
Hardware Trojan Mitigation for Securing
Network-on-Chip Communication Against Packet
Routing Attacks

Manju R

Hardware Trojan Mitigation for Securing
Network-on-Chip Communication Against

Packet Routing Attacks

Thesis submitted in partial fulfilment
of the requirements for the degree of

in

COMPUTER SCIENCE AND ENGINEERING

by

Manju R

Under the supervision of

John Jose

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

September 2024

To my Mother

- your unwavering strength drove me forward, making this dream possible.

DECLARATION

I hereby certify that

a. The work contained in this thesis is original and has been done by myself under the general
supervision of my supervisor.

b. The work has not been submitted to any other institute for any degree or diploma.

c. Whenever I have used materials (data, theoretical analysis, results) from other sources, I have
given due credit by citing them in the text of the thesis and giving their details in the references.
Elaborate sentences used verbatim from published work have been clearly identified and
quoted.

d. No part of this thesis can be considered plagiarism to the best of my knowledge and under-
standing, and I take complete responsibility if any complaint arises.

Date : 13 / 09 / 2024 Manju R

Place: Guwahati, India

THESIS CERTIFICATE

This is to certify that the thesis entitled “Hardware Trojan Mitigation for Securing
Network-on-Chip Communication Against Packet Routing Attacks” being submitted
by Manju R to the Department of Computer Science and Engineering, Indian Institute of
Technology Guwahati, is a record of bonafide research work carried out by her under
my supervision and is worthy of consideration for the award of the degree of Doctor of
Philosophy of the Institute.

To the best of my knowledge, no part of the work reported in this thesis has been
presented for the award of any degree at any other institution.

Date : 13 / 09 / 2024

Place: Guwahati, India Dr. John Jose

(Thesis Supervisor)

ACKNOWLEDGMENTS

My experience at IIT Guwahati has been incredibly transformative, both academically and person-
ally. The campus has played a vital role in shaping me in ways that are difficult to fully express. I
remember feeling uncertain on the day I first arrived, questioning my capabilities as a researcher.
Moving to campus with my mother and my 5-year-old daughter, especially without immediate
accommodation, presented its own set of challenges. However, amidst these difficulties, I encoun-
tered many individuals whose constant encouragement helped me navigate through tough situations.
The challenges I faced along the way have only served to make me stronger, both personally and
professionally.

First and foremost, I would like to express my sincere gratitude to Dr. John Jose, my Ph.D. supervisor,
for allowing me the opportunity to work with him. His lectures on Computer Architecture were
invaluable throughout my research, and his unwavering guidance and assistance were crucial in
helping me overcome the challenges presented by my work. Our conversations, his wise advices,
and his consistent encouragement greatly contributed to my development.

I am also deeply indebted to my Doctoral Committee members, Prof. Tamarapalli Venkatesh, Dr.
Moumita Patra, and Prof. Ashok Singh Sairam, for their invaluable feedback and guidance regarding
my thesis work. I would like to sincerely thank all the professors of the Department of Computer
Science and Engineering for their persistent support, especially Prof. G. Sajith, Prof. Arnab Sarkar,
and Dr. Benny George K, whose courses significantly expanded my knowledge base.

I am immensely thankful to my mentor, Prof. Prabhat Mishra, whose guidance steered me towards
my research area and fuelled my motivation to explore deeper. His unwavering commitment to
research and invaluable insights played a vital role in the publication of my first paper.

A comfortable stay on campus is incomplete without supportive lab members. I extend my heartfelt
thanks to all the members of the Multi-Core ARchitecture and Systems (MARS) Lab, especially
Abhijit, Dipika, Sivakumar, Manjari, and Amit, for their immense support in every possible way.
Abhijit, in particular, has been both a close friend and a mentor, providing unwavering support
throughout my journey. His valuable input in the early stages of my research was particularly
beneficial, and his support as a true friend has been invaluable.

Sivakumar has always been there for me as a brother since the day I joined IITG. His support
has been invaluable, and I am deeply grateful for it. Dipika, your friendship has been a source of
strength, and I thank you for your unwavering support. Amit, being one of my good companions,
has also been a significant source of support. Abeer and Syam, despite our limited interactions,
thank you for the invaluable support you provided during my visit to IITG for my synopsis seminar.

My time at IIT wouldn’t have been the same without my dear friends Debanjan and Nilotpal. From
comprehensive preparations to late-night discussions, they have been there through it all. Our shared
memories of Holi celebrations and Friendship Day remain cherished. Thank you for making my
campus life enjoyable and reminiscent of the good old college days.

I am immensely grateful for the unwavering mental and moral support from Prof. Amal Dev
Parakkat (Associate Professor, Institut Polytechnique de Paris), Prof. Jalaja M J (former Principal,
GEC Idukki), Dr. Sangeetha Jose, and Asha Ali (my colleagues from GEC Idukki), all of whom
played integral roles in my journey towards completing my thesis. Special gratitude is extended to
my mentor Prof. Balu John (Retd. Head of the Dept, CSE, CET) and my dear friend and colleague,
Anoop S K M for being my pillars of support as always.

The final thesis completion phase is always challenging. Completing a thesis while working in an
institution is a big responsibility. I must mention my deepest gratitude to my friend and head of the
department, Information Technology, GEC Barton Hill, Dr. Haripriya A. P, for providing me with
the support and freedom to do my work. Special mention to my dearest colleague Prof. Suryapriya
S and Sreehari for being with me through thick and thin in all phases of my thesis completion.

None of this would have been possible without the unwavering support of my family. To my mother,
Vasanthamma, who courageously accompanied me to this new place, I am eternally grateful for
your unconditional support. And to my beloved daughter, Neelanjana, your encouragement, the way
you handled so many situations despite my absence, and your special gifts to cheer my days have
been my greatest source of strength.

Last but not the least, I extend my gratitude to my husband, Sandeep, for his unwavering belief
in me and for encouraging me to pursue my passion. In conclusion, I am profoundly grateful to
each and every individual who has contributed to my journey at IIT Guwahati. Your support and
encouragement have been invaluable, shaping me into the person I am today.

Guwahati, September 2024 Manju R

ABSTRACT

As Tiled-Chip Multi-core Processors (TCMPs) gain widespread adoption in various domains
such as automotive systems, IoT devices, and consumer electronics, ensuring the security and
integrity of these systems against hardware-level attacks is of utmost importance. Among the
potential threats, Hardware Trojans (HTs) pose a significant risk to the reliable operation of TCMPs,
particularly in Network-on-Chip (NoC) interconnects. As NoC serves as the backbone for all
inter-core communication, it becomes susceptible to many attacks like information leakage and
bandwidth denial. This thesis explores the impact of HT attacks on NoC architecture and proposes
novel detection and mitigation strategies to fortify TCMPs against such threats. The thesis covers
the mitigation strategies against three prominent classes of HT-induced Denial of Service (DoS)
attacks: Packet misrouting attack, Packet looping attack, and Packet duplication attack. For each
attack, techniques are proposed to detect, localize, and neutralize HT-induced threats within the
NoC architecture.

The thesis begins with a comprehensive survey of existing literature on HT attacks in TCMPs,
outlining various attack models and their potential impacts on system performance and security.
The primary contribution of the thesis focuses on mitigating the HTs that deploy packet misrouting
within NoC routers, which results in DoS attacks and injection suppression. A dynamic shielding
technique is introduced to isolate HT-infected NoC routers, coupled with a secure routing algorithm
to bypass such compromised NoC routers. Meanwhile, our second contribution addresses HT-
induced packet looping attacks, where packet delay is selectively induced in the NoC routers
through the manipulation of the output path selection strategy used in the routing algorithm. A
security wrapper module, along with path monitoring, is proposed to mitigate the impact of HTs with
minimal performance overhead, maintaining comparable packet latency to baseline architectures. In
our third contribution, we target HT-induced packet duplication attacks, where HT is inserted in
the network interface that facilitates unauthorized packet duplication, thus affecting the system’s
performance. To mitigate the HT effect, a Packet Status Holding Register is integrated within the
network interface, which blocks packet duplication with minimal hardware overhead. Experimental
results on real benchmarks demonstrate significant improvements in packet latency and throughput.

