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Abstract

Many ML algorithms have common redundancies that make them impractical for large
datasets. The overarching goal of this thesis is to prune the redundant computations
with minimal loss in the quality of the downstream tasks. This dissertation focuses on
three unsupervised machine-learning tasks: clustering, anomaly detection, and model
update. We utilize the Isolation Forest data structure as a tool to improve efficiency
for all three tasks. This data structure was initially developed to perform anomaly
detection task in an unsupervised manner.

Specifically, we focus on the following three scenarios: 1. When an application needs
all-pair distances: How to compute all-pair distances faster by optimizing the order of
distance computation? 2. When an application needs only a subset of all-pair distances:
How do we quickly identify the required subset of all pairs? 3. When new data causes
concept drift: How to update the model quickly?

For the first scenario, we develop an algorithm: fast MBD (fM BD) that computes all-
pair distances with up to 5X speed-up. Our fM BD algorithm has no approximation or
heuristic, and it computes the exact distance for each data point pair. We demonstrate
the effectiveness of the fM BD algorithm with clustering and anomaly detection applica-
tions. For the second scenario, we develop a scalable M BScan (sM BScan) clustering
algorithm that selectively computes distances between data point pairs. Our algorithm
achieves up to 53X speed up with up to 96% reduction in the memory footprint and
no loss in the clustering quality. For the third scenario, we develop an incremental
Isolation Forest (I?Forest) that quickly updates the Isolation Forest data structure in
response to the arrival of new data. I?Forest is particularly effective when the new data
causes concept drift. I?Forest has significantly lower training time than retraining the
model from scratch. I?Forest also performs better than other incremental approaches

for model update.
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Introduction

1.1 Overview

This dissertation presents efficient algorithms for mass-based clustering [1], anomaly
detection [2], and model update in response to new data [3]. Our primary research con-
tribution is to effectively identify and avoid redundant computation without impacting
the quality of output. All our methods utilize Isolation Forest (iForest) [4] as the

underlying data structure and tool to enhance efficiency.

Machine learning algorithms are used across various real-world applications, in-
cluding healthcare, finance, marketing, manufacturing, transportation, cybersecurity,
agriculture, retail, education, entertainment, and smart cities. However, efficiently scal-
ing these algorithms for large-scale data presents a significant challenge. Additionally,
the emergence of new data can introduce concept drift, causing model performance to
degrade and necessitating frequent retraining. Redundant computation can be iden-
tified and minimized to enhance efficiency while maintaining the effectiveness of the
algorithms [5],[6],[7]. Researchers have long focused on bridging the gap between effec-
tiveness and efficiency through various approaches. Techniques such as model simpli-
fication, computational optimization, and computational parallelization [5] have been

widely adopted for the efficiency of machine learning algorithms in handling large-scale



1.2. PROBLEM DEFINITION

and dynamic data. These solutions have been applied across numerous tasks, including
classification [8],[9],[10] clustering [11],[12], anomaly detection, and incremental model

updates to manage concept drift [13].

1.2 Problem Definition

Isolation Forest Based Algorithms
|

v v v
Anomaly Detection Mass-Based Clustering Model Update
Challenge: All-pairwise Challenge: All-pairwise distance Challenge: Underlying data
distance computation v computation pattern changes
e A 4
Contribution1: Contribution?2: Contribution3:
1.Fast way to compute all- L.1dentify the important 1.Quickly ~update ~ the
pair distances. pairs for mass-based structure of isolation
2We  compute  exact clustering, out of all (}) forest to adapt to

distances without
approximation or error.
3.Improved efficiency of
clustering and anomaly

changes in new data.
2. Evaluated the updated
model for anomaly
detection task.

pairs in a dataset.
2.Speeds up individual
distance computation.

detection tasks without « Time saving ) )

any impact on quality. - Memory saving ‘ Tlme_SE_alvmg

o Ti . « No loss in qualit * Negligible loss of
Ime saving q y quality

* No loss in quality

Figure 1.1: An Overview of thesis contributions.

Redundancies in ML algorithms make them impractical for large-scale datasets. Pruning
these redundant computations with minimal loss in the quality of the downstream tasks
improves the computational efficiency of the task. This dissertation focuses on three
unsupervised machine-learning tasks: clustering [14], [15], anomaly detection [2], and
model update, refer to figure 1.1 for details. These algorithms have Isolation Forest
working at the core of these tasks. All the thesis contributions optimizations focus on
the Isolation Forest (iForest) structure. In particular, the work focuses on the following

three scenarios.

1. When an application needs all-pair distances: How to compute all-pair distances
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faster by optimizing the order of distance computation?

2. When an application needs only a subset of all-pair distances: How to identify the

required subset of all pairs?
3. When new data causes concept drift: How to quickly update the model?

We focus on the redundancies in Mass-Based Distance (MBD) computations using Isola-
tion forest [4]. MBD is used for downstream tasks of Mass-based clustering and nearest
neighbor-based anomaly detection [1]. Model performance degrades when new data
causes concept drift. We also explore how to update the model efficiently to deal with
this concept drift. Please refer to the summary of the best existing solutions and their

bottleneck in table 1.1.

Problem Best Existing Solution BottleNeck

ML application needs Naive all-pair Pair-major order MBD

all-pair MBD MBD [1] computation computation requires 2 passes
using Isolation Forest over iTree for each pair.

ML applications needs Naive all-pair Compute

a subset of all-pairs MBD [1] computation Unnecessary MBD.

MBD using Isolation Forest

ML applications require | Incremental Algorithms Make coarse grained

model updates. using iForest [16], [17], [18], [19] | updates using new data.

Table 1.1: Summary of existing approaches and their bottlenecks.

1.3 Research Contributions

In this dissertation, we make three contributions to improve the efficiency of Isolation
Forest-based unsupervised ML algorithms. Please refer to Table 1.2 for a summary of

our solutions to the bottlenecks mentioned in Table 1.1

1.3.1 Contribution 1: Fast Computation of All-Pair Mass-based Dis-
tances (fMBD)

Our first contribution focuses on a specific data-dependent distance measure: Mass-

Based Distance (MBD). MBD computation is based on a well-known data structure,
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Problem Our solution Downstream | Results
[PUBLISHED AT)] Task
ML Application | fMBD [UNDER REVIEW]: | Clustering
needs Tree-major order of & Upto 5X speedup.
all-pair MBD MBD computation requires Anomaly No loss in quality.
a single pass over each iTree Detection
for all pairs.
ML Application | sMBSCAN [CIKM 2022]: Upto 53X speedup.
needs a subset of | 1. Identify important pairs Clustering Upto 22X memory
all pairs MBD 2. Speed up each saving.
MBD computation No loss in quality.
ML Applications | I?Forest [CoDS-COMAD24]: | Anomaly Upto 85X speedup.
require Make fine grained Detection Minimal loss
model updates. updates to the model. in quality.

Table 1.2: Summary of thesis contributions.

Isolation Forest. We observe that clustering and anomaly detection methods that use
MBD require all-pair distance computation. This distance computation accounts for
more than 93% of the running time. We develop a method fast MBD (fMBD) to
speed up all-pair MBD computations. Our method computes the same MBD without
any error or approximation. We have performed experiments using popular real-world
datasets (12 for clustering and 5 for anomaly detection). With fMBD, we achieve a

speedup of 2X to 5X without any loss of performance over both tasks.

1.3.2 Contribution 2: Scaling Up Mass-Based Clustering (sM BScan)

Our second contribution addresses the problem of scaling up the mass-based clustering
paradigm to handle large datasets. The existing algorithm MBScan computes and stores
all pairwise distances, resulting in quadratic time and space complexity. However, we
observe that mass-based clustering requires information about only a tiny fraction of
all possible data point pairs. We propose three optimizations to MBScan for quickly
finding such pairs and computing their distances. We empirically evaluate our work on
ten real-world and synthetic datasets. Our experiments show that our approach results

in fast and memory-efficient clustering with no loss in the quality of clusters.
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1.3.3 Contribution 3: Incremental Isolation Forest (/?Forest)

Our third contribution addresses the problem of updating Isolation Forest in response
to new data. The update becomes even more critical when the new data causes con-
cept drift. A lazy solution is to keep using the old model. However, it will result in
inferior performance. An aggressive solution is to rebuild the model from scratch. This
solution will improve the model performance at the cost of time spent in retraining the
model. We design an incremental solution that quickly updates the existing model to
match the performance of the aggressive solution. We have chosen anomaly detection
as the downstream task to evaluate the quality of the updated model. Our incremental
approach results in a minimal loss in the model’s performance for the downstream task

while significantly reducing the running time.

1.4 Outline of the Thesis

The thesis comprises six chapters. The Isolation Forest and related work is described
in Chapter 2. We also survey the domain-specific applications and variants of Isolation
Forest in the same chapter. The following three chapters describe each of our research
contributions: fMBD (Chapter 3), sM BSCAN (Chapter 4), and I?Forest (Chapter

5). In Chapter 6, we conclude the thesis and discuss possible future work.
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Background and Literature Study

This chapter starts with a brief summary of existing clustering and anomaly detection
algorithms. Later it presents details of the Isolation Forest necessary to understand the
thesis contributions. Isolation Forest (iForest) is a randomized full binary tree-based
data structure introduced by Liu et al. in 2008 for anomaly detection [4]. iForest
is an ensemble of full binary trees known as Isolation Trees (iTree) because they can
isolate anomalies from the rest of the data. The underlying idea of iForest is to isolate
anomalies by recursively partitioning data points. Anomalies being “few and different”
tend to isolate in lesser splits than the normal data points. Isolation forest utilizes the
concepts of sub-sampling and randomization and provides a near-linear time complexity

and a small memory footprint requirement.

2.1 Clustering and Anomaly Detection Literature

This section summarizes the existing literature in the domain of clustering and anomaly
detection algorithms. This brief summary helps to understand the domain of clustering
and anomaly detection and will lay a foundation for the efficient algorithms focused on

Mass(or density) based clustering and Isolation forest-based anomaly detection.



2.1. CLUSTERING AND ANOMALY DETECTION LITERATURE

2.1.1 Clustering Algorithms

Clustering algorithms can be broadly categorized into several paradigms based on their
approach to grouping data. Partitioning-based methods like k-Means [20] divide data
into a fixed number of clusters by optimizing a similarity criterion, whereas hierarchical
clustering [21] builds a tree-like structure without requiring a predefined number of clus-
ters. Density-based techniques, such as DBSCAN [15], detect clusters based on dense
regions and are effective in handling noise and arbitrary shapes. MBSCAN [1], which
introduces mass-based distances, is a mass-based clustering algorithm that extends DB-
SCAN by handling multiple density levels within the same dataset. It dynamically
adjusts the neighborhood radius to detect clusters of varying densities while effectively
identifying noise points. Grid-based clustering, exemplified by CLIQUE [21], partitions
the data space into grid cells, making it efficient for large and high-dimensional datasets.
Model-based approaches, like Gaussian Mixture Models [22], assume an underlying prob-
ability distribution and optimize parameters to fit the data. Spectral clustering [23] uti-
lizes graph-based techniques to find complex cluster structures, often performing well
on non-linearly separable data. For high-dimensional data, subspace clustering methods
such as PROCLUS [24] identify clusters within relevant feature subsets. Recently, deep
learning-based clustering has emerged, leveraging neural networks for feature learning
and clustering large-scale, high-dimensional data [25]. Each paradigm has strengths and

limitations, making it suitable for varying requirements.

2.1.2 Anomaly Detection Algorithms

Anomaly detection algorithms can be broadly categorized into several paradigms based
on their underlying approach to identifying deviations from normal patterns. Statistical
methods [26] assume a probabilistic distribution of normal data and detect anomalies as
low-probability instances, with techniques such as Gaussian models and hypothesis test-
ing. Distance-based methods [27] identify anomalies by measuring their distance from
other points, with k-Nearest Neighbors (k-NN) and DBSCAN being common choices.

Density-based approaches, such as Local Outlier Factor (LOF) [28], estimate local data
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density and flag points in sparse regions as anomalies. Clustering-based techniques [29]
utilize clustering algorithms like k-Means and DBSCAN, where anomalies are iden-
tified as points that do not belong to any dense cluster or are far from cluster cen-
troids. Classification-based approaches, including One-Class SVM [30] train models
to distinguish normal from anomalous instances using labels. Isolation Forest [4], a
model-based approach that learns the anomaly structure without using labels, unlike
other approaches that learn the structure of normal datapoints. Reconstruction-based
methods, particularly autoencoders [31] and PCA [32], rely on the idea that anomalies
have higher reconstruction errors when mapped back from a lower-dimensional space.
Graph-based approaches [33] detect anomalies in networked data by analyzing structural
irregularities. Finally, deep learning-based techniques, such as LSTMs for time-series
data [34] and self-supervised learning [35], leverage neural networks to model complex
data distributions and detect outliers. The choice of technique depends on data char-

acteristics, interpretability needs, and computational constraints.

2.2 Isolation Forest Construction

iForest is an ensemble of iTrees. Each iT'ree is a proper binary tree. iForest requires
two input parameters: the number of iTrees (K) and the sub-sample size (|S|). iForest
has linear time complexity and thus scales well for large datasets. For a given input
dataset D; at timestamp T;, to build an iForest F; consisting of K iTrees, each iIree
is built independently. For each iTree, a random sample of size | S| is selected from D;.
The maximum height of the iTree is restricted to [loga2(|S])].

