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Abstract

Computing a Steiner tree of a given graph is a well-studied problem. Given
an undirected connected graph G = (V,E), a weight function w : E → R+,
and a set of vertices S ⊆ V , known as the set of terminals, the goal of the
Steiner tree problem is to find a tree T = (V ′, E′) ⊆ G such that ΣeϵE′w(e)
is minimized subject to the conditions: S ⊆ V ′ ⊆ V and E′ ⊆ E. We study
the Steiner tree problem in dynamic graphs. A dynamic graph is a graph
where the edge set, the vertex set or both change with time. The graph is
subjected to a sequence of updates that may insert or delete some edges or
vertices. The algorithms for dynamic graphs are based on maintaining data
structures to update the existing solution after each update to minimize the
update time rather than computing the solution from scratch. Our objective
is to efficiently update and maintain a good approximate Steiner tree under
the graph updates. We surveyed the existing algorithms and techniques for
computing a Steiner tree in static and dynamic graphs. The dynamic Steiner
tree has immense applications in wireless networks, cyber-physical systems,
and multicast trees for information sharing. The Steiner tree formation also
acts as a building block in designing P2P networks, ad-hoc networks, and
solving more complex problems such as prize-collecting Steiner tree.

The dynamic Steiner tree problem with edge insertion and deletion is a
new problem, whereas the dynamic Steiner tree problem with conversion of
terminal to non-terminal and vice versa is an existing problem. We propose
five dynamic algorithms for maintaining an approximate Steiner tree under
different kinds of updates and graphs. We consider an edge-weighted undi-
rected graph with positive real edge weights. We propose a fully dynamic
algorithm in planar graphs where updates can insert and delete edges, and an
incremental algorithm for the Steiner tree problem in general graphs where
updates can insert edges in the graph. In the fully dynamic case, our anal-
ysis demonstrates that the presented algorithm maintains an approximation
factor of (2 + ϵ) in Õ(|S|2

√
n+ |S|D + n) worst case update time for process-

ing a series of k number of updates where n is the number of vertices in the
input graph, D denotes the unweighted diameter of the updated graph, and
k ∈ Z+ : 1 ≤ k ≤ (

√
n + m). We show that the update time improves to

O(n(ϵ′)-2) in a special case for ϵ′ = ϵ/2. On the other hand, the incremental



algorithm maintains a (2 − ϵ)-approximate Steiner tree in general graphs in
O(nDs) worst case update time. Here, Ds is the shortest path diameter of
the modified graph. Given a graph G = (V,E) with edge weights defined by a
function w : E → R+, the shortest path distance between two vertices u, v ∈ V
is denoted by d(u, v), which is the length of the shortest path connecting u
and v in G. The shortest path diameter of the graph G is defined as the max-
imum shortest path distance over all pairs of vertices: Ds = maxu,v∈V d(u, v).
The fully dynamic algorithm leverages tools from a dynamic distance oracle,
whereas the incremental algorithm maintains a partition of the input graph in
the form of a shortest path forest, which aids in efficiently updating a Steiner
tree.

Most of the existing algorithms for the Steiner tree problem are based
on an MST heuristic establishing a (2 − ϵ)-approximate Steiner tree. We
establish a lower bound on the update time required to maintain an MST
heuristic based (2− ϵ)-approximate Steiner tree (where ϵ is a small fraction)
in a general graph undergoing edge insertions or deletions. Also, we propose a
decremental algorithm for the Steiner tree problem in weighted planar graphs.
The graph undergoes a sequence of edge deletion updates. The proposed al-
gorithm maintains a (2+ϵ)-approximate Steiner tree under each edge deletion
in Õ(ℓ

√
n) worst case update time. Here, ℓ is the maximum hop length of a

(1 + ϵ′′)-approximate shortest path between any two nodes in a graph, and ϵ
and ϵ′′ are small fractions. The relations between ϵ and ϵ′′ are based on other
factors, and are discussed during their derivation.

Moreover, we propose a novel approach to maintain an approximate
Steiner tree in fully dynamic planar graphs where the updates can be the
insertion or deletion of a vertex from the graph, the insertion or deletion of an
edge from the graph, terminal to non-terminal conversion, and non-terminal
to terminal conversion. The algorithm maintains an approximate MST and
a (|S| − 1)-approximate Steiner tree. We also prove that the weight of any
spanning tree of the complete distance graph on terminals is at most (|S|−1)
times the weight of an optimal Steiner tree. To the best of our knowledge, the
proposed algorithm is the first algorithm that allows these six types of graph
updates and maintains a (|S| − 1)-approximate Steiner tree in planar graphs
in Õ((δp logU)/ϵ + |S| ·

√
n + n) update time for p number of updates. Here,

δ is the maximum degree of a vertex, and U is the maximum edge weight. We
propose a fully dynamic algorithm in general graphs supporting the same six
types of updates. By integrating dynamic clustering, spanner-based connec-
tivity, and a hybrid distance oracle, the algorithm achieves an approximation
factor of (2 + ϵ) for some tunable 0 < ϵ < 1. Furthermore, it achieves an
expected update time complexity of O(m1/2 + n2/3) per update.



These algorithms significantly improve over existing dynamic Steiner tree
algorithms in terms of flexibility, approximation guarantees, and update time
complexity. The proposed algorithms are based on several existing techniques,
including maintaining approximate shortest paths, a shortest path forest, ET-
trees, spanners, and several techniques designed by us, including efficient com-
putation of shortest paths between terminals, efficient computation of shortest
paths between trees and augmenting existing distance oracles.

The main results of the thesis are the following:

1. Fully dynamic algorithms for planar graphs: An algorithm that
maintains a (2 + ϵ)-approximate Steiner tree with worst-case update
time Õ(|S|2

√
n + |S|D + n), where n is the number of vertices and D

is the (unweighted) diameter. This bound holds for up to k updates,
with 1 ≤ k ≤

√
n + m. In special cases, the update time improves to

O(nϵ′−2).

2. An incremental algorithm for general graphs: An algorithm that
maintains a (2−ϵ)-approximate Steiner tree with worst-case update time
O(nDs), where Ds is the shortest-path diameter of the updated graph.

3. A lower bound on the update time: An Ω(n) lower bound is estab-
lished on the update time required to maintain an MST-heuristic-based
(2− ϵ)-approximate Steiner tree in general graphs under edge updates.

4. A decremental algorithm for planar graphs: An algorithm that
maintains a (2 + ϵ)-approximate Steiner tree under edge deletions with
worst-case update time Õ(l

√
n), where l is the maximum hop length of

a (1 + ϵ′′)-approximate shortest path.

5. Fully dynamic algorithms for six update types in planar and
general graphs:

• Planar graphs: An algorithm maintaining a (|S| − 1)-approximate

Steiner tree with update time Õ
(
δp logU

ϵ + |S|
√
n + n

)
, where δ

is the maximum degree, U the maximum edge weight, and p the
number of updates.

• General graphs: An algorithm integrating clustering, spanners, and
a hybrid distance oracle to achieve a (2 + ϵ)-approximation with
expected update time O

(
m1/2 + n2/3

)
, where m is the number of

edges.
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1
Introduction

This thesis delves into the Steiner tree problem within the realm of dy-
namic graphs. The Steiner tree problem is a widely studied combinatorial
optimization problem that aims to minimize the tree cost while adhering to
specific constraints [1]. It is a network optimization problem where the under-
lying graph topology changes due to updates, and the objective is to update
and maintain a tree that connects a set of designated vertices.

1.1 Steiner Tree

Formally, the classic Steiner tree problem is defined as follows:

Definition 1.1. (Steiner Tree Problem (Chleb́ık and Chleb́ıková [2])) Given
an undirected connected graph G = (V,E), a weight function w : E → R+,
and a set of vertices S ⊆ V , known as terminals, the goal of the Steiner tree
problem is to find a tree T = (V ′, E′), a sub-graph of G, such that ΣeϵE′w(e)
is minimized subject to the conditions:

• S ⊆ V ′ ⊆ V

• E′ ⊆ E

The tree may contain vertices other than terminals to minimize the over-
all weight. The vertices in V \S are called non-terminals. Non-terminals that
are included within the Steiner tree are termed as Steiner vertices. Steiner
vertices help connect the terminals efficiently. Figure 1.1 shows an example
Steiner tree where the white vertices are terminals and the gray vertices are
non-terminals.

1



1.2. Approximation Algorithms and the Steiner Tree Problem
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(a) Example graph G
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(b) An optimal Steiner tree

Figure 1.1: An example graph and a corresponding optimal Steiner tree.

The presence of a non-terminal leaf in a Steiner tree implies an unnec-
essary edge that does not contribute to connecting the terminals. Removing
such leaves and their connecting edges would lead to a Steiner tree having a
lower cost that still connects all the terminals. Hence in a Steiner tree, all
leaves must be terminals.

The Steiner tree problem is a more generalized version of the minimum
spanning tree (MST) problem. When the set of terminals S = V , the Steiner
tree problem becomes the minimum spanning tree problem. When |S| = 2,
the Steiner tree problem simplifies to the s− t shortest path problem. There
exist efficient (polynomial time) algorithms for the s−t shortest path problem
and the minimum spanning tree problem, but the Steiner tree problem is an
NP-complete problem [3, 4]. Hence, the Steiner tree problem can not be solved
optimally in polynomial time unless P = NP . This leads to the development
of approximation algorithms for the Steiner tree problem.

1.2 Approximation Algorithms and the Steiner Tree
Problem

In computational complexity, many important optimization problems are known
to be NP-hard, meaning that finding exact solutions efficiently (in polynomial
time) is unlikely unless P = NP . To address this, approximation algo-
rithms are designed to compute solutions that are close to optimal in a
reasonable amount of time. These algorithms offer provable guarantees on
how close the returned solution is to the optimal one.

The quality of an approximation algorithm is measured by its approx-
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imation factor (or approximation ratio). For a minimization problem, an
algorithm is said to have an approximation factor of α ≥ 1 if, for every in-
stance, the cost of the solution it returns is at most α times the cost of an
optimal solution. A 2 approximation algorithm, for instance, ensures that the
output is no worse than a factor of 2 times the optimal.

The Steiner tree problem is a classic NP-hard problem in graph the-
ory. Since finding an exact solution is computationally expensive, researchers
have developed various approximate Steiner tree algorithms. These algorithms
efficiently produce trees whose total cost is guaranteed to be within a known
approximation factor of the minimum possible.

The Steiner tree problem can be addressed in two broad classes of graphs:
static and dynamic.

1.3 The Steiner Tree Problem in Static Graphs

A graph is said to be a static graph when changes in the vertex set, the edge
set, as well as changes in the weight function are not allowed. Once the graph is
defined, neither the graph nor any property of the graph changes. The Steiner
tree problem is an NP-complete problem [3, 4], with the best approximation
factor known to be 1.39 [5]. It is important to note the inherent difficulty of
solving the Steiner tree problem optimally. A well-known result shows that
achieving an approximation factor better than 96

95 for the Steiner tree problem
in polynomial time is impossible unless P = NP [2]. This implies that there
is a fundamental limitation on how close we can get to the optimal Steiner
tree in polynomial time. The Steiner tree problem can also be addressed in
a directed weighted graph. The directed version of the problem, called the
Directed Steiner Network problem, is defined as follows:

Definition 1.2. (Directed Steiner Network Problem) Given a weighted di-
rected graph G = (V,E) with weight function w : E → R+ and k demand
pairs (u1, v1), . . . , (uk, vk) ∈ V × V , the objective is to find a minimum-weight
sub-graph of G such that each ui has a path to vi where (ui, vi) is a demand
pair.

An example instance of the Directed Steiner Network problem is shown
in Figure 1.2. The black vertices are terminals, and the white vertices are non-
terminals. The directed edges are represented by arrows. The demand pairs
are (v1, v7) and (v2, v8). The optimal solution is shown in Figure 1.2b. Another
variant of the Directed Steiner Network problem is the Directed Steiner Tree,
in which all demand pairs are of the form (r, vi) for some root node r of the
tree. An example instance of the Directed Steiner Tree problem is shown in
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(a) Example directed graph
(b) An optimal directed

Steiner network

Figure 1.2: An example directed graph and a corresponding optimal directed
Steiner network.

Figure 1.3. The demand pairs are (v1, v2), (v1, v7) and (v1, v8). The optimal
solution is shown in Figure 1.3b.

(a) Example directed graph
(b) An optimal directed

Steiner tree

Figure 1.3: An example directed graph and a corresponding optimal directed
Steiner tree.
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1.4 The Steiner Tree Problem in Dynamic Graphs

1.4.1 Dynamic Graphs and Dynamic Algorithms

Dynamic graphs permit changes in the edge set, the vertex set, or the weight
function over time. Such graphs undergo a series of updates. An update may
involve vertex or edge insertion (or deletion) in the graph. Updates to the
graph might occur at any time. Harary and Gupta [6] present some dynamic
graph models. The properties of the graph, like the shortest paths between
vertices, routes or connectivity between the vertices, or the graph topology,
may change due to updates.

Recently, significant attention has been devoted to the design of dynamic
algorithms for certain graph problems. Dynamic algorithms aim to update and
maintain an existing solution to the problem under consideration by updating
the underlying data structure, avoiding the need for recomputation of the
solution from scratch for the updated instance.

A dynamic algorithm needs to maintain the solution after each update.
A dynamic algorithm is said to be incremental if it only handles insertion re-
quests ( edge or vertex insertions in the case of graph algorithms). Similarly,
a dynamic algorithm is said to be decremental if it only handles deletion re-
quests. A dynamic algorithm is said to be fully dynamic if it handles insertion
requests as well as deletion requests.

1.4.2 Dynamic Steiner Tree Problem

A Steiner tree in a dynamic graph, also called the dynamic Steiner tree(DST)
problem, deals with efficiently maintaining an approximate Steiner tree within
a dynamic graph. Formally, the definition of the dynamic Steiner tree is as
follows:

Definition 1.3. (Dynamic Steiner Tree Problem) Given a connected graph
G = (V,E) with positive real edge weights, a set of vertices S ⊆ V called
terminals, an existing approximate Steiner tree T = (V ′, E′) on S, along with
a series of updates, the objective of the dynamic Steiner tree problem is to
update and maintain T to an approximate Steiner tree T ′ = (V ′′, E′′) such
that the weight ΣeϵE′′w(e) of T ′ is as minimum as possible and T ′ spans all
the terminals, that is, S′ ⊆ V ′′ ⊆ V and E′′ ⊆ E. Here, S′ is the terminal set
after updates.

In general, an update may comprise the insertion into or deletion of an
edge e or vertex v from the graph G. S′ can be the same as S if there are
no updates influencing the terminal set. Maintaining a Steiner tree involves
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updating it to preserve its approximation factor and properties. Hence, T ′

may or may not be identical to T . While considering the dynamic Steiner tree
problem, adding or removing vertices in the graph can create new or eliminate
existing connections. Inserting new edges may provide more cost-efficient
routes, while deleting edges may force the Steiner tree to take alternative
paths to maintain quality or retain connectivity. Changing the status of a
vertex from non-terminal to terminal or vice versa can modify the set of
vertices the Steiner tree needs to span. This can potentially lead to a change
in the optimal Steiner tree, impacting the optimal cost.

Since some applications might use a Steiner tree while updates appear in
the graph, a Steiner tree needs to be continuously updated as the underlying
graph changes. Maintaining the tree ensures that it reflects the current state
of the graph and provides a result having desirable quality. Recomputing the
Steiner tree from scratch after every update can be computationally expensive.
Maintaining an approximate Steiner tree allows for efficient updates, enabling
the applications to quickly adapt to the changing graph and continue utilizing
the Steiner tree for routing or other purposes. Dynamic graphs are crucial
for scenarios where vertices or edges evolve, requiring effective capture and
analysis of these changes.

Imase and Waxman [7] and  Lacki et al. [8] studied the dynamic Steiner
tree problem, where the dynamicity refers to the conversion of a terminal to a
non-terminal and vice versa. The dynamic Steiner tree problem can further be
divided into two variants based on the allowance of re-arrangement of edges in
the previously computed tree [7]. In the rearrangeable scenario, rearrangement
of existing routes in the tree is allowed as the existing nodes are either added
to or removed from the terminal set. Conversely, in the non-rearrangeable
scenario, existing routes within the tree cannot be modified or dynamically
adjusted as the nodes are added to or removed from the terminal set. In the
case where re-arrangement of edges is allowed, the updated Steiner tree may
have a cost less than the cost of the current Steiner tree. Whereas in the
non re-arrangement case, the cost of the updated tree after the addition of a
vertex or edge can not be less than the cost of the tree computed after the
previous update, i.e., the current Steiner tree. In this variant, the addition of
a vertex can not result in the deletion of any existing edge, and the deletion
of any vertex can not result in the addition of a new edge. As a consequence,
when a vertex is added to the graph G, the previous tree turns out to be a
sub-tree of the updated tree, and when a vertex is deleted, the updated tree
turns out to be a sub-tree of the previous tree. It is NP-Hard to compute the
exact solution of both of these variants.
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1.5 Applications of the Steiner Tree

The dynamic Steiner tree problem is a re-optimization problem where we
are given an instance of the problem, an approximate solution, and some
updates to the graph. The objective is to update the existing solution to
a good approximate Steiner tree for the updated instance. The dynamic
algorithm saves us over the time required to recompute the solution from
scratch. Steiner tree has many applications. One important application is the
formation of a multicast tree for information sharing. The multicast is the
problem of creating, maintaining, and updating trees that are rooted at source
nodes and span a set of destination nodes, which is essentially a Steiner tree
with the terminal set consisting of the source nodes and destination nodes
[9]. The topology of a mobile network keeps changing as nodes join and leave
a multicast network, and links may be added or deleted. It is, therefore,
challenging to recompute a valid multicast tree as quickly as possible.

The Dynamic Steiner Tree (DST) problem finds applications in various
scenarios. For instance, it can be used to model the multi-point routing prob-
lem within communication networks, as explored by Ding and Ishii [10], where
the Steiner vertices or the vertices of the graph may change. Incrementally
updating and maintaining an approximate Steiner tree is significantly more
efficient than recomputing it from scratch after every update, particularly for
a few updates, as the optimal and approximate Steiner trees may not change
significantly. The Steiner trees are good candidates for the computation of
a network that efficiently connects a set of nodes or processors that may not
be residing in the nearby geographical area, like servers receiving data from
sensors, where the server may be residing far from sensors, or robots that need
to communicate but require coordination remotely. These networks are prone
to continuous link creation or deletion as well as node addition and deletion.
The number of nodes in the network with useful information also needs to be
decreased to avoid security and privacy threats. The Steiner forest problem is
a strict generalization of the Steiner tree problem. The Steiner tree problem
is also driven by a range of applications in both physical and virtual net-
work design, spanning from railway infrastructure planning to virtual private
networks (VPNs) and multicast streaming scenarios [11].

Dynamic Steiner trees have broad applications, particularly in provid-
ing connectivity and services in CPSs (cyber-physical systems) and WSNs
(wireless sensor networks). These networks undergo topology changes due to
element movements or configuration changes in real-time, necessitating an ef-
ficient dynamic Steiner tree management. The DST under edge insertions or
deletions acts as a building block in CPSs and WSNs.
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The facilities needed for adapting the changes taking place in some spe-
cific nodes to support video broadcasts or conferences can be provided by an
underlying Steiner tree designed or computed over the graph generated by
the nodes and available links [7]. Applications may vary from forming multi-
cast trees for information sharing in dynamic networks, designing peer-to-peer
(P2P) networks, sensor networks, ad-hoc networks [12], etc., to solving com-
plex problems such as the prize collecting Steiner tree. It is challenging to
update and maintain an efficient solution in such cases.

1.6 Motivation

While classical static algorithms for computing exact or approximate Steiner
trees have been extensively studied, the growing need for handling dynami-
cally changing graphs, where edges and vertices may be inserted or deleted,
necessitates the development of efficient dynamic algorithms for the Steiner
tree problem. One may execute a static algorithm for the Steiner tree com-
putation from scratch after each update. However, this approach has serious
limitations in terms of the overall update time. Also, for a small number of
updates, it is desirable to incrementally change the Steiner tree due to the
updates rather than computing it from scratch since it might be used by some
applications while updates are appearing in an asynchronous manner. De-
spite substantial progress in dynamic graph algorithms over the past decades,
we observed a significant gap: there is a lack of dynamic algorithms that
efficiently maintain a good approximation of a Steiner tree under edge and
vertex insertions and deletions. Dynamic algorithms alleviate the need for
recomputation, offering efficiency in the face of graph updates.

While prior work has addressed the DST problem for vertex deletions
[13], and the conversion of a non-terminal to a terminal and vice versa by
Imase and Waxman [7], and Lacki et al. [8], limited research has been con-
ducted on the impact of edge insertions and deletions in this context. There-
fore, proposing better dynamic algorithms for handling edge insertions and
deletions remains a valuable area for future exploration. Specifically, exist-
ing literature primarily focuses on static or partially dynamic settings, often
limiting updates to specific graph classes or particular types of changes, such
as only terminal updates. This gap motivated our research. The best result
we found for maintaining a Steiner tree under the conversion of terminals to
non-terminals and vice versa is due to Lacki et al. [8] which is a (4 + ϵ) ap-
proximation in planar graph in Õ(ϵ−1 log6 n) time and a (6+ϵ) approximation
in Õ(

√
n logD) time in general graphs. The topology of the graph does not

change under these updates.
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However, the dynamic Steiner tree problem with edge insertions and dele-
tions and vertex insertions and deletions has not yet been studied extensively.
The topology of the graph changes under these kinds of updates. It is inter-
esting as well as challenging to incrementally or dynamically maintain a good
approximate Steiner tree when the topology of the underlying graph changes.

In this work, we address the dynamic Steiner tree problem with dynamic
insertions or deletions of edges and vertices in different dynamic graph envi-
ronments. This leads us to the following question:

Question 1. Is it possible to design a fully dynamic algorithm to efficiently
update and maintain a good approximate Steiner tree under edge insertion and
deletion updates?

We found that this problem has not been addressed and explored yet.
We approach the problem by attempting to design a fully dynamic algorithm
that handles edge insertions and deletions while maintaining a good approx-
imate Steiner tree efficiently. Recognizing the inherent structural properties
of planar graphs, we first targeted the planar setting. This led to the develop-
ment of a fully dynamic algorithm that supports edge insertions and deletions
in planar graphs, maintaining a good approximation of the Steiner tree while
exploiting planarity to achieve better efficiency.

Encouraged by the success in the planar case, we next turned our atten-
tion to more general graphs. However, the complexity of maintaining dynamic
Steiner trees in general graphs posed greater challenges. As the first question
remains open and difficult to solve, this led us to our second question:

Question 2. Is it possible to design an incremental algorithm to maintain a
good approximate Steiner tree in general graphs with edge insertion updates?

We addressed this by designing an incremental algorithm for general
graphs, capable of handling edge insertions while preserving a good approxi-
mate Steiner tree.

While striving to improve the update time complexity further, we rec-
ognized a key bottleneck: the time required to update the widely used MST
heuristic based 2-approximate Steiner tree. The simplicity of the MST heuris-
tic based algorithms makes them attractive, but it became increasingly clear
that reducing the update time beyond a certain threshold would require over-
coming the inherent limitations of this heuristic. It led us to the following
question:

Question 3. What is the lower bound on the update time complexity to main-
tain an MST heuristic based 2-approximate Steiner tree when the topology of

9



1.6. Motivation

the underlying graph changes?

Many of the existing algorithms for computing an approximate Steiner
tree are based on the MST heuristic based 2-approximate Steiner tree, and
require maintaining a complete distance graph over terminals. Therefore,
handling edge insertions or deletions becomes challenging as it can alter many
edges (all edges in the worst case) in the complete distance graph. There-
fore, we shifted focus to formally establish a lower bound on the update time
achievable by MST heuristic based dynamic algorithms, providing theoretical
justification for the observed complexity barriers.

Having explored an incremental solution in general graphs and a fully
dynamic solution in planar graphs, we observed the need for decremental so-
lutions.

Question 4. Is it possible to design a decremental algorithm to maintain
a good approximate Steiner tree with edge deletion updates?

We set out to design decremental algorithms that efficiently handle edge
deletions in planar graphs. We also realized that a comprehensive solution de-
mands algorithms that can handle not only edge insertion and deletion updates
but also vertex insertion and deletion updates and terminal to non-terminal
conversions and vice versa, making them more flexible and practically appli-
cable.

Question 5. Is it possible to design a fully dynamic algorithm to efficiently
update and maintain a good approximate Steiner tree under edge insertions,
edge deletions, vertex insertions, vertex deletions, terminal to non-terminal
conversion, and non-terminal to terminal conversion?

Consequently, the final phase of our research focused on developing two
dynamic algorithms, one for planar graphs and another for general graphs,
capable of efficiently maintaining approximate Steiner trees under all types of
updates: edge insertions and deletions, vertex insertions and deletions, and
terminal updates. These algorithms achieve both flexibility and efficiency,
addressing the practical needs of dynamic network environments.

In summary, our research systematically bridges the existing gap by pro-
gressively designing dynamic algorithms that balance approximation guaran-
tees and update efficiency, culminating in flexible solutions that handle com-
prehensive update operations across both planar and general graphs.
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1.7 Objectives

With the identified research gaps, we aim to design dynamic algorithms han-
dling edge insertion and deletion updates in planar and general graphs, and
then incorporate vertex insertion and deletion updates. The Steiner tree in our
problem differs from the Steiner tree in [7], where the previous Steiner tree is a
sub-tree of the updated Steiner tree or vice versa (depending on insert/delete
request). Our work does not require these conditions to be satisfied.

Objective I (A fully dynamic algorithm in planar graphs): As
the dynamic Steiner tree problem is not studied in dynamic graphs undergoing
edge insertion and deletion updates, our first target is to design an algorithm
in planar graphs to maintain a Steiner tree under these updates. We aim to
propose a fully dynamic algorithm for handling edge insertions and deletions
in planar graphs. The objective is to maintain a 2-approximate Steiner tree
in planar graphs under edge insertions and deletions.

Objective II (An incremental algorithm in general graphs): As
we realize the challenges in developing a fully dynamic algorithm in general
graphs, we address the problem in an incremental setting in an attempt to give
a dynamic algorithm for general graphs. We target to propose an incremental
algorithm for maintaining a 2-approximate Steiner tree in general graphs. To
update the Steiner tree efficiently, we propose an incremental rather than a
fully dynamic algorithm.

While trying to improve the update time complexity of our algorithms, we
observed the inherent complexity of the problem and the existing techniques.
Hence, we aim to propose a lower bound as our next objective as follows:

Objective III (A lower bound on update time): We identified that
various algorithms for computing or maintaining a Steiner tree are based on
an MST heuristic. We planned to introduce a lower bound on the update time
complexity for maintaining a Steiner tree for MST heuristic based algorithms.

Objective IV (An efficient dynamic algorithm in planar graphs):
In an urge to design a dynamic algorithm in planar graphs with a better up-
date time, we propose a decremental algorithm in planar graphs to improve
the update time complexity as compared to the proposed fully dynamic algo-
rithm.

While striving to achieve a fully dynamic algorithm for the dynamic
Steiner tree problem in general graphs, we aim to incorporate vertex insertion
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and deletion updates as well as terminal to non-terminal conversion and vice
versa. Hence, our next objective is as follows:

Objective V (Handling vertex insertion and deletion updates):
We aim to propose two fully dynamic algorithms, one in planar graphs and
the other one in general graphs. The objective is to handle six different types
of updates together: edge insertions and deletions, vertex insertions and dele-
tions, and conversion of terminal to non-terminal and vice versa efficiently.

1.8 Contribution of the Thesis

We investigate the dynamic Seiner tree problem for edge insertion and dele-
tion updates in planar and general graphs. We propose a lower bound on
the MST heuristic based algorithms to maintain a 2-approximate Steiner tree
under edge insertions and deletions. Together with edge insertion and dele-
tion updates, we also propose two algorithms to handle vertex insertions and
deletions and terminal to non-terminal conversion and vice versa.

1.8.1 A Fully Dynamic Algorithm in Planar Graphs

We present a fully dynamic algorithm that maintains a (2 + ϵ)-approximate
Steiner tree under a sequence of edge insertions and deletions in a planar graph
for 0 ≤ ϵ ≤ 1. The algorithm takes the help of a fully dynamic approximate
distance oracle which also works in a planar graph. The update time required
by the dynamic algorithm is Õ(|S|2

√
n+ |S|D + n) in the worst case. Here S

is the set of terminals, n is the number of vertices and D is the unweighted
diameter of the graph. This is significantly better than executing the static
algorithm from scratch (requiring O(|S|V 2) time) as proposed by L. Kou et
al. [14].

Our algorithm is fully dynamic in the sense that it can handle an arbi-
trary sequence of edge insertions as well as edge deletions. This is the first
work in this direction. We maintain a fully dynamic planar distance oracle
on the graph under consideration to efficiently compute approximate short-
est paths between terminals. The algorithm works in four steps. In the first
step, following a series of updates, the algorithm utilizes the distance oracle
to maintain a complete distance graph, denoted as G1, on the terminal set S.
In G1, the distances between any pair of terminals u and v are approximate
representations of their actual distances in the original graph G. In the sec-
ond step, the algorithm constructs a minimum spanning tree, denoted as T1,
on the complete distance graph G1. The third step substitutes the edges of

12



1. Introduction

T1 with the approximate shortest paths obtained from the dynamic distance
oracle. In the fourth step, the algorithm removes any cycles and non-terminal
leaves from the resulting graph to obtain the updated (2 + ϵ)-approximate
Steiner tree.

Later, we show that the update time of the presented algorithm becomes
O(n(ϵ′)−2) for some 0 ≤ ϵ′ ≤ 1 when |S| and D are logarithmic in n. The
update time for this case is linear in the number of vertices in the graph.

1.8.2 An Incremental Algorithm in General Graphs

We propose an incremental algorithm for maintaining an approximate Steiner
tree in general graphs. This algorithm specifically addresses dynamic updates
where only edge insertions are allowed. The key objective of the algorithm is
to efficiently maintain a (2 − ϵ)-approximate Steiner tree. The update time
for processing an edge insertion is O(nDs). The parameter Ds is defined in
Chapter 3.

The algorithm creates and maintains a shortest path forest such that
each terminal is a root of a shortest path tree in the shortest path forest. The
shortest path forest is updated after each edge insertion update and it helps
in identifying the updated shortest paths among the terminals. We take the
help of the data structures used by Dial [15] to maintain the shortest path
forest efficiently. The updated shortest paths among the terminals are utilized
from the shortest path forest to update the Steiner tree. The algorithm also
handles the cases where the inclusion of a shortest path in the Steiner tree
may lead to the creation of a cycle. This issue is addressed by identifying
the heaviest path connecting any two terminals in the cycle and removing it
without affecting the connectivity of other parts of the tree.

