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Abstract

Many ML algorithms have common redundancies that make them impractical for large

datasets. The overarching goal of this thesis is to prune the redundant computations

with minimal loss in the quality of the downstream tasks. This dissertation focuses on

three unsupervised machine-learning tasks: clustering, anomaly detection, and model

update. We utilize the Isolation Forest data structure as a tool to improve efficiency

for all three tasks. This data structure was initially developed to perform anomaly

detection task in an unsupervised manner.

Specifically, we focus on the following three scenarios: 1. When an application needs

all-pair distances: How to compute all-pair distances faster by optimizing the order of

distance computation? 2. When an application needs only a subset of all-pair distances:

How do we quickly identify the required subset of all pairs? 3. When new data causes

concept drift: How to update the model quickly?

For the first scenario, we develop an algorithm: fast MBD (fMBD) that computes all-

pair distances with up to 5X speed-up. Our fMBD algorithm has no approximation or

heuristic, and it computes the exact distance for each data point pair. We demonstrate

the effectiveness of the fMBD algorithm with clustering and anomaly detection applica-

tions. For the second scenario, we develop a scalable MBScan (sMBScan) clustering

algorithm that selectively computes distances between data point pairs. Our algorithm

achieves up to 53X speed up with up to 96% reduction in the memory footprint and

no loss in the clustering quality. For the third scenario, we develop an incremental

Isolation Forest (I2Forest) that quickly updates the Isolation Forest data structure in

response to the arrival of new data. I2Forest is particularly effective when the new data

causes concept drift. I2Forest has significantly lower training time than retraining the

model from scratch. I2Forest also performs better than other incremental approaches

for model update.
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1
Introduction

1.1 Overview

This dissertation presents efficient algorithms for mass-based clustering [1], anomaly

detection [2], and model update in response to new data [3]. Our primary research con-

tribution is to effectively identify and avoid redundant computation without impacting

the quality of output. All our methods utilize Isolation Forest (iForest) [4] as the

underlying data structure and tool to enhance efficiency.

Machine learning algorithms are used across various real-world applications, in-

cluding healthcare, finance, marketing, manufacturing, transportation, cybersecurity,

agriculture, retail, education, entertainment, and smart cities. However, efficiently scal-

ing these algorithms for large-scale data presents a significant challenge. Additionally,

the emergence of new data can introduce concept drift, causing model performance to

degrade and necessitating frequent retraining. Redundant computation can be iden-

tified and minimized to enhance efficiency while maintaining the effectiveness of the

algorithms [5],[6],[7]. Researchers have long focused on bridging the gap between effec-

tiveness and efficiency through various approaches. Techniques such as model simpli-

fication, computational optimization, and computational parallelization [5] have been

widely adopted for the efficiency of machine learning algorithms in handling large-scale

1



1.2. PROBLEM DEFINITION

and dynamic data. These solutions have been applied across numerous tasks, including

classification [8],[9],[10] clustering [11],[12], anomaly detection, and incremental model

updates to manage concept drift [13].

1.2 Problem Definition

Isolation Forest Based Algorithms

Anomaly Detection Mass-Based Clustering Model Update

Contribution1:

1.Fast way to compute all-

pair distances. c

2.We compute exact

distances without

approximation or error.

3.Improved efficiency of

clustering and anomaly

detection tasks without

any impact on quality.

• Time saving

• No loss in quality

Contribution3:

1.Quickly update the

structure of isolation

forest to adapt to

changes in new data.

2. Evaluated the updated

model for anomaly

detection task.

• Time saving

• Negligible loss of 

quality

Contribution2:

1.Identify the important

pairs for mass-based

clustering, out of all
n
2

pairs in a dataset.

2.Speeds up individual

distance computation.

• Time saving

• Memory saving

• No loss in quality

Challenge: All-pairwise 

distance computation

Challenge: All-pairwise distance 

computation

Challenge: Underlying data 

pattern changes

Figure 1.1: An Overview of thesis contributions.

Redundancies in ML algorithms make them impractical for large-scale datasets. Pruning

these redundant computations with minimal loss in the quality of the downstream tasks

improves the computational efficiency of the task. This dissertation focuses on three

unsupervised machine-learning tasks: clustering [14], [15], anomaly detection [2], and

model update, refer to figure 1.1 for details. These algorithms have Isolation Forest

working at the core of these tasks. All the thesis contributions optimizations focus on

the Isolation Forest (iForest) structure. In particular, the work focuses on the following

three scenarios.

1. When an application needs all-pair distances: How to compute all-pair distances

2



1. INTRODUCTION

faster by optimizing the order of distance computation?

2. When an application needs only a subset of all-pair distances: How to identify the

required subset of all pairs?

3. When new data causes concept drift: How to quickly update the model?

We focus on the redundancies in Mass-Based Distance (MBD) computations using Isola-

tion forest [4]. MBD is used for downstream tasks of Mass-based clustering and nearest

neighbor-based anomaly detection [1]. Model performance degrades when new data

causes concept drift. We also explore how to update the model efficiently to deal with

this concept drift. Please refer to the summary of the best existing solutions and their

bottleneck in table 1.1.

Problem Best Existing Solution BottleNeck

ML application needs Naive all-pair Pair-major order MBD
all-pair MBD MBD [1] computation computation requires 2 passes

using Isolation Forest over iTree for each pair.

ML applications needs Naive all-pair Compute
a subset of all-pairs MBD [1] computation Unnecessary MBD.
MBD using Isolation Forest

ML applications require Incremental Algorithms Make coarse grained
model updates. using iForest [16], [17], [18], [19] updates using new data.

Table 1.1: Summary of existing approaches and their bottlenecks.

1.3 Research Contributions

In this dissertation, we make three contributions to improve the efficiency of Isolation

Forest-based unsupervised ML algorithms. Please refer to Table 1.2 for a summary of

our solutions to the bottlenecks mentioned in Table 1.1

1.3.1 Contribution 1: Fast Computation of All-Pair Mass-based Dis-

tances (fMBD)

Our first contribution focuses on a specific data-dependent distance measure: Mass-

Based Distance (MBD). MBD computation is based on a well-known data structure,

3



1.3. RESEARCH CONTRIBUTIONS

Problem Our solution Downstream Results
[PUBLISHED AT] Task

ML Application fMBD [UNDER REVIEW]: Clustering
needs Tree-major order of & Upto 5X speedup.
all-pair MBD MBD computation requires Anomaly No loss in quality.

a single pass over each iTree Detection
for all pairs.

ML Application sMBSCAN [CIKM 2022]: Upto 53X speedup.
needs a subset of 1. Identify important pairs Clustering Upto 22X memory
all pairs MBD 2. Speed up each saving.

MBD computation No loss in quality.

ML Applications I2Forest [CoDS-COMAD24]: Anomaly Upto 85X speedup.
require Make fine grained Detection Minimal loss
model updates. updates to the model. in quality.

Table 1.2: Summary of thesis contributions.

Isolation Forest. We observe that clustering and anomaly detection methods that use

MBD require all-pair distance computation. This distance computation accounts for

more than 93% of the running time. We develop a method fast MBD (fMBD) to

speed up all-pair MBD computations. Our method computes the same MBD without

any error or approximation. We have performed experiments using popular real-world

datasets (12 for clustering and 5 for anomaly detection). With fMBD, we achieve a

speedup of 2X to 5X without any loss of performance over both tasks.

1.3.2 Contribution 2: Scaling Up Mass-Based Clustering (sMBScan)

Our second contribution addresses the problem of scaling up the mass-based clustering

paradigm to handle large datasets. The existing algorithm MBScan computes and stores

all pairwise distances, resulting in quadratic time and space complexity. However, we

observe that mass-based clustering requires information about only a tiny fraction of

all possible data point pairs. We propose three optimizations to MBScan for quickly

finding such pairs and computing their distances. We empirically evaluate our work on

ten real-world and synthetic datasets. Our experiments show that our approach results

in fast and memory-efficient clustering with no loss in the quality of clusters.

4



1. INTRODUCTION

1.3.3 Contribution 3: Incremental Isolation Forest (I2Forest)

Our third contribution addresses the problem of updating Isolation Forest in response

to new data. The update becomes even more critical when the new data causes con-

cept drift. A lazy solution is to keep using the old model. However, it will result in

inferior performance. An aggressive solution is to rebuild the model from scratch. This

solution will improve the model performance at the cost of time spent in retraining the

model. We design an incremental solution that quickly updates the existing model to

match the performance of the aggressive solution. We have chosen anomaly detection

as the downstream task to evaluate the quality of the updated model. Our incremental

approach results in a minimal loss in the model’s performance for the downstream task

while significantly reducing the running time.

1.4 Outline of the Thesis

The thesis comprises six chapters. The Isolation Forest and related work is described

in Chapter 2. We also survey the domain-specific applications and variants of Isolation

Forest in the same chapter. The following three chapters describe each of our research

contributions: fMBD (Chapter 3), sMBSCAN (Chapter 4), and I2Forest (Chapter

5). In Chapter 6, we conclude the thesis and discuss possible future work.

;;=8=<<
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2
Background and Literature Study

This chapter starts with a brief summary of existing clustering and anomaly detection

algorithms. Later it presents details of the Isolation Forest necessary to understand the

thesis contributions. Isolation Forest (iForest) is a randomized full binary tree-based

data structure introduced by Liu et al. in 2008 for anomaly detection [4]. iForest

is an ensemble of full binary trees known as Isolation Trees (iTree) because they can

isolate anomalies from the rest of the data. The underlying idea of iForest is to isolate

anomalies by recursively partitioning data points. Anomalies being “few and different”

tend to isolate in lesser splits than the normal data points. Isolation forest utilizes the

concepts of sub-sampling and randomization and provides a near-linear time complexity

and a small memory footprint requirement.

2.1 Clustering and Anomaly Detection Literature

This section summarizes the existing literature in the domain of clustering and anomaly

detection algorithms. This brief summary helps to understand the domain of clustering

and anomaly detection and will lay a foundation for the efficient algorithms focused on

Mass(or density) based clustering and Isolation forest-based anomaly detection.

7



2.1. CLUSTERING AND ANOMALY DETECTION LITERATURE

2.1.1 Clustering Algorithms

Clustering algorithms can be broadly categorized into several paradigms based on their

approach to grouping data. Partitioning-based methods like k-Means [20] divide data

into a fixed number of clusters by optimizing a similarity criterion, whereas hierarchical

clustering [21] builds a tree-like structure without requiring a predefined number of clus-

ters. Density-based techniques, such as DBSCAN [15], detect clusters based on dense

regions and are effective in handling noise and arbitrary shapes. MBSCAN [1], which

introduces mass-based distances, is a mass-based clustering algorithm that extends DB-

SCAN by handling multiple density levels within the same dataset. It dynamically

adjusts the neighborhood radius to detect clusters of varying densities while effectively

identifying noise points. Grid-based clustering, exemplified by CLIQUE [21], partitions

the data space into grid cells, making it efficient for large and high-dimensional datasets.

Model-based approaches, like Gaussian Mixture Models [22], assume an underlying prob-

ability distribution and optimize parameters to fit the data. Spectral clustering [23] uti-

lizes graph-based techniques to find complex cluster structures, often performing well

on non-linearly separable data. For high-dimensional data, subspace clustering methods

such as PROCLUS [24] identify clusters within relevant feature subsets. Recently, deep

learning-based clustering has emerged, leveraging neural networks for feature learning

and clustering large-scale, high-dimensional data [25]. Each paradigm has strengths and

limitations, making it suitable for varying requirements.

2.1.2 Anomaly Detection Algorithms

Anomaly detection algorithms can be broadly categorized into several paradigms based

on their underlying approach to identifying deviations from normal patterns. Statistical

methods [26] assume a probabilistic distribution of normal data and detect anomalies as

low-probability instances, with techniques such as Gaussian models and hypothesis test-

ing. Distance-based methods [27] identify anomalies by measuring their distance from

other points, with k-Nearest Neighbors (k-NN) and DBSCAN being common choices.

Density-based approaches, such as Local Outlier Factor (LOF) [28], estimate local data

8



2. BACKGROUND AND LITERATURE STUDY

density and flag points in sparse regions as anomalies. Clustering-based techniques [29]

utilize clustering algorithms like k-Means and DBSCAN, where anomalies are iden-

tified as points that do not belong to any dense cluster or are far from cluster cen-

troids. Classification-based approaches, including One-Class SVM [30] train models

to distinguish normal from anomalous instances using labels. Isolation Forest [4], a

model-based approach that learns the anomaly structure without using labels, unlike

other approaches that learn the structure of normal datapoints. Reconstruction-based

methods, particularly autoencoders [31] and PCA [32], rely on the idea that anomalies

have higher reconstruction errors when mapped back from a lower-dimensional space.

Graph-based approaches [33] detect anomalies in networked data by analyzing structural

irregularities. Finally, deep learning-based techniques, such as LSTMs for time-series

data [34] and self-supervised learning [35], leverage neural networks to model complex

data distributions and detect outliers. The choice of technique depends on data char-

acteristics, interpretability needs, and computational constraints.

2.2 Isolation Forest Construction

iForest is an ensemble of iT rees. Each iT ree is a proper binary tree. iForest requires

two input parameters: the number of iT rees (K) and the sub-sample size (|S|). iForest

has linear time complexity and thus scales well for large datasets. For a given input

dataset Di at timestamp Ti, to build an iForest Fi consisting of K iTrees, each iT ree

is built independently. For each iT ree, a random sample of size |S| is selected from Di.