Please refer to Figure 2.1. The iTree creation starts with the root node. Initially, all
the sampled data points belong to the root node. The root node is partitioned into
left and right children. The splitting criteria for the root node consist of two parts:
attribute and value. The attribute for splitting is chosen randomly out of all attributes.
Let the selected attribute for splitting be A. Amongst all the data points belonging to
the root node, let A4 and A, be the maximum and minimum values observed for

the attribute A. The value for splitting is chosen randomly between A,nq. and Apin.



2.3. ISOLATION FOREST: A TOOL FOR PATTERN IDENTIFICATION

This splitting procedure is carried out recursively till we reach the maximum height of
[log2(]S])] or the node contains only a single data point. The generated tree structure
and each split criteria are used as the ¢Tree.

After the tree construction, the whole dataset D; is inserted into the tree. Each data
point is moved to the appropriate leaf node in the tree. Please note that during this
phase, the structure of the tree is not altered. A data point belongs to each node on the
path from its leaf node to the root node. The mass of any node in the tree is the number
of data points that belong to the node. For example, in any Isolation Tree, the mass of
the root node is always n as the whole dataset D belongs to the root node. Isolation
Forest was initially designed for anomaly detection task. Each node of the iTree is
associated with a hyperrectangle in the feature space. Typically, anomalies belong to
the shallow leaf nodes of iTree. Hyperrectangles corresponding to shallow leaf nodes

are considered as anomalous regions. Rest all regions are considered as normal.

2.3 Isolation Forest: A tool for pattern identification

Isolation Forest performs recursive random partitioning of a dataset and arranges the
whole dataset such that similar points fall in one partition and otherwise in different
partitions. In other words, an isolation forest creates imperfect random groups of points
in the datasets. Application of isolation forest to downstream tasks like anomaly de-
tection, density estimation, and (dis)similarity computation shows that these partitions
provide insights into the data patterns and become an efficient tool for unsupervised

machine learning.

2.3.1 Anomaly Score Computation

Isolation Forest was originally designed for anomaly detection. Liu et al., in the original
isolation forest paper [4], call it a model-based anomaly detection method that isolates
the anomalies in the shallow leaf nodes of the tree. The authors define an anomaly
score to quantify the isolation measure of each point. The anomaly score is normalized

between zero and one. The anomaly score of a point is a function of path length from

10



2. BACKGROUND AND LITERATURE STUDY

the root of the iTree to the associated leaf of the point. Please refer to Algorithm 3
in [4] for details about how to compute the anomaly score. Anomalous points have high
anomaly scores close to one, and normal points have low anomaly scores close to zero.
A threshold is decided using domain knowledge about the dataset to classify the data
points. Any point x with an anomaly score higher than the threshold is predicted as an
anomaly. The ideal threshold suggested is 0.5, though it varies significantly for different

datasets.

2.3.2 Data Dependent Distance Computation

Later, Ting et al. in 2016 utilized isolation forest for data-dependent distance computa-
tion [1]. The distance is called Mass-Based Distance (MBD) and changes with a change
in the probability mass of the region. MBD and other data-dependent distance mea-
sures are closer to the human notion of similarity [36] between two objects. Mass-Based
Distance computation using isolation forest requires inserting complete dataset D in
each iTree to prepare for distance computation. The total number of points that pass
through to a node is known as the size or mass of the node. For a dataset D, consider
an Isolation Forest F' consisting of K Isolation Trees T1,7T5...Tk. For a data point pair

consisting of data points x and y, the MBD is calculated as defined in equation 2.1,

K
MBD(z,y) = % >  MBD;(z,y) (2.1)
i=1
MBD;(x,y) = Mass;(LCA(Leaf;(x), Leaf;(y))) (2.2)

where M BD;(x,y) is the mass-based distance computed using only one Isolation Tree
T;, Leaf;(x) returns the id of the leaf node that data point = belongs to in the Isolation
Tree T;, LCA(Nodel, Node2) returns the id of lowest common ancestor of nodes Node

and Node2, and Mass;(node) returns the mass of node in Isolation Tree T;.

11



2.4. DOMAIN SPECIFIC APPLICATIONS OF ISOLATION FOREST

2.4 Domain Specific Applications of Isolation Forest

Isolation Forest, known for its simplicity and effectiveness, has many applications across
diverse domains. Its capability of isolating few and different data points in datasets
makes it particularly useful in various scenarios. For instance, Isolation Forest is em-
ployed in Network Monitoring and Network Security systems to identify unusual traffic
patterns that may indicate network attacks or cybersecurity threats. Similarly, it mon-
itors and detects rare activities in Smart Homes or Industrial Internet of Things (IIoT)
applications and identifies compromised activities in smart grid and blockchain-based
intelligent systems. Isolation Forest has been extensively explored in the biomedical field
to detect rare diseases or anomalies in medical data. Its efficacy extends to the finance
and banking sectors, where it has been effectively utilized to detect fraudulent transac-
tions. Modern agricultural practices also benefit from Isolation Forest through disease
detection and monitoring. Additionally, it finds application in a wide spectrum of engi-
neering and manufacturing industries, including physics processes, semiconductor man-
ufacturing, wind energy harvesting, power generation plants, and marine engineering
processes, for monitoring equipment health and predicting failures by detecting unusual
environmental conditions. Furthermore, in the retail and e-commerce sectors, Isolation
Forest is employed to observe customer behaviors and monitor sales patterns, thereby
detecting unusual patterns that can benefit businesses. Intelligent transportation sys-
tems utilize Isolation Forest to detect traffic scene anomalies and identify anomalous

trajectories.

Moreover, Isolation Forest has been explored as a sub-component in combination
with neural network components for various NLP and vision applications related to
anomaly detection. Beyond these applications, Isolation Forest is also used for mon-
itoring computing servers and applications to detect unusual activity or performance
issues. Overall, the versatility and robustness of Isolation Forest make it a valuable tool

in numerous fields, demonstrating its extensive applicability and impact.
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2.4.1 Network Monitoring and Security

Network monitoring and security aspects have been extensively researched using Isola-
tion Forest. Specifically, intrusion detection has been addressed with data from various
network layers. For example, a study by Karev et al. [37] utilizes HTTP log data to
detect novel threats using Isolation Forest. Nadler et al. [38], and Ahmed et al. [39] in
different research employ Isolation Forest to analyze DNS logs, identifying DNS tunnel-
ing and low throughput data exfiltration malware and subsequently denying requests
to malicious domains. Another study by Siddiqui et al. [40] focuses on detecting cyber
attacks and generating explanations with human involvement.

Furthermore, researchers in [41],[42],[43],[44] have explored the application of Iso-
lation Forest for insider threat detection. In the context of cloud computing, Calheiros
et al. [45] addresses cloud monitoring and anomaly detection in cloud data centers.
Research by Vartouni et al. [46] also leverages Isolation Forest to detect various web
attacks by analyzing features extracted from HTTP traffic using autoencoder-based net-
works. Moreover, Ren et al. investigated isolation forest for data sampling by removing
outliers and subsequently performing hybrid data optimization for machine learning ap-
plications [47]. All the mentioned research highlights the versatility of Isolation Forest

in enhancing network security and monitoring across different contexts.

2.4.2 10T Applications

The Internet of Things (IoT) and edge devices have increasingly utilized Isolation For-
est across various applications. In smart home environments, Isolation Forest analyzes
pyroelectric infrared sensor data for detecting abnormal activities and novelties [48],
[49]. Additionally, it is employed for security monitoring [50]. In industrial IoT con-
texts, Isolation Forest has been explored for attack detection within industrial control
frameworks [51], predictive maintenance of sensors [52], and noise reduction from sensor
data [53]. Furthermore, Isolation Forest has been applied to detect botnets in IoT and
edge devices using a one-class classification approach by Bezerra et al. [54]. Researchers

have also utilized Isolation Forest to analyze Twitter bot networks for detecting bot
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behaviors [55] and for anomaly detection in smart audio sensors deployed in IoT edge
devices [56]. Another application of isolation forest in combination with PCA to detect
data integrity assault in smart grid communication networks was explored by Ahmed
et al. in 2019 [57]. These are a few examples of Isolation Forest enhancing security and

monitoring capabilities in IoT and edge computing environments.

2.4.3 Blockchain Security

Researchers have explored security and threat detection in Blockchain networks utilizing
Isolation Forest. For instance, Podgorelec et al., in their study [58], explored automated
signing and anomaly detection in blockchain transactions within the context of the
Ethereum public network. Maskey et al. [59] implement Isolation Forest for outlier
detection in a blockchain-based intelligent transportation system, ensuring security and

data integrity in smart cities.

2.4.4 Medicine and Bioinformatics

Isolation Forest has been utilized extensively by researchers in the biomedical field for
various applications. For instance, it has been employed to observe rare or anomalous
patterns to identify specific discrepancies in genome sequence datasets [60],[61]. It
has also been used to classify chest X-ray images for identifying COVID-19 cases [62]
and as a defense strategy against backdoor attacks in federated GAN networks for
medical images [63]. Additionally, Isolation Forest has been applied to detect Medicare
fraud [64]. These examples highlight the diverse applications of Isolation Forest in this

important domain.

2.4.5 Finance and Banking

Isolation Forest has been utilized in various applications within the financial technol-
ogy sector. For instance, it has been employed to generate user suspicion rankings for
detecting fraudulent activities in fund movements and Ripple network transactions in-

volving digital cryptocurrency [65]. In the fintech industry, isolation forest serves as an
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unsupervised anomaly detection approach in real-time transaction fraud detection sys-
tems [66]. Furthermore, in credit card fraud detection, isolation forest combined with
supervised machine learning techniques has proven effective in addressing this crucial

issue [67].

2.4.6 Agriculture

Isolation Forest has been explored for various agricultural applications. For instance,
Deng et al. [68] employed Isolation Forest to detect diseases in citrus orchards using
high-dimensional data captured by a UAV monitoring system. A study by Cejrowski
et al. [69] utilized Isolation Forest with contrastive autoencoders to identify hazardous
situations in honey-bee colonies. Additionally, Kansara et al. [70] demonstrated that
Isolation Forest was the most effective outlier detection algorithm for data cleaning in

the Indian Ayurvedic plant organ image dataset.

2.4.7 Engineering Applications

Isolation Forest has been widely explored in different engineering applications. In
physics research, it is employed to identify new physics events and anomalies at Large
Hadron Colliders [71],[72],[73]. In power engineering, isolation forest methods have been
utilized to segregate multi-source particle discharge signals in power equipment [74], de-
tect early-stage malfunctions in combined cycle power plants [75], and enhance deep
learning approaches for wind power prediction systems[76]. Monitoring and predicting
faulty conditions in marine machinery systems have also benefited from isolation forest
techniques [77]. Isolation forest algorithm has been applied to preprocess noisy data for
generating wind power curves by Wang et al. [78] to achieve effective anomaly detection
and fault discrimination in wind turbine gearboxes by Du et al. [79]. It detects anomalies
in optical emission spectroscopy data from semiconductor manufacturing processes [80],
thereby improving interpretability in high-dimensional datasets [81]. In the domain of
automated power consumption systems, isolation forest has been employed for outlier
removal before electricity price prediction [82] and for detecting anomalies in household

power consumption trends [83].
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2.4.8 Miscellaneous

Isolation forest has been applied across various domains beyond the scenarios mentioned
above. For instance, it detects fake reviews based on temporal patterns in product re-
view records on e-commerce platforms [84]. Anomalous user behavior over enterprise
datasets is also identified using isolation forest techniques . Furthermore, it has proven
effective in detecting disorientation in GPS trajectories of elderly individuals with cog-
nitive disorders [85]. In transportation systems, isolation forest is utilized to identify
abnormal events in intelligent driver assistance systems [86]. Additionally, it is studied
for anomaly detection in High-Performance Computing (HPC) systems, highlighting its
versatility and efficacy across various fields [87]. Sarria et al. [88] present a remote
sensing application of isolation forest for evaluating class separability for land cover

classification approaches.

2.5 Variants of Isolation Forest for Anomaly Detection

The original Isolation Forest algorithm has multiple components that introduce ran-
domization. It performs random sampling to choose a sample from the data. It also
randomly chooses the splitting attribute followed by a random choice of splitting value.
This randomization makes it resource-efficient. Researchers have explored different
directions to improve the effectiveness of Isolation Forest and make changes to this
randomized mechanism or modify the anomaly score computation.

Literature has variants of Isolation Forest where the splitting criterion of a node is
modified by adopting different concepts. Hariri et al. [89] have replaced the random
axis-parallel splits with random non-axis parallel splits that include more than one
attribute in the splitting decision. Another Isolation Forest variant by Liu et al. [90]
optimizes the non-axis parallel splits and proves to be effective for both scattered and
clustered anomalies. Tokovarov et al. [91] presented a probabilistic choice of split criteria
to generalize the random split criteria of Isolation Forest. Their Isolation Forest variant
reduces the possibility of poor-quality isolation trees in the ensemble.

Another set of Isolation Forest variants choose the split criteria in a more informed way
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using the distance between data points. These modifications are time-consuming due to
the requirement of the underlying distance computations. For Instance, Karczmarek et
al. [92] proposed a k-means-based Isolation Forest that predicts the number of divisions
at each node of the tree using k-means clustering. This variant performs better splits in
comparison to the vanilla Isolation Forest. Galka et al. [93] used the Minimal Spanning
Tree (MST) concept to merge the set of points and construct the Isolation Trees in a
bottom-up manner.