1.8.3 A Lower Bound

Kou et al. [14] show that computing MST of the complete distance graph
(metric closure) over terminals followed by replacement of the edges of MST
with the original shortest path between terminals in the graph avoiding cy-
cles and pruning non-terminal leaves gives a (2− ϵ)-approximate Steiner tree
where ϵ is 2/|S|. This algorithm is also known as the MST heuristic based
(2− ϵ)-approximate Steiner tree. We establish a lower bound of Ω(n) on the
update time required by MST heuristic based algorithms to maintain a (2−ϵ)-
approximate Steiner tree in a general graph undergoing edge insertion or edge
deletion updates.
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1.8.4 A Decremental Algorithm in Planar Graphs

We present a decremental algorithm for maintaining a (2 + ϵ)-approximate
Steiner tree in weighted planar dynamic graphs with edge deletion updates.
We initially take a (2− ϵ′)-approximate Steiner tree. After each update in the
graph, we update the Steiner tree to maintain a (2 + ϵ)-approximate Steiner
tree. The presented algorithm maintains the (2 + ϵ)-approximate Steiner tree
in Õ(ℓ

√
n) update time. Here, ℓ is the maximum number of hops in a (1+ϵ′′)-

approximate shortest path between any two vertices in a graph. This is sig-
nificantly better than executing the static algorithm from scratch as proposed
by Kou et al. (requiring O(|S||V |2) time) [14] and Wu et al. (requiring
O(|E| log |V |) time) [16].

We use a dynamic distance oracle to compute approximate shortest dis-
tances efficiently and an ET -tree data structure to avoid cycle formation in
the approximate Steiner tree. We maintain an auxiliary graph to efficiently
use the distance oracle. The auxiliary graph is designed such that a single
query of the distance oracle for the distance between any two arbitrary ver-
tices belonging to two different trees gives a path that is an approximation of
the minimum of the shortest paths among all the shortest paths between any
two vertices in the two trees.

1.8.5 A Fully Dynamic Algorithm Handling Edge and Vertex
Insertions and Deletions and Terminal Conversions in
Planar Graphs

We propose a novel approach to maintain an approximate Steiner tree in fully
dynamic undirected weighted planar graphs. The proposed algorithm works
for dynamic graphs where the updates can be the insertion or deletion of a
vertex from the graph, the insertion or deletion of an edge from the graph, or
the conversion of a non-terminal to a terminal and vice-versa. The conversion
of a non-terminal to a terminal and a terminal to a non-terminal is equivalent
to the insertion and deletion of a vertex from the terminal set, respectively.
After each update, the algorithm maintains a (1 + ϵ)-approximate MST and
a (|S| − 1)-approximate Steiner tree, where S is the set of terminals.

We also prove that the total weight of any spanning tree of the complete
distance graph on terminals is at most |S| − 1 times the total weight of the
optimal Steiner tree for the terminal set S. To the best of our knowledge, the
proposed algorithm is the first algorithm that allows these six types of graph
updates and maintains a (|S| − 1)-approximate Steiner tree in planar graphs.
The expected update time of the proposed algorithm is Õ((δp logU)/ϵ + |S| ·√
n + n) for p number of updates. For |S| = o(

√
n), the update time of the
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presented algorithm becomes linear in n.

The proposed algorithm employs a fully dynamic distance oracle, the
ET-trees data structure, and a (1 + ϵ)-approximate MST algorithm given
by Henzinger and King [17] that maintains an approximate MST under edge
insertion and deletion updates. The distance oracle is maintained on the graph
under consideration. The algorithm works in four steps. After an update, the
algorithm first performs the update operation on the distance oracle. In the
second step, the algorithm updates the approximate MST under these updates
based on the cut property of MST and the algorithm of Henzinger and King
[17]. In the third step, the algorithm finds (|S|−1) Neighbor terminal pairs in
the approximate MST with the help of a DFS procedure on the approximate
MST. A neighbor terminal pair is defined as a pair of terminals such that the
path between the two terminals does not contain any other terminal. In the
fourth step, the algorithm updates the (|S| − 1)-approximate Steiner tree by
connecting (|S| − 1) neighbor terminal pairs by approximate shortest paths.

1.8.6 A Fully Dynamic Algorithm Handling Edge and Vertex
Insertions and Deletions and Terminal Conversions in
General Graphs

We propose a fully dynamic algorithm for maintaining an approximate Steiner
tree in general graphs, supporting six types of updates: edge insertion, edge
deletion, vertex insertion, vertex deletion, terminal to non-terminal conver-
sion, and non-terminal to terminal conversion. By integrating dynamic clus-
tering, spanner-based connectivity, and a hybrid distance oracle, the algo-
rithm achieves an approximation factor of 2 + ϵ for some tunable ϵ > 0.
Furthermore, it achieves efficient updates with an expected time complexity
of O(m1/2 +n2/3) per update. The algorithm offers a significant improvement
over existing dynamic Steiner tree algorithms in terms of flexibility, approxi-
mation guarantees, and update efficiency.

The graph is decomposed into smaller clusters using low-diameter de-
composition. This decomposition divides the graph into subgraphs (clusters)
with bounded diameters, ensuring that distances between any two nodes in
a cluster are small. This property allows Steiner trees to be efficiently com-
puted locally within clusters. We use the spanner construction technique
proposed by Thorup and Zwick [18], which provides a (1 + ϵ) approximation
for distances while ensuring sparsity. This spanner construction is applied
to the clusters obtained through low-diameter decomposition, ensuring that
terminal-to-terminal distances across clusters are well-approximated. We aug-
ment the decremental distance oracle proposed by Bernstein and Roditty [19]
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to handle additional types of updates, including edge insertions. The hybrid
oracle is maintained over the inter-cluster spanner, while edge updates are
applied to the original dynamic graph. This ensures that the oracle efficiently
tracks terminal-to-terminal distances during dynamic updates.

The total complexity for processing a single update combines the contri-
butions from hybrid distance oracle updates, spanner updates, and Steiner tree
updates. Hybrid distance oracle updates dominate with O(m1/2) complexity
for edge modifications, while vertex updates contribute O(log n). Spanner up-
dates are bounded by O(logn) due to sparsity, and intra-cluster Steiner tree
updates using Mehlhorn’s algorithm scale efficiently with cluster size. Com-
bining these contributions, the overall expected time complexity for processing
any dynamic update is: O(m1/2 + n2/3).

1.9 Outline of the Thesis

The thesis is organized as follows.

Chapter 1: This chapter gives an introductory overview of the Steiner tree
problem and the dynamic graphs. The different configurations and ver-
sions of the Steiner tree problem are discussed in different environments,
including planar graphs, general graphs, graphs with bounded treewidth,
and dynamic graphs with terminal conversions. Several existing results
and algorithms for the Steiner tree problem in different static graphs
and dynamic graphs are discussed.

Chapter 2: This chapter explores recent works and techniques used to solve
the Steiner tree problem in various static and dynamic graph config-
urations. This chapter also explores some dynamic graph algorithms
applied to other dynamic graph problems. It gives an understanding of
the challenges in maintaining a solution due to updates in the under-
lying graph, some of the techniques used in dynamic graph algorithms,
and summarizes the research gap, the motivation and the research con-
tributions made to the thesis.

Chapter 3: This chapter provides a detailed description of the first contribu-
tion to the thesis. It includes a detailed description of the fully dynamic
algorithm maintaining a (2 + ϵ)-approximate Steiner tree under edge
insertions and deletions in planar graphs and the incremental algorithm
to maintain a (2 − ϵ)-approximate Steiner tree under edge insertions
in general graphs. It also explores a scenario where the fully dynamic
algorithm is more efficient in terms of the update time complexity.
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Chapter 4: In this chapter, first, we prove and establish a lower bound on the
time required to maintain an MST heuristic based (2− ϵ)-approximate
Steiner tree followed by a detailed discussion of the decremental algo-
rithm maintaining a (2 + ϵ)-approximate Steiner tree in planar graphs
that has an improved update time complexity as compared to the up-
date time complexity of the fully dynamic algorithm given in Chapter
1.

Chapter 5: This chapter revolves around the fully dynamic algorithms han-
dling six types of updates: edge insertion, edge deletion, vertex inser-
tion, vertex deletion, non-terminal to terminal conversion, and terminal
to non-terminal conversion. This chapter consists of four contributions.
The discussion starts with the multiple techniques used to maintain the
solution. The first algorithm in this chapter handles the updates in pla-
nar graphs and maintains an (|S| − 1)-approximate Steiner tree. Later,
we show that any spanning tree of the complete distance graph over
the terminals is an (|S| − 1)-approximate Steiner tree. To produce the
second algorithm, we augment an existing decremental distance oracle
to create a fully dynamic distance oracle. We use this fully dynamic dis-
tance oracle together with clustering and spanner techniques to design
a fully dynamic algorithm for general graphs that maintains a (2 + ϵ)-
approximate Steiner tree.

Chapter 6: We conclude the thesis with a conclusive discussion of the re-
search done under the thesis, where the achievements, pros, and cons
of the algorithms and techniques developed in the research are summa-
rized. Several possibilities and directions for further research are dis-
cussed based on the cons of the techniques developed and the existing
research gap.

00656//
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2
Related Work

The field of dynamic algorithms has witnessed significant research at-
tention over the past few decades due to its profound theoretical depth and
wide-ranging practical applications. Dynamic algorithms focus on efficiently
updating the solution to a problem as the underlying input undergoes mod-
ifications, such as insertions or deletions, without recomputing from scratch.
This area is particularly fascinating because it blends classic algorithmic tech-
niques with innovative approaches to handle ever-changing data efficiently.
At the same time, designing dynamic algorithms poses unique challenges, as
it often requires balancing update time, query efficiency, and approximation
guarantees under complex update sequences. As real-world systems increas-
ingly demand real-time responsiveness, dynamic algorithms continue to be
both an intellectually stimulating and practically essential research area.

This chapter presents an overview of existing research and recent ad-
vancements in the field of dynamic algorithms and both static and dynamic
versions of the Steiner tree problem, highlighting key developments and tech-
niques across various settings and emphasizing the progress made and the
challenges that remain. By examining these works, the chapter sets the foun-
dation for understanding the context and motivation behind the contributions.

2.1 Dynamic Algorithms

Hanauer et al. [20] surveyed recent developments in fully dynamic Algo-
rithms for some graph problems and presented a spectrum of dynamic graph
algorithms proposed for various graph problems. Holm et al. [21] made sig-
nificant contributions to the field of dynamic graph algorithms by introducing
efficient, fully dynamic algorithms for several key graph problems. These
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algorithms achieve a poly-logarithmic deterministic update time complexity.
These problems include the connectivity problem, the biconnectivity problem,
the 2-edge connectivity problem, and the minimum spanning tree problem.
These algorithms are designed to handle graphs that initially do not contain
any edges and undergo continuous updates, where edges are added and re-
moved over time. The authors designed an algorithm capable of maintaining
a spanning forest. The amortized update time of the presented algorithm is
O(log2 n) per update. This algorithm enables answering connectivity queries
in O(log n/ log log n) time. Additionally, an algorithm is presented to main-
tain a minimum spanning forest. The amortized update time of the algorithm
is O(log4 n) per operation. This work presents a fully dynamic algorithm for
maintaining 2-edge connectivity within a graph. This algorithm boasts an
amortized update time complexity of O(log4 n) per operation. Similarly, for
the fully dynamic biconnectivity problem, they proposed an algorithm with
operations supported in O(log5 n) amortized time per operation. Here, n is
the number of vertices in the graph.

Henzinger and King [17] proposed a dynamic algorithm to maintain an
MST for k weighted graphs under edge insertions and deletions in O(pk log3 n)
expected update time for p number of updates. The proposed algorithm is
extended to maintain a (1 + ϵ′)-approximate MST in O((p log3 n logU)/ϵ′)
expected time for p number of updates where edge weights are in [1, U ] and
ϵ′ is a small fraction.

2.2 The Static Steiner Tree Problem

Karp [3] and Garey and Johnson [22] independently demonstrated that the
Steiner tree problem is an NP-complete problem. Since then, the hunt for
good approximation algorithms for the Steiner tree problem has continued.
Some authors worked to find an exact algorithm for the Steiner tree problem
before it was known to be NP-complete. Winter [23] surveyed the Steiner tree
problem, where the author discussed various Steiner tree algorithms. Melzak
[24] gave an exact algorithm for the Steiner tree problem in the Euclidean
plane. Gilbert and Pollak [25] surveyed the Steiner problem in the Euclidean
plane, presenting work done on the Steiner tree problem in the Euclidean plane
up to 1968. Chang [26] provided some heuristics on the generation of minimal
trees with a Steiner topology. The most efficient heuristic of O(n logn) time
complexity is due to Smith et al. [27], which produces good results.

Chleb́ık and Chleb́ıková [2] showed that it is NP-hard to approximate
the Steiner tree problem within a factor of 96

95 . It is also mentioned that the
best approximation till 2018 was achieved by Robins and Zelikovsky [28] with
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an approximation factor of 1.550, and 1.279 for quasi-bipartite instances. The
Steiner tree instance is said to be quasi-bipartite if there is no edge among the
non terminals [2].

Theorem 2.1. (Chleb́ık and Chleb́ıková [2]) Given an integer d ≥ 3, let

q(d) = min{ c(d)−1
2c(d) ,

1
4}, r(d) = 1 + q(d)

3(d+1−q(d)) , where c(d) is the constant de-
fined in the following way:

c(d) = sup{c : there are infinitely many d-regular c-good expanders}.

Then, for any constant r, 1 < r < r(d) , it is NP-hard to approximate the
optimal solution of the Steiner tree problem within a factor r.

In particular, since c(6) > 1.76222 implies r(6) > 1.01063, inapproxima-
bility within a factor of 1.01063 (> 96

95) follows for the Steiner tree problem
unless P = NP.

An LP based solution for the k-restricted Steiner tree problem is given
by Byrka et al. [5]. It is a Steiner tree problem such that each component
can have at most k terminals. Byrka et al. applied LP relaxation followed
by randomization to obtain a (ln(4) + ϵ) approximation for the k-restricted
Steiner tree problem and later extended the work by applying derandomization
to the previous work. As a result, there is a deterministic algorithm with an
approximation factor of (ln(4) + ϵ) for the Steiner tree problem.

Theorem 2.2. (Byrka et al. [5]) For any k = O(1) and any constant ϵ > 0,
there is a polynomial time deterministic (ln(4) + ϵ) approximation algorithm
for the k-restricted Steiner tree.

Theorem 2.3. (Byrka et al. [5]) For any constant ϵ > 0, there is a polynomial-
time deterministic (ln(4) + ϵ) approximation algorithm for the Steiner tree
problem.

Chimani et al. [29] came up with a Steiner tree algorithm for bounded
treewidth that solves the exact Steiner tree problem in O(B2

tw+2.tw.|V |) time
where tw is treewidth, bell number Bk is the number of partitions of a set
with k elements. The authors applied a dynamic programming paradigm with
some numbering and coloring schemes.

Theorem 2.4. (Chimani et al. [29]) Given a graph with vertex set V and a
tree decomposition with treewidth tw, the Steiner tree problem can be solved to
optimality in O(B2

tw+2.tw.|V |) time.

Theorem 2.5. (Chimani et al. [29]) Given a graph with vertex set V and a
tree decomposition with treewidth tw, the prize-collecting Steiner tree problem
can be solved to optimality in O(B2

tw+2.tw.|V |) time.
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The bell number and treewidth are not directly dependent on the input
size and may have large values.

Kou et al. [14] presented an algorithm to compute a 2
(
1− 1

|S|
)
-approximate

Steiner in general graphs. The proposed algorithm computes a metric clo-
sure on the terminals followed by MST construction. The authors show that
the MST heuristic used by the algorithm computes a 2

(
1− 1

|S|
)
-approximate

Steiner in O(|S||V |2) time, where S is the set of terminals and V is the set of
vertices in the graph. Wu et al. [16] presented a similar algorithm to compute
a 2
(
1− 1

ℓ

)
-approximate Steiner in a general graph in O(|E| log |V |) time. Here,

ℓ is the minimum number of leaves in any optimal Steiner tree. The algorithm
computes shortest path trees from terminals as roots using a minimum pri-
ority queue, which holds tuples containing information about the distance of
vertices from terminals and uses the shortest paths among the terminals to
get the final Steiner tree.

Borradaile et al. [30] proposed a polynomial time approximation scheme
(PTAS) for the Steiner tree problem in a planar graph. The proposed algo-
rithm computes a (1 + ϵ)-approximate Steiner tree in O(2poly(1/ϵ)n + n logn)
time. The technique proposed works on static planar graphs rather than dy-
namic graphs, and the procedure used works on the assumption that the input
graph has a degree at most 3. The algorithm is a remarkable advancement in
this domain.

The Steiner tree problem in rectangular grid graphs is known as the
rectilinear Steiner tree problem. Rectangular grid graphs form a subclass of
planar graphs. Given a rectangular grid graph and a set of terminals, the
objective of the rectilinear Steiner tree problem is to find a rectilinear tree
connecting all terminals. Hwang [31] presented an O(n logn) time algorithm
for rectilinear minimal spanning trees. The algorithm is based on computing
Voronoi diagrams for rectilinear distances. The author also showed that the
given time complexity is the lower bound to compute Voronoi diagrams and
rectilinear minimal spanning trees. Zelikovsky [32] gave an algorithm for the
Steiner problem with rectilinear distances. The presented algorithm improves
an existing MST algorithm and produces an (11/8)-approximate Steiner tree
in O(|S|3) time.

Recent progress on the Steiner tree problem has focused on improving ap-
proximation guarantees, tightening lower bounds, and expanding tractability
through structural parameterization.

Bernardelli et al. [33] revisited the metric Steiner tree problem and ana-
lyzed the integrality gap of its linear programming relaxation. They proposed
the Complete Metric (CM) formulation, which generalizes the bi-directed cut
formulation and leads to stronger dual bounds. Their computational exper-
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iments show that the CM model yields tighter LP relaxations in practice,
thereby reducing the optimality gap between fractional and integral solutions
on benchmark instances.

Ahmadi et al. [34] addressed the Prize-Collecting Steiner Tree (PCST)
problem, where terminals may be omitted at the cost of incurring penalties.
They presented a 1.7994 approximation algorithm using iterative rounding
and a primal-dual framework, improving the best-known approximation factor
for PCST. The algorithm is based on a novel LP formulation and carefully
designed rounding schemes. While the exact time complexity is not explicitly
stated, the focus is on closing the gap between algorithmic and hardness lower
bounds under standard complexity assumptions.

Bojikian and Kratsch [35] considered the classical Steiner tree problem
parameterized by clique-width k. They developed a randomized Monte-Carlo
algorithm with a running time of 3k · nO(1). This algorithm matches known
lower bounds under the Strong Exponential Time Hypothesis (SETH), mak-
ing it tight. The primary challenge addressed is that clique-width generalizes
many hard graph classes, and dynamic programming approaches must care-
fully handle label expressions. Their work closes the algorithmic gap between
upper and lower bounds in this parameterized regime.

Jansen and Swennenhuis [36] studied parameterized variants of the Steiner
tree problem using structural parameters smaller than the number of termi-
nals. In particular, they focused on multiway cut size and the newly intro-
duced K-free treewidth parameter. They designed fixed-parameter tractable
(FPT) algorithms with running times 2O(k) · nO(1), where k is the parame-
ter (e.g., multiway cut size). A key challenge lies in expressing connectiv-
ity and penalty constraints within reduced-width tree decompositions, which
they overcome by careful encoding of terminal separation. Their results ex-
pand the range of practical instances that can be solved efficiently beyond
terminal-count-based methods.

There remains a notable lack of dedicated studies on the problem within
grid graphs. Grid graphs are discrete, with vertices constrained to lattice
points, and are typically studied under combinatorial or metric conditions
(e.g., Manhattan distance). The problem of finding Steiner trees on grid
graphs is more structured but also different in nature—discretized, combi-
natorial, and often with different algorithmic approaches compared to the
rectilinear Steiner tree. Algorithms explicitly designed for grid graphs with
theoretical guarantees appear to be an open or underexplored problem. Be-
yond planar grids, grids in higher dimensions or irregular sparse grids present
additional complexities: the combinatorial complexity might increase, embed-
dings become less structured, and existing planar graph algorithms may not
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extend easily. Hence, fully dynamic approximate Steiner algorithms for gen-
eral grids remain an open and interesting research direction, with promising
areas for exploration inspired by planar cases.

Together, these contributions advance the field by tightening approx-
imability, matching lower bounds, and extending algorithmic reach to more
expressive structural settings. While the algorithms presented in this section
compute the solution from scratch, our algorithms are dynamic in nature, i.e.,
they update an existing solution using some dynamically updated data struc-
tures after each update in the underlying graph, and hence, the update time
is better than recomputing the solution from scratch.

2.3 The Dynamic Steiner Tree Problem

The dynamic Steiner tree problem, as initially proposed by Imase and Wax-
man [7], addresses the challenge of an evolving terminal set within a static
graph topology. In this context, dynamicity refers to the transformation of
terminals into non-terminals and vice versa. The authors delineate two vari-
ants of this problem: the rearrangeable Steiner tree (DST-R) and the non-
rearrangeable Steiner tree (DST-N). In the rearrangeable scenario (DST-R),
rearrangement of existing routes in the tree is allowed as the existing nodes are
either added to or removed from the terminal set. Imase and Waxman devise a
polynomial time algorithm that produces a 4δ-approximate Steiner tree, where
the solution is a δ edge-bounded extension tree. A tree T is said to be δ edge-
bounded if for every pair of vertices u, v ∈ T , ∀e∈p(u,v,T )cost(e) ≤ δ · dist(u, v)
where p(u, v, T ) denotes the set of edges in the path between u and v in T
and dist(u, v) denotes the weight of a shortest path between u and v. A tree
T (V,E) is said to be an extension tree for a node set S if S ⊆ V and the
degree of all nodes in V \ S is greater than 2 in T . This algorithm offers a
reasonable approximation while allowing for some flexibility in route adjust-
ment. Conversely, in the non-rearrangeable scenario, existing routes within
the tree cannot be modified or dynamically adjusted as the nodes are added
to or removed from the terminal set. For the non-rearrangeable version (DST-
N), no edge can be added to the tree when a node is removed, and no edge
can be removed when a node is added. The authors demonstrate the impos-
sibility of the existence of an algorithm that can compute a solution costing
at most 1

2 log n times the cost of an optimal solution, assuming complete re-
arrangement. However, the authors show the existence of a polynomial time
algorithm for the non-rearrangeable Steiner tree. The presented algorithm
achieves a performance within twice this bound in the worst case, providing a
practical solution for scenarios where rearrangement is not allowed. Our algo-
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rithms work on the rearrangeable version of the dynamic Steiner tree problem,
without a restriction on the solution being an edge-bounded tree. Further-
more, our algorithms handle multiple types of updates that alter the topology
of the underlying graph, and thus, they can handle more complex updates
while maintaining a better approximation factor.

Lacki et al. [8] propose an algorithm for maintaining a Steiner tree in
planar graphs. This algorithm accommodates the conversion of terminals into
non-terminals and vice versa. They introduced a (2 + ϵ)-approximate and a
(4 + ϵ)-approximate Steiner tree algorithm in planar graphs in Õ(

√
n logD)

update time and Õ(ϵ−1 log6 n) amortized update time, respectively. The tech-
nique used was vertex-to-label distance oracle construction, with the help of
which multiple distance calculating operations can be supported. These oper-
ations include computing an approximate distance of the nearest active vertex
from any vertex v, an approximate distance of the nearest active vertex not
colored with some specific color from any vertex v, activating vertices of a
particular color, etc., followed by some edge replacement technique to select
cheaper edges after updating the terminal set.

Theorem 2.6. (Lacki et al. [8]) For any constant ϵ > 0, there exists a fully
dynamic algorithm for the Steiner tree problem in planar graphs that uses
O(ϵ−5n1.5 log1.5 n log2(ϵ−1n) logD) space and O(ϵ−5n1.5 log1.5 n log2(ϵ−1n) logD)
preprocessing time, and maintains a (4 + ϵ) approximation of the minimum-
cost Steiner tree on the terminal set, performing updates in amortized time
Õ(ϵ−1 log6 n).

Here, n is the total number of vertices in the graph and D is the stretch
of the metric induced by G. Lacki et al. extended their approach to general
graphs, offering a (6 + ϵ)-approximate Steiner tree solution in Õ(

√
n logD)

update time under the same kinds of updates. The presented algorithm relies
on an approximate distance oracle, originally proposed by Thorup and Zwick
[37]. The space and time complexity of the oracle construction depends on
the graph size and a parameter k(k ≥ 1). Specifically, the space require-
ment scales as O(kn1+1/k). The time complexity for constructing the oracle
scales as O(kmn1/k). The distance oracle can respond to approximate dis-
tance queries in O(k) time for some k ≥ 1, where the approximate distance
returned has a stretch of at most 2k − 1. This stretch factor ensures that
the approximate distance is within a certain factor of the actual distance,
providing a reliable estimation for the Steiner tree problem. Our algorithms
improve upon these results by providing a better approximation factor and
handling more complex updates that change the graph topology. The fully
dynamic (2 + ϵ)-approximate algorithm of Lacki et al. [8] for planar graphs
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handles terminal insertions and deletions in the terminal set and outperforms
our algorithms in terms of the update time complexity. Whereas our fully dy-
namic algorithms for the planar graph outperform their (2 + ϵ)-approximate
algorithm in handling multiple types of updates, including edge and vertex
insertions and deletions that alter the graph’s topology. Most of our algo-
rithms maintain a (2 − ϵ)-approximate or (2 + ϵ)-approximate Steiner tree,
which is significantly better than the approximation factors of the algorithms
presented by Lacki et al. [8]. Moreover, two of our algorithms handle six kinds
of updates in the underlying graph, which is more complex than the updates
handled by Lacki et al. [8].

Gupta and Kumar [13] delve into the online Steiner tree problem with
vertex deletions, introducing innovative solutions to address this dynamic sce-
nario. They propose an online decremental algorithm designed to handle
changes in the vertex set of a Steiner tree with a constant number of modi-
fications in the edge set of a Steiner tree in the worst case. This algorithm
efficiently adjusts the tree structure to accommodate vertex deletions while
maintaining a near-optimal solution. Additionally, Gupta and Kumar present
a fully dynamic constant competitive algorithm capable of handling both ver-
tex insertions and deletions in an amortized constant number of changes. This
algorithm ensures that the quality of a Steiner tree is maintained despite the
evolving nature of the graph. Furthermore, they demonstrate that including
higher-degree deleted vertices in the tree does not significantly increase the
cost of a tree, and the number of higher-degree vertices is small, affirming the
practicality and effectiveness of their algorithm in real-world scenarios. While
this work addresses vertex insertions and deletions, our algorithms handle a
broader range of updates, including edge insertions and deletions, providing a
more comprehensive solution to the dynamic Steiner tree problem. Also, this
work considers the number of changes in the edge set of the Steiner tree as a
measure of the complexity, while our work considers the standard notion of
time complexity (number of elementary steps in the algorithm).

Balev et al. [38] extend the classical Steiner tree problem to dynamic
graphs, framing two main connectivity requirements: (1) instantaneous con-
nectivity—where all terminals must be connected in every single snapshot,
and (2) journey-based connectivity—where only the existence of a temporal
path between terminals during the graph’s evolution is needed. To address re-
alistic scenarios where continual full connectivity may be too restrictive, they
introduce the partially connected model, a relaxation in which the solution set
is required only to connect each terminal to at least one other terminal at
every time step. This means the terminals may be split into several connected
components in some snapshots, as long as every component contains at least
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one terminal and there are no isolated non-terminals.

Within this dynamic, partially connected model, they prove even with
two terminals the dynamic minimum Steiner set problem (DMSS) remains
NP-hard—a stark contrast to the static case. Their proposed exact algorithm
for DMSS operates in time Θ(T × (n− s)k−s× k2/(k− s)!) for n nodes, s ter-
minals, Steiner set size k, and T time steps. Their experiments demonstrate
feasible computation for up to 100 nodes and moderate parameter values.
These results illustrate not only the added complexity under persistent con-
nectivity demands but also the necessity of new heuristics and approximation
approaches for scalable temporal network design. While this work focuses
on the partially connected model, our algorithms operate under the instanta-
neous connectivity model with various dynamic updates, providing stronger
connectivity guarantees.

Chan et al.[39] present the first fully dynamic algorithm for Euclidean
Steiner trees, allowing arbitrary point insertions and deletions in Rd. The
algorithm maintains a (1 + ϵ)-approximate minimum-cost solution after each
update by dynamically extending Arora’s PTAS-style quadtree-based geomet-
ric dynamic programming framework. Updates affect only a sublinear number
of subproblems in the dynamic program, and the tree structure is maintained
implicitly, enabling efficient membership and traversal queries.

For any 0 < ϵ, δ < 1 and any update sequence, the amortized update time
per insertion or deletion is O

(
log(t/δ)

)
· (logn)O(d2dϵ−d) · 2O(4dd4dϵ−2d), where

t is the update number, n is the current number of terminals, d is the Eu-
clidean dimension, and ϵ, δ are approximation and failure parameters chosen
by the user, respectively. The membership queries and neighbor queries run in
deterministic time O(2d log n) and (log n)O(d2dϵ−d) · 2O(4dd4dϵ−2d), respectively.
With probability at least 1−δ, the algorithm maintains a (1+ ϵ)-approximate
Steiner tree at all times. This fully dynamic, high-accuracy, sublinear-time
algorithm represents a substantial advancement in geometric network opti-
mization. While this work focuses on Euclidean spaces, our algorithms are
designed for general and planar graphs, broadening their applicability to a
wider range of network structures. Additionally, two of our algorithms sup-
port six types of updates.

2.4 The Steiner Tree Problem in Distributed Set-
tings

The Steiner tree problem has been extensively studied in distributed com-
puting models, particularly in the CONGEST and CONGESTED CLIQUE
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models. Saikia and Karmakar [40] introduced a deterministic distributed ap-
proximation algorithm in the CONGEST model, achieving a 2(1 − 1/ℓ) ap-
proximation factor, where ℓ is the number of leaf nodes in the optimal Steiner
tree. Their method constructs a Shortest Path Forest (SPF) by adapting the
Bellman-Ford algorithm in a distributed setting. This approach effectively
partitions the network into shortest-path trees rooted at terminals, subse-
quently applying MST heuristics based on the well-known GKP algorithm
proposed by Garay et al. [41]. The algorithm operates with a round complex-
ity of O(S +

√
n log∗ n) and message complexity of O(mS + n3/2). Here, S

denotes the shortest path diameter of the input graph G = (V,E), defined
formally as

S = max
u,v∈V

ρ(u, v),

where ρ(u, v) represents the number of edges on the shortest weighted path
between vertices u and v. Additionally, m = |E| denotes the number of edges
in the graph, and log∗ n (pronounced “log-star n”) is the iterated logarithm,
defined as the number of times the logarithm function must be applied to n
before the result becomes less than or equal to 1.