The maximum height of the iT ree is restricted to ⌈log2(|S|)⌉.

Please refer to Figure 2.1. The iT ree creation starts with the root node. Initially, all

the sampled data points belong to the root node. The root node is partitioned into

left and right children. The splitting criteria for the root node consist of two parts:

attribute and value. The attribute for splitting is chosen randomly out of all attributes.

Let the selected attribute for splitting be A. Amongst all the data points belonging to

the root node, let Amax and Amin be the maximum and minimum values observed for

the attribute A. The value for splitting is chosen randomly between Amax and Amin.

9
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This splitting procedure is carried out recursively till we reach the maximum height of

⌈log2(|S|)⌉ or the node contains only a single data point. The generated tree structure

and each split criteria are used as the iT ree.

After the tree construction, the whole dataset Di is inserted into the tree. Each data

point is moved to the appropriate leaf node in the tree. Please note that during this

phase, the structure of the tree is not altered. A data point belongs to each node on the

path from its leaf node to the root node. The mass of any node in the tree is the number

of data points that belong to the node. For example, in any Isolation Tree, the mass of

the root node is always n as the whole dataset D belongs to the root node. Isolation

Forest was initially designed for anomaly detection task. Each node of the iT ree is

associated with a hyperrectangle in the feature space. Typically, anomalies belong to

the shallow leaf nodes of iT ree. Hyperrectangles corresponding to shallow leaf nodes

are considered as anomalous regions. Rest all regions are considered as normal.

2.3 Isolation Forest: A tool for pattern identification

Isolation Forest performs recursive random partitioning of a dataset and arranges the

whole dataset such that similar points fall in one partition and otherwise in different

partitions. In other words, an isolation forest creates imperfect random groups of points

in the datasets. Application of isolation forest to downstream tasks like anomaly de-

tection, density estimation, and (dis)similarity computation shows that these partitions

provide insights into the data patterns and become an efficient tool for unsupervised

machine learning.

2.3.1 Anomaly Score Computation

Isolation Forest was originally designed for anomaly detection. Liu et al., in the original

isolation forest paper [4], call it a model-based anomaly detection method that isolates

the anomalies in the shallow leaf nodes of the tree. The authors define an anomaly

score to quantify the isolation measure of each point. The anomaly score is normalized

between zero and one. The anomaly score of a point is a function of path length from

10
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the root of the iTree to the associated leaf of the point. Please refer to Algorithm 3

in [4] for details about how to compute the anomaly score. Anomalous points have high

anomaly scores close to one, and normal points have low anomaly scores close to zero.

A threshold is decided using domain knowledge about the dataset to classify the data

points. Any point x with an anomaly score higher than the threshold is predicted as an

anomaly. The ideal threshold suggested is 0.5, though it varies significantly for different

datasets.

2.3.2 Data Dependent Distance Computation

Later, Ting et al. in 2016 utilized isolation forest for data-dependent distance computa-

tion [1]. The distance is called Mass-Based Distance (MBD) and changes with a change

in the probability mass of the region. MBD and other data-dependent distance mea-

sures are closer to the human notion of similarity [36] between two objects. Mass-Based

Distance computation using isolation forest requires inserting complete dataset D in

each iTree to prepare for distance computation. The total number of points that pass

through to a node is known as the size or mass of the node. For a dataset D, consider

an Isolation Forest F consisting of K Isolation Trees T1, T2...TK . For a data point pair

consisting of data points x and y, the MBD is calculated as defined in equation 2.1,

MBD(x, y) =
1

K

K∑
i=1

MBDi(x, y) (2.1)

MBDi(x, y) = Massi(LCA(Leafi(x), Leafi(y))) (2.2)

where MBDi(x, y) is the mass-based distance computed using only one Isolation Tree

Ti, Leafi(x) returns the id of the leaf node that data point x belongs to in the Isolation

Tree Ti, LCA(Node1, Node2) returns the id of lowest common ancestor of nodes Node

and Node2, and Massi(node) returns the mass of node in Isolation Tree Ti.
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2.4 Domain Specific Applications of Isolation Forest

Isolation Forest, known for its simplicity and effectiveness, has many applications across

diverse domains. Its capability of isolating few and different data points in datasets

makes it particularly useful in various scenarios. For instance, Isolation Forest is em-

ployed in Network Monitoring and Network Security systems to identify unusual traffic

patterns that may indicate network attacks or cybersecurity threats. Similarly, it mon-

itors and detects rare activities in Smart Homes or Industrial Internet of Things (IIoT)

applications and identifies compromised activities in smart grid and blockchain-based

intelligent systems. Isolation Forest has been extensively explored in the biomedical field

to detect rare diseases or anomalies in medical data. Its efficacy extends to the finance

and banking sectors, where it has been effectively utilized to detect fraudulent transac-

tions. Modern agricultural practices also benefit from Isolation Forest through disease

detection and monitoring. Additionally, it finds application in a wide spectrum of engi-

neering and manufacturing industries, including physics processes, semiconductor man-

ufacturing, wind energy harvesting, power generation plants, and marine engineering

processes, for monitoring equipment health and predicting failures by detecting unusual

environmental conditions. Furthermore, in the retail and e-commerce sectors, Isolation

Forest is employed to observe customer behaviors and monitor sales patterns, thereby

detecting unusual patterns that can benefit businesses. Intelligent transportation sys-

tems utilize Isolation Forest to detect traffic scene anomalies and identify anomalous

trajectories.

Moreover, Isolation Forest has been explored as a sub-component in combination

with neural network components for various NLP and vision applications related to

anomaly detection. Beyond these applications, Isolation Forest is also used for mon-

itoring computing servers and applications to detect unusual activity or performance

issues. Overall, the versatility and robustness of Isolation Forest make it a valuable tool

in numerous fields, demonstrating its extensive applicability and impact.
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2.4.1 Network Monitoring and Security

Network monitoring and security aspects have been extensively researched using Isola-

tion Forest. Specifically, intrusion detection has been addressed with data from various

network layers. For example, a study by Karev et al. [37] utilizes HTTP log data to

detect novel threats using Isolation Forest. Nadler et al. [38], and Ahmed et al. [39] in

different research employ Isolation Forest to analyze DNS logs, identifying DNS tunnel-

ing and low throughput data exfiltration malware and subsequently denying requests

to malicious domains. Another study by Siddiqui et al. [40] focuses on detecting cyber

attacks and generating explanations with human involvement.

Furthermore, researchers in [41],[42],[43],[44] have explored the application of Iso-

lation Forest for insider threat detection. In the context of cloud computing, Calheiros

et al. [45] addresses cloud monitoring and anomaly detection in cloud data centers.

Research by Vartouni et al. [46] also leverages Isolation Forest to detect various web

attacks by analyzing features extracted from HTTP traffic using autoencoder-based net-

works. Moreover, Ren et al. investigated isolation forest for data sampling by removing

outliers and subsequently performing hybrid data optimization for machine learning ap-

plications [47]. All the mentioned research highlights the versatility of Isolation Forest

in enhancing network security and monitoring across different contexts.

2.4.2 IoT Applications

The Internet of Things (IoT) and edge devices have increasingly utilized Isolation For-

est across various applications. In smart home environments, Isolation Forest analyzes

pyroelectric infrared sensor data for detecting abnormal activities and novelties [48],

[49]. Additionally, it is employed for security monitoring [50]. In industrial IoT con-

texts, Isolation Forest has been explored for attack detection within industrial control

frameworks [51], predictive maintenance of sensors [52], and noise reduction from sensor

data [53]. Furthermore, Isolation Forest has been applied to detect botnets in IoT and

edge devices using a one-class classification approach by Bezerra et al. [54]. Researchers

have also utilized Isolation Forest to analyze Twitter bot networks for detecting bot
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behaviors [55] and for anomaly detection in smart audio sensors deployed in IoT edge

devices [56]. Another application of isolation forest in combination with PCA to detect

data integrity assault in smart grid communication networks was explored by Ahmed

et al. in 2019 [57]. These are a few examples of Isolation Forest enhancing security and

monitoring capabilities in IoT and edge computing environments.

2.4.3 Blockchain Security

Researchers have explored security and threat detection in Blockchain networks utilizing

Isolation Forest. For instance, Podgorelec et al., in their study [58], explored automated

signing and anomaly detection in blockchain transactions within the context of the

Ethereum public network. Maskey et al. [59] implement Isolation Forest for outlier

detection in a blockchain-based intelligent transportation system, ensuring security and

data integrity in smart cities.

2.4.4 Medicine and Bioinformatics

Isolation Forest has been utilized extensively by researchers in the biomedical field for

various applications. For instance, it has been employed to observe rare or anomalous

patterns to identify specific discrepancies in genome sequence datasets [60],[61]. It

has also been used to classify chest X-ray images for identifying COVID-19 cases [62]

and as a defense strategy against backdoor attacks in federated GAN networks for

medical images [63]. Additionally, Isolation Forest has been applied to detect Medicare

fraud [64]. These examples highlight the diverse applications of Isolation Forest in this

important domain.

2.4.5 Finance and Banking

Isolation Forest has been utilized in various applications within the financial technol-

ogy sector. For instance, it has been employed to generate user suspicion rankings for

detecting fraudulent activities in fund movements and Ripple network transactions in-

volving digital cryptocurrency [65]. In the fintech industry, isolation forest serves as an
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unsupervised anomaly detection approach in real-time transaction fraud detection sys-

tems [66]. Furthermore, in credit card fraud detection, isolation forest combined with

supervised machine learning techniques has proven effective in addressing this crucial

issue [67].

2.4.6 Agriculture

Isolation Forest has been explored for various agricultural applications. For instance,

Deng et al. [68] employed Isolation Forest to detect diseases in citrus orchards using

high-dimensional data captured by a UAV monitoring system. A study by Cejrowski

et al. [69] utilized Isolation Forest with contrastive autoencoders to identify hazardous

situations in honey-bee colonies. Additionally, Kansara et al. [70] demonstrated that

Isolation Forest was the most effective outlier detection algorithm for data cleaning in

the Indian Ayurvedic plant organ image dataset.

2.4.7 Engineering Applications

Isolation Forest has been widely explored in different engineering applications. In

physics research, it is employed to identify new physics events and anomalies at Large

Hadron Colliders [71],[72],[73]. In power engineering, isolation forest methods have been

utilized to segregate multi-source particle discharge signals in power equipment [74], de-

tect early-stage malfunctions in combined cycle power plants [75], and enhance deep

learning approaches for wind power prediction systems[76]. Monitoring and predicting

faulty conditions in marine machinery systems have also benefited from isolation forest

techniques [77]. Isolation forest algorithm has been applied to preprocess noisy data for

generating wind power curves by Wang et al. [78] to achieve effective anomaly detection

and fault discrimination in wind turbine gearboxes by Du et al. [79]. It detects anomalies

in optical emission spectroscopy data from semiconductor manufacturing processes [80],

thereby improving interpretability in high-dimensional datasets [81]. In the domain of

automated power consumption systems, isolation forest has been employed for outlier

removal before electricity price prediction [82] and for detecting anomalies in household

power consumption trends [83].
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2.4.8 Miscellaneous

Isolation forest has been applied across various domains beyond the scenarios mentioned

above. For instance, it detects fake reviews based on temporal patterns in product re-

view records on e-commerce platforms [84]. Anomalous user behavior over enterprise

datasets is also identified using isolation forest techniques . Furthermore, it has proven

effective in detecting disorientation in GPS trajectories of elderly individuals with cog-

nitive disorders [85]. In transportation systems, isolation forest is utilized to identify

abnormal events in intelligent driver assistance systems [86]. Additionally, it is studied

for anomaly detection in High-Performance Computing (HPC) systems, highlighting its

versatility and efficacy across various fields [87]. Sarria et al. [88] present a remote

sensing application of isolation forest for evaluating class separability for land cover

classification approaches.

2.5 Variants of Isolation Forest for Anomaly Detection

The original Isolation Forest algorithm has multiple components that introduce ran-

domization. It performs random sampling to choose a sample from the data. It also

randomly chooses the splitting attribute followed by a random choice of splitting value.

This randomization makes it resource-efficient. Researchers have explored different

directions to improve the effectiveness of Isolation Forest and make changes to this

randomized mechanism or modify the anomaly score computation.

Literature has variants of Isolation Forest where the splitting criterion of a node is

modified by adopting different concepts. Hariri et al. [89] have replaced the random

axis-parallel splits with random non-axis parallel splits that include more than one

attribute in the splitting decision. Another Isolation Forest variant by Liu et al. [90]

optimizes the non-axis parallel splits and proves to be effective for both scattered and

clustered anomalies. Tokovarov et al. [91] presented a probabilistic choice of split criteria

to generalize the random split criteria of Isolation Forest. Their Isolation Forest variant

reduces the possibility of poor-quality isolation trees in the ensemble.

Another set of Isolation Forest variants choose the split criteria in a more informed way
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using the distance between data points. These modifications are time-consuming due to

the requirement of the underlying distance computations. For Instance, Karczmarek et

al. [92] proposed a k-means-based Isolation Forest that predicts the number of divisions

at each node of the tree using k-means clustering. This variant performs better splits in

comparison to the vanilla Isolation Forest. Galka et al. [93] used the Minimal Spanning

Tree (MST) concept to merge the set of points and construct the Isolation Trees in a

bottom-up manner.