Some variants of Isolation Forest utilize hashing concepts. They use hashing to decide
the number of splits in every node of the tree. Zhang et al. [94] explored Locality
Sensitive Hashing (LSH) for splitting a node. Later, Xiang et al. [95] used order-
preserving hashing for splitting the nodes and providing robust anomaly detection.
Instead of changing the Isolation Forest construction, some variants alter the anomaly
score computation. For instance, Aryal et al. [96] used relative mass between points as
an anomaly score associated with the points and tried to improve the anomaly detection
quality. Similarly, Mensi et al. [97] explored a variety of neighborhood-based weighted
scores to points for anomaly detection using Isolation Forest.

To summarize, Isolation Forest is a useful and efficient data structure for anomaly
detection. It is well-adopted in various real-world applications. Isolation Forest is an

active topic of research.

I RS S 2 e
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Dataset(D), Sample Size, No. of iTrees (K)
Repeat K times

| Choose random sample (S) from D ‘

l

Construct iTree (full binary tree) T,
 Insert all |S| points in root of iTree
» Test the node for leaf node condition
» Single Point at the node
» Node at max height of tree, [log, (|S]]
» At each non-leaf node chose split attribute and split
value
» Recursively move each pointin S to leaf of the
iTree

iForest with K Trees

((a)) iForest construction steps

S$={1,2,3,4,5,6,7,8}
IS|=8

max. height =3
maxNodes = 15

Max. height of tree

((b)) iTree with an example sample set.

Figure 2.1: Steps of iForest Construction and an example iTree.
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Fast Computation of All-Pairs

Mass-based Distance

Chapter Highlights

e Computing Mass Based Distance (MBD) for all data point pairs is an operation

required for many machine learning algorithms.

e This work focuses on how to speed up the distance computation without intro-

ducing any approximation or error.

e We propose fast MBD (fM BD) algorithm to speed up the all-pairs MBD com-

putation.
e We evaluate fM BD for clustering and anomaly detection tasks.

e This research is under review in a peer-reviewed conference.

3.1 Abstract

Given a dataset with n data points, there are (72‘) possible data point pairs. Many ML
tasks require distance computation for all these data point pairs. This chapter focuses

on a specific data-dependent distance measure: Mass-Based Distance (MBD). MBD
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computation is based on a well-known data structure, Isolation Forest. We observe that
clustering and anomaly detection methods that use MBD require all-pairs distance com-
putation. This distance computation accounts for more than 93% of the running time.
To speed up the all-pairs MBD computations, we develop a method fast MBD (fM BD).
Our method computes the exact same MBD without any error or approximation. We
have performed experiments using popular real-world datasets (12 for clustering and 5
for anomaly detection). With fM BD, we achieve a speedup of 2X to 5X without any

loss of performance over both tasks.

3.2 Introduction

This chapter presents a fast and exact algorithm for the all-pairs distance computation
problem, using the Mass-Based Distance (MBD) [1] as the distance measure. Given a
dataset of n data points, the all-pairs distance computation is the problem of computing
distance for all (g) data point pairs. The problem is compute intensive as it requires
distance computation for O(n?) pairs. The all-pairs distance computation can become
the bottleneck for the downstream task if it consumes the majority of the running time.
One possible solution is to approximate the distance computation quickly. However,
such approximations introduce errors and affect the quality of downstream tasks. Our
goal is to compute the exact distance while reducing the running time of the algorithm.
MBD computation is based on a well-known data structure, Isolation Forest (iForest) [4].
iForest was initially designed for the task of anomaly detection. iForest is a collection
of Isolation Trees (iTree). Each iTree computes the distance for a data point pair
independently. MBD is the average distance across all iTrees. Each iTree is a full
binary tree built using a random sample of data. Within an iTree, each data point
belongs to a leaf node and all other nodes along the path from the root node to that
particular leaf node. The mass of a node in an iTree is the number of data points
that belong to the node. Distance between any two points in an iTree is the mass of
the lowest common ancestor (LCA) node of the two leaf nodes corresponding to the

two data points. MBD is a data-dependent distance measure. The distance between
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any two data points depends on the other data points in the dataset. MBD is shown
to have better quality than data-independent distance measures such as the Euclidean
distance[1].

The naive method for the all-pairs distance problem computes the distance for each data
point pair. Please refer to Algorithm 1. We have to visit each iTree (Z) times. For MBD,
it involves two steps. First, locate the leaf nodes of each data point. Second, compute
the LCA of two leaf nodes. We cannot speed up the individual MBD computation.
However, while computing all-pairs distance, there are two possible opportunities for
optimization. First, we can visit each iTree only once and compute the MBD component
for all data point pairs. Second, we can avoid the overhead of repeatedly locating the
leaf node for all data points. We propose an algorithm fast MBD (fMBD) that facilitates
both these optimizations to speed up the all-pairs distance computation. For complete
reproducibility, all our code and datasets are available publicly on the Web.!

Speeding up all-pairs distance computation will matter only if it accounts for a signif-
icant part of the total running time of a task. We experiment with two such tasks:
Density-based clustering and K-nearest neighbor-based anomaly detection. For both
tasks, all-pairs distance computation accounts for more than 93% of the running time.
With fMBD, we demonstrate that both tasks can achieve a speed-up of up to 5X. We
have experimented with a variety of real-world popular datasets for these tasks. There
is no loss in output quality with fMBD as the distance computation is exact. The main
research contribution of our work is to provide a fast algorithm for all-pairs distance

computation problem.

3.3 Related Work

Density Peak Clustering (DPC) [14] is a well-known and popular clustering algorithm.
It works in five steps. First, it computes all-pairs distances. Second, it computes the
density of each data point as the number of other data points having a distance below

a threshold to it. Third, it locates the nearest neighbor with a higher density (NNHD)

"Mttps://github.com/nidhiahl/fMBD
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for each data point. For each point, it also records the distance to NNHD. The point
with the highest density will not have any NNHD. For such a data point, the distance
to NNHD is considered infinity. Number of clusters K is a parameter to the algorithm.
Fourth, K data points are chosen as seeds that represent the K cluster. Seeds are
the points that have high density and high distance to NNHD. Fifth, each data point
is assigned to the cluster of its NNHD. The original DPC algorithm uses Euclidean
distance for density computation. In our work, we have replaced the Euclidean distance
with MBD.

K nearest neighbor (KNN) based anomaly detection [2] is a three step process. First,
it computes all-pairs distances. Second, it records the distance to the Kth nearest
neighbor for each data point. Third, a data point is considered as an anomaly if its
KNN distance is above a threshold. Defining an appropriate threshold is tricky and
requires domain knowledge.

There are three steps in the naive solution for the all-pairs distance problem while using

the MBD [1]. Please refer to Algorithm 1.

Algorithm 1 naive All-Pairs MBD (iForest, M, D)

1: //We assume that the iForest is already constructed.

2: //Maxtrix M is an nXn matrix that stores all-pairs distances.
3: Insert all data points in D into each iTree of iForest.

4: Initialize all elements of M with zero.

5: for each data point x; (i=1 to n) in D do

6: for each data point z; (j=i+1 to n) in D do
T: for each iTree t in iForest do

8: leaf,, = getLeaf(z;,t)

9: leaf,, = getLeaf(z;,t)

10: lcaNode = getLCA(leafy, leafs,)

11: Mz;)[z;] += lcaNode.mass/(n *T')

12: Mxzj][z;] += lcaNode.mass/(n *T')

13: end for

14:  end for

15: end for

16: Output: M

Construct iForest: Please refer to Chapter 2 for the details about the iForest con-
struction process.

Insert all the points: After iForest construction, all the data points are inserted
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into each iTree to prepare for MBD computation. The preparation includes construct-
ing a point-to-leaf mapping separately for every tree, which will be used in the MBD
computation.

MBD computation(One pair at a time): MBD of a pair of points x and y is defined

as the average of the individual M BD;(x,y) from all K trees; refer to equation 3.1.

K
MBD(z,y) = % > MBDy(x,y) (3.1)
t=1

Given an isolation tree ¢, M BDy(x,y) computation is a three-step process. First, map
both x and y to their respective leaf nodes lea f, and leaf, using point-to-leaf mapping.
Second, locate the Lowest Common Ancestor (LCA) node for both the leaf nodes. Third,
the mass of the LCA node is the MBD for the given data point pair. MBD for the data
point pair is the average MBD across all iTrees. MBD is normalized between 0 and 1

by dividing the mass of every node by the number of data points (n) in the dataset.

DATASET
i
Construct iForest
naive MBD | fast MBD
B 1 1(our approach)
Top-Down Pass Top-Down Pass

Q (once for the iTree) (once for the iTree) g
£ || Insertall points & Prepare _ S
= point-to-leaf mapping Insert all points & =
©_ | compute all pairwise | 2
2 Bottom-Up Pass MBD simultaneously || £
gﬁ_ (repeat for each pair of data points) __—J
<5 D
o D
Find LCA & Compute MBD s

MBD Matrix
("C, data point pairs)

|

Downstream Task: Clustering, Anomaly Detection

Figure 3.1: Overview of our approach fast MBD and Comparison with naive solution
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3.4 fast MBD

Two opportunities exist to improve the naive solution for the all-pairs MBD distance
problem. First, the naive solution computes the MBD for each data point pair sepa-
rately. Please refer to the two nested loops on lines 5 and 6 of Algorithm 1. As a result,
we end up visiting each iTree (g) times (third nested loop on line 7 of Algorithm 1 ). We
do not have to carry out the distance computation for each data point pair separately.
We can visit each iTree only once and compute the MBD component for all the pairs
in a single pass.

Second, the naive solution must repeatedly locate the leaf node for each data point
(lines 8 and 9 of Algorithm 1). The naive solution pre-computes the leaf node for each
data point in every iTree. The naive solution has to insert the whole dataset into every
iTree to pre-compute the leaf node for each data point. We can compute the MBD for
a pair only in a single top-down pass. It will avoid leaf node computation, and as a

result, we do not have to insert the whole dataset into the iForest.

3.4.1 fastMBD Algorithm

Please refer to Algorithm 2. Our fastMBD algorithm visits each iTree only once and

computes MBD for all data point pairs.

Algorithm 2 fMBD(iForest, M, D)

//We assume that the iForest is already constructed.
//Maxtrix M is an nXn matrix that stores all-pairs distances.
Initialize all elements of M with zero.
for (each iTree t in iForest) do

fMBD_Tree(t,M,D)
end for
Output: M

When it visits each iTree, it performs a single breadth-first traversal of the tree (Algo-
rithm 3). Initially, all data points are inserted into the root node of the tree (Line 1,
Algorithm 3).

While performing the breadth-first traversal, fMBD distinguishes between the internal

nodes (Algorithm 4) and lead nodes (Algorithm 5). While processing an internal node,
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Algorithm 3 fMBD_Tree(t, M, D)

t.root.data = D // Insert all points in D to root of iTree ¢.
Create empty BFT //Queue for breadth-first traversal of nodes in iTree ¢.
BFT.enqueue(t.root)
while (BFT is notEmpty) do
node = BFT.dequeue
if (node is Internal Node) then
fMBD _InternalNode(node,M,BFT)
else
fMBD _LeafNode(node,M)
end if
: end while

— =
= O

we first distribute the data points of the current node into the left and right children
using the split criteria (Line 1 to 7, Algorithm 4). Now consider a data point pair (z,y)
such that = satisfies the split criteria and y does not satisfy the split criteria at the
current node. As a result, x will be assigned to the left child, and y will be assigned to
the right child. Eventually, both x and y will end up in their respective leaf nodes lea f,
and leaf,. The current node will be the LCA for these two leaf nodes. Therefore, the

MBD of pair (x,y) will be the mass of the current node (Lines 10 and 11, Algorithm 4).

Algorithm 4 fMBD InternalNode(node,M,BFT)

1: for each data point x in node.data do
2 if x satisfies node.splitCriteria then
3 add x to node.left.data

4 else

5: add x to node.right.data

6 end if

7. end for

8: for each x in node.left.data do

9:  for each y in node.data.right do

10: Mz][y] += node.mass/(nxT)
11: MTy][z] += node.mass/(n*T)
12:  end for

13: end for

14: BFT.enqueue(node.left)
15: BFT.enqueue(node.right)

However, we do not have to locate the leaf nodes explicitly, and we do not have to
perform the LCA computation. This is the advantage of fMBD over the naive approach.

While processing a leaf node, there are no children on the left or right. In such a scenario,
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the MBD between data points belonging to the leaf node is simply the mass of the node
(Lines 3 and 4, Algorithm 5).

Algorithm 5 fMBD _LeafNode(node,M)

1: for each data point z; (i=1 to node.mass) do

2. for each data point x; (j=i+1 to node.mass) do
3 M z;][xj] += node.mass/(n*T)

4: M zj][xi] += node.mass/(n*T)

5. end for

6: end for

3.4.2 Time Complexity Analysis

In this section, we discuss asymptotic time complexity for an individual iTree. For the
iForest, the running time will be scaled by a factor of T' (number of iTrees). For all-pairs
MBD computation, the nM BD method will first build the iTree in S.logS time. Then,
it will insert all the n datapoints into the iTree to locate the appropriate leaf node for
each datapoint. The maximum height of any iTree is logS. Therefore, this step requires
n.logS time. Given a datapoint pair, the MBD computation in nM BD requires two
operations. First, locate leaf nodes for both datapoints. Second, compute LCA for both
the leaf nodes. Both these operations, in total, require 2logS time. Hence the MBD
computation for all (g) datapoint pairs requires O(2.n%.l0gS) time. The total time
taken by nM BD is given in the equation 3.2. However, the asymptotic time complexity
of nM BD is O(n?.logS).