Table of Contents

Page

List of Figures v

List of Tables viii

List of Acronyms x

1 Introduction 1

1.1 Multiprocessor System-on-Chip Security . 2

1.2 Hardware Trojan Attacks in Tiled Chip Multicore Processors 2

1.3 Thesis Motivation . 5

1.4 Thesis Contribution . 7

1.4.1 Secure NoC by Mitigating Packet Misrouting Trojan Attacks 7

1.4.2 Secure Routing Framework by Mitigating Packet Looping Trojan Attacks . 8

1.4.3 Fortifying NoC Security Against Trojan-Induced Packet Duplication Attacks 9

1.5 Thesis Organization . 10

2 Background 11

2.1 Introduction . 11

2.2 IC Supply Chain and EDA Tools: An Overview 12

2.3 Hardware Trojan Circuit in Integrated Circuits . 14

2.4 Hardware Trojan Taxonomy . 17

2.5 Overview on Tiled Chip Multicore Processors . 19

2.6 Hardware Trojan Impact on NoC . 21

2.6.1 Denial of Service Attack . 21

2.6.2 Information Leakage Attack . 22

2.6.3 Data Corruption Attack . 23

2.6.4 Functional Modification Attack . 23

2.7 Classification of HT locations in NoC Routers . 23

ii

TABLE OF CONTENTS

2.7.1 Trojan in Route Computation Unit . 24

2.7.2 Trojan in Network Interface . 26

2.7.3 Trojan in Switch Allocator . 26

2.7.4 Trojan in Input/Output Buffers . 27

2.7.5 Trojan in Network Link . 28

2.7.6 Trojan in Processing Cores . 28

2.8 Experimental Modelling . 30

2.8.1 Computer Architecture Simulators . 31

2.8.2 gem5 . 32

2.8.3 McPAT . 34

2.8.4 Architectural Parameters . 35

2.9 Application and Workloads . 35

2.9.1 Synthetic Traffic Patterns . 36

2.9.2 SPEC CPU Benchmarks . 38

2.10 Performance Metrics . 42

2.10.1 Average Packet Latency . 42

2.10.2 Instructions Per Cycle (IPC) . 43

2.11 Chapter Summary . 43

3 Secure NoC by Mitigating Packet Misrouting Trojan Attacks 44

3.1 Introduction . 44

3.2 Dimension Order Routing . 45

3.3 Threat Model: Trojan Design and its Impact . 47

3.3.1 Packet Misrouting Trojan Design . 48

3.3.2 Impact of Packet Misrouting Trojan Attack 49

3.3.2.1 Denial-of-Service: Attack Scenario 1 49

3.3.2.2 Denial-of-Service: Attack Scenario 2 50

3.3.2.3 Injection Suppression: Attack Scenario 3 51

3.4 TAR: Mitigation Framework for Packet Misrouting HT Attack 51

3.4.1 TAR Phase 1: Trojan Detection . 51

3.4.2 TAR Phase 2: Shielding the Trojan . 53

3.4.3 TAR Phase 3: Trojan Bypassing . 54

3.5 Results and Discussions . 57

iii

TABLE OF CONTENTS

3.5.1 Impact on Effective Average Packet Latency 58

3.5.2 Impact on Effective Average Deflected Packet Latency 60

3.5.3 Impact on Processor Performance . 61

3.5.4 Impact on Injection Suppression . 62

3.6 Area and Power Overhead Analysis . 63

3.7 Chapter Summary . 63

4 Secure Routing Framework by Mitigating Packet Looping Trojan Attacks 64

4.1 Introduction . 64

4.2 Threat Model: Trojan Design and its Impact . 66

4.2.1 Packet Looping Trojan Design . 66

4.2.2 Sample Scenario for Packet Looping Trojan Attack 69

4.3 SecRC: Mitigation Framework for Packet Looping HT attack 70

4.3.1 Traffic Monitor Module . 71

4.3.2 Path Monitor Module . 72

4.3.3 Security Wrapper for Routing Unit . 75

4.4 Results and Discussions . 77

4.4.1 Impact on Average Network Hops . 78

4.4.2 Impact on Average Packet Latency . 79

4.4.3 Impact on Maximum Packet Latency . 80

4.4.4 Impact on Processor Performance . 81

4.5 Area and Power Overhead Analysis . 82

4.6 Chapter Summary . 84

5 Fortifying NoC Security Against Trojan-Induced Packet Duplication Attacks 85

5.1 Introduction . 85

5.2 Threat Model: Trojan Design and its Impact . 87

5.2.1 Packet Duplication Trojan Design . 87

5.2.2 Impact of Packet Duplication Trojan Attack 89

5.2.2.1 Impact on NoC: Attack Scenario 1 90

5.2.2.2 Impact on Cache: Attack Scenario 2 90

5.3 Mitigating Packet Duplication Trojan Using Existing Techniques 91

5.4 HULK: Mitigation Framework for Packet Duplication HT Attacks 91

iv

TABLE OF CONTENTS

5.5 Results and Discussions . 94

5.5.1 Impact on Average Packet Latency . 95

5.5.2 Impact on LLC Miss . 96

5.5.3 Impact on L1 Cache Miss Penalty . 97

5.5.4 Impact on Processor Performance . 98

5.6 Area and Power Overhead Analysis . 98

5.7 Chapter Summary . 99

6 Conclusion and Future Directions 100

6.1 Summary of Thesis . 100

6.2 Future Work . 102

Bibliography 103

List of Publications 113

v

List of Figures

Page

1.1 System-on-Chip architecture . 1

1.2 An example hardware Trojan with trigger and payload (red gates). The Trojan is
activated when all nodes within the circuit connected to the AND gate inputs output
a logical value of 1, and the payload inverts the original output to launch an attack
on the circuit or system. 3

1.3 FlexNoC resilience package IP . 4

1.4 NoC without safety goals . 5

1.5 Overview of thesis contribution . 6

2.1 Overview of IC supply chain . 12

2.2 IP Core: types and tradeoffs . 13

2.3 Structure of a hardware Trojan . 14

2.4 Trigger and payload logic types of hardware Trojan 15

2.5 Hardware Trojan taxonomy . 16

2.6 8×8 mesh-based NoC in Tiled-Chip Multi-core Processor 20

2.7 Conventional NoC router architecture . 21

2.8 HT classification based on impact . 22

2.9 Trojan locations in NoC-based systems . 24

2.10 System-level view of gem5 . 33

2.11 Overview of gem5 design modules . 34

2.12 4x4 mesh NoC with routers numbered from 0 to 1 37

2.13 Four different mapping pattern considered for the workload WH1. WH1 consists of
4 benchmarks (leslie3d, lbm, libquantum, and mcf) 40

2.14 Four different mapping patterns considered for the workload WHL1. WHL1 consists
of 8 benchmarks (leslie3d, lbm, libquantum, mcf, bzip2, h264ref, named, povray) . 41

3.1 A two dimension 4X4 mesh NoC topology . 46

3.2 8×8 mesh NoC with an HT at router 35 . 48

vi

LIST OF FIGURES

3.3 A denial of service (DoS) attack scenario -1 . 49

3.4 A denial of service attack scenario - 2 . 50

3.5 Structure of an alert_flit . 53

3.6 Working of dynamic shielding in TAR . 54

3.7 Working of Trojan bypassing in TAR . 56

3.8 Effective average packet latency analysis using synthetic traffic patterns 58

3.9 Comparison of effective average packet latency in real workloads consisting of
SPEC CPU2006 workloads (Normalised to Baseline) 58

3.10 Comparison of effective average deflected packet latency in real workloads consist-
ing of SPEC CPU2006 workloads (Normalised to Baseline) 60

3.11 Comparison of processor performance in real workloads consisting of SPEC CPU2006
workloads (Normalised to Baseline) . 61

3.12 Injection suppression avoidance at NoC router (Normalised to Baseline) 62

4.1 Overview of the work . 65

4.2 (a) Trojan design and its effect, and (b) Turn restrictions with the odd-even algorithm 66

4.3 Impact of HT-induced cycles on 8× mesh NoC while running selected SPEC CPU
2006 benchmarks . 70

4.4 NoC router architecture with HT detection framework (traffic and path monitor)
and security wrapper (SecRC). 71

4.5 Analysis of Packet Arrival Compute (PAC) on 8×8 NoC while running uniform
synthetic traffic benchmark. The row and column of heat-map represent the x-
coordinate and y-coordinate of the router. The normalized form packet processing
rate is given in the legend of each heat map. 74

4.6 Structure of a monitor flit . 74

4.7 Structure of SecRC . 75

4.8 Comparison of the average number of hops in real workloads consisting of SPEC
CPU 2006 workloads. (Normalised to Baseline) 78

4.9 Average packet latency analysis with uniform random synthetic traffic in 8×8 mesh
NoC with HT: (a) represents the single HT pair activation. (b) represents the impact
while two HT pairs are activated. (c) represents three HT pairs activation and its
impact and (d) represents four HT pairs activation and its impact on latency. Here,
lower the line on the graph, the better. 79

4.10 Comparison of average packet latency in real workloads consisting of SPEC CPU
2006 workloads. (Normalised to Baseline) . 80

vii

LIST OF FIGURES

4.11 Comparison of maximum packet latency in real workloads consisting of SPEC CPU
2006 workloads. (Normalised to Baseline) . 81

4.12 Comparison of IPC in real workloads consisting of SPEC CPU 2006 workloads.(Normalised
to Baseline) . 82

4.13 Core-wise comparison of IPC SPEC CPU 2006 workload WHM - core 0 to core 32 83

4.14 Core-wise comparison of IPC SPEC CPU 2006 workload WHM - core 33 to core 63 83

5.1 Structure of a NoC packet exchanged between IPs 87

5.2 Communication between IPs in a TCMP . 88

5.3 Insertion of the proposed packet duplication HT (LOKI) in NI 89

5.4 Demonstration of the LOKI attack. 90

5.5 Packet Status Holding Registers (PSHRs) used in HULK 92

5.6 Working of the proposed HULK inside the NI . 94

5.7 Comparison of average packet latency in real workloads consisting of SPEC CPU
workloads (Normalised to Baseline) . 95

5.8 Comparison of LLC misses in real workloads consisting of SPEC CPU 2006
workloads (Normalised to Baseline) . 96

5.9 Comparison of L1 cache miss penalty in real workloads consisting of SPEC CPU
2006 workloads (Normalised to Baseline) . 97

5.10 Comparison of system speedup in real workloads consisting of SPEC CPU 2006
workloads (Normalised to Baseline) . 98

6.1 Summary of thesis . 101

6.2 Summary of performance analysis . 102

viii

List of Tables

Page

2.1 Hardware Trojan placements in NoC (1) . 25

2.2 Hardware Trojan placements in NoC (2) . 29

2.3 Standard system specification considered for experimental evaluation. 36

2.4 Synthetic traffic communication pattern . 37

2.5 SPEC CPU 2006 benchmark suite in the context of this thesis 38

2.6 Overview of workloads patterns explored in the thesis 39

2.7 Workload generation considered in the thesis . 42

3.1 Area and power overhead analysis . 63

4.1 Turn selection scenario in an even column router with HT 69

4.2 Truth table for turn violation checker . 77

4.3 Area and power overhead analysis . 84

5.1 Area and Power overhead analysis . 98

ix

List of Acronyms

Acronym Expansion

IIoT

SoC

MPSoC

ASIC

FPGA

ISA

IC

IP

QoS

TCMP

CAD

NoC

HT

DoS

LLC

RTL

VHDL

EDA

VC

SPEC

MPKI

Industrial Internet-of-Things

System on Chip

MultiProcessor System on Chip

Application Specific Integrated Circuit

Field Programmable Gate Array

Instruction Set Architecture

Integrated Circuit

Intellectual Property

Quality of Service

Tiled Chip Multicore Processor

Computer Aided Design

Network on Chip

Hardware Trojan

Denial of Service

Last Level Cache

Register Transfer Level

Very High-Speed Integrated Circuit Hardware Description Language

Electronic Data Automation

Virtual Channel

Standard Performance Evaluation Corporation

Misses Per Kilo Instruction

x

1
C H A P T E R

Introduction

The digital transformation has facilitated the seamless integration of modern Industrial Internet-

of-Things (IIoT) platforms with machines and cyber-physical systems. These platforms heavily

depend on sophisticated System-on-Chips (SoCs) within process control systems, utilizing Appli-

cation Specific Integrated Circuit (ASIC) technology evolving into SoCs to meet contemporary

power, performance, and area demands. Figure 1.1 illustrates the structure of an SoC, where all

functional blocks, including microprocessors and Digital Signal Processors (DSP), are integrated

into a monolithic Integrated Circuit (IC). SoCs typically employ a traditional hierarchical bus or

crossbar approach for on-chip communication. The rise in consumer electronics’ demand has

led to the incorporation of numerous Intellectual Property (IP) blocks into SoCs, resulting in the

emergence of Multiprocessor SoCs (MPSoCs) [1]. As applications became more compute-intensive,

multimedia systems, video surveillance systems, and automotive vision systems turned to MPSoCs

for their high throughput and parallel processing capabilities.