Some variants of Isolation Forest utilize hashing concepts. They use hashing to decide

the number of splits in every node of the tree. Zhang et al. [94] explored Locality

Sensitive Hashing (LSH) for splitting a node. Later, Xiang et al. [95] used order-

preserving hashing for splitting the nodes and providing robust anomaly detection.

Instead of changing the Isolation Forest construction, some variants alter the anomaly

score computation. For instance, Aryal et al. [96] used relative mass between points as

an anomaly score associated with the points and tried to improve the anomaly detection

quality. Similarly, Mensi et al. [97] explored a variety of neighborhood-based weighted

scores to points for anomaly detection using Isolation Forest.

To summarize, Isolation Forest is a useful and efficient data structure for anomaly

detection. It is well-adopted in various real-world applications. Isolation Forest is an

active topic of research.

;;=8=<<
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Figure 2.1: Steps of iForest Construction and an example iTree.
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3
Fast Computation of All-Pairs

Mass-based Distance

Chapter Highlights

• Computing Mass Based Distance (MBD) for all data point pairs is an operation

required for many machine learning algorithms.

• This work focuses on how to speed up the distance computation without intro-

ducing any approximation or error.

• We propose fast MBD (fMBD) algorithm to speed up the all-pairs MBD com-

putation.

• We evaluate fMBD for clustering and anomaly detection tasks.

• This research is under review in a peer-reviewed conference.

3.1 Abstract

Given a dataset with n data points, there are
(
n
2

)
possible data point pairs. Many ML

tasks require distance computation for all these data point pairs. This chapter focuses

on a specific data-dependent distance measure: Mass-Based Distance (MBD). MBD
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computation is based on a well-known data structure, Isolation Forest. We observe that

clustering and anomaly detection methods that use MBD require all-pairs distance com-

putation. This distance computation accounts for more than 93% of the running time.

To speed up the all-pairs MBD computations, we develop a method fast MBD (fMBD).

Our method computes the exact same MBD without any error or approximation. We

have performed experiments using popular real-world datasets (12 for clustering and 5

for anomaly detection). With fMBD, we achieve a speedup of 2X to 5X without any

loss of performance over both tasks.

3.2 Introduction

This chapter presents a fast and exact algorithm for the all-pairs distance computation

problem, using the Mass-Based Distance (MBD) [1] as the distance measure. Given a

dataset of n data points, the all-pairs distance computation is the problem of computing

distance for all
(
n
2

)
data point pairs. The problem is compute intensive as it requires

distance computation for O(n2) pairs. The all-pairs distance computation can become

the bottleneck for the downstream task if it consumes the majority of the running time.

One possible solution is to approximate the distance computation quickly. However,

such approximations introduce errors and affect the quality of downstream tasks. Our

goal is to compute the exact distance while reducing the running time of the algorithm.

MBD computation is based on a well-known data structure, Isolation Forest (iForest) [4].

iForest was initially designed for the task of anomaly detection. iForest is a collection

of Isolation Trees (iTree). Each iTree computes the distance for a data point pair

independently. MBD is the average distance across all iTrees. Each iTree is a full

binary tree built using a random sample of data. Within an iTree, each data point

belongs to a leaf node and all other nodes along the path from the root node to that

particular leaf node. The mass of a node in an iTree is the number of data points

that belong to the node. Distance between any two points in an iTree is the mass of

the lowest common ancestor (LCA) node of the two leaf nodes corresponding to the

two data points. MBD is a data-dependent distance measure. The distance between
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any two data points depends on the other data points in the dataset. MBD is shown

to have better quality than data-independent distance measures such as the Euclidean

distance[1].

The naive method for the all-pairs distance problem computes the distance for each data

point pair. Please refer to Algorithm 1. We have to visit each iTree
(
n
2

)
times. For MBD,

it involves two steps. First, locate the leaf nodes of each data point. Second, compute

the LCA of two leaf nodes. We cannot speed up the individual MBD computation.

However, while computing all-pairs distance, there are two possible opportunities for

optimization. First, we can visit each iTree only once and compute the MBD component

for all data point pairs. Second, we can avoid the overhead of repeatedly locating the

leaf node for all data points. We propose an algorithm fast MBD (fMBD) that facilitates

both these optimizations to speed up the all-pairs distance computation. For complete

reproducibility, all our code and datasets are available publicly on the Web.1

Speeding up all-pairs distance computation will matter only if it accounts for a signif-

icant part of the total running time of a task. We experiment with two such tasks:

Density-based clustering and K-nearest neighbor-based anomaly detection. For both

tasks, all-pairs distance computation accounts for more than 93% of the running time.

With fMBD, we demonstrate that both tasks can achieve a speed-up of up to 5X. We

have experimented with a variety of real-world popular datasets for these tasks. There

is no loss in output quality with fMBD as the distance computation is exact. The main

research contribution of our work is to provide a fast algorithm for all-pairs distance

computation problem.

3.3 Related Work

Density Peak Clustering (DPC) [14] is a well-known and popular clustering algorithm.

It works in five steps. First, it computes all-pairs distances. Second, it computes the

density of each data point as the number of other data points having a distance below

a threshold to it. Third, it locates the nearest neighbor with a higher density (NNHD)

1https://github.com/nidhiahl/fMBD
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for each data point. For each point, it also records the distance to NNHD. The point

with the highest density will not have any NNHD. For such a data point, the distance

to NNHD is considered infinity. Number of clusters K is a parameter to the algorithm.

Fourth, K data points are chosen as seeds that represent the K cluster. Seeds are

the points that have high density and high distance to NNHD. Fifth, each data point

is assigned to the cluster of its NNHD. The original DPC algorithm uses Euclidean

distance for density computation. In our work, we have replaced the Euclidean distance

with MBD.

K nearest neighbor (KNN) based anomaly detection [2] is a three step process. First,

it computes all-pairs distances. Second, it records the distance to the Kth nearest

neighbor for each data point. Third, a data point is considered as an anomaly if its

KNN distance is above a threshold. Defining an appropriate threshold is tricky and

requires domain knowledge.

There are three steps in the naive solution for the all-pairs distance problem while using

the MBD [1]. Please refer to Algorithm 1.

Algorithm 1 naive All-Pairs MBD(iForest, M, D)

1: //We assume that the iForest is already constructed.
2: //Maxtrix M is an nXn matrix that stores all-pairs distances.
3: Insert all data points in D into each iTree of iForest.
4: Initialize all elements of M with zero.
5: for each data point xi (i=1 to n) in D do
6: for each data point xj (j=i+1 to n) in D do
7: for each iTree t in iForest do
8: leafxi = getLeaf(xi,t)
9: leafxj = getLeaf(xj ,t)

10: lcaNode = getLCA(leafxi ,leafxj )
11: M [xi][xj ] += lcaNode.mass/(n ∗ T )
12: M [xj ][xi] += lcaNode.mass/(n ∗ T )
13: end for
14: end for
15: end for
16: Output: M

Construct iForest: Please refer to Chapter 2 for the details about the iForest con-

struction process.

Insert all the points: After iForest construction, all the data points are inserted
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into each iTree to prepare for MBD computation. The preparation includes construct-

ing a point-to-leaf mapping separately for every tree, which will be used in the MBD

computation.

MBD computation(One pair at a time): MBD of a pair of points x and y is defined

as the average of the individual MBDt(x, y) from all K trees; refer to equation 3.1.

MBD(x, y) =
1

K

K∑
t=1

MBDt(x, y) (3.1)

Given an isolation tree t, MBDt(x, y) computation is a three-step process. First, map

both x and y to their respective leaf nodes leafx and leafy using point-to-leaf mapping.

Second, locate the Lowest Common Ancestor (LCA) node for both the leaf nodes. Third,

the mass of the LCA node is the MBD for the given data point pair. MBD for the data

point pair is the average MBD across all iTrees. MBD is normalized between 0 and 1

by dividing the mass of every node by the number of data points (n) in the dataset.

DATASET

Construct iForest

Top-Down Pass
(once for the iTree)

Insert all points & Prepare 

point-to-leaf mapping 

Bottom-Up Pass 
(repeat for each pair of data points)

Find LCA  & Compute MBD
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(once for the iTree)

Insert all points & 

compute all pairwise 
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(nC2 data point pairs)
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Figure 3.1: Overview of our approach fast MBD and Comparison with naive solution
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3.4 fast MBD

Two opportunities exist to improve the naive solution for the all-pairs MBD distance

problem. First, the naive solution computes the MBD for each data point pair sepa-

rately. Please refer to the two nested loops on lines 5 and 6 of Algorithm 1. As a result,

we end up visiting each iTree
(
n
2

)
times (third nested loop on line 7 of Algorithm 1 ). We

do not have to carry out the distance computation for each data point pair separately.

We can visit each iTree only once and compute the MBD component for all the pairs

in a single pass.

Second, the naive solution must repeatedly locate the leaf node for each data point

(lines 8 and 9 of Algorithm 1). The naive solution pre-computes the leaf node for each

data point in every iTree. The naive solution has to insert the whole dataset into every

iTree to pre-compute the leaf node for each data point. We can compute the MBD for

a pair only in a single top-down pass. It will avoid leaf node computation, and as a

result, we do not have to insert the whole dataset into the iForest.

3.4.1 fastMBD Algorithm

Please refer to Algorithm 2. Our fastMBD algorithm visits each iTree only once and

computes MBD for all data point pairs.

Algorithm 2 fMBD(iForest, M, D)

1: //We assume that the iForest is already constructed.
2: //Maxtrix M is an nXn matrix that stores all-pairs distances.
3: Initialize all elements of M with zero.
4: for (each iTree t in iForest) do
5: fMBD Tree(t,M,D)
6: end for
7: Output: M

When it visits each iTree, it performs a single breadth-first traversal of the tree (Algo-

rithm 3). Initially, all data points are inserted into the root node of the tree (Line 1,

Algorithm 3).

While performing the breadth-first traversal, fMBD distinguishes between the internal

nodes (Algorithm 4) and lead nodes (Algorithm 5). While processing an internal node,
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Algorithm 3 fMBD Tree(t, M, D)

1: t.root.data = D // Insert all points in D to root of iTree t.
2: Create empty BFT //Queue for breadth-first traversal of nodes in iTree t.
3: BFT.enqueue(t.root)
4: while (BFT is notEmpty) do
5: node = BFT.dequeue
6: if (node is Internal Node) then
7: fMBD InternalNode(node,M,BFT)
8: else
9: fMBD LeafNode(node,M)

10: end if
11: end while

we first distribute the data points of the current node into the left and right children

using the split criteria (Line 1 to 7, Algorithm 4). Now consider a data point pair (x, y)

such that x satisfies the split criteria and y does not satisfy the split criteria at the

current node. As a result, x will be assigned to the left child, and y will be assigned to

the right child. Eventually, both x and y will end up in their respective leaf nodes leafx

and leafy. The current node will be the LCA for these two leaf nodes. Therefore, the

MBD of pair (x, y) will be the mass of the current node (Lines 10 and 11, Algorithm 4).

Algorithm 4 fMBD InternalNode(node,M,BFT)

1: for each data point x in node.data do
2: if x satisfies node.splitCriteria then
3: add x to node.left.data
4: else
5: add x to node.right.data
6: end if
7: end for
8: for each x in node.left.data do
9: for each y in node.data.right do

10: M [x][y] += node.mass/(n ∗ T )
11: M [y][x] += node.mass/(n ∗ T )
12: end for
13: end for
14: BFT.enqueue(node.left)
15: BFT.enqueue(node.right)

However, we do not have to locate the leaf nodes explicitly, and we do not have to

perform the LCA computation. This is the advantage of fMBD over the naive approach.

While processing a leaf node, there are no children on the left or right. In such a scenario,
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the MBD between data points belonging to the leaf node is simply the mass of the node

(Lines 3 and 4, Algorithm 5).

Algorithm 5 fMBD LeafNode(node,M)

1: for each data point xi (i=1 to node.mass) do
2: for each data point xi (j=i+1 to node.mass) do
3: M [xi][xj ] += node.mass/(n ∗ T )
4: M [xj ][xi] += node.mass/(n ∗ T )
5: end for
6: end for

3.4.2 Time Complexity Analysis

In this section, we discuss asymptotic time complexity for an individual iTree. For the

iForest, the running time will be scaled by a factor of T (number of iTrees). For all-pairs

MBD computation, the nMBD method will first build the iTree in S.logS time. Then,

it will insert all the n datapoints into the iTree to locate the appropriate leaf node for

each datapoint. The maximum height of any iTree is logS. Therefore, this step requires

n.logS time. Given a datapoint pair, the MBD computation in nMBD requires two

operations. First, locate leaf nodes for both datapoints. Second, compute LCA for both

the leaf nodes. Both these operations, in total, require 2logS time. Hence the MBD

computation for all
(
n
2

)
datapoint pairs requires O(2.n2.logS) time. The total time

taken by nMBD is given in the equation 3.2. However, the asymptotic time complexity

of nMBD is O(n2.logS).