In subsequent work, Saikia and Karmakar [42] improved upon these re-
sults, proposing two deterministic distributed algorithms in the CONGEST
model, maintaining the same approximation factor of 2(1 − 1/ℓ). Their first
algorithm operates in O(S +

√
n log∗ n) rounds with O(mS + n3/2) messages,

whereas the second reduces message complexity significantly to Õ(Sm) at the
cost of a slightly higher round complexity of Õ(S+

√
n). Moreover, for graphs

with a small shortest-path diameter, specifically when S = O(log n), the algo-
rithm achieves complexities of Õ(

√
n) rounds and Õ(m) messages, effectively

matching known singularly-optimal algorithms for MST problems.

The Steiner tree problem has also been explored within the CONGESTED
CLIQUE model. Saikia and Karmakar [43] developed a deterministic dis-
tributed algorithm achieving a 2(1−1/ℓ) approximation factor within Õ(n1/3)
rounds and a message complexity of Õ(n7/3). Their algorithm utilizes iterated
squaring for computing all-pairs shortest paths, constructs an SPF, catego-
rizes edges into inter-tree and intra-tree, and employs a generalized MST
construction, ensuring all leaves are terminals.

The round-message trade-off for distributed Steiner tree construction in
the CONGEST model is explored by Saikia and Karmakar [44]. They pre-
sented a collection of deterministic algorithms offering a tunable balance be-
tween round and message complexity. For instance, one variant achieves round
complexity Õ(S+

√
n) and message complexity Õ(Sm), while another focuses

on reducing rounds to Õ(
√
n) when S = O(logn), keeping message complexity
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within Õ(m). These trade-offs provide flexibility based on network diameter
and density.

Further extending their contributions to the CONGESTED CLIQUE
model, Saikia and Karmakar [45] proposed deterministic distributed approxi-
mation algorithms that retain the approximation factor 2(1−1/ℓ), with round
complexity Õ(n1/3) and message complexity Õ(n7/3). Their approach inte-
grates all-pairs shortest path computation through iterated matrix squaring,
SPF construction, and generalized MST techniques. Additionally, a more
refined algorithm presented in [45] achieves a round complexity of O(S +
log log n) and message complexity O(Sm + n2) by employing deterministic
distributed SPF computation and MST heuristics.

Saikia et al. [46] addressed the Prize-Collecting Steiner Tree (PCST)
problem in the Congest model and proposed a deterministic distributed ap-
proximation algorithm based on the primal-dual framework. Unlike the clas-
sical Steiner Tree problem, the PCST formulation allows for terminal nodes to
remain unconnected by incurring a penalty cost, thereby generalizing the con-
nectivity requirement. The authors designed the D-PCST algorithm, which
guarantees a (2 − 1

n−1) approximation. The algorithm runs in O(n2) rounds
and incurs O(mn) message complexity, where n and m denote the number
of vertices and edges, respectively. This result demonstrates that primal-
dual methods can be effectively extended to distributed settings even under
bandwidth constraints, and offers a foundation for further exploration of gen-
eralized Steiner-type problems in the Congest model.

Collectively, these contributions have significantly advanced distributed
algorithmic frameworks for the Steiner tree problem, narrowing the complex-
ity gaps between Steiner and Minimum Spanning Tree constructions in dis-
tributed network optimization.

A recent work by Lenzen and Patt-Shamir [11] presents the existence of
a deterministic distributed algorithm in the congest model for computing the
Steiner forest in static graphs to (2 + ϵ) approximation, an O(log n) approxi-
mation randomized algorithm and a lower bound on the running time for the
Steiner forest problem in static graphs.

Corollary 2.1. (Lenzen and Patt-Shamir [11]) For any constant ϵ > 0, a
deterministic distributed algorithm can compute a (2 + ϵ)-optimal solution for
the DSF-IC problem in Õ(s×min{k0,WD}+

√
(min{st, n})+k+D) rounds,

where k0 is the number of input components with at least two terminals.

Here, s is the shortest path diameter, WD is the weighted diameter, D is
the unweighted diameter, k is the number of input components, n is the total
number of nodes, and t is the number of terminal nodes, of the input graph
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G. DSF-IC(Distributed Steiner Forest-Input Component) is defined as follows:

Input: At each node v, a label λ(v) ∈ Λ ∪ {⊥}, where Λ is the set of com-
ponent identifiers. The set of terminals is T = {v ∈ V |λ(v) ̸= ⊥}. An input
component Cλ for λ ̸= ⊥ is the set of terminals with label λ.

Output: An edge set F ⊆ E such that all terminals in each input compo-
nent are connected by F .

Goal: Minimize w(F ) = Σe∈Fw(e).

Theorem 2.7. (Lenzen and Patt-Shamir [11]) A O(log n)-optimal solution to
the DSF-IC problem can be computed in Õ(s+k) rounds with high probability.

Aharoni and Cohen [9] present a distributed algorithm for computing
dynamic Steiner trees for multicast, addressing the problem of minimizing the
number of nodes that keep the routing information in a minimum possible cost
multicast tree in datagram networks. An update request can insert or delete
a graph node from the set of destination nodes, and hence, the underlying
graph does not change. The burden of routing is restricted to the source node
and destination nodes only.

Theorem 2.8. (Aharoni and Cohen [9]) An execution of Restricted-Dynamic
Greedy Algorithm (R-DGA) provided in the paper on a sequence α of i add/remove
requests has performance ratio

R-DGA(α)

OPT
≤ ⌈log(|Zi|)⌉

where Zi is the set of destination nodes in the multicast tree after the add/remove
request i.

The value of |Zi| may turn out to be large(close to n) in some cases.
The performance ratio, also known as the competitive ratio of an algo-

rithm or solution, is a measure that compares the quality of the obtained
solution to the quality of an optimal solution. Formally, for a minimization
problem, if A(I) denotes the cost of the solution produced by the algorithm on
instance I and OPT(I) denotes the cost of an optimal solution for the same
instance, then the performance ratio R is defined as:

R = max
I

A(I)

OPT(I)
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where the maximum is taken over all instances I. A performance ratio close to
1 indicates that the solution is near optimal, while larger ratios indicate poorer
approximation. For maximization problems, the ratio is typically defined as
R = minI

A(I)
OPT(I) . It refers to how well an algorithm performs on a specific

instance or in practice, including empirical or expected behavior. It is used
to denote the quality of an online algorithm.

2.5 Important Results in the Steiner Tree Problem

Table 2.1: Results in the static Steiner tree problem

Year Algorithm Result Author

1981 A fast algorithm for 2
(
1− 1

|S|
)

approximation Kou et al. [14]

Steiner trees in O(|S||V |2) time

1986 A faster algorithm 2
(
1− 1

|S|
)

approximation Wu et al. [16]

for the Steiner problem in O(E log V ) time

1988 Faster approximation
algorithm for the Steiner O(|E|+ |V | log |V |) time Mehlhorn [47]

problem in graphs

2000 Steiner tree in 1.279 approximation Zelikovsky [28]
quasi-bipartite graph in O(|V \ S||S|2) time

2008 Inapproximability for β > 96
95 for all algorithms Chlebik [2]

Steiner tree

2010 An LP based algorithm 1.39 approximation Byrka [5]
for Steiner tree in O(n5) time

2012 Steiner tree algorithm Optimal solution in Chimani [29]
for bounded treewidth O(B2

tw+2 × tw × |V |) time

β: Approximation factor
tw: Treewidth
Btw+2 (Bell number): The number of partitions of a set with tw + 2 elements
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2. Related Work

Table 2.3: Results in the Steiner tree problem in distributed settings

Year Algorithm Result Author

1998 Dynamic restricted
multicast tree

P.R. ≤ ⌈log(zi)⌉ Aharoni [9]

2013 Distributed Dynamic
Steiner tree

P.R. = log(|S|) in
O(|S|N)

Blin [12]

2014 Distributed static
Steiner tree

O(log(n)) approximation Lenzen [11]

2019 Deterministic
approximation in

CONGEST

2(1− 1/ℓ) approximation
in O(|S|+

√
n log∗ n)

rounds and
O(m|S|+ n3/2) messages

Saikia and
Karmakar [40]

2021 Improved trade-offs in
CONGEST

2(1−1/ℓ) approximation;
Õ(|S|m) messages in
Õ(|S|+

√
n) rounds

Saikia and
Karmakar [42]

2020 Round-message
trade-off in
CONGEST

Deterministic tunable
trade-off: e.g.

Õ(|S|+
√
n) rounds and

Õ(|S|m) messages

Saikia and
Karmakar [44]

2019 Steiner tree in
CONGESTED

CLIQUE

2(1− 1/ℓ) approximation
in Õ(n1/3) rounds and

Õ(n7/3) messages

Saikia and
Karmakar [43]

2020 Improved
CONGESTED

CLIQUE algorithm

2(1− 1/ℓ) approximation
in O(|S|+ log logn)

rounds and O(|S|m + n2)
messages

Saikia and
Karmakar [45]

2021 Prize-Collecting
Steiner Tree in

CONGEST

Deterministic (2− 1
n−1)

approximation in O(n2)
rounds and O(mn)

messages

Saikia et
al. [46]

1998 Sublinear-time
distributed algorithms

for Steiner trees

MST-based
approximation in

CONGEST

Garay et
al. [41]

P.R.: Performance ratio (competitive ratio)
zi: Set of destination nodes in the multicast tree after the add/remove request
i
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3
A Fully Dynamic and an
Incremental Algorithm

In this chapter, we propose two dynamic algorithms: A fully dynamic
algorithm to maintain an approximate Steiner tree in planar graphs and an
incremental algorithm to maintain an approximate Steiner tree in general
graphs. We focus on edge-weighted connected graphs. The graph undergoes
dynamic updates where edges with specific weights can be either inserted or
deleted. The goal is to efficiently compute a Steiner tree of the updated graph,
guaranteeing a solution quality (Steiner tree cost) within a good factor of the
optimal Steiner tree.

This work explores the Steiner tree problem within two dynamic graph
frameworks. Our contributions are as follows:

1. We introduce a fully dynamic algorithm capable of preserving a (2 + ϵ)-
approximate Steiner tree in planar graphs while updates can insert and
delete edges in a graph. This algorithm works in planar graphs be-
cause it leverages a dynamic distance oracle that operates in planar
graphs, which restricts its applicability to general graphs. The pro-
posed dynamic algorithm exhibits a worst-case update time complexity
of Õ(|S|2

√
n + |S|D + n) for processing a series of k number of updates

where k ∈ Z+ : 1 ≤ k ≤ (
√
n + m). Here |S| represents the number of

terminals, D denotes the unweighted diameter of the initial graph, and ϵ
is a small fraction (0 ≤ ϵ ≤ 1). This update time complexity arises from
the need to update the distance oracle and the complete distance graph
(metric closure) over terminals and maintain a Steiner tree structure
efficiently in a dynamic planar graph. In a special case, the update time
improves to O(n(ϵ′)−2), where ϵ′ = ϵ/2. This algorithm is fully dynamic
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3.1. A Fully Dynamic Algorithm in Planar Graphs

and capable of handling any sequence of edge insertion and edge deletion
updates.

2. Additionally, we propose an incremental algorithm for maintaining an
approximate Steiner tree in general graphs. This algorithm specifically
addresses dynamic updates where only edge insertions are allowed. Each
inserted edge has a positive real weight. The key objective of the algo-
rithm is to efficiently maintain a (2− ϵ)-approximate Steiner tree. The
update time for processing an edge insertion is guaranteed to be O(nDs)
where Ds is known as the shortest path diameter of a graph and is de-
fined in Section 3.2.1. The incremental algorithm maintains a partition
of the input graph in the form of a shortest path forest, which aids in
efficiently updating a Steiner tree.

Our proposed algorithms exhibit significant performance improvements over
executing the static algorithm from scratch as given by Kou et al. [14] and Wu
et al. [16], which require O(|S|n2) and O(m logn) time respectively. The dy-
namic Steiner tree problem under edge insertions and deletions is a relatively
unexplored area, and this research attempts to fill this gap.

3.1 A Fully Dynamic Algorithm in Planar Graphs

3.1.1 Preliminaries

This work considers a dynamic graph denoted by G = (V,E). The graph
is planar, undirected, and edge-weighted. The set of edges, E, undergoes
dynamic changes through insertions and deletions. Each edge e has a positive
real weight w(e) within a range of 1 to M . This restricted weight assignment is
necessary for the distance oracle that is used later. An update involves either
the insertion or deletion of an edge e from the graph G, with the inserted
edge carrying a positive real weight w(e). The weight of the shortest path
between any two vertices u and v in a graph G is denoted by dist(u, v,G). We
assume that G maintains both planarity and connectivity even after edges are
inserted or deleted. Our Steiner tree problem differs from the one proposed
by Imase and Waxman [7], where depending on the insert or delete request,
the previous Steiner tree becomes either a subtree of the updated Steiner tree
or vice versa. This constraint is not applicable to our problem. The notation
Õ hides polylogarithmic factors.
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3. A Fully Dynamic and an Incremental Algorithm

Dynamic Distance Oracle

A distance oracle is a data structure, along with associated routines, designed
to compute distances within a given graph efficiently. In the context of our
research, a dynamic distance oracle refers to a data structure that, after some
initial preprocessing, can manage a sequence of graph updates while minimiz-
ing both update time and data structure space. Specifically, a fully dynamic
distance oracle can handle the insertion and deletion of edges, vertices, or
both in a graph. This work leverages a dynamic approximate distance oracle.
This oracle efficiently computes an approximate shortest path (and its weight)
between any two vertices within the graph, even as the graph undergoes edge
insertions and deletions.

A forbidden-set distance oracle for a graph G is a preprocessed data
structure that can answer distance queries of the form (s, t, F ), where F is a
set of faulty vertices (or edges), and s and t are vertices for which the distance
needs to be computed in the graph G \ F (the graph G with the vertices or
edges in F removed).

Abraham et al. [48] proposed a forbidden-set distance labeling scheme.
This scheme efficiently computes an approximate shortest path (and its weight)
between two designated points s and t within the graph, even when specific
vertices or edges represented by the set F are excluded from the path calcu-
lation. This scheme, with some modifications (shown in [48]), can be adapted
to construct a fully dynamic distance oracle with a stretch factor of (1 + ϵ′),
where ϵ′ is a freely chosen stretch parameter such that 0 < ϵ′ < 1. This dy-
namic distance oracle supports various operations, including edge insertion,
edge deletion, vertex insertion, and vertex deletion, while maintaining worst
case update and query times of Õ(n1/2).

Theorem 3.1. (Abraham et al. [48]) Given an n-vertex planar graph G
with edge weights in [1,M ] and a parameter ϵ′ > 0, a fully dynamic (1 + ϵ′)-
approximate distance oracle of size O(n log n · ((ϵ′)−1 + log n)) can be con-
structed in O((ϵ′)−1n log2 n) time. Each query operation and each update op-
eration takes O((ϵ′)−1n1/2 log2 n log(nM) · ((ϵ′)−1 + log n)) time.

The distance oracle is constructed based on a tree decomposition T .
Given a graph G(V,E), a tree decomposition consists of a tree T where each
node (known as a “bag”) of T is associated with a subset of vertices from V
such that every vertex in V appears in at least one bag. For every edge (u, v)
in E, there must be a bag in T that contains both u and v. If v ∈ V appears in
two different bags of T , it must also appear in all bags along the path between
these two bags in the tree. A tree decomposition helps decompose a complex
graph into simpler, more “tree-like” parts, where the relationship between
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3.1. A Fully Dynamic Algorithm in Planar Graphs

nodes is easier to analyze. The tree decomposition T divides the graph into
multiple regions. These regions contain local information, reducing the overall
complexity of query operations in the dynamic graph with updates. For every
vertex v in a region R, the oracle constructs an edge set Ẽ(v,R). These sets
are called vertex-region pairs. These vertex-region pairs allow quick retrieval
of routing information within regions, enabling alternative path-finding when
certain vertices or edges are no more available. This structure is essential for
maintaining low computational complexity while ensuring robustness against
updates. Additionally, a sketch graph H is maintained by the distance oracle.
A sketch graph is a data structure used to efficiently summarize and analyze
large, dynamic graphs in a streaming environment. It is a compact data struc-
ture that approximates the properties of a graph without storing the entire
graph in memory. The sketch graph H plays a crucial role by approximating
the original graph’s structure in a smaller, more manageable form. It simpli-
fies and optimizes distance queries by retaining key vertices and paths that
are important for computation in a dynamic graph. Each vertex u has a label
L(u), which helps identify safe edges forming a (u ⇝ v) path, and a failed
vertex label FL(u), which stores the labels of other failure-free vertex-region
pairs.

After updates that insert or delete edges or vertices in the graph, the dis-
tance oracle updates its data structure (L and FL labels and Ẽ(v,R) vertex-
region pairs). When queried for the distance between u and v in the updated
graph, the oracle uses these labels and vertex-region pairs to find an alterna-
tive path between u and v. This path is guaranteed to be within (1+ ϵ′) times
the length of the shortest path between u and v in the updated graph.

3.1.2 Algorithm

The proposed algorithm utilizes a dynamic distance oracle to efficiently com-
pute an approximate shortest path (and its weight) between a pair of termi-
nals. This oracle’s key feature is its ability to provide a (1+ ϵ′) approximation
of distances between any pair of vertices quickly. Our algorithm leverages
these approximate distances to construct a complete distance graph, where
each edge represents an approximate distance between two terminals. Subse-
quently, it uses paths corresponding to these distances to construct a Steiner
tree by applying an MST heuristic based (2 − ϵ)-approximate Steiner tree
algorithm.

The main steps of our approach are outlined as follows:

• Construct and maintain a fully dynamic (1 + ϵ′)-approximate distance
oracle for the input planar graph G. This construction process takes
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3. A Fully Dynamic and an Incremental Algorithm

O((ϵ′)−1n log2 n) time and utilizes O(n logn · ((ϵ′)−1 + logn)) space.
The distance oracle has Õ(

√
n) worst case query and update times, as

demonstrated in Theorem 3.1.

• Following a series of updates, the algorithm utilizes the distance oracle
to generate a complete distance graph, denoted as G1, on the terminal
set S. In G1, the distances between any pair of terminals u and v
are approximate representations of their actual distances in the original
graph G.

• Construct a minimum spanning tree, denoted as T1, on the complete
distance graph G1.

• Substitute the edges of T1 with the approximate shortest paths acquired
from the dynamic distance oracle.

• Remove any cycles and non-terminal leaves from the resulting graph to
obtain the updated (2 + ϵ)-approximate Steiner tree.

We begin with an input graph G with vertex set V and edge set E. A
weight function w : E → R+ assigns a positive real weight to each edge.
Additionally, a subset S of V defines the terminal set. The update sequence
U modifies G to G′ through edge insertions and deletions. (Details of update
visualization can be found in FIGURE 3.1).

Terminals are represented by white vertices, while non-terminals are rep-
resented by grey vertices. The number of updates in U is constrained to
O(
√
n + m) to comply with the distance oracle requirements. If the update

count exceeds this limit, U can be divided into batches of this size for efficient
processing. Each inserted edge has a positive real weight. The proposed algo-
rithm operates in four stages. During updates, the distance oracle modifies its
internal data structures, including labels and the sketch graph H. As given by
Theorem 3.1, updates to the distance oracle can be performed in Õ(

√
n) time.

This updated sketch graph H guarantees the existence of (1+ϵ′)-approximate
paths between any two vertices in the modified graph G′. These paths can
then be used to estimate the approximate distance and corresponding path
between any pair of terminals u and v within G′.

Lemma 3.2. (Abraham et al. [48]) dist(u, v,H) ≤ (1 + ϵ′)dist(u, v,G).

The distance oracle plays a crucial role in estimating distances between
vertices. Querying the distance oracle for any two vertices u and v, the oracle
returns an approximate distance denoted by dist(u, v,H). This approximation
is based on the internal sketch graph H maintained by the oracle. We utilize

39



3.1. A Fully Dynamic Algorithm in Planar Graphs

v1

v2

v8 v9

9
v3 v4

v6 v5

v7
1

1

8
2

10 1/2

1
1

1/2

(a) Example graph G

v1

v2

v8 v9

9
v3 v4

v6 v5

v7
1

1

8
2

10

3

1/2

1
11

1/2

(b) Updated graph G′

Figure 3.1: Inserting edges (v2, v6, 1) and (v3, v5, 3) to the graph G.

these approximate distances to construct a complete graph G1 = (S,E1) on
the terminal set S. The details of this construction can be found in Algo-
rithm 1. Within G1, each edge (u, v) is assigned a weight of an approximate
shortest path between u and v in the modified graph G′. This weight is directly
obtained from the distance oracle’s output. This approximation incorporates
a factor of (1 + ϵ′), guaranteeing a close estimate of the weight of the shortest
path.

Algorithm 1 Construction of the complete graph (metric closure) on the
terminals

E1 = ϕ
for all u, v ∈ S : u ̸= v do

E1 = E1 ∪ {(u, v)}
query the distance oracle for dist(u, v,H)
w(u, v)← dist(u, v,H)

end for

Adding a small number of edges to the graph can significantly alter the
shortest paths between most terminal pairs. This, in turn, affects the corre-
sponding weights of the shortest path. The MST based heuristic necessitates
recomputing all pairwise distances between the terminals.

The second step involves finding an MST T1 = (S,E′
1) (FIGURE 3.2b)
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Figure 3.2: The graph G1(left) and the tree T1(right)

of the graph G1. Kruskal’s algorithm proves to be an efficient approach for
this task.

Lemma 3.3. (Kruskal [49]) Given a weighted undirected graph G = (V,E),
Kruskal’s minimum spanning tree algorithm gives a minimum spanning tree
of G in O(m logn) time.

The third step leverages the sketch graph H to construct a new graph
T2 = (V2, E2). This process, called the path replacement scheme, starts with
an empty set of vertices (V2) and edges (E2). We then iterate over each
edge e(u, v) in the MST T1 obtained in the previous step. For each edge
e(u, v), we add the corresponding ΠH(u, v) within the sketch graph H to T2,
obtained by querying the distance oracle. Equation 3.1 provides the details
for incorporating these replacement paths (ΠH(u, v)) into T2.

∀ e′(x, y) ∈ ΠH(u, v) : (u, v) ∈ E′
1 (3.1)

E2 ← E2 ∪ {e′(x, y)}

V2 ← V2 ∪ {x, y}

While constructing T2 from T1, our approach avoids redundant vertices
and edges. Set operations inherently prevent duplicates, making them un-
necessary. However, directly incorporating the shortest paths ΠH(u, v) might
introduce cycles in the resulting graph T2. To address this and ensure T2 re-
mains a tree structure, the path replacement scheme utilizes a Union−Find
data structure. Sets are named after one of the elements inside them. Initially,
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3.1. A Fully Dynamic Algorithm in Planar Graphs

each vertex v in V has a separate record, essentially its own set. This is simi-
lar to initializing each set in the Make-Union-Find(V ) routine. The find(u)
operation retrieves the set name containing vertex u, while union(u, v) merges
the sets with names u and v. These set names essentially represent connected
components within the graph T2 being built. Algorithm 2 outlines the appli-
cation of this path replacement scheme with the Union−Find data structure.

Algorithm 2 Path replacement scheme

for all x ∈ V do
find(x)← x

end for
for all (u, v) ∈ E′

1 do
for all e′(x, y) ∈ ΠH(u, v) do

if find(x) ̸= find(y) then
apply union(find(x), find(y))
E2 ← E2 ∪ {e′(x, y)} ▷ Adding edge e′(x, y) to T2

V2 ← V2 ∪ {x, y}
else

Do not add edge e′(x, y) to T2

end if
end for

end for

Our analysis demonstrates that the graph T2 constructed by Algorithm 2
(Path Replacement Scheme) possesses two key properties:

• Tree Structure: T2 is guaranteed to be a tree. This is achieved by the
careful application of the Union− Find data structure, which prevents
cycle formation during path incorporation.

• Vertex Set Coverage: The vertex set of T2, denoted by V2, en-
compasses all terminals in S. Additionally, V2 may include some non-
terminals.

After constructing the initial approximate Steiner tree T2, we can re-
duce its cost further by eliminating edges that have a non-terminal leaf as an
endpoint. These non-terminal leaves are essentially dead ends, providing no
connection between terminals. By recursively removing such edges and their
corresponding non-terminal leaves, we obtain the final approximate Steiner
tree, denoted by T3. Formally, T3 = (V ′

2 , E
′
2). It is shown in FIGURE 3.3.

The Steiner vertices, which are non-terminals in T3, are typically depicted in
gray to distinguish them from terminals.
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Figure 3.3: The tree T2(left) and the final Steiner tree T3(right) for G′

3.1.3 Analysis

Approximation Factor

Lemma 3.4. The graph T2 = (V2, E2) constructed by Algorithm 2 is a tree
spanning a vertex set V2 such that V2 contains all the terminals.

Proof. The construction of T2 leverages the Union − Find data structure
similar to Kruskal’s algorithm. However, unlike Kruskal’s algorithm, we do
not require sorting the edges beforehand. Instead, we select edges based on
the path replacement scheme outlined in Algorithm 2. An edge e′(x, y) is only
added to the set of edges E2 if the find(x) and find(y) operations within the
Union−Find data structure return different sets. This essentially ensures that
e′(x, y) connects two separate parts (or components) of the graph being built.
Additionally, x and y are incorporated into V2 only if the corresponding edge
e′(x, y) is included in E2. Following these criteria, it is guaranteed that there
is always a unique path between any two vertices within V2. Consequently,
the constructed graph T2 = (V2, E2) forms a valid tree structure.

Further, the paths retrieved from the distance oracle (denoted by ΠH(u, v))
for all edges (u, v) in T1(E1) are incorporated into the graph T2. Here’s how
this process ensures connectivity:

• Existing Edges: While adding a path, some edges within this path
might already be present in T2 (added due to the inclusion of some ear-
lier paths). These edges contribute to the existing connections between
vertices.
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• New Edges and Vertices: If u and v belong to separate components
in T2, the missing edges from ΠH(u, v) are added to T2. This process
also incorporates u and v in V2.

It is guaranteed that throughout the construction of T2, there is always at least
one path between any two terminals in G′ and consequently in the sketch graph
H, which captures approximate paths. This is because H inherently preserves
connectivity information. As a result, all terminals are guaranteed to be part
of V2 in T2. Additionally, the paths (introduced during tree construction) con-
necting these terminals may include Steiner vertices. This analysis confirms
that S is a subset of V2 (S ⊆ V2) and that T2 is a tree structure spanning the
vertex set V2.

Lemma 3.5. T3 is a Steiner tree of the updated graph.

Proof. Lemma 3.4 established that T2 spans vertices in V2 and incorporates
all terminals (S ⊆ V2). The construction of T3 involves removing non-terminal
leaves from T2. These non-terminal leaves, by definition, are not part of any
path connecting any two terminals (u, v : u, v ∈ S). Therefore, eliminating
them does not affect the overall connectivity of the tree. This guarantees
that T3 also maintains a valid tree structure. The pruning process during T3’s
construction only targets non-terminal leaves. Consequently, no terminals
are eliminated from V2 during this transformation. As a result, all terminals
remain present in the final vertex set V ′

2 of T3 (S ⊆ V ′
2 ⊆ V2). Hence, T3 =

(V ′
2 , E

′
2) satisfies all the requirements of a Steiner tree within the updated

graph G′.

Theorem 3.6. T3 is a (2 + ϵ)-approximate Steiner tree of the updated graph.

Proof. The key to achieving an approximate Steiner tree lies in the graph
G1 = (S,E1) as G1 incorporates (1 + ϵ′) approximations of the weights of the
shortest paths between all terminal pairs. The MST T1 constructed on G1

inherits these approximate distances. By Lemma 3.2, the distance between
any two terminals u and v in T1 (denoted by dist(u, v, T1)) is at most (1 + ϵ′)
times the weight of the actual shortest path between them in G′:

dist(u, v, T1) = dist(u, v,H)

⇒ dist(u, v, T1) ≤ (1 + ϵ′) dist(u, v,G′) (3.2)

The notation dist(T ) denotes the total cost (weight) of a tree T , which is
given by the sum of the weights of edges in the tree. Applying (3.2) to all the
edges of T1 and adding the inequalities gives an upper bound on the weight
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of T1 ( dist(T1) ). Equation 3.3 expresses this upper bound equal to (1 + ϵ′)
times the cost of some minimum spanning tree (denoted by T ) on S in G′[S].

dist(T1) =
∑

(u,v)∈E′
1

dist(u, v, T1) ≤ (1+ϵ′)
∑

(u,v)∈E′
1

dist(u, v,G′) = (1+ϵ′) dist(T )

(3.3)
Applying step 3 (replacing edges of T with actual shortest paths in G′ using
Union−Find data structure) and step 4 (removing non-terminal leaves) of our
algorithm on the tree T produces a tree, say T ′

3. Let the optimal Steiner tree
cost in G′ be denoted by OPT . Prior research by Kou et al. [14] established
a crucial property. The authors showed that the cost of a Steiner tree T ′

3

(constructed on the metric closure with exact distances between terminals) is
upper bounded by a factor of 2(1−1/|S|) times the cost of the optimal Steiner
tree OPT (Equation 3.4).

dist(T ′
3) ≤ 2

(
1− 1

|S|

)
OPT (3.4)

This inequality essentially states that the cost of T ′
3 is at most two times

the cost of the optimal Steiner tree, adjusted by a factor based on the number
of terminals. This lays the groundwork for demonstrating that the final tree
T3 remains an approximate Steiner tree. An important observation is that
removing non-terminal leaves from the initial tree T2 (resulting in the final
tree T3) cannot increase the overall cost of the tree. This is intuitive because
non-terminal leaves are essentially dead ends, not contributing to connections
between terminals. Eliminating them does not create any new connections.
Thus, the cost remains the same or lesser than the cost of T2. Since removing
non-terminal leaves does not inflate the cost, the inequalities derived earlier
(Equation 3.3 and Equation 3.4) can be directly applied to the final tree T3 as
well. These inequalities provide an upper bound on the cost of T3. We denote
the optimal Steiner tree cost on the terminal set S within the sketch graph H
by OPT ′. The sketch graph H guarantees (1+ϵ′)-approximate paths between
terminals. This property allows us to establish a connection between the cost
of T3 and the optimal Steiner tree cost in the sketch graph. By considering an
adjusted epsilon value (ϵ = 2ϵ′), we can derive new inequalities that relate the
cost of T3 to the optimal Steiner tree cost. This adjusted epsilon incorporates
the inherent approximation introduced by the sketch graph.

dist(T3) ≤ 2

(
1− 1

|S|

)
OPT ′

⇒ dist(T3) ≤ 2

(
1− 1

|S|

)
(1 + ϵ′)OPT From (3.3)
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⇒ dist(T3) ≤ 2(1 + ϵ′)OPT = (2 + ϵ)OPT

As 0 < ϵ′ < 1, we have 0 < ϵ < 2. Thus, the approximation factor of the
final Steiner tree T3 is (2 + ϵ), where 0 < ϵ < 2.