Bus-based Interconnect

Memory
Analog and

Custom Circuitry

System
Components

Media
Processors

Core Processors
Vector

Processors

Figure 1.1: System-on-Chip architecture

However, the traditional bus-based/crossbar interconnects used in MPSoCs faced challenges

such as routing congestion and low operation frequencies, impacting the quality of service (QoS).

1.1. MULTIPROCESSOR SYSTEM-ON-CHIP SECURITY

Eventually, the increased complexity of MPSoCs, driven by smaller critical dimensions, intricate

power management, and the need for faster interconnect IP speeds, prompted the adoption of

advanced MPSoCs in various market verticals. Accordingly, there has been a shift towards Tiled-

Chip Multi-core Processors (TCMPs), where multiple processing cores are arranged in a tiled

manner, with each core consisting of one or two levels of cache memory modules and interconnected

through a lossless packet-based interconnects known as Network-on-Chip (NoC) [2][3]. The

incorporation of packet-based communication in NoC enhances bandwidth utilization significantly.

1.1 Multiprocessor System-on-Chip Security

With the increase in the demand for high-performing MPSoCs in safety-critical systems and

consumer devices, the IC fabrication units incur considerable costs to update their technology to

reduce the gap between manufacturing and synthesis technology. This has led to the outsourcing of

the fabrication of ICs, where modern MPSoCs started using commercial off-the-shelf components

manufactured by untrusted third-party vendors. Consequently, the long and globally distributed

supply chain of hardware IPs makes SoC design increasingly vulnerable to diverse trust/integrity

issues [4]. Research shows that supply-chain attacks can happen in any of the phases of IC supply-

chain like design, fabrication, and test [5][6][7][8]. Some potential threats in SoC design are EDA

tool vulnerabilities, untrusted vendor or foundry, IC subversion, reverse engineering, counterfeit IC,

IP piracy, etc [5]. Even complex TCMPs built with third-party NoCs create more vulnerabilities

due to their emphasis on performance and backward compatibility [9]. For example, to achieve

higher throughput or lower latency, designers often prioritize optimizations that weaken security

mechanisms or introduce vulnerabilities. Consequently, chip suppliers rely on application constraints

and methodologies to implement proper security policies [6][8] to counteract the hardware attacks.

1.2 Hardware Trojan Attacks in Tiled Chip Multicore Processors

Hardware-oriented attacks on TCMPs often involve exploiting vulnerabilities within the ICs, which

can compromise the system’s security, integrity, and functionality [10]. This type of attack capitalizes

on various hardware information, including power consumption, cryptographic keys, memory access

patterns, etc [4]. Some of the potential hardware attacks are cache-based channel attacks, power-

analysis attacks, and NoC vulnerabilities. While cache-based attacks like prime+probe attacks [11]

exploit the shared caches to monitor cache access patterns, flush+reload [12] attacks observe memory

access patterns to deduce information about parallel tasks on different cores. On the other hand,

2

1. INTRODUCTION

Trigger

Payload

Figure 1.2: An example hardware Trojan with trigger and payload (red gates). The Trojan is
activated when all nodes within the circuit connected to the AND gate inputs output a logical value
of 1, and the payload inverts the original output to launch an attack on the circuit or system.

power analysis attacks involve monitoring power consumption patterns of individual cores to gain

insights into cryptographic algorithms or other sensitive computations [13].

Another major area of attack lies in the vulnerabilities associated with the NoC. For example,

traffic analysis attacks targeting the NoC can expose communication patterns between cores, while

injection attacks may encompass scenarios where malicious nodes disrupt communication or manip-

ulate messages within the network. One of the significant hardware-level security compromises in

TCMPs is the insertion of malicious circuits called Hardware Trojans (HTs) [14], which can alter

the functionality of the system. As NoC acts as the backbone for all the on-chip communication,

it is often as considered as a primary target for HT attacks [2][9][15][16][17]. An HT typically

consists of two parts: a Trigger and a Payload. An example of an HT is shown in Figure 1.2, where

the trigger and the payload comprising of an AND and an XOR logic gates are added to the original

4-input circuit. The trigger is usually created using one or more extremely subtle events, such as

rare inputs, signals, or transitions. Once triggered, the payload launches an attack, like information

leakage, data corruption, Denial-of-Service (DoS), performance degradation, etc. Here, the AND

gate serves as the trigger component of the HT. The inputs of this AND gate are sourced from a

subset of uncommon nodes within the circuit. The payload of the HT is implemented using an XOR

gate. The Trojan is activated when all nodes within the circuit connected to the AND gate inputs

output a logical value of 1. Subsequently, the Trojan inverts the logical value at the payload node.

With NoC’s wide popularity in modern TCMPs, which are often used in smart TVs, vision

systems, and automotive TCMPs [2][18], any HT embedded in NoC can create performance

degradation in the system. Through this thesis, we try to draw attention to vulnerabilities associated

with the NoC IP and possible ways to counteract such attacks. To understand the architecture of

NoC IP used in today’s TCMPs, we explore the NoC architecture model published by Arteris for

their FlexNoC NoC IP [2]. Figure 1.3 shows the block diagram of Arteris FlexNoC resilience

3

1.2. HARDWARE TROJAN ATTACKS IN TILED CHIP MULTICORE PROCESSORS

package NoC IP. FlexNoC uses functional safety-critical NoC for the parts where critical core

communication happens. Additionally, the same package has NoC without any safety goals, which

handles the communications associated with the input/output system. Through this thesis work, we

present the possibility of HT attacks on the NoC routers residing in the non-safety zone of an IP

package, which can cause the system to fail to meet performance specifications.

SC Safety Checker

Automotive CPU

ROM/
FLASH

Mem Ctrl RAM

DMA

SC SC

SCSCSC

DisplayCamera

UART UART

NoC without
safety goals

Functional
Safety-Critical NoC

Figure 1.3: FlexNoC resilience package IP

Conclusively, the pervasive threats posed by HTs in NoC design demand a proactive and

comprehensive approach to ensure the security and integrity of modern TCMPs. As technology

advances and the complexity of integrated circuits grows, the challenges associated with detecting

and mitigating HTs become more pronounced. Researchers have explored techniques like reverse

chip engineering [19] to counteract the performance degradation of systems due to HTs. These

techniques make use of additional hardware with intelligent trade-offs in terms of area and power

overheads. The evolving landscape of cyber threats thus requires continuous research and innovation

to develop more robust methodologies for safeguarding NoC designs. By exploring novel detection

techniques, enhancing the efficiency of various validation methods, and devising strategies to

counteract sophisticated HT attacks, researchers can contribute significantly to the resilience of

future TCMPs. This motivated us to explore various possibilities of HT attacks in NoC and methods

to fortify the foundations of NoC security. The insights gained from such research will not only

protect TCMPs but also fortify the very fabric of our digital infrastructure.

4

1. INTRODUCTION

Inter-chip links

HT Effect (IP) :
DoS Attack

Image

Subsystem

Machine

Learning

Subsystem

Radar

Subsystem

Vision

Subsystem

I/O

Peripherals

Wired

Subsystem
Functional safety

subsystem

Wireless

Subsystem

Memory

Subsystem

I/O

Peripherals

NoC

HT Effect (NoC) :

Packet Misrouting,

Packet Looping &

Packet Duplication

Trojan-infected NoC Router Network InterfaceNoC Router

Figure 1.4: NoC without safety goals

1.3 Thesis Motivation

The growing complexity of NoC interconnects in modern many-core systems, particularly within

safety-critical domains such as autonomous vehicles, increases the risk of HT attacks. These threats

particularly that induce packet misrouting and denial of service (DoS) attacks within NoC routers,

pose a significant threat to the seamless communication required between vital subsystems. As

illustrated in Figure 1.4, HTs implanted in non-safety zones of the NoC can severely disrupt critical

data flows, such as those originating from the visual subsystem. Assume a scenario where an

adversary with malicious intentions implants an HT that could initiate packet misrouting in NoC

routers within the non-safety NoC zone to deploy DoS attacks, where the packets get indefinitely

delayed in the path or never reach their destination. Such HTs, when activated, can compromise

the flow of service packets from the visual subsystem to other critical systems that might never

reach destinations or encounter unexpected delays. For instance, in an autonomous vehicles, it

can impair the vehicle’s ability to make timely and accurate decisions—jeopardizing safety during

operations like lane changes or obstacle avoidance, etc. The realisation that HT-induced DoS attacks

could compromise these systems motivated us to investigate the stealthiness and impact of such

packet misrouting HT circuits within NoC-based architectures. To handle such packet misrouting

HT attacks, we propose a dynamic shielding and Trojan bypass technique that effectively suppresses

HT’s impact on system performance.

Furthermore, as described earlier, an adversary can implant variant HT circuits in visual

subsystems, which, when activated collaboratively, can intermittently cause on-chip data packets

to loop, leading to delays, potential DoS attacks, and degraded performance of connected IPs. To

5

1.3. THESIS MOTIVATION

Hardware Trojan on NoC:

Attack Modelling & its Mitigation

Trojan-Aware

Routing

Thesis
Contribution 1

Mitigation

Packet Status

Holding Register

Thesis
Contribution 3

Mitigation

Packet

Misrouting

Attack

Packet Looping

Attack

Packet

Duplication

Attack

Thesis
Contribution 2

Security Wrapper

with Path

Monitoring

Mitigation

Figure 1.5: Overview of thesis contribution

illustrate the impact of these HT attacks, consider the scenario of visual layer attacks within a

NoC-interconnected visual subsystem (refer to Figure 1.4). HT-induced packet looping can cause

delays in inter-core communication, resulting in issues such as black pixels, distorted images, and

impaired object detection. In safety-critical environments like autonomous vehicles, even a brief

delay can hinder the system’s ability to respond to dynamic changes, potentially leading to severe

consequences. These challenges higlight the need to investigate the stealth and impact of packet-

looping HT circuits in NoC architectures, particularly when triggered across multiple locations. To

counter these attacks, we propose a detection and mitigation framework that prevents DoS attacks

by addressing HT-induced packet cycling.