S.10gS + n.logS + 2.n%.logS (3.2)

Similar to nM BD, our method fastM BD requires an iTree constructed over sam-
ple S. This step requires S.logS time. In the next step, fastM BD passes the whole
dataset through the iTree. Eventually, each datapoint reaches a leaf node. Any iTree
has a maximum height of logS. This step requires n.logS time. While passing the
dataset through the iTree, fastM BD also computes MBD for all (g) pairs. In contrast
to the nM BD, our method fastM BD does not have to locate leaf nodes and LCA.

Hence the MBD computation can be done in the constant time (Lines 10 and 11 of
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Algorithm 4, Lines 3 and 4 of Algorithm 5). This step requires n? time. The total time
taken by fastM BD is given in the equation 3.3. However, the asymptotic running time

of fastMBD is O(n?).

S.logS + n.logS + n? (3.3)

Comparing the total running time of nM B D and the proposed algorithm fastM BD
given in equation 3.2, 3.3 respectively, nM BD is slower by a factor of 2.logS. However,
asymptotically, the improvement is of the order logS, but the constant 2 is responsible
for a speedup of 2X achieved by fMBD. Please note that for larger n values logS
is very small and does not contribute significantly to the speedup. Speedup given in
table 3.2 also shows that above 10K datapoints, the speedup plateaus closer to ~ 2.X,

neglecting the contribution from logS, due to logS << N2.

3.5 Experimental Evaluation

Fast computation of all-pairs distance is important only if it accounts for a significant
chunk of the total running time of a task. We have considered two such tasks for
our experimental evaluation: Clustering and Anomaly Detection. We have chosen the
Density Peak Clustering (DPC) algorithm for the clustering task. Please refer to Section
3 for a summary of the DPC algorithm. We have replaced the Euclidean distance in the
original DPC algorithm with the MBD. We refer to this clustering algorithm as Mass
Peak Clustering (MPC). For the anomaly detection task, we have to use the MBD to
calculate the K nearest neighbors. We refer to this anomaly detection algorithm as
Mass-based Anomaly Detection (MAD).

We have experimented with twelve datasets for the clustering task. Please refer to
table 3.1 for a summary of these datasets. These datasets are frequently used in clus-
tering research. The dimensions of these datasets vary from 6 to 617. The number of
data points in the dataset also varies from 351 to 70000. The number of clusters varies
from 2 to 26. When we run MPC with the naive solution for all-pairs MBD distance

computation, the MBD computation accounts for at least 98% of the total running time.
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Table 3.1: Dataset details

% Time required
dataset Points Dimensions Clusters for MBD
computation
ionosphere [98] 351 33 2 98
wdbe [1] 569 30 2 99
control [98] 600 60 6 98
madelon [98] 2,600 500 2 99
satelite [99] 6,435 36 7 99
muskv1 [99] 7,074 166 2 99
thyroid [1] 7,200 6 3 98
isolet [99] 7,797 617 26 98
smartphone [98] 10,299 561 6 98
pendigits [1] 10,992 16 10 99
shuttle [99] 57,999 9 7 98
mnist [99] 70,000 16 10 98
% % Time required
dataset Points Dimensions Anomaly for MBD
computation
velocity [1] 229 20 34.06 96
mfeat [1] 410 649 2.44 94
parkinson [99] 756 754 25.3 93
tuandromd [99] 4,464 241 20.13 97
mutantpb3 [1] 16,592 5,408 0.51 93

The ionosphere consists of radar data collected from a system of 16 antennas. The data
is used to classify the good and bad radar returned from the ionosphere. WDBC is a
breast cancer dataset with 30 features computed from 569 digitized images. The control
dataset has 600 synthetically generated time-series images that are classified into six
classes based on the time-series trends. The Satellite dataset is about multispectral
satellite images classified into seven classes based on 36 features extracted from 3X3
images. Muskvl is a 166-feature human-annotated dataset used for the classification of
a molecule as musk or non-musk. The Smartphone is a human activity classification
dataset recorded for 30 subjects with embedded inertial sensors. The Shuttle is a statlog
dataset used to predict the space shuttle. It has seven different categories of the position
of the shuttle recorded on the basis of sensor readings. MNIST is a digit dataset

consisting of 10 different classes.

We have experimented with five datasets summarized in table 3.1. These datasets are
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popular in the anomaly detection literature. The number of anomaly points in these
datasets is expressed as a percentage of dataset size. It varies from 0.51% to over 34%.
We can observe that all-pairs MBD computation is the main bottleneck in the running
time for this task as well. MBD computation accounts for at least 93% of the running
time. Both these tasks and datasets are an appropriate target for applying our fMBD
algorithm.

The Parkinson’s speech dataset consists of 754 distinct extracted features, which are uti-
lized to determine whether a subject has Parkinson’s disease or is healthy. Tuandromd
is a malware detection dataset with 241 features to differentiate between malware and
goodware. The Mutantpb3 dataset is extracted from biophysical simulations of mu-
tantpb3 proteins having 5408 features used to predict transcriptional activity.

For all experiments, isolation forest construction is done for a sample size of 256 and
the number of trees as 100, referring to [4]. The cut-off distance for MPC is chosen
between 0.1% to 50% of the smallest distances for every dataset. Similarly, parameter
K for anomaly detection is chosen between 1 to 50% of n, where n is the number of
data points.

Please refer to table 3.2 for the comparison of running time. For both tasks, we can
perform the all-pairs MBD computation in two ways: naive solution (nMBD) and our
solution (fMBD). The table shows the running time of the task with each option for
all-pairs MBD computation. Compute the speed of fMBD up over nMBD as the ratio
of running time. For all the datasets, fMBD is faster than the nMBD. Even for large
datasets, we achieve speed up close to 2X.

We compare the clustering quality using three evaluation measures: F-measure(higher
the better), RandIndex(higher the better), and Entropy(lower the better). Anomaly
Detection quality is compared using two evaluation measures: AUC(higher the better)
and F1-score(higher the better). Please refer to table 3.3 for details. We observed that
the quality of both the downstream tasks using fM BD is precisely the same as that
of using nM BD. This result is expected as our fM BD algorithm computes the exact
distance, and it does not affect the quality of downstream tasks.

Please refer to Figure 3.2. It shows variation in the speed-up of fM BD with respect
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Table 3.2: Running Time and Speedup results

Clustering Task

dataset Running Time (in seconds) | Speedup over

MPCyypp | MPCyypp | MPCuyyBD
ionosphere 0.95 0.24 3.9
wdbc 2.20 0.56 3.89
control 2.76 0.64 4.31
madelon 25.3 8.01 3.16
satelite 85.7 40.10 2.14
muskvl 96.39 45.17 2.13
thyroid 98.13 51.2 1.92
isolet 151.25 64.65 2.34
smartphone 203.26 99.14 2.05
pendigits 336.56 166.6 2.03
shuttle 7,745.14 4,139 1.87
mnist 12,826.25 6,497.3 1.97

Anomlay Detection Task

dataset Running Time (in seconds) | Speedup over

MADuygp | MADyyigp | MADpyBD
velocity 0.28 0.069 4.04
mfeat 1.33 0.26 5.05
parkinson 3.53 0.99 3.58
tuandromd 107.18 34.86 3.07
mutantpb3 1,175.39 534.2 2.2

Table 3.3: Clustering and Anomaly Detection quality Results

Clustering Task
Datasets F-measure | RandIndex | Entropy
madelon 0.537 0.504 0.934
satelite 0.626 0.852 1.13
muskv1 0.71 0.755 0.408
thyroid 0.638 0.585 0.938
isolet 0.312 0.903 0.96
smartphone 0.561 0.808 1.001
pendigits 0.814 0.946 0.645
shuttle 0.559 0.562 1.587
mnist 0.341 0.74 0.70
Anomlay Detection Task
Datasets AUC F1 score
velocity 0.72 0.538
mfeat 0.997 0.8
parkinson 0.586 0.762
tuandromd 0.912 0.621
mutantpb3 0.71 0.6
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Speed-up over varying sample sizes
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Figure 3.2: Variation in fastM BD speed up over nM BD with respect to sample size

(5)

to change in the sample size(S). We have shown results for three datasets for each
task. Results for other datasets are similar. We can observe that the speed up of
fMBD increases slowly with the sample size for all datasets. This monotonic increase
demonstrates the logS speed-up factor in the asymptotic time complexity of fMBD
over nMBD.

3.6 Conclusion and Future Work

This chapter presents a fast and exact algorithm, fMBD, for all-pairs distance com-
putation. Our algorithm computes the exact MBD without introducing any error or
approximation. We have evaluated our algorithm on two downstream tasks: clustering
and anomaly detection. We have performed experimental evaluation using 16 popular
datasets. Our algorithm fMBD consistently outperforms the naive solution for all-pairs
MBD computation. Our work can be further improved by introducing an approximation

to MBD computation with minimal loss in the quality of the downstream task.

SLUCE S (St
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Scaling Up Mass-Based Clustering

Chapter Highlights

Mass Based Clustering algorithm needs to know the data point pairs that have

distance below a threshold value.

For a dataset with n data points, the number of such data point pairs is a tiny

fraction of all possible (}) pairs.

The objective of this chapter is to compute distance for only a sufficient number

of data point pairs, instead of all (g) pairs.

We have handled 100X larger data sets than existing Mass Based Clustering

The proposed approach saves significant time and memory without any loss of

clustering quality.

This chapter is based on the publication ”Scaling Up Mass-Based Clustering”
presented in CIKM 2022.

33



4.1. ABSTRACT

4.1 Abstract

This chapter addresses the problem of scaling up the mass-based clustering paradigm to
handle large datasets. The existing algorithm MBScan computes and stores all pairwise
distances, resulting in quadratic time and space complexity. However, we observe that
mass-based clustering requires information about only a tiny fraction of all possible data
point pairs. We propose three optimizations to MBScan for quickly finding such pairs
and computing their distances. We empirically evaluate our work on ten real-world
and synthetic datasets. Our experiments show that our approach results in fast and

memory-efficient clustering with no loss in the quality of clusters.

4.2 Introduction

Mass-based dissimilarity (MBD) is a data-dependent dissimilarity measure [1]. Its intu-
ition is that a data point pair in a dense region has a lower similarity score than other
data point pairs with the same inter-point distance in a sparse region. This similarity
computation correlates well with the notion of similarity as judged by humans [36].
Using such a similarity measure, we can improve the performance of various important
tasks such as clustering, anomaly detection, and classification. This chapter is focused
on the clustering task using MBD.

MBScan is a mass-based clustering algorithm with quadratic time and space complexity
[1]. Tt is an improvement over the well-known density-based clustering algorithm DB-
Scan [100]. MBScan replaces the distance measure in DBScan with MBD. MBScan uses
a tree-based data structure, Isolation Forest, for computing MBD. An Isolation forest
is a collection of independently constructed Isolation Trees [4]. MBScan creates higher
quality clustering than DBScan and its variants [101][102]. Consider a dataset D with
n data points. MBScan computes and stores MBD for all (g) data point pairs. As a
result, MBScan does not scale well to large datasets.

We observe that we do not need information about all (;) data point pairs to perform
mass-based clustering. It is sufficient to compute and store MBD only for a subset of

pairs called Interesting Pairs. A data point pair is an Interesting Pair if and only if its
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4. SCALING UP MASS-BASED CLUSTERING

dissimilarity score is below a user-defined threshold and at least one of the points in the
pair is not an outlier. We observe that only about three percent of data point pairs are
Interesting Pairs for a wide variety of datasets. There is a significant opportunity to

reduce running time and memory footprint for mass-based clustering.

In this chapter, we present an algorithm, sMBSCAN. It is a scalable algorithm for
mass-based clustering. Our work has the following three specific research contributions.
First, we propose a constant time method to compute MBD in an Isolation Tree. This
contribution accelerates MBD computation for each data point pair. Second, we provide
fast filtering criteria for selecting a superset of Interesting Pairs from all (g) pairs. This
contribution enables us to compute MBD only for a small subset of all possible (g) pairs.
Third, we propose an efficient lower bound on MBD. We use it for early termination of
MBD for a data point pair if it cannot become an Interesting Pair. The overview of our

work is presented in 4.1.

Figure 4.1: A comparative overview of scalable MBScan with MBScan

Dataset (Size: n data points)

'

Isolation Forest Construction (Height: h)

MBSCAN(Existing Work) I_l SMBSCAN (Our Work)
v ( LCA Precomputation )

/ \ Impact: MBD computation time complexity
Coggztigig;ﬁ all L reduces from*O (h) to 0(1) )

Bottleneck: 0(n?) Search Potential Interesting Pairs

Time and Space Impact: MBD C(?mputation liplited to a tiny
Complexity 9 fraction of () pairs )
s N
Lower Bound on MBD

Impact: Early termination of MBD
\_computation, if a pair cannot become Interesting )

DBSCAN based Clustering using MBD

We empirically evaluate our optimizations by doing extensive experiments over ten
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datasets (six real-world and four synthetic). The size of the datasets ranges from 2 x 103
to 1 x 10° data points. We have three evaluation criteria: running time, memory
footprint, and clustering quality. Our optimizations provide a speed-up of up to 50X
over MBScan. Memory footprint is up to 22X smaller than MBScan. There is no loss
in clustering quality as measured with three measures: F1 measure, Entropy, and Rand

Index. All our code and datasets are available publicly on the Web'.