Update Time Complexity

This section addresses the impact of updates on the update time complexity of
the algorithm. With a sequence of updates potentially containing O(

√
n + m)

number of updates, the number of edges in G′ is still O(m). In essence,
the update process does not drastically alter the overall size of the graph,
preserving the original complexity characteristics (O(n) for vertices and O(m)
for edges).

Lemma 3.7. The complete distance graph G1 can be built in Õ(|S|2
√
n) time.

Proof. Algorithm 1 calculates the exact distance between each unique pair
of terminals (u, v) in the sketch graph H (denoted by dist(u, v,H)), which
turns out to be (1+ ϵ′)-approximate as shown in Lemma 3.2. This calculation
is performed only once for each distinct pair. All other steps within the
algorithm require a constant amount of time, meaning their execution time
does not significantly impact the overall complexity. The number of unique
pairs of terminals is precisely the number of combinations of choosing two
elements from the set S (denoted by |S|C2). Therefore, the number of distance
calculations scales quadratically with the number of terminals (O(|S|2)). Each
distance calculation (dist(u, v,H)) relies on a query to the distance oracle. In
the worst case scenario, a query takes Õ(

√
n) time. By combining the factors

discussed above, the total time required to construct G1 can be expressed as:

O(|S|C2) · Õ(
√
n) = O(|S|2) · Õ(

√
n) = Õ(|S|2

√
n) (3.5)

In essence, the proof highlights that the construction time of G1 is domi-
nated by the number of terminal pairs and the time complexity of the distance
oracle queries. For scenarios where the number of terminals is relatively small
compared to the overall graph size, this construction remains efficient.

Lemma 3.8. The update time of the final Steiner tree T3 = (V ′
2 , E

′
2) is

Õ(|S|2
√
n + |S|D + n).
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Proof. The tree T3 is the solution constructed by the presented algorithm in
different steps. We start by constructing G1 and then compute the trees T1,
T2 and T3. Here is a breakdown of the time complexities for each step:

• G1 Construction (Lemma 3.7): As shown earlier, constructing G1

takes Õ(|S|2
√
n) time.

• Minimum Spanning Tree T1: We employ Kruskal’s algorithm [49] to
compute the minimum spanning tree T1 on G1. Since G1 has |S| number
of vertices and O(|S|2) number of edges, this step takes O(|S|2 log |S|)
time.

• T2 Construction (Algorithm 2): This involves building T2 using
the path replacement scheme. The key data structure employed here
is a Union− Find data structure implemented with pointers and path
compression techniques (similar to Kruskal’s algorithm). Kleinberg and
Tardos [50] showed that with a pointers-based approach:

– Initialization takes O(n) time.

– union operations (performed when merging components) take con-
stant time each. There can be, at most, n such operations, leading
to a total time of O(n).

– find operations (performed to check for existing connections) are
more intricate. The combined time complexity of all the find op-
erations is O(|S|D). It is elaborated below.

• T3 Construction: Removing non-terminal leaves from T2 to obtain T3

can be done in O(n) time as demonstrated by Kou et al. [14].

For constructing T2 using the path replacement scheme, the process begins by
initializing the Union−Find data structure. This involves creating singleton
sets, each containing a single vertex from G′. This initialization step can be
accomplished efficiently in O(n) time.

The union operation within the Union− Find data structure combines
two previously separate sets (or trees) into a single connected component. In
the context of T2 construction, union operations are only performed when
two distinct components (representing vertices not yet connected in T2) are
encountered while adding edges from paths specified by ΠH(u, v) (which uses
information from the sketch graph H). Due to this specific usage, there can
be, at most, n number of union operations throughout the entire construction
process. This is because each operation merges two separate components,
and there are at most n vertices (and thus n potential components) in G′.
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Each individual union operation is very fast, requiring constant time (O(1))
because it typically involves manipulating a single pointer within the data
structure. Consequently, the total time consumed by all union operations
becomes O(n) · O(1) = O(n). The find operation within the Union − Find
data structure helps determine if two vertices belong to the same connected
component. Here’s how it applies to T2 construction:

There are a maximum of |S| − 1 edges in T1 (which serves as a starting
point for T2). For each edge e(u, v) ∈ T1, a path ΠH(u, v) is obtained by
querying the distance oracle. Therefore, there can be at most O(|S|) such
paths. The find operation is performed twice for each edge present within
these paths as shown in Algorithm 2. This is because we need to check if the
two endpoints of each edge belong to the same component before potentially
adding the edge to T2. Considering the path lengths, each path has a maxi-
mum length of D. Hence, the total number of find operations is O(|S|D). The
time required for a series of find operations can be expressed as O(kα(k)),
where k represents the number of operations and α(k) is a very slow-growing
function called the Inverse Ackermann function. While the technical details
of α(k) might seem complex, the key takeaway is that this function has an
incredibly slow growth rate. In practical scenarios, even for a large number
of find operations (k), the impact on the overall time complexity remains
minimal. The function’s value is guaranteed to be less than four for any value
of k encountered in real-world applications.

By combining the time complexities of each step, we arrive at the total
update time required to construct T3. This is expressed in Equation 3.6 as:

G1 update time + T1 update time + T2 update time + T3 update time

= Õ(|S|2
√
n) + O(|S|2 log |S|) + O(n) + T2 update time

= Õ(|S|2
√
n) + O(|S|2 log |S|) + O(n) + (Time to initialize Union-Find

data structure) + O(n) unions + O(|S|D) find operations

= Õ(|S|2
√
n) + O(|S|2 log |S|) + O(n) + O(n) + O(|S|D · α(|S|D))

= Õ(|S|2
√
n + |S|D + n) (3.6)

In essence, this section explains the role of union and find operations in
building T2 and analyzes their time complexity. It highlights that union op-
erations are relatively fast and limited in number. In contrast, find operations
are more frequent but have a small impact due to the slow-growing nature of
the Inverse Ackermann function.
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Theorem 3.9. There exists a fully dynamic algorithm to maintain a (2 + ϵ)-
approximate Steiner tree in undirected connected weighted planar graphs under
a sequence of O(

√
n + m) edge insertion and deletion updates in Õ(|S|2

√
n +

|S|D +n) worst case update time, where n is the number of vertices, m is the
number of edges, S is the set of terminals and D is the unweighted diameter
of the graph after updates.

Proof. Combining the results of Theorem 3.6 together with Lemma 3.7 and
Lemma 3.8 implies Theorem 3.9.

The presented algorithm significantly improves the update time com-
pared to the static Steiner tree algorithm by Kou et al. [14], which achieves a
(2− ϵ) approximation for static Steiner trees in O(|S|n2) time.

Special Case

We previously established that the update time for constructing the initial
graph G1 is dominated by the distance query complexity, as shown in (3.5).
Lemma 3.7 provided an initial estimate using the tilde notation Õ, ignoring
logarithmic factors. Now, we consider the exact worst case time complexity
of the distance query as shown in Theorem 3.1. This exact time complexity
is O((ϵ′)−1n1/2 log2 n log(nM) · ((ϵ′)−1 + logn)). By substituting this exact
distance query time complexity into (3.5), we can determine the revised update
time for constructing G1. Using exact query time complexity, the update time
shown in (3.6) becomes as follows:

O(|S|2)O((ϵ′)−1n1/2 log2 n log(nM) · ((ϵ′)−1 + log n))

+O(|S|2 log |S|) + O(n) + O(n) + O(|S|D · α(|S|D))

= O(|S|2)O((ϵ′)−1n1/2 log2 n log(nM) · ((ϵ′)−1 + log n))

+O(|S|2 log |S|) + O(n) + O(|S|D)

When size of S and D are logarithmic in n, the update time of the presented
algorithm reduces to O(log2 n)O((ϵ′)−1n1/2 log2 n log(nM) · ((ϵ′)−1 + log n)) +
O(log3 n) + O(n) + O(log2 n).

Using ∀ k, ϵ′′ > 0, logk(n) = o(nϵ′′):

O(log2 n)O((ϵ′)−1n1/2 log2 n log(nM) · ((ϵ′)−1 + log n)) + O(log3 n)

+O(n) + O(log2 n) = O(n0.5+ϵ′′(ϵ′)−2) + O(n)

Hence, the proposed algorithm has a linear update time in terms of n
when the size of S and D are O(logn).
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3.2 An Incremental Algorithm for (2−ϵ)-Approximate
Steiner Tree

3.2.1 Preliminaries

The graph under consideration is a connected general graph G = (V,E). Each
edge has a positive real weight. Each update to the graph involves insertion of
an edge with some positive real weight. The weight of an edge e is denoted by
w(e). To facilitate a clear understanding of the algorithm’s behavior, we adopt
the following standard notation: Π(u, v) denotes the shortest path between
two vertices u and v, dist(u, v) represents the weight of the shortest path
between vertices u and v in a Steiner tree. The weight of a path P (sum of
weights of the edges in the path) is denoted by w(P ). The symbol ◦ denotes the
concatenation of two paths. We define Ds as the shortest path diameter of the
graph. It represents the maximum number of hops between any two vertices
based on the shortest path: Ds = max

u,v∈V
ρ(u, v). Here, ρ(u, v) represents the

number of edges in a shortest path between any two vertices u and v. The
graph maintains connectivity since an update does not remove an edge or a
vertex.

We focus only on edge insertion updates. The Steiner tree in this scenario
contrasts with the Steiner tree proposed by Imase and Waxman [7] as discussed
in Section 3.1.

In a connected, undirected graph, a shortest path tree rooted at a vertex
u is a special kind of spanning tree. A key property of this tree is that the
distance along the path within the tree between the root u and any other ver-
tex v is guaranteed to be identical to the weight of the shortest path between
u and v in the original graph. A shortest path forest of a graph G = (V,E) is
a collection of shortest path trees, each of which is rooted at a special vertex
(say ui). Each tree within the forest ensures the property of a shortest path
tree. For clarity, the root of a vertex u in a specific tree within the forest is
denoted as root(u). The proposed algorithm maintains a shortest path forest
of the given graph under edge insertions.

Key Idea

The construction of a shortest path forest is similar to Dijkstra’s single-source
shortest path algorithm. However there is a key difference. Instead of focusing
on a single source vertex, we consider all designated terminals(roots) simulta-
neously during the forest building process. If there is an edge (u, v) that links
two shortest path trees and establishes the shortest path between root(u) and
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root(v), we include the path Π(root(u), root(v)) = Π(root(u), u) + (u, v) +
Π(v, root(v)) in the Steiner tree. This approach efficiently handles updates
that modify the shortest paths between terminals. When a new edge is in-
serted, the data structure captures the change and updates the shortest paths
accordingly. The maintained Steiner tree is also adjusted to reflect these
modifications by considering the revised shortest paths. The key challenge
lies in maintaining a shortest path forest efficiently. The proposed algorithm
maintains a shortest path forest in O(n) time under a single edge insertion.

3.2.2 A (2− ϵ)-Approximate Steiner Tree

Wu et al. [16] propose an algorithm to find an approximate Steiner tree
with an approximation factor of 2(1 − 1/ℓ) as discussed in the related work
chapter. Here, ℓ is the minimum number of leaves in any optimal Steiner
tree. Their method leverages a concept similar to Dijkstra’s shortest path
algorithm but builds shortest path trees simultaneously from all terminals.
The algorithm utilizes a minimum priority queue. Each element in the queue
is a tuple (r, d, s), where r represents a vertex and d signifies the weight of
the current shortest path from r to its closest terminal s. To track the path
itself, the tuples are later augmented to (r, d, s, p1, p2). Here, p1 denotes the
predecessor of r in the shortest path, and p2 is set to NULL when r does
not directly connect two terminals. When r connects two terminals, p2 is
set to r. The algorithm efficiently maintains predecessor information for each
vertex. When a tuple extracted from the priority queue is such that r is
a terminal, the corresponding path information stored in the predecessors p1
and p2 is crucial for constructing the connection between r and s in the Steiner
tree. This is because the extracted tuple represents the shortest path between
these very terminals. Subsequently, this path is incorporated into the ongoing
computation of the Steiner tree (FIGURE 3.4).

3.2.3 Shortest Path Forest

A shortest path forest refers to a collection of disjoint shortest path trees.
Each tree in the forest has a designated root vertex, and the trees collectively
encompass all other vertices in the graph. Dial’s algorithm [15] efficiently com-
putes such a shortest path forest for a general graph G = (V,E). It achieves
this in O(m) time. The algorithm operates by simultaneously expanding these
shortest path trees outward from their root vertices, and it maintains a topo-
logical ordering of the vertices throughout the process. The algorithm presents
a way to perform minimum priority queue operations in constant time with
the help of some data structures. We use the shortest path forest given by
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Dial to maintain a partition of vertices into shortest path trees as it computes
the shortest path forest in O(m) time and facilitates the selection of a vertex
in the forest to be explored in constant time with the help of priority queue
operations. To the best of our knowledge, this is the best time complexity
for computing a shortest path forest and performing minimum priority queue
operations.

3.2.4 The Incremental Algorithm

We consider a pre-computed 2(1−1/ℓ)-approximate Steiner tree on the input
graph denoted by Ts, obtained using the algorithm of Wu et al. [16]. Our goal
is to process edge insertion updates to the input graph efficiently. We store
and use some information about Ts to update Ts when some edge insertions
are done to the graph. Wu et al.’s algorithm [16] utilizes a priority queue to
manage the (r, d, s, p1, p2) tuples containing information about vertices. The
algorithm extracts tuples from the queue to construct Ts. When processing
edges leaving the vertex r identified in an extracted tuple (r, d, s, p1, p2), new
tuples are generated and inserted back into the queue. Importantly, the al-
gorithm stores and updates the vertex r associated with each tuple upon its
insertion into the queue. If root(r) and s belong to different shortest path
trees and r ∈ V \ S, the tuple corresponds to a path connecting the two ter-
minals root(r) and s. In such a case p2 is set to r (p2 = r) so that the path
connecting root(r) and s can be obtained by iterating predecessors from p1
and p2 as shown in case 3.2 of Wu et al. [16]. It is shown in FIGURE 3.4.
When r ∈ S, the tuple (r, d, s, p1, p2) indicates a shortest path between the
terminals r and s. This path comprises the paths Π(p1, s) and Π(p2, r), along
with the edge (p1, p2). It can be observed in FIGURE 3.4 with r = s1 and
s = s2. The dashed arcs denote paths that do not belong to the forest. The
two directed edges denote the shortest path between terminals (roots) s1 and
s2. The algorithm of Wu et al. [16] terminates queue extraction operations
when all the terminals are connected. For our algorithm, we need the pair-
wise shortest paths among all the terminals rather than the (r, d, s, p1, p2)
tuples. Therefore, we keep extracting tuples from the queue until all the pair-
wise shortest paths among terminals are known. For the tuples where r ∈ S,
the (p1, p2) pair corresponding to each (r, s) pair are stored to obtain Π(r, s)
using the computed and stored predecessors provided by the algorithm. We
also keep track of whether or not the shortest path between any two terminals
is used in Ts when the tuples are extracted from the queue.

Upon termination, the algorithm successfully identifies all the shortest
paths among the designated terminals. We maintain a set of lists, denoted by
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Figure 3.4: The shortest path between the terminals s1 and s2 through r as
p2 and s2 as s

L1, L2, . . . , L|S|. Each list Li corresponds to a specific terminal ti within the
set S, where i ranges from 1 to |S|. Importantly, list Li stores the distances
from all other terminals in the graph to the terminal ti it represents. This
allows for efficient retrieval of shortest path information.

Our algorithm benefits from a precomputed shortest path forest F for the
underlying graph. Notably, we employ Dial’s algorithm [15] for precomputing
F , which itself builds upon the foundation laid by Moore’s work [51]. Dial’s
algorithm utilizes specialized data structures to perform minimum priority
queue operations in O(1) time and to perform shortest path computations
efficiently. The maximum edge weight and the maximum path weight are
denoted by maxd and maxdist, respectively. As the proposed algorithm works
for real edge weights, we redefine the mod function of Dial [15] as required
by our algorithm. For a given real number w, the modified mod function is:
mod(w,maxd) = w−maxd×⌊w/maxd⌋. We desire to grow F from terminals.
Hence, each terminal is initialized as a root vertex by setting its distance to
zero. The rest of the vertices are initialized as non-root vertices by setting
their distance to maxdist in F .

Data Structures Used: The algorithm utilizes several lists (NEXT ,
LAST , INDEX) and arrays (HEAD, TAIL, D, I, J , DIST ) to manage
the forest’s state during computation. NEXT is a circular list that provides
the forward topological order of nodes. The forward topological order is a
sequence of vertices in which every vertex is listed after every other vertex
that lies on the path from its root to it. NEXT helps determine the next
vertex to be examined while building F . LAST maintains the backward
topological order. The backward topological order has the vertices arranged
in decreasing distance from their nearest root node. LAST helps in updating
the existing paths when a new shortest path is found. HEAD and TAIL track
the first and the last nodes in a sublist based on distance properties. For each
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vertex u, J holds v for all edges (u, v) continuously in increasing order of edge
lengths, and D contains corresponding edge lengths. INDEX(u) points to
the first entry in J corresponding to u. The roots are added to NEXT and
LAST . It chains the terminals into the list of vertices to be scanned. The
algorithm iteratively examines outgoing edges from root vertices (terminals)
and adds the edges to F . This process continues by selecting the next vertex
with the minimal distance for exploration. As the algorithm progresses, it
checks if examining an edge (u, v) would lead to a shorter path for v. If so,
the root of v is updated to match the root of u. The root of a terminal is set
to itself. The arrays DIST and I store the weights (DIST (u)) of shortest
paths from root nodes and predecessor information, respectively, for efficient
retrieval of shortest paths. The distance DIST (u) is the distance of u from
the nearest terminal in F . I(v) contains u for an edge (u, v) in F , allowing
path reconstruction. The HEAD and TAIL function as a minimum priority
queue, enabling the selection of the next vertex for exploration in constant
time. Upon completion, the algorithm determines the shortest distance from
each non-terminal to its closest terminal, along with the identification of that
closest terminal.
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Figure 3.5: Both endpoints of the inserted edges lie inside a tree. Insertion
of the edge (u2, u7) does not change the shortest path to u2 or u7. Insertion

of the edge (u3, u9) changes the shortest path to u9.

Upon inserting an edge (u, v) with weight w into the graph, it may de-
crease the path length from the closest terminal to either u or v, but not
both. If u is closer to the root than v from its corresponding root, then u
can update the path to v using the inserted edge (u, v) but not the other way.
Similarly, If v is closer to the root than u from its corresponding root, then v
can update the path of u using the inserted edge (u, v) but not the other way.
The formal proof is given in Lemma 3.10. The dashed edges in FIGURE 3.5
and FIGURE 3.6 denote the edges inserted as updates. It can be observed in
FIGURE 3.5 that the inserted edge may not change the shortest paths at all.

The proposed algorithm is shown in Algorithm 3. The algorithm effi-
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Figure 3.6: Endpoints of the inserted edges lie in different trees. Insertion of
the edge (u4, u10) does not change the shortest path between s1 and s2.

Insertion of the edge (u4, u11) changes the shortest path between s1 and s2.

ciently incorporates the inserted edge into the maintained data structures.
This is achieved by adding a new entry to both arrays J and D (Algorithm 3,
line 2). This entry stores details relevant to the new edge, including its weight.
Following the insertion of a new edge (u, v), the algorithm strategically selects
the next vertex to explore to update F and Ts (lines 3-7 and line 31 of Algo-
rithm 3). Dial [15] shows that the lists HEAD, TAIL, NEXT , and LAST
help in the efficient selection of the next vertex to explore. This decision en-
sures efficient updates to F while incorporating the new edge information. If
the newly inserted edge (u, v) alters the shortest path to v, then u becomes
the chosen vertex for further exploration (denoted as selected vertex). This
is depicted in FIGURE 3.5. Otherwise, we choose v as the selected vertex
because even if the shortest paths to u and v remain unchanged due to the
edge insertion, the shortest path between the terminals (the roots of u and
v) might be affected. This scenario is illustrated in FIGURE 3.6. To account
for this possibility, v is chosen as the selected vertex for further exploration.
This ensures that potential changes to the shortest paths among terminals are
identified and addressed. By following these selection criteria, the algorithm
efficiently determines the vertex that holds the most potential for influencing
the shortest path structure after the edge insertion. It then focuses its explo-
ration efforts on the descendants (connected vertices) of the selected vertex to
update and maintain F accurately and update Ts accordingly.

While updating F , if the algorithm encounters an edge (u′, v′) such that
the root of u′ differs from the root of v′, as illustrated in FIGURE 3.6, we
get a new path root(u′) ⇝ u′ ◦ (u′, v′) ◦ v′ ⇝ root(v′) connecting the termi-
nals root(u′) and root(v′). We examine if the weight DIST (u′) + w(u′, v′) +
DIST (v′) of this new path is less than the weight dist(root(u′), root(v′)) of
the previous shortest path between the terminals root(u′) and root(v′) (from
the list Lroot(u′)). If the weight of the new path is not smaller than the cur-

55



3.2. An Incremental Algorithm for (2− ϵ)-Approximate Steiner Tree

Algorithm 3 An Incremental algorithm for (2− ϵ)-approximate Steiner tree

1: An update inserts an edge e = (u, v) with weight w(e) in the graph
2: Incorporate (u, v) by adding to data structure J and data structure D
3: if DIST (v) > DIST (u) + w(u, v) then ▷ Choose the vertex required to

be explored
4: i← u
5: else
6: i← v
7: end if
8: r : ▷ Examine outgoing edges of the selected vertex
9: for each edge (i, j) do

10: if DIST [j] > DIST [i] + w(i, j) then
11: ▷ Found a new and shorter path to j via i
12: Add (i, j) to F
13: end if
14: if root(i) ̸= root(j) then ▷ The edge (i, j) being examined creates a

new path between the terminals root(i) and root(j).
15: if dist(root(i), root(j)) > DIST (i) + w(i, j) + DIST (j) then
16: ▷ New shortest path between terminals is found
17: dist(root(i), root(j))← DIST (i) + w(i, j) + DIST (j)
18: ▷ Update Ts, Li and Lj

19: if root(i)⇝ root(j) shortest path ∈ Ts then
20: Select the pair (p1, p2) corresponding to the pair

(root(i), root(j))
21: Remove the p1 ⇝ root(i) ◦ (p1, p2) ◦ p2 ⇝ root(j) path from

Ts

22: Add the i⇝ root(i) ◦ (i, j) ◦ j ⇝ root(j) path present in F
to Ts

23: p1 ← j, p2 ← I[j] (previous predecessor of j), root[j] ←
root[i]

24: else
25: (P ′, wmax)← FIND MAX WEIGHT PATH (Ts, root(i), root(j))
26: ▷ Path P ′ is defined in Case 2 of Section 3.2.4
27: if wmax > DIST (i) + w(i, j) + DIST (j) then ▷ wmax is

weight of the path P ′

28: Delete P ′

29: Copy the path i ⇝ root(i) ◦ (i, j) ◦ j ⇝ root(j) from F
to Ts
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30: p1 ← j, p2 ← I[j] (previous predecessor of j), root[j]←
root[i]

31: end if
32: end if
33: end if
34: end if
35: Update the data structure to allow for faster selection of the next

vertex for processing.
36: end for
37: if there is a vertex that needs to be explored then
38: Select the next vertex in F for which its outgoing edges require

exploration, go to r
39: end if

rent shortest path between root(u′) and root(v′), then we show that Ts is not
required to be modified to maintain the approximation factor. Ts needs to
be updated if the newly created path has a weight smaller than the current
shortest path. There are two scenarios when the new shortest path has a
smaller weight than the current shortest path:

• Case 1: root(u′) ⇝ root(v′) shortest path ∈ Ts: The algorithm
updates the shortest path between root(u′) and root(v′) within Ts by
leveraging the information stored in the (p1, p2) pair associated with
(root(u′), root(v′)) pair in Ts. This is done by deleting p1 ⇝ root(u′) ◦
(p1, p2) ◦ p2 ⇝ root(v′) path from Ts and adding the updated u′ ⇝
root(u′) ◦ (u′, v′) ◦ v′ ⇝ root(v′) path from the updated shortest path
forest in Ts. Update (p1, p2) = (u′, v′) for (root(u′), root(v′)).

• Case 2 : root(u′) ⇝ root(v′) shortest path /∈ Ts: In this scenario,
the addition of this new path into Ts creates a cycle. Hence, before the
inclusion of this new path in Ts, for some z : vz ∈ S, the algorithm
finds a sub-path P ′ = u1, u2, . . . , uz in the u′ ⇝ v′ path in Ts such
that the endpoints of the path are terminals (u1, uz ∈ S), rest of the
vertices in the path are non-terminals, and the weight of this sub-path
is maximum among all such sub-paths of the u′ ⇝ v′ path in the tree.
This can be computed by a DFS procedure on the tree as shown in
Algorithm 4 and Algorithm 5. If DIST (u′) + w(u′, v′) + DIST (v′) <
w(P ′), exclude P ′ from Ts and include the updated shortest path found
by the algorithm. Otherwise, Ts needs not to be modified to maintain
the (2− ϵ) approximation.

57



3.2. An Incremental Algorithm for (2− ϵ)-Approximate Steiner Tree

Presence of such a (u′, v′) edge may also result in changing the root of either
u′ or v′ as the edge (u′, v′) may shorten path of u′ (or v′) from root(v′) (or
root(u′)) via v′ (or u′). The algorithm updates the trees of F in such cases.
If the weight DIST (u′) + w(u′, v′) + DIST (v′) of the new path found by
the algorithm exceeds the weight dist(root(u′), root(v′)) of the existing short-
est path in Ts, there is no requirement to take any action to maintain the
approximation factor of Ts.

Algorithm 4 FIND MAX WEIGHT PATH(Steiner tree T , Terminal u, Ter-
minal v)

1: PARENT - To store the parent of a vertex in T rooted at u
2: for all vertices i do
3: if i = u then
4: PARENT [u]← u ▷ Parent of u is u itself, as DFS starts at u
5: else
6: PARENT [i]← NIL ▷ Initial parent of other vertices is NIL
7: end if
8: end for
9: t1, t2 - To store terminals such that Π(t1, t2) is a sub-path of u⇝ v path

in T and w(Π(t1, t2)) is maximum
10: wmax - To store w(Π(t1, t2))
11: (t1, t2, wmax)← DFS (T, u, u, 0, 0, NIL,NIL, PARENT, v)
12: ▷ From Algorithm 5
13: PATH - To store the maximum weighted sub-path of u⇝ v path
14: while t2 ̸= t1 do
15: PATH ⇐ t2 ▷ ⇐ appends vertex t2 to PATH array
16: t2 ← PARENT [t2]
17: end while
18: PATH ⇐ t1
19: return PATH,wmax

FIND MAX WEIGHT PATH procedure takes a Steiner tree T and
terminals u and v as inputs. The procedure finds the maximum weighted
sub-path of u ⇝ v path in T , which has terminals as endpoints and does
not include any other terminal. The procedure constructs the described path
as follows. It calls the DFS procedure (Algorithm 5), which calculates the
weights of the sub-paths between subsequent terminals in the u ⇝ v path
present in T . The DFS procedure also maintains parents of vertices in the
DFS traversal initiated at u as root. The DFS procedure returns the end-
points of the maximum weighted sub-path and the weight of that path. The
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FIND MAX WEIGHT PATH procedure stores the endpoints returned by
the DFS procedure in t1 and t2 and the maximum weight in wmax. It com-
putes the actual sub-path using PARENT array, t1, and t2 by backtracking
parents. The actual sub-path is stored in PATH array. The procedure returns
the sub-path PATH and the maximum weight wmax.

Algorithm 5 DFS(Steiner tree T , vertex x, terminal p, weight c, max weight
wmax, wmax endpoint a, wmax endpoint b, PARENT, terminal endpoint v)

1: for all neighbors y of x in T do
2: if PARENT [y] = NIL then ▷ Explore y if it is not visited
3: PARENT [y]← x
4: if y ∈ S then
5: if wmax < c + w(x, y) then
6: wmax ← c + w(x, y)
7: a← p, b← y
8: end if
9: if y = v then

10: return a, b, wmax

11: end if
12: return DFS (T, y, y, 0, wmax, a, b, PARENT, v)
13: else
14: return DFS (T, y, p, c + w(x, y), wmax, a, b, PARENT, v)
15: end if
16: end if
17: end for

The DFS procedure (Algorithm 5) takes as input a Steiner tree T , a
vertex x, a terminal p, the current weight c of the sub-path being explored,
the weight wmax of the maximum weight sub-path found so far, endpoints a
and b of the maximum weight sub-path, the PARENT array, and the terminal
endpoint v such that sub-paths between x and v are to be explored. The initial
value of x is u for exploring the u ⇝ v path in T . The procedure computes
weights of terminal-to-terminal sub-paths in the u⇝ v path and maintains the
weight of the maximum weight sub-path with its terminal endpoints. When
the DFS procedure reaches the terminal v, it returns the endpoints of the
maximum weight sub-path and the weight of the maximum weight sub-path.
The DFS procedure is recursively called for the unexplored vertex x, starting
from the terminal u. The terminal p stores one of the terminal endpoints (the
last terminal ancestor in the DFS traversal) of the current sub-path being
explored. The initial value of p is u. Current weight c stores the sub-path
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weight from the terminal p to the vertex x. The weight wmax stores the weight
of the terminal-to-terminal maximum sub-path in u ⇝ x path, and a and b
store the two terminal endpoints of this sub-path.

The procedure call starts with x = p = u and c = wmax = 0. The
vertex x explores its neighbors y except for its parent and assigns x as the
parent for each neighbor y. If a neighbor y /∈ S, then the procedure explores
neighbor y with the updated current weight c as c + w(x, y). If a neighbor
y ∈ S, then the weight of this terminal-to-terminal sub-path p ⇝ y is given
by w(p⇝ y) = c + w(x, y). If w(p⇝ y) is greater than the maximum weight
wmax, then w(p⇝ y) is assigned to wmax, the endpoint a stores the terminal
p, and the endpoint b stores the terminal y. Otherwise, the maximum weight
remains unchanged. The Procedure recursively explores the terminal y by
resetting the current weight c = 0 and p = y. If a neighbor y = v, then the
procedure returns the endpoints a, b, the maximum weight wmax, and ends
the exploration.