In addition to these HT attacks, this thesis explores the potential for HTs in NoC router ar-

chitecture to manipulate messages during inter-core communication. For instance, an adversary

could deploy HTs within specific NoC routers to target the vehicle’s cache infrastructure, intro-

ducing packet duplication. This attack increases cache miss latency and overall packet latency,

compromising the vehicle’s computing performance. The influx of redundant data causes more Last

Level Cache (LLC) misses, leading to delayed responses and impaired decision-making. These

issues highlight the critical need to protect the cache subsystem and communication systems from

HT-induced attacks. Motivated by this, the thesis proposes an HT model that induces packet dupli-

cation attacks and a mitigation framework integrated into the Network Interface (NI) to monitor and

prevent such threats.

6

1. INTRODUCTION

1.4 Thesis Contribution

This dissertation addresses the key research challenges associated with HT attacks on NoC. Fig-

ure 1.5 presents the overview of our thesis contribution. Our research is centred on developing

robust HT attack models and effective mitigation strategies against three prominent classes of

attacks: packet misrouting, packet looping, and packet duplication. Our primary thesis contri-

bution addresses the HT-induced packet misrouting attacks in NoC. To fortify NoC against such

threats, we propose a Trojan-Aware Routing mechanism. In the second contribution, we target the

HT-induced packet looping attack in NoC. To mitigate this threat, we introduce a novel security

wrapper augmented with a path monitoring module. The third contribution of our thesis addresses

the HT-induced packet duplication attack, a sophisticated breach that compromises data integrity by

creating unauthorized copies of transmitted packets. To counteract this, we propose the integration

of a Packet Status Holding Register in NoC. Through these contributions, we aim to fortify the

security of NoC architectures against HTs, thus providing solutions discussed above to mitigate

packet misrouting, packet looping, and packet duplication attacks. For better understanding, we

present a summary of each contribution as follows.

1.4.1 Secure NoC by Mitigating Packet Misrouting Trojan Attacks

Among the vulnerable components in a TCMP, NoC is particularly significant due to its role

in facilitating communication between cores, thereby granting access to various system compo-

nents [9][20][21]. Consequently, any malicious circuits in an NoC IP can affect the entire system’s

performance. For instance, an HT that misroutes packets can consume network resources without

contributing to useful data transmission, effectively reducing the overall throughput of the NoC.

This inefficiency can limit the system’s ability to handle high-bandwidth applications or multiple

concurrent tasks. Motivated by this, through this work, we present a packet misrouting HT threat

model and the techniques to detect and mitigate the impact of such HT activation.

Threat Model: The proposed HT model tampers the routing algorithm (XY) employed in the

Route Computation unit of the NoC router to enable packet misrouting. When triggered, the HT

maliciously assigns a wrong output port to the head flit of a packet, making it travel to the wrong

router. As a result, all the packets get misrouted (due to wormhole routing) and contribute to one

of the attack scenarios: DoS and injection suppression. DoS is a scenario where the packets get

indefinitely delayed in the path or never reach their destination. The injection suppression scenario is

a by-product of DoS, where new packets cannot be injected into the network due to the unavailability

of router buffers caused by HT-induced backpressure.

7

1.4. THESIS CONTRIBUTION

Mitigation Technique: To detect and mitigate the misrouting HT in NoC, we propose a Trojan-

aware Routing (TAR) technique, which has been incorporated in every router on NoC. TAR involves

three phases: Detection, Shielding, and Bypass. The core function of the Detection phase is to

ascertain whether the routing unit returns a misdirected output direction for a flit by analyzing the

difference in (x, y) coordinates between the current router and the intended destination router. During

the Dynamic Shielding phase, the location of the HT is propagated among all the neighbouring

routers of HT, which accordingly updates the direction where the HT resides. Eventually, a dynamic

shielding ring is created around the HT, thereby isolating it from the rest of the network. Once the

shielding ring is activated, all packets that are meant to travel through the HT get rerouted with the

help of the proposed Trojan bypass algorithm.

1.4.2 Secure Routing Framework by Mitigating Packet Looping Trojan Attacks

In TCMPs, the performance of the NoC is usually measured by the QoS expected from the applica-

tions running in the system. To achieve the desired performance specification, the routing algorithms

employed in an NoC router play a significant role because of their ability to balance network load

and packet latency. In this work, we present an HT that induces delay for a few selected packets

passing through the NoC router by modifying the path selection strategy used in the underlying

routing algorithm.

Threat Model: To deploy the attack, we mount the HT on the Route Computation unit of an

adaptive NoC router that uses a non-minimal odd-even (OE) routing algorithm for selecting a

path [22]. In odd-even routing, to ensure deadlock freedom, East→ North and East→ South turns

are prohibited in the even column routers. Similarly, North→West and South→West turns are

prohibited in the odd column routers. Among the two phases of the OE algorithm, based on the turn

restrictions, phase 1 of OE returns the possible output ports that a packet can take from the current

router to reach its destination. If phase 1 returns multiple output ports, phase 2 uses an output

port selection strategy to select one output port from the possible set of output ports computed in

phase 1. Most of the popular output port selection strategies in OE consider buffer availability in

the downstream neighbours for selecting the final output port [23][24]. Consequently, non-optimal

path selection strategies can adversely affect the QoS of the underlying applications in the system.

Motivated by this, we introduce an HT that corrupts the outcome of VC-based output port selection

strategy [23] to deploy packet looping attacks in NoC.

8

1. INTRODUCTION

Mitigation Technique: To keep the NoC capable of detecting the effect of packet looping HTs,

we propose an HT detection framework that can identify the unintended packet traversal in the

network with the help of a Traffic Monitor module and a Path Monitor module. With the help

of the Traffic Monitor module, an NoC router detects malicious traffic and accordingly identifies

the hotspot created by the HT-induced packet looping. When a router’s Traffic Monitor module

identifies such suspicious activity, it sends a notification to the neighbours to enable a Path Monitor

module, which detects the occurrence of HT-induced cycles. To mitigate the effect of the packet

looping HT, we implement a secure wrapper module, SecRC, which analyses the packets passing

through the routing unit of the NoC router and generates a valid output direction for the packets.

1.4.3 Fortifying NoC Security Against Trojan-Induced Packet Duplication Attacks

Various cores in TCMPs communicate by exchanging NoC packets, consisting of a header and a

payload. Usually, these NoC packets are either control packets or data packets. Control packets

are used to request for data or send coherence messages, and the data packet carries the requested

data [25]. To prevent data stealing in modern TCMPs, various encryption techniques have been

proposed to encrypt only the packet’s payload, as the header information is required for routing

and arbitration decisions in the NoC. On the other hand, control packets, which do not carry any

data, are usually not encrypted. The inherent necessity of the NoC packet’s unencrypted header for

routing and arbitration decisions at intermediate routers poses a vulnerability. The proposed HT

exploits this vulnerability to deploy a packet duplication attack on NoC.

Threat Model: The proposed HT tampers the network interface (NI) unit of NoC to deploy packet

duplication attacks. Similar HT model [9] facilitates packet duplication in NoC to enable data-

snooping attacks. In our research, we present a refined variant of this HT model, wherein the

HT, when placed in the NI, triggers packet duplication that can significantly degrade the system

performance. Differing from Raparti et al.’s [9] packet-duplication HT model, our proposed variant

efficiently duplicates packets and injects them into the system with minimal resource utilization.

Mitigation Technique: The proposed mitigation framework, HULK, uses three principal com-

ponents: Message ID (MID), Checksum, and Packet Status Holding Register. HULK calculates

MID as MID = SRC ⊕DEST ⊕NISRC ⊕KEY , where NISRC is the source NI and KEY

is an 8-bit key generated using a pseudo-random number generator. MID is calculated at the Miss

Status Holding Register (MSHR) of the L1 cache controller and added to one of the optional fields

in the packet header. To preserve the authenticity of the messages, a checksum (CS) is calculated

by running Alder-32 [26] on the MID and appending it in the message header. Inspired by Miss

9

1.5. THESIS ORGANIZATION

Status Holding Registers (MSHRs), we propose Packet Status Holding Registers (PSHRs) at the

NIs to track in-flight request packets. When NISRC receives a request message from its connected

core, a unique entry is made with the MID, source, destination, and CS and added to its PSHR.

When a response packet is received, the corresponding PSHR entry is deleted before the NI’s

de-packetisation is initiated. Consequently, no duplicate responses get a valid entry in PSHR, thus

preventing it from entering the network.

Overall, in this thesis, we make the following contributions.

1. We propose a framework to secure NoC by mitigating the packet misrouting Trojan attacks in

NoC.

2. We propose a secure routing framework for mitigating packet looping Trojan attacks in NoC.

3. We propose a security framework for NI which fortifies NoC security against Trojan-induced

packet duplication attacks.

1.5 Thesis Organization

The chapter-wise organization of the thesis is as follows.

Chapter 2 provides a comprehensive background on HT attacks in ICs, the NoC architecture in

TCMP and covers the potential state-of-the-art HT attacks in the NoCs. It also covers the experi-

mental framework used for our research, including details on simulators, application workloads,

benchmarks, and evaluation matrices considered for analysis.

Chapter 3 presents the primary contribution of the thesis that focuses on modelling packet misrout-

ing HT, its impact on NoC, and strategies for detection and mitigation.

Chapter 4 presents the second thesis contribution, addressing the modelling of packet-looping HT

and the proposed techniques to suppress the HT effect in NoC.

Chapter 5 discusses the third thesis contribution that involves modelling packet duplication HT and

proposes the mitigation technique which counteracts the impact of such HTs in NoC.

Chapter 6 concludes the thesis by summarising the chapters and suggesting potential future works

aligned with the scope of the research.

<<=8=;;

10

2
C H A P T E R

Background

2.1 Introduction

Semiconductor companies are at the forefront of recent technologies that focus on digital transfor-

mation. With the digital transformation, the modern Industrial Internet-of-Things (IIoT) platform

integrates seamlessly with machines and cyber-physical systems. Accordingly, the complexity of

the services, products and processes has increased as it require more data analysis and management.

To meet the needs for distributing computing, the demand for edge devices and sensors started

showing exponential growth. These devices mostly rely on embedded systems that use complex ICs

for smooth functioning and execution. Consequently, the market shows increased demand for ICs,

making it the fourth most traded product in the world [27]. At the same time, when the sudden surge

in need for digital devices went way beyond the design, verification and manufacturing capacity

available with big industry players, the semiconductor industry rely on third-party vendors, thereby

making the IC supply chain a globally distributed one [5]. This chapter investigates the scope and

potential for embedding malicious circuits within ICs. It also examines the experimental framework

employed and the performance metrics considered in the thesis.