4.3 Related Work

Isolation Forest is described in Chapter 2.

Various distance (Euclidean, Manhattan, Hamming, Minkowski, and others) and simi-
larity measures (Dot Product, Cosine Similarity, Jaccard Index, and others) are exten-
sively used in various fields such as Information Retrieval, Machine Learning, and Data
Mining. However, most of these distance and similarity measures are data-independent.
The distance or similarity between a pair of data points does not depend on other data
points in the dataset[103]. In contrast, MBD is a data-dependent dissimilarity measure.
Consider two different data point pairs P1 and P2. The inter-point distance measured
with data-independent distance measures such as Euclidean distance is the same for
both the pairs P1 and P2. However, P1 is located in a dense region, and P2 is located
in a sparse region. In such a scenario, the MBD will assign a higher dissimilarity score
to P1 than P2. This intuition of dissimilarity computation correlates well with the
human judgment of similarity[36]. For example, consider two shirts with blue color,
but each has a different shade of blue color such as navy blue and sky blue. These
two shirts will be considered more similar in a collection of clothes having a variety of
colors. However, these two shirts will be perceived as less similar in a collection of only

blue-colored clothes.

MBD computation can be done efficiently using Isolation Forest. For a dataset D,

consider an Isolation Forest F' consisting of k Isolation Trees T7,75... 7. For a data

"https://github.com/nidhiahl/sMBSCAN
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point pair P1 consisting of data points x and y, the MBD is calculated as

k
MBD(P1) = % > MBD;(P1) (4.1)
i=1
MBD;(P1) = MASS;(LCA(LEAF;(z), LEAF;(y))) (4.2)

where M BD;(P1) is the mass-based dissimilarity computed using only one Isolation
Tree T;, LEAF;(z) returns the id of the leaf node that data point x belongs to in
the Isolation Tree T;, LCA(NODE1, NODE?2) returns the id of the lowest common
ancestor of nodes NODFE1 and NODE2, and MASS;(NODE) returns the mass of
NODE in Isolation Tree Tj.

Density-based clustering is a popular clustering paradigm because of its ability to find
clusters of arbitrary shapes. DBScan[100] is the most well-known clustering algorithm
in this paradigm. It works in three steps. The first step computes € — neighborhood of
each data point. In other words, for each data point, it finds other data points within
the distance of €. The second step marks each data point with one of the three labels:
CORE, OUTLIER, and NON-CORE. A data point is CORE if its € — neighborhood
has more than minPts data points. Both € and minPts are parameters to the DBScan
algorithm. A data point is an OUTLIER if it is not CORE, and there is no CORE
data point in its own € — neighborhood. The remaining data points are labeled as
NON-CORE. In the third step, DBScan begins by considering each CORE data point
as a separate cluster. It merges clusters using the density reachability property. NON-
CORE data points are assigned to the nearest cluster. A data point pair can affect the
DBScan clustering only if its distance is less than € and at least one of the points in the
pair is CORE or NON-CORE. OUTLIERS are discarded, and they are not part of any

cluster.

MBScan[1] adopts DBScan to utilize MBD. It works simply by replacing the distance
definition in DBScan with MBD. MBScan is shown to have superior quality of clustering
than DBScan and its variants such as OPTICS[102] and SNN[101] clustering. However,
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MBScan computes and stores MBD for all data point pairs. As a result, MBScan
has O(n?) time and space complexity while handling a dataset with n data points. It
severely limits the scalability of MBScan. For example, for the WORMS2d dataset with
105600 data points, MBScan requires approximately 16 hours and 43 GB of memory to

perform clustering.

4.4 scalable MBScan

We can scale up the mass-based clustering in two ways. First, we can accelerate the
MBD computation for each data point pair. Our LCA Pre-computation optimization
achieves this goal. Second, we can reduce the number of data point pairs for which we
compute MBD. Ideally, we should compute MBD only for Interesting Pairs. Our other
two optimizations: Potential Interesting Pairs and Lower Bound on MBD, achieve this

goal.

4.4.1 LCA Pre-computation

Please refer to equations 1 and 2. Each MBD computation requires us to find the lowest
common ancestor (LCA) of two leaf nodes. It requires O(h) time, where h is the height
of the tree. For a given data point pair, we have to repeat the LCA computation across
all k Isolation Trees. Thus, each MBD computation requires O(k.log2(|S])) time. If we
can compute LCA in constant time, then the time complexity of MBD computation will
reduce to O(k).

Height h of any Isolation Tree cannot exceed loga(]S|). It also limits the number of

(h+1) " Please refer to Figure 2. It shows an example

nodes in any Isolation Tree to 2
of such a tree with a height of three and the number of nodes fifteen. This tree is a
perfect binary tree. We number the nodes of such a perfect binary tree by performing a
breadth-first traversal. After this particular method of numbering the nodes, we call the
perfect binary tree a maxTree. Any Isolation Tree that we construct will be a subtree

of the maxTree of height log2(|S]). To number the nodes of any Isolation Tree in our

Isolation Forest, we map that tree to the corresponding maxTree. This mapping results
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maxTree

Figure 4.2: Example of maxTree with height 3 and consistent numbering of nodes across
two Isolation Trees.

in the consistent numbering of nodes across all Isolation Trees. Please refer to Figure
2 for an example of such mapping and numbering. Therefore, LCA computation across
all Isolation Trees also becomes identical. For example, node 2 is the LCA of nodes
5 and 14 across both Isolation Trees in Figure 2. We pre-compute LCA for all node
pairs in the maxTree only once after the Isolation Forest construction and store it in a
matrix. While performing LCA computation for MBD, we just read the corresponding

value from the pre-computed LCA matrix in a constant time.

4.4.2 Potential Interesting Pairs

Only Interesting Pairs affect the outcome of mass-based clustering. A data point pair

is an Interesting Pair if and only if:

e [ts MBD is less than p, where p is a user-supplied parameter to the MBScan

algorithm. (It is similar to parameter e in DBScan) and

e At least one of the points in the data point pair is not labeled as OUTLIER.

39



4.4. SCALABLE MBSCAN

In our experiments, we have observed that only about 3% of total pairs are Interest-
ing Pairs, indicating that there is dramatic scope for improving the running time and
memory footprint of MBScan. Consider a data point pair P1 consisting of data points
x and y. If P1 is an Interesting Pair, its MBD should be less than p in at least one
of the Isolation Trees. Also, if at least one of the data points in P1 is not labeled as
OUTLIER, then without loss of generality, let us assume that it is the data point z.
The pu — neighborhood of x should have more than minPts data points in at least one
Isolation Tree. Now, let us put both these requirements together. For a data point pair
to be an Interesting Pair, it must be found together in at least one node with mass m

such that minPts < m < p. This condition is necessary but not sufficient.

We perform a depth-first traversal of each Isolation Tree to locate the largest nodes that
satisfy this necessary condition on node mass. We call such nodes as marked nodes.
Now, we can limit our MBD computation to only those pairs that are found in at least
one marked node. We can further strengthen this filtering criterion by requiring that a
data point pair should be found in at least ¢ marked nodes. With a value of ¢ greater
than one, we might miss some Interesting Pairs. However, we have observed that we
do not miss any Interesting Pairs even with the ¢ value set to 0.4 x k. Here, k is the
number of Isolation Trees in the Isolation Forest. Data points that are similar will end
up together in any randomly created Isolation Tree. That is why we do not miss any
Interesting Pair even with a high value of g. Only with a value of ¢ higher than 0.5 x &,
we start missing some of the Interesting Pairs. Now, our MBD computation is limited

to only Potential Interesting Pairs found in at least ¢ marked nodes.

4.4.3 Lower Bound on MBD

While computing MBD for a data point pair, we have to go across k Isolation Trees.
However, we can terminate the MBD computation early if we can conclude that MBD
for a given pair will exceed the threshold pu. Consider the partial MBD computed for
a data point pair P1 using only the first r Isolation Trees, where 1 < r < k. The

cumulative score (CS) contributed by these first r Isolation Trees is
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CS,(P1) = Z MBD;(P1) (4.3)
i=1

If the cumulative score for any pair exceeds p * k, then its final MBD will be greater

than pu. Hence, we can terminate the MBD computation for a pair if its cumulative

score exceeds p x k.

4.5 Experimental Evaluations

We evaluated our work empirically by performing extensive experiments over ten datasets
(four synthetic and six real-world). Please refer to table 4.1 for information about the
datasets®>. These datasets were chosen because these are some of the most popular
datasets used in the clustering research community[1][104][105] [106][107][108][109][110].
All the experiments are run on a server having Ubuntu Linux operating system version
18.04 with 128 GB RAM. All the algorithms were implemented in C++ and compiled
using the GNU C++ compiler.

Table 4.1: Datasets details

Dataset Data Points | Dimensions | Clusters | Type
segment|[1] 2.3 x 10° 19 7 Real
D31[110] 3.1 %103 2 31 Synthetic
S4(gaussian)[106] 5x 103 2 15 Synthetic
unbalanced[104] 6.5 x 103 2 8 Synthetic
sattelite[4] 6.4 x 103 36 7 Real
pendigits[108] 1 x 10* 16 10 Real
letter[109] 2 x 10* 16 26 Real
shuttle[4] 5.7 x 10* 9 7 Real
mnist[107] 7 x 10% 784 10 Real
worms2d[105] 1 x 10° 2 35 Synthetic

By incorporating our work into the MBScan algorithm, we get an optimized version
of MBScan. We call it sMBScan (Scalable MBScan). We compare sMBScan against
the original MBScan using three evaluation criteria: running time, memory footprint,

and clustering quality. As Isolation Forest construction involves randomization, we

*https://github.com/nidhiahl/sMBSCAN
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report numbers after running each algorithm ten times and then averaging across all
ten runs. For Isolation Forest construction, the sample size (|.S]) was set to 256 or 1%
of the dataset size, whichever maximum. The MBScan paper suggested a sample size
of 256. However, they performed experiments only with small datasets of up to 10,992
data points. For larger datasets with tens or hundreds of thousands of data points,
we need a larger sample size to construct a reliable Isolation Forest. The Isolation
Forest consisted of hundred Isolation Trees (k = 100). For our second optimization on

searching Potential Interesting Pairs, the value of ¢ was set to 0.5 x k.

Table 4.2: Running Time and Speedup results

Dataset Time & Speedup
MBScan sMBScan Speed
(in seconds) | (in seconds) peecdup

segment 25.06 2.77 9.03
D31 49.85 2.77 17.95
S4(gaussian) 97.32 6.81 14.27
unbalanced 164.62 7.62 21.59
sattelite 151 11 13.38
pendigits 1,082 63 17.01
letter 1,890 112 16.78
shuttle 18,115 846 21.39
mnist 35,698 668 53.38
worms2d 56,882 4,906 11.59

For all datasets, we can observe that the number of Interesting Pairs (IP) is a tiny
fraction of the Total Pairs (TP) (Table 4.5). Mass-based clustering needs MBD values
only for these Interesting Pairs. Our sMBScan algorithm computes and stores MBD
only for Potential Interesting Pairs (PIP). Therefore, we expect significant speed-up and

memory savings for the sMBScan algorithm.

Please refer to table 4.2 for the details of the experimental results. We can observe that
the running time of MBScan is impractical for larger datasets. For the largest dataset in
our experiments (WORMS2d), the running time of MBScan is over 15 hours. However,
our algorithm can perform the clustering for the same dataset in just 82 minutes. Across

all datasets, sMBScan consistently maintains a significant speed-up over the MBScan.

Similarly, for memory footprint, the memory requirement of MBScan is impractical
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Table 4.3: Memory footprint results

Dataset Memory

MBScan | sMBScan l\gzgiz;y

(in MB) | (in MB) (in Percentage)
segment 58 27 53
D31 80 32 59
S4(gaussian) 154 47 69
unbalanced 224 o1 7
sattelite 227 55 75
pendigits 550 78 85
letter 1,682 113 93
shuttle 7,356 361 95
mnist 16,626 842 94
worms2d 43,802 1,997 95

(Table 4.3). For the largest dataset, WORMS2d, MBScan requires more than 42 Giga-
bytes of RAM. For the same dataset, sMBScan needs less than 2 Gigabytes of RAM.
Across all datasets, sMBScan provides significant memory savings. Especially for large

datasets, the memory saving is even more than 90%.

Table 4.4: Clustering Quality results

Dataset Quality
F-meaure | RandIndex | Entropy

segment 0.63 0.86 0.34
D31 0.72 0.91 0.31
S4(gaussian) 0.71 0.76 0.39
unbalanced 0.73 0.79 0.30
sattelite 0.83 0.99 0.05
pendigits 0.68 0.73 0.39
letter 0.60 0.78 0.35
shuttle 0.59 0.69 0.27
mnist 0.55 0.63 0.47
worms2d 0.70 0.73 0.39

Refer to table 4.4, to measure the quality of clustering, we have used three standard
measures: F-measure, Rand Index, and entropy [111]. We know the ground truth
label for each data point in all our datasets. The F-measure of the clustering is the
average of the F-measure of each cluster. The entropy for the clustering is calculated

as the weighted average of the entropy of each cluster. The weight of each cluster is
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the number of data points in it. Rand Index for clustering is computed by calculating
true positive and true negative data point pairs. The absolute values of these quality
measures are not crucial to our work. However, the important point is that our sMBScan
algorithm achieves the same value as the MBScan algorithm for all quality measures.We
can conclude that the set of Potential Interesting Pairs computed by sMBScan is a
superset of the set of Interesting Pairs for each dataset. None of our optimizations filter
out any Interesting Pair. As a result, we can scale up the mass-based clustering without
any loss in clustering quality.