3.2.5 Analysis

This section formally analyzes the performance of our proposed algorithm, Al-
gorithm 3. We prove that it effectively maintains a (2−ϵ)-approximate Steiner
tree in the dynamic graph under a series of edge insertions. Furthermore, we
demonstrate that the algorithm achieves an efficient worst case update time
complexity of O(nDs). The proofs leverage the specific constructs and tech-
niques employed by the algorithm. We say an edge (u, v) is a crossing edge if
the roots of u and v differ (i.e., root(u) ̸= root(v)) in F . In simpler terms, a
crossing edge connects terminals belonging to separate trees within F .

Lemma 3.10. The insertion of a new edge can only decrease the distance
(shortest path) of at most one of its two endpoints from their corresponding
roots in F .

Proof. Let the notation G and G′ represent the graph prior to and later the
insertion of an edge (u, v), respectively. Let F ′ be a shortest path forest of G′.
For a vertex x, distF (x) and distF ′(x) signify the distances from the nearest
root in F and F ′, respectively. For the sake of contradiction, let us assume
that the inserted edge decreases the distance of both of its endpoints from
their corresponding roots (which might be the same as the previous roots),
that is, distF ′(u) < distF (u) and distF ′(v) < distF (v).This implies that the
shortest path for u must utilize the newly inserted edge (u, v) (otherwise, u
would utilize the same path, and distF ′(u) = distF (u)). Hence distF ′(u) =
distF (v)+w(u, v). Similarly, distF ′(v) = distF (u)+w(u, v). Summing up the

60



3. A Fully Dynamic and an Incremental Algorithm

two inequalities yields distF ′(u) + distF ′(v) = distF (u) + distF (v) + 2w(u, v).
It is a contradiction because distF ′(u) + distF ′(v) < distF (u) + distF (v) and
w(u, v) > 0 according to our assumption statement. Based on the contradic-
tion, the assumption that both u and v have shorter distances is proven to be
wrong. Therefore, the lemma concludes that the edge inserted as an update
can only shorten the distance of at most one of its endpoints from the roots
in F .

Theorem 3.11. Following each update (edge insertion) in the dynamic graph,
Algorithm 3 successfully maintains a valid Steiner tree structure.

Proof. The algorithm starts with a precomputed 2(1−1/ℓ)-approximate Steiner
tree Ts for the given graph, built using a method from Wu et al. [16]. This
initial tree efficiently connects the designated terminals. The shortest path
forest F is constructed within the graph, with terminals acting as the root
vertices of each tree. When a new edge (u, v) is inserted, the algorithm checks
if it affects the weight of the shortest path of either endpoint within F . If so,
F undergoes an update process. This involves examining all descendant ver-
tices (connected vertices) of the affected endpoint and adjusting their weights
of the shortest paths accordingly.

In F , all vertices, except for the roots, are non-terminals. It is important
to note that modifications to the shortest paths between terminals (which are
also the roots in F ) only occur under specific conditions. This can happen
only when a new edge or an edge being inspected by the algorithm, denoted
by (i, j), connects vertices from different trees in F . In such a case, if the edge
(i, j) creates a shorter path between the root vertices of the two trees (i.e.,
DIST (i) +w(i, j) +DIST (j) < dist(root(i), root(j))), the algorithm replaces
the existing shortest path between these roots in Ts with this newly discovered
shorter path. If the inclusion of the updated shortest root(i)⇝ root(j) path
creates a cycle, a sub-path of maximum weight (with no terminal inside)
connecting two terminals in the previous shortest root(i) ⇝ root(j) path is
deleted to avoid the cycle formation and minimize the weight of Ts.

This process effectively disjoins and rejoins the affected terminals within
Ts using the newly discovered shorter path. It is crucial to note that there
remains only one path connecting these two terminals after the update. Since
all other components of the Steiner tree are preserved, the updated structure
continues to satisfy the core properties of a Steiner tree: it connects all ter-
minals and avoids unnecessary loops, adhering to the fundamental definition
of a Steiner tree.
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Approximation Factor

Kou et al. [14] present a method for obtaining a (2− ϵ)-approximate Steiner
tree. Their approach leverages the concept of a metric closure on the terminals
of the graph. This involves creating a complete graph where edge weights
represent the distances between terminals in the original graph. A minimum
spanning tree is then generated on this complete graph. Subsequently, each
edge in the minimum spanning tree is replaced with the corresponding shortest
path between the connected terminals within the original graph. Finally, the
resulting structure is processed to eliminate cycles and remove non-terminal
leaves, yielding the approximate Steiner tree. These shortest paths can be
efficiently computed using the algorithm proposed by Wu et al. [16]

Theorem 3.12. (Wu et al. [16]) For a connected undirected weighted graph
G = (V,E, d), and a set of vertices S ⊆ V , a Steiner tree Gs can be computed
in O(m logn) time having total weight at most 2(1 − 1/ℓ) times that of an
optimal Steiner tree.

Here, ℓ is the minimum number of leaves in any optimal Steiner tree.

Theorem 3.13. The solution maintained by the Algorithm 3 is a (2 − ϵ)-
approximate Steiner tree.

Proof. Our algorithm maintains a collection of shortest path trees, denoted
by T1, T2, . . . , T|S|, each rooted at a designated terminal. When an edge,
denoted by e(u, v), is inserted into the graph, it’s possible that the shortest
path between some terminals may change. Let’s consider two trees, Ti and
Tj , where 1 ≤ i, j ≤ |S| and i ̸= j. Depending on the specific edge insertion
and tree structure, we can categorize the potential impact into two distinct
cases:

• Case 1. u ∈ Ti,v ∈ Tj: As the vertices u and v belong to different trees
in F , the edge (u, v) is a crossing edge, and it connects the trees Ti and
Tj . The edges (u4, u10) and (u4, u11) in FIGURE 3.6 constitute examples
of such edges. Algorithm 3 efficiently identifies such edges by verifying if
root(u) ̸= root(v). The edge (u, v) creates a new path solely between the
root vertices, root(u) and root(v), without impacting any other short-
est paths between terminals. The newly formed path might be shorter
than the previous shortest path (e.g. (u4, u11) in FIGURE 3.6 creates a
shorter path connecting s1 and s2) or it might not be shorter, (e.g., in the
case of (u4, u10) in FIGURE 3.6). Algorithm 3 identifies it by comparing
whether DIST (u)+w(u, v)+DIST (v) < dist(root(u), root(v)). In this
case, either the existing path (p1 ⇝ root(u) ◦ (p1, p2) ◦ p2 ⇝ root(v))
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connecting the corresponding root vertices within Ts is replaced by the
newly discovered shorter path (u⇝ root(u)◦ (u, v)◦v ⇝ root(v)) (Case
1 of Section 3.2.4), or the new shortest path replaces the maximum
weighted sub-path of the previous shortest root(u)⇝ root(v) path (Case
2 of Section 3.2.4).

• Case 2. u,v ∈ Ti: As the edge (u, v) connects the vertices within the
same shortest path tree, it does not affect the shortest paths between
any of the designated root vertices This is illustrated by the example
edges (u2, u7) and (u3, u9) in FIGURE 3.5. Furthermore, the addition
of the edge (u, v) may not alter the weight of the shortest path for
any non-terminal within the graph (e.g., edge (u2, u7) in FIGURE 3.5).
Otherwise, the edge (u, v) changes the shortest distance of one of its
endpoints (e.g., edge (u3, u9) in FIGURE 3.5), potentially leading to
changes in the shortest paths of all its descendants. As Algorithm 3
updates these distances and paths for the descendants to sustain F ,
it may encounter an edge crossing the tree Ti, thus triggering Case 1.
While updating F , the algorithm evaluates this new path against the
previous shortest path between the roots of the two trees, making path
adjustments if required.

In both scenarios described above, the algorithm guarantees that the shortest
paths between terminals are maintained and efficiently updates F to handle
subsequent updates. Consequently, the solution maintained by Algorithm 3
remains a 2(1− 1/ℓ)-approximate Steiner tree. Hence, the Steiner tree main-
tained by Algorithm 3 is a (2 − ϵ)-approximate Steiner tree for ϵ = 2/ℓ. As
discussed in Chapter 1, all the leaves in an optimal Steiner tree must be ter-
minals; otherwise, one could simply delete the non-terminal leaves to obtain
a Steiner tree of lesser cost, as the non-terminal leaves do not contribute to
the connectivity of terminals. Hence, ℓ ≤ |S|. A tree, in general, has at
least two leaves, except in the trivial case where the tree consists of only one
vertex. Hence, 2 ≤ ℓ ≤ |S|. Therefore, ϵ = 2/ℓ ∈ [2/|S|, 1]. We can use
the cut property of MST to ensure that the collection of paths used in Ts

resembles an MST of terminals. The cut property for MST states that the
minimum weight edge in any cut C of a graph belongs to all MSTs of the
graph. If there are multiple edges in the cut C that have minimum weight,
then each such edge belongs to some MST of the graph. It can be observed
that if each path among the terminals in the tree computed by the algorithm
is replaced by edges of equivalent weights, then the algorithm maintains the
cut property in the MST over terminals. Hence, the shortest paths among the
terminals in the Steiner tree Ts computed by Algorithm 3 represents an MST
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over terminals.

Update Time Complexity

Theorem 3.14. The update time complexity of the Algorithm 3 is O(nDs)
in the worst case.

Proof. Lemma 3.10 implies that when an edge is inserted, it can affect the
weight of the shortest path of only one of its endpoints. When an inserted
edge (u, v) impacts the weight of the shortest path of any of its endpoints, let’s
say v, Algorithm 3 proceeds to update the shortest paths for all descendants
of v. The if condition in line 3 of Algorithm 3 selects v. The update process
involves a forward traversal of the edges in F starting from v, as executed by
the for loop in line 9 of Algorithm 3. Each iteration of this loop typically takes
constant time, except in cases where an edge crosses the tree and consequently
modifies the weight of the shortest path between terminals. In such a case, the
shortest path in the tree is replaced by another shortest path. Each individual
distance update within this process can still be performed in constant time.
The shortest path to be replaced can be found in O(Ds) time by following
predecessors from p1 and p2 if it is present in the tree. Otherwise, the shortest
path to be replaced is computed using Algorithm 4 and Algorithm 5 in O(n)
time, which is a DFS procedure on a tree, and hence, requires O(n) time
in the worst case. The number of edges in each shortest path is O(Ds).
Hence, each shortest path update (replacement) requires O(Ds) time. The
subsequent steps of the loop are dedicated to maintaining the data structure,
which aids in efficiently selecting the next vertices for subsequent iterations.
With these operations, all the data structures, and F and Ts are updated.
The total update time can be expressed as O(n)O(1) + O(nDs) = O(nDs).
Consequently, Algorithm 3 ensures that the (2− ϵ)-approximate Steiner tree
in the given graph is updated and sustained within O(nDs) update time in
the worst case scenario for each update.

3.3 Summary

We present a fully dynamic algorithm to maintain a (2 + ϵ)-approximate
Steiner tree in planar graphs. The worst case update time complexity of
the presented algorithm is Õ(|S|2

√
n+ |S|D+n). The Steiner tree is updated

after a sequence U of updates where 1 ≤ |U | ≤
√
n + m. Hence, for k number

of updates, the average update time of the algorithm is (|S|2
√
n+ |S|D+n)/k

where 1 ≤ k ≤
√
n + m. The proposed algorithm works nicely in dynamic
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scenarios with frequent updates. Its update time scales more favorably, partic-
ularly with a moderate number of terminals (|S|). This makes it more suitable
for graphs that undergo frequent changes. The update time complexity of the
proposed algorithm becomes more favorable when the number of terminals
|S| and the parameter D are both logarithmic in the number of vertices,
specifically O(log n). In this scenario, the worst-case update time reduces to
O(n0.5+ϵ′′(ϵ′)−2) + O(n). This offers a significant improvement compared to
the previously proposed PTAS by Borradaile et al. [30]. Their approach has
a time complexity of O(2poly(1/ϵ)n + n log n).

We propose an incremental algorithm that offers an efficient solution for
maintaining a (2−ϵ)-approximate Steiner tree in weighted general graphs that
undergo edge insertions. The algorithm achieves this by utilizing a shortest
path forest and efficiently processing each update in the worst case scenario
with an update time complexity of O(nDs). This significantly outperforms
the approach by Kou et al. [14], which requires recomputing the entire (2−ϵ)-
approximate Steiner tree from scratch for each update.

Despite our fully dynamic algorithm handling edge insertion and deletion
updates in planar graphs, a fully dynamic algorithm for a Steiner tree in
general graphs remains a challenge. Additionally, it would be desirable to
improve the update time complexity of the proposed fully dynamic algorithm
to update the Steiner tree more efficiently.

It is valuable to discuss extending these results or addressing challenges
in specialized cases, such as planar grids and general grids. Planar grids, where
vertices are arranged in a grid pattern with edges only between grid neighbors,
are indeed a restricted subclass of planar graphs. There remains a notable lack
of dedicated studies on the problem within grid graphs. Algorithms explicitly
designed for grid graphs with theoretical guarantees appear to be an open or
underexplored problem. Compared to arbitrary planar graphs, grids exhibit
significantly more regularity and geometric structure. The maximum degree
of each vertex is bounded by a small constant (four neighbors in a square
grid), and the geometric embedding is fixed and simple, allowing for spatial
locality and potential geometric shortcut techniques. This regularity can po-
tentially simplify distance computing techniques used in dynamic Steiner tree
algorithms. Given these properties, one can hypothesize that specialized data
structures and dynamic algorithms might achieve improved update times or
tighter approximation bounds on planar grids compared to planar graphs.
Challenges and considerations for grids:

1. Grid Metrics and Distance Measures: Grids induce specific short-
est path metrics (e.g., Manhattan distance), which can be exploited for
faster routing or approximation. Dynamic algorithms might leverage
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these metrics to maintain Steiner trees efficiently.

2. Dynamic Update Patterns: In grids, edge insertions/deletions occur
only between neighboring vertices, limiting update complexities spa-
tially. This locality could be exploited for incremental tree update algo-
rithms.

3. Algorithmic Opportunities:

• Using geometric data structures (quadtrees, range trees) for fast
neighborhood queries.

• Exploiting distance properties in grids for efficient Steiner tree up-
dates.

Although planar grids exhibit beneficial structure, the problem remains chal-
lenging. Extending full-fledged dynamic approximations with update guaran-
tees as in planar graphs may require new ideas. Restricted dynamic models
or heuristic approaches could provide intermediate progress.

Beyond planar grids, grids in higher dimensions or irregular sparse grids
present additional complexities: the combinatorial complexity might increase,
embeddings become less structured, and existing planar graph algorithms
may not extend easily. Hence, fully dynamic approximate Steiner tree al-
gorithms for general grids remain an open and interesting research direction,
with promising areas for exploration inspired by planar cases.
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4
A Decremental Algorithm for

(2 + ϵ)-Approximate Steiner Tree in
Planar Graphs

4.1 Introduction

In this chapter, we study the problem of maintaining an approximate Steiner
tree in planar dynamic graphs under edge deletions. Most of the existing
algorithms for the Steiner tree problem are MST heuristic based algorithms,
which require computing or maintaining a complete distance graph (metric
closure) over terminals. Maintaining a Steiner tree under edge insertion and
deletion becomes difficult as the insertion or deletion of edges in the graph
can change the whole complete distance graph.

In this chapter, we give a lower bound of Ω(n) on the worst case update
time for maintaining an MST heuristic based (2−ϵ′)-approximate Steiner tree
in general dynamic graphs undergoing edge insertions and deletions.

We propose a decremental algorithm for the Steiner tree problem in dy-
namic weighted planar graphs. The graph undergoes a sequence of updates
where each update deletes an edge from the graph. The goal is to main-
tain an approximate Steiner tree of the terminals. The proposed algorithm
is based on an initial (2 − ϵ′)-approximate Steiner tree of the terminals and
it maintains a (2 + ϵ)-approximate Steiner tree under each edge deletion in
Õ(ℓ
√
n) worst case update time. Here, ℓ is the maximum number of hops in

a (1 + ϵ′′)-approximate shortest path between any two vertices in a graph,
and Õ() notation hides polylogarithmic factors. The ϵ, ϵ′ and ϵ′′ are small
fractions. To the best of our knowledge, this is the first decremental algo-
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rithm for maintaining a Steiner tree under edge deletions having the specified
performance guarantees.

We use a dynamic distance oracle to compute approximate shortest dis-
tances efficiently and an ET -tree data structure to avoid cycle formation in
the approximate Steiner tree. This is significantly better than executing the
static algorithm from scratch as proposed by Kou et al. (requiring O(|S||V |2)
time) [14] and Wu et al. (requiring O(|E| log |V |) time) [16]. Our algorithm
is dynamic in the sense that it can handle an arbitrary sequence of edge dele-
tions.

4.2 Preliminaries

We consider a planar undirected edge weighted connected dynamic graph
G = (V,E) where the edge set E is dynamically changing due to the deletion of
edges. The updated graph is represented by Gupdated = (V,Eupdated), n = |V |
and m = |E|. Each edge is assigned a positive real weight. The weight of an
edge e in a graph I is represented by wI(e). By D, we represent the maximum
number of hops in a shortest path between any two vertices in G. It differs
significantly from the weighted shortest path diameter as it accounts for the
number of hops in the paths rather than the weights of the paths. Similarly,
ℓ denotes the maximum number of hops in a (1 + ϵ′′)-approximate shortest
path between any two vertices in an auxiliary graph G′ that we maintain such
that the vertex set and the edge set of G and G′ are same irrespective of the
edge weights. ϵ, ϵ′, ϵ′′ and ϵ′′′ are small fractions (0 < ϵ, ϵ′, ϵ′′, ϵ′′′ < 1).

A path and a shortest path between two vertices u and v in a graph I are
denoted by PI(u, v) and ΠI(u, v) respectively. The weight of a path P (sum
of weights of the edges in the path) is denoted by w(P ). The concatenation of
paths is denoted by ◦. The weight w(T ) of a tree T is given by the sum of the
weights of the edges in T . The complete distance graph (metric closure) of
a graph G(V,E) is denoted by G[V ] = (V,E′) where ∀u,v∈V,u̸=v, e(u, v) ∈ E′

and w(e(u, v)) = w(ΠG(u, v)). We assume that the graph remains connected
throughout the updates. The Steiner tree in our problem differs from the
Steiner tree in [7], where the previous Steiner tree is a sub-tree of the updated
Steiner tree or vice versa (depending on insertion/deletion request). This
constraint is relaxed in this work.

4.2.1 (2− ϵ′)-Approximate Steiner Tree:

Kou et al. [14] and Wu et al. [16] independently showed that a 2 (1− 1/|S|)-
approximate Steiner tree can be computed in O(|S|n2) and O(m log n) time
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respectively. Let G[S] represent the complete distance graph on S. Kou et
al. [14] show that computing MST of G[S] followed by replacement of the
edges of MST with the original shortest path between terminals in G avoiding
cycles and pruning non-terminal leaves gives a (2 − ϵ′)-approximate Steiner
tree where ϵ′ is 2/|S|.

Lemma 4.1 (Kou et al. [14]). Given a graph G(V,E) and a terminal set
S, the minimum spanning tree of G[S] is a 2 (1− 1/|S|)-approximate Steiner
tree.

It is also known as MST heuristic based (2 − ϵ′)-approximate Steiner
tree. This lemma establishes the basis for most algorithms computing or
maintaining an approximate Steiner tree. In our algorithm, we initially take a
(2− ϵ′)-approximate Steiner tree and maintain a (2 + ϵ)-approximate Steiner
tree under edge deletion updates.

4.2.2 Dynamic Distance Oracle:

We use the dynamic distance oracle given by Abraham et al. [48] as discussed
in Section 3.1.1. It maintains approximate distances in a sketch graph H.

Lemma 4.2 (Abraham et al. [48]). w(ΠH(u, v)) ≤ (1+ϵ′′) w(ΠGupdated
(u, v)).

The approximate Steiner tree splits into two sub-trees due to the deletion
of an edge belonging to the tree. We use this distance oracle to find an
approximate shortest path between the two sub-trees to connect and maintain
an approximate Steiner tree.

4.2.3 ET-Trees:

Henzinger et al. [17] and Sleator and Tarjan [52, 53] presented a dynamic data
structure called ET -tree. An ET -tree is a dynamic balanced search tree over
the Euler tours of the trees in a forest. An Euler tour of a tree is a maximal
closed walk over the graph obtained from each tree by replacing each edge
with a directed edge in each direction. The data structure uses the Euler
tours of trees because a tree can be represented as a path by its Euler tour,
and balanced search trees can be maintained efficiently over paths rather than
trees under the insertions and deletions of edges which require splitting and
merging of trees. Each tree in the forest has a root. Let ET -root(v) be the
root of tree containing v. Since ET -trees are balanced, the tree’s root can be
found in O(log n) time.
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Figure 4.1: Example trees to show link and cut operations
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Figure 4.2: ET -tree operations on dynamic trees

ET -trees help us to insert edges to join two trees in the forest by using
a link operation and delete edges to cut a tree into two trees by using a cut
operation. The link and cut operations are shown in Fig. 4.1 and Fig. 4.2 with
three example trees.

The Euler tour is a data structure representing a tree as a sequence of
vertices. Each vertex can have one or more occurrences in the tour, depending
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on the degree of the vertex. Each edge is visited exactly twice in the Euler
tour of the tree. The procedure to find an Euler tour of a tree is shown below.

procedure ET(x)
Visit(x)
for each child c of x do

ET(c)
Visit(x)

end for
end procedure

Each vertex, except the leaf vertex, is visited more than once using
the above procedure. Each visit of a vertex is called an occurrence of that
vertex. The occurrences of a vertex u are denoted as u1, u2, u3, ..ui, where
i = degree of u, except for the root. For the root, i = degree of u + 1 .
The Euler tour of a tree T can be stored as a b−ary search tree, denoted
by ET (T )-tree, to search an occurrence of any vertex in O(log n) time. The
algorithm proposed by Henzinger and King [17] uses ET -tree data structure
to maintain an approximate MST. The resulting approximate MST is stored
as an Euler tour. This Euler tour is used for subsequent updates on the graph
to maintain approximate MST.

ET-tree operations

1. Deleting an edge from a tree T: Deletion of an edge (u, v) from a
tree T splits T into two subtrees, say T1 and T2, such that u ∈ T1 and
v ∈ T2.

Figure 4.3: Deletion of an edge from Euler tour of a tree

Let Ou1, Ov1, Ov2 and Ou2 be the four occurrences encountered in the
traversal of the edge (u, v). The order of occurrences of u and v is
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Ou1 < Ov1 < Ov2 < Ou2 to visit the edge (u, v), where Ou1 < Ov1

signifies that Ou1 occurs before Ov1 in the traversal. The tree T2 is
spliced out from T using the occurrence of v. The interval Ov1, . . . , Ov2

in ET (T ) represents the Euler tour for T2. Searching occurrences related
to any edge can be done in O(log n) time using ET -trees. Hence, any
edge from the tree represented by an Euler tour can be deleted in O(log
n) time.

2. Changing the root of a tree T from u to v: Let Ov denote the first
occurrence of v. Remove the part of the sequence before Ov, (say s1).
Remove the first occurrence of u, (Ou) from s1. Append s1 on the end
of the sequence, which now begins with Ov. Add one new occurrence of
v at the end of the sequence.

Figure 4.4: Changing the root of a tree from u to v

3. Joining two rooted trees T1 and T2 by an edge: Let u ∈ T1 and
v ∈ T2 and the trees T1 and T2 are to be joined by the edge (u, v). The
Euler tours for these two trees can be joined using edge (u, v). Re-root
the tree T2 at v using the above procedure. Create a new occurrence
Ou of u. Join the sequence ET (T2)Ou into ET (T1) immediately after
an occurrence of u.

The query connected(u, v) of the data structure is used to know whether
u and v are connected in an ET -tree or not. If connected(u, v) returns true
then ET -root(u) = ET -root(v) and vice-versa. The join, cut and connected
operations take O(logn) time. ET -trees support some other useful operations
as well [17].
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Figure 4.5: Merging Euler tours of two trees T1 and T2 by the edge (u, v)

We maintain ET -trees on a forest F . The Steiner tree that we intend
to maintain is contained in F . Due to the deletion of an edge belonging to
the Steiner tree, the tree splits into two sub-trees. The presented algorithm
uses these ET -trees to avoid cycle formation with the help of connected(u, v)
query while connecting the two sub-trees of the Steiner tree by an approximate
shortest path. The join and cut operations are used to efficiently maintain
the forest so that the connected(u, v) query can be performed efficiently. More
details about this data structure can be found in [52, 53].

4.3 Lower Bound for MST Heuristic Based Algo-
rithms

The MST heuristic is a fundamental approach for approximating the Steiner
tree problem.

Theorem 4.3 (Lower bound on the update time). In dynamic graphs with
arbitrary edge updates, there exists an instance where MST based heuristic
incurs Ω(n) update time for maintaining a (2− ϵ′)-approximate Steiner tree.

Proof. Consider two instances of a dynamic graph G as shown in Fig. 4.6, one
with three terminals (Fig. 4.6a) and another with four terminals (Fig. 4.6b).
The dashed edge (a, b) initially does not belong to the graph G. Fig. 4.7a and
Fig. 4.9a show the complete distance graphs on the terminals for the graphs
in Fig. 4.6a and Fig. 4.6b respectively. Additionally, Fig. 4.7b and Fig. 4.9b
depict MST heuristic based Steiner trees for these instances.
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Figure 4.6: A graph with three terminals (left) and a graph with four
terminals (right).

• Case 1: Update inserts an edge: Consider an update inserts an edge
(a, b) in G. The updated complete distance graphs over terminals and
the MST heuristic based (2− ϵ′)-approximate Steiner trees are shown in
Fig. 4.8 and Fig. 4.10. For Fig. 4.8, our assumption is 2x > x + 3 and
4x > x+2, which implies x > 3, and for Fig. 4.10, 2x > x+4, 4x > x+3
and 4x + 2 > x + 2, which implies x > 4. It can be observed that the
sets of edges in the updated Steiner trees (Fig. 4.8 and Fig. 4.10) are
completely disjoint from the sets of edges in the earlier Steiner trees
(Fig. 4.7 and Fig. 4.9). The earlier Steiner tree and the updated Steiner
tree together span all the vertices of G. This observation indicates that
Ω(n) changes are required to construct a new approximate Steiner tree
from an earlier Steiner tree. Hence, the time required to update an MST
heuristic based (2− ϵ′)-approximate Steiner tree is Ω(n).

• Case 2: Update deletes an edge: Consider instances of dynamic
graphs shown in Fig. 4.6 such that the edge (a, b) belongs to the graphs.
Fig. 4.8 and Fig. 4.10 show the complete distance graphs over terminals
and the MST heuristic based (2−ϵ′)-approximate Steiner trees of G. An
update deletes the edge (a, b) from the graph G. The complete distance
graphs over terminals and the approximate Steiner trees are updated as
shown in Fig. 4.7 and Fig. 4.9. Similar to the insertion case, in this case
as well, Ω(n) changes are required to maintain an MST heuristic based
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Figure 4.7: The complete distance graph over the terminals (left) and the
MST heuristic based (2− ϵ′)-approximate Steiner tree (right) for the graph

in Fig. 4.6a before insertion of the edge (a, b).
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Figure 4.8: The updated complete distance graph over the terminals (left)
and the MST heuristic-based (2− ϵ′)-approximate Steiner tree (right) for the

graph in Fig. 4.6a after insertion of the edge (a, b).

(2− ϵ′)-approximate Steiner tree.

We saw instances for three and four terminals. Using a similar structure,
we can create instances for any number of terminals. Also, based on the value
of x, the given graph can be scaled to any number of vertices and edges by
replacing the edges of the graph with paths consisting of multiple edges and
non-terminals such that the sum of the weights of the edges in a path is equal
to the weight of the edge replaced by the path. For example, the graph given
in Fig. 4.6b consists of eight vertices. It can be scaled to any n number of
vertices (say 1000) by replacing an edge (say (b, B)) of the graph with a path
consisting of multiple (1000 − 8 + 1) edges such that the sum of the weights
of the edges in the new path is equal to the weight (x) of the edge ((b,B))
replaced by the path. Hence, for an arbitrary graph size, there exists an
instance such that any MST heuristic based algorithm requires Ω(n) changes

75



4.3. Lower Bound for MST Heuristic Based Algorithms

A

B

C

D

4x + 2 2x

2x2x

2x + 2

4x

(a)

A
a

d

b

c

B

C

D

2x 2x

2x

(b)

Figure 4.9: The complete distance graph over the terminals (left) and the
MST heuristic based (2− ϵ′)-approximate Steiner tree (right) for the graph

in Fig. 4.6b before insertion of the edge (a, b).
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Figure 4.10: The updated complete distance graph over the terminals (left)
and the MST heuristic-based (2− ϵ′)-approximate Steiner (right) for the

graph in Fig. 4.6b after insertion of the edge (a, b).

to update a (2− ϵ)-approximate Steiner tree.
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4.4 The Decremental Algorithm

We consider a planar graph instance G = (V,E), a terminal set S and a
(2− ϵ′)-approximate Steiner tree Ts = (Vs, Es) on the given graph instance as
input to the algorithm followed by some edge deletion updates. We main-
tain the dynamic distance oracle of Abraham et al. [48] on an auxiliary
graph. The tree Ts splits into two disjoint sub-trees due to the deletion of
an edge belonging to Ts. Let the two sub-trees are Ts1 = (Vs1 , Es1) and
Ts2 = (Vs2 , Es2). For each pair (u, v) : u ∈ Vs1 , v ∈ Vs2 , there is a (1 + ϵ′′)-
approximate u⇝ v shortest path in the updated graph Gupdated. Hence there
are many (1 + ϵ′′)-approximate u ⇝ v shortest paths such that u ∈ Vs1 and
v ∈ Vs2 . We define the (1+ϵ′′)-approximate shortest path between Ts1 and Ts2

in Gupdated, denoted by ΠGupdatedϵ′′(Ts1 , Ts2) as min{ (1+ϵ′′)-approximate u⇝
v shortest path : u ∈ Vs1 , v ∈ Vs2}. Similarly, the shortest path between Ts1

and Ts2 in Gupdated, denoted by ΠGupdated
(Ts1 , Ts2), is defined as min{u ⇝

v shortest path : u ∈ Vs1 , v ∈ Vs2}. Let Gaux be an auxiliary graph obtained
from Gupdated such that wGaux(e) = 0 for e ∈ Ts1 or e ∈ Ts2 and rest of the
edges and vertices are the same as Gupdated. A single (u, v) distance query on
the dynamic distance oracle on Gaux such that u ∈ Ts1 and v ∈ Ts2 can return
ΠGϵ′′(Ts1 , Ts2) if the distance oracle supports zero edge weights (Lemma 4.4).