S.logS + n.logS + 2.n2.logS (3.2)

Similar to nMBD, our method fastMBD requires an iTree constructed over sam-

ple S. This step requires S.logS time. In the next step, fastMBD passes the whole

dataset through the iTree. Eventually, each datapoint reaches a leaf node. Any iTree

has a maximum height of logS. This step requires n.logS time. While passing the

dataset through the iTree, fastMBD also computes MBD for all
(
n
2

)
pairs. In contrast

to the nMBD, our method fastMBD does not have to locate leaf nodes and LCA.

Hence the MBD computation can be done in the constant time (Lines 10 and 11 of
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Algorithm 4, Lines 3 and 4 of Algorithm 5). This step requires n2 time. The total time

taken by fastMBD is given in the equation 3.3. However, the asymptotic running time

of fastMBD is O(n2).

S.logS + n.logS + n2 (3.3)

Comparing the total running time of nMBD and the proposed algorithm fastMBD

given in equation 3.2, 3.3 respectively, nMBD is slower by a factor of 2.logS. However,

asymptotically, the improvement is of the order logS, but the constant 2 is responsible

for a speedup of 2X achieved by fMBD. Please note that for larger n values logS

is very small and does not contribute significantly to the speedup. Speedup given in

table 3.2 also shows that above 10K datapoints, the speedup plateaus closer to ∼ 2X,

neglecting the contribution from logS, due to logS << N2.

3.5 Experimental Evaluation

Fast computation of all-pairs distance is important only if it accounts for a significant

chunk of the total running time of a task. We have considered two such tasks for

our experimental evaluation: Clustering and Anomaly Detection. We have chosen the

Density Peak Clustering (DPC) algorithm for the clustering task. Please refer to Section

3 for a summary of the DPC algorithm. We have replaced the Euclidean distance in the

original DPC algorithm with the MBD. We refer to this clustering algorithm as Mass

Peak Clustering (MPC). For the anomaly detection task, we have to use the MBD to

calculate the K nearest neighbors. We refer to this anomaly detection algorithm as

Mass-based Anomaly Detection (MAD).

We have experimented with twelve datasets for the clustering task. Please refer to

table 3.1 for a summary of these datasets. These datasets are frequently used in clus-

tering research. The dimensions of these datasets vary from 6 to 617. The number of

data points in the dataset also varies from 351 to 70000. The number of clusters varies

from 2 to 26. When we run MPC with the naive solution for all-pairs MBD distance

computation, the MBD computation accounts for at least 98% of the total running time.
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Table 3.1: Dataset details

% Time required
dataset Points Dimensions Clusters for MBD

computation

ionosphere [98] 351 33 2 98
wdbc [1] 569 30 2 99
control [98] 600 60 6 98
madelon [98] 2,600 500 2 99
satelite [99] 6,435 36 7 99
muskv1 [99] 7,074 166 2 99
thyroid [1] 7,200 6 3 98
isolet [99] 7,797 617 26 98
smartphone [98] 10,299 561 6 98
pendigits [1] 10,992 16 10 99
shuttle [99] 57,999 9 7 98
mnist [99] 70,000 16 10 98

% % Time required
dataset Points Dimensions Anomaly for MBD

computation

velocity [1] 229 20 34.06 96
mfeat [1] 410 649 2.44 94
parkinson [99] 756 754 25.3 93
tuandromd [99] 4,464 241 20.13 97
mutantp53 [1] 16,592 5,408 0.51 93

The ionosphere consists of radar data collected from a system of 16 antennas. The data

is used to classify the good and bad radar returned from the ionosphere. WDBC is a

breast cancer dataset with 30 features computed from 569 digitized images. The control

dataset has 600 synthetically generated time-series images that are classified into six

classes based on the time-series trends. The Satellite dataset is about multispectral

satellite images classified into seven classes based on 36 features extracted from 3X3

images. Muskv1 is a 166-feature human-annotated dataset used for the classification of

a molecule as musk or non-musk. The Smartphone is a human activity classification

dataset recorded for 30 subjects with embedded inertial sensors. The Shuttle is a statlog

dataset used to predict the space shuttle. It has seven different categories of the position

of the shuttle recorded on the basis of sensor readings. MNIST is a digit dataset

consisting of 10 different classes.

We have experimented with five datasets summarized in table 3.1. These datasets are
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popular in the anomaly detection literature. The number of anomaly points in these

datasets is expressed as a percentage of dataset size. It varies from 0.51% to over 34%.

We can observe that all-pairs MBD computation is the main bottleneck in the running

time for this task as well. MBD computation accounts for at least 93% of the running

time. Both these tasks and datasets are an appropriate target for applying our fMBD

algorithm.

The Parkinson’s speech dataset consists of 754 distinct extracted features, which are uti-

lized to determine whether a subject has Parkinson’s disease or is healthy. Tuandromd

is a malware detection dataset with 241 features to differentiate between malware and

goodware. The Mutantp53 dataset is extracted from biophysical simulations of mu-

tantp53 proteins having 5408 features used to predict transcriptional activity.

For all experiments, isolation forest construction is done for a sample size of 256 and

the number of trees as 100, referring to [4]. The cut-off distance for MPC is chosen

between 0.1% to 50% of the smallest distances for every dataset. Similarly, parameter

K for anomaly detection is chosen between 1 to 50% of n, where n is the number of

data points.

Please refer to table 3.2 for the comparison of running time. For both tasks, we can

perform the all-pairs MBD computation in two ways: naive solution (nMBD) and our

solution (fMBD). The table shows the running time of the task with each option for

all-pairs MBD computation. Compute the speed of fMBD up over nMBD as the ratio

of running time. For all the datasets, fMBD is faster than the nMBD. Even for large

datasets, we achieve speed up close to 2X.

We compare the clustering quality using three evaluation measures: F-measure(higher

the better), RandIndex(higher the better), and Entropy(lower the better). Anomaly

Detection quality is compared using two evaluation measures: AUC(higher the better)

and F1-score(higher the better). Please refer to table 3.3 for details. We observed that

the quality of both the downstream tasks using fMBD is precisely the same as that

of using nMBD. This result is expected as our fMBD algorithm computes the exact

distance, and it does not affect the quality of downstream tasks.

Please refer to Figure 3.2. It shows variation in the speed-up of fMBD with respect
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Table 3.2: Running Time and Speedup results

Clustering Task
dataset Running Time (in seconds) Speedup over

MPCnMBD MPCfMBD MPCnMBD

ionosphere 0.95 0.24 3.9
wdbc 2.20 0.56 3.89
control 2.76 0.64 4.31
madelon 25.3 8.01 3.16
satelite 85.7 40.10 2.14
muskv1 96.39 45.17 2.13
thyroid 98.13 51.2 1.92
isolet 151.25 64.65 2.34
smartphone 203.26 99.14 2.05
pendigits 336.56 166.6 2.03
shuttle 7,745.14 4,139 1.87
mnist 12,826.25 6,497.3 1.97

Anomlay Detection Task
dataset Running Time (in seconds) Speedup over

MADnMBD MADfMBD MADnMBD

velocity 0.28 0.069 4.04
mfeat 1.33 0.26 5.05
parkinson 3.53 0.99 3.58
tuandromd 107.18 34.86 3.07
mutantp53 1,175.39 534.2 2.2

Table 3.3: Clustering and Anomaly Detection quality Results

Clustering Task
Datasets F-measure RandIndex Entropy

madelon 0.537 0.504 0.934
satelite 0.626 0.852 1.13
muskv1 0.71 0.755 0.408
thyroid 0.638 0.585 0.938
isolet 0.312 0.903 0.96

smartphone 0.561 0.808 1.001
pendigits 0.814 0.946 0.645
shuttle 0.559 0.562 1.587
mnist 0.341 0.74 0.70

Anomlay Detection Task
Datasets AUC F1 score

velocity 0.72 0.538
mfeat 0.997 0.8

parkinson 0.586 0.762
tuandromd 0.912 0.621
mutantp53 0.71 0.6
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Figure 3.2: Variation in fastMBD speed up over nMBD with respect to sample size
(S)

to change in the sample size(S). We have shown results for three datasets for each

task. Results for other datasets are similar. We can observe that the speed up of

fMBD increases slowly with the sample size for all datasets. This monotonic increase

demonstrates the logS speed-up factor in the asymptotic time complexity of fMBD

over nMBD.

3.6 Conclusion and Future Work

This chapter presents a fast and exact algorithm, fMBD, for all-pairs distance com-

putation. Our algorithm computes the exact MBD without introducing any error or

approximation. We have evaluated our algorithm on two downstream tasks: clustering

and anomaly detection. We have performed experimental evaluation using 16 popular

datasets. Our algorithm fMBD consistently outperforms the naive solution for all-pairs

MBD computation. Our work can be further improved by introducing an approximation

to MBD computation with minimal loss in the quality of the downstream task.

;;=8=<<
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4
Scaling Up Mass-Based Clustering

Chapter Highlights

• Mass Based Clustering algorithm needs to know the data point pairs that have

distance below a threshold value.

• For a dataset with n data points, the number of such data point pairs is a tiny

fraction of all possible
(
n
2

)
pairs.

• The objective of this chapter is to compute distance for only a sufficient number

of data point pairs, instead of all
(
n
2

)
pairs.

• We have handled 100X larger data sets than existing Mass Based Clustering

• The proposed approach saves significant time and memory without any loss of

clustering quality.

• This chapter is based on the publication ”Scaling Up Mass-Based Clustering”

presented in CIKM 2022.
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4.1. ABSTRACT

4.1 Abstract

This chapter addresses the problem of scaling up the mass-based clustering paradigm to

handle large datasets. The existing algorithm MBScan computes and stores all pairwise

distances, resulting in quadratic time and space complexity. However, we observe that

mass-based clustering requires information about only a tiny fraction of all possible data

point pairs. We propose three optimizations to MBScan for quickly finding such pairs

and computing their distances. We empirically evaluate our work on ten real-world

and synthetic datasets. Our experiments show that our approach results in fast and

memory-efficient clustering with no loss in the quality of clusters.

4.2 Introduction

Mass-based dissimilarity (MBD) is a data-dependent dissimilarity measure [1]. Its intu-

ition is that a data point pair in a dense region has a lower similarity score than other

data point pairs with the same inter-point distance in a sparse region. This similarity

computation correlates well with the notion of similarity as judged by humans [36].

Using such a similarity measure, we can improve the performance of various important

tasks such as clustering, anomaly detection, and classification. This chapter is focused

on the clustering task using MBD.

MBScan is a mass-based clustering algorithm with quadratic time and space complexity

[1]. It is an improvement over the well-known density-based clustering algorithm DB-

Scan [100]. MBScan replaces the distance measure in DBScan with MBD. MBScan uses

a tree-based data structure, Isolation Forest, for computing MBD. An Isolation forest

is a collection of independently constructed Isolation Trees [4]. MBScan creates higher

quality clustering than DBScan and its variants [101][102]. Consider a dataset D with

n data points. MBScan computes and stores MBD for all
(
n
2

)
data point pairs. As a

result, MBScan does not scale well to large datasets.

We observe that we do not need information about all
(
n
2

)
data point pairs to perform

mass-based clustering. It is sufficient to compute and store MBD only for a subset of

pairs called Interesting Pairs. A data point pair is an Interesting Pair if and only if its
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dissimilarity score is below a user-defined threshold and at least one of the points in the

pair is not an outlier. We observe that only about three percent of data point pairs are

Interesting Pairs for a wide variety of datasets. There is a significant opportunity to

reduce running time and memory footprint for mass-based clustering.

In this chapter, we present an algorithm, sMBSCAN. It is a scalable algorithm for

mass-based clustering. Our work has the following three specific research contributions.

First, we propose a constant time method to compute MBD in an Isolation Tree. This

contribution accelerates MBD computation for each data point pair. Second, we provide

fast filtering criteria for selecting a superset of Interesting Pairs from all
(
n
2

)
pairs. This

contribution enables us to compute MBD only for a small subset of all possible
(
n
2

)
pairs.

Third, we propose an efficient lower bound on MBD. We use it for early termination of

MBD for a data point pair if it cannot become an Interesting Pair. The overview of our

work is presented in 4.1.

Figure 4.1: A comparative overview of scalable MBScan with MBScan

Compute MBD for all 
Data Point Pairs

Bottleneck: ଶ

Time and Space 
Complexity

Dataset (Size: n data points)

Isolation Forest Construction (Height: h)

LCA Precomputation
Impact: MBD computation time complexity 

reduces from to 

DBSCAN based Clustering using MBD

Search Potential Interesting Pairs
Impact: MBD computation limited to a tiny 

fraction of pairs

Lower Bound on MBD
Impact: Early termination of MBD 

computation, if a pair cannot become Interesting

MBSCAN(Existing Work) sMBSCAN (Our Work)

We empirically evaluate our optimizations by doing extensive experiments over ten
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datasets (six real-world and four synthetic). The size of the datasets ranges from 2×103

to 1 × 105 data points. We have three evaluation criteria: running time, memory

footprint, and clustering quality. Our optimizations provide a speed-up of up to 50X

over MBScan. Memory footprint is up to 22X smaller than MBScan. There is no loss

in clustering quality as measured with three measures: F1 measure, Entropy, and Rand

Index. All our code and datasets are available publicly on the Web1.

4.3 Related Work

Isolation Forest is described in Chapter 2.