Refer to table 4.5, for a discussion on the effectiveness of sM BScan and how much
scope for further improvement to obtain an ideal solution. The table highlights the
effectiveness of scalable MBSCAN (sM BSCAN) in significantly reducing the number
of unnecessary distance computations across various datasets. The TP/PIP ratio in the
second-last column quantifies the reduction achieved by sMBSCAN. This indicates
that sM BSCAN effectively filters out the majority of irrelevant pairs. The PIP/IP
ratio in the last column shows the remaining scope for further reduction, which is
minimal for most datasets, confirming that sM BSCAN already performs near-optimal
reduction. Datasets like ”letter” show no additional scope for reduction, showing that
100% unnecessary pairs have already been eliminated by sMBSCAN. Overall, the
results validate sM BSC AN ability to minimize the unnecessary distance computations
and compute only the essential pairs needed for clustering, leaving a low margin for

further improvement.

4.6 Conclusion and Future Work

The quadratic time and space complexity of the MBScan algorithm is the major bot-
tleneck in scaling up the mass-based clustering approach to larger datasets. In this
chapter, we have presented three optimizations to the MBScan algorithm that attack
this bottleneck. We have achieved significant speed-up with dramatic saving in memory
without any loss in clustering quality. With our work, mass-based clustering will now

become practical for larger datasets.
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Table 4.5: Scope of further reduction in number of pairwise distance computations in
scalable MBScan. TP /PIP depicts the reduction provided by sMBScan, PIP /TP depicts
the further scope of reduction.

Dataset Scope for Improvement
Potential
Total . Interesting
Pairs (TP) lizgf;e(sli}?g) Pairs (IP) TP/ PIP | PIP/TP

segment 2.6 x 10° 2.3 x 10° 8.5 x 10% 11 2
D31 4.8 x 106 2.2 x 10° 7.3 x 10* 21 3
S4(gaussian) | 1.2 x 107 7.8 x 109 2.7 x 109 15 2
unbalanced 2.0 x 107 5.5 x 10° 4.6 x 10* 36 11
sattelite 2.1 x 107 1.5 x 106 6.6 x 10° 14 2
pendigits 6.0 x 107 2.8 x 109 5.6 x 10° 21 5
letter 1.9 x 108 1.9 x 106 3.3 x 10° 100 -
shuttle 1.6 x 10° 3.5 x 107 9.5 x 108 45 3
mnist 2.4 x 10? 3.3 x 109 1.4 x 10* 727 235
worms2d 5.5 x 10° 5.0 x 108 1.7 x 108 11 2

There is only a limited scope to improve the performance of our algorithm sMBScan.
Any mass-based clustering algorithm needs to compute MBD at least for all the Interest-
ing Pairs. The key ratio to look at is PIP/IP in table 4.5. This ratio is the upper bound
on the further speed-up that can be achieved over our algorithm sMBScan. Our work
can be further improved by designing algorithms to scale out the mass-based clustering

to utilize multiple processors and systems.

LIRS 3 2atiot
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Incremental Isolation Forest

Chapter Highlights

e We observe that concept drift in new incoming data degrades the performance of

Isolation Forest.
o We target three types of concept drifts.

e Our approach Incremental Isolation Forest (I2Forest) quickly updates the model

and adapts to the concept drift caused by new data.

e We examine I?Forest for efficiency and quality of anomaly detection in complete

data after changes.

e This chapter is based on the publication ”Incremental Isolation Forest for Handling
Concept Drift in Anomaly Detection” presented in CoDS-COMAD 2024, and the

extended version is submitted to a peer-reviewed journal.

5.1 Abstract

Isolation Forest is a well-known model designed for anomaly detection task. It identifies

regions corresponding to anomalies in the training data and defines anomalies as “few
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and different”. With the arrival of new data after training the model, concept drift
can occur in three ways. First, anomalies can occur in the new regions of the feature
space. Second, existing anomalies can become normal with the addition of new data.
Third, a new normal region is introduced after adding new data. We observe that
the performance of Isolation Forest severely degrades in all these scenarios. Current
works fail to tune the existing Isolation Forest to adapt to all three types of concept
drifts. We propose an algorithm, Incremental Isolation Forest, to quickly update the
existing Isolation Forest in response to the arrival of new data. We perform extensive
experiments using synthetic and real-world datasets. Experimental results show that our
approach achieves significant time savings with minimal or no loss in anomaly detection
performance. Our method is more robust to catastrophic forgetting than incremental

baselines that forget the old data.

5.2 Introduction

The question central to this chapter is: How to update a Machine Learning model
in response to new data? This question becomes even more critical when the new
data causes concept drift. A lazy solution is to keep using the old model. However,
it will result in inferior performance. An aggressive solution is to rebuild the model
from scratch. This solution will improve the model performance at the cost of time
spent in retraining the model. Instead of choosing any of these two extremes, we can
design an incremental solution that quickly updates the existing model to match the
performance of the aggressive solution. This chapter focuses on the anomaly detection
task and the Isolation Forest model to design an incremental solution. Our primary
research contribution is to develop an efficient update scheme to incrementally modify
the Isolation Forest model in response to the addition of new data.

Anomaly detection is the task of identifying the outliers that do not conform to the
normal patterns in the data [112]. It is an important task with applications in di-
verse domains such as network security, medical diagnosis, and many others [113]. The

definition of anomaly heavily depends on the specific application and model used for
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detection. Isolation Forest (iForest) is a popular model for anomaly detection [4] that
describes anomalies as “few and different” from the rest of the data. iForest is a collec-
tion of independently constructed Isolation Trees (iTrees). Each iTree identifies regions
corresponding to anomalies in the existing training data. Rest all parts of the feature
space are considered normal. Each iTree is constructed using a small random sample
from the training data. iForest performs prediction by averaging across all constituent
iTrees.

Concept drift occurs when the relation between the input data and the target variable
changes [3]. This change results in the degradation of the machine learning model’s
performance. The iForest defines anomalies as “few and different” and models them by
defining regions corresponding to those anomalies in the training data. However, with
the arrival of new data, the regions modeled by iForest can change in three ways as

follows (Please refer to Figure 5.1.):

1. CDI (New anomalies): anomalies occur in new regions of the feature space.

Existing iForest will fail to detect these anomalies, resulting in false negatives.

2. CDII (Anomalies change to Normal): existing anomalies can become normal.
Existing iForest will still identify data points in such regions as anomalies, resulting

in false positives.

3. CDIII (New Normal): normal points occur in new regions of the feature space.
Existing iForest will identify data points in such regions as anomalies, resulting in

false positives.

To overcome these problems, we propose the Incremental Isolation Forest (I?Forest)
model. It quickly updates the existing iForest in response to the arrival of new data.
The intuition of our approach is to update the definition of anomalous regions in each
constituent iTree using a small sample from the new data. We perform the breadth-
first traversal of each iTree to carry out updates efficiently. Our updates are focused
on answering three questions. First, have anomalies occurred in any new region of

the feature space? Second, has any of the existing anomalous regions become normal?
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(a.) Di (b.) Di + ADi for CDI (c.) Di + ADi for CDII d.) Di + ADi for CDIII

20

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Figure 5.1: New datapoints(AD;) introduce Concept Drift (CD-I: Anomalies occur in a
new region; CD-II: Existing anomalies become normal data points; CD-III: New normal
regions introduced). Please note drift causing data points are shown in green color.

Third, do normal points exist in any new region of the feature space? For complete

reproducibility, all our code and datasets are available publicly on the Web.!

To summarize the contributions, I?Forest is an incremental approach that achieves a
speedup of 1.4X to 7842X over incremental methods and 1.7X to 39X over the aggressive
approach. This time saving is achieved with no or minimal loss in anomaly detection

quality.

5.3 Related Work

Anomaly detection models span multiple paradigms such as supervised, semi-supervised,
and unsupervised models [112]. These models work on the intuition that anomalies are
sparse and fewer in the count. Compared to the state-of-the-art anomaly detection mod-
els, the performance of iForest is slightly inferior but still comparable [114]. However,

iForest is one of the fastest models for run-time efficiency.

5.3.1 Isolation Forest

Isolation Forest details are described in Chapter 2. Our work focuses on updating the
structure of each ¢T'ree in response to the change in data. The data changes from D;

at timestamp 7; to D;11 at timestamp T;41 with addition of AD; to D;.

"Mttps://github.com/nidhiahl/I2F
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5.3.2 Baselines

We compare our work with two non-incremental approaches: Lazy and Aggressive.
In the Lazy approach, we do not update the model when new data arrives. In the
Aggressive approach, we simply rebuild the iForest from scratch using old as well as
new data. The Lazy approach will be the most efficient as it does not update the model.
However, the Lazy approach will have the worst quality of anomaly detection when the
new data causes the concept drift. The aggressive approach will be inefficient. However,
it is expected to have high-quality of anomaly detection as it uses all the available data

to build new iForest.

Lazy and aggressive approaches are two extremes, with the former optimized for effi-
ciency and the latter for quality. Incremental methods try to achieve the best of both
worlds by balancing efficiency and quality. A variety of incremental methods exist that
handle the concept drift introduced by adding new data for i F'orest and related methods.
We categorize the existing incremental methods based on how they update the model.
Methods in the first category replace the whole forest and build every tree of the forest
from scratch using the recent batch of data. iF4gp is an example of a method in this
category[16]. Methods in the second category identify and replace a few bad-performing
trees from the forest. PCBIF is an example method in this category[17]. Methods in
the third category modify the existing trees based on the changes in the data. These
methods avoid the costly operation of completely replacing any tree. RRCF[18] and
SENCForest[19] are the example methods in this category. Please refer to Table 5.1

for a summary of these methods.

The first incremental approach, i F)agp (isolation Forest for Anomaly detection in Stream-
ing Data), focuses only on new data[16],[115]. This method assumes that the anomaly
rate in the old and new data should be almost identical. The anomaly rate for a dataset
is the fraction of data labeled as an anomaly by the model. If the anomaly rate for
the new data is significantly higher than the old data, then iF45p builds a new iForest
from scratch using the new data. This method uses the increase in the anomaly rate as

a signal for concept drift. However, it is not enough to detect all three concepts drifts
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Table 5.1: Comparison of existing approaches.

Method Training Update Data required for Risk of
Data Type Type model update catastrophic
forgetting
Lazy Unlabelled | No model update None Low
Build forest
Aggressive Unlabelled | from scratch for D;+AD; None
complete data
1FasD Unlabelled Replace Forest AD; High
PCBIF Unlabelled | Replace few trees AD; Moderate
SENCForest | Labelled Modify all trees AD; Low
RRCF Unlabelled | Modify all trees AD; Moderate
I*Forest Unlabelled | Modify all trees AD; Low
(ours)

we want to address in our work. Also, iFagp loses knowledge about the old data when
it detects the drift. Therefore, iF4gp is prone to catastrophic forgetting. Recently,
Togbe et al. tried to improve the iF4gp algorithm by adding new strategies for concept
drift detection[116]. However, catastrophic forgetting remains the bottleneck for their

approach.

A more recent work, PCBIF (Performance Counter Based Isolation Forest), identifies
bad-performing isolation trees in the model[17]. It replaces only such trees in the existing
isolation forest. Their experimental results show that PCBIF performs similarly to
iFasp. With only selective replacement of isolation trees, PC' BIF is more robust to

catastrophic forgetting than iFagp.

RRCF (Robust Random Cut Forest) [18] is an improved variant of isolation forest. It
adapts to the changing data by modifying every tree in the forest. However, it has two
main limitations. First, it updates the forest with an update size of one data point. We
have to update the forest for every single new data point, leading to a time-consuming
forest update process. Second, it targets only one type of concept drift: anomalies
occurring in new regions. All the incremental methods we have reviewed till now work
with unlabelled data. In contrast, SENCForest (Streaming Emerging New Classes
Forest)[19] needs labeled data. It is an improvisation of iForest that uses labels to store

information about existing classes in data. It also stores information about the feature
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space regions with anomalies in training data. It can detect incoming new anomalies
(CDI) and new normal (CDIII) but fails to adapt to the changes where old anomalies
become normal (CDII).

Considering various limitations of existing incremental methods, we had the following

goals while designing our approach I2Forest.
e Handle all three types of concept drifts (CDI, CDII, and CDIII).

e Maintain a balance between performance on old and new data. In other words,

perform well on new data while avoiding catastrophic forgetting over the old data.

e Efficient updates to the iForest in response to new data. In other words, update

iForest only once for the whole new data AD;

5.4 Incremental Isolation Forest

When the data changes from D; at timestamp 7; to D;y1 at timestamp T;,; with the
addition of AD; to D;, we have three options. First, a lazy option of using the old
iForest F; built using D; at timestamp 7;. Second, an aggressive option of building
iForest Fjy1 using D;y1. The first option will have reduced performance for anomaly
detection if AD; causes concept drift. The second option will be able to handle the
concept drift but with the time delay of building Fj; from scratch. Instead, we provide
a third option of quickly updating the F; to Fj, | using only AD;. We should efficiently
change the structure of each iTree in response to the concept drift caused by AD; .
If anomalies in AD; occur in new regions of the feature space, then we should insert
corresponding new shallow leaf nodes in the iTree. If adding new points in AD; converts
existing anomalies to normal, we should replace corresponding shallow leaf nodes with
deep subtrees. If a new group of normal points is added in AD;, then we add newly
constructed deeper subtrees.

