
evaluation in a large-scale DMS. We also talk about the tools that can be used for

designing new architectural simulators.

15

Chapter2: Background and Literature Survey 16

2.1 Existing Solutions for Memory Scalability

Multiple solutions exist for memory expansion that were widely used in the past or are
currently being considered in the data centers. We briefly describe these approaches

below in this section.

2.1.1 Scaling Memory Locally

Several system-level technologies are proposed to scale the memory capacity and band-
width locally to the computer system. A hybrid main memory [45-56] system puts
together different memory technologies with different features like cost, energy, perfor-
mance, reliability, and endurance. As an example, a hybrid of DRAM-NVM (e.g., Intel
3D XPoint Optane, Phase Change Memory) is deployed to improve memory scalability
and increase memory per core ratio while obtaining cost and energy benefits. However,
NVM has higher read/write latency than DRAM and may lead to a loss in performance.
The memory can be organized in multiple ways. One way is to attach both the memories
in a hierarchical address structure where DRAM is used as a large page cache. When-
ever a memory address is not present in page cache, it is looked at in the NVM, and the
searched page is swapped with a victim page from DRAM. The other way is to attach
the byte-addressable NVM as an extension of DRAM using a flat-address structure. In
this case, the CPU can directly access any memory address from NVM on a cache miss.
However, managing the data movement between two memories is important for optimal

performance.

Similarly, high-bandwidth memory (HBM, which is a 3D stacked DRAM technology)
and DRAM can be clubbed together [57-60] to increase the memory bandwidth for
serving deep learning applications. HBM is costly but significantly increases the memory
bandwidth and has low power consumption. It is mostly used to serve as a fast cache
by bringing the frequently accessed data from DRAM to the HBM.

2.1.2 Scaling Memory Remotely

Most of the proposed techniques for remote memory extension are based on memory
sharing between compute nodes in a multi-server environment like in data centers or
HPC. The remote memory can be shared exclusively or in a shared manner among
multiple compute nodes. In the former approach, a compute node is granted exclusive
access to the free memory in a remote machine. In the latter approach, the memory of
all the nodes is aligned in a single address space. Further, the compute node can access

the remote memory in two different ways.

Chapter2: Background and Literature Survey 17

Remote Paging: A software-based solution is used to implement remote page swapping
[61-63] and is widely used to access remote memory. This technique exclusively allocates
the remote memory to a compute node from another machine. The remote memory adds
another level in the memory hierarchy between the storage and the local memory. The
idea is that the paging swap latency in the remote memory is significantly lesser than the
slow disk paging. However, the existing local memory space is not really expanded, and
the CPU cannot have direct access to it. Whenever the CPU accesses a memory address
not present in the local memory, a page fault is issued to search in the next memory
level. Due to this, a large percentage of remote memory access time is spent in the
kernel stack for page fault handling and swapping. Further, the remote memory access
is performed at large granularity (assuming 4KB pages), which takes more time to access
remote memory and transfer pages through the network. Due to these overheads, the
remote paging approach introduces high tail latency [63] and gives limited performance

benefits, which is not feasible to meet application-level performance [64].

Distributed Shared Memory (DSM): In this mechanism, the memory resources of
multiple nodes are aggregated to form a single large addressable memory called DSM.
This approach also allows aggregating processors to form a computing cluster. Memory
aggregation can be done by either software mechanisms or hardware mechanisms. The
software approaches [65-68] rely on the virtualization of hardware resources through
a hypervisor that aggregates the hardware of multiple nodes to form a single virtual
machine with a single operating system. The hypervisor resolves remote memory access,
which brings the memory pages from the remote nodes to the consumer node that runs
the application. The processor at the consumer node can access the data once the page
is copied to the local memory. This mechanism differs from OS based remote page
swapping as the OS is running under the control of hypervisor. When the OS observes
a trap due to a page fault, the control is shifted to the hypervisor that transfers the
remote page to the local machine and then shifts the control back to the OS. However,
the cache-coherence is managed on a page basis through the software handlers across the
cluster, adding a large overhead. The software approaches add large latency overheads
due to page faults and transferring large-sized pages. Hardware approaches allow direct
access to the remote memory on a cache-miss, which is now part of the node’s memory
address space. However, it is required to manage cache coherency explicitly through
extra hardware, which is costly. The cache coherency within the node is managed
using the snooping protocols, whereas directory-based protocols are used for managing
inter-node coherency using a directory controller. Although remote memory access is
faster and does not require transmitting complete pages, the coherency management
adds heavy network traffic and makes DSM difficult to scale beyond a certain limit.
Thus, careful usage of remote memory is required to allocate and place memory pages.
There are multiple systems proposed that use similar technology for memory scalability.
Some important mentions are the DASH prototype [69], SGI Origin 2000 [70], FLASH

Chapter2: Background and Literature Survey 18

prototype [71], Scalable Coherent Interconnect (SCI) [72], SGI Altix [73] and CRAY
XMT Supercomputer [74].

2.2 Interconnects

The concept of remote memory access is not new. However, the interconnect plays a
major role in the system, which results in different access latency, access granularity, and
overall performance. Here, we briefly discuss the evolution of interconnects that were

used in the past to the latest release of CXL specifications for remote memory access.

Ethernet-based Interconnect: These are the most commonly used interconnects in
data centers where the remote memory requests pass through standard network interface
cards connected to the PCle bus and then through an Ethernet link using TCP/IP
protocols. The past mechanisms for remote memory paging or DSM were based on
Ethernet-based remote memory access [65, 66]. However, the memory latency suffers
due to software overhead and multiple protocol layers during the memory access. The
remote paging latency can be around 160us on a Gigabit Ethernet link, whereas the
cache block access latency with hardware DSM is reported to be around 1-2us. The

hardware DSM system generates high coherence traffic, which limits its scalability.

PCI Interconnect: Some solutions were proposed using the PCI interconnect [75, 76],
which is comparatively faster than the Ethernet. It does not require multiple protocol
layers and saves time for protocol conversions and data encoding. However, PCI in-
terconnects only support a single root domain and cannot be used directly to connect
multiple nodes. The PCI switches with non-transparent bridges (NTB) allow multiple
PCI root domains to be connected in a single subsystem with shared memory. It supports
remote memory access at the page, cache block granularity, and a burst transfer mode
using a DMA. However, this approach suffers from scalability due to the limitations of
PCI switches.

RDMA based Interconnect: Remote direct memory access [61-64, 77] features as
the most widely used protocol and interconnect standards in the current data center
scenario. The software-based approaches in the past used TCP/IP protocol for remote
memory access uses, which has the disadvantage of a heavy protocol stack that intro-
duces long delays. RDMA protocol directly offloads the application data to the network
buffers, bypassing the heavy kernel stack. This resulted in a significant reduction in
the remote memory access latency. The RDMA protocol has multiple implementations,
such as RoCE (RDMA over converged Ethernet), iWARP (TCP-based RDMA), In-
finiband, etc. The InfiniBand is costly as it requires a specially designed network but
performs the best among the three. RoCE, on the other hand, gives a good trade-off

between the performance and the cost, as it can be implemented over the Ethernet.

Chapter2: Background and Literature Survey 19

The NIC (network interface card) plays an important role in RDMA as the applica-
tion data is directly encoded at the NIC, reducing the software delays. An application
using RDMA can use remote paging much faster than earlier approaches. It can also
be used as an object-oriented DSM system [77], but the application must handle the
cache coherency completely through programming constructs. RDMA memory disag-
gregation, also termed software/virtual disaggregation, is widely deployed in the present

data centers for implementing remote paging mechanisms.

CXL Interconnect: The CXL interconnect allows low latency and high bandwidth
access to the main memory by the compute nodes. CXL presents the latest interconnect
specifications and protocol [16-18, 78] that supports memory scalability via in-network
memory pools/nodes. It supports three different protocols: CXL.io, CXL.mem, and
CXL.cache. CXL.io is fundamentally the same as PCle 5.0 [79] and supports a non-
coherent load/store interface for I/O devices. CXL has encompassed similar existing
standards such as Gen-Z, CCIX and OpenCAPI. CXL.cache is the coherent protocol
that allows accessing and caching host memory by the connected CXL devices with low
latency and vice-versa. A common use-case scenario is to use it by the accelerators. The
CXL.mem allows the host to access device-attached memory using load /store commands.
The specifications support a CXL switch through which remote memory pools can be
attached to scale memory capacity and bandwidth. The important distinction is that,
it decouples the compute from the memory and has extensive use-case scenarios in data
centers with reduced TCO. The low latency access is supported by the integrated on-chip
interconnect (OCI) that also allows coherent access to remote address space. The CPU
can directly send the memory requests to remote memory with the help of a remote
memory controller that implements the network protocol in the hardware to eliminate

software stack delays.

2.3 Disaggregated Memory Systems

In this section, we present a survey of the some of the existing solutions relevant to our
work solutions for RDMA-based software memory disaggregation and CXL-based (or

similar) hardware memory disaggregation.

o Lim et al. [9] proposed one of the initial disaggregated designs that provisions
separate CPU and memory blades. Memory blades were connected to compute
blades via an enclosure’s 1/O backplane using a PCle bridge rather than on-chip
controllers. The page-level remote access is initiated through a page fault in the
OS, which is trapped to a virtual memory manager (VMM) or hypervisor, trigger-

ing a page swap with the remote memory. Page access is slow but the workloads

Chapter2: Background and Literature Survey 20

can take advantage moving data at granularity (pages) and locality of future mem-
ory requests. The cache-level access is supported through a new hardware called
"cache-coherent filter" to initiate reads and writes access to remote memory. The
remote memory address translation is also handled at the VMM, which adds/re-

moves the memory mappings whenever remote memory is (de)allocated.

o Hou et al. [75] presented a remote memory-sharing prototype with multiple nodes.
Each node is connected to the backplane via a PCle adapter. The backplane is
connected directly to the primary host via a PCle bridge and to remote hosts via
a non-transparent bridge (NTB). NTB makes it possible to connect multiple PCle
domains and provides isolation to different nodes with shorter communication
paths to other hosts. It supports direct and DMA access to the remote memory.
With direct access, applications access remote memory in the same way as its
local memory. The memory controller determines if the cache miss belongs to a
remote address and forwards it through the PCle switch to the remote host. In
DMA access mode, a DMA engine performs the transfer either in block or burst
mode. Before sharing memory, multiple hosts negotiate with each other on the
shared memory region and set up a mapping table on its side of NTB. The OS at
each node does not have the visibility of global address space and is completely

managed through the memory module driver.

e In “Marlin” [76], authors used a similar approach as the work discussed above
(using NTB) at the physical level, but the implementation is quite different. Each
machine has visibility of the complete address space of every other attached node,
which acts like a global memory pool for each machine. The CPU-based direct
remote memory access is supported by explicitly sending MSI read/write inter-
rupts, and the interconnect is not coherent in itself. In the DMA mode, the DMA
engine can directly initiate memory copy between any two address spaces, as all
machines have global visibility of the address space. At the control plane, the
memory address space of each machine is mapped by the management host to its
own physical memory address space during system booting. It then exposes the

whole address space to all the machines connected to the switch.

o Gu et al. [63] designed a software solution “INFINISWAP” for memory sharing
among nodes in a cluster. It is based on RDMA and can be deployed over Infini-
Band or RoCE networks, which makes it feasible in current commodity hardware
without any extra hardware. The only requirement is the network adapters with
RDMA support at the nodes. A network block device and a daemon program
enable memory sharing without central coordination. Whenever there is a short-
age of local memory, the “INFINISWAP” block device starts writing pages from the
swap partition to the remote memory using RDMA writes. On subsequent access,

those pages will be served directly from remote memory rather than going to disk.

Chapter2: Background and Literature Survey 21

The (de)allocation at remote memory is performed at a larger granularity with
fixed-sized slabs (collection of pages). The daemon handles the distribution and
placement of slabs in the remote machines. For optimal usage of remote memory,
pages are removed from remote memory when the paging activity goes below a
threshold.

o Montaner et al. [67, 68] proposed “MEMSCALE”, a mechanism using commodity
interconnect to connect multiple nodes. It extends the shared memory beyond
a motherboard without considering the coherency, effectively saving the network
bandwidth and increasing the remote memory access speed. It is assumed assume
that the computing needs of most applications can be fulfilled with a large number
of cores present within a single motherboard but only require extra memory, which
is mostly unavailable. This effectively means coherency messages are limited to
one node and coherency in remote memory need not be maintained explicitly and
can be easily handled through write-back caches. HTX, which is an extension of
AMD Hyper-Transport for scaling out, is used as the interconnection technology for
board-to-board communication. They proposed a new memory controller to access
remote memory added to the motherboard through HTX interconnect as an 1/0O
unit. CPU can directly issue remote memory requests, which will be forwarded by
the source remote memory controller to the destination remote memory controller.
A single global address space is visible to all the machines, and the OS is responsible
for knowing the location of free memory, memory reservation, and disposal in any

part of the global address space.

o Chang et al. [13] demonstrated a prototype by extending an on-chip interconnect
for memory-sharing with other nodes within a rack. They proposed a custom
module connected to the on-chip interface that joins other nodes to form a single
cache-coherent domain. The architecture allowed remote memory access at the
cache line as well as bigger data blocks. The new 4-layer module packs on-chip-
interconnect (OCI) packets into transaction layer packets, queued for routing using
lightweight network layer protocol, and sent to the physical layer for remote access.
The coherent remote memory is accessed in the same way as local addresses. This
prototype allowed the remote memory to be accessed at nearly 4 times the access

latency of local memory, which is way better than previous approaches.

o Dong et al. [15, 80] presented “Venice”, which proposes a sharing model that
integrates the resource-sharing fabric directly on the chip as mentioned in the pre-
vious approach mentioned above. However, it implements a family of architectures
to access remote resources, including memory, accelerators, NIC, and other 1/O
devices. It also implements a multi-channel approach consisting of a cache-based
access channel, an RDMA channel, and an asynchronous Queue-pair channel to

access remote memory. An adaptive library is implemented at the application level

Chapter2: Background and Literature Survey 22

to make intelligent channel choices based on the communication requirements of
the workload.

« Novakovic et al. [14] designed a similar solution, “Scale-Out NUMA”, that bor-
rowed positives of cache-coherent NUMA (ccNUMA) [70] and RDMA networks to
come up with a hardware-based solution for rack scale memory sharing. A new
hardware module named remote memory controller is supported by on-chip logic
to handle cache coherent memory interface via a private L1 cache, to perform

remote memory operations.

o Cao et al. [81] described “XmemPod” a system where the authors observed the
requirement of efficient memory sharing on the node itself using containers or
VMs before it requests memory from the remote node. High memory imbalance
can frequently arise between VMs on the same node, and solutions like memory-
ballooning [82] do not perform well and are too slow. This work proposed a
memory-sharing cluster over RDMA networks, but its main contribution is con-
sidering memory sharing within a node. A remote memory manager pool manages
the additional memory requirements using a remote swap device. Like in In-
finiswap, address size is divided into fixed-sized slabs comprising multiple pages
and can be placed on multiple nodes to balance memory allocation. However, it
uses round-robin, weighted round-robin, or random placement rather than simply
putting the slabs in a node with free memory. Further, a page service manager is
implemented inside all the VMM for swap-in and swap-out operations, which also

takes care of memory sharing among different applications on the same node.

o “dRedBox” [34, 83, 84] proposed a rack-scale prototype that demonstrated the
hardware DMS at rack-scale for the first time by using decoupled CPU and memory
units. It is based on resource bricks architecture that uses different resource bricks
for CPU, memory, and accelerator. A resource tray with fixed slots can host these
bricks in any combination. The connectivity among different bricks within a tray is
done using electro-optical switches. The CPU bricks have a bare minimum amount
of memory only to fulfill the basic OS requirements and most memory requirements
are satisfied from the memory bricks. A disaggregated memory controller (DMC)
is introduced for the CPU to intercept the memory accesses and prepare it to send
through the electro-optical data plane. A memory lookup structure translates
intercepted memory requests to a particular memory brick. Similarly, a DMC on
the memory brick accepts the requests arriving at the network port, passes them
to the local memory controller, and sends back the responses to the respective
CPU brick.

o “DirectCXL” [85] utilizes the newly introduced CXL protocol by developing a

prototype with CPU servers as memory hosts and passive remote memory blades

Chapter2: Background and Literature Survey 23

comprising only DRAM memories along with a CXL-enabled memory controller.
A CXL-based interface with a switch supports the connections between multiple
CPU and memory units. However, there is no sharing of resources allowed between
different CPU hosts. The authors also implemented a kernel module to make
the CXL-attached memory available to the user during the OS start-up through

memory-mapped files.

o “Clio” [12] is another memory pooled system based on memory blades. The
unmodified CPU servers are used as the compute nodes with memory bladed as
the memory servers. An ASIC handles the remote memory accesses and control
operations for the DRAM in memory blades. The (de)allocation and read/write
of data to remote memory is performed over the Ethernet using a library. Further,

Clio also supports data sharing between compute nodes.

o Finally, “Lego0S” [10] proposes a split kernel approach to develop OS for DMS.
Although a hardware-based system is not evaluated, the OS assumes different
CPU/memory blades and deploys a monitor on each blade to manage it. The local
memory on the CPU blades is treated as an extra level of caching rather than in a
linear address structure, and manages it through CPU monitor software. It keeps
the TLBs and page tables entirely at the memory blades, while the local memory is
virtually indexed and tagged to provide separation of local/remote address space.
Each application can be deployed on multiple blades of any type. The data sharing
is disabled between the CPU blades, and the programmer needs to explicitly use
message passing if required. LegoOS supports Ethernet and RDMA network stacks

and maintains a data transfer granularity of 4KB.

Although multiple solutions have been proposed in the past, there is no consensus yet
on how the real DMS will evolve for deployment in the next generation of data centers.
However, decoupling the compute and memory is a promising direction and a design
choice supported by the latest trends in developing interconnect standards. Therefore,
our system design also assumes decoupled hardware resources for compute and memory.
In the next chapter, we discuss our baseline DMS design and detail the approach taken

for performance evaluation.

2.4 Reducing Memory Delays with Page Migration

The hybrid or NUMA memory systems often implement a page migration to move hot
pages from slow memory to fast memory. In NUMA, hot memory pages are moved
between multiple sockets to be resident in the nearest DRAM to the CPUs accessing

those pages. In multi-tiered memory systems, the hot pages are moved from slower

Chapter2: Background and Literature Survey 24

memory (NVM) to faster one (DRAM) to reduce memory access delays. It exploits the
locality of future memory accesses in the hot pages migrated to faster or nearer memory.
Some other proposals to reduce memory delays also focus on cache block prefetching,
which tries to access the cache block before the CPU requires it. Although cache block
prefetching can effectively hide memory latency, we focus on page migration in this
thesis, as data center workloads show good locality in their memory accesses [86, 87]
and can be exploited better with page migration. DMS are not much different from the
hybrid memory systems except few differences. Memory pooling in DMS opens up a large
remote memory address space that expands the host memory to terabytes. The presence
of a switch and deployment at scale makes DMS different from the typical multi-tiered
hybrid memory systems like DRAM-NVM. The underlying approach can be used with
appropriate modifications for DMS. This section presents a brief survey on the state-
of-the-art page migration techniques for reducing the AMAT in multi-tiered memory
systems. We also discuss the different techniques and complexities of implementing a

page migration system.

e Yujuan et al. propose “APMigration” for a hybrid DRAM-NVRAM memory
system aligned in linear address structure. An adaptive page migration is im-
plemented to store frequently accessed hot pages in DRAM and cold pages in
NVRAM. It eliminates the invalid page migrations that create a ping-pong move-
ment between two memories due to incorrect hot/cold page identification. Their
unified hot page recognition mechanism compares the relative hotness of hot and
cold pages in DRAM and NVRAM, respectively, and then decides if a page should

migrate or not based on the expected revenue and access patterns.

o In [23] authors observed that the due to address translation overhead, superpages
are commonly used. However, migration overhead is huge due to long access and
transfer delays and is highly energy inefficient. Due to the aforementioned issues,
they propose a new memory management “Rainbow” that can identify the hot
super pages and then support a light-weight page migration of hot regions within
those super pages. Heo et al. in [88] also added support for migrating huge pages
and investigated the migration policy space for huge pages. They propose “AMP”
that dynamically selects a page migration policy based on the page access patterns

of different workloads running concurrently.

o Na et al. proposed “PFHA” [89] for a DRAM-PCM hybrid memory system focused
on high performance and low energy consumption. Due to its high density, the
PCM is suitable for memory scalability. However, the large write latency, write

power consumption, and lesser write endurance require smart data placement to

Chapter2: Background and Literature Survey 25

exploit this hybrid system. It proposes a dynamic hardware migration that uti-
lizes the relation of periodical read/write access frequencies to predict page hot-
ness. This mechanism initiates a self-migration to DRAM on write hot pages to

concentrate write pages on DRAM and saves energy.

o In [90], authors proposed “AutoTiering” and explored the design space for a
multi-tiered memory system with DRAM and SCM (Intel’s DCPMM). They ob-
served that the existing page migration implementation in Linux is implemented
for NUMA, which migrates pages between NUMA nodes, all of which are DRAM-
based. The same migration mechanism does not work efficiently with hybrid mem-
ory with different features. The new implementation mechanism considers both
access locality and hot page placement in the right memory tier. Secondly, they
implement an auto demotion mechanism for moving cold pages to SCM to utilize
the limited DRAM capacity effectively. During demotion, it also compares the
hotness of the page being demoted to the victim page in SCM.

o Hasan et al. proposed “TPP” [33], an OS-level application-transparent page place-
ment and migration mechanism. They evaluated its performance on CXL-enabled
DSM with a single node (with CXL 1.1 interconnect support). This work presented
a workload characterization tool “Chameleon” and deployed it on a production data
center to get the page-level access information and its hotness longevity. The tool
uses precise event-based sampling (PEBS) to collect page access data and pass it
to the worker application that decides to migrate a page. PEBS uses hardware
counters in the processor and can track certain system events such as loads, stores,
cache misses, etc. “TMTS [91] is another similar approach that proposed a page mi-
gration mechanism based on multi-tiered memory using PEBS hardware counters.
The sampling rate has high overhead, and both solutions target a low sampling

rate of around 2%-5% and get a good trade-off for performance.

o In [23, 88|, authors focus on predicting hot regions within huge/super pages and
perform migration at smaller granularity by adding special hardware support. It
implements two levels of hotness prediction, one for the huge pages and then to
predict hot regions within the predicted huge pages. The migration is performed
at 4KB page granularity to save bandwidth and avoid starvation to subsequent

cache accesses.

o Komareddy et al. [38] proposed page migration on a scalable DMS for the first time
using a global memory controller. However, the epoch-based migration misses out
on probable benefits due to migration in large batches. Further, the mechanism

lacks any intelligence and leaves it to the users to set migration parameters.

Chapter2: Background and Literature Survey 26

o Finally, Daemon [37] proposed hardware support by implementing page compres-
sion to reduce the response packet payload size during a page migration and par-
titioning the bandwidth between page and regular memory accesses to reduce the
delays. The bandwidth partitioning is performed at a coarse granularity and has
a minimal impact. However, the page compression resulted in a significantly im-

proved performance.

o Finally, Shuang et al. [92] apply hot-page migration to cloud computing platforms
and devise a hot-page capturer for virtual machine migration to reduce the remote
page faults during a restart at the remote node. Page migration is also proposed for
systems with software/virtual DSM [25, 63, 64, 93, 94]. However, page migration
is a compulsion in these systems as it does not support cache-based access. These
mechanisms mostly focus on page prefetching, choosing remote nodes for page

placement, etc.

Moving pages in DMS can have multiple challenges. Firstly, no single memory manager
has full control of both local and remote memory in DMS. Page migration is prevalent in
other multi-tiered memory systems that use DRAM and NVM as fast and slow memory
tiers, respectively. However, a single memory manager controls all the memory address
space. A memory manager or TLB can easily predict hot memory pages in the slower
memory, which is impossible in DMS. Secondly, data-centric workloads with large mem-
ory footprints expand to tera-bytes of memory, and significant metadata is required to
track all the memory pages. Hot page migration is usually performed using a kernel
module in the operating system which monitors the page activity to predict hot pages.
However, the OS-based techniques will not work well for hardware DMS, which has a
significantly big second-tier memory, making page tracking difficult. The data-center
applications expand to tera-bytes of memory and will need a dedicated hot-page tracker
with the least amount of meta-data. The other hardware-based techniques for hybrid
memory systems have many limitations when implemented on a scalable DMS, which we
discuss in subsequent chapters. Thus, there is hardly any scope for implementing exist-
ing techniques on hardware DMS. Further, there are multiple mechanism that exists for

page migration, which need to be exploited for their suitability in the DMS architecture.

2.4.1 Page Migration Overheads and Parameters

Migrating pages requires updating address translations in the page table entries (PTEs)
with new mappings. While updating the PTEs, TLBs are locked to perform invalidation
of migrated page entries (known as TLB shoot-down), during which OS interrupts the
user application and issues an inter-processor interrupt (IPI) [95] to other cores with the

same page entry (also to other compute nodes, in shared memory approach). Similarly,

Chapter2: Background and Literature Survey 27

cache invalidation is required for the blocks with old physical tags. The invalidation
process (address reconciliation) is expensive and introduces long CPU stalls, and can take
around 4-13us depending on the number of cores, as pointed out by [22, 96, 97]. Further,
migration generates extra TLB misses for re-accessing invalidated entries, taking 60-80
cycles per page on a TLB-miss [98]. Lastly, each page transfer from remote to local
memory takes around 1.2-1.5 us and delays the subsequent block access when the page

is being read from memory and transferred as a large packet in the interconnect.

2.4.2 Different mechanisms for Hot Page Migration

Hot page migration can be performed in two ways, each with its own advantages and
disadvantages. An Epoch-based page migration collects multiple hot pages and migrates
them in large bunches from slower to faster memory. On the other hand, On-the-fly page
migration moves a page as soon as it is detected as hot in the slow memory. We explain

the different mechanism for page migration below:

Epoch-based Page Migration: It primarily requires three parameters. Firstly, an
epoch length decides how often the pages should be migrated. If it is small, frequent
page migrations introduce continuous CPU stalls and excessive overhead. If it is large,
all the future accesses to hot pages will be completed at slower memory even before the
migration. Secondly, the hotness threshold describes the minimum criteria for a page
to be migrated that can be identified in various ways, such as access count/frequency
to a page or other ways. If the threshold is high, it will not migrate many probable
hot pages. If it is low, many moderately accessed pages will also become hot, increasing
the network traffic and causing more starvation to block-level accesses. However, the
threshold varies for different workloads, and the decision for migration should be taken
based on the expected benefits from migration rather than a compulsion. Migrating
useless pages also means the system is trying to overkill the benefits of page migration.
Many pages might not even be accessed after migration, evicting more local victim pages
in turn. Lastly, the number of pages to migrate (NPM) describes how many pages should
be migrated together. If NPM is less, there will be frequent interrupts with CPU stalls
which also invalidate TLB entries for each batch of page migration. If the batch size
is large, the benefits of migration will be lost due to extra wait before the pages are

brought to local memory.

On-The-Fly Page Migration: This mechanism only requires a hotness threshold for
predicting hot pages and moves a page instantly when it is predicted hot. The benefit is
that most of the future memory accesses to the hot pages will be performed in the faster
memory, and it does not lose out on the benefits while waiting for more hot pages as in

the epoch-based mechanism. However, the page migration overhead can be significantly

Chapter2: Background and Literature Survey 28

large due to frequent updates in the page tables and TLBs. This can, in turn, also slow

down the application.

2.5 Fairness and QoS in Large-Scale Systems

In any large-scale system, multiple CPUs/cores/sockets compete for shared resources
such as shared last-level caches or main memory [99]. However, if there is no check on
the distribution of those resources between them, one or the other will face contention
in the system in many ways, impacting the workload running on them. Therefore,
it is important to enforce fairness and QoS for equal distribution of resources and to
provide fair execution to prioritized applications. In a disaggregated memory system,
multiple remote pools host the memory requirements for different compute nodes. If the
memory allocations and requests are distributed unevenly, they will face longer delays on
a pool with more traffic than the others. Similarly, If a node is running a high-priority
application, it should also be able to complete its memory request faster than the others

to improve the response time on a high-priority application.

2.6 Performance Evaluation of Large-Scale DMS

Without commercial hardware, performance evaluation is only possible through proto-
type implementation or an architectural simulator. However, no other architectural tool
exists for evaluating large-scale DMS. We choose to develop a new simulator as part
of this thesis work. This section briefly overviews widely used approaches required for

designing an architectural simulator.

2.6.1 Simulation Tools and Techniques

DMS focuses on memory access simulation, as the main memory references are parti-
tioned among local and remote memory. Here, we discuss different methods for memory
system simulation that can be utilized whenever necessary. The crucial point is how
the main memory traces are generated for simulating the memory system behavior and
performance evaluation of the workload. The following two simulation methods exist

for the simulation of such a system.

Trace Driven Simulation: Traces of the memory requests are collected before the
real simulation and written to permanent storage in a Trace File. The tracing can be
performed over a real machine or an emulated non-existing one. The only information

required is the type/address of memory operands. Trace Files can grow big on real

Chapter2: Background and Literature Survey 29

workloads, which serve as an input to the memory system simulator (simulating memory
hierarchy Cache, DRAM, etc) for performance analysis. The memory simulator can run
on any machine, even though the collected traces belong to a different ISA, as it only
needs to analyze the memory traces for any base architecture. The trace-based technique
is useful as it is less complex, and the same trace files can be reused again. However,
the trace is only a snapshot and cannot represent the dynamic behavior of multiple
threads. This leads to losing details, which is important for the result’s reliability. The
heavy storage requirement can also limit the usage of trace-based simulation. However,
this disadvantage can be eliminated by simulating the cache hierarchy before the trace
generation. This will only generate the main memory traces and significantly reduce
the disk requirement by more than 90%. However, this also loses the details and cannot

represent the dynamic behavior of caches and TLBs.

Execute Driven Simulation: In this technique, the simulation is followed by the
actual execution of a program. It can be carried out either directly through a memory
simulator or by coupling a memory simulator with a CPU-driven front end that drives the
memory model. In both cases, the memory or instruction trace file is generated on the
fly by executing the program’s binary. Other ISAs can also be emulated by performing
dynamic binary translation on the traced instructions before the actual simulation is
performed. This technique is accompanied by the implementation of a timing model
in the simulator. This may significantly increase the simulation time, but there is no
overhead of storing traces on the disk. Execution-driven simulators also increase the
simulation development time but allow capturing more details of a computing system

through simulation.

2.6.2 Binary Instrumentation with Intel PIN

Instrumentation tools are used for adding a control code to the program binary that
interferes with the program to monitor or modify any program behavior. This tool is
extensively used during application code development to identify and eliminate numerous
problems. Some of the instrumentation goals can be gathering metrics, automated
code debugging, detection of error code and memory leaks, etc. Intel PIN [100, 101]
specifically deals with the dynamic binary instrumentation that occurs just before or
after the code is executed through a concept called Just In Time. Pin supports multiple
operating systems like Linux, Windows, Android, and macOS, while the instrumentation
can be performed on IA32 and x86-64 instruction set architectures (ISA). Through this
framework an arbitrary code can be attached (using C or C++) at arbitrary places in
the executable. When the execution of binary takes place, it dynamically attaches the

code to perform the required functionality.

Chapter2: Background and Literature Survey 30

Print(ip);
Sub $0xff, %edx
Print(ip);
Cmp %oesi, %oedx
Print(ip);

Jle <L1>
Print(ip);
Mov $0x1, %edi
Print(ip);
Add $0x10, %eax

FIGURE 2.1: Binary Instrumentation through PIN

An example of binary instrumentation through PIN is shown in Fig. 2.1. As the instruc-
tions in the program execute, the newly added code (instrumentation) is attached to the
binary. In this case, the instrumentation code is to print the instruction pointer of the
next instruction, as shown by "Print(ip)" in the code snippet. PIN supports a rich API
that supports writing customized PIN tools from a wide range of instrumentation rou-
tines and libraries. Similarly, PIN allows instrumenting every aspect of the instruction
from the executed binary, such as instruction operation, its address, memory operands
with their address, register dependencies, branch or not, etc. All this information can

be utilized for architectural simulation at any level of abstraction.