The chapter is structured as follows. Section 2.2 provides an overview of the IC supply

chain, followed by an examination of IC security in Section 2.3, exploring the potential of HT

circuits within ICs. Section 2.4 presents a model and taxonomy for categorizing these potential

threats. The TCMP architecture is then outlined in Section 2.5, and Section 2.6 examines potential

HT-based attacks in NoCs. In Section 2.7, we present the existing methodologies to protect the

NoC infrastructure from HT threats. Subsequently, Section 2.8 discusses the experimental setup

2.2. IC SUPPLY CHAIN AND EDA TOOLS: AN OVERVIEW

RTL Design

Sources
Fabrication

Bitstream /

GDSII

Assembly

and Test
Specification

Gate Level

Netlist

Soft IP Firm IP Hard IP

EDA ToolIP Core

Figure 2.1: Overview of IC supply chain

considered in the thesis, while Section 2.9 discusses the applications and workloads considered for

the thesis. Section 2.10 elaborates on performance metrics employed in the thesis for evaluating

and analyzing the effectiveness of the proposed architectures. Finally, the chapter concludes in

Section 2.11.

2.2 IC Supply Chain and EDA Tools: An Overview

The IC supply chain [28] constitutes a complex journey from conceptualization of the specification

to the final product, as illustrated in Figure 2.1. The initial Specification phase defines the require-

ments and specifications for the IC. This process includes determining the desired functionality,

performance characteristics, power consumption, and any special features or constraints that neces-

sitate consideration. In digital hardware design, the Register-Transfer Level (RTL) design phase

is a critical step in turning a conceptual design into a concrete realization. It serves as the bridge

between the high-level architectural design and the physical implementation of a digital circuit. This

phase involves creating the digital logic design, specifying the behaviour of the IC, and selecting the

appropriate components or building blocks. Subsequently, the RTL design evolves into a gate-level

netlist representing the IC’s logic gates and their interconnections. This is a critical intermediary

step before progressing to the physical design, as it defines the logic and connectivity of the IC. The

gate-level netlist serves as the foundation for creating the physical layout of the IC, typically in a

format like GDS II. This layout encompasses the positioning of transistors, interconnections, and

the physical details of the IC’s components, and it is essential for the subsequent processes involving

manufacturing masks and fabrication. The fabrication stage primarily involves the creation of masks

and the manufacturing of the silicon wafer, which includes processes such as photolithography,

etching, and doping. This phase culminates in the production of silicon wafers, each bearing

multiple copies of the IC. Once the silicon wafers are manufactured, they undergo separation into

individual ICs through a process known as dicing. The ICs are then packaged and subjected to

12

2. BACKGROUND

Flexibility

Portability

Reusability

Cost, Silicon

Optimization,

Design Effort

Figure 2.2: IP Core: types and tradeoffs

rigorous testing. The assembly/packaging step entails encapsulating the IC in a protective housing

and connecting it to external pins for various electrical connections. The testing phase ensures that

the ICs meet the specified functional and quality requirements, which may encompass various tests,

including functional testing, performance testing, and reliability testing. After successfully passing

the testing phase, the ICs are ready for distribution to customers or integration into larger electronic

products catering to various applications.

As today’s chips integrate multiple functionalities into a single chip, using pre-designed, pre-

verified IP core and software blocks in the ICs is a common practice [29]. Nowadays, most IC

designing starts with procuring IP cores, which represent a reusable unit of a system’s functionality

or its layout design whose license can be issued to multiple vendors for them to use as basic blocks

in their chip design. For example, Arteris, a leading provider of SoC IPs, offers cutting-edge

semiconductor system IPs to enhance SoC development. Their Arteris NoC interconnects IP and

SoC integration technology have led to improved product performance, reduced power consumption,

and faster time-to-market needs [30]. Since these IPs can be used for a variety of applications,

vendors provide the IPs to the system designers as soft, firm, or hard IPs [5][29] with trade-off

as shown in Figure 2.2. Soft IP blocks are generated as RTL models with the help of hardware

description languages like System Verilog or VHDL, making them more flexible, portable, and

reusable. However, hard IP blocks often come as fixed layout designs that can be directly added

to the final chip layout, which makes it difficult to customize as per needs. Firm IP cores present

parameterised layout descriptions that the system designers can customize and optimise based on

their needs. This makes firm IPs more flexible and portable than hard IPs and more adaptable than

soft IPs. Based on the complexity and application requirements, the designer teams accordingly

make IP-reuse decisions and select any of the forms of IP core for the product design.

13

2.3. HARDWARE TROJAN CIRCUIT IN INTEGRATED CIRCUITS

Trigger
Logic

Payload
Logic

Circuit Signal

Figure 2.3: Structure of a hardware Trojan

Advancing towards the physical realisation of integrated circuit logic, logic synthesis is the

major next step in the process. This crucial stage involves the transformation of the chip’s RTL

logic into a gate-level net-list. Using the netlist, the designer can view the entire connection list

and analyse the timing and functional behaviour accordingly. Moreover, to test the performance

of the device post-deployment, a system designer can verify and validate the approved design

using Electronic Data Automation (EDA) tools. These EDA tools can predict an IC’s behaviour

after its implementation. The design team can also use EDA tools for logic synthesis. Similarly,

EDA tools can generate geometric shapes that specify the actual circuit implementation, which is

generally termed as place and route. A wide range of popular commercial EDA software [31] is

available for various stages of chip design, including tools like Design Compiler for logic synthesis

(Synopsys), Astro for placement and routing (Synopsys), and Calibre for sign-off tasks (Mentor).

In addition to these commercial EDA tools, a significant and diverse selection of open-source

EDA tools serve as valuable supplements, covering nearly all aspects of chip design. These open-

source tools include Qflow [32], Ngspice [33] and Xyce [34] for simulation, Yosys [35] for logic

synthesis, DREAMPlace [36] for placement and routing, etc. Furthermore, a growing focus is

on creating comprehensive open-source EDA toolchains that can facilitate the entire chip design

process, including tape-out. One noteworthy project in this area is the OpenRoad project [37], which

aims to automate the RTL-GDS11 design process within a 24-hour time frame. Presently, it offers

support for the commercial GF12 PDK for the 12nm process and the open-source ASAP7 PDK for

the 7nm process. Overall, open-source EDA tools have significantly reduced the barriers for SoC

design and have provided engineers with viable alternatives to commercial solutions.

2.3 Hardware Trojan Circuit in Integrated Circuits

The hardware-oriented attacks on TCMPs often involve exploiting vulnerabilities within the inte-

grated circuits, which can compromise the system’s security, integrity, and functionality [10], leading

to security breaches in computing platforms [10] that capitalizes on various hardware information,

including power consumption, cryptographic keys, memory access patterns, etc [4]. Examples of

14

2. BACKGROUND

Trigger

Hardware Trojan

Payload

Combinational
Information

Leakage / DoS

Circuit Nodes /

Memory
Power/ Delay Sequential Voltage

On-chip

Sensors

Digital Analog Digital Analog Other

Figure 2.4: Trigger and payload logic types of hardware Trojan

hardware attacks include manipulating hardware control signals to create faults, exploiting security

gaps in multiple platform interactions, vulnerabilities in firmware, and maliciously influencing

hardware operations using HTs. These HTs may exploit vulnerabilities in hardware to launch

attacks, such as DoS, information leakage, and unauthorized memory access. The stealthy nature of

some HTs makes them hard to detect, allowing them to bypass root-of-trust techniques in device

firmware, posing a significant threat to the security and functionality of MPSoCs. Figure 2.3 shows

the structure of an HT. It consists of a trigger logic, which initiates the activation of an HT and a

payload logic, which performs the malicious modification of the circuit or its functionality [38][39].

The trigger logic is the part of the malicious code determining when the malicious activity

should be initiated. It serves as the activation mechanism for the malicious payload. The trigger

could be based on specific conditions, events, or a combination of factors. It can be categorized

into digital and analog triggers, each with its own classifications further, as shown in Figure 2.4.

The digital trigger relies on the instantaneous logic level of the input signals to activate the HT. It is

based on the current combination of inputs, making it responsive to specific conditions in the digital

circuit. In contrast, sequential digital triggers depend on the state of the circuit over time. They may

activate the HT based on a predefined sequence of states or events within the hardware. In the case

of analog triggers, it exploits on-chip sensors to activate the HT based on environmental conditions

such as temperature, voltage, or electromagnetic radiation. In some cases, manipulation of the

voltage levels can serve as an analog trigger, initiating the HT based on specific voltage thresholds.

Understanding the triggers is crucial for identifying the conditions under which an HT may activate,

aiding in developing detection and prevention strategies.

15

2.3. HARDWARE TROJAN CIRCUIT IN INTEGRATED CIRCUITS

Hardware

Trojan

Abstraction

Level

Activation

Mechanism

System

RTL

Development

Layout

Gate

Insertion

Phase

Specification

Design

Fabrication

Testing

Assembly

Effect

Information

Leakage

DoS

Functional

Change

Performance

Degradation

Physical

Characteristics

Distribution

Type

Structure

Location

Power

I/O

Memory

Clock

Processor

Internally

Time

Based

Physical

Externally

User Input

Component

Output

Always On

Triggered

Figure 2.5: Hardware Trojan taxonomy

The payload logic of the HT performs malicious modifications to the targeted hardware

system or its functionality to achieve the attacker’s objectives. The payload can be in different

forms, including digital and analog payloads. A digital payload may manipulate circuit nodes

or memory elements within the hardware. This could involve altering data stored in memory

or disrupting the functionality of specific circuit nodes, leading to unauthorized access or data

corruption. On the other hand, analog payloads can affect power consumption or introduce delays in

signal propagation, which could result in altered power profiles or timing characteristics, impacting

the overall performance of the hardware. Beyond this, an adversary can insert HTs in circuits to

deploy an attack like information leakage, DoS attacks, etc.

The feasibility of HT attacks within TCMPs is limited to the resources available to the attacker

and their level of control. Typically, during the outsourcing of chip fabrication, the third-party

vendor gains access only to the chip layout. From the attacker’s perspective, lacking access to the

RTL code or netlist makes it infeasible to replicate existing RTL code or netlist to insert a malicious

circuit at this stage. However, leveraging the capabilities of EDA tools, a rogue/untrusted employee

can insert or modify a malicious circuit to introduce an HT into the final layout [21][40][41].