Lemma 4.4. Let Gaux be an auxiliary graph such that it differs from Gupdated

only for edges belonging to Ts1 and Ts2 where the weight of such edges is zero
in Gaux. A single (u, v) distance query on the dynamic distance oracle on
Gaux such that u ∈ Ts1 and v ∈ Ts2 can return a (1+ ϵ′′)-approximate shortest
path between the two trees Ts1 and Ts2 given that the distance oracle supports
zero edge weights.

Proof. Let P1, P2, P3, . . . , Pl be the list of all the shortest paths in Gupdated

such that one end point of the path lies in Vs1 and the other end point of the
path lies in Vs2 . Let Pz be the shortest path between the trees Ts1 and Ts2

as defined previously where 1 ≤ z ≤ l. Let the end points of Pz are x and y
such that x ∈ Vs1 and y ∈ Vs2 without loss of generality. The path Pz cannot
contain Ts1 or Ts2 tree edges, otherwise one could find a sub-path of Pz by
deleting Ts1 , Ts2 tree edges from Pz which is of lesser weight and connects Ts1

and Ts2 , which contradicts that Pz is the shortest path between the trees Ts1

and Ts2 .

For each edge e ∈ Es, wGaux(e) is zero. As the edge set of Gupdated and
Gaux are same except the weight of edges belonging to trees Ts1 and Ts2 ,

w(Pz) = w(ΠGupdated
(Ts1 , Ts2)) = w(ΠGaux(Ts1 , Ts2))
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∀(x′, y′) ∃ΠGaux(x′, y′) = ΠGaux(x′, x) ◦ΠGaux(x, y) ◦ΠGaux(y, y′)

: x′ ∈ Ts1 , y
′ ∈ Ts2

Due to definition of Gaux,

w(ΠGaux(x′, x)) = w(ΠGaux(y, y′)) = 0

=⇒ ∀(x′, y′) w(ΠGaux(x′, y′)) = w(ΠG(x, y)) : x′ ∈ Vs1 , y
′ ∈ Vs2

=⇒ ∀(x′, y′) w(Π
Gauxϵ

′′(x′, y′)) ≤ w(ΠGϵ′′(x, y)) : x′ ∈ Vs1 , y
′ ∈ Vs2

Due to this, while finding the shortest path between the two sub-trees in the
graph Gaux with the help of distance oracle, it acts as all the vertices of Ts1

are merged as a single vertex. Similarly, all the vertices of Ts2 are considered
another single vertex as edges of zero weight connect all the vertices within
one sub-tree. Querying the distance oracle for ΠGauxϵ′′(Ts1 , Ts2) by choosing
one arbitrary vertex from Ts1 and other from Ts2 , the distance oracle return a
(1+ϵ′′)-approximate shortest path between Ts1 and Ts2 in Gaux which is same
as the (1 + ϵ′′)-approximate shortest path between the trees in Gupdated.

However, the dynamic distance oracle supports only edge weights in
[1,M ]. To get rid of this problem, we keep wGaux(e) = 1/n for edges be-
longing to Ts1 and Ts2 and multiply the weight of each edge of Gaux by n. We
call the resulting auxiliary graph G′ = (V,E′) as shown below and maintain
a distance oracle on this graph where edge weights lie in [1,M ′] : M ′ = nM .

G′ = (V,E′) : E′ = E

∀e ∈ E′, wG′(e) =

{
n× wGupdated

(e) : e /∈ Es

1 : e ∈ Es

Now the distance oracle gives a (1 + ϵ′′′)-approximate shortest path between
any given pair of vertices in G rather than (1 + ϵ′′)-approximate shortest path
where ϵ′′′ is as shown in Section 4.5.1. We define the (1 + ϵ′′′)-approximate
shortest path between the two trees Ts1 and Ts2 in Gupdated, denoted by
ΠGupdatedϵ′′′(Ts1 , Ts2) as min{ (1 + ϵ′′′)-approximate u⇝ v shortest path : u ∈
Vs1 , v ∈ Vs2}. A forest F = (V,Es) is maintained using ET -trees. It contains
all the vertices of G and the edges of Ts.

While deleting an edge (u, v) from the graph, the following two cases may
occur: The first case is (u,v) /∈ Es. In this case, the algorithm deletes (u, v)
from G and G′. We claim in Lemma 4.7 that deletion of such an edge does not
require any modification in the tree Ts to maintain the (2 + ϵ) approximation
factor. In the second case, the edge (u,v) ∈ Es. To handle this case, The
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(c) Graph G′

Figure 4.11: Before deletion of the edge (v2, v4)

algorithm performs the following operations. Delete (u, v) from G, G′, Ts

and F . The tree Ts splits into two disjoint sub-trees Ts1 and Ts2 as shown
in Fig. 4.11 and Fig. 4.12. These sub-trees may contain non-terminal leaves.
Remove these non-terminal leaves and the corresponding edges from Ts1 and
Ts2 . It is shown in Fig. 4.13. Remove the edges corresponding to non-terminal
leaves from F . For each edge e removed from Ts1 and Ts2 , update the weight

79



4.4. The Decremental Algorithm

v1

v2

v5

v4

v3

v7

v6 v8

v9

1

2

3

5

5

5

3

2

1

1

1

4

2

4

1

(a) Graph G

v1

v2
1

(b) TS1

v4

v3

v6

v7

1

1

1

(c) TS2

v1

v2

v5

v4

v3

v7

v6 v8

v9

1

18

27

45

45

45

27

18

1

1

1

36

18

36

9

(d) Graph G′

Figure 4.12: After deletion of the edge (v2, v4)

of e in G′ to n × wGupdated
(e) = n × wG(e). Choose two arbitrary vertices

x ∈ Vs1 and y ∈ Vs2 . Query the distance oracle for a x ⇝ y path, which
returns a PG′(x, y) = ΠG′ϵ′′(x, y) = ΠGϵ′′′(x, y) path. PG′(x, y) may form a
cycle with Ts1 and Ts2 .

Lemma 4.5. Connecting Ts1 and Ts2 with a ΠGupdated
(Ts1 , Ts2) cannot create
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(d) Graph G′

Figure 4.13: Updated G′, TS1 and TS2

a cycle.

Proof. Let P be a u ⇝ v shortest path between Ts1 and Ts2 in Gupdated,
u ∈ Ts1 and v ∈ Ts2 . Connecting the two trees with P can only form a cycle
if it contains at least two vertices belonging to one of the two trees and edges
in P between these two vertices do not belong to the trees. Consider such a
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vertex x ̸= u : x ∈ Ts1 and x ∈ P . Hence, P = Q+R where Q is a u⇝ x path
containing non-tree edges and R is a x⇝ v path. wGupdated

(Q) > 0. Hence,

wGupdated
(P ) = wGupdated

(Q) + wGupdated
(R) > wGupdated

(R)

As x ∈ Ts1 , R connects Ts1 and Ts2 . This contradicts that P is the shortest
path between Ts1 and Ts2 in Gupdated. Hence, connecting the disjoint sub-trees
Ts1 and Ts2 with a shortest path in Gupdated cannot form a cycle.
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(a) Path between vertices 1 and 4
given by the dynamic distance oracle
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(b) Updated Steiner tree TS

v1

v2

v5

v4

v3

v7

v6 v8

v9

1

18

27

1

45

45

27

18

1

1

1

36

18

36

9

(c) Updated G′

Figure 4.14: Updated Steiner tree TS
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Algorithm 6 A (2 + ϵ)-Approximate Steiner Tree

1: Take a 2(1− 1/|S|)-approximate Steiner tree Ts(Vs, Es) ▷ Preprocessing
2: G′(V,E′)← G(V,E): ▷ Construct G′

3: if e ∈ Es then
4: wG′(e)← 1
5: else
6: wG′(e)← n · wG(e)
7: end if
8: Initialize the distance oracle on G′

9: Create the forest F = (V,Es) using ET -trees ▷ Preprocessing ends here
10: An update deletes an edge e = (u, u′) from the graph G
11: Delete the edge e from G′

12: if e ∈ Es then
13: Ts splits into Ts1 and Ts2 and the tree in F splits into two trees
14: Remove non-terminal leaves and corresponding edges from Ts1 and Ts2

and remove corresponding edges from F
15: ∀e′ deleted from Ts1 and Ts2 and the edge (u, u′)
16: wG′(e′)← n · wGupdated

(e′) ▷ Update G′

17: Choose arbitrary x, y : x ∈ Vs1 , y ∈ Vs2

18: Query Distance Oracle(x, y) ▷ Returns ΠG′ϵ′′(x, y) path
19: for v ∈ x⇝ y path (in order from x to y) do
20: if connected(x, v) then
21: x′ ← v
22: end if
23: end for
24: for v ∈ x′ ⇝ y path (in order from x′ to y) do
25: if connected(v, y) then
26: y′ ← v
27: Break
28: end if
29: end for
30: Ts1 , Ts2 and the edges of x′ ⇝ y′ path with the edge weights as in

Gupdated form the updated Steiner tree Tsupdated

31: Add the edges of x′ ⇝ y′ path to F
32: ∀ e′ ∈ (x′ ⇝ y′) : wG′(e′)← 1 ▷ Update G′

33: else
34: Ts remains a (2 + ϵ)-approximate Steiner tree
35: end if
36: For a new deletion repeat the process from line 10
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Lemma 4.6. Connecting Ts1 and Ts2 with a ΠGupdatedϵ′′′(Ts1 , Ts2) may create
a cycle.

Proof. Let PG′(i, j) be a ΠGupdatedϵ′′′(Ts1 , Ts2) where PG′(i, j) = (i⇝ i′)◦(i′ ⇝
j) : i′, i ∈ Vs1 , j ∈ Vs2 . The i⇝ i′ path may contain edges that do not belong
to Es1 as PG′(i, j) is an approximate shortest path with respect to Gupdated.
Since i, i′ ∈ Vs1 , there is a i⇝ i′ path in Ts1 . Adding PG′(i, j) to Ts1 may add
another i⇝ i′ path to Ts1 . Hence, it may lead to cycle creation.

In the given example graph, let i = v1 and j = v4. The distance oracle
may return the (v1, v2, v3, v4) path. Vertices v3 and v4 are already connected
in Ts2 . Hence, combining this path with Ts2 creates a cycle. Hence, connecting
Ts1 and Ts2 with this path leads to a cycle creation.

We use the ET -tree data structure to avoid cycle formation while Con-
necting Ts1 and Ts2 with a ΠGupdatedϵ′′′(Ts1 , Ts2). The goal is to find a sub-path
x′ ⇝ y′ of PG′(x, y) obtained from the distance oracle such that it connects
Ts1 and Ts2 and does not create a cycle. Query the ET -tree data structure
in the order of vertices present in the x ⇝ y path PG′(x, y). The vertex x′

is found by querying connected(x, v′) in the ET -tree where v′ is a vertex in
PG′(x, y). The last v′ connected to x is x′. In the given example, x′ = x = v1
because v1 is not connected to any other vertex of (v1, v2, v3, v4) path in Ts1

(Fig. 4.13). Similarly, y′ is obtained by querying connected(v′, y) in the ET -
tree where v′ is a vertex in the x′ ⇝ y sub-path. The first v′ connected to y
is y′. In the given example, y = v4 and y′ = v3. It we interchange Ts1 and
Ts2 in the given example, then v4 becomes x and v1 becomes y. In this case,
x′ = v3 and y′ = y = v1. The trees Ts1 and Ts2 together with the edges of
this x′ ⇝ y′ sub-path with weights the same as in Gupdated form the updated
Steiner tree Tsupdated . As the edges of x′ ⇝ y′ belong to Tsupdated , update the
weights of these edges to 1 in G′. It is shown in Fig. 4.14. Add the edges of
x′ ⇝ y′ path with weights the same as in Gupdated to F . The tree Tsupdated is a
(2 + ϵ)-approximate Steiner tree. There can be O(n2) paths between Ts1 and
Ts2 , but the distance oracle is able to return the required approximate path
between the trees in a single query because of the construction of the graph
G′.

4.5 Analysis and Proof of Correctness

Lemma 4.7. Deletion of an edge (u, v) /∈ Es cannot degrade the approxima-
tion factor of Ts.

Proof. Let TOPT = (VOPT , EOPT ) be an optimal Steiner tree of the graph
G = (V,E) and the terminal set S ⊆ V . An update deletes an edge (u, v) /∈ Es
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from the graph. The updated graph is given by Gupdated = (V,E \ {(u, v)}).
Let T ′

OPT = (V ′
OPT , E

′
OPT ) be an optimal Steiner tree of Gupdated such that

w(T ′
OPT ) =

∑
e∈E′

OPT

w(e) <
∑

e∈EOPT

w(e) = w(TOPT )

As E′
OPT ⊆ E \ {(u, v)} ⊆ E and the terminal set remains the same, T ′

OPT

is also a Steiner tree of G. w(T ′
OPT ) < w(TOPT ) contradicts that TOPT is an

optimal Steiner tree of G. Hence w(T ′
OPT ) ≥ w(TOPT ). The approximation

factor(without modifying Ts) in the updated graph is

w(Ts)

w(T ′
OPT )

≤ w(Ts)

w(TOPT )

4.5.1 Approximation Factor

Theorem 4.8. The presented algorithm joins the trees Ts1 and Ts2 by a (1 +
ϵ′′′)-approximate shortest path between the trees.

Proof. Our algorithm maintains the dynamic distance oracle on G′. Let P1, P2,
P3, . . . , Pl be the list of all ΠGupdated

(i, j) : i ∈ Vs1 , j ∈ Vs2 . Let Pz be a
ΠGupdated

(Ts1 , Ts2) where 1 ≤ z ≤ l and the end points of Pz are x and y,
x ∈ Vs1 and y ∈ Vs2 . Let Pz′G′ be the x′ ⇝ y′ path returned by the distance
oracle for x′ ∈ Vs1 and y′ ∈ Vs2 . For an edge e ∈ Ts1 or e ∈ Ts2 , wG′(e) is 1.
For all other edges, wG′(e) is n · wG(e). As the edges of Ts1 and Ts2 cannot
be present in the shortest path between Ts1 and Ts2 ,

w(ΠG′(Ts1 , Ts2)) = n · w(ΠGupdated
(Ts1 , Ts2))

∀(x′, y′) ∃ΠG′(x′, y′) : ΠG′(x′, y′) = ΠG′(x′, x) ◦ΠG′(x, y) ◦ΠG′(y, y′),

x′ ∈ Ts1 , y
′ ∈ Ts2

Due to definition of G′,

w(ΠG′(x′, x)) + w(ΠG′(y, y′)) ≤ n− 1

=⇒

(
∀(x′, y′) w

(
(1 + ϵ′′)-approximate

x′ ⇝ y′ shortest path in G′)
)
≤

 (1 + ϵ′′)
(
n− 1+

n · w(ΠGupdated
(x, y))

)
: x′ ∈ Vs1 , y

′ ∈ Vs2


=⇒ w(Pz′G′) ≤ (1 + ϵ′′)(n− 1 + n · w(ΠGupdated

(x, y)))
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=⇒ w(Pz′G′) ≤
(

1 + ϵ′′ +
1 + ϵ′′

w(ΠGupdated
(x, y))

(
n− 1

n

))
·n·w(ΠGupdated

(x, y))

=⇒ w(Pz′G′) <

(
1 + ϵ′′ +

1 + ϵ′′

w(ΠGupdated
(x, y))

)
· n · w(ΠGupdated

(x, y))

=⇒ w(Pz′G′) < (1 + ϵ′′′) · n · w(ΠGupdated
(x, y))

For ϵ′′′ = ϵ′′ + 1+ϵ′′

w(ΠGupdated
(x,y)) .

Let Pz′Gupdated
be the path in Gupdated corresponding to the path Pz′G′

in G′: edge e ∈ Pz′G′ =⇒ e ∈ Pz′Gupdated
, wPz′Gupdated

(e) = wGupdated
(e).

=⇒ w(Pz′Gupdated
) < (1 + ϵ′′′) · n · w(ΠGupdated

(x, y))/n)

=⇒ w(Pz′Gupdated
) < (1 + ϵ′′′) · w(ΠGupdated

(x, y))

Hence, the distance oracle returns a (1 + ϵ′′)-approximate shortest path be-
tween Ts1 and Ts2 in G′ which is the same as the (1+ϵ′′′)-approximate shortest
path between Ts1 and Ts2 in Gupdated. The stretch factor ϵ′′ of the distance
oracle lies in (0, 1). In an arbitrarily large graph, w(ΠGupdated

(x, y)) can have a
large value. Assuming that w(ΠGupdated

(x, y)) > 2 for large graphs, ϵ′′′ ∈ (0, 2).
Path Pz′Gupdated

is finally trimmed using ET -trees to avoid cycle formation be-
fore connecting Ts1 and Ts2 with Pz′Gupdated

, which cannot increase the cost of
the path.

Theorem 4.9. The presented algorithm maintains a (2 + ϵ)-approximate
Steiner tree.

Proof. Initially we have a 2 (1− 1/|S|)-approximate Steiner tree Ts given by
Lemma 4.1.

w(Ts) ≤ 2 (1− 1/|S|)OPT

Here, OPT is the weight of an optimal Steiner tree of the given graph G.
Let OPT updated denote the cost of an optimal Steiner tree of Gupdated. If the
deleted edge belongs to Ts, the tree Ts gets divided into two disjoint sub-trees.
We remove non-terminal leaves and the corresponding edges in the two sub-
trees. These sub-trees are Ts1 and Ts2 . The algorithm connects these two
trees with a ΠGϵ′′′(Ts1 , Ts2) (by Lemma 4.2 and Theorem 4.8). By Lemma
4.1,

w(MST (G[S])) =
∑

e∈MST (G[S])

w(e) ≤ 2(1− 1/|S|)OPT (4.1)

Where each edge in the MST (G[S]) has a weight equal to the weight of a
shortest path between some two terminals s1 and s2 in the graph G, which is
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equivalent to the shortest path connecting the two parts of the MST formed
by removing the edge (s1, s2). The cut property for MST states that the
minimum weight edge in any cut C of a graph belongs to all MSTs of the
graph. If there are multiple edges in a cut that have minimum weight, then
each such edge belongs to some MST of the graph. According to the cut
property, the shortest path connecting Ts1 and Ts2 must belong to MST of
G[S]. Whenever Ts, which is initially a 2(1−1/|S|)-approximate Steiner tree,
gets disconnected due to the deletion of an edge, we connect Ts1 and Ts2 with
a sub-path of ΠGϵ′′′(Ts1 , Ts2) as shown in Section 5. Applying the presented
algorithm after each update may result in the replacement of a ΠG(Ts1 , Ts2)
with a sub-path of ΠGupdatedϵ′′′(Ts1 , Ts2). It is equivalent to the replacement

of each edge of the updated MST over Gupdated[S] by a (1 + ϵ′′′)-approximate
edge of updated MST on Gupdated[S], Hence by (4.1)

w(Tsupdated) =
∑

e∈Tsupdated

w(e)

=⇒ w(Tsupdated) ≤
∑

e∈MST (Gupdated[S])

(1 + ϵ′′′)w(e)

=⇒ w(Tsupdated) ≤ 2(1− 1/|S|)(1 + ϵ′′′)OPT updated

=⇒ w(Tsupdated) ≤ 2((1 + ϵ′′′)− (1/|S|)(1 + ϵ′′′))OPT updated

=⇒ w(Tsupdated) < 2(1 + ϵ′′′)OPT updated

=⇒ w(Tsupdated) < (2 + 2ϵ′′′)OPT updated

For ϵ = 2ϵ′′′

=⇒ w(Tsupdated) < (2 + ϵ)OPT updated

By Lemma 4.7, due to the deletion of an edge that does not belong to Ts, Ts

remains (2 + ϵ)-approximate Steiner tree.

As ϵ′′′ ∈ (0, 2), ϵ = 2ϵ′′′ ∈ (0, 4).

4.5.2 Update Time

In the preprocessing phase, we have an initial Steiner tree Ts. G′ can be
constructed from G in O(m) time as it differs from G only in edge weights.
The distance oracle on G′ can be initialized in O((ϵ′′)−1n log2 n) time. The
ET -trees are maintained on a dynamic forest F . Initially, F contains the
edges of Ts and singleton vertices of G. An edge of Ts can be added to F in
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O(logn) time by join operation. As Ts may contain at most n − 1 edges, F
can be constructed in O(n log n) time in the worst case.

Theorem 4.10. The presented algorithm maintains the (2 + ϵ)-approximate
Steiner tree in Õ(ℓ

√
n) worst case update time.

Proof. Initially, the terminals in the Steiner tree Ts are connected by shortest
paths. After some updates, some or all of these paths may be replaced by
(1+ϵ′′′)-approximate shortest paths. The length of each (1+ϵ′′′)-approximate
shortest path is O(ℓ) as it is a sub-path of a (1+ϵ′′)-approximate shortest path
in G′. When an edge (u, v) is deleted from the graph G, it is also removed
from the graph G′. As the distance oracle is maintained on G′, each update
on G′ takes an update time of Õ(

√
n) to update the distance oracle. Deletion

of an edge e ∈ Ts results in formation of Ts1 and Ts2 . The algorithm removes
non-terminal leaves from Ts1 and Ts2 , and the corresponding edges from Ts1 ,
Ts2 and the forest F . Removing an edge from F (a cut on an ET -tree) takes
O(logn) time in the worst case. Removing the non-terminal leaves may lead
to the removal of O(ℓ) number of edges from F , which takes O(ℓ log n) time
in the worst case. For each edge e removed from Ts1 and Ts2 due to the
removal of non-terminal leaves, we need to update wG′(e) = n · wGupdated

(e).

Each weight update takes Õ(
√
n) time because it is equivalent to the deletion

of an existing edge and the insertion of a new edge that has the updated
weight and the endpoints the same as that of the deleted edge. So, the time
required to perform this operation is Õ(ℓ

√
n) time. After removing non-

terminal leaves, we need to query the distance oracle to obtain the (1 + ϵ′′′)-
approximate shortest path connecting the two parts of the tree in Gupdated.
It takes Õ(

√
n) time. We need to find a sub-path of this path if it forms

a cycle with the tree, which requires to query ET -trees. It takes O(ℓ logn)
time. Finally, the algorithm uses this sub-path to connect Ts1 and Ts2 to form
Tsupdated and update the weights of the edges belonging to this sub-path to

1 in G′. This can be done in Õ(ℓ
√
n) time. Overall worst case update time

complexity of the algorithm is Õ(ℓ
√
n+ ℓ logn) = Õ(ℓ

√
n). When the deleted

edge e /∈ Ts, then Ts is not required to be modified. Only the deleted edge
is removed from G and G′, which takes Õ(

√
n) time to update the distance

oracle.

4.6 Summary

This work demonstrates a lower bound of Ω(n) on the update time for main-
taining an MST heuristic based (2−ϵ′)-approximate Steiner tree in general dy-
namic graphs. The updates considered are edge insertions and edge deletions.
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We present a decremental Steiner tree algorithm that maintains a (2 + ϵ)-
approximate Steiner tree with edge deletions in weighted planar graphs in
Õ(ℓ
√
n) worst case update time. This is significantly better than computing a

(2− ϵ′)-approximate Steiner tree from scratch as given by Kou et al.(requires
O(|S|n2) time) and Wu et al.(requires O(m logn) time). The presented algo-
rithm is also better than our fully dynamic algorithm presented in Chapter 3
in terms of the update time complexity, which requires Õ(|S|2

√
n+ |S|D+n)

time to update the Steiner tree in the worst case.
The dynamic Steiner tree problem with edge insertions and deletions has

not gotten much attention. Maintaining a dynamic Steiner tree with edge
insertion as well as edge deletion updates in general graphs is still an open
problem. We wish to extend our algorithm for the Steiner tree problem with
edge insertions and deletions to general graphs. Our goal is to design an
algorithm for maintaining some constant factor approximate Steiner tree in a
fully dynamic general graph that can handle edge insertions as well as edge
deletions efficiently.

00656//
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5
Fully Dynamic Algorithms
Handling Edge and Vertex

Insertions and Deletions and
Terminal Conversions

In this chapter, we propose two fully dynamic algorithms for maintaining
an approximate Steiner tree supporting six types of updates: edge insertion,
edge deletion, vertex insertion, vertex deletion, terminal to non-terminal con-
version, and non-terminal to terminal conversion. After each update, the first
algorithm maintains a (|S| − 1)-approximate Steiner tree in planar graphs.
The second algorithm maintains a (2 + ϵ)-approximate Steiner tree in general
graphs under the same six types of updates.

5.1 Generating Approximate Steiner Tree from a
Fully Dynamic Approximate MST of a Planar
Graph

5.1.1 Preliminaries

We consider a planar weighted dynamic graph G(V,E) and a terminal set
S ⊆ V . Each edge e ∈ E is assigned a positive real weight denoted by w(e).
The proposed algorithm uses the concept of a complete distance graph on the
terminals, the cut property of MST (minimum spanning tree), Euler tour, and
Euler tour trees. A path and a shortest path between two vertices u and v in
a graph G are denoted by PG(u, v) and ΠG(u, v) respectively. The weight of
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a path P ( sum of weights of the edges in the path) is denoted by w(P ).
The approximate MST maintained by the algorithm is represented using

the Euler tour data structure known as ET -trees. The ET -trees data structure
is discussed in Section 4.2.3.

Complete distance graph on set of terminals

The Complete distance graph (CDG) of the graph G(V,E) on set of terminal
S is represented as CDG(G,S, V ′, E′), where V ′ = S is set of vertices of CDG
and E′ is the set of edges of CDG. The edge set E′ includes an undirected edge
between all pairs of terminals with edge weight equal to the shortest distance
between them in the graph G(V,E).

Definition 5.1. (Complete distance graph on the terminals) The complete
distance graph on the terminals for a graph G(V,E) and the terminal set S is
defined as a graph CDG(S,E′) : ∀u,v∈S,u̸=ve(u, v) ∈ E′, w(e) = w(ΠG(u, v)).

Cut property of MST

A cut in the graph G(V,E) is the partition of vertex set V into two parts V1

and V2. All the edges (u, v), such that u ∈ V1 and v ∈ V2, create the cut set
for a cut between V1 and V2. The cut property of the Minimum Spanning
Tree states that every minimal weighted edge in the cut set belongs to some
Minimum Spanning Tree of the graph.

5.1.2 Overview

We use an approximate MST of the graph to maintain an approximate Steiner
tree. The algorithm supports six types of updates: insertion of an edge in the
graph, deletion of an edge from the graph, insertion of a vertex in the graph,
deletion of a vertex from the graph, conversion of a non-terminal to terminal,
and conversion of a terminal to a non-terminal. The resulting approximate
Steiner tree is maintained by connecting neighbor terminals in the approximate
MST by the approximate shortest path in the graph. The dynamic distance
oracle of Abraham et al. [48] is used to obtain approximate shortest paths
among the terminals. The dynamic distance oracle of Abraham et al. [48] is
discussed in Section 3.1.1.

Definition 5.2. (Neighbor terminal pair) For a tree T (V ′, E′) rooted at a
vertex v ∈ V ′ and a terminal set S ⊆ V ′, two terminals t1 and t2 are said to
form a neighbor terminal pair iff:

• t1 is an ancestor of t2 or t2 is an ancestor of t1 in T
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• The t1 ⇝ t2 path in T does not contain any other terminal

The algorithm proposed here is modular in nature and requires main-
taining an approximate MST and approximate shortest paths between all
terminals under the six types of updates mentioned. The approximate MST
and approximate shortest paths among terminals do not change due to the
conversion of a non-terminal to a terminal and the conversion of a terminal
to a non-terminal, as these updates do not change the topology of the graph.
Henzinger and King [17] proposed an algorithm to maintain an approximate
MST under edge insertions and deletions for fully dynamic graphs in poly-
logarithmic time. This algorithm is used here to maintain an approximate
MST under updates.

The proposed algorithm uses neighbor terminals in the approximate MST
to know the relative sequence of terminals. The resulting approximate Steiner
tree is computed by connecting neighboring terminal pairs of approximate
MST by their approximate shortest paths in the graph. The approximate
shortest paths are maintained using the distance oracle proposed by Abraham
et al. [48]. The resulting approximate Steiner tree is proved to be (|S| − 1)-
approximate.

The time taken by the proposed algorithm can be represented as O(t1 +
t2+n+|S|t3), where t1 represents the update time to maintain the approximate
MST under edge insertion, edge deletion, vertex insertion, and vertex deletion,
t2 represents the update time of the distance oracle used to maintain the
shortest paths between terminals, t3 represents the query time to find the
shortest path between any two terminals in the graph, n is the number of
vertices in the graph and |S| is the number of terminals in the terminal set.
The algorithm of [17] has an update time of O((p log3 n logU)/ϵ) for p number
of updates to maintain the (1 + ϵ)-approximate MST for edge insertions and
deletions, where weights of the edges are between 1 and U , and n is the
number of vertices. The distance oracle proposed by Abraham et al. [48] has
an update time and a query time of Õ(

√
n) for planar graphs.

5.1.3 Updating Approximate Steiner Tree

The proposed algorithm maintains an approximate MST after each update.
The approximate MST is then used to connect the terminals in the approx-
imate Steiner tree by their approximate shortest path in the graph. The
approximate MST is maintained with an approximation factor of (1 + ϵ), and
the approximate Steiner tree is maintained with an approximation factor of
|S| − 1. The procedure to maintain the approximate Steiner tree is given
below.
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Algorithm 7 (|S| − 1)−approximate Steiner tree

• STEP 1: Perform the update on the graph or the terminal set.

• STEP 2: Maintain the (1+ϵ)-approximate MST and perform an update
query to update the distance oracle.

• STEP 3: Find (|S| − 1) Neighbor terminal pairs in the approximate
MST.

• STEP 4: Update (|S|−1)-approximate Steiner tree by connecting (|S|−
1) neighbor terminal pairs by their approximate shortest path.

Maintaining approximate MST

The conversion of non-terminal to terminal and terminal to non-terminal does
not affect the approximate MST, as the topology of the graph remains un-
changed. Hence, there is no need to update the approximate MST after the
insertion or deletion of a vertex in the terminal set.