2.7 Summary

In this chapter, we discuss multiple methodologies used in the past or are being used for
the memory scalability of server systems. We classify those mechanisms based on the
way the memory is expanded, which is either locally or remotely. We mainly focus on
remote memory scalability and discuss the evolution in interconnect technology that has
a major impact on the memory system performance for its bandwidth and latency. DMS
is not a new technology and it is the outcome of advancement in remote memory ex-
pandability mechanisms and interconnect technology that supports low latency and high
bandwidth remote memory access at fine granularity. We surveyed the recent research on
memory disaggregation and discussed various software/hardware or co-designed mech-
anisms for improving memory latency through page migration. Finally, to overcome
the experimentation challenges of a large-scale DMS, we study different mechanisms for
computer system simulation. We eventually used Intel PIN [102] to build our simulator
to evaluate DMS, described in detail in Chapter 3. In Chapter 4 and Chapter 5, we
present our hardware-based page migration systems that are suitable to be used in a
CXL-enabled DMS. Chapters 6 and 7 present methodologies for improving fairness and

enforcing QoS in large-scale DMS, respectively. Finally, chapter 8 will summarize the

Chapter2: Background and Literature Survey 31

thesis work and give pointers for future research work to improve the performance of
DMS.

Chapter 3

DRackSim: Simulating
CXL-enabled Large-Scale
Disaggregated Memory Systems

THIS chapter discusses the architectural simulator DRackSim [41] for performance
evaluation of large-scale hardware DMS. We start by explaining the design of the pro-
posed hardware DMS that will remain the same throughout this thesis. We then talk
about the simulator functionality and different modes of simulation with all the abstrac-
tions that are considered to build them. We also explain in detail all the components
modeled in DRackSim to simulate a scalable DMS. Finally, we validate DRackSim rig-
orously and perform a wide design space exploration to show the simulator’s capabilities
for system management, adding architectural optimizations, and handling interconnect

challenges.

3.1 Introduction

Considering DMS’s lack of commercial availability, a simulation framework is required to
translate research ideas into working models by getting enough insight into the system’s
performance and trade-offs. The focus of DMS deployment is towards cloud data centers
and HPC facilities and is expected to be configured at rack-scale with multiple compute

and memory nodes. A rack-scale disaggregated simulator primarily requires modeling

33

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 34

compute nodes, memory pools, and other components like memory managers and a

cache-coherent interconnect.

This work introduces a simulation framework that models an environment with all the re-
quired components mentioned above. DRackSim follows an application-level simulation
approach that uses Intel’s PIN platform [102] and introduces two modes of simulation:
a trace-based and a cycle-level simulation model. Although memory trace simulation
is fast and easily scalable, it usually lacks modeling details and restricts design space
exploration. Therefore, we also build a cycle-level detailed CPU-driven model that uses
an instruction stream produced on-the-fly through dynamic binary instrumentation of
the workloads with Pintool. The instructions execution is then simulated on a detailed
x86-based out-of-order simulation at compute nodes. Both simulation modes support
a full spectrum of single to multi-core processor architecture and a multilevel cache

hierarchy.

DRackSim models all the necessary system-level components to explore the system de-
sign space for DMS and provides an opportunity to evaluate new designs rapidly. The
compute node model includes a memory-management unit (MMU) for address trans-
lation and an address space management unit similar to an OS memory manager with
4-level page tables for allocating memory pages at local or remote memory. The in-
terconnect is based on a queue simulation model and can be configured to meet the
bandwidth and latency of the target interconnect hardware by mapping its network pa-
rameters. We modify and integrate an open-source cycle-accurate memory simulator,
DRAMSim2 [39], for simulating DRAM at compute nodes locally and at remote memory
pools. The simulator is designed from the top down to simulate multiple compute and
memory nodes where a global clock maintains the time ordering of global events such as
network access and remote memory access. It uses a multi-threaded approach (one for
each compute node) to perform fast and scalable simulations even with many multi-core
nodes and memory pools. As CXL3.0 interconnect is not yet available and DMS based
on this is still in the prototype stage, we use Gemb [40] to perform modular validation
of different components in the simulation framework and perform rigorous testing for
the reproducibility of results and portability. The main contribution of our work is as

follows:

e We introduce DRackSim, an application-level simulation framework for rack-scale
DMS that can model multiple compute nodes and memory pools with necessary

memory management and interconnect simulation.

e We present two simulation modes in DRackSim for compute node simulation: a
memory trace and an out-of-order CPU with different levels of details that can be

used wherever appropriate.

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 35

e We perform modular validation of all the components over a range of single and
multi-threaded benchmarks. Finally, we compare the performance of large in-
memory workloads on DRackSim over various configurations and use cases to
show the impact of memory disaggregation and slowdowns due to congestion and

contention.

The rest of the chapter is organized as follows: In the next section, we discuss the
motivation behind developing a new simulator and the prior work with their limitations.
Next, we discuss the DMS based on which we model different components of DRackSim.
Section 3.4 discusses the design and operations of DRackSim. We discuss the validation

aspect in section 3.5 and use case experiments over vast configurations in section 3.6.

3.2 DMotivation

The first question that arises while building a new simulator is: why yet another simula-
tor? Hardware memory disaggregation is a relatively new research area and an emerging
memory system. Although software disaggregation and its real-world implementations
[63, 64, 103] have been there for a while now. These systems differ from hardware-based
CXL disaggregation and only support page access to remote memory. The concept of
remote memory pools (or memory blades/ memory nodes) with coherent access over
memory-semantic fabrics is new and yet to be commercialized. Some simulation/emula-
tion environments exist for hardware memory disaggregation [34, 35], but all are limited
to evaluating only a single node. Lim et al. emulated hardware memory disaggregation
on top of the XEN hypervisor [9] by marking some allocated memory pages as remote
in VMM page tables while adding fixed network latency on memory access. However,
emulation platforms cannot predict true memory latency, as local and remote accesses
both use the same physical memory. On the other hand, some hardware prototypes
were also built using FPGA’s [13, 15, 34, 35], but evaluation on scale is an issue. Some
proprietary disaggregated memory implementations exist, such as Intel RSD [104], Face-
book’s Open Compute architecture [105], etc., for which little detail is available in public
domain. Modifying open-source architectural simulators such as Gem5 [40], MARSSx86
[106], Sniper [107], etc., requires a vast effort to simulate disaggregated memory models
while considering their inability to model multiple compute nodes. Further, it will also
require the modeling of remote memory managers for remote address space and signif-
icant modifications to existing memory managers in compute nodes. In Daemon [37],
authors heavily modify Gemb to model memory disaggregation but test a scaled-up en-
vironment with artificial network traffic. Also, the code is not made publicly available.
Hence, building a dedicated simulator is worth an idea. Further, it is necessary to model

DMS for a scalable environment to study various factors limiting performance. With

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 36

(
Local Memory Local Memory Local Memory
Compute Node Compute Node Compute Node

\ IF / IIF
- — T — = =
- l
-~ < Interconnect
JUF\

Global Memory 7”7 —
Manager and Controller 7 Network Error
s Protocol Control
0
Translation emory
7/7":\T Memory l Queue
Memory = o
Node

IF\’Ietwork Compute Memory Node Controller
rotocol
Node

Remote Memory
Controller

FI1GURE 3.1: Overview of DMS and its Interface with Host Compute Nodes

more compute nodes, memory access traffic will generate congestion on the network and
contention in queues at remote memory pools. The interconnect latency and bandwidth
will become crucial for application performance. It will also allow for a deeper study
of memory management in a scaled-up environment. To our knowledge, no other sim-
ulator model fulfills such requirements, which is the primary reason behind developing
DRackSim.

3.3 Baseline Hardware Disaggregated Memory Systems

Fig. 3.1 shows the abstract view of a hardware DMS consisting of compute nodes, mem-
ory nodes, interconnect, and a global memory manager/controller. Compute nodes are
the primary focus for performance evaluation, have a small amount of local memory, and
rely on remote memory for most application requirements. Remote memory pools/nodes
are the memory-only nodes from which a central memory manager allocates memory
on demand to the compute nodes. As shown in Fig. 3.1 Global memory manager is an
in-network centralized remote memory manager and controller that performs memory-
related activities, such as memory allocation, revocation, etc., in the remote memory
address space. An Interconnect is the binding fabric that supports coherent memory ac-
cess from the compute nodes in allocated remote memory address space. The compute
nodes are interfaced to the network interconnect through a remote memory controller, an
addressable hardware module similar to a local DRAM controller. The LLC misses that
belong to the remote memory addresses are forwarded to the remote memory controller,
which then performs address translation and implements network protocol in hardware
before sending it to the physical layer interface (root port in CXL). A similar controller
is present at the memory nodes to decode the network memory request packets and send

back the responses to CPU nodes.

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 37

3.3.1 Remote Memory Organization

The scalability in hardware disaggregated memory will largely depend on the remote
memory organization schemes and the way remote memory is exposed to the system
at compute nodes. Remote memory can be organized using a shared memory or as a
distributed approach, as shown in Fig. 3.2a and 3.2b, respectively. In the shared memory
approach, all the remote memory address space is visible to the OS at compute nodes
with a single global address. The application can be allocated a page at any address
while supporting page sharing between nodes, with the owner node acting as a home
agent for that page. Such memory organization will still generate excessive memory
coherence traffic (to memory nodes and other compute nodes) in the network due to
shared pages, limiting the system’s scalability. The compute nodes will also require
frequent communication with a central authority (global memory manager) to prevent
an address conflict during a remote page allocation, creating a bottleneck in the global
memory manager while serving page allocation requests. However, the advantages are

that the applications can also span multiple servers to meet the computing requirements.

On the other hand, hardware DMS does not need to span application threads across
multiple nodes. Modern high-end multi-processor systems support tens of cores, and
most data center applications can fulfill their computing requirements within a single
node. Even if the workflows get spanned across multiple nodes, they run independently
with occasional communication. The distributed memory organization can fulfill such
requirements without an allocation bottleneck. In this organization, remote memory
address space is not initially visible to compute nodes. The remote memory can be
reserved in large-sized chunks, say 4MB-16MB (easy to evict and deallocate chunks),
whenever a node requests. This approach will also require a global memory manager to
reserve remote memory for a compute node. However, allocation in larger chunks will
not create a bottleneck because of the lesser frequency of requests. Considering these
benefits, DRackSim models a distributed approach and uses extra hardware for address
mapping at the compute node’s remote memory controller, as shown in Fig. 3.3. This
mapping is required for translating the local physical addresses to the remote physical
address for the allocated remote memory chunks, which differs from virtual to physical
address translation at TLBs. Frequently used addresses can be cached in the remote
memory controller, adding a few extra cycles on each remote memory access. The newly
allocated remote memory can be added to the compute node’s address space at run-time
using the hot (un)plug service available in Linux OS. Once initialized, the new memory
is available as an extension of the local address space that can be used for regular page

allocation.

With the distributed approach, the compute node will have exclusive access to remote

memory chunks allocated to it. This allows coherency traffic to get limited to a single

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 38

Local Local
Memory Memory
Remote Remote Chunk

N
(remote s, [
/| Memory Remote Chunk ~[.mMemory
\ Compute Node) / Node \ Compute Node)\ Node
/ﬁ N
Local / JMemory
[] Memory /
LA

—

]
I

Remote Chunk

Remote Chunk

\ Compute Node / \ Compute Node /
(a) b)

—

FIGURE 3.2: Remote Memory Exposure to Compute Nodes (a) Shared Organization
(b) Distributed Organization

Local Base | Chunk Mask [Remote Base [Memory)
Address Size Offset Address Pool ID

Pool-ID,
Remote Phy.
Address

Local Phy.
Address

FIGURE 3.3: Address Translation at Remote Memory Controller

compute node domain and to its allocated remote memory. This eliminates the need to
maintain inter-compute node coherence while enhancing scalability. Further, the major
part of the compute node’s cache capacity will consist of remote memory data, and the
types of caches (write allocate/no-allocate, write-through /write-back) are crucial for the
extent of coherence traffic between compute and memory nodes. The outward coherency

traffic to memory pools can be minimized using write-back caches at compute nodes.

3.4 DRackSim Design and Operations

Fig. 3.4 gives an overview of the complete simulation process in DRackSim with its
two-phase design: a front-end and a back-end. A Pin-based front-end performs the ap-
plication analysis, whose output is fed to the back end for scalable multi-node simulation
with disaggregated memory. DRackSim supports two different modes of operation: a

trace-based simulation model and a cycle-level detailed simulation model.

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 39

Application Analysis Multi-Node Simulation

Independent of Host OS -~ -
= TN Compute Node[sggrass
Gy : o JCom) | oo

App

Interconnect

Computé‘hlode
LM |[(MMUY | T

~ ~

Global Memory
Manager

Remote Memory
Access \

i nTool race/lnst. ream M ™,
L, o
3 .

N
T SN ’ &
~~-__ 4% DRAM -
Ty Simulation .
‘DRAMSim2"

FIGURE 3.4: DRackSim infrastructure overview; "LM" Local memory, "MMU" Memory
management unit, "IF" Interface

Traced Memory Operands Core-1 Core-n
] Miss-1 10 Miss-1 2
Mem_Accl Miss Miss-2 15 Miss-2 18
Binary Inst. y .
with pin | Mem_Acc2 - Hit . -l
Mem_Acc3 Hit Miss-3 84 Miss-3 89
—>)
Mem_Acc4 Miss
Mem_Acc5 Hit Main Memory
i Access Miss-1
Mem_Acc6 Miss V Miss-2 10
Miss-1 4 Miss-3 15
v) Miss-4 18
1 Miss-2 16
Miss-3 24 -
4-Cycle Miss-x 84
Miss-y 89

(a) (b)

FIGURE 3.5: Trace Generation (a) Recording Main-memory access (b) Final Multi-
Threaded Trace

3.4.1 Trace-Based Model

The trace-based simulation is faster than the CPU-driven memory model and can quickly
evaluate disaggregated systems on a large scale for billions of local and remote memory
accesses. Pin provides with its package a tool named Allcache that performs a functional
simulation of the single-core cache hierarchy. We extend this tool to support multi-
core TLB and a 3-level cache hierarchy (private I/D-L1, L2, and shared L3) and add
support to instrument multi-threaded workloads. The instrumentation is done at the
instruction-level granularity, and each thread is mapped to one of the cores based on its
thread ID. The tool generates memory references whenever an instrumented instruction
has a memory operand. The memory references are passed through the TLB/cache
model to generate an approximate cycle number for each LLC miss. With the help of
access latency at each cache level and the hit/miss status of all the memory accesses,
an aggregate counter is maintained to determine the clock cycle number. If the memory
access is a miss at LLC, it is recorded in a trace file with the aggregate counter. Fig.

3.5a shows an example of generating main memory traces on a single cache level with

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 40

iCache Ins-Q @]
iTLB

RAT
RS ROB

| ARFE

FI1GURE 3.6: Out-of-Order Core Modeling Subsystem

4-cycle latency. Each memory access (hit or miss) takes 4-cycles for cache lookup, and
a counter keeps track of the aggregate cycle number. All the cache misses are recorded
in a trace file with the thread ID, address, access type, and the value of the aggregate
counter representing the cycle number of main memory access generation. A similar
process is followed to collect LLC misses at different cores, which are merged and sorted
to generate a single trace file. The file represents the workload’s main memory accesses
while maintaining its multi-threaded nature, as shown in Fig. 3.5b. Even though main
memory traces are less accurate than a real CPU model driving the memory model,
they are convenient to use and consume significantly less disk space than CPU-generated
memory traces. However, traces are static and do not allow system-level optimizations
like hot-page migration, page-swapping systems, cache prefetching, etc., that change the

state of TLBs and caches during the simulation.

3.4.2 Cycle-Level Simulation Model

Due to the above-mentioned limitations in the trace-based model, we present a cycle-
level simulation model for the multi-core out-of-order x86 processor architecture at the
compute node. In this mode, the pintool scope is restricted to producing an instruction
stream by intercepting each executed instruction in the workload. The trace consists
of instruction type (int/x87 ALU, int/x87 mul/div, SSE (vector), branch, nop, etc.),
instruction address, memory operand address/size, and register dependencies for each
instruction. The core and cache subsystem modeling is handled at the back end in this

simulation mode.

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 41

Out-of-Order Core Modeling: Fig. 3.6 shows the details of the OOO pipeline core
modeling subsystem. The core model implements multiple pipeline stages (fetch, decode,
issue, execute, write-back (WB) (WB), and commit) at a higher level of abstraction with
detailed modeling of hardware structures such as instruction queue (Ins-Q), reservation
stations (RS), re-order buffer (ROB), architecture register file (ARF), register-alias table
(RAT), and load-store queue (LS-Q), as shown in Fig. 3.6. The instructions are read
from the instruction stream generated by Pin, after which a fetch unit simulates the
instruction fetch for multiple instructions within a cache line rather than fetching them
individually. This is also pointed out in the previous work as many other academic
simulators fetch each instruction separately [108, 109]. The decode unit decodes the
instruction, puts it into a buffer, and checks for the branch and its prediction result.
The instruction waits in the decode buffer until the hardware resources are allocated.
A limitation of performing binary instrumentation is that the execution of a process
is decoupled, and it never goes down the wrong branch path in simulation. But the
Pin API can tell whether an instruction is a branch. A branch predictor matches the
prediction result with the information passed by the pin, and a penalty is added in case
of misprediction, during which the CPU remains stalled. The issue unit allocates an
entry for the instruction in the RS and ROB or stalls it if no free entry is available. The
incoming instruction in the RS clears its register dependencies by accessing the ARF or
from the RAT, which points to an ROB entry. The instruction waits if some previous
instruction does not free a register yet. The memory read operands (if present) are
sent to an address generation unit (AGU) to simulate effective address calculation and
forward the address to the load-store queue for memory access. If the same load address
is already present in the queue as a store in LS-Q), it is directly forwarded to the waiting
instruction in the RS without adding a new load in the LS-Q. Once the dependencies are
clear, instructions are moved to a ready queue. The dispatch unit selects and allocates
execution units based on the instruction type and opcode. The execution latency can
simply be configured for each type of instruction and its operation based on the number
of cycles it takes to execute in the target processor model. Finally, the result gets
broadcast among all the hardware structures: the waiting RS entries clear their memory
or register dependency, instruction status changes to ’executed’ in ROB, and a write-
back is performed to memory if there is a write operand. Only in the commit stage is the
ROB entry released, and updates to the register file are performed to make it available
globally. DRackSim allows the user to configure all the CPU parameters (CPU width,
Ins-Q, Decode buffer size, ROB size, LS-Q size, etc.) to simulate target hardware.

Cache Modeling: The cache model comprises a multi-level hierarchy with private L1
I-D, L2, and shared L3 cache. The non-blocking caches support multiple outstanding
misses using miss-status handling registers (MSHRs) with a configurable number of
entries. The memory access for instruction fetch or load/store queue starts at the TLB

for virtual to physical address translation and uses 4KB fixed-size pages. Once the

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 42

memory access reaches LLC MSHR, it is queued for the main memory access and DRAM
simulation. The caches can be configured to be either write-allocate or no-write-allocate.
Finally, the cache subsystem notifies the corresponding entry in the load/store queue on
completing a memory request, which is then broadcast to clear the memory dependencies

of the waiting instructions in the RS.

3.4.3 Back-end Modeling

The back-end of DRackSim simulates an environment similar to a large-scale DMS with
multiple compute nodes running simultaneously on different simulation threads. The
memory accesses produced by the compute nodes drive the DRAM simulation at local
or remote memory. The local memory requests are directly simulated at the node’s local
memory, and remote memory requests are passed through an interconnect model before
being simulated for memory access at the remote memory pool. We explain here all the

simulated components to model disaggregated memory behavior.

Compute Nodes: Besides CPU and cache simulation, compute nodes simulate a local
memory unit and a memory manager to make memory allocation decisions and manage
address space. The memory manager is an abstraction of processor MMU for address
translation and an OS memory manager for address space management and memory
allocation at the compute node. A memory request reaches MMU on a TLB miss
and performs a page-table walk with a defined latency. If the page is not in memory,
the request is forwarded to the page-fault handler for memory allocation and creates
a page-table entry (PTE). DRackSim models 4-level page tables for mapping virtual
addresses to the physical pages. The memory manager allocates a new page in local or
remote memory based on the allocation policy and availability of free memory space.
The page-fault service stalls the CPU and incurs fixed latency, which can be configured
to model the OS page-fault latency. The page allocation in disaggregated memory is
crucial, and the memory manager should carefully decide the footprint ratio in local
and remote memory for different applications running at the compute node. The re-
sponse time of latency-sensitive applications can be significantly impacted compared to
latency-insensitivity applications. An uninformed page allocation policy that does not
consider the sensitivities of different applications while allocating the memory pages in
local/remote memory can result in high average memory latency, impacting applica-
tion performance. The memory allocation at the compute node in DRackSim can be
configured to allocate memory pages in any ratio from local and remote memory. The
modeling of these components allows for exploring memory management policies that

can make such decisions.

Global Memory Manager: The global memory manager (and controller) takes care of

the remote memory address space in all the memory pools and reserves remote memory

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 43

from one of the pools on receiving a request from compute nodes. The global manager
handles conflicts during remote memory reservations to different nodes and acts as a
load balancer while choosing a memory pool for allocation. The remote memory is
allocated in large granularity chunks rather than single pages (possible in distributed
memory organization) and hence does not introduce allocation bottlenecks. The remote
memory allocation requests are initiated by the compute nodes’ page faults and then
resolved by the global memory manager at the switch by allocating remote memory
chunks. Therefore, the remote page fault handling latency latency is configured larger
than the local page faults. The maximum number of simultaneous requests is defined
by the MSHR at the dTLB. On reservation of a memory chunk, it will share chunk
details (pool-id, remote base address,s size, etc.) with the requesting compute node,
creating an entry in its mapping table as shown in section 3.3. The memory pools
are bound to face contention in their queues when several compute nodes access the
same pool simultaneously. To avoid contention and tail latency, memory pool selection
should be done so that all pools face almost similar amounts of memory request traffic. It
should also ensure QoS to different applications running on compute nodes with different
sensitivities towards memory latency (compute vs memory-bound applications) using
request scheduling mechanisms. DRackSim follows a round-robin pool selection while
reserving a memory chunk. It allows further exploration of similar pool selection policies
for memory performance evaluation impacted by contention when memory requests (lead

by allocation) are unequally distributed among pools.

Interconnect Model: The interconnect model in DRackSim is based on a queue sim-
ulation that simulates the behavior of memory-semantic fabrics such as CXL or other
similar interconnects proposed for disaggregated memory. The interface (similar to NIC)
at the compute nodes (memory requestor) and memory pools (memory responder) allows
access to remote memory through the network. The on-chip integration of the fabric and
lightweight network protocol implementation in the hardware allows low-latency cache
line access from remote memory during an LLC miss. The remote memory accesses
from multiple compute nodes pass through a central switch before accessing the pooled

memory. The bandwidth and latency can be configured to match the interconnect.

DRackSim simulates both cache line and paged access from the compute nodes to remote
memory pools for design space exploration. If an LLC miss refers to remote memory
address space, it accesses the local-to-remote address map (discussed above) at the
compute node’s remote memory controller. The memory access is encapsulated into
a network packet containing the destination memory pool-id and its remote physical
address, as shown in Fig. 3.7b. The model uses fixed 64-byte packets for a memory
request, as the payload consists of only a memory address. The packet is then pushed
into the queue structure at the controller’s network interface after adding a delay for

packetization. While the packet transmits from the compute node to the switch, it incurs

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 44

_ Configurable

_.-" sizeBuffers >~ _
- - ~ S~
Packetization = . -7 ~ L~ izati
" _~" Processing _~ ~. Processing ~~_ Packe:_lzatlon
. - 7 ~ ~o
Processing Delay -~ 7Delay - ~ De'a}’ ~~ _Processing Delay
- <_- R N ~
e ___Interconnectr___ <4 S “~a
Port-1 | : !
TX/Rx | | | Transmission
I g gl [P +
Comdpute Propogation Delay | / VQs VQs | /Propogation Delay “:Iirg:?
Node-1 /X switching A

\ /
N Delay p

— 4 _—
v *VQs / -
S~ Arbitrator -
s

e
~. Port e
Arbitrator

4 t remote phy addr;

t trans id;
isWrite block req;
1sPAGE;

(b)

FIGURE 3.7: (a) Interconnect Simulation Model detail (b) Packet Structure for Remote
Memory Access

transmission and propagation delays based on configured bandwidths at the nodes and
hop distance. It is then added to the switch input port queue and faces a processing
delay. The interconnect model implements a crossbar topology that supports single-
hop communication between compute and memory nodes. It supports virtual queues at
switch ports to avoid head-of-line blocking, and a 2-stage switch arbitrator selects the
packet for forwarding in each cycle. The first stage arbitrator selects one of the input
ports, and the second stage selects from one of the virtual queues at the selected input
port. The packet is added to the buffer at the destination output port after adding a
switching delay. Finally, it reaches the network interface of the destination memory pool
for DRAM simulation. A similar way is followed at the memory pool to send back the
response to a compute node using the source address of the memory access packet. The
response packet holds a cache line of data as a payload for block accesses, and its size
can be configured accordingly based on cache block size. Similarly, write-backs from

compute nodes to remote memory also use a packet size capable of storing a cache line.

Further, page requests from compute nodes to remote memory are also simulated. Mem-
ory pools can differentiate between block or page request packets through the additional
information present in the header. The response from the memory pool can be sent as
single or multiple small-sized packets that the user can configure. The reassembly logic

collects all the response packets at the compute node to form a memory page and notify

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 45

on receiving a complete page. This functionality can be used to implement hot-page
migration systems to reduce average memory latency. However, poorly scheduled page
access can starve the critical block accesses and should only be used to supplement cache
line accesses for utilizing locality in hot pages. Further, the network interface and the
ports at the switch support configurable size buffers at both ends and implement a reli-
able network with back-pressure flow control in case a buffer gets full. The interconnect
model in DRackSim can be configured with different latency and bandwidth to simu-
late target hardware (CXL1.0/3.0) for cache line and page transfer. Fig. 3.7a shows a

complete view of the interconnect simulation model in DRackSim.

Some memory systems might have an optimal memory fetch size bigger than a cache
block but smaller than a complete page. For those cases, DRackSim allows configuring
the memory fetch size by specifying the address range within a page. However, we leave
it to future work to explore such optimizations and implement new hardware structures
(e.g., bulk prefetching into buffers). The baseline system without extra hardware only

fetches a single cache line from memory pools on an LLC miss.

Memory Simulation: We integrate cycle-accurate DRAMSim?2 [| for DDR4 simulation
of local and remote memory. We initialize multiple instances of DRAMSim2 memory
units using its Memory System interface, each representing either the local memory at
a compute node or remote memory at a memory pool. DRAMSim2 provides a callback
functionality to notify the CPU driving the memory model on completing every memory
access. We modify the MemorySystem interface and callback functionality so that each
memory unit (at a node or remote pool) can have a separate identity. We further modify
the addtransaction function, which adds a memory request to a memory unit, to include
a node-id of the requester, a transaction-id, and other metadata for the collection of
statistics. The modifications allow tracking the completion of memory accesses at each

memory unit separately and correctly sending back a response to the requesting node.

Simulator Implementation and Clock Management: The back end of DRack-
Sim handles the scalable disaggregated memory simulations of multiple compute and
memory nodes. In the trace-based model, multiple traces are collected (one for each
node) to be parsed in parallel to perform memory and network simulation representing
a multi-node environment. The memory requests are split across local/remote memory
and in-between different memory pools based on their access address and the location
of respective pages. In the cycle-level simulation, multiple instruction streams are gen-
erated simultaneously by separate instances of Pintool (one for each node). All the
instruction streams are then continuously fed to the back end in parallel for multi-node
disaggregated memory simulation. We also add support for instrumenting multiple ap-
plications to create workload mixes at a single compute node. The user can skip any

number of instructions to jump to the region of interest in a workload.

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 46

At the back-end, DRackSim model consists of multiple independent components such as
compute nodes, memory pools, interconnect, etc., which are synchronized with a single
global clock. This is necessary to maintain the time-ordering of global events, such as
simultaneous network and remote memory accesses from different compute nodes. The
number of compute nodes, memory pools, and the frequencies of individual components
(compute/memory nodes and interconnect) can be configured separately, and the global
clock only provides a common reference time for the functional correctness of the sim-
ulation. The simulation of each compute node is performed using a separate thread,
and thread-barriers are utilized for synchronization and controlling the simulation flow

of multiple nodes. This allows simulation of large-scale DMS without much slowdown.

3.5 Validation

It is important to cover different validation aspects while developing a new architectural
simulator. The first one is the functional correctness of the program. In our case,
application functionality is decoupled from the actual simulation process, where Pin
runs it natively. Although Pin can change application functionality and data flow (e.g.,
by changing the register values), our Pintool is restricted to adding only instrumentation
primitives to the source binary for generating program traces. We verify the functional
correctness of the Splash-3 benchmark suite, which DRackSim correctly maintains. The
second aspect is the accuracy of performance metrics. While validating the simulator
with actual hardware is important, the availability of a full-scale disaggregated system is
an issue. The integrated on-chip interconnects, such as CXL, are not yet commercially
unavailable, and similar interconnects have only been tested with small-scale prototypes
using FPGAs [13, 15, 110]. The next generations of Intel Xeon [29] and AMD EPYC [30]
processors are expected to come with CXL v1.1 support, but the functionality of CXL
memory controllers and remote memory managers is not clear yet. Further, CXL v1.1
does not support a switch for connecting multiple CXL devices (memory pooling). On
the other hand, the performance of RDMA-based memory-sharing servers significantly
rely on the software implementation and usage of RDMA constructs in the application.
Moreover, RDMA does not support cache coherence, which makes it a non-candidate

for validation.

Due to the unavailability of hardware, we choose to validate DRackSim with a stan-
dard open-source simulator and incrementally validate the individual components. As
a best-effort approach, we validate the core and cache subsystems of DRackSim against
Gem5 system emulation (SE) mode. We validate the network interconnect against the
closest hardware prototype and also show the performance impact with a wide set of

experiments in the next section. We set the processor width and instructions latency for

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 47

TABLE 3.1: Validation Parameters

Element ‘ Parameter

CPU 3.6GHz, 8-width, 64-InsQ, 64-ResvStation,
192-ROB, 128-L.SQ

L1 Cache 32KB(I/D), 8-Way, 2-Cyc, 64B block

L2 Cache 256KB, 4-Way, 20-Cyc, 64B block

L3 Cache 2MB per core shared, 16-Way, 32-Cyc, 64B block
Cache Type | Write-Back/Write-Allocate, Round-Robin

Normalized IPC | ml-core m2-Core m4-Core

1.6
1.2
0.8
0.4
0

o &

‘\6\@ & ‘oéo ooe?(\ &0‘\ 0& 0@(‘6 ‘f’o‘ (;'Q'b \6"\'6 o W 06*- .\é}

o 0‘49 @(“ ¢°\ Q{s@ .;\""& &0 [

Normalized LLC Misses Olcore @2core MA4-core WDirectCXL @ DRackSim

1.6
1.2 2k
0.8 L
o
0.4 g 1k
0 0k
& € ,b@é’ oc,e*\ &o"‘\\ ¢@"z °@°b ,\5‘”0 . Tl &69 oF o & 0“5‘ BERAFENT
Y N & (MY
[V VA & & ¢© Payload (Bytes)

(b) ()

FIGURE 3.8: Validation on Splash-3 benchmarks (a) Normalized IPC (b) Normalized
LLC Misses (¢) DRackSim vs DirectCXL

each instruction type to the same values for calibration and used the same size struc-
tures for all the hardware resources (such as InsQ, RS, ROB, and LSQ) in Gem5 and
DRacKSim. We further fix our simulator’s page fault and TLB-miss latency as per
Gemd, which only adds 1 or 2 cycles on each such event in SE mode. Table 3.1 shows

the system configuration for CPU validation.