Similarly, a rogue/untrusted employee working in an outsourced design team (where design files

and RTL code are easily accessible) can implant malicious circuits that leverage rare events for

HT triggering and exhibit low power variations [17][42][43]. Although such HT circuits may

evade detection through logic testing or formal code checks, side-channel analysis remains a viable

detection method [44][45][46].

16

2. BACKGROUND

2.4 Hardware Trojan Taxonomy

An HT can do alterations in any of the stages in the IC life cycle or in the abstraction level, as shown

in Figure 2.5. IP vendors can easily manipulate the RTL and insert malicious codes to modify the

system’s behaviour [14]. Even EDA vendors can alter the logic implementations deduced given by

EDA tools, which can do more than required to activate the HT. The chip fabrication process can also

become insecure by untrusted staff with access to the fabrication process [38][39]. Usually, an HT is

termed functional if it alters the number of components in the original design, whereas a parametric

HT modifies the existing code. The taxonomy in Figure 2.5 provides a comprehensive framework

for HT categorisation based on different phases, characteristics, and activation mechanisms. The

detailed taxonomy outlined below offers a structured method for understanding the complex nature

of HTs.

1. Insertion Phase: HTs can be introduced during the specification phase, where the func-

tional requirements of the hardware are defined. This may involve manipulating the intended

functionality to create vulnerabilities. Even during the design phase, malicious elements

can be inserted into the hardware through manipulations in the design specifications, poten-

tially exploiting weaknesses in the architecture. The fabrication phase involves the physical

creation of the hardware. HTs can be implanted at this stage, either intentionally or due to

malicious components that may be introduced during the testing phase, taking advantage of

the complexity and scale of modern hardware testing procedures. Assembling the components

into a complete system offers another opportunity for HT insertion, particularly if there are

vulnerabilities in the assembly process.

2. Abstraction Phase: At the system level, HTs can be strategically placed to compromise the

overall functionality and security of the hardware system. HTs may exploit vulnerabilities

at the RTL level, influencing the behaviour of the hardware at a lower abstraction level.

Manipulating the development environment can also introduce HTs, affecting the hardware’s

intended design and functionality. The layout phase involves arranging components on the

chip. HTs could be inserted by manipulating the physical layout to compromise performance

or security. Furthermore, it may alter the logical gates and connections at the gate level,

impacting the hardware’s operation.

3. Activation Mechanism: Some HTs remain continuously active, potentially performing

malicious actions throughout the hardware’s life. In other cases, HT activation may occur

17

2.4. HARDWARE TROJAN TAXONOMY

at predetermined intervals due to internal factors such as time, physical conditions, specific

events, or environmental conditions like temperature or power variations, user inputs, etc.

4. Effect: With activation, HTs may compromise the confidentiality of data, leading to unau-

thorized access or exposure of sensitive information. While some HTs may disrupt normal

system operations, causing a denial of service to legitimate users, other HTs can alter the

intended functionality of the hardware, impacting overall system performance.

5. Location: HTs can be strategically positioned within the power distribution system to manip-

ulate power-related characteristics. Malicious components might be placed on input/output

interfaces also to alter data and commands. When inserted into memory modules, HTs can

influence data storage and retrieval operations. Another potential target for HTs is the clock-

ing system, where manipulation can impact the timing and synchronization of the hardware.

Placing HTs within the processor can profoundly affect computational operations. These

considerations highlight the diverse locations within a hardware system where HTs can be

deployed to compromise functionality and security.

6. Physical Characteristics: HTs can exhibit variability in their distribution across the hardware,

influencing their detectability and impact. Different types of HTs may demonstrate distinct

characteristics, necessitating customized detection and mitigation strategies. The internal

structure of HTs is subject to variation, impacting their behaviour and the potential for

detection. HTs may be categorized into various types based on their intended function and

the extent of their impact on the hardware.

While HT implants are feasible in other phases of the IC supply chain, such as testing and

distribution, attacks rooted in untrusted CAD tools appear to be stealthy, given their ability to

integrate malicious circuits during the synthesis and verification stage of the IC [47]. As IC designers

predominantly rely on CAD tools for various chip design and synthesis phases, a compromised

CAD tool or its script can modify the IPs from HDL code to netlist. The attacker’s capabilities

in this context encompass adding back doors for information leakage, performance degradation,

or time bomb attacks. Tiago et al. [41] demonstrated that a side-channel HT could be added by

replacing spare/filler cells in the design, enhancing its stealthiness and making it harder to detect.

Basu et al. [48] demonstrated the feasibility of such CAD attacks by launching an HT attack on an

ARM Cortex processor. The motives behind deploying these HTs often include corrupting critical

computations in systems to degrade system performance, exposing cryptography keys, breaching

confidentiality and integrity, resource depletion attacks, fault injections, etc. Such HT attacks are

18

2. BACKGROUND

extremely challenging to detect, even during verification, as the CAD tools used in the design house

are often provided by the same vendor [47]. Moreover, malicious circuits in the back-end design go

unnoticed, as few techniques exist to compare the final IC design with the intended one.

2.5 Overview on Tiled Chip Multicore Processors

TCMP represents an advanced multicore processor architecture that optimizes parallelism and

efficiency in computing systems. Unlike traditional multicore processors, where multiple cores

share a unified memory architecture and shared bus for inter-core communication. TCMP consists

of a collection of tiles. These tiles are arranged in a grid-like fashion, and they communicate with

each other through a packet-based on-chip interconnect, NoC. Figure 2.6 represents the 8×8 mesh

NoC, where tiles are arranged in a grid manner using mesh topology. Here, each tile represents

a processing core accompanied by a private L1 cache, a shared L2 cache, and an NI linked to an

NoC router for inter-core communication. The private L1 cache in the tile serves as a storage for

frequently accessed data and instructions specific to each core, optimizing performance by reducing

access latency. Meanwhile, the shared L2 cache acts as a larger cache memory pool accessible by

all cores, enhancing overall system efficiency. To enhance data access and minimize contention,

the Sequentially Non-Uniform Cache Access (SNUCA) technique is employed for mapping L2

cache sets to different tiles. This approach ensures that the L2 cache, while shared, is also physically

distributed across tiles, thus mitigating bottlenecks and optimizing cache utilization. Each tile is

connected to an NoC router through NI, which enables efficient packet routing across cores, ensuring

reliable and efficient inter-core communication within the system. These routers are equipped with

ports facilitating communication in different directions (North, South, East, West) as well as a local

port enabling communication with the tile itself.

NoC is the most popular on-chip communication framework for TCMPs [49][50][51]. It is

characterized by technological features like (i) die size reductions, (ii) packetized communications,

and (iii) multiple levels of clock gating. It also provides separation between computation and

communication, supports modularity and IP reuse via standard interfaces, and handles synchro-

nization issues, improving the system’s performance [51]. An NoC router plays a vital role in

forwarding packets to their desired destination cores. Due to bandwidth limitations, all packets that

reach an NoC router are converted into a sequence of flow control units called flits. Based on the

content and control information, these flits are categorised as head flit, set of body flits, and tail

flit [3][52][53]. The head flit contains essential packet header information such as the destination

address, packet type, and control information used for routing through the network. Body flits

19

2.5. OVERVIEW ON TILED CHIP MULTICORE PROCESSORS

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R R R R R R R R

Private

L1 Cache

Shared

L2 Cache

Core

NI

R Router Network Link NITile Network Interface

N

E
W

S

E

W

NR W

E

N

R

S

N

R

S E R

W

S

N
W

E
S

R

Tile

Figure 2.6: 8×8 mesh-based NoC in Tiled-Chip Multi-core Processor

carry the main payload or packet data. Depending on the size of the packet, there may be multiple

body flits following the head flit. The tail flit indicates the end of the packet and may include

checksums or error detection codes for data integrity verification.Figure 2.7 shows the architecture

of a conventional NoC router. It consists of three main phases: Route Computation (RC), Virtual

Channel (VC) Allocation, Switch Allocation (SA).

The process begins with the input ports, where flits are received and prepared for routing.

Each input port has a set of flit buffers (VCs) to store incoming flits. VCs help in managing and

prioritizing incoming flits. When the head flit is present at the VC head, the RC logic determines

the output path for the packet based on the destination information carried by the head flit. Different

routing algorithms may provide different numbers of output paths and VCs, resulting in varying RC

outcomes, which impact the complexity of the VC allocator and switch allocator. The VC allocator

handles requests from input VCs after the RC stage. It ensures that each input VC is allocated at

most one output VC and vice versa. Input VCs that do not grant output VCs retry in the subsequent

cycle. Both RC and VC allocation occur at the packet level and involve only the head flit. All body

and tail flits follow this routing decision, thus complying with worm-hole switching. Following

successful VC allocation, the router checks if the downstream VC has available buffers. If so, the

flit requests switch traversal from the SA stage. Like VC allocation, the switch allocator ensures that

each switch output port is assigned to at most one flit. It also generates control signals to connect the

input and output ports of the crossbar. To minimize area and power consumption, these allocators

typically employ simple round-robin arbiters. Once a flit completes the SA stage, it goes to the

crossbar for further traversal to its next hop router. Also, NoC routers employ credit-based flow

control to maintain a smooth data flow. This mechanism involves using credit counters, where each

router maintains information about the available VCs in its downstream routers. Hence a packet is

20

2. BACKGROUND

VC 1

VC 2

VC n

VC 1

VC 2

VC n

VC 1

VC 2

VC n

Input Port 1

Input Port 5

Route

Computation

(RC)

VC Allocator

(VA)

Switch

Allocator

(SA)

Downstream

Router

Output Port 1

Output Port 2

Output Port 5

Input Port 2

Upstream

Router

Output

Channel 1

Output

Channel 5

Credits

In

Credits

Out

Input

Channel 5

Input

Channel 1

Crossbar

Figure 2.7: Conventional NoC router architecture

forwarded to the next router only when sufficient credits are available in the downstream router. As

all the connected cores of TCMPs share NoC, they are vulnerable to hardware-oriented security

threats, where an attacker can analyze the communication flow and variation in power consumption

to launch attacks like information leakage, side-channel attacks, DoS attacks, etc. Among other

attacks, HTs mounted on NoCs impose unique challenges as they remain hidden until triggered.

Identifying the rare condition that triggers an HT requires an examination of all possible input

patterns to the NoC. However, mostly, it is not feasible due to the time-constrained post-silicon

debug and validation [5][15][21][54][55].