Our method I?Forest is divided across five algorithms explained in this section. Algo-
rithm 6 represents the overall flow of I? Forest where we update each isolation tree using

Algorithm 7. In Algorithm 7, we modify the structure of a specific isolation tree while
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Algorithm 6 I2Forest(AD, F;)
1: for each iTree 7™ in F; do
2 Select sample AS™ from AD;
3:  updatelTree(AS™ T™)
4: end for

performing the breadth-first traversal of that tree. While performing the breadth-first
traversal, we can encounter two types of nodes: leaf and internal. Algorithm 8 explains
how we process a leaf node during the breadth-first traversal. Algorithm 9 details how
we process an internal node during the breadth-first traversal. While processing an
internal node, we might also need to update its left and right subtrees. Algorithm 10
explains how to update the left subtree of an internal node. The process to update the
right subtree is described in Algorithm 11.

Please refer to the Algorithm 6. Our I?Forest updates the F; to Fj{ | using AD;.
To build F;1q, the aggressive method would have selected the sample S;11 of size
(|Sil/|Di|) * |Djt1] for each iTree. To maintain this sampling ratio, we select a ran-
dom sample AS from AD;. We ensure that for each iTree, |Si+1| = |S;| + |AS|. Now,
we insert AS in the iTree to update its structure. Data points in AS help us to estimate
if hyperrectangles corresponding to any node in the iTree need to be changed. Please
note that AS is selected independently for each iTree. With this update to the structure
of each iTree, we expect that the incremental iForest F 1 will perform similarly to the

iForest Fj41.

Algorithm 7 updatelTree(AS,T)

T.root.newPoints = AS
//Add all points from AS to root node of iTree T
Create queue BFT
//Queue used for breadth first traversal of T
BFT.enqueue(T.root)
while BFT.notEmpty() do
N = BFT.dequeue
if IV is leaf node then
updateLeaf(N, BFT)
else
updatelnternalNode(N, BFT)
end if
: end while

—_ = =
L 29
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Please refer to Algorithm 7. While updating the structure of an iTree, we first store new
sample points in the root node. Then, we perform the breadth-first traversal (BFT) of
the tree. At each node, we have two tasks to perform. First, decide if the split criteria
needs to be changed. Second, distribute the new sample points between the two child
nodes. While performing these two tasks, we differentiate the nodes into two categories:

leaf and internal.

Algorithm 8 updateLeaf(N, BFT)

1: if N.height == T.maxHeight then

2:  //Height of isolation tree cannot exceed [loga(|Si+1|)]

3 return

4: else

5. splitNode(N) //Node splitting same as in iForest. It will attach two child nodes
to N.

6: BFT.enqueue(N.leftChild)

7. BFT.enqueue(N.rightChild)

8: end if

Please refer to Algorithm 8. The leaf nodes already at the maximum height require
no further processing (Lines 1 to 3). There are no split criteria to change, and there
are no children. For the leaf nodes with a height less than the maximum, we need to
split them if they receive new sample points (Lines 4 to 8). This update will help us to
convert existing anomalous regions to normal by introducing deeper subtrees below the
existing leaf nodes. To continue the BFT, we need to add the newly created left and

right children to the BFT queue.

Figure 5.2 summarizes four possible cases while updating an internal node. Please
refer to Algorithm 9. At each internal node, the split criteria depend on minimum and
maximum values for the split attribute. With the arrival of new sample points, there
is no need to change the split criteria if there is no change in these values. We just
have to distribute the received sample points between the left and right child nodes.
Suppose we observe that at node IV, the minimum value for the split attribute is reduced
due to the arrival of new sample points. In that case, we must update its left subtree
(Algorithm 10). We create a new node Ny/. This node becomes the left child of N.

It accommodates all the data points that would belong to the node Ny, and additional
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Algorithm 9 updateInternalNode(N, BFT)

1: if N.height == T.maxzHeight then
2:  Prune left and right subtrees at V.
3:  //N becomes leaf node.

4:  return
5

§

. else
Distribute N.newPoints between N.left.newPoints and
N.right.newPoints using the split criteria chosen at V.
if N.SA.min < N.newPoints.SA.min then
BFT.enqueue(N.leftChild)

9: else

10: updateLeftSubTree(/N, BF'T)

11:  end if

12: if N.SA.max > N.newPoints.SA.max then
13: BFT.enqueue(N.rightChild)

14: else

15: updateRightSubTree(N, BFT)

16:  end if

17: end if

sample points having split attribute value less than the split criteria. The node Np is
split further into the original Ny and a new node Ny~. Here, the split attribute is the
same as the split attribute chosen for N. However, the split value is the minimum value
of the split attribute observed in node N before the arrival of the new sample points.
Similarly, if the maximum value of the split attribute at node N changes with the arrival
of new sample points, it is handled by updating the right subtree (Algorithm 11). The
algorithm is similar to that of updating the left subtree. Updating subtrees of internal
nodes will help us to identify new anomalous regions by introducing new shallow leaf
nodes.

The worst-case time complexity of constructing the iForest is O(S), where S is the
set of data points used to construct each iTree[4]. Each iTree is a binary tree. When
constructing any iTree, all the selected sample points initially belong to the root node.
In the worst case, each sample might belong to a different leaf node. Then, we will
have to construct |S| leaf nodes in the tree. For our method I?Forest, the worst case
time complexity is O(AS), where AS is the sample selected from new data AD;. While
updating the structure of each iTree, we initially put all data points of AS into the root

node. In the worst case, these new points can introduce AS new leaf nodes.
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Algorithm 10 updateLe ftSubTree(N)
1: N = N.left
2: if Np.height == T.maxHeight then

return
end if
if Ny, is leaf node then

splitNode(Ny)

BFT.enqueue(Ny.left)

BFT.enqueue(Ny.right)
else
10: N, = N // Creating a copy of Ny,
11:  Nleft = N
122 N;:.left = N;» // Creating new node N, »
13: NL/.Tight = Np,
14:  N;».SA= N.SA // SA is splitting attribute of the node N,/
15: N .8V = N.SAmin // SV is splitting value of the node N,/
16: N, .SAmin = N;.newPoints.SA.min
17 BFT.enqueue(N, )
18:  BFT.enqueue(Ny)
19: end if

5.5 Experiments

We evaluate our approach I?Forest through extensive experimental evaluation. First,
we will describe the datasets, followed by the experimental setup and discussion about

the results.

5.5.1 Datasets

We have performed experiments on a synthetic 2-dimensional dataset and five real-world
datasets. Four of the five real-world datasets (gassensor, shuttle, covtype, and poker)
are chosen based on a detailed study about benchmarking datasets for concept drift
handling algorithms [117]. The fifth real-world dataset (crop) is from the UCI Machine
Learning repository.

We also experimented with a synthetic dataset that we generated. It is a two-dimensional
dataset with 30030 data points. The dataset is plotted in Figure 5.1. The dataset con-
sists of five classes corresponding to five regions in the feature space. Three of the
five classes have 10000 data points each, and the other two have 15 data points each.

The gassensor dataset consists of 128 features from 16 chemical sensor observations
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Algorithm 11 updateRight SubTree(N)

1: Np = N.right

2: if Ng.height == T.maxHeight then

3:  return

4: end if

5. if Npg is leaf node then

6:  splitNode(Ng)

7. BFT.enqueue(Ng.left)

8:  BFT.enqueue(Ng.right)

9: else

10: Ny = Ng // Creating a copy of Ny

11:  N.right = Ny

12:  Np.right = Np» // Creating new node N

13: NR/.left = Np

14:  Np.SA = N.SA // SAis splitting attribute of the node
15:  Np.SV = N.SA.max // SV is splitting value the node N
16:  Np.SAmax = N, .newPoints.SA.max

17: BFT.enqueue(Ng)

18:  BFT.enqueue(N )

19: end if

collected over a period of three years in the gas delivery platform at the University
of California. There are 13910 instances, each belonging to one of the six gas types.
The shuttle dataset is a statlog dataset where each instance has nine numeric features
collected from the sensors’ measurements and belongs to one of the seven different
categories. The fcovtype dataset is a forest cover dataset from United State’s Forest
Service Information system. The dataset has a total of 581012 records. These records
are categorized into seven different categories. Each record has 54 attributes. These
attributes describe the various factors that impact vegetation on land cover. The poker
dataset is a poker-hand prediction dataset consisting of 1025010 belonging to 9 different
classes. It has ten integer attributes representing the rank and suit of each card in a
hand of 5 cards. The crop dataset is a temporal and optical-radar-based image dataset
for cropland classification. A total of 174 features (2*49 radar and 2*38 optical features)
facilitate 325834 records to be categorized in one of the seven crop categories. Please

refer to Table 5.2 for a brief summary of datasets.

The datasets chosen have at least five classes. Out of these five classes, at least three

have a significant number of data points. We must induce all three types of concept
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Conditionl= False & Condition2= False | Condition1= True & Condition2= False

No Change Change in left subtree of N

Conditionl= False & Condition2= True | Condition1l= True & Condition2= True

Change in right subtree of N Change in both left and right subtrees of N

Figure 5.2: Updating an Internal Node. (Conditionl=Line 7, Algorithm 4 Condi-
tion2=Linel2, Algorithm 4)

drifts we are targeting. The CDI concept drift corresponds to the addition of anomalous
points in the new regions of the feature space. The CDII concept drift corresponds to
adding new points that convert old anomalies into normal points. The CDIII concept

drift corresponds to adding new normal points in new regions of feature space.

For experiments, we carefully construct two partitions D; as old data and AD; as
new data. A separate AD; is constructed for each concept drift type. Consider the five
classes in the dataset as A, B, C, D, and E. These classes are arranged in the descending
order of number of data points for each class in the dataset. D, consists of all the points
of the largest class A and a small fraction of class B and D. For CDI drift, AD; consists
of a small number of data points from class E as new anomalies. Similarly, for CDII
drift, AD; consists of all the points of class B, the second largest class in the dataset.
D; had some anomalies corresponding to class B. After introducing CDII concept drift,
they will be converted to normal data points. To introduce CDIII drift, AD; consists
of all points from the third largest class C. Points from class C will introduce a new

normal. Please refer to table 5.2 for details about the sizes of D; and AD;.
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Table 5.2: Dataset details

. gas
synthetic sensor shuttle | covtype | poker crop
Attributes 2 128 9 54 10 174
D;| 10030 | 3045 | 45620 | 283301 | 415626 | 85144
Zanomaly 0.3 118 | 0.074 | 0.066 | 0.069 | 0.082
in D;
|AD;] for CD-1 15 30 50 200 100 35

(All Anomaly)
|AD;| for CD-II
(All Normal)
[AD;] for CD-III
(All Normal)

9085 2926 8903 211840 | 350526 | 75673

10000 2565 3267 35745 39432 | 74067

5.5.2 Experimental Setup

Our experiments were carried out on a machine with Ubuntu 20.04.5 LTS operating
system and 16 GB RAM. Each forest structure that we built consisted of 100 iTrees.
For the construction of each iTree, the sample size was set to 256 or 1% of the input
data points, whichever is more. All results are averaged across five runs due to the
inherent randomization in constructing iForest. The anomaly rate for iFagp is set to
the original fraction of anomalies in old data D;. For SENC Forest, the parameter s

is set to 30, as mentioned in the paper by the authors.

For a fair comparison, we train the respective underlying forest of each method over full
datasets D; and construct forest F; for every baseline, then with the arrival of AD, each
of the F; is updated to Fi,+1' RRCF processes AD; point by point and updates the
model for each data point. PCBIF and iFsgp process each point to detect drift and
select a sample form AD; to build trees from scratch. To create the same sized trees
as existing ones, the sample chosen from AD; will be the same size as in the existing
forest F;. After adapting to the changes in AD;, the respective existing F; updates to
its own Fi’ +1- Eventually, all the comparing approaches use their respective F; 41 to find

anomalies in D; + AD,;.
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Table 5.3: Running Time and AUC.