We perform the CPU validation for 1, 2, and 4 cores over Splash-3[111] benchmarks by
spanning the same number of threads as the number of cores. Figure 3.8a shows the
CPU validation results with normalized IPC values of our simulator compared to the
IPC values of Gem5. The IPC numbers of DRackSim are close to Gemb IPC for most
of the benchmarks and show a mean absolute percentage error of 12% across all core
configurations. Similarly, we validated the cache subsystem using the LLC misses, which

can represent the behavior of the complete cache hierarchy and is a standard approach

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 48

Normalized LLC Misses

12 m fft m fmm = barnes ocean = raytrace = volerand = water-nsq = water-spa m cholesky m lu_nc m lu_c m radix
0.8
0.4
0
6 8 4 2|1 8 4 2|16 8 4 2|1 8 4 2|16 8 4 2|16 8 4 2|16 8 4 2 mape
2MB 1MB 512kB 256kB 128kB 64kB 32kB

Ficure 3.9: Last Level Cache Misses normalized against Gemb over different cache
configurations

for cache validation [108]. LLC is an interaction point between the multi-level caches and
memory hierarchy and is a suitable candidate for overall cache validation by measuring
the number of misses or the miss rate at LLC. Figure 3.8b shows the LLC validation
results for all workloads. We only observe an unexpectedly large error in the case of
contiguous__ocean with a 1-core CPU. Besides this, the mean absolute percentage error is
around 3% across all benchmarks on 1, 2, or 4 cores CPU. Finally, we validate DRackSim
for raw memory latency against that of a Direct-CXL prototype [85]. We simulate the
same cache latency (L1:4, L24), LLC MSHR (16), CPU frequency (100MHz), and CXL
switch frequency (250MHz) as mentioned in [78]. The micro-benchmark only consists
of instructions that fetch a small amount of data (64B to 4KB) from CXL-connected
DDRA4. Fig. 3.8c compares raw memory latency for different payload sizes in DRackSim
against Direct-CXL.

We further perform an in-depth validation for the LLC misses over a range of L3 con-
figurations on a 4-core CPU, shown in figure 3.9. We reduced the L2 size to 64KB to
maximize the number of cache misses at LLC. Here also, we observe a slight variation in
the LLC misses for DRackSim compared to Gem5. We observe a mean absolute percent-
age error of 7.5% for all workloads aggregated over all configurations. The LLC misses
are slightly inflated or deflated in some configurations, which is due to the difference
in implementation details of the cache hierarchy between DRackSim and Gems. We do
not implement a separate write buffer, so the LLC must evict a block during the write-
backs. Another reason can be using separate load and store queues in Gemb, whereas
DRackSim has a unified load/store queue that can create a small difference in the total
number of non-redundant loads and stores. These differences can generate variation in

cache accesses, and inaccuracies can accumulate from lower-level caches to LLC.

The variations observed in the results are common among different simulators, as shown
for validation efforts in the past [108, 112]. Ayaz et al. surveyed major architectural
simulators (Gem5, MARSSx86, Sniper, etc.) and observed significant variations in their
IPC values and LLC misses compared to real x86 hardware. The main source of in-
accuracies is due to the lack of support for fused micro-operations (uops), the pipeline
depth, the lack of modeling for all hardware optimizations, and the abstraction of ac-

tions performed during branch miss-prediction. Further, Gemb uses separate load/store

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS

49

TABLE 3.2: Benchmarks

Benchmark name Domain Input LLC
Misses
Stream Cluster (SC) [113] Data Mining | Pts:65536 Dim:256 3.67
Needleman Wunsch (NW) [113] | Bio-inform. | Rows/Col:4096 Pen:4 6.68
Block Tri-diagonal (BT) [114] CFD Class C 2.97
3D Fast Fourier (FT) [114] CFD Class C 28.63
High Perf. Conj. (HPCG) [115] | HPC 104 x 104 x 104 2.71
K-core Decomp. (KD) [116] Graph Proc. | V:1M E:10M 0.95
K-means Clustering (KC) [113] | Data Mining | kdd_cup 0.62
Lulesh (LU) [117] HPC Cube Mesh Size:120 5.29
Multi-Grid (MG) [114] CFD Class C 37.95
miniFE (FE) [118] HPC 140 x 140 x140 14.89
PageRank (PR) [116] Graph Proc. | V:1M E:10M 0.95
Particle Filter (PF) [113] HPC 2K x 2K 20K Particles | 33.13
Pennant (PEN) [119] HPC leblancx4.pnt 8.02
SimpleMOC (SM) [120] HPC small 1.75
SRAD (SR) [113] Image Proc. | 4K x 4K Data Points | 3.19
XSBench (XSB) [121] HPC small 8.32

queues, whereas DRackSim has a unified queue that can create a small difference in the
number of non-redundant loads/stores. These small inaccuracies can accumulate from

lower-level caches to LLCs.

3.6 Evaluation

In this section, we demonstrate the working of DRackSim over various configurations and
provide use case evaluation by modeling different data movement schemes in DMS. We
also show the impact of the network by changing the latency and bandwidth parameters

at the node’s interface and the switch.

We evaluate the performance using various multi-threaded benchmarks shown in Table
3.2. We chose five workloads from the Rodinia heterogeneous benchmark suite: SC,
NW, KC, PF, and SR, that simulate applications from different domains such as data
mining, bio-informatics, image processing, etc. Two graph processing workloads, KD
and PR, were chosen from the Liagra framework. Three workloads, BT, FT, and MG,
are selected from the NASA parallel benchmark suite that mimics the computation and
data movement in computational fluid dynamics applications. Further, we use six more
multi-threaded workloads and mini-apps from the domain of HPC: HPCG, LU, FE, PEN,

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 50

TABLE 3.3: Simulation Parameters

Element ‘ Parameter

Page Fault 9ps

Global Memory Manager | 15ps (Memory Chunk Allocation)

Memory (Loc/Rem) 2400MHz DRAM (19.2GB/s)

Switch 100/400Gbps, 4MB port Buffer, 5/10ns for Proc/Switching
Network Interface 40/100Gbps, 1MB buffer, 15/30ns for (De)Packetization/Proc
Packet Size 64B Req, 128B Resp, 128B Write-Backs, 4KB for Page Access

SM, and XSB. The selected workloads have a wide range of memory footprints, ranging
from 38MB to 3.2GB, and vary in memory access patterns. We run openMP versions of
all the workloads and only simulate the multi-threaded regions of the workloads (except
PF, which has a significantly large single-threaded phase) using 4-threads, with each
thread spanning one of the cores (no hyper-threading). The simulations were run for
at least 400 million instructions for each multi-threaded workload and 100 million for
PF, which was slow and took a long time. The last column of the table shows the total
number of LLC misses or main memory accesses (in millions) for all workloads during

the simulation period.

Finally, Table 3.3 shows the network and memory parameters for the simulation, while
we use the same CPU and cache parameters mentioned earlier in section 3.5. We use a
page fault handling and remote chunk allocation latency of 9ps and 16ps, respectively.
We assume a 64B data packet for the remote memory request packet from the compute
node. On the other hand, the response packet from the memory pool and remote
memory write-backs will contain a cache block of data and have a packet size of 128B.
The remote page request is also 64B, whereas the page access is performed by adding 64
cache block requests to the memory unit, and the response is sent as a single 4KB packet.
For interconnect, we consider 100/400 Gbps bandwidth for the switch and 50/100 Gbps
bandwidth at node interfaces. We also vary the latency, which is 15 or 30 ns at nodes
for (de)packetization and processing and 5 or 10 ns for processing and switching at the
switch. Each remote memory access will pass four times through the node interfaces
(request /response at compute node and memory pool) and two times through the switch

(request /response), bringing the total latency factor to 70 or 140 ns.

3.6.1 Design Space Exploration

To understand the impact of memory disaggregation with traditional server systems, we

modeled four use case scenarios with DRackSim:

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 51

’ Elocal mBlock [OBlock+Page O Page | ‘ Bandwidth: 100/400Gbps
3.8 3.96 77 Latency: 15/5ns

7.12

w

Wil il

SC NwW BT FT HPCG KD KC LU MG FE PR PF PEN SM SR XsB

N
|

Slowdown
[y

o

(D Block: The first is our baseline hardware DMS in which all the remote memory
accesses are made at the cache block granularity on an LLC miss. The pages are
allocated alternatively in local and remote memory, each having 50% of memory

footprint.

(2 Page: Next, we model a software disaggregated memory where the remote memory
accesses are always made at page granularity. The page allocation is performed
in the same manner with 50% of the workload footprint at remote memory and is

migrated to local memory on the first reference to it.

(3 Block+Page: Next, we model a very simplistic page migration on top of the
baseline hardware disaggregated system that only migrates some of the hot pages
in remote memory to local and utilize locality for future accesses. The memory
requests to other remote pages are still made at cache block granularity. The page
migration threshold is set through a simple training phase and is fixed at 20%
access count of total accesses to predicted hot pages during training. Further, no

special support is added for scheduling page migrations.

@ Local: Finally, we model a local-only system that assumes big enough local mem-
ory to fit the entire workload footprint. This system will have no remote page
allocation, and all memory accesses are performed in local memory at block gran-

ularity.

The systems described in (2) and (3) require an update to system page tables on every
remote page migration and invalidate TLB entries on all the cores. This introduces long
CPU stalls and may further take around 4us — 13us (depending on the core count) [22]
for TLB-shootdown after every migration. Therefore, for a fair comparison, we perform
page table updates in large batches of 1024 pages and use a remap table to delay page

migrations by temporarily storing the new physical address of a migrated page.

We start our evaluation with a single compute node with one memory pool to show the
performance impact of all three configurations compared to local. With a single compute
node, all the network and remote memory bandwidth is available only for that node.
In Fig. 3.10, we show the performance slowdown and increase in memory access cost
for all the workloads at bandwidth and latency combination of 100/400 Gbps and 15/5

ns, respectively. As expected, we saw a significant performance slowdown that ranges

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 52

| mlocal mBlock OBlock + Page [Page ‘ Bandwidth: 100/400Gbps
5.47 Latency: 15/5ns 4.08

Memory Cost Increase

0 T
SC NwW BT FT HPCG KD KC LU MG FE PR PF PEN SM SR XSB

FIGURE 3.10: Impact on system performance (top) and memory cost (bottom) on all
the workloads over all four configurations

from 10% to 120% for Block compared to Local. The variation in the slowdown for
different workloads is due to changing memory access patterns, memory sensitivity, and
the number of memory accesses. SC and PF are more sensitive to increased memory
latency and face maximum slowdown. HPCG, KD, KC, and PR are less sensitive to
memory latency and observe slowdowns between 5%-18% even after facing a significant
increase in memory access cost. Although most workloads have similar average memory
latency with Block, some show more variation when compared to Local. For instance,
NW, BT, FT, MG, and FE face the least increase in memory cost, as these workloads
already have large memory latency with Local (ranging between 70-100 ns) due to
a streaming access pattern as the memory bandwidth is limited. With disaggregated
memory, the requests are first distributed across two separate memory units (local and
remote), thereby eliminating some contention due to more bandwidth. However, FT,
MG, and FE still face a 25% to 30% performance slowdown due to a significantly high
memory access count, unlike NW and BT, which have fewer memory accesses and did
not face much impact from having 50% of memory footprint in remote memory. MG
and PF have large memory accesses, but PF being single-threaded, could not use as

much memory parallelism to hide memory latency and face a 2x slowdown.

With Block+Page, there was an expectation to observe a significant performance im-
provement compared to baseline Block. However, migrating remote pages to local
memory shows no significant benefits. Only five out of all the evaluated workloads: SC,
BT, LU, SM, and XSB, could get any benefits, if at all, and face 5% to 50% lesser
slowdown than baseline. On the other hand, Page faces the maximum slowdowns com-
pared to all the other scenarios. Firstly, the trend clearly explains the reason behind the
performance slowdown with Page, which only accesses remote memory at page granu-
larity and migrates a complete remote page on every LLC miss belonging to a remote
address. Remote page accesses are costly as they read multiple cache blocks within a
memory page (64 for 4KB page in our case) and add significant transmission delays at
the network due to the large packet size (4KB).

In the case of Block+Page, only a few hot pages are migrated to local memory and
do not see the same performance drop as in Page. Most of the memory accesses are

still performed at block granularity. We observed that SC, BT, and SM all have small

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 53

memory footprints and fewer memory accesses, so it has only a few pages to migrate.
It does not add severe delay to the critical block memory accesses to remote memory
while accessing a page. It also allows completing a good percentage of memory accesses
in local memory, utilizing the locality in hot pages. For LU and XSB, even though
they migrate more pages, more than 90% of the memory accesses are completed in local
memory as the result of migration and hence observe better performance. KD, KC, and
PR have a few memory accesses and face a small slowdown due to remote page accesses

compared to Block.

FT, MG, FE, and PF have enormous memory access traffic and migrate many pages
due to their large memory footprints. The performance only gets impacted due to extra
delays added by page accesses to regular demand remote memory accesses, which are
in their critical path. Similar is the case for HPCG, which is more sensitive to page
access delays, despite a small increase in average memory latency. NW and SR also
could not benefit from migrating hot pages. Overall, the impact is lesser than Page
for all workloads, as the regular block accesses are also performed simultaneously in
remote memory. Further, KC, MG, PF, PEN, and SR also show less amount of spatial
locality and could only get 20%, 15%, 25%, 23%, and 18% additional memory accesses
in local memory even after migrating 66%, 65%, 48%, 38%, and 62% remote pages to

local memory, respectively, out of the 50% of total pages that are placed in remote.

Page migration has also been widely used in DRAM-NVM hybrid memory systems; how-
ever, they do not present the same challenges as in DMS. A larger memory footprint on
remote memory and the presence of an interconnection network make hot page migra-
tion more challenging in disaggregated environments to realize performance gains. We
observed a few things that may help improve its performance with page migration. How-
ever, we leave it to future research work to explore optimized designs. The continuous
access of a complete page for 64 blocks is problematic for two reasons. One is that the
pending block memory requests to that page face long delays and are only served once
the migration is complete. Two, the block memory requests to other pages in the same
remote memory pool may get starved if multiple hot page requests are issued together.
Further, optimal scheduling of page migrations becomes more critical due to the same
reasons. An optimized hot page migration must consider all these issues for a viable

solution.

In Daemon [37], authors explored bandwidth partitioning, link compression, and sched-
ules page access only when the utilization of the block request queue is less. However,
page access is still completed as a whole, adding a delay of around 1.2-1.51s to subse-
quent block accesses even with an optimal scheduling policy. With truly disaggregated
hardware and CXL interconnects, it is better to break down the page accesses into mul-
tiple cache line requests that can reduce most of the overhead with extra architectural

support.

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 54

| BLlocal @Block OBlock + Page [Page ‘ ‘ Bandwidth: 50/100Gbps
3 3.81 7.40 3.49 38083 3384 10.26 Latency: 15/5ns
S [
22
=
81
v
0
SC NwW BT FT HPCG KD KC LU MG FE PR PF PEN SM SR XsB
| W Llocal mBlock OBlock + Page [Page | ‘ Bandwidth: 100/400Gbps
3 3.93 7.93 7.7 Latency: 30/10ns 8.36
S
2 2
2
81
wv
1]
| BLlocal mBlock OBlock + Page [Page ‘ Bandwidth: 50/100Gbps
3 3.28 3.56 3.96869 3.95 Latency: 30/10ns 8.75
52
o
K
31
wv
0 | |

SC NwW BT FT HPCG KD KC LU MG FE PR PF PEN SM SR XsB

FIGURE 3.11: Impact on system performance for all workloads on changing the network
latency and bandwidth parameters

Next, we show the performance impact over different network configurations described
earlier. We reduced the node’s interface bandwidth by 1/2 to 50Gbps and the switch
bandwidth by 1/4 to 100Gbps. However, we kept the same latency at every point. The
first graph in Fig. 3.11 shows that Block+Page and Page are significantly impacted
by reducing the bandwidth. As both systems access remote memory pages with a re-
sponse packet size of 4KB, therefore face additional transmission delays of around 575ns
per page during a response by the memory pool. However, workloads show different
sensitivity to the increased page access time. On the other hand, the performance of
Block is more or less the same as in the previous network configuration, as it only
accesses remote memory at 64B block granularity. Although each memory access takes
a few nano-seconds more, the continuous memory accesses hide some of these latencies

and have no significant drop in performance.

Next, we increase the latency parameter by 2x and use the same bandwidth of 100/400Gbps.
The trend is the opposite in this case, as the packets with small sizes (block access) are
most impacted and face almost two times remote memory latency for each access com-
pared to initial network parameters. In contrast, page response packets get a slight
increase in latency compared to their overall access time. Page is least impacted by
increasing the latency, as each page access adds only 70ns extra for the request and
response combined. The performance of Block+Page is also comparatively better in

those cases where the number of remote memory accesses was significantly reduced due

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 55

Bandwidth: 100/400Gbps

| Blocal E1C:IM O1C2M 0 1C:AM | /
Latency: 15/5ns

2
;15
E
000000
o I M ML M
SC NW BT FT HPCG KD KC LU MG FE PR PF PEN SM SR XSB

to page migration. However, it still has to send many block accesses to remote mem-
ory, which increases the wait times. In the last case, we decrease both the latency and
bandwidth, for which the performance can be seen in the bottom graph in Fig. 3.11.
Overall, in all these cases, BT, KD, KC, LU, PR, and SR are the least impacted by

memory disaggregation.

3.6.2 Multi-Node Disaggregated Memory Systems

As multiple memory pools are expected to be grouped with several compute nodes
in a practical disaggregated environment, scalability remains a crucial aspect of DMS.
Hence, we evaluate the performance impact of disaggregation in different compute node
to memory pool configurations (zC:yM). We kept the memory footprint at a same ratio
of 50:50 between local and remote in all the scalable configurations. The remote chunk
allocation is done through round-robin pool selection whenever more than one memory

pools are there.

Sensitivity to Multiple Memory Pools: Fig. 3.12 (Top) shows the performance
improvement of each workload when a single node is configured with multiple memory
pools. The performance is shown for the baseline configuration Block. With 2-memory
pools, we observe a maximum performance improvement of around 25% for SC and FE,
while it varies from 2% to 15% for most of the workloads and none for NW and SR. The
improvement can relate to the increased memory bandwidth with more memory pools,
as the remote memory accesses are now distributed across multiple memory units. Thus
reducing the chances of contention in the queue and tail latency compared to a single
memory pool. However, a further increase in memory pools from 2 to 4 has no additional
benefits, as two memory pools could fulfill the maximum bandwidth requirements for
all the workloads.

Sensitivity to Multiple Compute Nodes: In Fig. 3.12 (Bottom), we show the impact
of increasing the number of nodes running the same workload with a single memory pool.
SC, being more memory sensitive, is significantly impacted in all configurations with
more than one compute node. FT, MG, FE, and PF, due to their extensive memory
requests, observe high contention in the memory queues. However, with a 100Gbps

interface and 400Gbps network bandwidth, and large enough buffers, interconnect could

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 56

| Blocal mi1C:iM O2C:1M 0O4C:1M m8C:1M | ‘ Bandwidth: 100/400Gbps
3.60 586 248 3.66 Latency: 15/5ns
3 ! y y !
S
22
3
81
72}
0
F1cURE 3.12: Impact on system performance for all the workloads on increasing the
number of memory pools with a single compute pool (Top) or by increasing the number
of compute nodes with a single memory pool (Bottom)
| Wlocal W1C:IM D4CIM D4C2M | ‘ Bandwidth: 100/400Gbps
Latency: 15/5ns
2.5 e
c 2 ix-
Z1s
(_32 1
%05
0
FT
| Blocal m1C:1M O16C:4M 0O16C:8M | ‘ Bandwidth: 100/400Gbps
25 2.67 Latency: 15/5ns 253
Mix-16
= 2 IX:
g 15
E
31
% 05
0
FT SC

FIGURE 3.13: Impact on system performance with different compute-to-memory node
configurations and workload combinations over 4 Compute Nodes (Top) and 16 Com-
pute Nodes (Bottom)

still manage the high network traffic without much extra overhead. Finally, LU and

PEN observed a server slowdown when the nodes were increased from 4 to 8.

Sensitivity to Multiple Compute and Memory Nodes: Next, we increase the
number of compute nodes and memory pools to evaluate the performance for expected
configurations in a practical environment. Fig. 3.13 (Top) shows the performance impact
when four nodes run simultaneously over 1 or 2 memory pools. The performance is shown
for four different workload mixes, with one workload running at each node. The workload
mixes were created so the nodes have enough variation in their memory access rates. As
expected, we observe a slowdown of 2% (PR, KC, KD) to 35% (FE) when 4-compute
nodes are configured with only one memory node (4C:1M) compared to a single compute
and memory node (1C:1M). Subsequently, this slowdown is 10% to 125% compared to
a system using only local memory. However, the performance difference is negligible
for 4C:2M compared to 1C:4M, making the case strong for compute-to-memory ratio
2:1 (under the given memory bandwidth parameters). We even observe a performance
improvement for XSB in 4C:2M compared to 1C:1M, as the distribution of memory

accesses suits its access patterns.

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 57

| m100% E60% CI140% O 20% | ‘ Bandwidth: 100//4006bps
Latency: 15/5ns

1
(&)
£ 08
Sos I " R e e e |
S 0.4 H (NN N N (N AN N N (NN RN NN N e
Eo2 H N N [N ([E (}IE NN N e Iil B e
z27, H 'IiN 'NAN "iiN (20N 50N RN 'NON (NON CNON NN CRIN CNIM
SC NW BT FT HPCG KD K LW MG FE PR PF PEN SM SR XSB
| H100% E60% C40% O 20% | Bandwidth: 50/100Gbps
Latency: 30/10ns
1
208
Tos B In
2 04 oy (ME E fE N " R Nl g
III 1 Il N . Il III I
2 W 10N (e (i 0 Hiw 0 N (T i N e
SC NW BT FT HPCGG KD K& W MG FE PR PF PEN SM SR XSB

FIGURE 3.14: Impact on system performance on changing the local memory footprint

2,

25 2.5 25 .5
2 2 2 2
15 1.5 15 15
1 1 1 1
0.5 0.5 0.5 0.5
0 0 0 0

B B2 B/4 B/8 B B/2 B/4 B8 B B/2 B/4 B8 B B/2 B/4 B/8
Bandwidth Bandwidth Bandwidth Bandwidth

Similarly, we run all 16 workloads with an even bigger configuration by deploying them
on 16 compute nodes (one workload on each node) with 4 or 8 memory nodes. Fig. 3.13
(bottom) shows the performance impact for all the workloads in these configurations.
We observed that the performance is more or less the same compared to 4 node config-

urations over similar compute-to-memory node ratios (2:1), with a slight difference for
SC and FE.

3.6.3 Sensitivity to Local Memory Footprint

In a practical setting, the page allocation ratio in local and remote will be crucial in
deciding the impact of disaggregation, which varies for different applications, as seen in
the above experiments. Therefore, we perform a sensitivity analysis on all the workloads
with the changing local-to-remote memory footprint ratio. Fig. 3.14 shows the system
IPC at two different network configurations with 60%, 40%, and 20% local memory
footprint normalized against 100% local memory. The findings motivate the requirement
of such algorithms, which can decide the local/remote ratio for applications running on
the compute node. Further, multiple workloads will compete for local memory and

provide the opportunity to explore page placement mechanisms.

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS

o8

Latency : 15/5ns | Memory Delay

300
225
150

75

0
B B/2 B/f4 B/8

Bandwidth

Latencyx2 | HMemory Delay

300
225
150
75
0
B B/2 B/4
Bandwidth

B/8

225

Latencyx4 | @ Memory Delay
300
150

{1111

75
B B/2 B/4 B/8
Bandwidth

Latency x 8 B Memory Delay
300

225
150
75

0
B B/2 B/4
Bandwidth

B/8

FIGURE 3.15: IPC (Top) and Average memory access delay (Bottom) for STREAM
benchmark on changing the network bandwidth and latency

Simulator Performance mGem5 mDRACKSIm |

o 200K
1]
vy
= 150K
5
£ 100K
2
% 50K
£

0K

> L& & O o & ¥
T I FFE PGS
T TS FSFES

FIGURE 3.16: Simulator Performance Compared to Gem5

Scale-Up Simulator Performance m1-Node @m2-Node m@m4-Node [8-Node m16-Node
12
9
6
3
0
o o 2 > O 2 & < ot &
& @6‘ & & & & & K 0:,\?\ Q}‘ v @b S
® o L & & & N
(b -.\0 @ "{b& é\

FIGURE 3.17: Increase in simulation time DRackSim for large-scale simulations for one
million instructions per node (Normalized against the performance of a single node)

3.6.4 Network Latency and Bandwidth Test

Next, we rigorously test the interconnect model for its correctness using the STREAM
benchmark with an input stream array size of 50 million. The simulation is also run
for 400 million instructions on the multi-threaded region and has a memory footprint
of around 1.14GB. We start with the interface and switch bandwidth of 100 and 400
Gbps, respectively, and reduce until up to one-eighth. Similarly, the initial latency is
assumed as 15ns (nodes) and bns (switch) and increased up to 8 times. Fig. 3.15 shows
the change in IPC and average memory access delay over a range of network bandwidth

and latency parameters, respectively.

Chapter3: DRackSim: Simulating CXL-enabled Large-Scale DMS 59

3.6.5 Simulator Performance

Finally, we measure the simulator performance against Gemb and its scalability with
multiple compute nodes and memory pools. Fig. 3.16 shows the number of instructions
executed per sec in DRackSim on an AMD Ryzen9 machine. Although DRackSim is
1.5x to 2x slower than Gem5, we allocate 100% remote memory for performance test-
ing, and the simulation time also includes a switch interconnect model, whereas Gemb
simulates memory accesses without passing through the switch model. The performance
difference between the workloads is due to the amount of remote memory access traffic
and instruction level dependencies. Figure 3.17 shows the increase in simulation time
when scalable simulations are run with multiple nodes. Each compute node allocates
100% remote memory while a separate memory pool is used for each. Even with 16
nodes running one million instructions on each node, the slowdown is 7.5x to 12x. Most
of the slowdown is due to the thread synchronization overhead and the queue model of

interconnect, which does not scale well for HPC workloads.

3.7 Summary

DMS are being widely studied for their use in data centers due to their significant advan-
tages over traditional server systems, such as improved memory utilization, scalability,
and decoupling of memory. However, the commercial unavailability of these systems
hinders path-breaking research ideas from the systems research community. Therefore,
we propose a simulator DRackSim that models highly scalable DMS and supports a
wide range of user-defined configurations. We perform rigorous validation of DRackSim
against Gemb and conduct a broad set of experiments to demonstrate the working of our
proposed simulator. We have made the code 1 publicly available for the community and

plan to support it with regular updates with more features and detailed documentation.

Adoption of DMS in data centers require multiple optimizations for reducing the perfor-
mance impact of high remote memory latency. This can be primarily done by efficient
implementation of hot page migration or cache prefetching systems that can hide mem-
ory latency. Other mechanisms can also be explored for eliminating remote memory
allocation bottlenecks or reducing the queuing delays at the interconnect. In the next
chapters, we explore some of these design ideas that significantly improves the system

performance.

Yhttps://github.com/Amit-P89/-DRackSim

Chapter 4

A Practical Approach For
Workload-Aware Data Movement
in Disaggregated Memory
Systems

IN this chapter, we present a hardware mechanism for workload-aware data move-
ment between compute and memory pools [42] that significantly reduces the AMAT
and improves system performance. We propose a novel mechanism for implementing
a centralized epoch-based page migration for a large scale DMS. Our page migration
mechanism first moves hot pages from remote memory to the centralized caches hosted
at the switch until a group of hot pages is identified. This, in turn, reduces the data
path for the intermediate remote memory accesses to those pages until they are moved
to local memory. Further, our approach allows the remote memory pools to serve all
the remote memory requests (cache miss/hot page) at cache block granularity by shar-
ing the bandwidth between regular cache miss and hot page remote memory requests.
This helps to eliminate long delays on critical cache miss requests introduced due to
large granularity page accesses. The proposed design performs 10% to 100% better than
traditional RDMA-based DMS that access remote memory at page granularity and 5%
to 35% better than baseline DMS. Section 4.1 analyzes the complexities and overheads
of accessing remote memory pages in a bandwidth-restricted large-scale DMS. Section

4.2 presents the background and motivation for the proposed design. In section 4.3,

61

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 62

we discuss the system design and architecture of the proposed mechanism. Section 4.4

presents the experimentation analysis, and we summarize the chapter in section 4.5.

4.1 Introduction

The large in-memory applications such as Al, big data, and video/graph analytics de-
ployed in data centers will mostly rely on remote memory for most of their memory
requirements. Due to this, the memory access cost will increase 2 to 3 times that of
a completely local memory system. A commonly used software/virtual memory disag-
gregation implements page migration and always accesses remote memory at page-level
granularity over an RDMA-enabled network. These systems swap out the memory pages
to remote memory mapped from other server nodes rather than swapping to slow disks.
The same can be done in hardware-based disaggregated systems, where local and remote
memory (in memory pools) are organized linearly, and the memory-binding interconnects
also allow block-level access to remote memory on a cache miss. Further, DMS features
multi-tiered memory management where a global memory manager manages the address

space of memory pools beside a memory manager at compute nodes.

The primary challenge in DMS is the high access cost to access remote memory blocks
on a cache miss, significantly impacting performance. There is a scope for exploiting
spatial locality in the workloads by migrating hot pages in slower memory to faster
memory in addition to the regular cache misses to remote memory, as explained in section
2.4. Accessing a remote memory page requires more network/memory bandwidth that
starves the subsequent cache line accesses in their critical path, significantly impacting
the system’s performance. Further, workloads show a range of friendliness to page
migration [86]. Memory access patterns of the workloads define if they are benefited by
migration or not. The page migration is more workload-friendly if its memory pages have
good spatial and temporal locality. However, all the workloads do not show the same
behavior, and it is crucial to set the migration threshold based on the memory access
patterns of each workload running on different compute nodes. Therefore, a careful

approach is required to exploit the benefits of hot page migration in large-scale DMS.

Prior techniques for page migration in a hybrid memory system (DRAM-NVAM, dis-
cussed in 2.4) do not work for large-scale DMS with shared second-tier memory (remote
pools), making tracking pages difficult. Page migration has also been proposed for sys-
tems with software/virtual disaggregated memory, which allow only paged access and
do not support cache block access to remote memory. These systems use RDMA to
exploit the free memory in other server nodes but are not a replacement for hardware

DMS, which supports multi-granularity remote memory access. Komareddy et al. [38]

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 63

T

Remote Memory Global
Controller Memory

Address NIC Manager
Translation and

Controller

T~ Switch

FIGURE 4.1: Baseline Hardware Disaggregated Memory System

Compute Node

proposed a global memory controller hosted at the rack switch. Although page migra-
tion in disaggregated memory was proposed for the first time, the controller delays the
migrations to miss out on the potential benefits and uses fixed parameters for migration
without any intelligence. There is little opportunity to translate the available designs

for page migration in hybrid memory or software disaggregated systems to fully DMS.

This work proposes a hardware mechanism for workload-aware data movement in a DMS
that implements an epoch-based hot page migration to reduce AMAT. Our approach
is based on a centralized page migration system that supports rack-level disaggrega-
tion, where multiple compute nodes run simultaneously, each running a workload with
distinct memory access patterns. The hardware support comes through an in-network
global memory manager [28, 122], which is extended to perform workload-aware page
migration. The modified memory manager is implemented at a programmable central
switch that utilizes new caching structures at the switch to store metadata as also has
been proposed in the past for DMS [28, 122-126], shown in Fig. 4.1. The proposed mech-
anism works for both shared and distributed remote memory organizations. However,

our experimentation assumes no page sharing among multiple nodes.

Even though a page migration brings multiple cache lines to fast memory, accessing a
remote page (1.2-1.5ps) is 5 to 7 times more than a block access latency. Also, reading
a remote memory page (assuming a 4KB page) and sending its response back to the
compute node increases the delays to the critical cache line accesses and starves them of
memory /network bandwidth. Our mechanism for remote page access ensures that the
starvation to block accesses is eliminated while also reducing the response time for the
page access, which is now completed at block-level granularity rather than accessing a
complete page altogether. Further, page migration systems (epoch-based [38] and on-
the-fly [22]) have their limitations that may even degrade the performance of a DMS.
Therefore, we add hardware support that implements an epoch-based approach but
gets the advantage of on-the-fly migration by reducing the data path for pages waiting
for migration. Finally, we offer software support for centralized page migration that

requires carefully selecting the migration parameters for each compute node based on

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 64

its memory access patterns. A learning-based page migration policy is implemented that
initially learns the workload behavior for each node and fixes the migration parameters.
Further, considering all the trade-offs of page migration in DMS discussed in section 2.4,
choosing migration parameters wisely for an epoch-based page migration is essential.
The centralized switch may only allow small caches to track pages and can not afford to

track all the remote memory pages due to hardware and architectural restrictions.