Maintaining the approximate MST with edge insertions and edge
deletions: After edge insertion and edge deletion, the (1 + ϵ)-approximate
MST is maintained using the randomized algorithm of Henzinger and King
[17]. The algorithm maintains the (1 + ϵ)-approximate MST in weighted gen-
eral graphs. The algorithm maintains the Euler tour of the approximate MST
after each edge insertion/deletion in the graph.

Maintaining approximate MST with vertex insertions: When a ver-
tex v with degree d is inserted in the graph, v has d number of edges that can
connect v to the existing approximate MST. The cut between {v} and V \{v}
in the graph has these d number of edges in its cut set. According to the
cut property of MST, the edge having minimum weight in the cut set belongs
to MST. Hence we add the minimum weight edge to the approximate MST.
The Euler tour of the existing approximate MST is changed by performing a
merge operation between the Euler tour of the approximate MST and the new
edge. The remaining d− 1 edges may further reduce the cost of approximate
MST. Hence, we perform d − 1 edge insertion operations for the remaining
d − 1 edges and maintain the approximate MST. Handling edge insertions is
discussed in the previous paragraph.
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Maintaining approximate MST under vertex deletion: When a ver-
tex with degree d is deleted from the graph, it also needs to be deleted from the
approximate MST. Due to the deletion of a vertex from the approximate MST,
the tree may divide into at most d subtrees, forming a forest. These subtrees
need to be connected again to make it a valid approximate MST. This can be
done by performing d edge-deletion operations. The edge deletion operations
are handled by using the algorithm of Henzinger and King [17].

The deletion of a vertex v from the approximate MST changes the Euler
tour of the approximate MST. We perform the deletion procedure on the Eu-
ler tour of the approximate MST to remove all d edges. The vertex deletion
is modeled as the deletion of edges associated with the deleted vertex. The
deletion of an edge belonging to the approximate MST will divide the approxi-
mate MST into two subtrees. The replacement edge to connect these subtrees
is found using the algorithm of [17]. Then, we perform a merge operation
using the replacement edge to merge the Euler tours of the two subtrees.

The algorithm of Henzinger and King is used to maintain the (1 + ϵ)-
approximate MST. Hence, after d number of edge insertion and deletion op-
erations, the resulting tree remains a (1 + ϵ)-approximate MST.

Maintaining approximate Steiner tree

The approximate Steiner tree is computed by connecting neighbor terminal
pairs of the approximate MST by their approximate shortest paths in the
graph. According to the definition of the neighbor terminal pairs, one of the
terminals in a neighbor terminal pair is an immediate terminal ancestor of the
other terminal in the pair. The neighbor terminal pairs are computed by a
depth first search (DFS) traversal on the approximate MST with an arbitrary
terminal as the root. The DFS procedure to find all the neighbor terminal
pairs in a tree is shown in Algorithm 8.

There are exactly (|S| − 1) unique neighbor terminal pairs possible in
any tree. After computing the neighbor terminal pairs, for each (u, v) ∈
neighbor terminal pairs, the algorithm queries the dynamic distance oracle to
obtain an approximate shortest path between u and v. The dynamic distance
oracle returns (1 + ϵ′)-approximate shortest paths among the terminals in
the neighbor terminal pairs (ϵ′ ∈ (0, 1)). The neighbor terminal pairs are
connected by these approximate paths. The graph so formed may contain
cycles. The cycles are removed by deleting the largest weighted edge from
each cycle. It results in a tree. The resulting approximate Steiner tree T is
obtained by removing non-terminal leaves from the tree so formed. If any
leaf node of the resulting tree is not terminal, then we keep removing edges
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Algorithm 8 Neighbor Terminal Pairs

Require: T (V,E), S, root ∈ S
Ensure: neighbor pairs
1: Initialize:
2: Stack ss = [ ] ▷ Stack to store terminal ancestors
3: neighbor pairs = [ ] ▷ List of neighbor terminal pairs
4: Call DFS(root)
5: procedure DFS(v)
6: if v ∈ S then
7: if v is not root then
8: neighbor pairs.add({v, ss.top()})
9: end if

10: ss.push(v)
11: end if
12: for each child c of v do
13: DFS(c)
14: end for
15: if v ∈ S then
16: ss.pop()
17: end if
18: end procedure

until all leaf nodes of the tree are terminal nodes. The resulting tree is a
(|S| − 1)-approximate Steiner tree maintained by our algorithm.

5.1.4 Proof of Correctness

Approximation factor of approximate MST

The conversion of a terminal to a non-terminal and non-terminal to a ter-
minal does not change the graph. Hence, the approximate MST and the
approximation factor of the approximate MST do not change due to these
two types of updates. For the edge insertion and the edge deletion updates in
the graph, the approximate MST is maintained by the algorithm of [17]. The
approximate MST under a vertex deletion (from the graph) is maintained by
deleting the edges connected to that vertex by the algorithm of [17]. Hence
the approximation factor of the approximate MST does not change under the
updates- edge insertion to the graph, edge deletion from the graph, and vertex
deletion from the graph. For a vertex insertion (to the graph), the proposed
algorithm adds the edge associated with the inserted vertex having minimum

96



5. Fully Dynamic Algorithms Handling six types of updates

weight to the approximate MST. The other edges associated with the inserted
vertex having an end vertex in the approximate MST may further reduce the
cost of the approximate MST. Hence, the algorithm of [17] is used to insert
the remaining edges to maintain the approximate MST and approximation
factor of the approximate MST. Hence, after all these six types of updates,
the (1 + ϵ)-approximate MST is maintained.

Approximate Steiner tree

The approximate Steiner tree is obtained by connecting the neighbor terminal
pairs by approximate shortest paths in the graph followed by cycle removal.
Hence, the resulting tree contains all the terminals, and all leaves are termi-
nals. Hence, the tree maintained by the algorithm is a valid Steiner tree.

Approximation Factor of the Steiner tree

The resulting approximate Steiner tree T has neighbor terminals connected
by (1 + ϵ′)-approximate shortest paths in the graph. Let PT (ti, tj) denote the
path between ti and tj in the approximate Steiner tree T such that (ti, tj) is
a terminal pair. Hence, For each neighbor terminal pair (ti, tj) computed by
the DFS procedure:

w(PT (ti, tj)) ≤ (1 + ϵ′)w(ΠG(ti, tj))

Let T ′ be the minimum Steiner tree for the given graph G and terminal set
S, then:

w(ΠG(ti, tj)) ≤ w(PT ′(ti, tj))

Hence, for each neighbor terminal pair (ti, tj):

w(PT (ti, tj)) ≤ (1 + ϵ′)w(PT ′(ti, tj))

The resulting approximate Steiner tree is obtained using the neighbor
terminal pairs computed by the DFS procedure. The DFS procedure starts
with a terminal as a root. The number of neighbor terminal pairs remains the
same irrespective of the root terminal.

Theorem 5.1. Any tree T (V ′, E′) rooted at any arbitrary terminal node r ∈ S
with terminal set S ⊆ V ′ has (|S| − 1) number of unique neighbor terminal
pairs.

Proof. When the DFS traversal is performed on the tree T (V ′, E′) with any
arbitrary root r ∈ S, each terminal s ∈ S has a set of ancestors. The set of
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ancestors of a node s includes all the nodes that are in the stack when s is
visited for the first time. In the set of ancestors of node s ∈ S, there is at
most one terminal node s′ ∈ S, such that there is no other terminal node in
the path between s and s′. The root terminal does not have an ancestor. All
terminals, except the root, have exactly one terminal in their set of ancestors
such that it follows the conditions of neighbor terminal pairs. Hence there are
exactly (|S| − 1) number of unique neighbor terminal pairs.

Hence for all the (|S| − 1) neighbor terminal pairs (ti, tj), the distance
between ti and tj in T is at most (1 + ϵ′) times the distance between ti and tj
in an optimal Steiner tree T ′. Hence, for any neighbor terminal pair (ti, tj):

w(PT (ti, tj)) ≤ (1 + ϵ′)w(PT ′(ti, tj))

w(PT ′(ti, tj) ≤
∑

e∈E′(T ′)

we = OPT

∴ dT (ti, tj) ≤ (1 + ϵ′)OPT

The cost of the tree T is given by:

Cost(T ) ≤
∑

(ti,tj) is a terminal pair

w(PT (ti, tj))

∴ Cost(T ) ≤ (|S| − 1)(1 + ϵ′)OPT

∴
Cost(T )

Cost(T ′)
≤ (|S| − 1)(1 + ϵ′)

Hence the approximation factor of the resulting approximate Steiner tree is
(|S|−1)(1+ϵ′). Here, ϵ′ ∈ (0, 1) is the tunable parameter used in the distance
oracle to maintain the approximate shortest paths among the terminals.

Complete distance graph and its Spanning tree

The algorithm proposed by Kou et al. [14] computes the (2− ϵ)−approximate
Steiner tree using a complete distance graph on the terminals. The approx-
imate Steiner tree is computed by finding an MST of the complete distance
graph on the terminals. We prove the approximation ratio of the approximate
Steiner tree computed by using a spanning tree of the complete distance graph
on the terminals.

Theorem 5.2. For a given graph G(V,E) and a terminal set S ⊆ V , any
spanning tree of the complete distance graph on S gives an approximate Steiner
tree with an approximation factor of (|S| − 1).

98



5. Fully Dynamic Algorithms Handling six types of updates

Proof. The complete distance graph CDG on S has the vertex set as the
set of terminals and each edge (ti, tj) has a weight equal to the shortest path
distance between ti and tj in the graph G. Let ST be a spanning tree of CDG.
The weight of an edge (ti, tj) in ST is given by w(ti, tj) = w(ΠG(ti, tj))

A tree T is computed by replacing each edge e(ti, tj) in ST by the corre-
sponding shortest path between ti and tj in the graph G. The cycles and the
non-terminal leaves are removed. Hence,

w(PT (ti, tj)) = w(ti, tj) = w(ΠG(ti, tj))

Let T ′ be the minimum Steiner tree for the given graph G and terminal set
S. The cost of T ′ is represented by OPT .

w(PT (ti, tj)) = w(ΠG(ti, tj)) ≤ w(PT ′(ti, tj))

There are |S|−1 edges in ST , and sum of all edges of ST is

|S|−1∑
i=1

wST (ti, ti+1)

and wST (ti, ti+1) ≤ Cost(T ′). There are |S| − 1 paths in the tree T corre-
sponding to the |S| − 1 edges in a spanning tree of CDF on |S| number of
terminals.

∴ Cost(T ) ≤
|S|−1∑
i=1

wST (ti, ti+1)

∴ Cost(T ) ≤ (|S| − 1) · Cost(T ′)

∴ Cost(T )
Cost(T ′) ≤ (|S| − 1)

Hence, the cost of the Steiner tree computed using an arbitrary spanning tree
of the complete distance graph on the set of terminals has an approximation
ratio of (|S| − 1).

Update time complexity

The expected update time of the proposed algorithm for p number of updates
is O( Approximate MST update time + distance oracle update time + neigh-
bor terminal pairs finding time + time to connect neighbor terminal pairs by
approximate shortest paths + time to remove cycles and non-terminal leaves).
The (1+ϵ)−approximate MST is maintained using the algorithm of Henzinger
and King [17]. The expected update time to maintain the approximate MST
for p number of edge insertions and edge deletions is O((p log3 n logU)/ϵ)
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[17]. Insertion or deletion of a vertex with degree d results in insertion or
deletion of d number of edges in the graph. Hence, the expected update time
to maintain the approximate MST for p number of vertex insertions and ver-
tex deletions is O((dp log3 n logU)/ϵ). The expected update time complexity
to maintain the approximate MST for p number of updates is given in Table
5.1. Here, δ is the maximum degree of a vertex in the updated graph. The

Table 5.1: Update time to maintain (1 + ϵ)−approximate MST

Operation Expected update time

Insertion and deletion of p
number of edges from the graph O((p log3 n logU)/ϵ)

Insertion and deletion of p
number of vertices O((δp log3 n logU)/ϵ)

worst-case update time to maintain the (1 + ϵ)−approximate MST under ter-
minal conversions is O(1). Hence, the approximate MST can be maintained
in O((δp log3 n logU)/ϵ) expected time for p number of updates.

The dynamic distance oracle is updated in Õ(
√
n) time in worst case.

The |S| − 1 neighbor terminal pairs are computed by Algorithm 8 by a DFS
procedure on the approximate MST, which requires O(n) time in worst case.
The approximate shortest paths between the neighbor terminal pairs can be
found in Õ((|S| − 1)

√
n) time in worst case by querying the dynamic distance

oracle |S| − 1 times, once for each neighbor terminal pair. The cycles (if any)
and the non-terminal leaves can be removed in O(n) time in worst case [14].

Hence, the expected update time of the proposed algorithm for p number
of updates is Õ((δp logU)/ϵ +

√
n + n + |S| ·

√
n + n) = Õ((δp logU)/ϵ + |S| ·√

n+n). For |S| = o(
√
n), the update time of the presented algorithm becomes

linear in n.

5.2 A Fully Dynamic Approximate Steiner Tree Al-
gorithm for General Graphs

In this section, we explore a fully dynamic algorithm for maintaining an ap-
proximate Steiner tree in general graphs, supporting six types of updates:
edge insertion, edge deletion, vertex insertion, vertex deletion, terminal to
non-terminal conversion, and non-terminal to terminal conversion. By inte-
grating dynamic clustering, spanner-based connectivity, and a hybrid distance
oracle, the algorithm achieves an approximation factor of 2 + ϵ for some tun-
able ϵ > 0. Furthermore, it achieves efficient updates with an expected time
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complexity of O(m1/2 + n2/3) per update. The algorithm offers a significant
improvement over existing dynamic Steiner tree algorithms in terms of flexi-
bility, approximation guarantees, and update efficiency.

5.2.1 Techniques Used

Clustering and Spanners

Clustering: The graph is decomposed into smaller clusters using low-diameter
decomposition [50]. This decomposition divides the graph into subgraphs
(clusters) with bounded diameters, ensuring that distances between any two
nodes in a cluster are small. This property allows Steiner trees to be effi-
ciently computed locally within clusters, minimizing the scope of updates and
improving scalability. Clustering reduces the complexity of maintaining global
connectivity by enabling localized computations for dynamic updates.

Spanners: Spanners are sparse subgraphs that approximate the distances
of the original graph while using significantly fewer edges [18]. A (1 + ϵ)-
spanner ensures that the distance between any two vertices in the spanner
is at most (1 + ϵ) times their distance in the original graph. Spanners are
used to maintain efficient inter-cluster connectivity in the Steiner tree. Their
sparsity minimizes the computational overhead during updates, while their
distance-preserving property ensures the approximation factor of the Steiner
tree remains bounded.

Dynamic Distance Oracle

Bernstein-Roditty Oracle: The Bernstein-Roditty distance oracle effi-
ciently handles edge deletions in dynamic graphs by maintaining approximate
shortest paths [19]. It achieves an update complexity of O(

√
m) per dele-

tion and constant-time queries. This oracle is particularly suited for decre-
mental updates, ensuring that terminal-to-terminal distances are efficiently
maintained as edges are removed.

Incremental Updates: For edge insertions, incremental shortest path com-
putations are performed using Dijkstra-like propagation. The updates are
restricted to regions affected by the inserted edges, ensuring efficiency. The
combination of incremental and decremental techniques provides a hybrid dy-
namic distance oracle that supports both types of updates seamlessly.
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Localized Updates

By restricting updates to affected clusters and inter-cluster spanners, the al-
gorithm avoids global recomputation. This localized approach leverages clus-
tering and spanners to minimize the impact of changes, enabling efficient
handling of edge and vertex updates as well as terminal conversions.

5.2.2 Algorithm Design

Initialization

• Low-Diameter Decomposition: A low-diameter decomposition di-
vides the graph G(V,E) into disjoint subgraphs (clusters) such that
the diameter of each cluster is bounded by a predefined value ∆. The
decomposition ensures that vertices within each cluster are close to one
another. This step is crucial as it allows the algorithm to limit computa-
tions to localized regions of the graph, reducing the overall complexity.
Formally, for the given graph G(V,E), the clustering process involves
partitioning V into disjoint subsets C1, C2, . . . , Ck such that:

– Each cluster Ci forms a connected subgraph in G.

– The diameter of each cluster is bounded by ∆, i.e., diam(Ci) ≤ ∆.

The process starts by selecting a random vertex v ∈ V as the cluster
center and performing a breadth-first search (BFS) to include all vertices
within a radius ∆/2. This ensures that the distance between any two
vertices in a cluster is at most ∆. The process is repeated for the remain-
ing unclustered vertices until all vertices are assigned to clusters. Let
d(u, v) represent the shortest path distance between vertices u, v ∈ V .
The clustering algorithm can be described as:

Initialize C = ∅, the set of all clusters.

While V is not empty:

Select v ∈ V as a cluster center.

Let Ci = {u ∈ V : d(u, v) ≤ ∆/2}.
Add Ci to C and remove all vertices in Ci from V.

Output C = {C1, C2, . . . , Ck}.

Such clustering facilitates efficient computation and updates of local
Steiner trees within clusters.
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(b) Clusters

Figure 5.1: An example graph (a) and Clusters (b)
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• Local Steiner Tree Approximation: An initial Steiner tree is com-
puted for each cluster using the 2 approximation algorithm of Mehlhorn
[47]. Formally, for each cluster Ci, the algorithm computes a tree Ti

that connects all terminals within Ci. This ensures that the initial solu-
tion within each cluster is a 2-approximate Steiner tree, serving as the
foundation for dynamic updates.

• Construction of Inter-Cluster Spanner: We use the spanner con-
struction technique proposed by Thorup and Zwick [18], which provides
a (1+ϵ) approximation for distances while ensuring sparsity. This span-
ner construction is applied to the clusters obtained through low-diameter
decomposition, ensuring that terminal-to-terminal distances across clus-
ters are well-approximated.

The spanner is constructed as follows:

– Initialization: Start with an empty spanner H = (VH, EH) where
VH includes all terminals in the graph, and EH = ∅.

– Path-Based Selection: For each pair of clusters (Ci, Cj):

∗ Identify all terminal-to-terminal paths connecting t ∈ Ci and
t′ ∈ Cj . These paths may consist of multiple edges, not just a
single edge directly connecting t and t′.

∗ Sort these paths by total path weight in non-decreasing order.

∗ Add a path P to the spanner H if it reduces the shortest path
distance dH(t, t′) in the spanner, ensuring:

dH(t, t′) ≤ (1 + ϵ) · dG(t, t′),

– Termination: Continue this process until all terminal-to-terminal
distances across clusters satisfy the (1+ϵ) approximation guarantee:

dG(t, t′) ≤ dH(t, t′) ≤ (1 + ϵ) · dG(t, t′).

Correctness and Sparsity Guarantee: The spanner H ensures that
the shortest path distances between terminals in different clusters satisfy
the (1+ϵ) approximation property. By processing paths in ascending or-
der of weight, the construction minimizes the number of edges required
in the spanner. The sparsity of the spanner reduces computational over-
head while maintaining distance guarantees.

This spanner construction approach ensures that all terminal-to-terminal
distances are approximated efficiently, even when no direct edges exist
between the terminals in different clusters.
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Figure 5.2: The spanner for the updated graph, showing inter-cluster edges
(dashed) and intra-cluster edges (solid). Clusters are enclosed with dashed

boundaries.

• Inter-Cluster Connectivity via Spanner: Clusters are treated as
super-nodes in a higher-level abstraction of the graph. To connect clus-
ters efficiently, we employ the precomputed spanner H ⊆ G. We com-
pute a minimum spanning tree of the graph formed by spanner edges
with clusters as super-nodes.

The global Steiner structure is then formed by the union of:

– intra-cluster Steiner trees (computed independently within each
Ci), and

– edges of the minimum spanning tree over the clusters.

This construction ensures global connectivity while maintaining an ap-
proximation guarantee.

• Hybrid Distance Oracle Initialization: We augment the decremen-
tal distance oracle proposed by Bernstein and Roditty [19] to handle
additional types of updates, including edge insertions. The hybrid ora-
cle is maintained over the inter-cluster spanner H, while edge updates
are applied to the original dynamic graph G(V,E). This ensures that the
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oracle efficiently tracks terminal-to-terminal distances during dynamic
updates.

Existing Functionality: Bernstein’s decremental distance oracle main-
tains (1 + ϵ)-approximate shortest paths for all terminal pairs (t, t′) ∈
S×S. For any terminal pair (t, t′), the distance maintained by the oracle
satisfies:

dH(t, t′) ≤ doracle(t, t
′) ≤ (1 + ϵ) · dH(t, t′),

The distance oracle handles edge deletions with an amortized update
time complexity of O(

√
m) per edge deletion and supports distance

queries in O(1) time.

Augmentation to Handle Edge Insertions in G(V,E): To handle
edge insertions in the original graph G(V,E), we extend the oracle as
follows: When an edge (u, v) with a weight w is inserted into G, the
spanner H is updated to reflect any changes to inter-cluster distances.
If (u, v) connects clusters Ci and Cj , the spanner may incorporate the
edge if it improves the shortest path distance between affected terminals.
The hybrid oracle performs a localized Dijkstra-like propagation in H,
restricted to regions where the new edge might improve distances.

Localized Dijkstra-Like Propagation in H: Propagation begins
from the endpoints of the inserted edge (u, v) in G. The propagation is
restricted to clusters Ci and Cj connected by (u, v), and the inter-cluster
spanner edges in H. For every affected terminal pair (t, t′), the oracle
updates doracle(t, t

′) by considering:

doracle(t, t
′) = min

(
doracle(t, t

′), dH(t, u) + w(u, v) + dH(v, t′)
)

The propagation halts once distances for all relevant terminal pairs sta-
bilize.

Complete Functionality of the Hybrid Oracle: After augmenta-
tion, the hybrid oracle provides the following capabilities:

– Edge Deletions in G(V,E): Handles decremental updates using
Bernstein’s method, reflected in H.

– Edge Insertions in G(V,E): Localized propagation updates ter-
minal to terminal distances in H, reflecting changes caused by the
inserted edge.

– Query Efficiency: The oracle continues to support (1 + ϵ) ap-
proximate distance queries in O(1) time.
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Accuracy and Efficiency Guarantees:

– The distances maintained by the oracle remain (1+ϵ)-approximate
because all updates are applied to the spanner H, which itself pre-
serves (1 + ϵ) approximation guarantees for inter-cluster distances.

– The oracle’s query time remains O(1), as the augmented propa-
gation does not increase the complexity of accessing precomputed
distances.

This hybrid distance oracle combines the benefits of Bernstein’s efficient
decremental method with the flexibility of localized incremental updates,
enabling robust and scalable maintenance of terminal-to-terminal dis-
tances in dynamic settings.

Handling Updates

• Edge Insertion: When a new edge (u, v) is inserted in the graph
G(V,E), the algorithm updates the hybrid distance oracle to reflect the
new edge by performing the localized Dijkstra-like propagation. If the
inserted edge improves connectivity between the clusters in the spanner
H, the algorithm adds it to H. The Steiner tree is updated by consid-
ering the affected clusters. The local Steiner tree within each affected
cluster is recomputed using the 2 approximation algorithm of Mehlhorn
[47]. The inter-cluster connections in the Steiner tree are updated using
the spanner H.

Updating Inter-Cluster Connections in the Steiner Tree Using
the Spanner H: When a new edge is inserted into G(V,E), or a local
Steiner tree is recomputed within a cluster, it is necessary to update
the inter-cluster connections in the Steiner tree. This involves deter-
mining the affected terminal vertices in clusters that require updated
inter-cluster connections. The spanner H is then leveraged to efficiently
recompute shortest paths between terminals across clusters. The span-
ner H, being sparse, provides (1 + ϵ)-approximate distances, ensuring
both accuracy and computational efficiency.

To update the Steiner tree, the algorithm queries the hybrid distance or-
acle for approximate shortest paths between terminals in different clus-
ters. For each terminal t in an affected cluster Ci, the shortest path
to terminals in other clusters Cj is found by traversing the spanner
H. These inter-cluster paths are then constructed by combining the
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(b) Updated 2-Approximate Steiner
Tree After Edge insertion

Figure 5.3: Initial 2-approximate Steiner tree (left) and the updated
2-approximate Steiner tree (right) after insertion of (D,F ) with weight 1.

intra-cluster Steiner tree connections with the paths traced through H.
The updated paths from H are incorporated into the global Steiner tree
structure, replacing outdated or invalid connections, ensuring that the
resulting structure spans all terminals in S.

The process preserves the approximation guarantee because H ensures
(1 + ϵ)-approximate distances for inter-cluster connectivity. By replac-
ing inter-cluster connections with paths reconstructed fromH, the global
Steiner tree maintains its approximation factor. Additionally, the spar-
sity of H minimizes computational overhead, allowing efficient updates
even during frequent edge insertions or local recomputations. This inte-
gration ensures that the Steiner tree remains connected, updated, and
efficient in dynamic graph scenarios.

• Edge Deletion:

When an edge e = (u, v) is removed from the graph G(V,E), it must
also be removed from the spanner H, as it no longer contributes to the
connectivity of the graph. The removal of e from H may break paths
that rely on e to maintain approximate distances. To address this, the
following steps are performed:

First, e is directly removed fromH, ensuring that the spanner accurately
reflects the updated graph. Next, the spanner H is checked for paths
that relied on e to maintain the (1 + ϵ) approximation property for
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inter-cluster distances. For each terminal pair (t, t′) affected by the
removal of e, the spanner attempts to restore connectivity by finding an
alternative path in the updated graph G(V,E). This is done using the
hybrid distance oracle, which provides approximate shortest paths in G
efficiently. The spanner H then adds edges from these newly identified
paths, ensuring that the (1+ϵ) approximation guarantees remain intact.
This approach minimizes computational overhead by avoiding global
recomputation of the spanner and instead focuses on localized updates
for terminal pairs directly affected by the deletion of e.
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(b) Updated 2-Approximate Steiner
Tree After Deletion of (C,F ) Using

Spanner

Figure 5.4: Initial 2-approximate Steiner tree (left) and the updated
2-approximate Steiner tree (right) after deleting (C,F ) with weight 6,

updated using the spanner edge (B,D).

By systematically removing e from H and dynamically rebuilding af-
fected paths, the spanner maintains its accuracy and efficiency, even in
fully dynamic scenarios where edge deletions are frequent. This ensures
that the Steiner tree relying on H remains robust and connected, with
its approximation guarantees preserved.

• Vertex Insertion: Let N(u) denote the neighborhood (adjacent ver-
tices) of u. When a vertex v is inserted into the graph, it is assigned
to an existing cluster as follows. Since the clustering is a disjoint parti-
tion of the vertex set and every existing vertex belongs to some cluster,
the assignment of v can be based on its local connectivity. Specifically,
the algorithm scans all neighbors u ∈ N(v) and selects the neighbor
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connected by the edge (v, u) of minimum weight. The vertex v is then
assigned to the cluster of u. This local greedy assignment avoids the
need for computing global shortest paths and ensures that v is assigned
to the cluster it is most closely connected to.

Next, the Steiner tree for the cluster Ci is updated to incorporate v.
If v is a terminal, the Steiner tree for Ci is recomputed using the 2-
approximation algorithm of Mehlhorn [47], ensuring that all terminals
in Ci, including v, are connected efficiently. If v is not a terminal, its
inclusion in the Steiner tree is evaluated based on its potential to reduce
the total weight of the Steiner tree in Ci. Specifically, the algorithm
examines whether v provides shorter paths between existing terminals
in the cluster. This is achieved by temporarily introducing v as a can-
didate Steiner node and recomputing paths between affected terminals.
Let Si be the set of terminals belonging to Ci. For each pair of termi-
nals (t1, t2) ∈ Si × Si, the algorithm computes the shortest path weight
dG(t1, v) + dG(v, t2) between t1 and t2 via v in the graph G[Ci ∪{v}]. If
this weight is less than w(PTi(t1, t2)), the path PTi(t1, t2) is replaced with
a path passing through v, and the corresponding edges are updated in
Ti. The updated Steiner tree T ′

i is accepted if and only if w(T ′
i ) < w(Ti).

In this case, v is incorporated into the cluster’s Steiner tree; otherwise,
Ti is retained, and v remains disconnected from the Steiner tree.

This process ensures that v is added only if it acts as a useful Steiner
node that reduces the overall weight of the tree. Unlike simply attach-
ing v as a leaf, this process ensures that v contributes meaningfully to
terminal connectivity. All distance evaluations are performed directly
on the subgraph G[Ci ∪ {v}], as intra-cluster edges are not part of the
spanner H. The hybrid distance oracle is not used in this step.

Finally, the spanner H is updated to reflect the addition of v. The algo-
rithm identifies all inter-cluster edges involving v, such as edges between
v and terminals in other clusters, and evaluates their inclusion in H.
These edges are added only if they improve the shortest path distances
between terminal pairs across clusters, ensuring that the spanner main-
tains its (1 + ϵ)-approximation guarantee. Additionally, shortest paths
in H involving v are recomputed, allowing the spanner to remain consis-
tent and efficient. By updating both the Steiner tree and the spanner,
the algorithm ensures that the overall structure adapts effectively to the
addition of v, preserving connectivity and approximation guarantees.

• Vertex Deletion: When a vertex v is deleted from G(V,E), it must
first be removed from its assigned cluster Ci. If v is a terminal, the
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Steiner tree for Ci is recomputed using the 2-approximation algorithm
of Mehlhorn [47], ensuring that the remaining terminals in Ci are con-
nected efficiently. If v is not a terminal but was part of the Steiner tree,
the algorithm evaluates how its removal affects the tree’s connectivity.
Specifically, paths that previously depended on v are identified, and al-
ternative routes are constructed within the cluster. This is achieved by
temporarily treating the nodes adjacent to v as endpoints and recomput-
ing local paths within Ci to restore connectivity, similar to the process
of evaluating v as a candidate Steiner node in the Vertex Insertion case.

For inter-cluster connectivity, if v was part of an inter-cluster connec-
tion in the Steiner tree, the spanner H is updated to reflect the deletion.
Edges involving v are removed from H, and paths containing v are re-
computed to maintain the spanner’s (1 + ϵ)-approximation guarantee,
as described in the Edge Deletion case. The hybrid distance oracle is
updated accordingly to reflect changes in H. Finally, the Steiner tree
is updated to replace any disrupted inter-cluster connections by con-
structing new paths using H, following the same approach as stated in
the Edge Deletion case. This ensures that the Steiner tree continues to
span all terminals efficiently and preserves its approximation guarantees
despite the removal of v.