Various distance (Euclidean, Manhattan, Hamming, Minkowski, and others) and simi-

larity measures (Dot Product, Cosine Similarity, Jaccard Index, and others) are exten-

sively used in various fields such as Information Retrieval, Machine Learning, and Data

Mining. However, most of these distance and similarity measures are data-independent.

The distance or similarity between a pair of data points does not depend on other data

points in the dataset[103]. In contrast, MBD is a data-dependent dissimilarity measure.

Consider two different data point pairs P1 and P2. The inter-point distance measured

with data-independent distance measures such as Euclidean distance is the same for

both the pairs P1 and P2. However, P1 is located in a dense region, and P2 is located

in a sparse region. In such a scenario, the MBD will assign a higher dissimilarity score

to P1 than P2. This intuition of dissimilarity computation correlates well with the

human judgment of similarity[36]. For example, consider two shirts with blue color,

but each has a different shade of blue color such as navy blue and sky blue. These

two shirts will be considered more similar in a collection of clothes having a variety of

colors. However, these two shirts will be perceived as less similar in a collection of only

blue-colored clothes.

MBD computation can be done efficiently using Isolation Forest. For a dataset D,

consider an Isolation Forest F consisting of k Isolation Trees T1, T2...Tk. For a data

1https://github.com/nidhiahl/sMBSCAN
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point pair P1 consisting of data points x and y, the MBD is calculated as

MBD(P1) =
1

k

k∑
i=1

MBDi(P1) (4.1)

MBDi(P1) = MASSi(LCA(LEAFi(x), LEAFi(y))) (4.2)

where MBDi(P1) is the mass-based dissimilarity computed using only one Isolation

Tree Ti, LEAFi(x) returns the id of the leaf node that data point x belongs to in

the Isolation Tree Ti, LCA(NODE1, NODE2) returns the id of the lowest common

ancestor of nodes NODE1 and NODE2, and MASSi(NODE) returns the mass of

NODE in Isolation Tree Ti.

Density-based clustering is a popular clustering paradigm because of its ability to find

clusters of arbitrary shapes. DBScan[100] is the most well-known clustering algorithm

in this paradigm. It works in three steps. The first step computes ϵ− neighborhood of

each data point. In other words, for each data point, it finds other data points within

the distance of ϵ. The second step marks each data point with one of the three labels:

CORE, OUTLIER, and NON-CORE. A data point is CORE if its ϵ − neighborhood

has more than minPts data points. Both ϵ and minPts are parameters to the DBScan

algorithm. A data point is an OUTLIER if it is not CORE, and there is no CORE

data point in its own ϵ − neighborhood. The remaining data points are labeled as

NON-CORE. In the third step, DBScan begins by considering each CORE data point

as a separate cluster. It merges clusters using the density reachability property. NON-

CORE data points are assigned to the nearest cluster. A data point pair can affect the

DBScan clustering only if its distance is less than ϵ and at least one of the points in the

pair is CORE or NON-CORE. OUTLIERS are discarded, and they are not part of any

cluster.

MBScan[1] adopts DBScan to utilize MBD. It works simply by replacing the distance

definition in DBScan with MBD. MBScan is shown to have superior quality of clustering

than DBScan and its variants such as OPTICS[102] and SNN[101] clustering. However,
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MBScan computes and stores MBD for all data point pairs. As a result, MBScan

has O(n2) time and space complexity while handling a dataset with n data points. It

severely limits the scalability of MBScan. For example, for the WORMS2d dataset with

105600 data points, MBScan requires approximately 16 hours and 43 GB of memory to

perform clustering.

4.4 scalable MBScan

We can scale up the mass-based clustering in two ways. First, we can accelerate the

MBD computation for each data point pair. Our LCA Pre-computation optimization

achieves this goal. Second, we can reduce the number of data point pairs for which we

compute MBD. Ideally, we should compute MBD only for Interesting Pairs. Our other

two optimizations: Potential Interesting Pairs and Lower Bound on MBD, achieve this

goal.

4.4.1 LCA Pre-computation

Please refer to equations 1 and 2. Each MBD computation requires us to find the lowest

common ancestor (LCA) of two leaf nodes. It requires O(h) time, where h is the height

of the tree. For a given data point pair, we have to repeat the LCA computation across

all k Isolation Trees. Thus, each MBD computation requires O(k.log2(|S|)) time. If we

can compute LCA in constant time, then the time complexity of MBD computation will

reduce to O(k).

Height h of any Isolation Tree cannot exceed log2(|S|). It also limits the number of

nodes in any Isolation Tree to 2(h+1). Please refer to Figure 2. It shows an example

of such a tree with a height of three and the number of nodes fifteen. This tree is a

perfect binary tree. We number the nodes of such a perfect binary tree by performing a

breadth-first traversal. After this particular method of numbering the nodes, we call the

perfect binary tree a maxTree. Any Isolation Tree that we construct will be a subtree

of the maxTree of height log2(|S|). To number the nodes of any Isolation Tree in our

Isolation Forest, we map that tree to the corresponding maxTree. This mapping results
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Figure 4.2: Example of maxTree with height 3 and consistent numbering of nodes across
two Isolation Trees.

in the consistent numbering of nodes across all Isolation Trees. Please refer to Figure

2 for an example of such mapping and numbering. Therefore, LCA computation across

all Isolation Trees also becomes identical. For example, node 2 is the LCA of nodes

5 and 14 across both Isolation Trees in Figure 2. We pre-compute LCA for all node

pairs in the maxTree only once after the Isolation Forest construction and store it in a

matrix. While performing LCA computation for MBD, we just read the corresponding

value from the pre-computed LCA matrix in a constant time.

4.4.2 Potential Interesting Pairs

Only Interesting Pairs affect the outcome of mass-based clustering. A data point pair

is an Interesting Pair if and only if:

• Its MBD is less than µ, where µ is a user-supplied parameter to the MBScan

algorithm. (It is similar to parameter ϵ in DBScan) and

• At least one of the points in the data point pair is not labeled as OUTLIER.
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In our experiments, we have observed that only about 3% of total pairs are Interest-

ing Pairs, indicating that there is dramatic scope for improving the running time and

memory footprint of MBScan. Consider a data point pair P1 consisting of data points

x and y. If P1 is an Interesting Pair, its MBD should be less than µ in at least one

of the Isolation Trees. Also, if at least one of the data points in P1 is not labeled as

OUTLIER, then without loss of generality, let us assume that it is the data point x.

The µ− neighborhood of x should have more than minPts data points in at least one

Isolation Tree. Now, let us put both these requirements together. For a data point pair

to be an Interesting Pair, it must be found together in at least one node with mass m

such that minPts < m < µ. This condition is necessary but not sufficient.

We perform a depth-first traversal of each Isolation Tree to locate the largest nodes that

satisfy this necessary condition on node mass. We call such nodes as marked nodes.

Now, we can limit our MBD computation to only those pairs that are found in at least

one marked node. We can further strengthen this filtering criterion by requiring that a

data point pair should be found in at least q marked nodes. With a value of q greater

than one, we might miss some Interesting Pairs. However, we have observed that we

do not miss any Interesting Pairs even with the q value set to 0.4 ∗ k. Here, k is the

number of Isolation Trees in the Isolation Forest. Data points that are similar will end

up together in any randomly created Isolation Tree. That is why we do not miss any

Interesting Pair even with a high value of q. Only with a value of q higher than 0.5 ∗ k,

we start missing some of the Interesting Pairs. Now, our MBD computation is limited

to only Potential Interesting Pairs found in at least q marked nodes.

4.4.3 Lower Bound on MBD

While computing MBD for a data point pair, we have to go across k Isolation Trees.

However, we can terminate the MBD computation early if we can conclude that MBD

for a given pair will exceed the threshold µ. Consider the partial MBD computed for

a data point pair P1 using only the first r Isolation Trees, where 1 ≤ r < k. The

cumulative score (CS) contributed by these first r Isolation Trees is
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CSr(P1) =
r∑

i=1

MBDi(P1) (4.3)

If the cumulative score for any pair exceeds µ ∗ k, then its final MBD will be greater

than µ. Hence, we can terminate the MBD computation for a pair if its cumulative

score exceeds µ ∗ k.

4.5 Experimental Evaluations

We evaluated our work empirically by performing extensive experiments over ten datasets

(four synthetic and six real-world). Please refer to table 4.1 for information about the

datasets2. These datasets were chosen because these are some of the most popular

datasets used in the clustering research community[1][104][105] [106][107][108][109][110].

All the experiments are run on a server having Ubuntu Linux operating system version

18.04 with 128GB RAM. All the algorithms were implemented in C++ and compiled

using the GNU C++ compiler.

Table 4.1: Datasets details

Dataset Data Points Dimensions Clusters Type

segment[1] 2.3 × 103 19 7 Real
D31[110] 3.1 × 103 2 31 Synthetic
S4(gaussian)[106] 5 × 103 2 15 Synthetic
unbalanced[104] 6.5 × 103 2 8 Synthetic
sattelite[4] 6.4 × 103 36 7 Real
pendigits[108] 1 × 104 16 10 Real
letter[109] 2 × 104 16 26 Real
shuttle[4] 5.7 × 104 9 7 Real
mnist[107] 7 × 104 784 10 Real
worms2d[105] 1 × 105 2 35 Synthetic

By incorporating our work into the MBScan algorithm, we get an optimized version

of MBScan. We call it sMBScan (Scalable MBScan). We compare sMBScan against

the original MBScan using three evaluation criteria: running time, memory footprint,

and clustering quality. As Isolation Forest construction involves randomization, we

2https://github.com/nidhiahl/sMBSCAN
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report numbers after running each algorithm ten times and then averaging across all

ten runs. For Isolation Forest construction, the sample size (|S|) was set to 256 or 1%

of the dataset size, whichever maximum. The MBScan paper suggested a sample size

of 256. However, they performed experiments only with small datasets of up to 10,992

data points. For larger datasets with tens or hundreds of thousands of data points,

we need a larger sample size to construct a reliable Isolation Forest. The Isolation

Forest consisted of hundred Isolation Trees (k = 100). For our second optimization on

searching Potential Interesting Pairs, the value of q was set to 0.5 ∗ k.

Table 4.2: Running Time and Speedup results

Dataset Time & Speedup

MBScan
(in seconds)

sMBScan
(in seconds)

Speedup

segment 25.06 2.77 9.03
D31 49.85 2.77 17.95
S4(gaussian) 97.32 6.81 14.27
unbalanced 164.62 7.62 21.59
sattelite 151 11 13.38
pendigits 1,082 63 17.01
letter 1,890 112 16.78
shuttle 18,115 846 21.39
mnist 35,698 668 53.38
worms2d 56,882 4,906 11.59

For all datasets, we can observe that the number of Interesting Pairs (IP) is a tiny

fraction of the Total Pairs (TP) (Table 4.5). Mass-based clustering needs MBD values

only for these Interesting Pairs. Our sMBScan algorithm computes and stores MBD

only for Potential Interesting Pairs (PIP). Therefore, we expect significant speed-up and

memory savings for the sMBScan algorithm.

Please refer to table 4.2 for the details of the experimental results. We can observe that

the running time of MBScan is impractical for larger datasets. For the largest dataset in

our experiments (WORMS2d), the running time of MBScan is over 15 hours. However,

our algorithm can perform the clustering for the same dataset in just 82 minutes. Across

all datasets, sMBScan consistently maintains a significant speed-up over the MBScan.

Similarly, for memory footprint, the memory requirement of MBScan is impractical
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Table 4.3: Memory footprint results

Dataset Memory

MBScan
(in MB)

sMBScan
(in MB)

Memory
Saving

(in Percentage)

segment 58 27 53
D31 80 32 59
S4(gaussian) 154 47 69
unbalanced 224 51 77
sattelite 227 55 75
pendigits 550 78 85
letter 1,682 113 93
shuttle 7,356 361 95
mnist 16,626 842 94
worms2d 43,802 1,997 95

(Table 4.3). For the largest dataset, WORMS2d, MBScan requires more than 42 Giga-

bytes of RAM. For the same dataset, sMBScan needs less than 2 Gigabytes of RAM.

Across all datasets, sMBScan provides significant memory savings. Especially for large

datasets, the memory saving is even more than 90%.

Table 4.4: Clustering Quality results

Dataset Quality

F-meaure RandIndex Entropy

segment 0.63 0.86 0.34
D31 0.72 0.91 0.31
S4(gaussian) 0.71 0.76 0.39
unbalanced 0.73 0.79 0.30
sattelite 0.83 0.99 0.05
pendigits 0.68 0.73 0.39
letter 0.60 0.78 0.35
shuttle 0.59 0.69 0.27
mnist 0.55 0.63 0.47
worms2d 0.70 0.73 0.39

Refer to table 4.4, to measure the quality of clustering, we have used three standard

measures: F-measure, Rand Index, and entropy [111]. We know the ground truth

label for each data point in all our datasets. The F-measure of the clustering is the

average of the F-measure of each cluster. The entropy for the clustering is calculated

as the weighted average of the entropy of each cluster. The weight of each cluster is
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the number of data points in it. Rand Index for clustering is computed by calculating

true positive and true negative data point pairs. The absolute values of these quality

measures are not crucial to our work. However, the important point is that our sMBScan

algorithm achieves the same value as the MBScan algorithm for all quality measures.We

can conclude that the set of Potential Interesting Pairs computed by sMBScan is a

superset of the set of Interesting Pairs for each dataset. None of our optimizations filter

out any Interesting Pair. As a result, we can scale up the mass-based clustering without

any loss in clustering quality.