We summarize our contribution to this chapter as follows:

e We propose a novel centralized hardware mechanism for workload-aware data
movement in rack-level DMS that reduces the data path for the remote memory

accesses until the hot pages are not migrated.

e We analyze the major hurdles of multi-granularity remote memory access in a DMS
and implement an approach to neutralize the extra overheads and delays due to

page access and migrations.

e Finally, we evaluate our proposed mechanism over various multi-threaded HPC
workloads and mini-applications and show a significant improvement in the system

performance.

4.2 System Design

Overview: This section discusses the proposed hardware structures to support a cen-
tralized page-migration with workload-aware data movement that eliminates the band-
width and starvation issues. Firstly, the central switch differentiates the memory accesses
of individual nodes by reading the access packets and passing this information to the
global memory controller. This allows the controller to characterize the access pattern
for each node separately and fix the page migration parameters and access priorities.
The global memory controller holds multiple new hardware structures whose sizes can
be scaled to support any number of nodes. However, a limited number of compute nodes
(C) and memory pools (M) are expected to be grouped inside a rack with specific con-
figurations (say, at a fixed ratio of 1C:2M or 1C:4M). These configurations are unknown,
as continuous research is being done in disaggregated memory space, while we assume
support for a maximum of 16 nodes. The global memory controller’s design overview
can be seen in Fig. 4.2, which identifies hot pages and schedules their movement along
with cache line accesses after bandwidth partitioning. The new hardware structures are
1) Hot-Page Tracker, 2) Access Controller, 3) Pending Blocks Accesses queues, and 4)

Page Buffers to store accessed memory pages.

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 65

Response from |

Pending Block Page Buffer Memory Pool |

Accesses Node-N +H- [|

L __ Memory
Page Reqg-Q » Access

Node-N Generator Network I -

Queues |

- | -

Compute i Not Hot Page »| Block Access Queue

Node Node-N | * Mlle)molry

| Access Controller o0

| \ Global Memory Controlled
|
|

Switch | Global Memory Manager |

Remote

Memory

Controller

Hot Page
Tracker

Compute
Node

I
1
| |
| I
b
| 1 Node-N
I
1
|

FIGURE 4.2: Centralized Page Migration Support with Workload-Aware Efficient Data
Movement, 'R’ represents a Request Selector

Hot Page Tracking Table [Page Buffers
Page Access Access | Access LI BO
Addr Count Time Bit

Page Addr
Entryl
‘ B63
LI"| Page Addr
EntryN : T : T

(a) (b)

FIGURE 4.3: (a) Hot Page Tracking Table structure (b) Page Buffer structure

4.2.1 Hot Page Tracking

The controller supports predicting hot pages by tracking access count and frequency to
remote pages. Figure 4.3a shows the hot-page tracker (HPT), which consists of a table
to store information on the most recently accessed pages with a maximum of 100 entries
per node (also limits the number of pages migrated together). Each entry consists of the
page address (32-bit), access count (16-bit), first access time (32-bit), and Access__bit
(1-bit). However, there could be more active pages at a time that will not fit in the
cached table. In that case, a new entry will be created by replacing the old one with
minimum access count and oldest access time. The evicted entry is kept in a similar
table at the switch DRAM and loaded back when that page is re-accessed. A page is
identified as hot when it crosses the hotness threshold (explained later) and is based
on access count and reuse frequency. The reuse frequency can be calculated using the
page’s access count and first access time. On identifying a hot page, a request is added
to the page request queue (inside the Access Control block) with its page address, and
the Access bit is set to 1 and remains set until it is migrated to the compute node.
The future memory accesses to the same page are not sent to the memory pool and are
completed at the global memory controller (described in subsection 4.2.4). However, if
the page is not hot yet and Access bit is ’0’, the block request is added to the block

access queues (shown in yellow in Fig. 4.2).

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 66

ﬂde'l Access Generator

4

Network
ey [edleel- [2][][o] | | Queues
Selector
‘ Block Access Queue-1 }*
Node-N Access Generator
oo | oozl [2][a][o] 1 L,
Selector
‘ Block Access Queue-1 }—

K Access Controller /

FI1GURE 4.4: Access Controller to control Multi-granularity Access

4.2.2 Performing Migration and Using Page Buffers

Once the number of hot pages in the HPT becomes equal to NPM, the migration will
be performed by swapping the same number of local victim pages at the compute node
to the address of the migrated remote pages. One limitation of the epoch-based page
migration is that many benefits are lost until the batch of hot pages is ready, especially
for workloads with a high temporal locality. This can be eliminated with on-the-fly
page migration, which instantly migrates a page as it is identified as hot but has high
overhead due to frequent TLB shoot-downs. We take a middle path by using page buffers
(as cache) at the global memory controller with space for 100 pages per node, shown in
Fig. 4.3b and 4.2. The page is instantly accessed as it becomes hot and kept in this cache
until the whole batch is ready to migrate. When memory access to any of these pages
arrives, it is completed at the controller itself through page buffers (costing less than half
of a remote memory access cost), getting the best of two techniques. Further, keeping
this buffer at a central controller also allows clean access to shared pages between nodes

(in the case of a shared memory approach).

4.2.3 Access Controller

Handling Page Access: Once a page is identified as hot, its request is added to the
Page Request Queue but is not sent to the memory queue as it is. Firstly, remote page
access latency is high, which delays the pending block-level accesses to the same page.
Secondly, page access occupies the available memory /network bandwidth and obstructs
subsequent block accesses to other pages, adding long delays again. We overcome this
problem by servicing page requests at a finer granularity and responding as soon as a
block request within a page completes at the memory pool. Fig. 4.4 shows the detailed

mechanism by which the Access Controller handles the page and block-level requests. A

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 67

dedicated set of queues is present for each connected node to handle page and cache block
requests. The access generator breaks the page request into multiple cache line requests.
A page request eventually accesses 64 contiguous memory blocks (4KB page with 64B
block). Rather than completing page access in one go, it is accessed block-by-block.
The access generator will pick a page address from the front of the page request queue
and generate 64 block accesses to that page from block-0 to block-63 (using a fixed-size
queue at the access generator). Access control has separate hardware structures for each
node where its request selector forwards one of the requests from either the block access

queue or the access generator.

Handling Block Accesses and Bandwidth Allocation: When block accesses do
not belong to a page request (the page is not hot), they are treated as regular requests
and kept in block access queues (one for each node). Like page queues, each node has
separate block access queues. We implement bandwidth partitioning between the page
and block-level accesses to eliminate starvation and reduce waiting times for all types of
access. In each cycle, the request selector will choose one of the requests either from the
block access queue (for regular block access) or from the access generator queue (part of
page access). Further, each queue can be allocated different priority levels to prioritize
one type of request over another. The controller adds extra information to the packet
header of selected requests before forwarding them to network queues to differentiate
between regular block requests and those belonging to the page access. The response
packet from the memory pool also includes the same information in its header, allowing
the controller to take appropriate action when a response is received. If the response
packet belongs to page access, it stores the block in the appropriate page buffer by
matching the destination compute node and page address. If the response belongs to

regular block accesses, it is directly forwarded to the destination compute node.

4.2.4 Pending Block Accesses

Once a page access request is sent and the page is undergoing access or is present in the
page buffer, all the block accesses to that page are halted at the controller and directed
to Pending Block Access queues, as shown in Fig. 4.2. The response is instantly sent to
the compute node if the block is available in the page buffer. However, the block request
waits in the queues if it is not there. The queues have separate buffers for storing reads
and writes. Reads queues store page address and page offset, whereas write queues also
have space to store a block of data. When a new block arrives in the page buffer, it
checks for a pending block access with the same address and completes the access by
sending a response back to the source node. In case of a pending write request, the data
block inside the page buffer (fetched from the memory pool and is dirty now) is updated

with the data in pending write queues.

Chapterj: A Practical Approach For Workload-Aware Data Movement in DMS

68

Local Memory
Address

Last-Level Local
Cache Miss Memory
Remote Memory

 / Address
[Hot Page Tracker]

Hotness
Threshold

£yes

access_bit=1

Calculate Page
Address and add

to Page Queue

L%

~

Add Request to
Regular Block
Access Queue

[Access]
Generator Round-Robin
L »\ Request

Selection

Hot Page Regular Block
Access Memory Access
Access
To Page Buffers To LLC
at Swicth
Respond from
Number

Page Buffers
of pages = NPM

No

Yesw

(Migrate Pages to Local Memory)

FIGURE 4.5: Flowchart representing the data path for remote memory access

4.3 Remote Memory Access Data Path

Figure 4.5 shows the data path for the remote memory access for regular memory access

and hot page migration. Whenever a block request from a compute node arrives at

the global memory controller, it will update the page tracking parameters in the hot

page tracker. If the page crosses the hotness threshold, a page access request is created

using access generators, and access_bit is set, while the current block request is also

added to pending block queues. However, the request is added to regular block access

queues if the access bit is 0. From here on, page requests will be partitioned into

multiple block-sized requests using an access generator, and a round-robin arbitrator

select requests from one of the queues. The regular memory accesses will be completed

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 69

as usual by sending their response to the requesting compute node. On the other hand,
if the response packet belonging to the page request arrives (identified by the packet
header), the response is stored in the page buffer of the respective node buffer at an
entry matching the page address. The pending block accesses to that page are also
served if the page address matches. However, the pages are only migrated when a whole
batch of hot pages is available in the page buffer. The global memory controller will
then notify the respective compute node to perform page migration, for which the OS at
the compute node evicts an equal number of local pages. The eviction can be performed
using basic memory page replacement policies such as LRU, clock replacement, or finding

cold pages using access counters.

4.4 Hardware Overheads

We discuss the overhead of proposed hardware cache structures at the global memory
controller to support a maximum of 16 nodes in any node-to-memory pool configuration.
The HPT has 100 entries per node with 71 bits for each entry, approximately 14KB for
16 nodes. The page request queue inside the Access Controller has only four entries per
node, which is the maximum number of on-flight page requests. Each entry stores a page
address (32-bit). The access generators have 64 entries (one for each page block) with
a 32-bit page address and a 6-bit block address. The access controller requires 5KB in
total for 16 nodes. The size of regular and pending block access queues will depend on
the MSHR size of the LLC at the nodes. The memory requests will also be distributed
among these queues, many of which are served instantly without delay. For a node with
a 32-core system and 256 entries in MSHR, we assume 96 entries in the regular block
access queue and only 32 entries for the pending block access queue (equally divided
for pending reads and writes), as only a few on-flight page requests can be there. Each
entry stores the page address (32-bit), block address (6-bit), and source node-id (4-bit)
for memory access. The pending block queues additionally have 64B of data for write
requests. The total size of all these queues is around 26.5KB for 16 nodes for both of
these queues. Finally, the page buffers store 100 pages of size 4KB per node with its
32-bit address. This will require a slightly bigger cache of around 6.25MB but provides

significant benefits by using positives from both on-the-fly and epoch-based migration.

4.5 Characterizing Workloads with Training

Setting Migration Parameters: We analyze the memory access pattern for each
compute node to set the hotness threshold. An epoch-based page migration policy

requires setting three migration parameters. However, if the number of hot pages and

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 70

hotness threshold are known, then a fixed epoch length is not required, as the system
will reach a stage when the other two conditions are met. We also do not fix the NPM
parameter and start migration with a small NPM (say 25) while changing it dynamically
based on the feedback from the compute node, which is a more practical approach than
fixed values. The hotness threshold is set using the collected information during training.
When a process starts, page migration is kept off initially for a few million cycles, during
which the global memory controller collects the access count and reuse frequency of all
the touched pages in its DRAM (in the same way as during hot-page tracking). At the
end of this phase, the pages are sorted by access count, and filtration is performed to
remove less significant entries. The page entries with an access count lesser than the
mean are removed. The filtration may be repeated to set a more conservative threshold
until the list does not get too small (20-30% of the initial size). Finally, threshold
parameters are calculated using the mean of access count and reuse frequency of the

leftover page entries.

Migration Feedback: The OS at the compute node can run a daemon program in
the background to evaluate the benefits and the overheads of page migration. We track
accesses to migrated and victim pages for each migration batch and evaluate it after every
few batches. Based on this evaluation, a feedback score is generated and shared with the
global memory controller. System overheads not only include the TLB shoot-down time
(Tiny) but also the time to copy pages (Tcopy pages), time to re-access invalidated TLB
entries (Typ piss, which is the number of pages migrated multiplied by TLB miss time),
and time to access victim pages in remote memory (Typege qec)- Ed. 4.1 shows the
calculation of total overhead. The benefits are calculated by multiplying total memory
accesses (Acc__Count) to migrated pages with the difference in remote and local memory
access time (AMATRemote - Local)s i €q. 4.2. Finally, a migration score (Scorep;g) is
produced using eq. 4.3, normalized on a scale of -100 to 100 and sent to the global
controller. The controller modifies the NPM (NPMyey) of a compute node based on
its feedback score, which is either positive or negative according to the overheads and
benefits of page migration. If the overhead is negative continuously or NPM falls below

a certain threshold, re-initialization is done to reset parameters.

O'Uerheadmig = Tipy + Ttlbimiss + Tcopy_pages + TVpageiacc (4'1)
Benefity,;g = Acc_Count x AMATRemote - Local (4.2)
Benefit, . - Overheadm;
%Scoremig = (Benefi O”“g mig) x 100 (4.3)
lim (-100—100) verheadmig
S .
NPMyew = NPM + NPM x 252/ mig (4.4)

100

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 71

4.6 Experimental Analysis

We use various HPC applications and workloads that mimic different scientific applica-
tions and have a variety of memory access patterns and footprints (ranging from 50MB
to 830MB). Table 4.2 mentions all the selected workloads with their functionality. We
skip the initial single-threaded regions for each workload and simulate 200 million in-
structions only for the multi-threaded region. Table 4.1 mentions all the simulation
parameters at the compute nodes, memory pools, and the interconnect. We evaluate
our proposed design over two network configurations, one with 100Gbps and 400Gbps
bandwidth at NIC (compute node and memory pool) and switch, respectively. The
other one uses 40Gbps and 100Gbps of bandwidth. The experiments were conducted

using the cycle-level simulation mode of DRackSim.

TABLE 4.1: Simulation Parameters

CPU 3.6GHz, 4-core, 2-width
64-InsQ, 64-RS, 192-ROB, 128-LSQ
L1 Cache 32KB(I/D), 8-Way, 2-Cyc
L2 Cache 256KB, 4-Way, 20-Cyc
L3 Cache 2MB per core shared, 16-Way, 40-Cyc
Cache Type Write-Back/Write-Allocate, Round-Robin
Memory (Local/Remote) 1200x2MHz DDR4 DRAM (19.2GB/s)
Switch 100/400Gbps, bns for processing/switching
Network Interface (Nodes) | 40/100Gbps, 10ns (de)packetization/processing

TABLE 4.2: Benchmarks

SimpleMOC(s) [120] Light Water Reactor Simulation

miniFE [118] Unstructured Implicit Finite Element Codes
Lulesh [117] Unstructured Hydrodynamics

XSBench(1) [121] Monte Carlo Neutron Transport Kernel
Testdfft [127] Fast-Fourier Transform for HACC

Pennant [119] Lagrangian staggered-grid hydrodynamics
NPB (bt, dc, ft, mg) [114] | Computational fluid dynamics

4.6.1 Results

We evaluate our page migration system with other data movement scenarios.

o Page represents a traditional DMS where data is only transferred at page-level

granularity. However, these systems are inherently slow compared to hardware

Chapterj: A Practical Approach For Workload-Aware Data Movement in DMS 72

Slowdown
-3 o

N

o

N w

Slowdown
[

0

3.15

’ OPage mBlock mOTF OE25 mE100 OPB mCPM

100/400Gbps Bandwidth

miniFE Lulesh pennant XSBench SimpleMOC NPB:bt NPB:dc NPB:ft NPB:mg Geo. Mean

|:|Page WBlock @OTF CE25 WE100 OPB mCPM ‘ 40/100Gbps Bandwidth

miniFE Lulesh pennant XSBench SimpleMOC NPB:bt NPB:dc NPB:ft NPB:mg Geo. Mean

FIGURE 4.6: Performance Slowdown for all the workloads with different data movement

policies

DMS. So, we use similar page buffers (as in our design) to delay the page-table
updates.

Block represents a baseline hardware memory disaggregation with all the remote

memory accesses at block-level granularity.

OTF is an on-the-fly page migration on the same system without extra hardware

support.

E25 and E100 represent epoch-based page migration in batches of 25 and 100

pages, respectively.

PB is the same as our proposed design, but the remote page access is made all
together without any bandwidth partitioning, and the response is sent as a 4KB
packet. Also, there are no pending memory access queues for in-flight page requests

at the global memory controller.

Finally, CPM is our proposed centralized hot page migration system with all its

features enabled.

Further, we use the same hot-page identification mechanism for OTF, E25, and E100.

The memory page allocations are performed across local and remote memory at a fixed

ratio of 50:50 using a round-robin policy (unless mentioned otherwise). To keep the

memory ratio constant, we pre-evict the same number of victim pages from local memory

for every page migration using a clock-replacement policy.

Impact on System Performance: We first evaluate the slowdown in system perfor-

mance compared to a system using entirely local memory. We run each workload in a

single node configuration using one remote memory pool. As shown in Fig. 4.6, CPM

Chapterj: A Practical Approach For Workload-Aware Data Movement in DMS 73

w

‘ EBlock DOTF CE25 @EL00 PB ICPM‘ 100/400Gbps Bandwidth

miniFE Lulesh pennant XSBench SimpleMOC NPB:bt NPB:dc NPB:ft NPB:mg Geo. Mean

~N

Memory Cost
Increase (Times)
=

o

‘ mBlock EOTF CE25 EEL00 [IPB lCPM‘ 40/100Gbps Bandwidth

\ I

miniFE Lulesh pennant XSBench SimpleMOC NPB:bt NPB:dc NPB:ft NPB:mg Geo.Mean

Memory Cost
Increase (Times)

FIGURE 4.7: Increase in memory access cost for all the workloads with different data
movement policies

experiences the minimum slowdown among all the data movement schemes for all work-
loads at both network configurations. With 100/400Gbps bandwidth, the performance
for XSBench, NPB:bt, and NPB:dc is very close to the system with 100% local memory
even with 50% of memory footprint at local memory. As expected, PAGE suffers the
maximum slowdown as it has to access all the remote pages at 4KB granularity, which
increases the waiting times of pending memory accesses to those pages. Epoch-based
page migration, such as E25, and E100, improved performance compared to PAGE but
does not always perform better than the baseline BLOCK, as it misses out on many ben-
efits due to the long waiting time before a batch of pages is ready to migrate. Only in
a few cases, when a workload has good spatial locality, epoch-based migrations perform
better than the baseline. On the other hand, OTF suffers severe slowdowns in some
cases (miniFE, NPB:ft, and NPB:mg), when more pages are migrated. As there are
no page buffers with OTF, it performs worse or equivalent to PAGE in these cases due
to regular CPU stalls during TLB shoot-downs. PB could eliminate the CPU stalls by
using page buffers, not miss out on the migration benefits due to instant migration, and
improve the performance for all workloads compared to baseline BLOCK. Finally, CPM
further improves the performance of PB by proper bandwidth allocation to page and
block requests and eliminates starvation. Further, CPM managed good enough perfor-
mance even with 40/100Gbps for most workloads except miniFE, NPB:ft and NPB:mg,

as they have the maximum number of cache misses.

Impact on Memory Access Cost: Fig. 4.7 shows the increase in memory access cost
for all the above data movement schemes over two network configurations. As depicted
by the system performance, CPM has the lowest increase in overall memory latency and
averages around 1.25 times compared to local-only memory latency over a 100/400Gbps
network. In the case of a 40/100Gbps network, the average increase in memory cost

is around 2.25 times the local memory access latency. The baseline BLOCK and OTF

Chapterj: A Practical Approach For Workload-Aware Data Movement in DMS 74

100

g | @OTF mE25 mEL00 CIPB ICPM|
o 80
k=]
[y
-4
F =
2 HHIHI H HHIHI
40 T T T T T T T T
miniFE Lulesh pennant XSBench SimpleMOC NPB:bt NPB:dc NPB:ft NPB:mg Geo. Mean
FIGURE 4.8: Percentage of memory access at local memory due to migration of pages
3
[20% Local [0 40% Local W 60% Local
c
2
3
3
3
% 1
0

miniFE Lulesh pennant XSBench SimpleMOC NPB:bt NPB:dc NPB:ft NPB:mg Geo. Mean

FI1GURE 4.9: Performance slowdown on changing the local memory footprint

suffer the most in their memory access latency. However, memory latency does not
reveal the performance slowdown for page migration systems, especially for OTF, as it
hides the long CPU stalls after the migration. We do not show the results for PAGE
because page requests are queued up at remote memory due to significantly high page

access times that could not correctly represent the waiting times for LLC misses.

Impact on Hit-ratio at Local Memory: Fig. 4.8 shows the percentage of memory
accesses completed at local memory as the consequences of page migration. For all the
workloads, CPM has most of the memory accesses at local memory. The results for PB
and CPM also include a few percentages of the pending memory accesses completed at
the global memory controller using page buffers until a batch of pages gets ready to
migrate. OTF experiences a similar percentage of local memory accesses compared to
CPM, but the overheads did not allow them to experience similar performance gains.
Further, CPM and PB have a significant difference in local memory hit ratio, that
is because the pages are accessed at 4KB granularity in PB, which takes more time,
and many block accesses to those pages are completed at remote memory before the

migration.

4.6.2 Sensitivity Analysis

We further experiment by changing the memory-related parameters and different de-

ployment configurations by changing the number of compute nodes and memory pools.

Local-to-Remote Memory Allocation Percentage: First, we change the memory
allocation percentages at the local and remote memory by allocating pages in the same

percentage (1 out of every 5-pages is allocated local memory to maintain 20% local

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 75

2
mlPool D2Pool |100/400Gbps Bandwidth
15

c
2
3
@ 05

0 :

miniFE Lulesh pennant XSBench SImpIeMOC NPB:bt NPB:dc NPB:ft NPB.mg Geo. Mean

4
E1-Pool O2Pool | 40/100Gbps Bandwidth
.3
3
- 2
: I_’
0

miniFE Lulesh pennant XSBench SImpIeMOC NPB:bt NPB:dc NPB:ft NPB.mg Geo. Mean

F1GURE 4.10: Performance slowdown on using multiple memory pools over different
network configurations

footprint). Fig. 4.9 shows the performance slowdown with 20%, 40%, and 60% of local
memory compared to a system with completely local memory. For XSBench, Simple-
MOC, NPB:bt, and NPB:dc, the performance with even 20% of the local memory is
around 80% of the local-only systems due to the high spatial locality in these work-
loads. Once the pages are migrated, most of the memory accesses are completed in local
memory. With the novel hardware mechanism of CPM, even during page access and
migrations, the overall impact of using remote memory is minimal. On the other hand,
miniFE, NPB:ft, and NPB:mg faces more slowdown due to a decrease in application

footprint on the local memory.

Multiple Memory Pools: Next, we evaluate the performance improvement when a
compute node uses multiple memory pools rather than a single one. This results in an
overall increase in the memory bandwidth and improves the memory access latency by
reducing contention at the remote memory queues. Fig. 4.10 shows the performance
slowdown for each workload compared to the local-only system when the remote memory
pages are spread across multiple memory pools. As we can see, in both network con-
figurations, the workloads face fewer slowdowns when their pages are allocated across
two memory pools than a single. The slowdown is more significant in the case of a
40/100Gbps network.

Multiple Compute Nodes and Memory Pools: Finally, we evaluate different con-
figurations of multiple compute nodes and memory pools, which is the expected way of
deployment for the hardware DMS. We consider 8-compute nodes and configure them
in a 4:1 or 2:1 ratio with memory pools. The local-to-remote memory allocation ratio
is fixed at 50:50, and the memory pool selection is done using a round-robin policy (to

allocate a 4MB chunk on each request by the compute nodes). Fig. 4.11 shows the

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 76

6
\ m 2-pools O4-Pools 100/400Gbps Bandwidth
c
H 4
[]
T
; h
0 " EN i
miniFE Lulesh XSBench SImpIeMOC NPB:bt NPB:dc NPB:ft NPB:mg Geo. Mean
125
| m2Pools O4Poos | 40/100Gbps Bandwidth
€ 25
8
2
Q2 5
w
1
miniFE Lulesh XSBench SimpleMOC NPB:bt NPB:dc NPB:ft NPB:mg Geo. Mean

FIGURE 4.11: Performance Slowdown with Multiple Compute and Memory Nodes over
different network configurations

performance slowdown for all the workloads (one on each node) running together with
different network configurations and node-to-pool ratios. As we can see, the perfor-
mance impact is minimal with four memory pools, making it an optimal choice for a
node-to-pool configuration ratio. Whereas, over a slower network and a 4:1 ratio, the

slowdown is significant and is around 9.6x of the local-only system.

4.7 Summary

Although coherent interconnects in DMS allow cache-based access to remote memory,
the high memory latency in such a system is the real concern that significantly impacts
performance. A page-migration system may bring down the latency but has multiple
issues and cannot be implemented as such in DMS. This chapter proposes a centralized
hot-page migration system that eliminates those issues by accessing remote memory
at block granularity for both page and cache line requests. This allowed fine-grained
bandwidth partition between different types of requests. This significantly reduces the
waiting times for regular block accesses caused by bandwidth-hungry hot page accesses.
In a non-optimal system, page access would occupy both the memory and the network
bandwidth and add long delays to critical memory accesses. Further, the data path
of remote memory accesses to the pages waiting for migration is reduced significantly
by using small hardware caching structures in the central switch. Our proposed design
improves the system performance between 10% to 100% compared to traditional disag-
gregated systems (page sharing with RDMA) and 5% to 35% compared to the baseline
hardware DMS.

Chapters: A Practical Approach For Workload-Aware Data Movement in DMS 7

In this work, even though the page access was broken down into cache line accesses for
control over bandwidth partition, the order of serving cache lines within hot pages is
fixed (0 to 63). It does not consider the order in which workloads access the block offsets
within the pages. Further, there is no distinction while scheduling the hot remote page
access for different workloads. However, workloads can have significantly different access
frequencies for the page access. In the next chapter, we explore the possibility of further
improvements in the proposed design and removing unwanted delays in the data path

by implementing on-the-fly page migration.

Chapter 5

CosMoS: Architectural Support
for Cost-Effective Data
Movement in a Scalable
Disaggregated Memory Systems

IN the previous chapter, we proposed a system with centralized epoch-based page
migration, which could get benefits of on-the-fly page migration from the cached page
data at the switch. Although the memory latency is reduced with the reduced remote
memory access path, the scalability can be an issue. The size of cached hardware
structures at the switch cannot be changed once manufactured. This limits the number of
compute nodes utilizing the caching hardware for implementing page migration. Further,
there is scope for further decreasing the remote memory latency with an on-the-fly

mechanism if the system overhead of TLB shoot-down is taken care of.

In this chapter, we discuss an architectural solution CosMoS for Cost-effective data
Movement in a Scalable DMS using on-the-fly page migration that can predict, schedule,
and optimize the movement of hot pages between local and remote memory. We start by
performing a workload characterization to show the limitations of existing mechanisms
and to make rational choices in our proposed design. We observe that different workloads
show a range of access frequency within the pages. Further, we observe that an access
pattern exists for all workloads while accessing different offsets within most of the pages.
We utilized these observations to design a page migration mechanism that schedules

pages based on their access frequency. Further, the pages are accessed in an order such

79

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 80

that the offsets that are required by the CPU first are accessed before. Our results
show 20% performance improvement with CosMoS compared to state-of-the-art design
and 86% improvement compared to baseline for a large-scale DMS. Section 5.1 gives an
overview of the proposed mechanism. Section 5.2 discusses the background and workload
characterization with the limitations of existing techniques. We discuss the architecture
and design of CosMoS in section 5.3 and present an experiment analysis in section 5.4.

Section 5.5 summarizes this chapter.

5.1 Introduction

As discussed in the previous chapters, the remote memory address space and the compute
node’s local memory are organized in a flat address structure over a cache-coherent
interconnect. As local memory only holds a small portion of the application’s footprint,
DMS requires data movement optimizations such as hot page migration to maintain
application-level performance. The frequent cache-based access to the remote memory
can be supplemented by occasionally bringing a few hot remote pages to local memory.
However, the data movement cost and other overheads of page access present a unique
design challenge for the hardware DMS. Firstly, remote page access obstructs cache-
based access to other remote pages for a long time. The cache misses are on its critical
path and any delay will impact the application performance. Secondly, multiple compute
nodes access the remote memory in a large-scale DMS. This will further increase the
delays when multiple page accesses are scheduled on a memory node ahead of serving a

cache miss.

This work builds upon the learning gained in the previous chapter and presents new
architectural support for an on-the-fly page migration system with cost-effective data
movement in a large-scale DMS. We present a workload characterization to understand
the requirements while performing remote page access. Like in the previous chapter,
the approach proposed in this chapter is also hardware-based. In addition to the rea-
sons mentioned earlier, the software approaches also have less prediction accuracy. The
hot page prediction accuracy is important to avoid bandwidth wastage and ping-pong
movement of pages between local and remote memory. Further, the existing solution
does not schedule page movement, which is necessary for a large-scale DMS involving
multiple nodes that run workloads with different requirements. We extend the hot-page
prediction mechanism to assist in scheduling remote page accesses and eliminate un-
wanted delays due to less critical pages getting scheduled earlier than the critical ones.
Our mechanism also supports accessing the offsets that are required first by the CPU

using an early response mechanism.

We summarize our contributions in this work as follows:

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 81

| Network
‘\Protocol}-

Translation

Memory Node
_ y

FI1GURE 5.1: Memory Controller at Compute and Memory Node

Memory Compute Node

4

e We present a workload characterization on a wide range of applications to first
study the limitations of typical page migration mechanisms and the rationality

behind proposing a new hardware-based solution.

o We propose CosMoS to exploit the multi-granular remote memory access in a
DMS to support an efficient hot-page movement that takes care of bandwidth
limitations, performs rightful scheduling and does not disrupt the critical cache-

line regular accesses to remote memory.

e Finally, we evaluate CosMoS on a large range of workloads representing data center
and HPC applications with a custom-built simulator for scalable DMS to study

the performance impact in all the possible configurations.

5.2 Background and Motivation

In the last work, our approach was to design a centralized page migration mechanism
that also included a central hot-page detection at the switch. However, the approach is
not scalable if the compute nodes increase due to the fixed hardware caching structure at
the switch. The approach was suitable for both shared and distributed organization of
remote memory nodes (or pools). As discussed in previous chapters, a shared approach is
only beneficial if workloads span across multiple compute nodes. However, with the high
core count in modern processors, there is no scarcity of computing resources within a
node, and the distributed approach seems much more suitable. In this work, we consider
a distributed approach with no page-sharing across compute nodes and explore the
opportunity of on-the-fly page migration where the hot-page identification is performed
at the compute node itself. As discussed before, epoch-based page migration misses the
benefits until the group of hot pages is available. This chapter proposes a mechanism
based on on-the-fly page migration. Although it introduces large migration overhead,

it can be eliminated by using extra hardware to store the remapping of page addresses

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement...

82

0<500 O<1K m@<10K [O<100K @E<1IM @m<10M m>10M

path [N

100% = pee p— — — —

80% L —

60% —

40% = =

20%

0% 1 T 1 1 T T 1 T T T T T 1 1 1 T T T
= O 3 — e c O - 4] 0N o= e O
-ﬂtggg—mEEg’nﬂ-u‘"gg"’ﬁggﬁg“jng-ﬂfa

£ R~ E E 8 o “w a £ <
FIGURE 5.2: %age of pages with different access frequency for different workloads
4000
kmc hpcg 800
e e o® 10,000K bt o—©
3000 F——0—0—0—0—0=20 po
400 fo]
O
2000 o 0 o O o
100K o
200 | o
1000
0 ~0~=0==0=-0=-0--0--0 o 0-°
0 1k Lo 0
8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
(a) (b) (c)
16M 4000 100000
xsb lu hw
12M | OO e e e OO O Dol el D e e ()
3600 10000
M
3200 1000

am e ® ¢ o 0 © @
O Qe O Qe Qe Qe QD) o
Ol Qe Qe Qe el D)

om 2800 100

8 16 24 32 40 48 56 64

(d)

8 16 24 32 40 48 56 64

()

8 16 24 32 40 48 56 64

(f)

F1cUrE 5.3: Rolling Average Access Frequency plot for majority of Pages in different
Workloads (same colors as depicted in Fig. 5.2), X-axis represents nth access to a Page,
Y-Axis represents the number of CPU Cycles

temporarily [22]. The baseline architecture with respective memory controllers is shown

in Fig. 5.1, including the global memory manager at the switch. In this approach,

we utilize the respective memory controllers at the compute and the memory node for

cost-effective data movement.