CDI CDII CDIII
Datsets Methods AUC | Running | Speedup by | AUC | Running | Speedup by | AUC | Running | Speedup by
Time I?Forest Time I’Forest Time I?Forest
Lazy 0.578 0.328 0.327
Aggressive 0.584 0.124 10.7 0.447 0.19 1.7 0.62 0.19 1.8
iFasp 0.612 | 0.0022 0.2 0.619 0.252 2.3 0.502 0.143 14
synthetic PCBIF 0.593 0.036 3.1 0.918 | 10.591 97.2 0.685 9.197 89.3
SENCForest | 0.607 0.041 3.5 0.513 0.28 2.6 0.63 0.279 2.7
RRCF 0.685 0.419 36.1 0.932 | 813.661 7464.8 0.693 | 807.807 7842.8
I’Forest 0.621 0.0116 1 0.916 0.109 1 0.683 0.103 1
Lazy 0.749 0.379 0.62
Aggressive 0.795 0.845 9.9 0.422 0.866 1.9 0.600 0.866 2.3
iFasp 0.740 | 0.0003 0.0004 0.324 0.033 0.1 0.562 0.030 0.1
gas PCBIF 0.722 0.55 6.4 0.447 3.988 8.6 0.473 3.455 9.2
sensor SENCForest | 0.756 0.34 4 0.685 0.805 1.7 0.729 0.738 2
RRCF 0.620 0.836 9.8 0.251 | 134.819 289.3 0.452 | 118.425 315
I’Forest 0.789 0.085 1 0.484 0.466 1 0.67 0.376 1
Lazy 0.951 0.940 0.921
Aggressive 0.957 0.410 12.4 0.973 0.517 4.7 0.931 0.441 4.6
iFasp 0.160 0.012 0.4 0.821 0.219 2 0.787 0.099 1
shuttle PCBIF 0.916 0.038 1.2 0.795 9.051 81.5 0.825 2.408 25.1
SENCForest | 0.859 0.011 0.3 0.968 0.385 3.5 0.966 0.150 1.6
RRCF 0.98 0.772 23.4 0.75 | 685.027 6171.4 0.775 | 318.739 3320.2
I’Forest 0.988 0.033 1 0.971 0.111 1 0.973 0.096 1
Lazy 0.784 0.524 0.539
Aggressive 0.802 8.189 39 0.591 16.026 6 0.571 9.241 17
iFasp 0.251 0.37 1.8 0.688 5.529 2.1 0.502 1.323 2.4
covtype PCBIF 0.500 2.923 13.9 0.494 | 283.028 106.4 0.502 | 48.087 88.4
SENCForest | 0.739 0.983 4.7 0.629 | 37.250 14 0.581 4.857 8.9
RRCF 0.797 3.23 15.2 NA NA NA 0.53 | 25021.5 45995
I?Forest 0.808 0.212 1 0.589 2.66 1 0.574 0.544 1
Lazy 0.775 0.426 0.560
Aggressive 0.778 4.870 26.6 0.443 9.141 2.2 0.564 5.343 8
iFasp 0.35 0.315 1.7 0.597 | 20.417 5 0.542 3.168 4.8
K PCBIF 0.614 1.23 6.7 0.498 | 479.633 117.8 0.513 | 51.711 77.9
POXCT | SENCForest | 0.803 | 0.40 2.2 0.545 | 30.706 7.5 0599 | 3.139 47
RRCF 0.80 6.427 35.1 NA NA NA 0.541 | 27602.4 41569.8
I?Forest 0.799 0.183 1 0.542 4.071 1 0.569 0.664 1
Lazy 0.994 0.997 0.961
Aggressive 0.994 4.586 19.9 0.993 10.750 5.9 0.983 10.736 6.3
iFasp 0.237 0.102 0.4 0.913 1.562 0.9 0.958 1.506 0.9
crop PCBIF 0.465 0.372 1.6 0.405 | 106.567 58.8 0.419 | 105.199 61.4
SENCForest | 0.995 0.325 1.4 0.997 | 22.421 12.4 0.989 | 22.936 134
RRCF 0.99 0.981 4.1 0.511 5821 3210.7 0.653 | 2993.3 1720.2
I’Forest 0.996 0.236 1 0.998 1.813 1 0.974 1.714 1
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5.5.3 Results

We compare I?Forest against two extreme approaches (Lazy and Aggressive) and four
incremental approaches (iFasp, PCBIF, RRCF, and SENC Forest) described in Sec-
tion 5.3. We want to compare these methods for all three types of concept drifts (CDI,
CDII, and CDIII). We are specifically interested in evaluating the success of I2Forest
for the three design goals mentioned in Section 5.3. To compare the efficiency, we mea-
sure the time required to update the model using each competing method. To compare
the quality, we measure the AUC (Area Under the ROC Curve) score for the anomaly
detection task using each competing method. Please refer to Table 5.3 for all experi-

mental results.

Comparison with the Lazy approach

The running time column for the Lazy approach is blank because it does not update
the model at all. Therefore, we cannot compute the speed up of I? Forest over the Lazy
approach. The AUC score for I?Forest is better than the Lazy approach for all three
concept drifts across all six datasets. This observation confirms the intuition that the

old model needs to be updated when new data introduces concept drift.

Comparison to the Aggressive approach

The Aggressive approach completely rebuilds the whole Isolation Forest using the old
and new data. Compared to the I?Forest, we expect that its running time will be
higher. I?Forest is more efficient than the Aggressive approach for all three concept
drifts across all six datasets. The relative size of AD; with respect to D; plays a key
role in deciding the speed that I?Forest can achieve. A larger size of AD; means that
the I? Forest needs to do more updates to the structure of each iTree. Concept drifts of
type CDII and CDIII represent this scenario. In such a case, the speed-up of I?Forest
over the Aggressive approach is lower. In our experiments, it is in the range of 1.6X to
6X for CDII, and the CDIII speed-up range is from 1.8X to 17X. For the CDI update,

the relative size of AD; is relatively small as it only introduces new anomalies. In such
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a case, I?Forest needs to make minimal changes to the structure of each iTree. As a
result, the speed-up of I2Forest is in the range of 10.7X to 39X for CDI update.

The aggressive approach has access to the old and new data while rebuilding the tree.
Intuitively, we expect it to beat the I2Forest for the anomaly detection quality easily.
However, the results are contrary. For CDI updates, I2Forest has a better AUC score for
all datasets except the gas sensor dataset. Moreover, even for the gas sensor dataset,
the AUC score of I2Forest is only marginally lower than the Aggressive approach. For
CDII and CDIII updates, I2Forest can achieve a better AUC score for some datasets.
This surprising success of I2Forest for quality over the Aggressive approach can be
explained by the selective updates that I2Forest performs. With old data D;, we already
have a good model F;. I?Forest makes only minimal changes to it to accommodate
new data AD;. As a result, it is able to maintain most of the performance on old data,
and it performs well over the new data. In contrast, the Aggressive approach has to
establish a good model for all the data in a single attempt.

Comparison with iF4gp,

When new data AD; arrives, iF'4gp behaves like the Aggressive approach if it detects the
concept drift. Therefore, we can observe that the running time of ¢F4gp is sometimes
higher than I? Forest. However, when iF4gp fails to detect the concept drift, it behaves
like the Lazy approach. In such a scenario, the running time of iF4gp is lower than
I?Forest.

Whenever i F4gp runs faster than I? Forest, its AUC score is always lower than I? Forest.
This result is expected as iFagp is just replicating the Lazy approach. In contrast,
when iF4gp runs slower than I?Forest, it sometimes achieves a higher AUC score than
I?Forest. This observation tallies with the behavior of the Aggressive approach.
Comparison with PCBIF

PCBIF is a three-step method. First, it detects the concept drift. Second, it identifies
bad-performing trees. Third, it replaces such trees. The computational overheads of
this three-step approach are high. As a result, I?Forest is always faster than PCBIF.
Updates in I2Forest are more focused on handling the concept drift as compared to the

coarse grain updates of PCBIF. Except for the synthetic dataset, the AUC score of
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I?Forest is always higher than PCBIF. Even for the synthetic dataset, the I2Forest

AUC score is only marginally lower than PCBIF'.
Comparison with SENCForest,

When the new anomalies are added during the CDI updates, SENC Forest does not
change the structure of the tree. It just updates its anomaly score mechanism in response
to new data in the CDI update. Hence, for CDI updates, SENCForest sometimes
runs faster than I2Forest. The tree structure update process in SENC Forest is far
more complex than the I?Forest. During the CDII and CDIII updates, the update
size is large. This large update size triggers the tree structure update mechanism of
SENCForest. As a result, the running time of SENC Forest is always higher than
I?Forest for CDII and CDIII updates.

For the AUC score, I2Forest is able to beat SENC Forest during CDI updates for five
out of the six datasets. For the poker dataset, their AUC scores are comparable during
the CDI update. However, during CDII and CDIII updates, there is no clear winner
between SENC Forest and I?Forest for the AUC score. Both methods update the tree
structure in their own way. Nevertheless, the primary limitation of the SENC Forest
is that it needs labeled data for training. All other methods can work with unlabelled

data for training.
Comparison with RRCF

RRCF updates the tree structure in response to every single data point in the new data
AD;. Therefore, RRCF' is the most time-consuming baseline among all the compared
methods. For the two largest datasets in our experiments (covtype and poker), RRCF
did not finish the update even after twenty-four hours for the CDII update. Therefore,

we have not mentioned the results for RRCF for these two datasets for the CDII update.

Tree structure updates for every single new data point help RRCF to perform well
on CDI updates. Its performance is comparable to I2Forest. However, for CDII and
CDIII updates, RRCF performance degrades as it is not designed to handle CDII and
CDIII updates.
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5.6 Conclusion and Future Work

In this chapter, we have presented an incremental algorithm I%Forest. It quickly up-
dates the existing iForest model in response to the arrival of the new data. I?Forest
handles three types of concept drifts. We have compared our algorithm with six base-
lines. The experimental results show the trade-offs that exist between various incre-
mental methods. This work can be further improved in two ways. First, we can identify
which updates to the iTree structure matter the most to improve the anomaly detection
performance. The second possible direction is to check whether the new data introduces
any concept drift. If there is no concept drift, then there should not be any change to

the iTree structure.
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Conclusion and Future Work

In this thesis, we proposed Isolation Forest-based approaches to prune the redundant
computations. We focused on three tasks: clustering, anomaly detection, and model
update. The major challenge while pruning the redundant computations was maintain-
ing the quality of the downstream tasks. Our three research contributions successfully
pruned the redundant computation without any significant loss in quality.

In Chapter 3, we prune redundant computation when the machine learning application
requires computation of all-pair MBD. We proposed an algorithm (fM BD) to compute
all-pair MBD faster by optimizing the order of distance computation using Isolation
Forest. Our algorithm fM BD computes exact distances without any approximation.
The proposed fM BD enables clustering and anomaly detection tasks to execute 2X to

5X faster with the same quality.

In Chapter 4, we prune the redundant computation when a mass-based clustering al-
gorithm only requires a small fraction of all-pair distances. We proposed an algorithm
sM BScan that identifies a superset of necessary data point pairs out of all (g) pairs. We
compute MBD only for these identified pairs. The superset includes all of the required
data point pairs. As a result, there is no loss in the clustering quality. Our sM BScan
algorithm saves up to 53X time and up to 96% of memory over the existing M BScan

algorithm.
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In Chapter 5, we selectively update the existing Isolation Forest structure to handle
the concept drift. We proposed I2Forest that quickly updates each tree in the forest
to imitate the model constructed with both old and new data. The proposed approach

quickly updates the model with minimal loss in the anomaly detection quality.

6.1 Future Directions

In conclusion our thesis is about making Isolation Forest based unsupervised machine
learning algorithms efficient by reducing execution time or memory requirement. In line
with the same objective, we discuss the future scope of improvement of the algorithms
discussed in the thesis. In addition, we discuss a few other directions we can effectively

explore for efficient machine learning utilizing Isolation Forest.

1. Incorporating Parallelization: All the algorithms discussed in this thesis are
implemented in a serial manner. A further scope of efficiency improvement lies
in incorporating parallelization at various stages of the algorithms. The potential
stages of parallelization include i) the construction of Isolation Forests across all
three algorithms, (ii) the computation of mass-based distances in sMBSCAN and
fMBD, and (iii) incremental updates to isolation trees in I?Forest. With this
improvement, the running time of the algorithm will be equivalent to that of an

Isolation forest consisting of a single isolation tree.

2. Enhancing Density-Based Clustering and Nearest Neighbor based Tasks:
Our research in sMBSCAN demonstrates the efficacy of using Isolation Forest
structures to efficiently identify mass-based distances below a given threshold
in density-based clustering. Extending this approach to other clustering meth-
ods, such as Density Peak Clustering, presents an exciting avenue for future ex-
ploration. Beyond clustering, the Isolation Forest structure also holds the po-
tential for efficiently identifying k-nearest neighbors, which is fundamental to
many machine learning and data mining applications. Hence, on similar lines

of sSMBSCAN, many other algorithms can be improved using isolation forest
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structure.

3. Theoretical Exploration of Mass-Based Distance (MBD) as a Metric:
With respect to MBD, this thesis improves the efficiency of the downstream data
mining tasks by targeting optimization opportunities using the isolation forest
structure. However, exploring the theoretical aspects of mass-based distances has
an interesting research scope. Research in this direction will help in answering
questions like, Can we approximate the MBD similar to Fuclidean distances or
any other metric using triangle inequality and optimizations? In our primary ob-
servations, MBD is observed to follow triangle inequality; however, it is interesting

to dive deeper and research for theoretic justifications.

4. Representation Learning and Self-Supervised Learning (SSL): Isolation
Forests and related techniques, such as isolation kernels, could contribute signifi-
cantly to representation learning in deep learning models. A particularly promising
direction is their application in contrastive learning-based self-supervised learning
(SSL) approaches. In the context of tabular data, where, unlike images, text,
or speech, there is no inherent structural consistency across datasets, Isolation
Forest-based methods could play a crucial role in defining positive and negative
sample pairs for contrastive learning. SSL for tabular data remains an underex-
plored research area, and integrating Isolation Forest techniques into this domain

could lead to novel advancements.

5. Incremental Learning in Deep Learning Models: Incremental updates to
machine learning models are becoming increasingly critical, especially in the con-
text of large-scale deep learning models. The cost, time, and energy consumption
associated with retraining such models pose significant challenges, including envi-
ronmental concerns related to carbon emissions. Our I?Forest approach, which
focuses on updating only the necessary parts of the model, presents a potential so-
lution for efficient incremental learning in deep learning architectures. Exploring
this approach further could lead to substantial improvements in resource-efficient

model updates.
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