Refer to table 4.5, for a discussion on the effectiveness of sMBScan and how much

scope for further improvement to obtain an ideal solution. The table highlights the

effectiveness of scalable MBSCAN (sMBSCAN) in significantly reducing the number

of unnecessary distance computations across various datasets. The TP/PIP ratio in the

second-last column quantifies the reduction achieved by sMBSCAN . This indicates

that sMBSCAN effectively filters out the majority of irrelevant pairs. The PIP/IP

ratio in the last column shows the remaining scope for further reduction, which is

minimal for most datasets, confirming that sMBSCAN already performs near-optimal

reduction. Datasets like ”letter” show no additional scope for reduction, showing that

100% unnecessary pairs have already been eliminated by sMBSCAN . Overall, the

results validate sMBSCAN ability to minimize the unnecessary distance computations

and compute only the essential pairs needed for clustering, leaving a low margin for

further improvement.

4.6 Conclusion and Future Work

The quadratic time and space complexity of the MBScan algorithm is the major bot-

tleneck in scaling up the mass-based clustering approach to larger datasets. In this

chapter, we have presented three optimizations to the MBScan algorithm that attack

this bottleneck. We have achieved significant speed-up with dramatic saving in memory

without any loss in clustering quality. With our work, mass-based clustering will now

become practical for larger datasets.
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Table 4.5: Scope of further reduction in number of pairwise distance computations in
scalable MBScan. TP/PIP depicts the reduction provided by sMBScan, PIP/IP depicts
the further scope of reduction.

Dataset Scope for Improvement

Total
Pairs (TP)

Potential
Interesting
Pairs (PIP)

Interesting
Pairs (IP)

TP/ PIP PIP/IP

segment 2.6 × 106 2.3 × 105 8.5 × 104 11 2
D31 4.8 × 106 2.2 × 105 7.3 × 104 21 3
S4(gaussian) 1.2 × 107 7.8 × 105 2.7 × 105 15 2
unbalanced 2.0 × 107 5.5 × 105 4.6 × 104 36 11
sattelite 2.1 × 107 1.5 × 106 6.6 × 105 14 2
pendigits 6.0 × 107 2.8 × 106 5.6 × 105 21 5
letter 1.9 × 108 1.9 × 106 3.3 × 105 100 -
shuttle 1.6 × 109 3.5 × 107 9.5 × 106 45 3
mnist 2.4 × 109 3.3 × 106 1.4 × 104 727 235
worms2d 5.5 × 109 5.0 × 108 1.7 × 108 11 2

There is only a limited scope to improve the performance of our algorithm sMBScan.

Any mass-based clustering algorithm needs to compute MBD at least for all the Interest-

ing Pairs. The key ratio to look at is PIP/IP in table 4.5. This ratio is the upper bound

on the further speed-up that can be achieved over our algorithm sMBScan. Our work

can be further improved by designing algorithms to scale out the mass-based clustering

to utilize multiple processors and systems.

;;=8=<<
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5
Incremental Isolation Forest

Chapter Highlights

• We observe that concept drift in new incoming data degrades the performance of

Isolation Forest.

• We target three types of concept drifts.

• Our approach Incremental Isolation Forest (I2Forest) quickly updates the model

and adapts to the concept drift caused by new data.

• We examine I2Forest for efficiency and quality of anomaly detection in complete

data after changes.

• This chapter is based on the publication ”Incremental Isolation Forest for Handling

Concept Drift in Anomaly Detection” presented in CoDS-COMAD 2024, and the

extended version is submitted to a peer-reviewed journal.

5.1 Abstract

Isolation Forest is a well-known model designed for anomaly detection task. It identifies

regions corresponding to anomalies in the training data and defines anomalies as “few
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and different”. With the arrival of new data after training the model, concept drift

can occur in three ways. First, anomalies can occur in the new regions of the feature

space. Second, existing anomalies can become normal with the addition of new data.

Third, a new normal region is introduced after adding new data. We observe that

the performance of Isolation Forest severely degrades in all these scenarios. Current

works fail to tune the existing Isolation Forest to adapt to all three types of concept

drifts. We propose an algorithm, Incremental Isolation Forest, to quickly update the

existing Isolation Forest in response to the arrival of new data. We perform extensive

experiments using synthetic and real-world datasets. Experimental results show that our

approach achieves significant time savings with minimal or no loss in anomaly detection

performance. Our method is more robust to catastrophic forgetting than incremental

baselines that forget the old data.

5.2 Introduction

The question central to this chapter is: How to update a Machine Learning model

in response to new data? This question becomes even more critical when the new

data causes concept drift. A lazy solution is to keep using the old model. However,

it will result in inferior performance. An aggressive solution is to rebuild the model

from scratch. This solution will improve the model performance at the cost of time

spent in retraining the model. Instead of choosing any of these two extremes, we can

design an incremental solution that quickly updates the existing model to match the

performance of the aggressive solution. This chapter focuses on the anomaly detection

task and the Isolation Forest model to design an incremental solution. Our primary

research contribution is to develop an efficient update scheme to incrementally modify

the Isolation Forest model in response to the addition of new data.

Anomaly detection is the task of identifying the outliers that do not conform to the

normal patterns in the data [112]. It is an important task with applications in di-

verse domains such as network security, medical diagnosis, and many others [113]. The

definition of anomaly heavily depends on the specific application and model used for
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detection. Isolation Forest (iForest) is a popular model for anomaly detection [4] that

describes anomalies as “few and different” from the rest of the data. iForest is a collec-

tion of independently constructed Isolation Trees (iTrees). Each iTree identifies regions

corresponding to anomalies in the existing training data. Rest all parts of the feature

space are considered normal. Each iTree is constructed using a small random sample

from the training data. iForest performs prediction by averaging across all constituent

iTrees.

Concept drift occurs when the relation between the input data and the target variable

changes [3]. This change results in the degradation of the machine learning model’s

performance. The iForest defines anomalies as “few and different” and models them by

defining regions corresponding to those anomalies in the training data. However, with

the arrival of new data, the regions modeled by iForest can change in three ways as

follows (Please refer to Figure 5.1.):

1. CDI (New anomalies): anomalies occur in new regions of the feature space.

Existing iForest will fail to detect these anomalies, resulting in false negatives.

2. CDII (Anomalies change to Normal): existing anomalies can become normal.

Existing iForest will still identify data points in such regions as anomalies, resulting

in false positives.

3. CDIII (New Normal): normal points occur in new regions of the feature space.

Existing iForest will identify data points in such regions as anomalies, resulting in

false positives.

To overcome these problems, we propose the Incremental Isolation Forest (I2Forest)

model. It quickly updates the existing iForest in response to the arrival of new data.

The intuition of our approach is to update the definition of anomalous regions in each

constituent iTree using a small sample from the new data. We perform the breadth-

first traversal of each iTree to carry out updates efficiently. Our updates are focused

on answering three questions. First, have anomalies occurred in any new region of

the feature space? Second, has any of the existing anomalous regions become normal?
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Figure 5.1: New datapoints(∆Di) introduce Concept Drift (CD-I: Anomalies occur in a
new region; CD-II: Existing anomalies become normal data points; CD-III: New normal
regions introduced). Please note drift causing data points are shown in green color.

Third, do normal points exist in any new region of the feature space? For complete

reproducibility, all our code and datasets are available publicly on the Web.1

To summarize the contributions, I2Forest is an incremental approach that achieves a

speedup of 1.4X to 7842X over incremental methods and 1.7X to 39X over the aggressive

approach. This time saving is achieved with no or minimal loss in anomaly detection

quality.

5.3 Related Work

Anomaly detection models span multiple paradigms such as supervised, semi-supervised,

and unsupervised models [112]. These models work on the intuition that anomalies are

sparse and fewer in the count. Compared to the state-of-the-art anomaly detection mod-

els, the performance of iForest is slightly inferior but still comparable [114]. However,

iForest is one of the fastest models for run-time efficiency.

5.3.1 Isolation Forest

Isolation Forest details are described in Chapter 2. Our work focuses on updating the

structure of each iT ree in response to the change in data. The data changes from Di

at timestamp Ti to Di+1 at timestamp Ti+1 with addition of ∆Di to Di.

1https://github.com/nidhiahl/I2F
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5.3.2 Baselines

We compare our work with two non-incremental approaches: Lazy and Aggressive.

In the Lazy approach, we do not update the model when new data arrives. In the

Aggressive approach, we simply rebuild the iForest from scratch using old as well as

new data. The Lazy approach will be the most efficient as it does not update the model.

However, the Lazy approach will have the worst quality of anomaly detection when the

new data causes the concept drift. The aggressive approach will be inefficient. However,

it is expected to have high-quality of anomaly detection as it uses all the available data

to build new iForest.

Lazy and aggressive approaches are two extremes, with the former optimized for effi-

ciency and the latter for quality. Incremental methods try to achieve the best of both

worlds by balancing efficiency and quality. A variety of incremental methods exist that

handle the concept drift introduced by adding new data for iForest and related methods.

We categorize the existing incremental methods based on how they update the model.

Methods in the first category replace the whole forest and build every tree of the forest

from scratch using the recent batch of data. iFASD is an example of a method in this

category[16]. Methods in the second category identify and replace a few bad-performing

trees from the forest. PCBIF is an example method in this category[17]. Methods in

the third category modify the existing trees based on the changes in the data. These

methods avoid the costly operation of completely replacing any tree. RRCF [18] and

SENCForest[19] are the example methods in this category. Please refer to Table 5.1

for a summary of these methods.

The first incremental approach, iFASD (isolation Forest for Anomaly detection in Stream-

ing Data), focuses only on new data[16],[115]. This method assumes that the anomaly

rate in the old and new data should be almost identical. The anomaly rate for a dataset

is the fraction of data labeled as an anomaly by the model. If the anomaly rate for

the new data is significantly higher than the old data, then iFASD builds a new iForest

from scratch using the new data. This method uses the increase in the anomaly rate as

a signal for concept drift. However, it is not enough to detect all three concepts drifts
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Table 5.1: Comparison of existing approaches.

Method
Training

Data Type
Update
Type

Data required for
model update

Risk of
catastrophic
forgetting

Lazy Unlabelled No model update None Low

Aggressive Unlabelled
Build forest

from scratch for
complete data

Di+∆Di None

iFASD Unlabelled Replace Forest ∆Di High

PCBIF Unlabelled Replace few trees ∆Di Moderate

SENCForest Labelled Modify all trees ∆Di Low

RRCF Unlabelled Modify all trees ∆Di Moderate

I2Forest
(ours)

Unlabelled Modify all trees ∆Di Low

we want to address in our work. Also, iFASD loses knowledge about the old data when

it detects the drift. Therefore, iFASD is prone to catastrophic forgetting. Recently,

Togbe et al. tried to improve the iFASD algorithm by adding new strategies for concept

drift detection[116]. However, catastrophic forgetting remains the bottleneck for their

approach.

A more recent work, PCBIF (Performance Counter Based Isolation Forest), identifies

bad-performing isolation trees in the model[17]. It replaces only such trees in the existing

isolation forest. Their experimental results show that PCBIF performs similarly to

iFASD. With only selective replacement of isolation trees, PCBIF is more robust to

catastrophic forgetting than iFASD.

RRCF (Robust Random Cut Forest) [18] is an improved variant of isolation forest. It

adapts to the changing data by modifying every tree in the forest. However, it has two

main limitations. First, it updates the forest with an update size of one data point. We

have to update the forest for every single new data point, leading to a time-consuming

forest update process. Second, it targets only one type of concept drift: anomalies

occurring in new regions. All the incremental methods we have reviewed till now work

with unlabelled data. In contrast, SENCForest (Streaming Emerging New Classes

Forest)[19] needs labeled data. It is an improvisation of iForest that uses labels to store

information about existing classes in data. It also stores information about the feature
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space regions with anomalies in training data. It can detect incoming new anomalies

(CDI) and new normal (CDIII) but fails to adapt to the changes where old anomalies

become normal (CDII).

Considering various limitations of existing incremental methods, we had the following

goals while designing our approach I2Forest.

• Handle all three types of concept drifts (CDI, CDII, and CDIII).

• Maintain a balance between performance on old and new data. In other words,

perform well on new data while avoiding catastrophic forgetting over the old data.

• Efficient updates to the iForest in response to new data. In other words, update

iForest only once for the whole new data ∆Di

5.4 Incremental Isolation Forest

When the data changes from Di at timestamp Ti to Di+1 at timestamp Ti+1 with the

addition of ∆Di to Di, we have three options. First, a lazy option of using the old

iForest Fi built using Di at timestamp Ti. Second, an aggressive option of building

iForest Fi+1 using Di+1. The first option will have reduced performance for anomaly

detection if ∆Di causes concept drift. The second option will be able to handle the

concept drift but with the time delay of building Fi+1 from scratch. Instead, we provide

a third option of quickly updating the Fi to F ′
i+1 using only ∆Di. We should efficiently

change the structure of each iTree in response to the concept drift caused by ∆Di .

If anomalies in ∆Di occur in new regions of the feature space, then we should insert

corresponding new shallow leaf nodes in the iTree. If adding new points in ∆Di converts

existing anomalies to normal, we should replace corresponding shallow leaf nodes with

deep subtrees. If a new group of normal points is added in ∆Di, then we add newly

constructed deeper subtrees.