5.2.1 Workload Characterization

Page Access Frequency: We characterize a range of workloads from different domains

(mentioned in section 5.4) for their page access frequencies. We trace all the memory

accesses during the execution of 1 billion instructions on a cycle-level simulator and col-

lect time stamps of individual accesses within each page. Fig. 5.2 shows the percentage

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 83
100 100 50
bp hw b+
75 75
50 50 25
25 25
0 0 0
0 64 64 64
(a) (b) (c)
100
hs » sC
100 mg 75 30
75 50
50 15
25
25
o 0 0
o 64 0 64 0 64

(d) () (f)

FIGURE 5.4: Access order within the pages in different workloads (using page offset), X-
axis represents nt" access to a Page, Y-Axis represents the percentage of the occurrence
of the majority offset

of pages with different access frequencies in different workloads (the light green specifies
the between 0 to 1K CPU cycles, the parrot green range is 1K to 10K CPU cycles, and
so on). We have made the following important observations based on it: (D) Pages within
a workload can have a variety of access frequencies. @) Different workloads can have a
significant variation in their page access frequencies. In a large-scale DMS with multiple
workloads running on different compute nodes, the large range of access frequencies will
allow treating pages differently during migration. Next, in Fig. 5.3, we study the rolling
average access frequencies of the majority categories of pages (from Fig. 5.2) for an
understanding of the memory access patterns (results shown for a few workloads, al-
though trends remain the same for others). We observe that the rolling average remains
the same during future accesses to a page, except in hpcg, where it suddenly rises after
an initial few accesses for a large number of pages. Further, a good amount of spatial

locality exists regardless of the page access frequency.

Page-offsets Access Sequence in Main Memory: Next, we observe that the pages
are mostly accessed in a particular order of their offsets in the main memory. We recorded
the page-wise offset access sequence to all the pages and found that a particular offset
is always accessed the most at every n'® access and especially during the initial few
accesses to a page. Fig. 5.4 shows the percentage of the most accessed page offsets at
every nth access in all the pages. The trend is the same for all the workloads, while some
workloads consistently access the memory pages in a fixed order and have 95-100% of

common access sequence. However, there is an exception with zsb, which does not have

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 84

any common access sequence. We utilize all the above observations for accelerated data

movement between local and remote memory in a scalable DMS.

5.2.2 Analysis and Limitations

Several other software approaches have been proposed for page migration on multi-
tiered memory with unified address structures similar to DMS, except for the bandwidth
constraint. The software approaches have certain limitations in precisely identifying hot
pages. Other hardware approaches do not consider any scheduling for page movement
and treat all hot pages as the same based on their access count. In DMS, multiple layers
of memory management control the local and remote memory address space. Further,
the interconnect and remote memory bandwidth have to be shared by a large number
of compute nodes. These requirements put additional constraints on a DMS compared
to any other monolithic multi-tiered system such as DRAM-NVM.

Memory Access Tracking: The software-based page migration [33, 91, 128] mech-
anisms rely on memory access tracking for hot page identification, which is done by
scanning the access bit in the page table entry. However, the overhead associated is
very high, and precision is limited due to scanning frequency. Another way is to use
hardware-based counters to track events such as LLC miss using precise event-based
sampling (PEBS). Firstly, these methods do not track writes, read-for-ownership, and
prefetch reads. Further, sampling hardware events and analyzing their traces in soft-
ware has a trade-off between the overhead and prediction accuracy. These mechanisms
usually set very low targets for sampling rates to meet the CPU overhead of 3% to 5%,
and the sampling is only performed on a small subset of the memory due to memory
overhead constraints. Further, the hotness thresholds are set lightly, e.g., 2 in TPP[33]
and 1 in TMTS [91]. These mechanisms work well for NUMA nodes with smaller mem-
ory segments but not for DMS that expand to terabytes. Tracking memory access to
a possible hot page will be missed between the sampling instances. It also misleads on
hotness for pages just accessed during the sampled interval. Software approaches can
work fine while targeting super pages for migration as they remain hot for a long time.
However, moving super or huge pages in bandwidth-constrained DMS requires special
hardware support for fine-granular data migration [23, 88]. Otherwise, it can become
a burden and introduce significantly high remote memory latency. CosMoS overcomes
this issue by using dedicated hardware for hot page identification at each compute node.
The cache structure can keep track of multiple pages and remove an entry as soon as the
hotness threshold is reached. Although the approach is similar to what was used in the
last chapter, however, the mechanism is shifted at the compute node from the switch

due to scalability issues.

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 85

Dealing with Page Access Frequency: The existing hardware mechanism focuses
on hotness prediction accuracy and ignores the scheduling. Ulmigrate [129] and RHPM
[130] measure the relative hotness of predicted hot pages in slow memory with the cold
eviction candidates from the fast memory before migrating them. Another focus was
correctly predicting hot regions in the super-pages [23, 88] and implementing lightweight
page migration only for hot regions. However, all the past works lack any scheduling
for page movement and treat all the pages as the same. Pages in a workload or across
workloads are accessed at different frequencies in real-time (as shown above 5.2.1) and
can be treated differently. The pages accessed more frequently should be migrated faster,
while the ones with lesser access frequency can be served slowly. Existing methods
either do not perform scheduling or completely ignore the hot pages with lesser access
frequency. CosMoS implements a multi-queue structure to schedule pages with different

access frequency.

Bandwidth Control: Only scheduling the page accesses is insufficient and requires
bandwidth management for remote memory and interconnect sharing, as discussed in
the last chapter. As the memory address space is unified, regular cache line access must
share the interconnect and memory bandwidth with the hot-page accesses, as multi-
granularity accesses are performed simultaneously. However, every page access involves
multiple reads from the memory, e.g., 64 cache lines of size 64B for every 4KB page.
Due to this, response to the cache misses on their critical path will be delayed, causing
a significant performance impact. The delays will increase when multiple hot pages
are scheduled for access by different compute hosts on a memory node in a large-scale
DMS. On the other hand, all the cache lines within a hot page might not be instantly
required and can be delayed a bit in favor of critical regular cache misses. Giannoula
et al. implemented bandwidth partition in Daemon [37], bandwidth is divided in a way
such that a whole page is still accessed in one go, e.g., for a bandwidth partition ratio
of 25:75, a 4Kb page access is followed by a 22 regular cache line accesses (1/ 314 of total
cache lines in a page). The critical cache misses still have to wait if a page is already
under access until it is completed. More delays are encountered at the interconnect
as the response packet is sent to the compute node, e.g., a 4KB packet will have a
transmission delay of 328 ns on a 100Gbps connection. CosMoS implements a fine-
grained bandwidth partition that responds to both page and cache line remote memory
accesses in cache line granularity. Further, CosMoS implements a dynamic weighted

round-robin to divide the bandwidth among page scheduling queues.

5.3 CosMoS Architecture

In this section, we first discuss the important design modules of CosMoS and their

interaction with each other. We then present the overall design with its data path.

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 86

[Page Access Access I Frequency
Address | Count) Cycle Class

T, D R To Page
oxffizcar | oot f e) o<10k(01) Schs:lulmg Queues
0xfff23781 3 Yy < 1K (00)

oxfz210 | okl ez] < 100K (10)

(a) Hybrid Page Tracker

R: Regular Memory Access Queue

Les[evfox[-[-]-]-Jem]| en |
|

[Q1 Freq < 1K Cycles]||B63| - e | = |
|

[Q2Freq<10KCycIes]||Be3| - | Bl| B0 I

| Q3 Freq < 100K Cycles |:| Bes | - || e |
| Q4 Freq > 100K Cycles I:I ses [- | e |

Multi-Level Page Scheduling | Fine Grained Page Access ! .
Queues splitter Block Request Scheduling

@
o

(b) Multi-Queue Page Access Scheduler (c) Bandwidth Controller

FI1GURE 5.5: Design Components in CosMoS

5.3.1 Design Modules

CosMoS consists of three basic design ideas to implement cost-effective data movement:
1) Hybrid Hot Page Tracker, 2) Page Access Scheduler, and 3) Dynamic Bandwidth
Controller as shown in Fig. 5.5. All the modules are integrated to control the flow of
remote memory requests and improve the memory response time. We additionally use
temporary buffers to support the data movement. We discuss the modules in detail

below:

Hybrid Hot Page Tracker: To identify hot pages, the system only needs to track a
small set of currently active pages. This set of pages can change after every small time
frame, and the tracking system should maintain a large enough access history of the
working set. Our proposed hot page tracker works completely in hardware to track only
the currently active pages in remote memory with a small hardware overhead. It does
not require software involvement other than modifying page tables once the migration
is complete. Fig. 5.5a shows the metadata structure stored for each active page at the
tracker. Although the cached table only stores a few entries, we extend this table by
storing more entries in the local memory in a hash table (hash calculation using page
address). In a real system, a small amount of memory (1IMB in our case) can be used at
a fixed location in DRAM, which will be unavailable to the OS. Once the cached buffer
is full, a new entry will replace the entry that is least recently used and is written to

the local memory table. This will be brought back if there is access to that page in the

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 87

future. Similarly, entries from the local memory table are eliminated using LRU once
it is full. The page tracking in hardware has no CPU overhead, and table values are
updated in the background. This process has a small memory overhead while looking

for existing entries in the memory hash table.

Fach table entry stores the following metadata for an active page: the page address,
access count, access time (the time stamp of first access to that page), and the frequency
class. The frequency class is a 2-bit value that defines how a page will be scheduled
for access by the Page Access Scheduler (explained next) once it crosses the hotness
threshold. The requirement of 2-bit is based on the number of scheduling classes in
the scheduler and is determined through the page access frequency. The page access
frequency is calculated by dividing the access count by the time difference between the

current and first access.

Page Access Scheduler: Although multiple pages are identified as hot in every small
time frame, they all can have different access frequencies. They can be brought to local
memory from the remote at dissimilar rates. Our Page Access Scheduler is a multi-queue
structure that schedules the migration of identified hot pages at different rates. As shown
in Fig. 5.5b, the scheduler has 4-queues, each serving the pages with a particular access
frequency. The pages with an access frequency of less than 1K cycles will go to @1,
those with an access frequency greater than 1K but less than 10K cycles will go to @2,
similarly to @3 between 10K and 100K and the rest of them to (4. Once a page is
predicted as hot, a page request is added to one of the queues based on its frequency
class. The scheduler module, coupled with the bandwidth controller, divides the channel
access between multiple queues in a certain ratio to treat them at the desired urgency.
The choice of 4 scheduling queues is based on empirical results and the access frequency

range shown by most pages in different workloads.

Another design goal of the scheduler is to make it possible for the bandwidth controller
to have fine-grained control over the sharing of the network channel for different memory
request queues. Apart from 4-page queues, there is a regular memory access queue R
through which the LLC misses are directly forwarded to the remote memory for cache
block access, in Fig. 5.5b. While the hot pages are accessed, page and cache block
requests are interleaved. To eliminate long delays on a critical block request due to one
or more leading page requests (as explained in 5.2.2), the page request arriving from any
page queue is split into multiple cache block size requests (e.g., 64 requests for a 4KB
page with 64B block) by the page access splitter. This will allow bandwidth partitioning
at the block level by the controller (explained next) among page and regular memory

queues.

Dynamic Fine-grained Bandwidth Controller: As page requests are split into

multiple block requests, they are accessed block by block in an interleaved fashion with

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 88

Remote e
Memory Controller <—| A
2DISBI Kot Page 3A

“Tracker | P [l 9=}

((Page Scheduling]
SEoQueues i

Cnode Z s}.
P BP -
2 Jp1 "I PP
N Ly P3Bj
Cnode P2 P L p2Bk
Cnode P3 ‘ 7

(b) ()

FIGURE 5.6: (a) Complete Design of Memory Controllers in CosMoS, 'P’: Page Re-

quest, 'B’: Block Request | (b),(c) Possible Placement of Scheduling Page Queues (PQ)

and Bandwidth Partition Controller (BP) — (b) at the Memory Node (Mnode, MN) (c)
at the Compute Node (Cnode, CN)

memory requests from other queues rather than in one go. The interleaving of memory
requests from different queues does not add any significant delays to the subsequent cache
miss requests in R. The bandwidth is partitioned among these queues to manage delay-
sensitive requests and versatile resource allocation. First, it is equally shared between
queue R and all the page queues combined using a round-robin. Next, a dynamic
weighted round-robin (DWRR) is applied between different page queues and adjusting
to changing request rates. Each page queue is given a first chance to send its memory
request for the number of cycles equivalent to its weight in every complete round. If
a queue is empty during its turn, a request from the next queue is taken. Finally, the
weights are updated after a time interval, which is done using a statically allocated

weight Wg and queue input rate.

As an example, in every cycle, a memory request is selected from either R or one of
the page queues. The Wg allocation for the page queues is user-defined. We allocate
it in the ratio of 100:50:10:5 based on the criticality of memory requests in each queue.
Assuming that the request rate is the same for all the queues except)3, whose rate is
twice of others, the W will become 100:50:20:5 for Q1, @2, @3, and @4, respectively.

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 89

Local Memory

Last-Level \ Address
Cache Miss

Remote Memory
Address

Remap Table is_local=0 ;

Memory

is_local=1
Access Local £ sloca

Address
Present in Page

Get Local Address Not Present in Remap Table

from Remap Table Y Buffer No
Ve Hot Page ¢
Identified Access Memory Add Request to
;22 Soir;: Pending Queue
:
Add to one of the Access
Scheduler Queue for Cache Block

Migration

L

Address

Pick Request using
Adaptive Bandwidth Acc:ﬂs:miemote
Controller ry
Page Transfer

Send Page to \\ Complete /" Add Response Ves
Local Memory to Page Buffer

FIGURE 5.7: Flowchart representing the data path for remote memory access

5.3.2 CosMoS Complete Design

We now discuss the complete design with its data path and the placement of design
modules. Fig. 5.6a shows the complete design of CosMos with all the proposed modules
and supporting data structure. A remap table has been proposed in the past [22] for
page migration systems to temporarily delay the page table updates. It temporarily
stores the address translation of migrated pages with its old and new addresses. We
use the remap table and extend it to include is_local bit in each entry. Next, We use
the page buffers for storing partial page data that is now received as blocks. Lastly, the
pending reads (address) and writes (address and data) store the cache misses belonging

to in-flight hot pages.

Data Path: The request path is shown using a detailed flowchart in Fig. 5.7. When an
LLC miss belongs to a remote memory address, it is first sent to the remap table, where

multiple scenarios can occur. () The page entry is present in the remap table, which

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 90

means it is either migrated to local memory (is_local = 1) or has been scheduled for
migration (is_local = 0): (a) if is_local is 1, the new physical address is accessed, and
the request is forwarded to local DRAM (b) if is_local is 0, the request goes towards
pending read/writes, where it checks if the block has arrived in page buffers. If present,
the response is instantly sent to LLC. Otherwise, it waits in the pending read/write
queue until the block arrives (early response mechanism). (2 The page entry is not in
the remap table and is not even scheduled for migration. In this case, the request is
sent for remote memory access as packet 'B’, and the access is recorded in the hot page
tracker for the future by creating a new entry or updating the previous entry for the
page address. The hot page tracker issues a page request 'P’ whenever it crosses the
hotness threshold and removes the entry while creating a new entry in the remap table.
The request types 'P’ or ‘B’ can be determined at remote memory using a bit in the

packet header.

From there on, the request goes to remote memory, and its response is received and
identified through the packet header. It is directly sent to the LLC if it belongs to a
regular memory request queue. If a response belongs to a page, it is sent to page buffers
and completes any pending reads/writes to that page. The coherency is also correctly
maintained at the page buffers. If a page buffer gets full, it means all the blocks of that
page have arrived, and the page is sent to local memory after creating an entry in the
remap table. Finally, the page table is updated using re-mappings when the remap table

is full and is cleared for future access.

Early Response Mechanism: Normally, the cache misses to a page undergoing the
migration would wait at the compute node (introduce long delays until the complete page
is accessed and transferred) or can be redundantly issued for memory access (introduce
extra network/memory traffic). In both these cases, there is an additional overhead.
In CosMoS, the partial memory responses belonging to the hot pages can instantly be
transferred to the compute node in small packets rather than waiting for complete page
access to be sent as a single large packet. These memory responses are stored in a cached
page buffer until the whole page arrives (full data path in section 5.3.2). Our approach
allows an early response to the cache misses using the partial page data available in the

cached buffers.

Further, CosMoS eliminates the redundancy in remote memory requests through a sep-
arate wait queue for cache misses belonging to in-flight pages. The cache misses are
kept pending in the wait queue rather than being re-issued for accessing the data that
is already being accessed through pages. The expectation is that the required cache
block will soon arrive or is already present in the page buffer, reducing the delays in the
critical path. To accelerate this process, each compute node learns the most common

offset access sequence within the pages (the most re-occurring access sequence during

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 91

the learning, as described in section 5.3.1). The access splitter (in Fig. 5.5b) now gen-
erates the block request sequence for the requested page in a particular order (node and
workload-specific) rather than blindly generating it from 0 to 63. the overall response
time improves for the pending cache misses as the page offsets that are expected to be
requested before are served first. The mechanism results in a significant improvement

in the local hit ratio without extra overheads.

Placement of Design Modules: CXL 3.0 protocol supports multiple CXL devices
(compute and memory nodes) through a switch and is expected to be deployed in large-
scale DMS configurations. If the scheduling queues and bandwidth controller are placed
at compute nodes, page requests from different compute nodes can be interleaved at
the block level, as shown in Fig. 4.3b. This would result in smaller delays in accessing
data from pages scheduled within the same queue. In this example, assuming page
requests P1, P2, and P3 are scheduled in a same queue, then blocks Bi, Bj, and Bk can
be served individually, reducing the page access response time. However, this choice
will fail the motive of page migration, as it does not bring multiple cache lines with a
single page request and increases the network traffic with more remote memory requests.
Contrary, if these modules are put on the memory nodes, similar page requests can not
interleave at the block level if they are in the same queue, as in Fig. 5.6¢. This can be
costly if multiple page requests from different compute nodes are lined up in a queue,
especially Q1. However, this arrangement will be less problematic when there are
multiple memory nodes (expected in scalable DMS), as the page requests will also be
distributed among all of them, keeping the delays minimal. Therefore, it is logical to
only perform hot page prediction at the compute nodes and the rest at memory nodes

to utilize the page migration mechanism properly.

Super Page Support and Cold Page Prediction: Most modern OS can support
huge pages of size 2MB or 1GB; however, we do not recommend directly scheduling huge
pages for migration, as it will introduce long delays. The existing mechanism proposes
hierarchical hotness identification [23], first to predict a hot super page and then to find
hot regions within a super page. With CosMoS, the super pages can be first predicted
in software, and 4KB pages within hot super pages can be tracked with our hot-page
tracker. Further, existing LRU-based cold page eviction works well with page access bits

and can be decoupled from the migration [33].

5.4 Experiment Analysis

We choose a variety of multi-threaded workloads from multiple domains, such as Graph
processing, bioinformatics, Fluid Dynamics, Machine Learning, Image Processing, and

so on, to evaluate CosMoS, shown in Table 5.1. The selected workloads also have a wide

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 92

TABLE 5.1: Benchmarks

Rodinia Suite [113] | Srad, BFS, HeartWell(hw) , CFD, BackProp(bp)
HotSpot(ht), PathFinder(path), KmeanCluster(kmc),
NeedleMan(nmw), ParticleFilter(pf), B+tree (b+),
stream-cluster(sc)

Ligra-Graph [116] KcoreDecomp.(kd), PageRank(pr), BC, Radii

NPB Suite[114] BlockTriDiagonal(bt), 3DFFT(ft), MultiGrid(mg)
Others Lulesh(lu) [117], miniFE(mini) [118], HPCG [115],
XSBench(xsb) [121], stream(st) [131], TestDFFT [127],
SimpleMOC(sim) [120], Pennent(pen) [119]

TABLE 5.2: Simulation Parameters

CPU 64-1Q, 64-RS, 192-ROB, 128-LSQ, width-2, 4-core, 3.6GHz

L1 64B block, 2-Cyc, 8-Way, 32KB(I/D)
L2 64B block, 20-Cyc, 4-Way, 256KB
L3 64B block, 32-Cyc, 16-Way, 2MB/core (shared)

Caches | Write-Back/Write-Allocate, Round-Robin
Memory | 1200x2MHz DDR4 (19.2GB/s) (Local/Remote)
Switch 10Gbps, 4MB Port Buffer, 5ns for Proc/Switching
NIC 50Gbps, 15ns for (De)-Packetization/Proc

range of MPKI and memory footprints (30MB to 3.5GB for 1billion instructions). We
use cycle-level simulation mode and simulate compute nodes with 4-core CPUs running
at 3.6GHz with private L1-(I/D) and L2 cache with a shared last-level cache. The
complete system configuration is mentioned in Table 5.2. The bandwidth at the end
(compute/memory) nodes is 10Gbps, while it is 50Gbps for the switch. A fixed latency
of 15ns is added at end nodes for (de)packetization/NIC_ Processing and 5ns at the
switch for Packet_processing/switching. Finally, the propagation delay from an end

node to a switch is assumed to be 5ns.

5.4.1 Results

We performed extensive experimentation for performance evaluation of CosMos in mul-
tiple configurations and compared it with two state-of-the-art mechanisms: Daemon [37]
and TPP [33]. We use the same hot page prediction for both and set the hotness thresh-
old at ten accesses. Daemon also performs LZ77 page compression before sending the
page on the network. It uses four parallel engines, each operating on 256 bytes of data

with a total latency of 256 cycles for de(compression) on a 4KB page. The compression

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 93

w0 5 £ 9
£ . o .
o

25

OTPP mDaemon ®m CosMoS

+
® 0

2

1.5

1
0
g 3

£

B = 7] o T v o = e O
B & g E c 2 = g ® 7 a %5 _E £ 8 ﬁ T 9 =2 %
S - E c o 7] E had o

FIGURE 5.8: Performance Speed-Up with CosMos vs Daemon vs TPP, Normalized to
Baseline

ratio varies for different workloads and is less when performed on small-sized data (4KB
pages) compared to large files [132]. We use a fixed compression ratio of 2:1 on all the
transferred pages as an average for all the workloads. Next, we set the memory access
sampling at a frequency of 1 out of 100 for TPP and ’2’ as the hotness threshold. We

also use the remap table with Daemon and TPP for a fair comparison.

Single Node Performance: First, we show single-node performance for all the work-
loads with all the network/memory bandwidth exclusively available to the node. The
compute nodes are configured to store only 20% of the workload footprint in local mem-
ory, while the 80% is allocated remotely. This is maintained by allocating one out of

every five pages in local memory.

SpeedUp: Figure. 5.8 compares the performance of CosMos with Daemon, and TPP.
The IPC is normalized to the baseline system, which accesses remote memory only at
the cache line. For all workloads, CosMoS performs better mainly because of the page
access splitting and fine-grained bandwidth partition. In this configuration, the role of
scheduling queues is limited, and only those workloads having variation in their page
access frequency (hpeg, lu, pen, cfd, hw, hs, bp, radii, b+) get additional benefits of multi-
queue scheduling. Although most workloads have good spatial locality, the performance
benefits for ked, page, bfs, radii, b+ are limited due to the sparsity in memory access and
lesser MPKI. Other workloads like (bt, ft, mg, mini, st, hs) have a very high MPKI, and
their local memory latency increases compared to baseline (although lesser than remote)
once the hot pages are brought to it due to limited memory bandwidth (single channel
19.8GB/s). Therefore, these workloads are expected to observe more performance gain
in a multi-channel local memory system. The performance of hs suffers for the same
reason as it issues bursts of memory accesses, and average memory latency increases

with page migration due to more number of memory accesses in small time frames.

Daemon, gets most of its performance benefits due to the page compression, which re-
duces the network time. However, (de)-compression also adds additional latency, and the
page access time is still non-trivial. Many cache misses are still served from the remote

memory for workloads with high page access frequency until the page is migrated. This

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 94

2
OTPP mDaemon mCosMoS
1.5
1
0.5
0
B & 9y 232 ®E 2 LE 5 % ETH L 3 2 2¢ 548 8 % s
_g_gé EEEE g % g Q%_:-C.Q_QEE DE
FIGURE 5.9: Improvement in Memory Latency for CosMos vs Daemon vs TPP, Nor-
malized to Baseline
100
OTPP mDaemon mCosMoS
80
60
* [N Uhaboh R0 L
. L] 10 10l 0 0 Il |
£ &€ g @ 3 wEeE 2 995 £ 8 g0 B 23 22 a¢v=4H 8 t <
BEETEEERTLETSE TR ESABG gTAF

FIGURE 5.10: Local Hit-Ratio with CosMos vs Daemon vs TPP, Normalized to Base-
line

introduces redundancy in memory access and increases average memory latency. Fur-
ther, large packet sizes in the network also become a bottleneck as it incurs more latency
and occupies extra network buffer preventing the critical cache-based access to complete
timely network access. CosMoS reduces the redundancy with an Farly Response Mech-
anism and improves the hit ratio in local memory or the page buffers. Finally, TPP, due
to constraints on the memory sampling frequency, migrates fewer pages than the other
two and has limited performance improvement. The average performance improvement
for all workloads is 15%, 23%, and 35% for TPP, Daecmon, and CosMoS, respectively.

Memory Latency: Figure. 5.9 shows a decrease in memory latency for all the work-
loads compared to the baseline system. Except hs, we observe a significant decrease for
all other workloads. Even though Daemon reduces the network time for page access,
the effective memory access latency is not reduced to the same extent. With CosMoS,
effective memory latency is reduced to a relatively larger extent as many of the cache
misses are served from the partial page movements in the page buffers. We observe an

average reduction of 19%, 34%, and 57% for TPP, Daemon, and CosMoS, respectively.

Hit-Ratio Figure. 5.10 shows the percentage of memory accesses completed locally with
all three mechanisms. Firstly, the observed speedup is not proportional to the hit ratio.
This is because workloads show different sensitivities to memory latency. Further, there
are overheads involved in page migration that limit the performance gains. In almost
all workloads, CosMoS have the best hit ratio with just 20% of the local memory. Due

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 95

4
. 4.6 OTPP mDaemon mCosMoS
mix-3
3 1] I .
| mix-5 | mix-6 I mix-7
2 1 1 I
1 | I
1 I I I
I I I
0 I I I
w e o o c =T 3 & § z C e 2 g 5 2T v 2wy =E g 8 t c E
FEERREETT VEEERCETSACSSRENAES
(a) 4-Compute Nodes and 2-Memory Nodes
OTPP @mDaemon mCosMoS 488
s 66] o
1
2 1
1
|
1 I
1
0 1
1] Q9 cF T 3E I LMWMEETBVTEREE I 2oy =45 8¢tt<c c 327w 8
B gREEE T TEEESSETCISSSRESAEoEELES
(b) 8-Compute Nodes and 4-Memory Nodes
4 4.78 458 | oTPP mDaemon mCosMoS

mg
sim
page
xsb
pen
mini
srad
|

2 & 3 22 PEEPEEZL2FL:
=z 2 =

o =

radii
test
bc
b+
path
sim
pen
nmw
ked
bc

(¢) 16-Compute Nodes and 8-Memory Nodes

FIGURE 5.11: CosMoS vs Daemon vs TPP in Large-Scale Configurations

to early responses for page accesses in CosMoS, it observes additional hits in the page
buffers. Whereas Daemon has to wait until the complete page arrives. However, all
three mechanisms are still ahead of the baseline, showing a hit ratio of around 20% in

local memory.

Large-Scale Performance: Next, we evaluate the performance in large-scale con-
figurations where multiple compute nodes run a workload simultaneously and utilize
multiple remote memory nodes. The compute-to-memory node ratio is always kept at
2:1 so as to avail enough memory bandwidth. While allocating a remote memory chunk,
the global memory manager selects a memory node in a round-robin manner, and the
same memory node can hold chunks for multiple compute nodes. We create workload
mixes that run together in a large-scale configuration. The workloads in each 'mix’ have
a variety of MPKI that represent a real-time scenario. Finally, the remote memory ratio

is maintained at 60% for all large-scale configurations from here on (unless explicitly

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 96

mentioned), as simulation time grows considerably larger with 80% remote memory in

multi-node configuration.

Figure. 5.11 show the performance for 4 (Top), 8 (Middle), and 16 (Bottom) compute
nodes, respectively. We observe that CosMoS performs even better than the competitors
in multi-node configurations. This is because the page scheduling queues, coupled with
fine-grained page access and bandwidth partitioning, eliminate longer delays during the
page access at remote memory. As the memory nodes are now shared among multi-
ple compute nodes, they will receive simultaneous page requests from compute nodes.
With Daemon and TPP, the page migration delays increase when multiple pages are
queued, eventually reducing the local memory hit ratio. However, the page movement
mechanism in CosMoS allows simultaneous partial access from pages in different queues
at a proportionate access rate. Therefore improving the local hit ratio and reducing
the redundancy in memory accesses. On average, CosMoS performs 1.14x better than
Daemon in 4-node configurations and 1.20x better in 8/16-node configurations, while it
was 1.10x for a single node. Compared to the baseline, the performance gap also widens
in large-scale configuration with CosMoS. As an example, in the 8-node configuration,

it is 86% for Daemon, 56% for Daemon, and 12% for TPP (reduced).

Senstivity to Multi- Queue Scheduling and Fine-grained Bandwidth Partition:
To demonstrate the performance impact of various design features in CosMoS, we turned
off certain components and compared the performance with all features turned on. Fig-
ure. 5.12 shows the performance impact of different features, where PQ represents that
only a single page queue holds all the page requests with a fine-grained access splitter
and round-robin request service from the page queue and regular memory queue. BP
represents that the page access splitter is not used, and a fine-grained bandwidth parti-
tion is not implemented. However, multiple page queues are there from which pages are
served in a round-robin fashion. We can see that BP shows a significant performance
hit as splitting page access into multiple block requests allowed bandwidth partitioning
at a fine granularity. This mechanism ensured that the regular memory accesses and
the page request data were served simultaneously with minimal delays with an early
response mechanism. With BP, each page access is exclusive, during which memory
bandwidth is not shared with regular memory requests, as done in Daemon (but reduces
the delays with page compression). On the other hand, PQ has a smaller performance
impact comparatively. However, multiple-page queues with extra logic for proper request

arbitration can increase the performance.

Senstivity to Node/Switch Bandwidth: Next, we measure the performance im-
pact for CosMoS on changing the bandwidth parameters and compare it with Daemon.
As pages are moved as a single large packet in Daemon, it is supposed to show some
differences in performance impact at reduced bandwidth compared to CosMoS. We con-

figured the end-node (compute/memory) bandwidth to 40Gbps (0.4x of the previous

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 97

4 4287810
O~PQ @m~BP mCosMoS
3 1 1 1
mix-1 " mix-2 " mix-3 1 mix-4
2 1 1 1
| 1 1
1 | 1
| I
0 I I

bo O o c =0T 3¢FE G LLwWwEETHRIIL2 agy=4+88+.c c 2T
EE®QEET "EEES"3 "5 EZLa8E3cagfgEB -
2 E & e X = g+ a c

FIGURE 5.12: Performance Impact of Page Scheduling and Bandwidth Partitioning

4
Bandwidth: 40/100Gbps o Daemon m CosMoS
3 T
mix-1 : mix-2 I mix-3 | mix-4
2 1 I 1
| I |
| 1 1
1 | I I
[1 1
0
mgu.n:-—-ugq:uguun“-*‘—c“'ugwn.w=4-U £E:;—cu
EEPERET PEEESEDYREILEESERAELEEEE S
FIGURE 5.13: Impact of changing Bandwidth Parameters
4 4375
2 x Latency mDaemon m CosMoS 10.2
3 I T
mix-1 I mix-2 I mix-3 : mix-4
2 1 1 1
| 1 |
1 I 1 1
1 1 I
1 1 1
]
W e o c 2T S E P LLWEREROTHRESL2agy=488 .-EE:;“"’
Eaagg.ég mggéanﬁwtssgzgﬁnﬁaagggn

FIGURE 5.14: Impact of changing Latency Parameters

bandwidth) and kept the switch bandwidth at 100Gbps (0.25x of the previous band-
width). Figure 5.13 shows the performance of CosMoS and Daemon compared to the
baseline in this configuration. With lesser bandwidth, page access time will increase,
and Daemon observes this impact relatively more. With CosMoS, the responses are sent
back at cache line granularity, which are small packets of 128B and are less impacted
by a change in bandwidth than a page. Therefore, the performance gap increases in
favor of CosMoS compared to Daemon, especially for workloads where a large number
of pages get migrated, such as in pen (miz-1), lu, ft, sc, hs, nmw (miz-4). The average
performance increase compared to baseline is 69% for CosMoS and 42% for Daemon.
This is a decrease compared to the previous bandwidth configuration. This is due to

the extra page transmission time, resulting in a lesser local hit ratio.