2.6 Hardware Trojan Impact on NoC

This section explores various attacks and their impact on NoC-based systems. Figure 2.8 illustrates

several well-known HT attacks in NoC, which are discussed in detail below.

2.6.1 Denial of Service Attack

DoS attack by an HT on NoC mainly aims at resource depletion, including bandwidth, being one of

the most critical resources in a communication framework. The HT can deploy such an attack by

flooding the network with frequent and useless packets [21][56][57] in such a way that the genuine

packet will never reach its actual destination or get delayed [58][59]. As a consequence, the victim

packets suffer from buffer and link unavailability, delaying or halting the entire NoC communication.

21

2.6. HARDWARE TROJAN IMPACT ON NOC

HT Impact on
NoC

Denial of

Service

Information

Leakage

Data

Corruption

Functional

Modification

Misrouting

Flooding

Unauthorized

Attack

Packet

Hijacking

Deadlock

Livelock

Bandwidth

Denial

Side Channel

Attack

Figure 2.8: HT classification based on impact

Deadlock occurs in NoC when packets keep some resources (channels and buffers) while requesting

other resources. HTs in the route compute module of an NoC router can activate an attack by

changing the routing algorithm. In some cases, these modifications on routing done by an HT can

create deadlocks and livelocks. HTs can also misroute packets, thus denying them to reach their

destination [60]. The purpose of misrouting HT is to send the packets away from the destination,

which can lead to DoS attacks. Such misrouting can be done by techniques like changing the

packet’s source or destination address to an illegal address [61], transmitting wrong information

about the availability of the buffers in an NoC router, creating routing loops, etc. This behaviour

of the HT makes the victim packets suffer from livelock, thus wasting the resources without any

productivity. Recent research works discuss the possibilities of such HT attacks in NoC circuits that

eventually tamper the quality of service of the applications running in TCMPs [7][56][62][63][64].

2.6.2 Information Leakage Attack

The primary goal of a leakage HT is to intercept ongoing data communications within a NoC and illic-

itly acquire crucial information. Attackers exploit shared on-chip resources like caches and the NoC

itself as covert entry points to compromise victim processes, applications, and IPs. Prime+Probe

attacks in caches identify the cache line eviction pattern of a victim process by creating conflicts

to steal sensitive information [11]. Other well-known cache attacks include Flush+Reload [12],

Flush+Flush [65], and Streamline [66]. An NoC-based variant of the Prime+Probe side-channel

attack monitors the contents of the shared caches through the infrastructure of the NoC [67]. In

22

2. BACKGROUND

certain instances, information leakage and data snooping attacks involve duplicating incoming

packets from a processing core [68][69]. Such HTs are typically triggered by an accomplice thread

residing in a separate core. The HT thus initiates the transmission of snooped critical data to the

accomplice thread [70][71]. A similar attack occurs wherein the HT is mounted on the NI of one IP

and extracts information for an accomplice thread concealed in another IP [9].

2.6.3 Data Corruption Attack

A data corruption HT attempts to learn the data transmitted through the NoC when certain conditions

are met, such as specific data patterns being transmitted through the NoC at a particular time or a

signal sent by the attacker [57][72][73]. Once activated, the HT modifies the data passing through

the NoC. This modification could involve flipping bits [74], altering packet headers [58][59][64],

or injecting false data packets into the network[62]. As a result, the integrity and reliability of the

data being transmitted within the NoC are compromised. The consequences of the data corruption

attack can be severe, depending on the application running on the affected system. In TCMPs, the

corrupted data exchanged between processor cores via the NoC could lead to incorrect computation

results, system crashes, or unauthorized leakage of sensitive information. For example, through

side-channel analysis, an adversary can learn the key used for packet encryption [72].

2.6.4 Functional Modification Attack

In a functional modification HT attack in NoC, an attacker implants malicious circuitry into the

design of the NoC hardware during its fabrication. This HT is designed to modify the normal

functionality of the NoC components, potentially leading to various security breaches or system

malfunctions. When the trigger conditions are met, these HTs may modify the routing tables within

the routers to redirect data packets to unauthorized destinations or to introduce delays or congestion

in specific network paths[60][75][76]. It could even intercept and modify data packets traversing

the NoC, altering their contents, headers, or destinations [42][64].

2.7 Classification of HT locations in NoC Routers

This section outlines some of the state-of-the-art HT models. Here, we classify the existing HT-based

attacks on NoC routers based on the location of HT as shown in Figure 2.9. We summarise the HT

models and their impact and also discuss various HT detection and mitigation strategies within the

NoC router, IPs, and network links, as presented in Table 2.1 and Table 2.2.

23

2.7. CLASSIFICATION OF HT LOCATIONS IN NOC ROUTERS

Destination
Core

Input

Buffer / FIFO

Route

Computation

VC / Switch

Allocator
Crossbar

Output

Buffer / FIFO

Source
Core Source NISource NI

Router Router

IV V IVVI

III

I

II

VI Rajesh et. al (2015).

III
Boraten et. al (2016),

Yu et. al (2013).

IV
Khan et. al (2021),

Khan et. al (2022),

Vedhika et. al (2021),

Frey et. al (2017),

Hussain et. al (2017)

Prasad et. al (2017).

I Charles et. al (2019),

Charles et. al (2020),

Reinbrecht et. al (2016),

Werner et. al (2019),

Saileshware et. al (2021),

Lukoovic et. al (2010).

V
Ahmed et. al (2021),

Sudusinghe et. al (2022),

Daoud et. al (2018),

Biswas et. al (2015).

II
Raparti et. al (2019),

Ancajas et. al (2014).

Figure 2.9: Trojan locations in NoC-based systems

2.7.1 Trojan in Route Computation Unit

An HT in the route computation unit changes the routing information to activate the attack. Biswas

et al. propose an HT that changes the routing table contents [75], which in turn launches misrouting

and information leakage in the network. Here, the cores connected to the NoC are categorized as a

secure region and a non-secure region. An attacker will try to change a router’s routing table nearer

to the secure region to leak the data arriving from or destined to a secure region or divert the data in

the wrong direction. Here, HT detection is done with the help of run-time monitors, which keep track

of acknowledgement packets during the inter-core communication between secure and non-secure

regions. The attack is mitigated by restart monitors, which check for the malicious router before

starting the communication. The above system has several limitations that need to be addressed.

Firstly, a notable increase in area and power overhead is attributed to the additional registers and

circuitry required by the run-time and restart monitors. This can impact the overall efficiency of the

system. Furthermore, altering all packets from secure to non-secure regions with router addresses

in the run-time monitor can lead to congestion issues and throughput reduction. The need to have

knowledge about network traffic conditions introduces a dependency on several external factors. The

system is also susceptible to run-time delays caused by congestion resulting from monitor packets

moving in the network. Application halts during the initiation of restart monitors create a bottleneck

for the seamless operation. Recent research utilized a fusion of machine learning techniques and an

integrated collective decision-making strategy to detect eavesdropping attacks [69].

24

2. BACKGROUND

Table 2.1: Hardware Trojan placements in NoC (1)

Type of Attack Trojan Location & Mitigation Techniques Used References
Trojan Circuit in Route Computation Unit

Information
Leakage Attack

HT: periodically packetise the count and send it to an
external attacker for information leaking.

Mitigation: machine learning techniques with decision
making strategies.

Ahmed et. al
[15] (2021)
Sudusinghe et. al
[69] (2022)

Denial of
Service
Attack

HT: modify the routing algorithm to deploy packet misrouting.

Mitigation: hardware-software oriented shielding mechanism.

Daoud et. al
[60] (2018)

Information
Leakage Attack

HT: modify the routing table to deploy data leakage.

Mitigation: run-time monitors which keep track of
acknowledgment packets during the inter-core
communication.

Biswas et. al
[75] (2015)

Trojan Circuit in Network Interface

Information
Leakage Attack

HT: duplicate packets in NI and inject into NoC.

Mitigation: snooping invalidation module.

Raparti et. al
[9] (2019)

Information
Leakage Attack

HT: deploys packet duplication along with the signals from
accomplice thread.

Mitigation: three-layer protection scheme consisting of data
scrambling, packet certification and node obfuscation is used.

Ancajas et. al
[68] (2014)

Trojan Circuit in Switch Allocator

Bandwidth
Denial Attack

HT: modifies the source/destination of flits.

Mitigation: proximal analogous packets using the proxy core.

Rajesh et. al
[62] (2015)

HTs in an NoC router can misroute packets to trigger a DoS attack [60]. A runtime HT

detection algorithm uses the incoming direction of the packets to detect the location of such HTs.

However, it assumes that the operating system will provide shielding to ensure protection. Such

a hardware-software solution can lead to unacceptable performance overhead, whereas a simple

hardware-only approach will give a better action response. Remote access HT [15] can count the

number of packets traversing the specific NoC routers over a specified time interval. These HTs

periodically packetise the count and send it to an external attacker. This can help in traffic profiling

for floating attacks on selected packets.

25

2.7. CLASSIFICATION OF HT LOCATIONS IN NOC ROUTERS

2.7.2 Trojan in Network Interface

An adversary can deploy an HT that can initiate a data-snooping attack by modifying the NI of an

NoC router. A third-party NoC IP provider can insert an HT, which is capable of detecting and

responding to commands embedded in the flits by an accomplice thread [68]. During the operational

phase, the accomplice thread issues commands to initiate malicious activities, such as duplicating

specific ongoing data communication. To mitigate the effect of the HT, the security framework

uses a three-layer mechanism. Layer 1 introduces a low-overhead data scrambling technique at the

lowest level. Layer 2 establishes a dynamic packet certification mechanism between the NoC and

the processing element, preventing the forwarding of flits with invalid certificates. Finally, Layer 3

introduces a node obfuscation technique at the topmost layer, dynamically concealing communica-

tion nodes in the NoC and introducing substantial noise to enhance side-channel resilience. These

schemes lack an efficient and low-power attack detection mechanism.

HTs can also modify the flit queue in the NI of an NoC router to deploy the information leakage

attack through packet duplication [9]. In certain cases, these HTs get activated when an accomplice

thread sends the message. Once activated, the HT starts monitoring the core’s cyclic flit queue

located in the NI. Whenever a head flit is transmitted from the NI queue to the router, HT exploits

its location in the queue. Before the location of the head flit is overwritten in the queue, HT copies

the content of the head flit into a new flit and sets its destination as the address of the malicious

core where the accomplice thread resides, thus forming the information leakage attack. Here, the

packets that reach NI are duplicated by HT with less interference to the standard NI functions and

sent to the accomplice thread. Unlike the state-of-the-art techniques [68], a snooping invalidation

module is integrated with the processing element for mitigating such HT attacks. The circuit utilises

threshold voltage degradation for run-time mitigation of data snooping.