Our method I2Forest is divided across five algorithms explained in this section. Algo-

rithm 6 represents the overall flow of I2Forest where we update each isolation tree using

Algorithm 7. In Algorithm 7, we modify the structure of a specific isolation tree while
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Algorithm 6 I2Forest(∆D,Fi)

1: for each iTree Tm
i in Fi do

2: Select sample ∆Sm from ∆Di

3: updateITree(∆Sm,Tm
i )

4: end for

performing the breadth-first traversal of that tree. While performing the breadth-first

traversal, we can encounter two types of nodes: leaf and internal. Algorithm 8 explains

how we process a leaf node during the breadth-first traversal. Algorithm 9 details how

we process an internal node during the breadth-first traversal. While processing an

internal node, we might also need to update its left and right subtrees. Algorithm 10

explains how to update the left subtree of an internal node. The process to update the

right subtree is described in Algorithm 11.

Please refer to the Algorithm 6. Our I2Forest updates the Fi to F ′
i+1 using ∆Di.

To build Fi+1, the aggressive method would have selected the sample Si+1 of size

(|Si|/|Di|) ∗ |Di+1| for each iTree. To maintain this sampling ratio, we select a ran-

dom sample ∆S from ∆Di. We ensure that for each iTree, |Si+1| = |Si| + |∆S|. Now,

we insert ∆S in the iTree to update its structure. Data points in ∆S help us to estimate

if hyperrectangles corresponding to any node in the iTree need to be changed. Please

note that ∆S is selected independently for each iTree. With this update to the structure

of each iTree, we expect that the incremental iForest F ′
i+1 will perform similarly to the

iForest Fi+1.

Algorithm 7 updateITree(∆S, T )

1: T.root.newPoints = ∆S
2: //Add all points from ∆S to root node of iTree T
3: Create queue BFT
4: //Queue used for breadth first traversal of T
5: BFT.enqueue(T.root)
6: while BFT.notEmpty() do
7: N = BFT.dequeue
8: if N is leaf node then
9: updateLeaf(N , BFT )

10: else
11: updateInternalNode(N , BFT )
12: end if
13: end while
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Please refer to Algorithm 7. While updating the structure of an iTree, we first store new

sample points in the root node. Then, we perform the breadth-first traversal (BFT) of

the tree. At each node, we have two tasks to perform. First, decide if the split criteria

needs to be changed. Second, distribute the new sample points between the two child

nodes. While performing these two tasks, we differentiate the nodes into two categories:

leaf and internal.

Algorithm 8 updateLeaf(N,BFT )

1: if N.height == T.maxHeight then
2: //Height of isolation tree cannot exceed ⌈log2(|Si+1|)⌉
3: return
4: else
5: splitNode(N) //Node splitting same as in iForest. It will attach two child nodes

to N.
6: BFT.enqueue(N.leftChild)
7: BFT.enqueue(N.rightChild)
8: end if

Please refer to Algorithm 8. The leaf nodes already at the maximum height require

no further processing (Lines 1 to 3). There are no split criteria to change, and there

are no children. For the leaf nodes with a height less than the maximum, we need to

split them if they receive new sample points (Lines 4 to 8). This update will help us to

convert existing anomalous regions to normal by introducing deeper subtrees below the

existing leaf nodes. To continue the BFT, we need to add the newly created left and

right children to the BFT queue.

Figure 5.2 summarizes four possible cases while updating an internal node. Please

refer to Algorithm 9. At each internal node, the split criteria depend on minimum and

maximum values for the split attribute. With the arrival of new sample points, there

is no need to change the split criteria if there is no change in these values. We just

have to distribute the received sample points between the left and right child nodes.

Suppose we observe that at node N , the minimum value for the split attribute is reduced

due to the arrival of new sample points. In that case, we must update its left subtree

(Algorithm 10). We create a new node NL′ . This node becomes the left child of N .

It accommodates all the data points that would belong to the node NL and additional
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Algorithm 9 updateInternalNode(N,BFT )

1: if N.height == T.maxHeight then
2: Prune left and right subtrees at N .
3: //N becomes leaf node.
4: return
5: else
6: Distribute N.newPoints between N.left.newPoints and

N.right.newPoints using the split criteria chosen at N .
7: if N.SA.min ≤ N.newPoints.SA.min then
8: BFT.enqueue(N.leftChild)
9: else

10: updateLeftSubTree(N , BFT )
11: end if
12: if N.SA.max ≥ N.newPoints.SA.max then
13: BFT.enqueue(N.rightChild)
14: else
15: updateRightSubTree(N , BFT )
16: end if
17: end if

sample points having split attribute value less than the split criteria. The node NL′ is

split further into the original NL and a new node NL′′ . Here, the split attribute is the

same as the split attribute chosen for N . However, the split value is the minimum value

of the split attribute observed in node N before the arrival of the new sample points.

Similarly, if the maximum value of the split attribute at node N changes with the arrival

of new sample points, it is handled by updating the right subtree (Algorithm 11). The

algorithm is similar to that of updating the left subtree. Updating subtrees of internal

nodes will help us to identify new anomalous regions by introducing new shallow leaf

nodes.

The worst-case time complexity of constructing the iForest is O(S), where S is the

set of data points used to construct each iTree[4]. Each iTree is a binary tree. When

constructing any iTree, all the selected sample points initially belong to the root node.

In the worst case, each sample might belong to a different leaf node. Then, we will

have to construct |S| leaf nodes in the tree. For our method I2Forest, the worst case

time complexity is O(∆S), where ∆S is the sample selected from new data ∆Di. While

updating the structure of each iTree, we initially put all data points of ∆S into the root

node. In the worst case, these new points can introduce ∆S new leaf nodes.
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Algorithm 10 updateLeftSubTree(N)

1: NL = N.left
2: if NL.height == T.maxHeight then
3: return
4: end if
5: if NL is leaf node then
6: splitNode(NL)
7: BFT.enqueue(NL.left)
8: BFT.enqueue(NL.right)
9: else

10: NL′ = NL // Creating a copy of NL

11: N.left = NL′

12: NL′ .left = NL′′ // Creating new node NL′′

13: NL′ .right = NL

14: NL′ .SA = N.SA // SA is splitting attribute of the node NL′

15: NL′ .SV = N.SA.min // SV is splitting value of the node NL′

16: NL′ .SA.min = NL′ .newPoints.SA.min
17: BFT.enqueue(NL′′ )
18: BFT.enqueue(NL)
19: end if

5.5 Experiments

We evaluate our approach I2Forest through extensive experimental evaluation. First,

we will describe the datasets, followed by the experimental setup and discussion about

the results.

5.5.1 Datasets

We have performed experiments on a synthetic 2-dimensional dataset and five real-world

datasets. Four of the five real-world datasets (gassensor, shuttle, covtype, and poker)

are chosen based on a detailed study about benchmarking datasets for concept drift

handling algorithms [117]. The fifth real-world dataset (crop) is from the UCI Machine

Learning repository.

We also experimented with a synthetic dataset that we generated. It is a two-dimensional

dataset with 30030 data points. The dataset is plotted in Figure 5.1. The dataset con-

sists of five classes corresponding to five regions in the feature space. Three of the

five classes have 10000 data points each, and the other two have 15 data points each.

The gassensor dataset consists of 128 features from 16 chemical sensor observations
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Algorithm 11 updateRightSubTree(N)

1: NR = N.right
2: if NR.height == T.maxHeight then
3: return
4: end if
5: if NR is leaf node then
6: splitNode(NR)
7: BFT.enqueue(NR.left)
8: BFT.enqueue(NR.right)
9: else

10: NR′ = NR // Creating a copy of NR

11: N.right = NR′

12: NR′ .right = NR′′ // Creating new node NR′′

13: NR′ .left = NR

14: NR′ .SA = N.SA // SA is splitting attribute of the node
15: NR′ .SV = N.SA.max // SV is splitting value the node NR′

16: NR′ .SA.max = NL′ .newPoints.SA.max
17: BFT.enqueue(NR)
18: BFT.enqueue(NR′′ )
19: end if

collected over a period of three years in the gas delivery platform at the University

of California. There are 13910 instances, each belonging to one of the six gas types.

The shuttle dataset is a statlog dataset where each instance has nine numeric features

collected from the sensors’ measurements and belongs to one of the seven different

categories. The fcovtype dataset is a forest cover dataset from United State’s Forest

Service Information system. The dataset has a total of 581012 records. These records

are categorized into seven different categories. Each record has 54 attributes. These

attributes describe the various factors that impact vegetation on land cover. The poker

dataset is a poker-hand prediction dataset consisting of 1025010 belonging to 9 different

classes. It has ten integer attributes representing the rank and suit of each card in a

hand of 5 cards. The crop dataset is a temporal and optical-radar-based image dataset

for cropland classification. A total of 174 features (2*49 radar and 2*38 optical features)

facilitate 325834 records to be categorized in one of the seven crop categories. Please

refer to Table 5.2 for a brief summary of datasets.

The datasets chosen have at least five classes. Out of these five classes, at least three

have a significant number of data points. We must induce all three types of concept
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Figure 5.2: Updating an Internal Node. (Condition1=Line 7, Algorithm 4 Condi-
tion2=Line12, Algorithm 4)

drifts we are targeting. The CDI concept drift corresponds to the addition of anomalous

points in the new regions of the feature space. The CDII concept drift corresponds to

adding new points that convert old anomalies into normal points. The CDIII concept

drift corresponds to adding new normal points in new regions of feature space.

For experiments, we carefully construct two partitions Di as old data and ∆Di as

new data. A separate ∆Di is constructed for each concept drift type. Consider the five

classes in the dataset as A, B, C, D, and E. These classes are arranged in the descending

order of number of data points for each class in the dataset. Di consists of all the points

of the largest class A and a small fraction of class B and D. For CDI drift, ∆Di consists

of a small number of data points from class E as new anomalies. Similarly, for CDII

drift, ∆Di consists of all the points of class B, the second largest class in the dataset.

Di had some anomalies corresponding to class B. After introducing CDII concept drift,

they will be converted to normal data points. To introduce CDIII drift, ∆Di consists

of all points from the third largest class C. Points from class C will introduce a new

normal. Please refer to table 5.2 for details about the sizes of Di and ∆Di.
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Table 5.2: Dataset details

synthetic
gas

sensor
shuttle covtype poker crop

Attributes 2 128 9 54 10 174

|Di| 10030 3045 45620 283301 415626 85144

%anomaly
in Di

0.3 1.18 0.074 0.066 0.069 0.082

|∆Di| for CD-I
(All Anomaly)

15 30 50 200 100 35

|∆Di| for CD-II
(All Normal)

9085 2926 8903 211840 350526 75673

|∆Di| for CD-III
(All Normal)

10000 2565 3267 35745 39432 74067

5.5.2 Experimental Setup

Our experiments were carried out on a machine with Ubuntu 20.04.5 LTS operating

system and 16 GB RAM. Each forest structure that we built consisted of 100 iTrees.

For the construction of each iTree, the sample size was set to 256 or 1% of the input

data points, whichever is more. All results are averaged across five runs due to the

inherent randomization in constructing iForest. The anomaly rate for iFASD is set to

the original fraction of anomalies in old data Di. For SENCForest, the parameter s

is set to 30, as mentioned in the paper by the authors.

For a fair comparison, we train the respective underlying forest of each method over full

datasets Di and construct forest Fi for every baseline, then with the arrival of ∆D, each

of the Fi is updated to F
′
i+1. RRCF processes ∆Di point by point and updates the

model for each data point. PCBIF and iFASD process each point to detect drift and

select a sample form ∆Di to build trees from scratch. To create the same sized trees

as existing ones, the sample chosen from ∆Di will be the same size as in the existing

forest Fi. After adapting to the changes in ∆Di, the respective existing Fi updates to

its own F
′
i+1. Eventually, all the comparing approaches use their respective F

′
i+1 to find

anomalies in Di + ∆Di.
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Table 5.3: Running Time and AUC.