Senstivity to Node/Switch Latency: In this case, we increase the packet processing

latency at end nodes (30ns) and port processing delays (10ns) at the switch to twice the

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 98

36
3
mix-1 [0 80% Remote m60% Remote W 40% Remote
2
: mix-2 : mix-3 : mix-4
I I 1
1 I
1
0

PEYg IR YL PEE BI85 S8 A5EE 28
x > ©
v 8 e E &G :x_g- e s 2 Q_mn.c_\c

FIGURE 5.15: Impact of Changing Remote Memory Footprint

initial latency parameters. Figure. 5.14 shows the performance of CosMoS and Daemon
compared to the baseline with increased latency. However, the performance gap widens
in this case compared to the initial configuration. The average performance improve-
ment with respect to baseline is 84% and 59% for CosMoS and Daemon, respectively.
With increased latency, all the cache line accesses (small packets) are most impacted,
and the mechanism with large page accesses (Daemon) suffers less impact. However,
CosMoS still performs better than Daemon due to the reason explained before, but the
performance improvement is 1.15x, which is lesser than that of the previous case with
reduced bandwidth (1.19x) and from initial configuration (1.20x).

Senstivity to Local/Remote Memory Ratio: Lastly, we show the speedup with
CosMoS on changing the local/remote memory allocation ratio for an 8-node configu-
ration. Figure. 5.15 shows the performance improvement on using 60% and 40% of the
remote memory compared to the 80% remote (performance normalized). As expected,
the performance is improved for most workloads as more pages can be kept in the local
memory at any time. Further, it also reduces the number of pages that must be mi-
grated from remote to local. However, for some workloads, the performance difference

is marginal due to lesser memory access or less memory sensitivity of the workloads.

5.5 Summary

The remote AMAT is significantly larger than local DRAM in DMS due to interconnect
and network /memory bandwidth sharing in large-scale configurations. In this work, we
propose a novel hardware mechanism CosMoS that reduces the AMAT in DMS and
involves remote memory access with on-the-fly hot-page migration. Our design includes
a hybrid hot-page tracker to overcome the limitations in present systems for tracking
remote memory accesses. A multi-queue structure for page scheduling keeps the pages
with different access frequencies in separate queues. The fine-grained bandwidth parti-
tioning uses a page access splitter logic and an early response mechanism to reduce the
delays during a hot page access. We also use a remap table to support on-the-fly page

migration by delaying the page-table updates and a few page buffers to temporarily store

Chapters: CosMoS: Architectural Support for Cost-Effective Data Movement... 99

the partial page data until the whole page arrives. Finally, we measure the performance
through vast experimentation using a variety of workloads on our cycle-accurate simu-
lator. We validate that CosMoS significantly improves the performance against existing

state-of-the-art mechanisms involving page migration in DMS.

We observe that CosMoS improves the performance in all scenarios with up to 20%
improvement over Daemon and 86% over the baseline DMS. We draw multiple conclu-
sions from the results related to existing and proposed mechanisms. Firstly, the software
mechanism for 4KB hot page prediction struggles due to inaccurate predictions due to
the overhead involved in memory access tracking. Although compression significantly
improves the performance in Daemon, the bandwidth partition at large page granu-
larity did not help. Next, the page scheduling in CosMoS provides an opportunity to
offer fairness to different workloads based on their memory access patterns. Multi-queue
scheduling and early access mechanisms improve the response time to page and cache
line access. Finally, the fine-grained bandwidth partition between different access queues
could efficiently pass the packets from the network queues with minimum delays. The
large page access packets in Daemon not only take more time but also add long delays
to the subsequent packets waiting in the queues. The large packets also occupy more
space in the network buffers, while the CPU does not require the whole page in one go
and cannot make much use of the early availability of the hot page. Rather, it is better

to interleave the responses of multiple critical memory requests like in CosMoS.

Although page migration significantly improves performance, the remote memory access
traffic must be distributed equally across all the remote memory pools to utilize the
available bandwidth properly. The page allocation must be done so that page and cache
line accesses face minimum delays in the memory controller queues. In the next chapter,
we explore the mechanism to load-balance the memory access traffic and introduce

fairness.

Chapter 6

Design and Analysis of Memory
Allocation Policies for
Disaggregated Memory System

IN a pooled memory system, the global memory manager performs remote memory
allocation. When the memory manager receives a request from the compute node to
allocate a remote memory chunk, it has to select a memory node to serve this request.
However, sub-optimal selection can increase the remote memory latency and impact
the application performance. In this chapter, we propose remote memory allocation
policies for DMS [43] that could significantly improve memory latency compared to the
conventional policies. In section 6.1, we introduce about the problem caused by sub-
optimal pool selection. Section 6.2 discusses about the conventional and proposed pool
allocation policies. We perform experiment analysis in section 6.3 with the proposed
and compare it with the conventional allocation policies on various benchmarks with

different memory access patterns. We finally conclude the chapter in section 6.4.

6.1 Introduction

DMS relies on a global memory manager to manage remote memory address space and
can be hosted on a programmable rack switch. The memory manager performs the
task of memory allocation, protection, and address translation for smooth access of

remote memory by the compute nodes. The in-network memory managers had been

101

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 102

proposed earlier to manage remote memory connected over the network [28]. However,
remote memory management is performed using conventional policies like round-robin
or random selection, and no emphasis is given to understanding the impact of memory
node selection in a large-scale remote memory system. A similar problem exists in a
system with multiple NUMA nodes having their own local DRAM, which always aims to
place memory pages in the nearest possible memory [133—-135]. However, the distribution
of memory pages to different NUMA nodes has little impact due to less NUMA node
count. The memory pages can also be allocated to a node with lesser memory traffic to

divide the memory traffic and effectively utilize the available bandwidth.

Similarly, In large-scale DMS, we observe that interconnect is not the only source of
overheads during remote memory access. The contention in memory queues can also
add significant overhead due to uneven memory traffic distribution across memory nodes.
This, in turn, also increases the network congestion in some of the network lanes. In
this work, we propose a two-phase memory allocation and reservation mechanism for
using remote memory in scalable DMS. Different memory allocation policies show a
variable impact on the latency performance based on its efficiency in load-balancing
the memory requests across different memory nodes. We evaluate the average memory
latency and application performance using our simulator in memory trace mode. The

main contributions of this work are as follows:

e We study the overheads in remote memory performance in a large-scale DMS and

determine the major factors impacting the performance.

e We propose two-phase memory management for DMS-connected compute hosts

using local and global memory managers to implement allocation policies.

e« We use a variety of benchmarks and workload mixes to evaluate the proposed
policies, which show a significant improvement in the AMAT and application per-

formance.

6.2 Memory Allocation Policies

Firstly, the local memory manager at the compute node should decide when to use
the remote memory. The first way is to use all available local memory at the start
and request the global memory manager once it is finished. This approach will cause
a sudden performance slowdown when no more local memory is available. However,
some cold pages can be migrated to remote memory in the background to give space
for more local pages. Another way is to allocate pages alternatively in local and remote
memory. This policy can manage a lower AMAT for a long duration as it gives more

scope for moving cold pages to remote. It extends the overall utilization of the local

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 103

Memory
Queues

[)
[Compute Node @ : I\II\II?JI(';:-?
[

Compute Node Mz Memory
M4
A Node-2
[Compute Node
F1GURE 6.1: Contention at remote memory node-1 due to an imbalance in the number
of memory accesses across memory nodes

Compute Node

memory but does not get the initial low latency benefit from it. The applications will
observe different performance impacts of local/remote allocation based on their memory

allocation rate and access patterns.

When the local memory manager chooses to allocate pages from remote memory, it first
reserves the remote memory from memory nodes in large chunks, as discussed in section
3.3.1. At this step, the global memory manager must select one of the memory nodes.
A good allocation policy will do this allocation in such a way that the memory requests
are balanced across all the memory nodes. This will reduce queuing delays at memory
nodes and in the network. Without proper load balancing, the memory nodes getting
more traffic will observe contention at the memory queues, as illustrated in Fig. 6.1.
Any of the memory nodes can face this situation for 1/ 100t? of a second, increasing
the tail latency significantly. Similarly, some network lanes will observe more traffic
and become bottlenecks. The unwanted delays increase the AMAT due to non-optimal

memory node selection, significantly impacting the application performance.

6.2.1 Conventional Allocation Policy

We first analyze the memory performance of workload WL-Mix1 (described in section
6.3) with a random node selection policy. The global memory manager chooses one of the
memory nodes randomly for serving the chunk allocation request. The page allocation is
done alternatively between local and remote memory. As shown in Fig. 6.2a, the average
memory access latency is of the order of microseconds, way beyond what is expected.
We observe that congestion at the remote memory queues is significant, which is due
to the random node selection. Fig, 6.2b shows the average memory latency (across
memory nodes), excluding the network delay. We found that the 2% of the remote
memory accesses suffered access latency of 1000ns or more and were responsible for larger
latency, shown in Fig. 6.2c. This high tail latency can be handled by load-balancing
the memory requests across different memory nodes. Fig. 6.2d shows the variation
in the number of remote memory accesses sent to different memory nodes periodically
after every 1.5 million simulation cycles. The variation is calculated by subtracting the

count for the memory node with maximum and minimum memory requests during each

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 104

10000 10000 = Remote Memory Latency

= fft =tmfmm —o==fotonik Ibm

8000
1000
6000
4000
100

2000

Avg. memory access latency (ns)
Average memory access latency (in ns)

10

03 06 09 12 15 18 21 24 03 06 09 12 15 18 21 24
Time (in seconds) Time (in seconds)
(a) (b)

350
1 <100ns

= 100ns-300ns

—— Variation
300

= 300ns-500ns 0

500ns-700ns 200

|l Yo

0
YA DA DDA
$ESSSELSSSSFSSS

Time-index

= 700ns-1000ns
= >1000ns

No. of memory accesses (in thousands)

() (d)

FIGURE 6.2: Random selection with alternate local-remote page allocation (a) Average
memory access latency (b) Remote memory access latency (c) memory access latency
distribution (d) Access variation in memory nodes

sampled period. We observe that the major reason behind high tail latency is due to

the imbalance of memory accesses across the memory nodes.

Another conventional policy is to select the memory node in a round-robin fashion.
Although round-robin selection performs better than a random selection, the chances of
memory contention still exist. The compute nodes generate memory requests at different
rates and the round-robin selection cannot ensure equal distribution of memory requests

in every time period to all the memory nodes.

Next, we discuss the proposed pool selection policies for the scalable DMS that distribute

the requests across the pools and reduce the tail latency.

6.2.2 Smart-idle Selection

The Smart-idle policy selects the most idle memory node to avoid sudden bursts of
memory requests. The first step selects a small subset of memory nodes based on its

recent request count. The memory nodes with the least traffic are less likely to face

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 105

Algorithm 1 Smart-Idle memory node selection

Input: Memory Access Count of last 4 windows
1: Notations:
2: Myc(i): Normalized Memory access count in window (i)
3: Afpoor: Access factor for a memory node
4: Step 1
5: for Pool =1 to n do

6

for each windowi=1—4 do

5 M,o(i) = MemAccCiountwm(l)
8: end for

9: Afp001 = Z;lzl Mac (1)

10: end for

11: Step 2

12: Sort 'n’ nodes in increasing order of their Af},,,)
13: Select top 'm’ nodes from sorted list,where

14: m = Ceil[log2(n)]

15: Pool;q = Memory Node with least utilised memory

16: return Pooljg

contention and can be selected for new memory allocation. The memory controller with
the global memory manager hosted on the rack switch keeps track of memory accesses to
each memory node. It uses a few 64-bit counters per node to keep track of the memory
access count during the most recent periods. The window-based mechanism is used to
determine an access factor (Af) for each node. A window is the duration between two
consecutive remote memory allocation requests to a memory node. The (Af) represents
the degree of memory request traffic at each memory node. Memory requests are traced
and counters are maintained for recent windows to determine the memory node’s activity.
The Af is calculated by adding the normalized memory access count (M,) of the last
4 windows. The M,c is the total memory access counts MemAccCount in a window
divided by its window number, where window-1 is the most recent. This gives more
weightage to recent memory accesses than those in the older windows. The complete
process is discussed in algorithm 1. A lower value of Af indicates that a node has faced

less memory traffic recently and can be selected for the next chunk allocation.

Directly selecting a memory node with the lowest access factor (Af) will result in an
unequal amount of memory allocation across different memory nodes. Therefore, step
two of the smart-idle policy chooses a lesser active node while also maintaining an even
distribution of memory chunks across nodes. Assuming the total number of memory
nodes to be n, the smart-idle policy will first select a set of m nodes, where m is

calculated as m = Ceil[log2(n)]. The small set of nodes is selected by sorting Afs in

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 106

ascending order and selecting the top m nodes. The final node selection is made from
this set having the least allocated memory. This condition ensures that even if a memory
node recently faces fewer memory requests, a sudden burst of memory requests does not
arrive from the memory allocated in the past. The choice of pool with the least allocated

memory is less likely to face such sudden bursts.

6.2.3 Uniform Load Partitioning

In the next policy, the requests are uniformly distributed across the memory nodes
based on certain heuristics. The request rate for each compute node is monitored and is
defined by the number of remote memory requests per million cycles. It maps a remote
memory node to each compute node so that all nodes face similar traffic. The memory
request rate is monitored once at the start of each epoch, and the compute-to-memory
node mapping is kept the same during the epoch. This mapping problem is similar to
a Set-Partition, where the goal is to create small non-empty subsets of numbers from a
large set such that each subset has the same sum. Practically, it may not be possible
to partition larger sets into subsets with the same sum. So, we follow an approach
where the subsets have approximately equal sums. A greedy approach is used to find a
local optimal solution at each step, creating small subsets of compute nodes such that
their total request rate is approximately the same. Each of these subsets is tagged to
one of the memory nodes, and the compute nodes in this subset are always allocated
memory chunks from the same node until the next epoch. The whole process is given in
Algorithm 2.

Algorithm 2 Uniform load partition

Input: Set 'Z’ of 'n’ nodes with its memory request rate

Output: 'm’ subsets of nodes, where 'm’ is number of memory nodes
Notations:

min_ set(setA, setB, ...setN): Set having minimum sum of elements
Sort set 'Z’ of nodes in descending order of their memory request-rate

while set 'Z’ has an element do

for each subset Y;,i=1— m do
izeof (Y;
Sum(Y;) = Sl
end for
Yy = min_set(Y,Y2...Ym)
Add 0" element of 'Z’ to Yy

10: remove 08 element from ’Z’

mem_ req_rate(node)

11: end while

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 107

TABLE 6.1: Benchmarks

Benchmark Cache RAM Accesses | Footprint Label
Name Miss-Rate | (in Millions) (in GB)
Ibm_ s 12.49% 45.47 2.7
fotonik3d_ s 5.96% 11.92 0.57 WL-Mix1
fft 4.16% 15.81 1.06
fmm 3.42% 12.5 3.20
Lulesh 9.05% 5.2 0.31
XSBench 2.01% 9.76 0.52
miniFE 14.29% 15.7 0.92
stream 2.95% 13.48 0.48 WL-Miz2
NAS:mg 14.91% 8.11 0.25
NAS:ft 4.15% 19.53 1.13
NAS:sp 1.16% 5.51 0.45
NAS:bt 6.15% 5.27 0.43

TABLE 6.2: Simulation Parameters

Element Parameter

CPU 1.2GHz, 8-core

ITLB 128 Entries, 8-Way ITLB, 60-cycle latency
DTLB 64-Entries, 4-Way DTLB, 60-cycle latency

L1-Cache 32KB(I/D), 8-Way assoc, 4-cycle latency, 64B
L2-Cache 256KB, 4-Way assoc, 12-cycle latency, 64B
L3-Cache 2MB per core, 16-Way assoc, 41-cycle latency, 64B
Cache Type | Write-Back/Write-Allocate, Round-Robin

Memory 256MB Per Compute node, 32GB per Memory pool
Switch 400Gbps, 132MB Buffer, 20ns delay
NIC 100Gbps, 10ns Delay

Packet-Size | 64B request, 128B response, 25ns Packet-Prep

6.3 Experimentation Methodology and Results

We use a trace-based simulation mode to rapidly simulate the memory accesses from mul-
tiple compute and memory nodes in a large-scale DMS. We selected four multi-threaded
workloads with large memory footprints and high cache miss-rates from Spec2017 [136]
and Splash-3x [111]. This workload is shown as WL-Miz1 in Table 6.1. We collected
the traces for 200M instructions, and benchmarks significantly vary in the number of
memory accesses made during the simulation. Further, we use another workload mix
WL-Miz2, using traces of HPC mini-apps such as Lulesh [117], miniFE [118], XSBench

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 108

1050 == fft etefmm fotonik Ibm 500 = fft wmfmm fotonik lbm
,E.. 900 Local memory utilised = ,@ Local memory utilised =
= = 500
g g
E 750 g
k= & 400
g 600 2 P
g g 300 : 3
> 450 g /
E H P
g 300 PR Ezoo /

o
o

03 06 09 12 15 18 21 24 03 06 09 12 15 18 21 24
Time (in seconds) Time (in seconds)
(a) (b)
500 = fft =fmm fotonik Ibm e===Round-Robin ====Smart-Idle Uniform-Load

D
(=]
(=]

Local memory utilised =

'
[=]
(=]

'S
[l
=]

300 -—
~ —

ury
w
o

Avg. memory access latency (ns)
- ~N
(=] [=]
(=] (=]
-\
‘

Average memory access latency (in ns)
w
S
o

o

03 06 09 12 15 18 21 24 03 06 09 12 15 18 21 24

Time (in seconds) Time (in seconds)

() (d)

FIGURE 6.3: Average memory access latency with Local-First allocation over workload
WL-Miz1 (a) Round-Robin selection (b) Smart-Idle selection (¢) Uniform load partition
(d) Average remote memory latency

[121], and applications from NASA parallel benchmark suite [114]. Both the workload
mixes are simulated in an environment similar to a rack-scale DMS with 16 compute
nodes with 256MB local memory and 6 memory nodes. Each workload is deployed on
4 nodes for WL-mix1 and 2 nodes for WL-mix2. The performance is measured by tak-
ing the average over all the nodes running the same benchmark. We deliberately kept
the number of memory pools on the lower side to test the memory/network bandwidth

limits. In Table 6.2, we summarize the system parameters used for the simulations.

6.3.1 Impact on Memory Latency

We experimented with page allocation policies at local-memory manager: local-first and
alternate local-remote and implemented a cold page migration to push the least recently
accessed pages to remote memory. In conjunction with the local page allocation, we run

different memory node selection policies: Round-Robin, Smart-idle, and Uniform load.

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 109

We start our discussion with local-first page allocation and round-robin memory node
selection. Fig. 6.3a shows the average memory access latency at different simulation
points, where the small black marks on the plot represent the time at which local memory
is completely used up. Although the cold page eviction still works in the background,
the local memory is not always available for a page allocation. The results show a
substantial decrease in memory access latency for each benchmark compared to the
random pool selection, it is still high for workloads like lbm and fotonik. This is because
both these benchmarks have a high density of memory requests to the remote memory,
and memory access latency is high enough to impact the application speed significantly.
It is interesting to note that even though lbm generates more remote accesses than
fotonik, the memory access latency in fotonik is very high compared to lbm. Due to a
major burst of remote memory accesses during epoch 4, memory latency suddenly rose,

but it is still lower for [bm compared to fotonik, as the contention is lesser.

On the other hand, the smart-idle policy significantly improves the average memory
access latency compared to the round-robin policy for all the workloads, as shown in Fig.
6.3b. With local-first allocation, latency only increased gradually for all benchmarks due
to load balancing. Fig. 6.3c¢ shows that the uniform load partition policy further reduces
the memory latency (compared to the smart-idle policy). Uniform load partitioning
works well even during epoch4, where the other policies suffer from contention due to a
sudden burst. With any workload, the average memory latency was below 300ns, which
is a big improvement compared to the other two policies. Fig. 6.3d shows the cumulative
average memory access latency for all the memory nodes (without including network
delays) for round-robin, smart-idle, and uniform load policies. In epoch4 and epoch5,
the round-robin could not handle the sudden burst of requests across the memory nodes,
and there was a large spike in the average memory latency. However, with smart-idle
allocation and uniform load partition, chunk allocation was largely balanced, and the

memory requests were distributed equally across all the pools.

Next, we study the performance of the memory manager at the node with alternate
local-remote page allocation. Fig. 6.4 shows the results, where we see no sudden burst
of memory accesses, and there is a gradual increase in memory access latency after a
point when the local memory is exhausted. All three memory node selection policies
perform well compared to that with the local first page allocation. Even though [bm
and fmm have a large memory footprint, we still see low average memory latency. We
observe that uniform load partition performs better among all, followed by smart idle
and round-robin policies. Fig. 6.4c shows that the best results are obtained with uniform

load partition pool selection combined with alternate local-remote page allocation.

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 110

8

=p=fft =o=fmm =e=fotonik lbm

=

Local memory utilised _gg

P

8

8

Avg. memory access latency (ns)
= %) w
8 8 8 8

o

03 0.6 09 1.2 15 18 21 24
Time (in seconds)

(a)

400 =o={ft =#=fmm —e=fotonik lbm

Local memory utilised =

300

200

100

Avg. memory access latency (ns)

03 0.6 0.9 12 15 18 21 24

Time (in seconds)

(©)

=o=fft =t=fmm =—e=fotonik Ibm

—_ Local memory utilised __pg
2 400
I
g
= 300 /x-—‘———l
«
2 /-—"
o
2200 .}
[=)
E
g
g" 100
Z

0

03 0.6 0.9 1.2 1.5 18 21 24
Time (in seconds)
(b)
====Round-Robin ====Smart-ldle ~ ====Uniform-Load

8

S
o
o

iy
o
[=]

Average memory access latency (in ns)
o
8

o

03 06 09 12 15 18 21 24
Time (in seconds)

(d)

FIGURE 6.4: Average memory access latency with Alternate Local-Remote allocation
over workload WL-Mix1 (a) Round-Robin selection (b) Smart-Idle pool selection (c)
Uniform load partition (d) Average remote memory latency

| E<100ns @100-300ns [300-500ns [@500-700ns [700-1000ns [0>1000ns

@ 2331.24 12425.79 12440.98

10000

< 1000

E z 88.64

< Y

§8 10 25.95

Zc 126

5~ 10

e

2

£ 1

2 Round-Robin Smart-ldle
Local-First

Uniform Load

12662.90 1277233 12788.12

491

Round-Robin Smart-ldle Uniform Load

Local-Remote Alternate

FIGURE 6.5: Distribution of remote memory accesses based on access latency

6.3.2 Impact on Tail Latency

We further analyze the memory access completion time for all the remote memory re-

quests, shown in Fig. 6.5. The latency only includes the time taken at remote memory

pools, not the time spent in the network. Different colored bars in the graph represent

the number of memory accesses completed for each category based on its memory access

latency. We earlier saw the huge tail latency with random selection. Here, we can see

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 111

‘ mLocal Memory Time ~ mNetwork Request Time O Network Response Time @Remote Memory Time ‘
?800
c
£ 600
g 400
3
=00 ﬁﬁ@ﬁﬁﬂ@ﬁﬂ =R=R=R=i=R=N-1"
) =
ftt fmm fotonik lbm | ftt fmm fotonlk lbm fmm fotonk lbm | ftt fmm fotonik Ibm | ftt fmm fotonik lbm | fit fmm fotonlk Ibm
Round-Robin Smart-ldle Uniform Load Round-Robin Smart-ldle Uniform Load
Local-First Allocation Alternate Local-Remote Allocation

FIGURE 6.6: Local/Remote/Network Latency breakdown

that round-robin selection had significantly brought it down but could not mitigate its
impact completely. Many memory requests are still completed with more than 500ns.
The reason is that although round-robin seems to be the default choice for the simple
task of memory node selection, it does not distribute the memory traffic optimally across
different memory nodes. It is where the uniform load partition and smart-idle selection
come into the picture. Both of them combined with local-remote alternate page alloca-
tion is better than a simple round-robin and could reduce the tail latency to a reasonable
extent. The graph shows that only a few percent of memory accesses take more than
500ns to complete, keeping the average memory access time to a reasonable limit. The
workloads benefit from the optimum selection with the proposed policies, whereas the
alternate local-remote allocation exploits the memory access pattern in fotonic and fft.
It allows these workloads to utilize local memory for a longer time, decreasing the total

memory traffic on the network and contention on remote memory pools.

6.3.3 Overall Latency Breakdown

We observe the overall latency breakdown for all the memory accesses of a workload
in local or remote memory during the run. Both uniform load partition and smart-
idle suffer lesser network delays than round-robin as memory request packets also get
distributed equally across all the links connecting to the different memory pools. With
round-robin, due to some instances when a particular link sees more packets, it suffers
more network congestion and higher delays relatively. However, we saw a big variation
in average remote memory access time for all the benchmarks through different policies,
which is also our motivation behind exploring these policies. The complete results are

shown in Fig. 6.6.

6.3.4 Performance Slowdown

This section shows the performance slowdown for each workload in the above experimen-

tation compared to a system with 100 percent local memory. We apply a straightforward

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 112

| ufft @fmm Ofotonik |:|lbm|

YO AR L O

Local-First Local-Remote| Local-First Local-Remote| Local-First Local-Remote| Local-First Local-Remote| Local-First Local-Remote|
Smart-dle Uniform Load Round-Robin Smart-ldle Uniform Load
256MB 512VB

w

~

o
o Lk LN L w W os

Normalized Execution Times
-

Local-First Local-Remote

Round-Robin

FIGURE 6.7: Execution times normalized against entirely local memory (as 1) vs. DMS
with two different scenarios (256MB and 512MB of local memory at each compute node)

[m 25:75 §50:50 O 75:25]

Average Memory Access
Latency (ns)
=
wu
o

EN [1 1 UV

Lulesh XsBench miniFE stream NAS:mg NAS:ft NAS:sp NAS:bt

FIGURE 6.8: Average memory latency for HPC workloads and mini-apps with different
proportions of local and remote memory using alternate local-remote and uniform-load
partition

way to determine the performance slowdown by tracing total simulated instructions, the
number of instructions of each type, assuming a fixed number of cycles for each in-
struction type, the number of last-level cache misses, and the average main memory
latency. Eventually, the total number of main memory accesses remains the same, and
the average memory latency is only the differentiating factor between an entirely local
memory system and a DMS. In the case of 100 percent local memory, all the memory
accesses are completed on average in 45ns. In contrast, it faces significantly high latency
in DMS, as shown in Fig. 6.7. The figure shows the performance difference with all the
policies over the DMS and entirely local memory. Two disaggregated memory scenarios
are taken, one with 256 MB of local memory and another with 512MB of local memory.
The performance is shown as normalized execution time where '1’ is the execution time

for 100 percent local memory.

6.3.5 Impact on HPC workloads

We further analyze with workload set WL-Mix2 to show the impact on average memory
latency when the amount of local and remote memory is configured with a certain ratio.
We experiment with 3 different configurations, 25:75, 50:50, and 75:25 memory for local
and remote, respectively. The memory manager is configured to allocate a new page
in the particular memory unit alternatively as per the given ratio. Fig. 6.8 shows

the average memory access times of all the 8-workloads with the uniform load partition

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 113

‘ Wlocal W25:75 @—50:50 |:|75:25|

1ol alm |IHH ﬂﬂﬂllﬂllﬂﬂ il

Lulesh XSBench miniFE stream NAS:mg NAS:ft NAS:sp NAS:bt

Normalized Execution
Time
N

FI1GURE 6.9: Normalized execution time for HPC workloads and mini-apps with differ-
ent proportions of local and remote memory using alternate local-remote and uniform-
load partition

policy, which eventually performed best out of the three policies with WL-mix1. Further,
we show the normalized execution times for all the workloads compared to local only
memory system in Fig. 6.9. The workloads with more last-level cache miss rates, such
as miniFE and NAS:mg, suffer more as more memory pages are in the remote memory.
At 50% local memory, the average increase in execution times across all 8 workloads is
1.83x compared to complete local memory, which drops down to 1.4x for 6 workloads,

excluding miniFE and NAS:mg.

6.3.6 Complexity Analysis and Performance Impact

Our memory pool allocation policies use heuristics and try to determine a memory pool
for a remote memory chunk allocation. Both smart idle and uniform load policies rely on
some counter variable that gets updated during the remote memory accesses by different
compute nodes. These counter variables are then used after every small interval to get
an optimal memory pool that assumingly will provide the most bandwidth for future
memory accesses from different compute nodes. Once the counter values are available
after an interval, memory pool mapping is straightforward and does not have much
complexity in its hardware implementation, as it is straight forward calculation using

the counter values, which can be performed at switches.

Further, as per our experimentation, uniform load partition performs close to optimal,
whereas the smart-idle does not always returns a good allocation candidate. However,
uniform-load also uses more number of counters compared to smart-idle, which increases
the hardware overhead by a small margin. The number of counters in smart-idle is equal
to the number of memory nodes, which is equal to the number of compute nodes for
uniform-load. In a real system, there will always be lesser number of memory nodes
compared to compute nodes. This extra overhead also makes uniform-load more accurate

by generating an optimal compute node to memory pool mapping.

Chapter6: Design and Analysis of Memory Allocation Policies in DMS 114

6.4 Summary

This work focuses on local and remote memory allocation policies for rack-scale DMS. We
show that high contention at the queues of remote memory nodes becomes a bottleneck
when traditional policies (like round-robin or random) are used. We proposed two
policies, uniform load partition and smart-idle selection, to evenly distribute the memory
access traffic among all the memory pools and counter the high tail latency. We run
our experiments on a trace-based simulator and the results show that the proposed
mechanism provides improved average memory latency across local and remote memory.
Compared to the conventional round-robin, the average memory latency reduced 3x with
uniform load partitioning and 2x with smart idle allocation on average over multiple
HPC workloads. Further, the workload execution times were reduced 33% and 20% on
average with uniform-load partition and smart idle allocation, respectively, compared to

the round-robin allocation.

In this work, we deal with the fairness of improving bandwidth utilization in the memory
pools/nodes. However, different compute nodes run various workloads and may need to
be treated with different priorities for introducing QoS. In the next chapter, we explore

the role of scheduling remote memory requests for QoS in a large-scale DMS.

Chapter 7

Understanding the Performance
Impact of Queue-Based Resource
Allocation in Scalable
Disaggregated Memory Systems

IN DMS, accessing on-network memory resources incurs additional access costs and
significantly impacts the performance, which is further impacted by multiple compute
nodes sharing the same memory nodes. The performance can be improved if fairness
is ensured for compute nodes running workloads during network and remote memory
queue allocation. In this chapter, we explore the opportunities to improve fairness in
the performance of all the nodes in multi-node DMS using different queue allocation
methods for network and memory bandwidth partition [44]. We propose using an in-
network global memory controller to control the flow of memory requests to the remote
memory nodes to enforce fairness and Quality-of-Service (QoS). We utilize the memory
request rate of each compute node to set their weights/priorities for different queue
allocation methods. We introduce the requirements of different workloads and how they
can be fulfilled in section 7.1. Section 7.2 discusses the background and motivation, and
we explain our design in section 7.3. We present our experiment analysis in section 7.4

and conclude the chapter in section 7.5.

We evaluate all the scheduling policies using a trace-based disaggregated memory sim-

ulator over various benchmarks with different access patterns. Our results show that

115

Chapter7: Understanding the Performance Impact of Queue-Based ... 116

scheduling policies significantly impact the average memory latency and the system

performance in different configurations.