• Terminal Conversion: When a vertex v is converted between terminal
and non-terminal status, the Steiner tree and spanner H are updated
accordingly. If v is converted into a terminal and already belongs to the
Steiner tree, no update is required for the Steiner tree, as it maintains
its approximation guarantee by virtue of connecting all terminals using
shortest paths, a property ensured by the 2-approximation algorithm of
Mehlhorn [47]. If v does not belong to the Steiner tree, it is connected
to the existing Steiner tree of its cluster by computing the shortest path
from v to the closest vertex in the tree within the subgraph G[Ci]. This
path is then added to the tree, preserving connectivity. Because this
augmentation is done using a shortest path within a bounded-diameter
cluster, and only one terminal is being added, the approximation factor
remains valid.

If v is converted from a terminal to a non-terminal, the algorithm ex-
amines its role in the Steiner tree. If v is a leaf in the Steiner tree, it
is recursively removed along with the edge connecting it, and the pro-
cess continues until a non-terminal leaf is reached. If v is not a leaf, its
removal may disconnect other terminals from the Steiner tree.
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Algorithm 9 Fully Dynamic Steiner Tree Algorithm

Require: Graph G(V,E), Terminal Set S ⊆ V
Ensure: A (2 + ϵ)-approximate Steiner tree spanning S
1: Initialize the spanner H using a (1 + ϵ)-approximation algorithm [18] for

inter-cluster paths.
2: Partition G into clusters C1, C2, . . . , Ck using low-diameter decomposition

[50].
3: Compute the local Steiner tree Ti for each cluster Ci using Mehlhorn’s

algorithm [47].
4: Construct the initial Steiner tree T by combining T1, T2, . . . , Tk and

inter-cluster paths from H.
5: for each update (edge/vertex/terminal) do
6: if Edge Insertion (u, v, w) then
7: Add (u, v, w) to G.
8: Update the hybrid distance oracle to reflect the new edge

using localized Dijkstra-like propagation, with complexity O(m1/2) in
expectation.

9: Evaluate whether (u, v, w) improves inter-cluster paths in H. If
beneficial, add (u, v, w) to H.

10: Update the Steiner tree T by querying the spanner for affected
terminal pairs and adjusting inter-cluster connections.

11: end if
12: if Edge Deletion (u, v) then
13: Remove (u, v) from G.
14: Update the hybrid distance oracle using the decremental algorithm

of Bernstein and Roditty [19] in O(m1/2).
15: Remove (u, v) from H, and recompute shortest paths for affected

terminal pairs using the hybrid distance oracle.
16: Update the Steiner tree T by recomputing local Steiner trees for

affected clusters and reconnecting inter-cluster paths using H.
17: end if
18: if Vertex Insertion (v) then
19: Add v to G and assign it to the nearest cluster Ci using the hybrid

distance oracle.
20: if v ∈ S (Terminal Vertex) then
21: Recompute the Steiner tree Ti for cluster Ci using Mehlhorn’s

algorithm.
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22: else
23: Connect v to the Steiner tree Ti if it reduces overall weight,

using approximate paths from the hybrid distance oracle.
24: end if
25: Update inter-cluster connections in H if v introduces new

inter-cluster edges.
26: end if
27: if Vertex Deletion (v) then
28: Remove v from G and its assigned cluster Ci.
29: if v ∈ T (Part of the Steiner Tree) then
30: if v is a leaf then
31: Recursively remove v and its connecting path until no

non-terminal leaves remain.
32: else
33: Identify terminals directly connected to v, and reconnect

them using approximate paths from the hybrid distance oracle.
34: end if
35: end if
36: Recompute inter-cluster connections in H if v affects inter-cluster

paths.
37: end if
38: if Terminal Conversion (v) then
39: if v becomes a Terminal then
40: If v /∈ T , connect it to the Steiner tree using approximate paths

from the hybrid distance oracle.
41: end if
42: if v becomes a Non-Terminal then
43: if v is a leaf then
44: Recursively remove v and its connecting path until no

non-terminal leaves remain.
45: else
46: Identify terminals directly connected to v, and reconnect

them using approximate paths from the hybrid distance oracle.
47: end if
48: end if
49: Update H to reflect changes to inter-cluster paths involving v.
50: end if
51: end for

return T

113



5.2. Fully Dynamic Approximate Steiner Tree Algorithm in General Graphs

In this case, the algorithm removes v from the terminal set and recom-
putes the Steiner tree over the updated terminal set S′

i = Si \{v} within
the cluster Ci, using the 2-approximation algorithm of Mehlhorn [47].
This guarantees that the updated Steiner tree maintains the required
approximation factor after the terminal status of v changes.

For inter-cluster connectivity, if v’s terminal conversion affects inter-
cluster paths, the spanner H is updated accordingly. Any inter-cluster
paths involving v are recomputed to ensure the (1 + ϵ)-approximation
guarantee is maintained. These updated paths are incorporated into the
Steiner tree to replace any disrupted inter-cluster connections, following
the same approach as outlined in the Edge Deletion case. This process
ensures that the Steiner tree and spanner H maintain their efficiency
and approximation guarantees after terminal conversion.

5.2.3 Analysis

This section provides formal proofs of the correctness, approximation factor,
and time complexity of the proposed algorithm under all six types of dynamic
updates. The proofs are organized into lemmas and theorems for clarity.

Optimal Choice of ∆ in Clustering

The parameter ∆ represents the maximum diameter of a cluster in the low-
diameter decomposition used in our algorithm. While its role is well-defined
in the clustering process, its optimal value must be carefully chosen to balance
update time complexity, query efficiency, and approximation guar-
antees. This section derives the optimal ∆ mathematically by analyzing its
impact on Steiner tree maintenance, inter-cluster spanner connectiv-
ity, and distance oracle efficiency.

The low-diameter decomposition partitions the graph G(V,E) into k dis-
joint clusters, each with a diameter at most ∆. Since each vertex belongs to
exactly one cluster, the total number of clusters satisfies k = O(n/nc), where
nc denotes the number of vertices per cluster. It follows that the number of
vertices per cluster is at most:

nc = O(n/k).

The expected number of vertices per cluster, nc, is derived based on the
assumption that clusters partition the graph while keeping distances between
nodes within each cluster at most ∆. The total number of clusters satisfies
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k = O(n/∆), which follows from graph partitioning results of Fakcharoen-
phol et al.’s hierarchical decompositions [54] in low-diameter decompositions.
Substituting k = O(n/∆), into the equation for nc ensures that each cluster
contains at most O(∆) vertices. As established by Abraham et al. [55], in
graphs with bounded edge density and under the assumption that the num-
ber of edges per vertex is proportional to the cluster diameter (as in graphs
with low doubling dimension or spatial locality), the number of edges in each
cluster satisfies:

mc = O(nc∆).

Substituting nc = O(n/k), we get:

mc = O
(n
k
·∆
)
.

Substituting k = O(n/∆), into the equation for mc, we derive:

mc = O(∆2).

This confirms that the intra-cluster edge count scales quadratically with ∆.
For efficient Steiner tree updates, the intra-cluster Steiner tree compu-

tation must be bounded. The Steiner tree update within each cluster follows
Mehlhorn’s 2-approximation algorithm, which runs in O(m + n logn). Since
the number of intra-cluster edges is O(∆2), the time complexity of local
Steiner tree recomputation per cluster becomes:

O(∆2 + ∆ log ∆).

To ensure efficient updates, ∆ must be chosen such that local updates do not
dominate the overall complexity.

The impact of ∆ on the inter-cluster spanner connectivity is also critical.
The spanner construction guarantees that inter-cluster connections preserve
a (1 + ϵ)-approximation. The number of inter-cluster edges in the spanner
is given by O(k). This does not refer to the total number of edges in the
original graph that cross between clusters, which could be as large as O(m),
but rather to the number of edges we selectively include in the inter-cluster
spanner H. Specifically, the spanner construction adds a constant number
of edges between pairs of clusters that contain terminals, ensuring that the
number of such inter-cluster representative edges remains small. This sparsifi-
cation leverages known spanner construction techniques of the Thorup-Zwick
framework [18], which guarantee that the total number of edges in the spanner
is linear in the number of vertices for fixed stretch (1 + ϵ). Since the number
of clusters is k = O(n/∆), and each cluster pair is connected by, at most,
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a constant number of edges, the total number of inter-cluster spanner edges
satisfies:

|E(H)| = O(k) = O(n/∆).

This means that increasing ∆ reduces the number of inter-cluster edges,
improving query efficiency but increasing intra-cluster Steiner tree update
time.

The decremental distance oracle used in our work (Bernstein-Roditty)
supports (1+ϵ)-approximate updates in O(m1/2) time per edge deletion. Since
updates within clusters dominate the number of affected edges, the amortized
cost of updating the distance oracle is:

O(m1/2
c ) = O(∆).

Minimizing ∆ improves the oracle update time but at the cost of increasing
the number of inter-cluster spanner edges.

To balance the local Steiner tree update cost O(∆2) and distance
oracle update time O(∆), the optimal tradeoff is achieved when:

O(∆2) = O(n2/3).

This ensures that neither update operation dominates the total complexity.
Solving for ∆, we obtain:

∆ = O(n1/3).

This choice ensures:

• Efficient intra-cluster Steiner tree updates, with complexity O(n2/3+
n1/3 log n).

• Optimal inter-cluster connectivity, maintaining O(n2/3) spanner
edges.

• Efficient distance oracle updates, running in O(n1/3) time per up-
date.

Thus, setting ∆ = O(n1/3) provides the best balance between intra-cluster
Steiner tree maintenance, inter-cluster connectivity, and distance oracle effi-
ciency. This derivation confirms that ∆ = O(n1/3) is the optimal choice for
balancing update time complexity and ensuring efficient dynamic operations.
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Correctness of the Algorithm The correctness of the algorithm is estab-
lished by showing that the updated Steiner tree spans all terminal vertices
and remains a tree after each type of dynamic update.

Lemma 5.3. After an edge insertion or deletion update, the maintained struc-
ture continues to span all terminal vertices and remains a connected tree.

Proof. For an edge insertion, the hybrid distance oracle is updated to re-
flect the new shortest paths. If the edge improves inter-cluster connectivity,
it is added to the spanner H. The local Steiner trees for affected clusters
are recomputed using the 2-approximation algorithm of Mehlhorn [47], while
inter-cluster connections are updated using H. These steps ensure that all
terminals remain connected and that the resulting structure is a tree.

For an edge deletion, the removed edge is also removed from H if present,
and paths in H that relied on this edge are updated using the hybrid distance
oracle to find alternative shortest paths. As the local Steiner trees are updated
using the algorithm of Mehlhorn [47], and the inter-cluster connections are
updated using H, the structure remains a tree spanning all the terminals.
Hence, the updated Steiner tree spans all terminal vertices and remains a tree
after edge insertion or deletion.

Lemma 5.4. After a vertex insertion or deletion update, the maintained
structure continues to span all terminal vertices and remains a connected tree.

Proof. When a vertex v is inserted into the graph, it is assigned to an existing
cluster. The algorithm scans all neighbors u ∈ N(v) and selects the neighbor
connected by the edge (v, u) of minimum weight. The vertex v is then assigned
to the cluster of u. Once assigned, the Steiner tree within that cluster is
updated. If v is a terminal, the 2-approximate Steiner tree is recomputed
for the cluster using Mehlhorn’s algorithm to ensure all terminals remain
connected. If v is a non-terminal, it is temporarily introduced as a candidate
Steiner node. It is included in the cluster’s Steiner tree only if its presence
reduces the overall cost of the tree; otherwise, it is excluded. In such a case,
an existing path between two terminals is replaced by another path between
them via v. These operations maintain the tree structure and the properties
of a Steiner tree.

In the case of vertex deletion, v is removed from its cluster and from the
Steiner tree if present. If v was a leaf or non-terminal, it is simply pruned. If it
was internal to the tree or a terminal, the Steiner tree is recomputed locally to
ensure connectivity among the remaining terminals. For inter-cluster connec-
tivity, any disruption caused by the removal of v is repaired using approximate
paths computed from the hybrid distance oracle.
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Therefore, in both vertex insertion and deletion cases, the algorithm en-
sures that all terminals remain connected through a tree structure, preserving
both connectivity and acyclicity. Hence, the maintained structure spans all
terminals and remains a valid tree after these updates.

Lemma 5.5. After a terminal conversion update, the maintained structure
continues to span all terminal vertices and remains a connected tree.

Proof. We consider the effect of a terminal conversion update on the main-
tained structure. Let T denote the current Steiner tree, and let v be the vertex
undergoing a change in terminal status.

Case 1: v is converted into a terminal. If v ∈ T , no modification
to T is required. Since T already spans all existing terminals and includes v,
it remains a connected tree spanning the updated terminal set.

If v /∈ T , it is incorporated into the local cluster Steiner tree via a shortest
path in the subgraph G[Ci], where Ci is the cluster containing v. By construc-
tion, the cluster diameter is bounded and the update uses the 2-approximation
algorithm of Mehlhorn [47], preserving the tree structure and approximation
guarantee. The resulting structure within Ci remains connected.

If v also affects inter-cluster connectivity (due to forming part of an
inter-cluster path), the spanner H is updated accordingly. Affected paths are
recomputed and integrated into the global structure, maintaining the span-
ner’s (1 + ϵ)-approximation guarantee and preserving global connectivity.

Case 2: v is converted into a non-terminal. The algorithm exam-
ines the role of v in T . If v is a leaf in the Steiner tree, it is recursively removed
along with its connecting edge, and pruning continues until a non-terminal leaf
is reached. This process maintains connectivity and tree structure, as only
redundant vertices are removed.

If v is an internal node of T , its removal may disconnect the tree. In
this case, the Steiner tree is recomputed over the updated terminal set S′

i =
Si \ {v} within its cluster using the 2-approximation algorithm, preserving
intra-cluster connectivity and approximation bounds. Similarly, any affected
inter-cluster paths involving v are recomputed via the spannerH, and updated
paths are substituted into the global tree.

In both cases, the resulting structure spans all current terminals and
remains connected. Since all insertions and deletions are performed via acyclic
augmentation and pruning, the maintained structure continues to be a tree.

Theorem 5.6 (Correctness of the Algorithm). The proposed algorithm main-
tains a Steiner tree spanning all terminal vertices and preserves the tree struc-
ture after any dynamic update.
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Proof. Follows directly from Lemmas 1–3.

Approximation Factor

Theorem 5.7 (Approximation Factor). The updated Steiner tree maintains
a (2 + ϵ)-approximation after any dynamic update.

Proof. The Steiner tree is composed of two components: (1) the intra-cluster
Steiner trees, which span terminals within each cluster, and (2) the inter-
cluster connections, which connect terminals across clusters via the spanner
H.

Intra-Cluster Approximation: For any cluster Ci, let the set of terminals
in Ci be Si. The Steiner tree within Ci is computed using the 2-approximation
algorithm of Mehlhorn [47], which guarantees that the weight of the local
Steiner tree Ti satisfies:

w(Ti) ≤ 2 ·OPTCi

where OPTCi is the weight of the optimal Steiner tree within Ci.

Inter-Cluster Approximation: The inter-cluster connections are com-
puted using the spanner H, which approximates the shortest paths between
terminals in different clusters. The set of clusters forms a graph Gclusters,
where each cluster Ci is represented as a node and inter-cluster edges repre-
sent the shortest paths between clusters. The optimal inter-cluster Steiner tree
OPTTinter is equivalent to the minimum spanning tree (MST) over Gclusters.
For terminals t ∈ Ci and t′ ∈ Cj (with i ̸= j), the spanner guarantees:

dH(t, t′) ≤ (1 + ϵ) · dG(t, t′)

Therefore, the weight of the inter-cluster connections Tinter satisfies:

w(Tinter) ≤ (1 + ϵ) ·OPTTinter

where OPTTinter is the weight of the MST over Gclusters.

Overall Approximation: The total weight of the Steiner tree T is the sum
of the weights of the intra-cluster Steiner trees and the inter-cluster connec-
tions:

w(T ) =
∑
i

w(Ti) + w(Tinter).
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Using the bounds for w(Ti) and w(Tinter), we have:

w(T ) ≤
∑
i

2 ·OPTCi + (1 + ϵ) ·OPTTinter .

The optimal Steiner tree OPT satisfies:

OPT =
∑
i

OPTCi + OPTTinter .

Dividing w(T ) by OPT, the approximation factor is:

w(T )

OPT
≤
∑

i 2 ·OPTCi + (1 + ϵ) ·OPTTinter∑
i OPTCi + OPTTinter

To simplify, let x =
∑

i OPTCi and y = OPTTinter . Then:

w(T )

OPT
≤ 2x + (1 + ϵ)y

x + y
.

Factorize 2x + (1 + ϵ)y:

2x + (1 + ϵ)y

x + y
=

2(x + y)− y + ϵy

x + y
.

Split the numerator:

2(x + y)− y + ϵy

x + y
= 2− y

x + y
+

ϵy

x + y
.

Combine terms:

2x + (1 + ϵ)y

x + y
= 2− (1− ϵ)y

x + y
= 2− y

x + y
+

ϵy

x + y
.

w(T )

OPT
≤ 2 +

ϵy

x + y
.

Conclusion: The approximation factor is bounded by 2 + ϵ′, where ϵ′ =
ϵy
x+y > 0, since y > 0 (the inter-cluster weight is nonzero in any valid Steiner

tree). Thus, the Steiner tree maintains a (2 + ϵ′)-approximation after any
dynamic update. As ϵ ∈ (0, 1), and y

x+y < 1, we can conclude that ϵ′ = ϵy
x+y ∈

(0, 1).
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Update Time Complexity

Theorem 5.8 (Update Time Complexity). The expected update time com-
plexity for processing any dynamic update is O(m1/2 + n2/3).

Proof. Hybrid Distance Oracle Updates: The hybrid distance oracle is
the core structure for maintaining approximate shortest paths during edge
and vertex updates. For edge deletions, the decremental oracle of Bern-
stein and Roditty [19] processes updates in O(m1/2) amortized time. This
complexity arises because the oracle efficiently restricts updates to a subset
of affected edges and vertices. For edge insertions, the oracle uses a local-
ized Dijkstra-like propagation mechanism, with expected complexity O(m1/2).
This expectation is derived as follows: edge insertions affect only the neigh-
borhoods of the edge’s endpoints, which are proportional to the average vertex
degree d = O(m/n). In a balanced graph (where edges are evenly distributed),
the expected size of the affected subgraph is O(m/n). Over multiple updates,
this results in an amortized O(m1/2) complexity. For vertex deletions and
insertions, updates are localized to the adjacency list of the affected vertex
v, contributing O(d(v)), where d(v) ≤ O(logn) in sparse graphs. Thus, vertex
updates have a complexity of O(logn).

Spanner Updates: The spanner H, maintained as a sparse subgraph with
O(n) edges, ensures efficient updates for edge and vertex modifications. When
an edge is deleted, the paths in H that relied on this edge are updated. The
update process involves identifying the terminal pairs connected by the deleted
edge and recomputing the shortest paths between these pairs using the hybrid
distance oracle. Since the spanner has O(n) edges and is sparse, the traversal
of adjacency lists to locate affected paths is efficient, contributing O(logn)
complexity. Additionally, querying the hybrid distance oracle to recompute
paths adds an O(log n) overhead, making the total cost for handling edge
deletions logarithmic in n.

For edge insertions, the spanner determines whether to incorporate the
newly added edge e into H. This evaluation involves comparing the weight
of e with the shortest paths between clusters that e potentially connects. To
perform this comparison, the hybrid distance oracle is queried to obtain the
current shortest paths between the affected terminals. The sparse structure
of H ensures that only a small subset of edges or paths needs to be evaluated,
and the adjacency list traversal and oracle queries together contribute O(log n)
complexity for edge insertions.

When a new vertex v is inserted into the graph, it may introduce new
inter-cluster edges. The spanner H incorporates these edges if they improve
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inter-cluster connectivity. This requires identifying the clusters affected by the
addition of v and querying the hybrid distance oracle to determine whether the
newly introduced edges reduce terminal-to-terminal distances. The sparsity
of H ensures that the number of affected edges and terminal pairs is limited,
resulting in O(log n) complexity for vertex insertions.

The logarithmic complexity of spanner updates arises from two primary
factors. First, the sparsity of H ensures that updates involve only a small
subset of the total edges or paths, limiting the scope of operations. Second,
the hybrid distance oracle efficiently handles approximate shortest paths, con-
tributing a logarithmic cost for each query. Together, these factors ensure that
spanner updates remain efficient and scale logarithmically with the size of the
graph.

Steiner Tree Updates: The Steiner tree is updated locally within clusters
and globally across clusters. For intra-cluster updates, the Steiner tree
is recomputed using Mehlhorn’s 2 approximation algorithm [47]. Mehlhorn’s
algorithm has a time complexity of O(mCi + nCi log nCi), where mCi and nCi

refer to the edges and vertices of a cluster Ci. Since low-diameter decompo-
sition ensures small cluster sizes, this complexity is efficient in practice. As
shown in the analysis of the optimal choice of ∆ in clustering, mCi = O(∆2),
nCi = O(∆), and ∆ = O(n1/3). Hence, the update time complexity for up-
dating the intra-cluster Steiner trees is O(n2/3 + n1/3 log n) = O(n2/3).

For inter-cluster updates, new paths are constructed using the spanner
H. Approximate shortest paths are queried from H, contributing O(log n)
complexity for each query. The sparsity of H ensures that the total cost of
inter-cluster updates is manageable.

Combined Analysis: The total complexity for processing a single update
combines the contributions from hybrid distance oracle updates, spanner up-
dates, and the Steiner tree updates. Hybrid distance oracle updates dominate
with O(m1/2) complexity for edge modifications, while vertex updates con-
tribute O(log n). Spanner updates are bounded by O(logn) due to sparsity,
and intra-cluster Steiner tree updates using Mehlhorn’s algorithm are bounded
by O(n2/3). Combining these contributions, the overall expected time com-
plexity for processing any dynamic update is:

O(m1/2 + n2/3).
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5.3 Summary

The existing algorithms for the dynamic Steiner tree problem consider updates
in the terminal set, which consists of declaring a terminal as non-terminal
or vice versa. These kinds of updates do not change the topology of the
graph. It is more challenging to maintain an approximate Steiner tree under
topology changes. The algorithms we proposed in Chapter 3 and 4 maintain
approximate Steiner trees for edge insertion and edge deletion updates in the
graph. The algorithms proposed in this work are the first of their kind, as they
handle multiple kinds of updates altogether, and hence, we can not directly
compare them with existing results in the dynamic Steiner tree problem.

The presented algorithm maintains a (|S|−1)−approximate Steiner tree
in Õ((δp logU)/ϵ + |S| ·

√
n + n) update time for dynamic planar graphs.

The proposed algorithm supports six types of updates: insertion and deletion
of edges in the graph, insertion and deletion of vertices in the graph, and
conversion of terminals to non-terminals and vice versa. We also proved that
any spanning tree of the complete distance graph on the terminal set S gives
a (|S| − 1)-approximate Steiner tree on the terminal set S. The update time
of the proposed algorithm becomes linear in n in a case where |S| = o(

√
n).

We propose a fully dynamic algorithm for approximate Steiner trees in
general graphs handling the above mentioned six types of updates. We aug-
mented a decremental distance oracle to make it fully dynamic. By combin-
ing dynamic clustering, spanners, and hybrid distance oracles, the algorithm
achieves a tunable approximation factor of 2 + ϵ′ in an efficient update time
of O(m1/2 + n2/3). This is a significant improvement over our previous algo-
rithms as it offers a wide range of update operations and better update time
and approximation factor.

The dynamic Steiner tree problem has not gotten much attention in
general dynamic graphs. The existing algorithms focus on updates in the
terminal set. We wish to extend the algorithm proposed in Section 5.1 to
maintain an approximate Steiner tree with a better approximation factor or
better time complexity for general graphs. To maintain the approximate MST
of the graph, any other algorithm with better update time can be used. The
presented algorithm works on planar graphs because of the distance oracle
used. The algorithm can be extended to general graphs by using or designing
a dynamic distance oracle that works efficiently in general graphs. It is an
interesting direction to improve the update time complexity of the algorithm
given in Section 5.2 by playing with the size of clusters and techniques to
maintain the clusters and spanners.

00656//

123





6
Conclusions and Future Work

6.1 Conclusions

In this thesis, we propose several algorithms for maintaining an approximate
Steiner tree under various dynamic graph models.

In the first contribution, we present a fully dynamic algorithm to main-
tain a (2 + ϵ)-approximate Steiner tree in planar graphs. The worst case
update time complexity of the presented algorithm is Õ(|S|2

√
n + |S|D + n).

The Steiner tree is updated after a sequence U of updates where 1 ≤ |U | ≤√
n + m. Hence, for k number of updates, the average update time of the

algorithm is Õ(|S|2
√
n + |S|D + n)/k where 1 ≤ k ≤

√
n + m. The proposed

algorithm works nicely in dynamic scenarios with edge updates. Its update
time scales more favorably, particularly with a moderate number of terminals
(|S|). The update time complexity of the proposed algorithm becomes more
favorable when the number of terminals |S| and the unweighted diameter D
are both logarithmic in the number of vertices (O(logn)). In this case, the
worst-case update time reduces to O(n0.5+ϵ′′(ϵ′)−2) + O(n). This is a signifi-
cant improvement compared to the previously proposed PTAS by Borradaile
et al. [30]. Their approach has a time complexity of O(2poly(1/ϵ)n + n log n);
moreover, it is not a dynamic algorithm.

In the second contribution, we proposed an incremental algorithm that
offers an efficient solution for maintaining a (2−ϵ)-approximate Steiner tree in
general weighted graphs that undergo edge insertions. The algorithm achieves
this by utilizing a shortest path forest and efficiently processing each update
in the worst case scenario with an update time complexity of O(nDs). This
significantly outperforms the approach by Kou et al. [14], which requires
recomputing the entire (2− ϵ)-approximate Steiner tree from scratch for each
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update.
In the third contribution, we demonstrate a lower bound of Ω(n) on the

update time for maintaining an MST heuristic based (2 − ϵ′)-approximate
Steiner tree in general dynamic graphs under both edge insertion and edge
deletion updates.

In the fourth contribution, we present a decremental Steiner tree algo-
rithm that maintains a (2+ ϵ)-approximate Steiner tree with edge deletions in
weighted planar graphs in Õ(ℓ

√
n) worst case update time. This is significantly

better than computing a (2−ϵ′)-approximate Steiner tree from scratch as given
by Kou et al.(requires O(|S|n2) time) and Wu et al.(requires O(m log n) time).
Assuming only deletion updates, this algorithm is also better than our fully
dynamic algorithm presented in Chapter 3 (the first contribution) in terms of
the update time.

Chapter 5 contains the fifth contribution where we present a fully dy-
namic algorithm for maintaining a (|S|−1)-approximate Steiner tree in planar
dynamic graphs with a worst case update time of Õ((δp logU)/ϵ+|S|·

√
n+n).

Notably, this algorithm supports a comprehensive set of six update operations:
insertion and deletion of edges, insertion and deletion of vertices, and conver-
sion of nodes from terminal to non-terminal and vice versa. These types of
updates significantly alter the structure of the graph, making the problem
substantially more challenging than terminal-only updates as considered by
Lacki et al. [8] and Imase et al. [7]. Our proposal is the first to address
this full spectrum of dynamic operations. Furthermore, we prove that any
spanning tree of the complete distance graph on the terminal set S yields a
(|S|−1)-approximate Steiner tree. The update time of our algorithm becomes
linear in n under the restriction |S| = o(

√
n), making it attractive for graphs

with a small number of terminals.
Finally, in the last contribution, we present a fully dynamic algorithm

maintaining a (2 + ϵ′)-approximate Steiner tree in general graphs that can
manage the six kinds of updates as mentioned earlier. This result is an im-
provement over the previous algorithm in terms of approximation factor and
the graph model. This requires incorporating a carefully augmented decre-
mental distance oracle into a fully dynamic framework. The proposed ap-
proach combines various techniques like clustering, spanner construction, and
hybrid distance oracle to achieve a tunable approximation guarantee (in terms
of ϵ′) and an update time of O(m1/2 + n2/3). This result marks a substan-
tial leap forward in the design of dynamic approximation algorithms for the
Steiner tree problem, especially considering the generality of the graph class,
the number and types of update operations supported, and the low update
time complexity.
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6.2. Future Work

Byrka et al. [5] present an algorithm that computes a 1.39-approximate
Steiner tree using LP based primal-dual approach. We did not find any result
mentioning hardness to maintain a better than 2 + ϵ or 2− ϵ approximation.
However, we found it difficult to build a dynamic algorithm based on the
complex LP techniques used by Byrka. Further, the time complexity of their
algorithm is O(n5), which makes it difficult to use it in designing efficient
dynamic algorithms.

6.2 Future Work

An exciting and challenging direction for future research lies in further im-
proving the update time complexity of our fully dynamic algorithm for the
Steiner tree problem in planar graphs handling edge insertions and deletions
(Chapter 3). Given the inherent structural complexity of dynamically main-
taining near-optimal connectivity under arbitrary updates, any advancement
in this area would represent a significant theoretical breakthrough and con-
tribute greatly to the broader landscape of dynamic graph algorithms.

It is also an interesting direction to improve the update time complexity
of the algorithm given in Section 5.2 by playing with the size of clusters and
techniques to maintain the clusters and spanners.

While this thesis has addressed several challenges in the dynamic main-
tenance of approximate Steiner trees, particularly in centralized settings, the
problem remains largely unexplored in distributed computing models, where
information and updates are scattered across nodes in a network. In dynamic
distributed environments, such as sensor networks, ad-hoc systems, and data
center routing, nodes must coordinate locally to adapt to frequent edge in-
sertions and deletions without centralized control. To date, there exists no
efficient distributed dynamic algorithm for maintaining a constant ap-
proximation of Steiner trees under a distributed setting.

Future work can explore the design of distributed fully dynamic algo-
rithms that maintain low-cost Steiner trees having a constant approxima-
tion factor while preserving locality, scalability, and low communication
overhead. Interesting directions include developing algorithms in the CON-
GEST or LOCAL models, analyzing trade-offs between update time, approx-
imation quality, and message complexity, and extending techniques like clus-
tering, spanners, or local reconstructions to distributed settings. Addressing
these challenges could significantly impact applications in resilient communi-
cation, network optimization, and distributed infrastructure planning, where
dynamic connectivity must be preserved with minimal global coordination.

The Prize-Collecting Steiner Tree (PCST) problem has been extensively
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6. Conclusions and Future Work

studied in a static setting, leading to several elegant approximation algorithms
with provable guarantees. However designing a PCST algorithm for dynamic
environments where the underlying graph, prizes, and penalties may change
over time due to edge insertions or deletions remains a challenge. Currently
there exists no dynamic algorithm that efficiently maintains a good approxi-
mation of PCST under such updates. Future work may explore the adaptation
of our dynamic Steiner tree techniques and primal-dual frameworks, dynamic
spanner constructions, or incremental LP-based techniques to this setting.
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