CDI CDII CDIII
Datsets Methods AUC Running

Time
Speedup by
I2Forest

AUC Running
Time

Speedup by
I2Forest

AUC Running
Time

Speedup by
I2Forest

synthetic

Lazy 0.578 0.328 0.327
Aggressive 0.584 0.124 10.7 0.447 0.19 1.7 0.62 0.19 1.8
iFASD 0.612 0.0022 0.2 0.619 0.252 2.3 0.502 0.143 1.4
PCBIF 0.593 0.036 3.1 0.918 10.591 97.2 0.685 9.197 89.3

SENCForest 0.607 0.041 3.5 0.513 0.28 2.6 0.63 0.279 2.7
RRCF 0.685 0.419 36.1 0.932 813.661 7464.8 0.693 807.807 7842.8
I2Forest 0.621 0.0116 1 0.916 0.109 1 0.683 0.103 1

gas
sensor

Lazy 0.749 0.379 0.62
Aggressive 0.795 0.845 9.9 0.422 0.866 1.9 0.600 0.866 2.3
iFASD 0.740 0.0003 0.0004 0.324 0.033 0.1 0.562 0.030 0.1
PCBIF 0.722 0.55 6.4 0.447 3.988 8.6 0.473 3.455 9.2

SENCForest 0.756 0.34 4 0.685 0.805 1.7 0.729 0.738 2
RRCF 0.620 0.836 9.8 0.251 134.819 289.3 0.452 118.425 315
I2Forest 0.789 0.085 1 0.484 0.466 1 0.67 0.376 1

shuttle

Lazy 0.951 0.940 0.921
Aggressive 0.957 0.410 12.4 0.973 0.517 4.7 0.931 0.441 4.6
iFASD 0.160 0.012 0.4 0.821 0.219 2 0.787 0.099 1
PCBIF 0.916 0.038 1.2 0.795 9.051 81.5 0.825 2.408 25.1

SENCForest 0.859 0.011 0.3 0.968 0.385 3.5 0.966 0.150 1.6
RRCF 0.98 0.772 23.4 0.75 685.027 6171.4 0.775 318.739 3320.2
I2Forest 0.988 0.033 1 0.971 0.111 1 0.973 0.096 1

covtype

Lazy 0.784 0.524 0.539
Aggressive 0.802 8.189 39 0.591 16.026 6 0.571 9.241 17
iFASD 0.251 0.37 1.8 0.688 5.529 2.1 0.502 1.323 2.4
PCBIF 0.500 2.923 13.9 0.494 283.028 106.4 0.502 48.087 88.4

SENCForest 0.739 0.983 4.7 0.629 37.250 14 0.581 4.857 8.9
RRCF 0.797 3.23 15.2 NA NA NA 0.53 25021.5 45995
I2Forest 0.808 0.212 1 0.589 2.66 1 0.574 0.544 1

poker

Lazy 0.775 0.426 0.560
Aggressive 0.778 4.870 26.6 0.443 9.141 2.2 0.564 5.343 8
iFASD 0.35 0.315 1.7 0.597 20.417 5 0.542 3.168 4.8
PCBIF 0.614 1.23 6.7 0.498 479.633 117.8 0.513 51.711 77.9

SENCForest 0.803 0.40 2.2 0.545 30.706 7.5 0.599 3.139 4.7
RRCF 0.80 6.427 35.1 NA NA NA 0.541 27602.4 41569.8
I2Forest 0.799 0.183 1 0.542 4.071 1 0.569 0.664 1

crop

Lazy 0.994 0.997 0.961
Aggressive 0.994 4.586 19.9 0.993 10.750 5.9 0.983 10.736 6.3
iFASD 0.237 0.102 0.4 0.913 1.562 0.9 0.958 1.506 0.9
PCBIF 0.465 0.372 1.6 0.405 106.567 58.8 0.419 105.199 61.4

SENCForest 0.995 0.325 1.4 0.997 22.421 12.4 0.989 22.936 13.4
RRCF 0.99 0.981 4.1 0.511 5821 3210.7 0.653 2993.3 1720.2
I2Forest 0.996 0.236 1 0.998 1.813 1 0.974 1.714 1
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5.5.3 Results

We compare I2Forest against two extreme approaches (Lazy and Aggressive) and four

incremental approaches (iFASD, PCBIF , RRCF , and SENCForest) described in Sec-

tion 5.3. We want to compare these methods for all three types of concept drifts (CDI,

CDII, and CDIII). We are specifically interested in evaluating the success of I2Forest

for the three design goals mentioned in Section 5.3. To compare the efficiency, we mea-

sure the time required to update the model using each competing method. To compare

the quality, we measure the AUC (Area Under the ROC Curve) score for the anomaly

detection task using each competing method. Please refer to Table 5.3 for all experi-

mental results.

Comparison with the Lazy approach

The running time column for the Lazy approach is blank because it does not update

the model at all. Therefore, we cannot compute the speed up of I2Forest over the Lazy

approach. The AUC score for I2Forest is better than the Lazy approach for all three

concept drifts across all six datasets. This observation confirms the intuition that the

old model needs to be updated when new data introduces concept drift.

Comparison to the Aggressive approach

The Aggressive approach completely rebuilds the whole Isolation Forest using the old

and new data. Compared to the I2Forest, we expect that its running time will be

higher. I2Forest is more efficient than the Aggressive approach for all three concept

drifts across all six datasets. The relative size of ∆Di with respect to Di plays a key

role in deciding the speed that I2Forest can achieve. A larger size of ∆Di means that

the I2Forest needs to do more updates to the structure of each iTree. Concept drifts of

type CDII and CDIII represent this scenario. In such a case, the speed-up of I2Forest

over the Aggressive approach is lower. In our experiments, it is in the range of 1.6X to

6X for CDII, and the CDIII speed-up range is from 1.8X to 17X. For the CDI update,

the relative size of ∆Di is relatively small as it only introduces new anomalies. In such
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a case, I2Forest needs to make minimal changes to the structure of each iTree. As a

result, the speed-up of I2Forest is in the range of 10.7X to 39X for CDI update.

The aggressive approach has access to the old and new data while rebuilding the tree.

Intuitively, we expect it to beat the I2Forest for the anomaly detection quality easily.

However, the results are contrary. For CDI updates, I2Forest has a better AUC score for

all datasets except the gas sensor dataset. Moreover, even for the gas sensor dataset,

the AUC score of I2Forest is only marginally lower than the Aggressive approach. For

CDII and CDIII updates, I2Forest can achieve a better AUC score for some datasets.

This surprising success of I2Forest for quality over the Aggressive approach can be

explained by the selective updates that I2Forest performs. With old data Di, we already

have a good model Fi. I2Forest makes only minimal changes to it to accommodate

new data ∆Di. As a result, it is able to maintain most of the performance on old data,

and it performs well over the new data. In contrast, the Aggressive approach has to

establish a good model for all the data in a single attempt.

Comparison with iFASD,

When new data ∆Di arrives, iFASD behaves like the Aggressive approach if it detects the

concept drift. Therefore, we can observe that the running time of iFASD is sometimes

higher than I2Forest. However, when iFASD fails to detect the concept drift, it behaves

like the Lazy approach. In such a scenario, the running time of iFASD is lower than

I2Forest.

Whenever iFASD runs faster than I2Forest, its AUC score is always lower than I2Forest.

This result is expected as iFASD is just replicating the Lazy approach. In contrast,

when iFASD runs slower than I2Forest, it sometimes achieves a higher AUC score than

I2Forest. This observation tallies with the behavior of the Aggressive approach.

Comparison with PCBIF

PCBIF is a three-step method. First, it detects the concept drift. Second, it identifies

bad-performing trees. Third, it replaces such trees. The computational overheads of

this three-step approach are high. As a result, I2Forest is always faster than PCBIF .

Updates in I2Forest are more focused on handling the concept drift as compared to the

coarse grain updates of PCBIF . Except for the synthetic dataset, the AUC score of
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I2Forest is always higher than PCBIF . Even for the synthetic dataset, the I2Forest

AUC score is only marginally lower than PCBIF .

Comparison with SENCForest,

When the new anomalies are added during the CDI updates, SENCForest does not

change the structure of the tree. It just updates its anomaly score mechanism in response

to new data in the CDI update. Hence, for CDI updates, SENCForest sometimes

runs faster than I2Forest. The tree structure update process in SENCForest is far

more complex than the I2Forest. During the CDII and CDIII updates, the update

size is large. This large update size triggers the tree structure update mechanism of

SENCForest. As a result, the running time of SENCForest is always higher than

I2Forest for CDII and CDIII updates.

For the AUC score, I2Forest is able to beat SENCForest during CDI updates for five

out of the six datasets. For the poker dataset, their AUC scores are comparable during

the CDI update. However, during CDII and CDIII updates, there is no clear winner

between SENCForest and I2Forest for the AUC score. Both methods update the tree

structure in their own way. Nevertheless, the primary limitation of the SENCForest

is that it needs labeled data for training. All other methods can work with unlabelled

data for training.

Comparison with RRCF

RRCF updates the tree structure in response to every single data point in the new data

∆Di. Therefore, RRCF is the most time-consuming baseline among all the compared

methods. For the two largest datasets in our experiments (covtype and poker), RRCF

did not finish the update even after twenty-four hours for the CDII update. Therefore,

we have not mentioned the results for RRCF for these two datasets for the CDII update.

Tree structure updates for every single new data point help RRCF to perform well

on CDI updates. Its performance is comparable to I2Forest. However, for CDII and

CDIII updates, RRCF performance degrades as it is not designed to handle CDII and

CDIII updates.
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5.6 Conclusion and Future Work

In this chapter, we have presented an incremental algorithm I2Forest. It quickly up-

dates the existing iForest model in response to the arrival of the new data. I2Forest

handles three types of concept drifts. We have compared our algorithm with six base-

lines. The experimental results show the trade-offs that exist between various incre-

mental methods. This work can be further improved in two ways. First, we can identify

which updates to the iTree structure matter the most to improve the anomaly detection

performance. The second possible direction is to check whether the new data introduces

any concept drift. If there is no concept drift, then there should not be any change to

the iTree structure.

;;=8=<<
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In this thesis, we proposed Isolation Forest-based approaches to prune the redundant

computations. We focused on three tasks: clustering, anomaly detection, and model

update. The major challenge while pruning the redundant computations was maintain-

ing the quality of the downstream tasks. Our three research contributions successfully

pruned the redundant computation without any significant loss in quality.

In Chapter 3, we prune redundant computation when the machine learning application

requires computation of all-pair MBD. We proposed an algorithm (fMBD) to compute

all-pair MBD faster by optimizing the order of distance computation using Isolation

Forest. Our algorithm fMBD computes exact distances without any approximation.

The proposed fMBD enables clustering and anomaly detection tasks to execute 2X to

5X faster with the same quality.

In Chapter 4, we prune the redundant computation when a mass-based clustering al-

gorithm only requires a small fraction of all-pair distances. We proposed an algorithm

sMBScan that identifies a superset of necessary data point pairs out of all
(
n
2

)
pairs. We

compute MBD only for these identified pairs. The superset includes all of the required

data point pairs. As a result, there is no loss in the clustering quality. Our sMBScan

algorithm saves up to 53X time and up to 96% of memory over the existing MBScan

algorithm.
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In Chapter 5, we selectively update the existing Isolation Forest structure to handle

the concept drift. We proposed I2Forest that quickly updates each tree in the forest

to imitate the model constructed with both old and new data. The proposed approach

quickly updates the model with minimal loss in the anomaly detection quality.

6.1 Future Directions

In conclusion our thesis is about making Isolation Forest based unsupervised machine

learning algorithms efficient by reducing execution time or memory requirement. In line

with the same objective, we discuss the future scope of improvement of the algorithms

discussed in the thesis. In addition, we discuss a few other directions we can effectively

explore for efficient machine learning utilizing Isolation Forest.

1. Incorporating Parallelization: All the algorithms discussed in this thesis are

implemented in a serial manner. A further scope of efficiency improvement lies

in incorporating parallelization at various stages of the algorithms. The potential

stages of parallelization include i) the construction of Isolation Forests across all

three algorithms, (ii) the computation of mass-based distances in sMBSCAN and

fMBD, and (iii) incremental updates to isolation trees in I2Forest. With this

improvement, the running time of the algorithm will be equivalent to that of an

Isolation forest consisting of a single isolation tree.

2. Enhancing Density-Based Clustering and Nearest Neighbor based Tasks:

Our research in sMBSCAN demonstrates the efficacy of using Isolation Forest

structures to efficiently identify mass-based distances below a given threshold

in density-based clustering. Extending this approach to other clustering meth-

ods, such as Density Peak Clustering, presents an exciting avenue for future ex-

ploration. Beyond clustering, the Isolation Forest structure also holds the po-

tential for efficiently identifying k-nearest neighbors, which is fundamental to

many machine learning and data mining applications. Hence, on similar lines

of sMBSCAN , many other algorithms can be improved using isolation forest
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structure.

3. Theoretical Exploration of Mass-Based Distance (MBD) as a Metric:

With respect to MBD, this thesis improves the efficiency of the downstream data

mining tasks by targeting optimization opportunities using the isolation forest

structure. However, exploring the theoretical aspects of mass-based distances has

an interesting research scope. Research in this direction will help in answering

questions like, Can we approximate the MBD similar to Euclidean distances or

any other metric using triangle inequality and optimizations? In our primary ob-

servations, MBD is observed to follow triangle inequality; however, it is interesting

to dive deeper and research for theoretic justifications.

4. Representation Learning and Self-Supervised Learning (SSL): Isolation

Forests and related techniques, such as isolation kernels, could contribute signifi-

cantly to representation learning in deep learning models. A particularly promising

direction is their application in contrastive learning-based self-supervised learning

(SSL) approaches. In the context of tabular data, where, unlike images, text,

or speech, there is no inherent structural consistency across datasets, Isolation

Forest-based methods could play a crucial role in defining positive and negative

sample pairs for contrastive learning. SSL for tabular data remains an underex-

plored research area, and integrating Isolation Forest techniques into this domain

could lead to novel advancements.

5. Incremental Learning in Deep Learning Models: Incremental updates to

machine learning models are becoming increasingly critical, especially in the con-

text of large-scale deep learning models. The cost, time, and energy consumption

associated with retraining such models pose significant challenges, including envi-

ronmental concerns related to carbon emissions. Our I2Forest approach, which

focuses on updating only the necessary parts of the model, presents a potential so-

lution for efficient incremental learning in deep learning architectures. Exploring

this approach further could lead to substantial improvements in resource-efficient

model updates.
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