7.1 Introduction

In hardware memory disaggregation, the onboard local memory is replaced by remote
memory nodes connected through high-speed networks to compute nodes supporting
low latency and high-bandwidth coherent access. The server nodes have a small local
memory, and the application’s requirements are mostly fulfilled through remote memory.
Therefore, these systems require optimizations to hide memory latency and improve the
overall memory access cost. Further, DMS are to be run in a scalable environment, and
the network will be congested due to multiple compute nodes trying to access remote
memory simultaneously. As discussed previously, the memory nodes may also introduce
long access delays due to contention in their memory queues. Due to such delays, the
compute nodes face significant performance slowdowns. The memory request pattern at
compute nodes varies as they run different workloads and require differential treatment

based on the criticality of memory accesses and the intensity of the access traffic.

This work explores the problem of queue allocation for partitioning the network /memory
bandwidth among the memory requests of different compute nodes. Firstly, we propose
an in-network hardware mechanism to control the flow of requests to the external mem-
ory pools. Secondly, we explore the impact of commonly used queue allocation practices
for maintaining the QoS. Finally, the queue allocation methods require setting weights
and priorities for queues belonging to different compute nodes. So, we propose a simple
mechanism that uses a memory request rate as the criteria for setting the weights and
priorities. We evaluate our design on our custom-built trace-based disaggregated mem-
ory simulator with multiple compute and memory nodes. Our results show a significant

performance impact of different request scheduling policies in a scalable DMS.

7.2 Background and Motivation

Fig. 7.1 shows the baseline DMS where the compute nodes forward LLC through a
remote memory controller to the remote memory nodes to a central interconnect, such
as a global memory controller. The global memory controller is responsible for scheduling
incoming memory requests from all the compute nodes to their respective memory pools.
In a DMS, groups of compute and memory nodes are deployed together in a certain
ratio. However, the number of memory nodes will be lesser than the compute nodes
while the compute nodes use these memory nodes simultaneously. It is expected that

additional delays will be introduced due to network and contention at memory queues.

Chapter7: Understanding the Performance Impact of Queue-Based ... 117

Memory
Pool

O\

Remote Memory W

/

Controller — >0
] s °
Address] 2
: Translation » NIC " 2 %E
DRAM Os o Memory
Controller J o Pool
Compute Node) /
FIGURE 7.1: Overview of Global Memory Controller
6 [mN1 oN2 ond]
5
4
o)
S 3
2
S 2
1
0

bt ft lulesh minife mg Pennant XSBench

FIGURE 7.2: Increase in Memory latency on changing the nodes sharing same memory
node

1.2 mN1 EN2 ON4

0.8
0.6
0.4
0.2

Normalized IPC

bt ft lulesh minife mg PennantXSBench

FI1GURE 7.3: Drop in IPC on changing the nodes sharing the same memory node

However, the slowdowns can be eliminated by extra hardware logic at the global memory
controller with multiple queues and fair allocation of network and memory resources to
each compute node. The global memory controller can be implemented using an FPGA

that will work at a switch to forward the memory requests.

To understand the impact of congestion and contention, we initially evaluate the memory
latency and system performance using a single first-in-first-out (FIFO) queue at the
global memory controller. Fig. 7.2 shows the increase in memory latency in a DMS
with a local-to-remote memory ratio of 40:60 compared to an entirely local memory
system. The memory latency rapidly shoots up for all the workloads when the number
of nodes sharing the same memory pool increases (except for Pennant and XSBench,
which have lesser memory access and are CPU-bound processes). The increase in latency
is due to more network and memory traffic. Although we use the same workloads on
all nodes, the scheduling of requests will play an important role when all the nodes run

different workloads. The nodes with high memory request rates can unevenly grab the

Chapter7: Understanding the Performance Impact of Queue-Based ... 118

\

Global
Controller

Request
Select
Logic

—{*)

(clock] /

FIGURE 7.4: Multiple queues at Global Memory Controller

queues and starve the compute-bound workloads for their memory access. Fig.7.3 shows
the drop in IPC due to multiple nodes sharing the same memory pool and following the

same trend.

7.3 Design

In this section, we present the design of our global memory controller for implementing
different queue allocation policies. The compute nodes have different memory access
patterns and significant variations in their memory request rate as each node runs a
different workload. We implemented multiple queuing mechanisms to enforce proper
scheduling of memory requests, where each mechanism uses multiple queues at the global
memory controller and has virtual queues associated with each queue. Some queue
allocation mechanism requires additional information to ensure QoS and fairness among

the memory requests of different nodes.

7.3.1 Weighted Round-Robin Scheduling

First, we implement a weighted round-robin scheduling, where each compute node has
a separate queue for its memory requests at the global memory controller, as shown in
Fig. 7.4. Each queue is assigned a weight based on the memory request rate of the
node associated with that queue. As all the memory requests pass through the global
memory controller, they can easily be tracked for each node, and the request rate can be
calculated by dividing the total number of cycles and the number of memory requests
during that period. Finally, weights are calculated by dividing the memory request rate
of each node and the total request rate of all the nodes, as shown in eq. 7.1. The weights
are then normalized on a scale of 100 that determines the granularity of selecting requests
from the queue. Out of every 100 cycles, the queue of node i’ will be given chances for

W; number of cycles. However, if the queue is empty, then the request from the next

Chapter7: Understanding the Performance Impact of Queue-Based ... 119

queue can be taken in the same cycle. Further, we use a simple round-robin arbitrator
to select between the virtual queues of the selected node’s queue. The weights are reset

after every epoch, and all the queues use the same weights during the initialization.

- Req_ Rateypqe ;)
o Total _Req Rate

Wi=ceil[100 x W;] (7.2)

(7.1)

7.3.2 Round-Robin Scheduling

The working of round-robin scheduling is similar to the weighted round-robin, with the
only difference being that the weights of all the queues are the same. Due to this, all the
memory request queues get equal chances for packet selection. A two-level arbitrator
picks a memory request packet from one of the queues. The first-level arbitrator selects
one of the input queues, and the second-level arbitrator picks between the virtual queues
of the selected input queue. If the queue has no ready packet, the next queue in the line

gets the chance.

7.3.3 Priority Scheduling

Each request queue is allocated a specific priority level based on its memory request rate
in this scheduling mechanism. We use four priority levels to allocate priorities to each
node’s queue. In each cycle, the request selector starts from the higher priority queue
and moves towards the lower priority queues if any queue does not have ready packets.
In a scalable DMS, there can be more compute nodes than the number of priority levels.
So, we follow a first-in-first-out selection mechanism if multiple request queues have the
same priority. However, correctly allocating the priority levels to each request queue
is essential to enforce QoS. In a public data center, priorities can be allocated based
on service-level agreements. However, it is not possible in many cases, where priorities

should be dynamically assigned to request queues.

Each compute node has a different sensitivity to the memory latency as they run different
workloads. The CPU-bound process often has fewer memory references and is more
latency-sensitive. Whereas the memory-bound processes frequently access the memory
and are lesser latency-sensitive. To ensure QoS, the memory-sensitive processes should
be allocated a higher priority, and CPU-sensitive processes can be allocated a lower
priority. To allocate priorities to request queues, we categorize all the nodes into four
categories based on the mean of memory request rates over all the nodes. As shown in
eq. 7.3, we first find the overall mean ([t,);) to create two subsets of the nodes, subset

S1, with each node having a request rate lower than the mean, and subset So where

Chapter7: Understanding the Performance Impact of Queue-Based ... 120

each node’s request rate is higher than the mean. A lower mean ([i},y,.,) is calculated
(in eq. 7.4) for the nodes in Sp to further divide into two categories (say S1, and Syp)
in the same way. A similar thing is done with the subset So by calculating upper mean
uupper), in eq. 7.5 and dividing into So, and So},. Finally, priorities are allocated in
decreasing order to S1a, Sip, 524 and Sop. In this way, the memory request of nodes
with lesser request rates is scheduled before the memory requests of nodes with higher
request rates. The requests selector will only move to the lower-priority queue if the
high-priority queue is empty. Finally, we adjust the priorities for changing memory
request rates of the nodes by resetting it after every epoch. All the queues are kept at

the same priority during the initialization process.

Mau:é > _RR(i) (7.3)
i=1
1 k
/”Llowerz% Z RR(i), {RR(i) > pant (7.4)
i=1
J
/“Lupper:; Z RR(U? {RR(Z) <:uall} (75)
i=1

7.3.4 Priority-based Weighted Scheduling

Priority-based weighted scheduling (PBWS) combines weighted round-robin scheduling
and the priority scheduling mechanisms [137]. As pointed out earlier, compute-intensive
workloads with low memory request rates are more sensitive to delays and require faster
response. These nodes should be prioritized over memory-intensive nodes with high
memory request rates. However, rather than using multiple priority queues and mapping
each request queue to one of them, PBWS uses only a single queue for assisting the
high-priority requests. The other request queues are associated with weights based on
the memory request rates of the nodes and are calculated using eq.7.1 and eq.7.2, as
mentioned earlier. The requests in the highest priority queue are served first, prioritizing
the compute-intensive nodes over the others. It is only when the highest priority queue
is empty then the queues of the other nodes are serviced. An arbitrator-based logic
similar to the weighted round-robin algorithm selects the queue to be serviced. In our
experimentation, we reserve the priority queue only for one node with the lowest memory

request rate.

Chapter7: Understanding the Performance Impact of Queue-Based ...

121

TABLE 7.1: Simulation Parameters

CPU 3.6GHz, 8-core

L1 Cache 2-Cyc, 32KB(I/D), 8-Way

L2 Cache 20-Cyc, 256KB, 4-Way

L3 Cache 40-Cyc, 2MB per core shared, 16-Way
Cache Type Write-Back/Write-Allocate, Round-Robin

Memory (Local/Remote) | 1200x2MHz DDR4 DRAM (19.2GB/s)

Switch

400Gbps, 4MB buffer per port

5ns processing/switching delay

Network Interface (Nodes) | 40/100Gbps, 1MB packet buffer

10ns (de)packetization/processing

Packet-Size 64B request, 128B response

TABLE 7.2: Benchmarks

Application Memory Accesses | Footprint
(in Millions) (in MBs)

NAS:bt [114] 19.98 128
NAS:ft [114] 21.23 132
NAS:mg [114] | 74.48 460

lulesh [117] 13.23 88

minife [118] 34.88 216
Pennant [119] | 0.71 10
XSBench [121] | 9.6 152

TABLE 7.3: Workload Mixes

Mix-4A | minife - NAS:bt - Pennant - XSBench
Mix-4B | NAS:mg - NAS:ft - lulesh - Pennant
Mix-8 XSBench - bt - ft - lulesh - mg - minife - Pennant - XSBench

7.4 Methodology and Results

We use a trace-based disaggregated memory simulator to evaluate the proposed designs.

Table 7.1 shows all the simulation parameters for the evaluation. The memory allocation

to local and remote memory was performed using fixed ratios (such as 40:60) in different

experiments using an alternative round-robin allocation for page allocation following the

same ratio. If multiple remote memory nodes exist, we again follow the round-robin for

memory node selection while allocating remote memory chunks to the compute node.

Chapter7: Understanding the Performance Impact of Queue-Based ... 122

‘ EFIFO EWB TPRIO CIRR DPWS‘

|

minife bt Pennnt XSBench

(a)

Normalized Latency
o = [w =Y (9]

»

BFIFO mWB ETPRIO ORR OPWS

w

Normalized Latency
[N

o

minife bt Pennant XSBench
(b)

FIGURE 7.5: Normalized memory latency for Mix-4A with 60% of workloads footprint
at remote to a system with entirely local memory (a) 1-shared memory node (b) 2-
shared memory nodes

Further, we reset the weights or the priorities of request queues after completing an epoch
of 100M cycles. The memory accesses are recorded for 1M cycles to calculate memory
request rates. The packet sizes in the queue scheduling do not create any difference as
the request packets are always 64 bytes (except for a few write-backs, which are limited
due to write-back/write-allocate cache) and only consist of memory access addresses
apart from the header information. At the same time, a response packet is always 128
bytes, as it also includes the cache line of data. Table 7.2 shows all the benchmarks
with their memory access count and footprint during the simulation (100M cycles) and
is a good mix of memory-bound and compute-bound workloads. We create workload
mixes running on multiple nodes, each running one of a workload, shown in 7.3. We run
different Node-to-Memory configurations to show the impact of request scheduling with

all the policies.

We start over evaluation with Mix-4A with two nodes running compute-bound workloads
(Pennant, XSBench) and the other two running medium to heavy memory-bound work-
loads (NAS:bt, minife). The abbreviations FIFO, WB, PRIO, RR, and PWS in graphs
represent first-in-first-out, weighted-buffer round-robin, priority allocation, round-robin,
and priority-based weighted scheduling, respectively. Fig. 7.5a shows the increased
memory cost normalized to a local-only system. All four nodes only use a single mem-

ory node and memory allocation is performed at a 40:60 ratio, local and remote. Firstly,

Chapter7: Understanding the Performance Impact of Queue-Based ... 123

1
‘ EFIFO BWB TPRIO CRR DPWS‘

0 0.8
a
T 0.6
L
E 0.4
So02 H

0

minife bt Pennant XSBench
(a)
1
| EFIFO EWB OPRIO ORR OPWS

0 08
o
E 0.6
©
E 0.4
So02

0

minife bt Pennant XSBench

(b)

FIGURE 7.6: Normalized IPC on workload Mix-4A with 60% of workloads footprint at
remote to a system with entirely local memory (a) 1-shared memory node (b) 2-shared
memory nodes

all the nodes face a significant increase in memory access latency as most of the work-
load’s footprint is in remote memory. Secondly, we observe variations in memory latency
on changing the scheduling latency for a good reason. Pennant and XSBench are less
memory-intensive and benefit from the higher priority allocated with PRIO and PWS
scheduling. On the other hand, NAS:bt and minife show improvements and perform
better with weighted round-robin as due to more memory requests, larger weights are
allocated to both of them and get more share of bandwidth. In fig. 7.5b, we show
the memory latency of Mix-4A workloads while using two shared memory nodes. We
observe a slight improvement in memory latency for all the cases as remote memory
allocation is now performed across two memory nodes. The memory request traffic is
distributed among them as the memory requests follow the location of their respective

page, which is the reason behind the performance difference.

Fig. 7.6a and 7.6b show the IPC of all the workloads for both scenarios and are nor-
malized to the IPC of the local-only system. With 40% of memory footprint in the
local memory, all workloads perform around 60% of the baseline when 2-shared memory
nodes are used. On the other hand, all the workloads face significant slowdowns with
a single memory pool. Even with more increases in memory latency, Pennant faces a

minor slowdown due to fewer memory requests.

In the next scenario, our workload mix is created to measure the performance when

Chapter7: Understanding the Performance Impact of Queue-Based ... 124

(o]

‘ EFIFO mWB EPRIO CIRR DPWS|

[Tl Il i

<]

Normalized Latency
NB

o

lulesh Pennant

(a)

o
o

‘ EFIFO EWB EPRIO CRR E\PWS‘

i m |

lulesh Pennant

©
o

Normalized IPC
o o
[N

o

mg
(b)
FIGURE 7.7: Workload Mix-4B using 2-shared memory node with 60% of workloads

footprint at remote to a system with entirely local memory (a) Normalized memory
latency (b) Normalized IPC

the system is under a huge load. We evaluate Mix-4b consisting of only one memory-
intensive workload, and the other three workloads have a heavy memory-bound nature.
As shown in Fig. 7.7a, all the nodes face a significant increase in memory access latency
due to high memory traffic, even with 2-shared memory nodes. However, PRIO and
PWS improve the memory latency of Pennant even when the system’s total memory
request load is very high, due to their high-priority allocation. NAS:mg, even with a
small hit in memory latency, suffers a significant IPC slowdown, which is due to the
memory-bound nature of the workload, shown in Fig. 7.7b. On the other hand, Lulesh
faces a significant increase in its memory access latency. The reason behind this is the
tail latency in memory access, as Lulesh sends memory accesses in large bursts, whereas
the contention is already high. Lulesh only has a limited number of memory accesses
compared to other memory-bound workloads, but during the burst time, memory access
latency increases rapidly for all workloads, which is more visible in Lulesh. All the other
scheduling policies fail to provide performance improvement except for WB to some
extent with workloads NAS:mg and NAS:ft.

Lastly, we evaluate a bigger configuration of 8 nodes in Mix-8 with 4-shared memory
pools. The workload mix has three high memory-sensitive (2-XSBench and Pennant)
nodes, and the rest 5 vary in their memory sensitivity from moderate to low. The
XSBench is used at two nodes in this configuration while we report the mean of their

results. Fig. 7.8a shows the increase in memory latency compared to 100% local memory

Chapter7: Understanding the Performance Impact of Queue-Based ... 125

»

‘ mFIFO mWB EPRIO CIRR DPWS‘

w

Normalized Latency
N

: II|:|HH
0
bt ft lulesh mg mini Pennant XSBench
(a)
12 | mFIFO mWB EPRIO CRR CIPWS |
o 1
o
B 0.8
= 0.6
[}
€04
]
0
bt ft lulesh mg mini Pennant XSBench

(b)

FIGURE 7.8: Workload Mix-8 using 4-shared memory node with 50% of workloads
footprint at remote to a system with entirely local memory (a) Normalized memory
latency (b) Normalized IPC

system. As we can see memory latency of all the workloads increases between 1.25x to
3.25x. In this case, weighted round-robin performs better with multiple workloads such
as bt, ft, mg, and mini. On the other hand, PWS and PRIo could also improve for
Pennant and XSBench. Fig. 7.8b shows the decrease in IPC due to remote memory

access with a significant improvement for minife and mg with PWS.

7.5 Summary

DMS is expected to replace traditional server systems in data centers. Memory latency
remains an issue due to memory moving to the network. Further, these systems are
expected to be deployed in groups of multiple compute nodes and memory nodes, the
chances of increasing memory latency are even more, as multiple compute nodes share
the same memory nodes. This work explored the impact of memory request scheduling
policies to reduce memory latency and enforce QOS. In certain cases, our scheduling
algorithms were able to reduce latency for specific workloads having high priority or
larger weights. Priority-based queue allocation takes care of compute-intensive work-
loads, whereas weighted round-robin was able to decrease the latency of memory-bound
workloads. Due to enormous memory requests, the improvement is not visible often, as

it could make small improvements in IPC.

Chapter 8

Conclusion and Future Work

IN this thesis, we explore large-scale DMS for memory scalability and under-utilization
in server systems by working on various aspects like design, modeling, and optimization.
Presently, DMSs are under huge focus as an alternative to traditional server systems with
a target of reducing TCO and improving memory capacity /bandwidth and utilization.
Presently, a full-fledged simulator does not exist that can be used to evaluate and model
new features for optimization in a large-scale DMS. Thus, we built a simulator from
scratch that is easy to use and modify. Existing techniques like hot page migration
for reducing memory latency in similar systems (having multi-tiered memory with flat
organization of fast and slow memory) do not work for large-scale DMS, which have more
constraints due to limited network and memory bandwidth. Hence, we propose multiple
optimizations for implementing page migration is DMS. The next section mentions the

summary of the thesis. Section 8.1 provides insight into the possible future work in this
DMS.

8.1 Summary

Figure 8.1 summarizes the contributions made toward the thesis. We covered multiple
aspects, such as design, modeling, and optimizations, that can be used for building
a fully operational large-scale DMS. We present the baseline DMS design in Chapter
3 that defines the memory organization, setting up memory mappings and the role
of a global memory manager. We also built a simulator to evaluate the performance

impact of disaggregation on different single or multi-threaded workloads. Our simulator

127

Chapter8: Conclusion and Future Directions 128

(Thesis Summary

v I I
Architectural Page Remote Memory
Simulation Migration Management
r A 4 r v
DrackSim Centralized On-the-Fly Remote Memory | |Memory Request
(Chapter-3) Page Migration Page Migration Allocation Scheduling
(Chapter-4) (Chapter-5) (Chapter-6) (Chapter-7)
A New Reduce the Reduce the
Architectural Memory Latency Memory Latency

Simulator for

Scalebale DMS and Introduce

Fairness/QoS

FIGURE 8.1: Thesis Summary

can be easily used and modified to implement different optimizations and allow fast
simulation of a large-scale DMS. In the subsequent chapters, we proposed page migration
systems tuned for a scalable DMS, considering the limited memory bandwidth when
multiple compute nodes access the remote memory nodes simultaneously. The proposed
design performed 10% to 100% better than the traditional RDMA-based DMS and
5% to 35% better than the baseline DMS. In Chapter 4, we proposed a centralized
mechanism that identifies the hot pages for each compute node and accesses the remote
page at cache block granularity to eliminate delays on critical memory accesses. An
intermediate caching mechanism holds the hot pages until they are migrated to the
compute nodes and reduces the data path for memory access in those pages. In Chapter
5, we proposed CosMoS, an on-the-fly page migration mechanism working at individual
nodes. We perform workload characterization and further improve the remote page
access by ordering the cache block access within a page. We also implement a multi-
queue structure for scheduling hot pages based on their memory access frequency, which
can be significantly different based on the memory access patterns of the workload.
CosMoS performed 20% better than the state-of-the-art page migration design and
86% better than the baseline DMS. In Chapter 6, we propose remote memory allocation
schemes that improve fairness in memory allocation by load-balancing and maximize the
utilization of available bandwidth across remote memory nodes. Our proposed policies
reduced the memory latency 3x to 4x on different combinations of workloads compared

to the conventional policies. Finally, in Chapter 7, we evaluate the impact of memory

Chapter8: Conclusion and Future Directions 129

request scheduling when multiple compute nodes run different workloads in a large-

scale DMS. We implement the commonly used queue-based scheduling mechanisms and

allocate priority /weights to certain nodes based on their memory request rate. Our study

reveals that suitable priority/weight allocation to different nodes can improve QoS and

fairness.

8.2

The
that

Future Work

contributions of the thesis can be extended in many ways. Some possible works

can be explored as future directions are summarized as follows.

In Chapter 3, the proposed simulator DRackSim can run large-scale simulations.
However, the queue-based interconnect modeling can become slow as the number
of nodes grows. In future work, the queue-based model can be replaced with event

modeling, increasing the simulation speed from 2x to 3x.

Presently, DRackSim only models DDR4-based DRAM memory. In the future,
DDR5 and HBM can also be considered for remote memory nodes that sup-
port better bandwidth scalability. Therefore, another memory simulator, such as
DRAMSim3 [138] or Ramulator [139], can be integrated to support more memory

technologies.

Currently, there is no explicit management of cache coherence between last-level
caches and the remote memory. Coherency is assumed by using write-back caches,
and no other node accesses the data from the main memory while one node is
modifying it. It will be interesting to explore the performance impact of extra

latency that coherence will introduce into the system.

In Chapters 4 and 5, we implement page migration to reduce the average memory
access latency. A cache block prefetching can be implemented to hide the remote
memory access latency, which eventually reduces the memory latency, like in [24].
The system predicts the address of future remote memory requests, prefetches well

before the CPU requests it, and generates an LLC miss.

To improve available memory bandwidth, an HBM can be considered an in-network
cache for storing the hot pages from all the memory nodes (DDR4 with limited
bandwidth). This will reduce the data path for remote memory access and elimi-

nate many delays due to insufficient memory and network bandwidth.

In chapter 7, we implement different queue allocation policies for scheduling remote
memory requests and improving the QoS and fairness. However, the delays may

still be bigger if the buffer space is not properly shared between input ports. A

Chapter8: Conclusion and Future Directions 130

dynamic buffer space allocation algorithm can be implemented to efficiently share

the buffer between the input ports to minimize queueing delays.

Bibliography

[1]

2]

A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney, and K. Keutzer, “Ai
and memory wall,” IEEE Micro, pp. 1-5, 2024.

A. Bruyns, “Memory holds the keys to ai adoption | by antoine bruyns | medium,”
https://medium.com/@abruyns/memory-holds-the-keys-to-ai-adoption-5acd5e
06508b, sep 2019, (Accessed on 03/31/2024).

C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for heteroge-
neous datacenters,” SIGPLAN Not., vol. 48, no. 4, p. 77-88, mar 2013.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Hetero-
geneity and dynamicity of clouds at scale: Google trace analysis,” in Proceedings
of the Third ACM Symposium on Cloud Computing, ser. SoCC '12. New York,
NY, USA: Association for Computing Machinery, 2012.

C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel, “Treadmarks: shared memory computing on networks of work-
stations,” Computer, vol. 29, no. 2, pp. 18-28, 1996.

S. Liang, R. Noronha, and D. K. Panda, “Swapping to remote memory over in-
finiband: An approach using a high performance network block device,” in 2005
IEEE International Conference on Cluster Computing, 2005, pp. 1-10.

D. Cohen, T. Talpey, A. Kanevsky, U. Cummings, M. Krause, R. Recio, D. Crupni-
coff, L. Dickman, and P. Grun, “Remote direct memory access over the converged
enhanced ethernet fabric: Evaluating the options,” in 2009 17th IEEE Symposium
on High Performance Interconnects, 2009, pp. 123-130.

K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. Wenisch,
“Disaggregated memory for expansion and sharing in blade servers,” SIGARCH
Comput. Archit. News, vol. 37, no. 3, p. 267278, jun 2009.

K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and
T. F. Wenisch, “System-level implications of disaggregated memory,” in IEEE
International Symposium on High-Performance Comp Architecture, 2012, pp. 1—
12.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “Legoos: a disseminated, distributed
os for hardware resource disaggregation,” in Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implementation, ser. OSDI’18. USA:
USENIX Association, 2018, p. 69-87.

131

https://medium.com/@abruyns/memory-holds-the-keys-to-ai-adoption-5acd5e06508b
https://medium.com/@abruyns/memory-holds-the-keys-to-ai-adoption-5acd5e06508b

Bibliography 132

[11]

[12]

[13]

[17]

18]

[21]

[22]

[23]

C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Katrinis, and
H. P. Hofstee, “Thymesisflow: A software-defined, hw/sw co-designed interconnect
stack for rack-scale memory disaggregation,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020, pp. 868-880.

Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: a hardware-software
co-designed disaggregated memory system,” in Proceedings of the 27th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’22. New York, NY, USA: Association for Com-
puting Machinery, 2022, p. 417-433.

Y. Chang, K. Zhang, S. A. McKee, L. Zhang, M. Chen, L. Ren, and Z. Xu,
“Extending on-chip interconnects for rack-level remote resource access,” in 2016
IEEE 34th International Conference on Computer Design (ICCD), 2016, pp. 56—
63.

S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-out numa,”
SIGPLAN Not., vol. 49, no. 4, p. 3-18, feb 2014.

B. Zhao, R. Hou, J. Dong, M. Huang, S. A. Mckee, Q. Zhang, Y. Liu, Y. Li,
L. Zhang, and D. Meng, “Venice: An effective resource sharing architecture for
data center servers,” ACM Trans. Comput. Syst., vol. 36, no. 1, mar 2019.

D. D. Sharma, “Compute express link (cxl): Enabling heterogeneous data-centric
computing with heterogeneous memory hierarchy,” IEEE Micro, vol. 43, no. 2, pp.
99-109, 2023.

CXL, “CxI® specification - compute express link,” https://computeexpresslink.o
rg/cxl-specification/, nov 2020, (Accessed on 04/02/2024).

“Cxl memory expansion: A closer look on actual platform,” https://www.micron
.com/content /dam /micron/global /public/products/white-paper/cxl-memory-ex
pansion-a-close-look-on-actual-platform.pdf, (Accessed on 04/04/2024).

“Samsung unveils cxl memory module box: Up to 16 tb at 60 gb/s,” https://ww
w.anandtech.com/show /21333 /samsung-unveils-cxl-memory-module-box-up-to
-16-tb-at-60-gbs, April 2024, (Accessed on 07/05/2024).

“Does the 4th gen intel® xeon® scalable processors support...” https://www.in
tel.com/content/www/us/en/support/articles/000094021/processors.html,
(Accessed on 07/05/2024).

“Amd epyc™ processors: Introducing the next generation of server processors,”
https://www.amd.com/en/partner/articles/4th-generation-amd-epyc.html,
(Accessed on 07/05/2024).

M. Islam, S. Adavally, M. Scrbak, and K. Kavi, “On-the-fly page migration and
address reconciliation for heterogeneous memory systems,” J. Emerg. Technol.
Comput. Syst., vol. 16, no. 1, jan 2020.

X. Wang, H. Liu, X. Liao, J. Chen, H. Jin, Y. Zhang, L. Zheng, B. He, and
S. Jiang, “Supporting superpages and lightweight page migration in hybrid mem-
ory systems,” ACM Trans. Archit. Code Optim., vol. 16, no. 2, apr 2019.

https://computeexpresslink.org/cxl-specification/
https://computeexpresslink.org/cxl-specification/
https://www.micron.com/content/dam/micron/global/public/products/white-paper/cxl-memory-expansion-a-close-look-on-actual-platform.pdf
https://www.micron.com/content/dam/micron/global/public/products/white-paper/cxl-memory-expansion-a-close-look-on-actual-platform.pdf
https://www.micron.com/content/dam/micron/global/public/products/white-paper/cxl-memory-expansion-a-close-look-on-actual-platform.pdf
https://www.anandtech.com/show/21333/samsung-unveils-cxl-memory-module-box-up-to-16-tb-at-60-gbs
https://www.anandtech.com/show/21333/samsung-unveils-cxl-memory-module-box-up-to-16-tb-at-60-gbs
https://www.anandtech.com/show/21333/samsung-unveils-cxl-memory-module-box-up-to-16-tb-at-60-gbs
https://www.intel.com/content/www/us/en/support/articles/000094021/processors.html
https://www.intel.com/content/www/us/en/support/articles/000094021/processors.html
https://www.amd.com/en/partner/articles/4th-generation-amd-epyc.html

Bibliography 133

[24]

[25]

[26]

[27]

[30]

[31]

[32]

[33]

V. R. Kommareddy, J. Kotra, C. Hughes, S. D. Hammond, and A. Awad, “Prefam:
Understanding the impact of prefetching in fabric-attached memory architectures,”
in Proceedings of the International Symposium on Memory Systems, ser. MEM-
SYS ’20. New York, NY, USA: Association for Computing Machinery, 2021, p.
323-334.

H. Al Maruf and M. Chowdhury, “Effectively prefetching remote memory with
leap,” in Proceedings of the 2020 USENIX Conference on Useniz Annual Technical
Conference, ser. USENIX ATC’20. USA: USENIX Association, 2020.

P. Levis, K. Lin, and A. Tai, “A case against cxl memory pooling,” in Proceedings
of the 22nd ACM Workshop on Hot Topics in Networks, ser. HotNets 23. New
York, NY, USA: Association for Computing Machinery, 2023, p. 18-24.

E. Amaro, S. Wang, A. Panda, and M. K. Aguilera, “Logical memory pools: Flex-
ible and local disaggregated memory,” in Proceedings of the 22nd ACM Workshop
on Hot Topics in Networks, ser. HotNets '23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 25-32.

S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhattacharjee,
“Mind: In-network memory management for disaggregated data centers,” in Pro-
ceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
ser. SOSP ’21. New York, NY, USA: Association for Computing Machinery, 2021,
p- 488-504.

Intel, “4th Gen Xeon Scalable Processors — intel.com,” https://www.intel.com/
content/www /us/en/products/docs/processors/xeon-accelerated /4th-gen-xeon-s
calable-processors.html, 2023, [Accessed 12-10-2023].

AMD, “4th gen amd epyc processor architecture,” https://www.amd.com/system
/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf, 9 2023,
(Accessed on 10/12/2023).

H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic, M. Shah,
S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura, and R. Bianchini,
“Pond: Cxl-based memory pooling systems for cloud platforms,” in Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ser. ASPLOS 2023. New York, NY,
USA: Association for Computing Machinery, 2023, p. 574-587.

J. V. Quiroga, M. Torrents, N. Sonmez, D. Theodoropoulos, F. Zyulkyarov, and
M. Nemirovsky, “Evaluation of a rack-scale disaggregated memory prototype for
cloud data centers,” in Proceedings of the 30th International Workshop on Rapid
System Prototyping (RSP’19), ser. RSP ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 15-21.

H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhattacharya,
C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan, “Tpp: Transparent
page placement for cxl-enabled tiered-memory,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 742-755.

https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors.html
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

Bibliography 134

[34]

[35]

[42]

[43]

K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodoropoulos,
I. Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto, F. Espina, S. Lopez-Buedo,
Q. Chen, M. Nemirovsky, D. Roca, H. Klos, and T. Berends, “Rack-scale disag-
gregated cloud data centers: The dredbox project vision,” in 2016 Design, Au-
tomation € Test in Europe Conference & Ezhibition (DATE), 2016, pp. 690-695.

M. Bielski, I. Syrigos, K. Katrinis, D. Syrivelis, A. Reale, D. Theodoropoulos,
N. Alachiotis, D. Pnevmatikatos, E. Pap, G. Zervas, V. Mishra, A. Saljoghei,
A. Rigo, J. F. Zazo, S. Lopez-Buedo, M. Torrents, F. Zyulkyarov, M. Enrico, and
0. G. de Dios, “dredbox: Materializing a full-stack rack-scale system prototype of
a next-generation disaggregated datacenter,” in 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2018, pp. 1093-1098.

Q. Yang, R. Jin, B. Davis, D. Inupakutika, and M. Zhao, “Performance evaluation
on cxl-enabled hybrid memory pool,” in 2022 IEEE International Conference on
Networking, Architecture and Storage (NAS), 2022, pp. 1-5.

C. Giannoula, K. Huang, J. Tang, N. Koziris, G. Goumas, Z. Chishti, and N. Vi-
jaykumar, “Daemon: Architectural support for efficient data movement in fully
disaggregated systems,” Proc. ACM Meas. Anal. Comput. Syst., vol. 7, no. 1, mar
2023.

V. R. Kommareddy, S. D. Hammond, C. Hughes, A. Samih, and A. Awad, “Page
migration support for disaggregated non-volatile memories,” in Proceedings of the
International Symposium on Memory Systems, ser. MEMSYS '19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 417-427.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate mem-
ory system simulator,” IEEE Comput. Archit. Lett., vol. 10, no. 1, p. 16-19, jan
2011.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-
ness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, p. 1-7, aug 2011.

A. Puri, K. Bellamkonda, K. Narreddy, J. Jose, V. Tamarapalli, and
V. Narayanan, “Dracksim: Simulating cxl-enabled large-scale disaggregated
memory systems,” in Proceedings of the 38th ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, ser. SIGSIM-PADS ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 3-14. [Online].
Available: https://doi.org/10.1145/3615979.3656059

A. Puri, K. Bellamkonda, K. Narreddy, J. Jose, and T. Venkatesh, “A practical
approach for workload-aware data movement in disaggregated memory systems,”
in 2028 IEEE 35th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), 2023, pp. 78-88.

A. Puri, J. Jose, and T. Venkatesh, “Design and evaluation of a rack-scale disag-
gregated memory architecture for data centers,” in 2022 IEEE 2jth Int Conf on
High Performance Computing € Communications; 8th Int Conf on Data Science
& Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor,
Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys),
2022, pp. 212-217.

https://doi.org/10.1145/3615979.3656059

Bibliography 135

[44]

[46]

A. Puri, A. Banerjee, J. Jose, and T. Venkatesh, “Understanding the per-
formance impact of queue-based resource allocation in scalable disaggregated
memory systems,” in 2023 IEEE 16th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), 2023, pp. 317-324.

H. Aghaei Khouzani, F. S. Hosseini, and C. Yang, “Segment and conflict aware
page allocation and migration in dram-pcm hybrid main memory,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 9,
pp. 1458-1470, 2017.

R. Pandey and A. Sahu, “Access-aware self-adaptive data mapping onto 3d-stacked
hybrid dram-pcm based chip-multiprocessor,” in 2019 IEEE 21st International
Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), 2019, pp. 389-396.

J.-T. Yun, S.-K. Yoon, J.-G. Kim, B. Burgstaller, and S.-D. Kim, “Regression
prefetcher with preprocessing for dram-pcm hybrid main memory,” IEEE Com-
puter Architecture Letters, vol. 17, no. 2, pp. 163-166, 2018.

H. G. Lee, S. Baek, C. Nicopoulos, and J. Kim, “An energy- and performance-
aware dram cache architecture for hybrid dram/pcm main memory systems,” in
2011 IEEE 29th International Conference on Computer Design (ICCD), 2011, pp.
381-387.

Y. Fu, Y. Lu, Z. Chen, Y. Wu, and N. Xiao, “Design and simulation of content-
aware hybrid dram-pcm memory system,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 7, pp. 1666-1677, 2022.

H. Aghaei Khouzani, F. S. Hosseini, and C. Yang, “Segment and conflict aware
page allocation and migration in dram-pcm hybrid main memory,” IEEE Transac-
tions on Computer-Aided Design of Integrated Clircuits and Systems, vol. 36, no. 9,
pp. 1458-1470, 2017.

X. Cai, L. Ju, M. Zhao, Z. Sun, and Z. Jia, “A novel page caching policy for pcm
and dram of hybrid memory architecture,” in 2016 13th International Conference
on Embedded Software and Systems (ICESS), 2016, pp. 67-73.

O. Patil, F. Mueller, L. Ionkov, J. Lee, and M. Lang, “Symbiotic hw cache and
sw dtlb prefetching for dram/nvm hybrid memory,” in 2020 28th International

Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), 2020, pp. 1-8.

A. Hassan, H. Vandierendonck, and D. S. Nikolopoulos, “Energy-efficient hybrid
dram/nvm main memory,” in 2015 International Conference on Parallel Architec-
ture and Compilation (PACT), 2015, pp. 492-493.

R. Salkhordeh, O. Mutlu, and H. Asadi, “An analytical model for performance
and lifetime estimation of hybrid dram-nvm main memories,” IEEE Transactions
on Computers, vol. 68, no. 8, pp. 1114-1130, 2019.

R. Salkhordeh and H. Asadi, “An operating system level data migration scheme
in hybrid dram-nvm memory architecture,” in 2016 Design, Automation & Test
in BEurope Conference € Exhibition (DATE), 2016, pp. 936-941.

Bibliography 136

[56]

[57]

[58]

[59]

[60]

[64]

X. Chen, E. H.-M. Sha, W. Jiang, Q. Zhuge, J. Chen, J. Qin, and Y. Zeng, “The
design of an efficient swap mechanism for hybrid dram-nvm systems,” in 2016
International Conference on Embedded Software (EMSOFT), 2016, pp. 1-10.

Z. Peng, D. Feng, J. Chen, J. Hu, and C. Huang, “Rhpm: Using relative hot-
ness to guide page migration for hybrid memory systems,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 8, pp.
2514-2526, 2023.

M. Han, J. Hyun, S. Park, and W. Baek, “Hotness- and lifetime-aware data place-
ment and migration for high-performance deep learning on heterogeneous memory
systems,” IEEE Transactions on Computers, vol. 69, no. 3, pp. 377-391, 2020.

J. Hu, H. Liu, H. Jin, and X. Liao, “Design and simulation of multi-tiered heteroge-
neous memory architecture,” in 2022 30th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS), 2022, pp. 113-120.

J. B. Kotra, H. Zhang, A. R. Alameldeen, C. Wilkerson, and M. T. Kandemir,
“Chameleon: A dynamically reconfigurable heterogeneous memory system,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2018, pp. 533-545.

S. Liang, R. Noronha, and D. K. Panda, “Swapping to remote memory over in-
finiband: An approach using a high performance network block device,” in 2005
IEEFE International Conference on Cluster Computing, 2005, pp. 1-10.

C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen, M. D. Bond, R. Netravali,
M. Kim, and G. H. Xu, “Semeru: A Memory-Disaggregated managed runtime,”
in 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, Nov. 2020, pp. 261-280.

J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient memory
disaggregation with infiniswap,” in Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI'17. USA: USENIX
Association, 2017, p. 649-667.

P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Rat-
nasamy, and S. Shenker, “Network requirements for resource disaggregation,”

in 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). Savannah, GA: USENIX Association, Nov. 2016, pp. 249-264.

M. Chapman and G. Heiser, “vNUMA: A virtual Shared-Memory multiprocessor,”
in 2009 USENIX Annual Technical Conference (USENIX ATC 09). San Diego,
CA: USENIX Association, Jun. 2009.

Z. Ma, Z. Sheng, and L. Gu, “Dvm: A big virtual machine for cloud computing,”
IEEFE Transactions on Computers, vol. 63, no. 9, pp. 2245-2258, 2014.

H. Montaner, F. Silla, and J. Duato, “A practical way to extend shared memory
support beyond a motherboard at low cost,” in Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing, ser. HPDC "10.
New York, NY, USA: Association for Computing Machinery, 2010, p. 155-166.

Bibliography 137

[68]

[69]

[70]

[71]

[72]

[77]

H. Montaner, F. Silla, H. Froning, and J. Duato, “Getting rid of coherency over-
head for memory-hungry applications,” in 2010 IEEFE International Conference on
Cluster Computing, 2010, pp. 48-57.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, “The
directory-based cache coherence protocol for the dash multiprocessor,” in Pro-
ceedings of the 17th Annual International Symposium on Computer Architecture,
ser. ISCA '90. New York, NY, USA: Association for Computing Machinery, 1990,
p. 148-159.

J. Laudon and D. Lenoski, “The sgi origin: a ccnuma highly scalable server,”
SIGARCH Comput. Archit. News, vol. 25, no. 2, p. 241-251, may 1997.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. Hennessy, “The stanford flash multiprocessor,” SIGARCH Comput. Ar-
chit. News, vol. 22, no. 2, p. 302-313, apr 1994.

K. Alnaes, E. Kristiansen, D. Gustavson, and D. James, “Scalable coherent inter-
face,” in COMPEURQ’90: Proceedings of the 1990 IEEE International Conference
on Computer Systems and Software Engineering - Systems Engineering Aspects of
Complex Computerized Systems, 1990, pp. 446-453.

R. Fatoohi, “Performance evaluation of the dual-core based sgi altix 4700,” in
19th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD’07), 2007, pp. 97-104.

“Konecny_paper.pdf,” https://cug.org/5-publications/proceedings_attendee_ 1
ists/2007CD/S07__Proceedings/pages/Authors/Konecny /Konecny__paper.pdf,
May 2007, (Accessed on 07/05/2024).

R. Hou, T. Jiang, L. Zhang, P. Qi, J. Dong, H. Wang, X. Gu, and S. Zhang,
“Cost effective data center servers,” in 2018 IEEE 19th International Symposium
on High Performance Computer Architecture (HPCA), 2013, pp. 179-187.

C.-C. Tu, C.-t. Lee, and T.-c. Chiueh, “Marlin: a memory-based rack area net-
work,” in Proceedings of the Tenth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ser. ANCS '14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 125-136.

A. Dragojevié¢, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast remote
memory,” in 11th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 14). Seattle, WA: USENIX Association, Apr. 2014, pp.
401-414.

D. Gouk, M. Kwon, H. Bae, S. Lee, and M. Jung, “Memory pooling with cxl,”
IEEFE Micro, vol. 43, no. 2, pp. 48-57, 2023.

M. Bichan, C. Ting, B. Zand, J. Wang, R. Shulyzki, J. Guthrie, K. Tyshchenko,
J. Zhao, A. Parsafar, E. Liu, A. Vatankhahghadim, S. Sharifian, A. Tyshchenko,
M. De Vita, S. Rubab, S. Iyer, F. Spagna, and N. Dolev, “A 32gb/s nrz 37db
serdes in 10nm cmos to support pci express gen 5 protocol,” in 2020 IEEE Custom
Integrated Circuits Conference (CICC), 2020, pp. 1-4.

https://cug.org/5-publications/proceedings_attendee_lists/2007CD/S07_Proceedings/pages/Authors/Konecny/Konecny_paper.pdf
https://cug.org/5-publications/proceedings_attendee_lists/2007CD/S07_Proceedings/pages/Authors/Konecny/Konecny_paper.pdf

Bibliography 138

[80]

[83]

[36]

J. Dong, R. Hou, M. Huang, T. Jiang, B. Zhao, S. A. McKee, H. Wang, X. Cui, and
L. Zhang, “Venice: Exploring server architectures for effective resource sharing,” in

2016 IEEFE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2016, pp. 507-518.

W. Cao and L. Liu, “Hierarchical orchestration of disaggregated memory,” IEEE
Transactions on Computers, vol. 69, no. 6, pp. 844-855, 2020.

H. Liu, H. Jin, X. Liao, W. Deng, B. He, and C.-z. Xu, “Hotplug or ballooning:
A comparative study on dynamic memory management techniques for virtual ma-
chines,” IEEFE Transactions on Parallel and Distributed Systems, vol. 26, no. 5,
pp. 1350-1363, 2015.

N. Alachiotis, A. Andronikakis, O. Papadakis, D. Theodoropoulos, D. Pnev-
matikatos, D. Syrivelis, A. Reale, K. Katrinis, G. Zervas, V. Mishra, H. Yuan,
1. Syrigos, 1. Igoumenos, T. Korakis, M. Torrents, and F. Zyulkyarov, dReDBox:
A Disaggregated Architectural Perspective for Data Centers. Cham: Springer
International Publishing, 2019, pp. 35-56.

D. Syrivelis, A. Reale, K. Katrinis, I. Syrigos, M. Bielski, D. Theodoropoulos, D. N.
Pnevmatikatos, and G. Zervas, “A software-defined architecture and prototype for
disaggregated memory rack scale systems,” in 2017 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS).
IEEE, 2017, pp. 300-307.

D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct access, High-Performance mem-
ory disaggregation with DirectCXL,” in 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22). Carlsbad, CA: USENIX Association, Jul. 2022, pp.
287-294.

R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov, “Characteristics of work-
loads used in high performance and technical computing,” in Proceedings of the
21st Annual International Conference on Supercomputing, ser. ICS’07. New York,
NY, USA: Association for Computing Machinery, 2007, p. 73-82.

X. Ji, C. Wang, N. El-Sayed, X. Ma, Y. Kim, S. S. Vazhkudai, W. Xue, and
D. Sanchez, “Understanding object-level memory access patterns across the spec-
trum,” in Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, ser. SC '17. New York, NY, USA:
Association for Computing Machinery, 2017.

T. Heo, Y. Wang, W. Cui, J. Huh, and L. Zhang, “Adaptive page migration policy
with huge pages in tiered memory systems,” IEEE Transactions on Computers,
vol. 71, no. 1, pp. 53-68, 2022.

N. Niu, F. Fu, B. Yang, Q. Wang, X. Li, F. Lai, and J. Wang, “Pfha: A novel page
migration algorithm for hybrid memory embedded systems,” IEFE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 10, pp. 1685-1692,
2021.

J. Kim, W. Choe, and J. Ahn, “Exploring the design space of page management
for Multi-Tiered memory systems,” in 2021 USENIX Annual Technical Conference
(USENIX ATC 21). USENIX Association, Jul. 2021, pp. 715-728.

Bibliography 139

[91]

[92]

[93]

[95]

[96]

[97]

[101]

P. Duraisamy, W. Xu, S. Hare, R. Rajwar, D. Culler, Z. Xu, J. Fan, C. Ken-
nelly, B. McCloskey, D. Mijailovic, B. Morris, C. Mukherjee, J. Ren, G. Thelen,
P. Turner, C. Villavieja, P. Ranganathan, and A. Vahdat, “Towards an adaptable
systems architecture for memory tiering at warehouse-scale,” in Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ser. ASPLOS 2023. New York,
NY, USA: Association for Computing Machinery, 2023, p. 727-741.

S. Wu, B. Wang, C. Yang, Q. He, and J. Chen, “A hot-page aware hybrid-copy
migration method,” in 2016 IEEFE International Conference on Cloud Engineering
(IC2E), 2016, pp. 220-221.

R. Wang, J. Wang, S. Idreos, M. T. Ozsu, and W. G. Aref, “The case for dis-
tributed shared-memory databases with rdma-enabled memory disaggregation,”
Proc. VLDB Endow., vol. 16, no. 1, p. 15-22, sep 2022.

R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Ratnasamy,
and S. Shenker, “Revisiting network support for rdma,” in Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 313-326.

D. Mosberger and S. Eranian, [A-64 Linux Kernel: Design and Implementation.
USA: Prentice Hall PTR, 2001.

A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. H. Loh, “Avoiding tlb shoot-
downs through self-invalidating tlb entries,” in 2017 26th International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2017, pp. 273-287.

C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez, A. Mendelson,
N. Navarro, A. Cristal, and O. S. Unsal, “Didi: Mitigating the performance impact
of tlb shootdowns using a shared tlb directory,” in 2011 International Conference
on Parallel Architectures and Compilation Techniques, 2011, pp. 340-349.

C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer, “Every walk’s a
hit: Making page walks single-access cache hits,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS '22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 128-141.

T. Marinakis and I. Anagnostopoulos, “Performance and fairness improvement on
cmps considering bandwidth and cache utilization,” IEEE Computer Architecture
Letters, vol. 18, no. 2, pp. 1-4, 2019.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: building customized program analysis tools with
dynamic instrumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI '05. New York,
NY, USA: Association for Computing Machinery, 2005, p. 190-200.

V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, “Pin: a binary instru-
mentation tool for computer architecture research and education,” in Proceedings
of the 2004 Workshop on Computer Architecture Education: Held in Conjunction
with the 31st International Symposium on Computer Architecture, ser. WCAE *04.
New York, NY, USA: Association for Computing Machinery, 2004, p. 22—es.

Bibliography 140

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” SIGPLAN Not., vol. 40, no. 6, p. 190-200, jun 2005.

A. Dragojevi¢, D. Narayanan, O. Hodson, and M. Castro, “Farm: Fast remote
memory,” in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI'14. USA: USENIX Association, 2014, p.
401-414.

Intel, “Intel® Rack Scale Design (Intel® RSD) Architecture White Paper — in-
tel.in,” https://www.intel.in/content/www /in/en/architecture-and-technolo
gy /rack-scale-design /rack-scale-design-architecture-white-paper.html, 2017,
[Accessed 02-Jul-2023].

J. Taylor, “Facebook’s data center infrastructure: Open compute, disaggregated
rack, and beyond,” in Optical Fiber Communication Conference. Optica Publish-
ing Group, 2015, p. W1D.5.

A. Patel, F. Afram, S. Chen, and K. Ghose, “Marss: a full system simulator for
multicore x86 cpus,” in Proceedings of the 48th Design Automation Conference,
ser. DAC '11. New York, NY, USA: Association for Computing Machinery, 2011,
p. 1050-1055.

T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: exploring the level of ab-
straction for scalable and accurate parallel multi-core simulation,” in Proceedings
of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’11. New York, NY, USA: Association for Com-
puting Machinery, 2011.

J. H. Ahn, S. Li, S. O, and N. P. Jouppi, “Mcsima+: A manycore simulator with
application-level+ simulation and detailed microarchitecture modeling,” in 2013

IEERE International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE Computer Society, 2013, pp. 74-85.

G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A cycle-level simulator for highly
detailed microarchitecture exploration,” in 2009 IEEE International Symposium
on Performance Analysis of Systems and Software, 2009, pp. 53—64.

S. Hong, W.-O. Kwon, and M.-H. Oh, “Hardware implementation and analysis of
gen-z protocol for memory-centric architecture,” IEEE Access, vol. 8, pp. 127 244—
127253, 2020.

C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A properly syn-
chronized benchmark suite for contemporary research,” in 2016 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS),
2016, pp. 101-111.

A. Akram and L. Sawalha, “A survey of computer architecture simulation tech-
niques and tools,” IEEE Access, vol. 7, pp. 78 120-78 145, 2019.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in 2009 IEEFE Inter-
national Symposium on Workload Characterization (IISWC), 2009, pp. 44-54.

https://www.intel.in/content/www/in/en/architecture-and-technology/rack-scale-design/rack-scale-design-architecture-white-paper.html
https://www.intel.in/content/www/in/en/architecture-and-technology/rack-scale-design/rack-scale-design-architecture-white-paper.html

Bibliography 141

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

D. Griebler, J. Loff, G. Mencagli, M. Danelutto, and L. G. Fernandes, “Efficient
nas benchmark kernels with c4+-+ parallel programming,” in 2018 26th Euromicro
International Conference on Parallel, Distributed and Network-based Processing
(PDP), 2018, pp. 733-740.

HPCG, “GitHub - hpcg-benchmark /hpcg: Official HPCG benchmark source code
— github.com,” https://github.com/hpcg-benchmark/hpcg/, 2019, [Accessed
18-Jul-2023].

J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing framework
for shared memory,” in Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’'13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 135-146.

I. Karlin, J. Keasler, and J. R. Neely, “Lulesh 2.0 updates and changes,” 7 2013.
[Online]. Available: https://www.osti.gov/biblio/1090032/

P. S. Crozier, H. K. Thornquist, R. W. Numrich, A. B. Williams, H. C.
Edwards, E. R. Keiter, M. Rajan, J. M. Willenbring, D. W. Doerfler, and
M. A. Heroux, “Improving performance via mini-applications.” 9 2009. [Online].
Available: https://www.osti.gov/biblio/993908/

C. R. Ferenbaugh, “Pennant: an unstructured mesh mini-app for advanced ar-
chitecture research,” Concurrency and Computation: Practice and Ezperience,
vol. 27, no. 17, pp. 4555-4572, 2015.

G. Gunow, J. Tramm, B. Forget, K. Smith, and T. He, “SimpleMOC - a per-
formance abstraction for 3D MOC,” in ANS & ME&C 2015 - Joint International

Conference on Mathematics and Computation (MEC), Supercomputing in Nuclear
Applications (SNA) and the Monte Carlo (MC) Method, 2015.

J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench - the development
and verification of a performance abstraction for Monte Carlo reactor analysis,” in
PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future, Kyoto,
2014.

S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger, G. Mendel-
son, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and T. Edsall, “Drmt:
Disaggregated programmable switching,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, ser. SIGCOMM ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p. 1-14.

A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit, and M. Budiu, “Dc.p4:
Programming the forwarding plane of a data-center switch,” in Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking Research, ser.
SOSR ’15. New York, NY, USA: Association for Computing Machinery, 2015.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4: Programming protocol-
independent packet processors,” SIGCOMM Comput. Commun. Rev., vol. 44,
no. 3, p. 87-95, jul 2014.

[Online]. Available: https://www.juniper.net/us/en/products/switches/ex-series/
€x9200-programmable-network-switch.html

https://github.com/hpcg-benchmark/hpcg/
https://www.osti.gov/biblio/1090032/
https://www.osti.gov/biblio/993908/
https://www.juniper.net/us/en/products/switches/ex-series/ex9200-programmable-network-switch.html
https://www.juniper.net/us/en/products/switches/ex-series/ex9200-programmable-network-switch.html

Bibliography 142

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]
[137]

[138]

[139]

[Online|. Available: https://www.intel.com/content/www /us/en/products- /netw
ork-io/programmable-ethernet-switch.html

P. Messina, “The exascale computing project,” Computing in Science € Engineer-
ing, vol. 19, no. 3, pp. 63—67, 2017.

Y. Chen, 1. B. Peng, Z. Peng, X. Liu, and B. Ren, “Atmem: Adaptive data
placement in graph applications on heterogeneous memories,” in Proceedings of the
18th ACM/IEEE International Symposium on Code Generation and Optimization,
ser. CGO 2020. New York, NY, USA: Association for Computing Machinery, 2020,
p. 293-304.

Y. Tan, B. Wang, Z. Yan, Q. Deng, X. Chen, and D. Liu, “Uimigrate: Adaptive
data migration for hybrid non-volatile memory systems,” in 2019 Design, Automa-
tion & Test in Furope Conference & Exhibition (DATE), 2019, pp. 860-865.

Z. Peng, D. Feng, J. Chen, J. Hu, and C. Huang, “Rhpm: Using relative hot-
ness to guide page migration for hybrid memory systems,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 8, pp.
2514-2526, 2023.

J. D. McCalpin, “Stream: Sustainable memory bandwidth in high performance
computers,” University of Virginia, Charlottesville, Virginia, Tech. Rep., 1991-
2007, a continually updated technical report. http://www.cs.virginia.edu/stream/.

H. Yuanfu and W. Xunsen, “The methods of improving the compression ratio of
1277 family data compression algorithms,” in Proceedings of Third International
Conference on Signal Processing (ICSP’96), vol. 1, 1996, pp. 698-701 vol.1.

R. LaRowe, C. Ellis, and M. Holliday, “Evaluation of numa memory management
through modeling and measurements,” IFEFE Transactions on Parallel and Dis-
tributed Systems, vol. 3, no. 6, pp. 686701, 1992.

L. Bhuyan, R. Iyer, H.-J. Wang, and A. Kumar, “Impact of cc-numa memory
management policies on the application performance of multistage switching net-
works,” IEEE Transactions on Parallel and Distributed Systems, vol. 11, no. 3,
pp. 230-246, 2000.

M. Diener, E. H. Cruz, and P. O. Navaux, “Locality vs. balance: Exploring data
mapping policies on numa systems,” in 2015 23rd Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing, 2015, pp. 9-16.

SPEC, “Standard performance evaluation corporation,” june 2017.

L. Yang, C. Pan, E. Zhang, and H. Liu, “A new class of priority-based weighted fair
scheduling algorithm,” Physics Procedia, vol. 33, pp. 942-948, 2012, 2012 Interna-
tional Conference on Medical Physics and Biomedical Engineering (ICMPBE2012).

S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3: A cycle-
accurate, thermal-capable dram simulator,” IEEE Computer Architecture Letters,
vol. 19, no. 2, pp. 106-109, 2020.

Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram simu-
lator,” IEEE Computer Architecture Letters, vol. 15, no. 1, pp. 4549, 2016.

https://www.intel.com/content/www/us/en/products-/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products-/network-io/programmable-ethernet-switch.html

List of Publications 143

List of Publications

International Conferences

e Amit Puri, John Jose, Tamarapalli Venkatesh, “Design and Evaluation of a
Rack-Scale Disaggregated Memory Architecture For Data Centers,” 24th
IEEE International Conference on High Performance Computing and Communi-
cations [HPCC], pp. 212-217, December 2022. DOI: 10.1109/HPCC-DSS-SmartCi
ty-DependSys57074.2022.00060

e Amit Puri, Kartheek Bellamkonda, Kailash Narreddy, John Jose, Venkatesh Tama-
rapalli, “A Practical Approach For Workload-Aware Data Movement in
Disaggregated Memory Systems,” 35th IEEE International Symposium on
Computer Architecture and High Performance Computing [SBAC-PAD], pp. 78-
88, October 2023. DOI: 10.1109/SBAC-PAD59825.2023.00017

e Amit Puri, John Jose, Venkatesh Tamarapalli, “Understanding the Perfor-
mance Impact of Queue-Based Resource Allocation in Scalable Dis-
aggregated Memory Systems,”16th IEEE International Symposium on Em-
bedded Multicore/Many-core Systems-on-Chip [MCSOC], pp. 317-324, December
2023. DOI: 10.1109/MCS0C60832.2023.00054

e Amit Puri, Kartheek Bellamkonda, Kailash Narreddy, John Jose, Tamarapalli
Venkatesh, Vijaykrishnan Narayanan, “DRackSim: Simulating CXL-enabled
Large-Scale Disaggregated Memory Systems,” 38th ACM SIGSIM Confer-
ence on Principles of Advanced Discrete Simulation [PADS], 2024 DOI: 10.1145/
3615979.3656059

Journals

e Amit Puri, John Jose, Tamarapalli Venkatesh, Vijaykrishnan Narayanan, “CosMoS:
Architectural Support for Cost-Effective Data Movement in a Scalable
Disaggregated Memory Systems,” (Under Submission).

Posters

e Amit Puri, John Jose, Tamarapalli Venkatesh, “Optimizing Memory Latency
in Hardware Disaggregated Memory Systems,” In PhD Forum, Embedded
Systems Week, [ESWEEK], 2023

10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00060
10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00060
10.1109/SBAC-PAD59825.2023.00017
10.1109/MCSoC60832.2023.00054
10.1145/3615979.3656059
10.1145/3615979.3656059

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Traditional Server System Design
	1.2 Disaggregated Memory Systems
	1.2.1 Performance Improvement with Disaggregated Memory System

	1.3 Challenges in Disaggregated Memory System
	1.3.1 System Design
	1.3.2 High Average Memory Access Time
	1.3.3 Remote Memory Management and Control
	1.3.4 Architectural Simulation

	1.4 Thesis Contribution
	1.4.1 DRackSim: Simulating CXL-enabled Large-Scale Disaggregated Memory Systems
	1.4.2 A Practical approach for workload-aware data movement in Disaggregated Memory Systems
	1.4.3 CosMoS: Architectural Support for Cost-Effective Data Movement in a Scalable Disaggregated Memory Systems
	1.4.4 Design and Analysis of Memory Allocation Policies for Disaggregated Memory System
	1.4.5 QoS Management in Large-Scale Disaggregated Memory Systems

	1.5 Thesis Organization

	2 Background and Literature Survey
	2.1 Existing Solutions for Memory Scalability
	2.1.1 Scaling Memory Locally
	2.1.2 Scaling Memory Remotely

	2.2 Interconnects
	2.3 Disaggregated Memory Systems
	2.4 Reducing Memory Delays with Page Migration
	2.4.1 Page Migration Overheads and Parameters
	2.4.2 Different mechanisms for Hot Page Migration

	2.5 Fairness and QoS in Large-Scale Systems
	2.6 Performance Evaluation of Large-Scale DMS
	2.6.1 Simulation Tools and Techniques
	2.6.2 Binary Instrumentation with Intel PIN

	2.7 Summary

	3 DRackSim: Simulating CXL-enabled Large-Scale Disaggregated Memory Systems
	3.1 Introduction
	3.2 Motivation
	3.3 Baseline Hardware Disaggregated Memory Systems
	3.3.1 Remote Memory Organization

	3.4 DRackSim Design and Operations
	3.4.1 Trace-Based Model
	3.4.2 Cycle-Level Simulation Model
	3.4.3 Back-end Modeling

	3.5 Validation
	3.6 Evaluation
	3.6.1 Design Space Exploration
	3.6.2 Multi-Node Disaggregated Memory Systems
	3.6.3 Sensitivity to Local Memory Footprint
	3.6.4 Network Latency and Bandwidth Test
	3.6.5 Simulator Performance

	3.7 Summary

	4 A Practical Approach For Workload-Aware Data Movement in Disaggregated Memory Systems
	4.1 Introduction
	4.2 System Design
	4.2.1 Hot Page Tracking
	4.2.2 Performing Migration and Using Page Buffers
	4.2.3 Access Controller
	4.2.4 Pending Block Accesses

	4.3 Remote Memory Access Data Path
	4.4 Hardware Overheads
	4.5 Characterizing Workloads with Training
	4.6 Experimental Analysis
	4.6.1 Results
	4.6.2 Sensitivity Analysis

	4.7 Summary

	5 CosMoS: Architectural Support for Cost-Effective Data Movement in a Scalable Disaggregated Memory Systems
	5.1 Introduction
	5.2 Background and Motivation
	5.2.1 Workload Characterization
	5.2.2 Analysis and Limitations

	5.3 CosMoS Architecture
	5.3.1 Design Modules
	5.3.2 CosMoS Complete Design

	5.4 Experiment Analysis
	5.4.1 Results

	5.5 Summary

	6 Design and Analysis of Memory Allocation Policies for Disaggregated Memory System
	6.1 Introduction
	6.2 Memory Allocation Policies
	6.2.1 Conventional Allocation Policy
	6.2.2 Smart-idle Selection
	6.2.3 Uniform Load Partitioning

	6.3 Experimentation Methodology and Results
	6.3.1 Impact on Memory Latency
	6.3.2 Impact on Tail Latency
	6.3.3 Overall Latency Breakdown
	6.3.4 Performance Slowdown
	6.3.5 Impact on HPC workloads
	6.3.6 Complexity Analysis and Performance Impact

	6.4 Summary

	7 Understanding the Performance Impact of Queue-Based Resource Allocation in Scalable Disaggregated Memory Systems
	7.1 Introduction
	7.2 Background and Motivation
	7.3 Design
	7.3.1 Weighted Round-Robin Scheduling
	7.3.2 Round-Robin Scheduling
	7.3.3 Priority Scheduling
	7.3.4 Priority-based Weighted Scheduling

	7.4 Methodology and Results
	7.5 Summary

	8 Conclusion and Future Work
	8.1 Summary
	8.2 Future Work

	Bibliography
	List of Publications
	Publications