2.7.3 Trojan in Switch Allocator

HT can manipulate source and destination flits during the router micro-architecture’s arbitration

and allocation stages [62]. Hence, HT can de-prioritise victim flits in the arbitration phase and

subsequently suppress them, leading to delays during the allocation phase. To mitigate the HT effect,

specialized packets are used to identify the latency of ingress and egress packets in the network.

These packets are sent to the nodes proximal to HT, and the packet latency is then compared with

their original counterparts for HT detection. This can introduce resource contention and network

latency, which can affect the overall system performance.

26

2. BACKGROUND

2.7.4 Trojan in Input/Output Buffers

An HT at input/output buffers can initiate an attack that changes the flit type and packet destination

address and can sabotage the integrity of a packet, which results in a bandwidth depletion attack [77].

In NoCs, FIFO-based input/output buffers become a primary target for attackers due to their

regularity in implementation and large area footprints. Resource depletion is the main consequence

of an HT at input/output buffers. This can be mitigated using a dynamic flit permutation technique

with the help of a local random vector generator for the incoming flits in the input buffer. Flits can be

encoded with error control codes to retain integrity. At the destination, a flit de-permutation and error-

correcting code decoder unit is used to recover the corrupted flit back to its original form. However,

adding error-correcting code and a local random vector generator in each router contributes to a

substantial area overhead. This increase in routing switching power is another concern, impacting

the overall power consumption dynamics of the system. The absence of a specified trigger for HT

initiation is identified as an additional limitation in the system’s functionality.

Another possible attack in the input buffer is an illegal packet request attack [61], where HT

creates a new packet and injects it into the network when the local core is idle. This can lead to a DoS

attack. Here, the attack is detected by a security unit that verifies the source/destination of the header

flit for the modification. Buffer masking or buffer isolation is used as the mitigation technique. The

above system has several limitations. The implementation of buffer isolation, intended for security

purposes, results in a degradation of network performance. Moreover, a dedicated security unit

is necessary for each virtual channel in the router unless a unified buffer management scheme is

employed. As the number of virtual channels per input port rises, the system experiences increased

power and area overhead. Additionally, any reduction in virtual channels directly impacts the

execution time of applications, posing challenges to overall system efficiency.

A recently proposed HT in the NoC router alters the destination field in the header of packets

to attack an SoC for performance degradation [58]. Once triggered, the proposed HT can bring the

application to a complete halt by stalling the instruction issue. Modification of control fields in the

packet by an HT for leaking packet data to malicious applications is explored recently [74]. To

mitigate this type of HT, the authors suggest an authentication mechanism where control fields of

the packet are tagged with a dynamic random value and the tag is scrambled with the packet data.

The suggested mitigation technique that involves tag generation and key distribution among various

cores makes unrealistic assumptions and involves unacceptable processing time in TCMPs.

A delay Trojan [59] that deliberately imposes random delays on the flits entering the input

buffers of NoC routers can create a delay of service attacks. To counteract the impact of the delay

27

2.7. CLASSIFICATION OF HT LOCATIONS IN NOC ROUTERS

Trojan, they introduce a novel dynamic adaptive caging circuit [78]. This circuit analyses the

average time spend by a packet in the router and the time spent in the previous router. Upon the

arrival of a packet, these values undergo comprehensive processing using a delay comparator. Hence

packets that exhibit a significantly greater delay in their previous router than the average delay

experienced across all the routers they have traversed are identified. This detection mechanism

excels at identifying delays originating from HTs manipulating internal buffers. However, this

detection methodology fails when HT-induced delay is not quantifiable in one router alone.

2.7.5 Trojan in Network Link

Existing literature has mentioned about an attack using HT that snoops on passing packets in the

network link to inject a fault into some target packets [57]. The fault corrupts a packet and triggers

re-transmission, which in turn creates congestion and then deadlock in the on-chip network [79].

This attack uses a kill switch to control the HT activation and avoid HT triggering during the

verification process. Here, the HT stores a target block, which is used to identify the victim packet

by checking the information like source, destination, VC, memory address, etc. It has a payload

counter that is used to inject faults at different locations and thus avoids getting noticed by fault-

aware architectures. The HT also has an XOR tree to change the bits on the wires selected within

the link during the attack. A threat detection module integrated into the output buffer of an NoC

router is used to monitor the re-transmission of packets and the possibility of transient or permanent

faults. These kinds of attacks can be circumvented by a switch-to-switch mitigation technique,

which obfuscates the packets to avoid HT triggering. The utilization of flit obfuscation techniques,

such as scrambling, inverting, and shuffling at each router, introduces performance degradation. The

employed flit shuffling mechanism may also potentially violate the concept of wormhole switching.

2.7.6 Trojan in Processing Cores

Conventional verification processes and tools encounter limitations in affirming the trustworthiness

of third-party IPs, primarily because of the absence of trusted reference designs or golden models in

the verification process. An HT can deploy a code-injection attack, which redirects the execution

of a trusted application to the malicious code by taking over the instructions’ control flow [82].

This is usually done by exploiting buffer overflows and smashing stack content. Beyond this,

recent research shows that a malicious IP can launch attacks such as DoS, flooding, and high

communication latency, which can result in saturation [56][83]. These can be detected and localized

by monitoring packet arrival curves. Destination packet latency curves are generated at each router

28

2. BACKGROUND

Table 2.2: Hardware Trojan placements in NoC (2)

Type of Attack Trojan Location & Mitigation Techniques Used References
Trojan Circuit in Input/Output Buffers

Delay of
Service
Attack

HT: imposes intermittent packet delay on the flits.

Mitigation: dynamic adaptive caging circuit.

Khan et. al
[59] (2021)
[78] (2022)

Packet
Dropping

Attack
HT: modifies the destination field of the flit.

Vedika et. al
[58] (2021)

Denial of
Service/

Information
Leakage Attack

HT: modifies the header information of the flit.

Mitigation: dynamic flit permutation technique.

Frey et. al
[77] (2017)
Hussain et. al
[74] (2017)

Deadlock
HT: deploys packet duplication.

Mitigation: buffer masking and buffer isolation.

Prasad et. al
[61] (2017)

Trojan Circuit in Network Link
Denial of
Service/

Permanent/
Transient

Link Error

HT: deploys packet corruption.

Mitigation: flit de-permutation and error correction code
decoder module at output buffer.

Boraten et. al
[57] (2016)
Yu et. al
[79] (2013)

Trojan Circuit in Processing Cores
Distributed
DoS Attack/

Bandwidth
Depletion

Attack

HT: deploys packet flooding.

Mitigation: statically profiled traffic behaviour analysis.

Charles et. al
[80] (2020)
[56] (2019)

Last Level
Cache Attack

HT: cache content snooping.

Mitigation: isolation-based techniques.

Reinbrecht et. al
[67] (2016)
Werner et. al
[81] (2019)
Saileshwar et. al
[66] (2021)

Buffer
Overflow Attack

HT: deploys code injection.

Mitigation: stack protection unit, instruction trace unit
and security manager at NoC.

Lukoovic et. al
[82] (2010)

29

2.8. EXPERIMENTAL MODELLING

with the help of a leaky bucket algorithm. This algorithm uses packet arrivals and the history of

packet streams to mitigate the attack. However, as the system relies on prior knowledge of the

communication patterns within the network, it may not always be accurate.

Attackers typically use shared on-chip resources like LLC and NoC as a backdoor to access

the victim processes, applications and IPs. One of the earliest attacks on LLC, called Prime+Probe,

tries to identify a victim process’s cache line eviction pattern by creating conflicts to steal sensitive

information [11]. Other popular attacks on LLC includes Flush+Reload [12], Flush+Flush [65],

and Streamline [66]. Another Prime+Probe-like attack compromises TCMP security by monitoring

the contents of the shared LLC [67]. The NoC Prime+Probe attack comprises four stages. The

infection stage involves injecting malware into the MPSoC, potentially spreading across multiple IPs

intersecting the sensitive path. In the Prime stage, the infected IP prepares the cache by overwriting

memory locations, ensuring the absence of AES lookup tables, and initiating cryptographic tasks.

The Probe stage monitors accessed cache locations during AES execution through the identification

and reading phases, collectively revealing memory locations. Here, the strategic placement of

infected IPs reduces false positives by detecting collisions and identifying cache requests. An

LLC attack can even be deployed that leverages the cache to buffer data between the sender

and receiver [66]. The technique relies on thrashing to naturally expel the transmitted data from

the cache after the communication process. Such HTs can be detected by utilizing performance

counters or specialized hardware. However, the above-mentioned LLC attacks that resemble those

of generic memory-intensive applications may evade detection. On the other hand, isolation-based

approaches [81] can prevent cache sharing among different trust domains, effectively mitigating

covert channels with trade-offs such as performance costs and scalability challenges.

2.8 Experimental Modelling

Using the right experimental framework for modelling hardware units and assessing their perfor-

mance is a significant step in computer architecture research. For such experiments, FPGA and

ASIC boards offer a flexible platform for simulating and analyzing circuit behaviours, enabling

researchers to explore the performance of different hardware architectures. While real hardware

provides valuable insights, its high implementation costs, resource limitations, and scalability

challenges make researchers rely on computer architecture simulators, which enable the emulation

of various hardware operations in a controlled environment. To enhance the authenticity of the

experimental framework and replicate real-world conditions, researchers use workloads that reflect

the operational conditions and hardware responses in diverse scenarios. This section discusses the

30

2. BACKGROUND

experimental framework used in this thesis to design and analyse the proposed HT models, their

detection/mitigation techniques and the workloads that are used to assess the performance of the

various architectures under consideration.

2.8.1 Computer Architecture Simulators

Computer architecture research often uses simulators to test and analyse the architectural and

micro-architectural characteristics, performance, and power consumption of proposed proces-

sor/memory/communication models. Usually, the simulators are classified based on the type of

simulation, the scope of the system that is being simulated (also referred to as the target machine)

and the type of input given to the simulator. Simulators are broadly classified as functional and

timing simulators. Functional simulators emulate a target’s instruction set architecture (ISA), sim-

ilar to emulators. While they are generally faster than other simulators, they do not incorporate

micro-architecture implementation. However, timing simulators, also called performance simulators,

replicate the micro-architecture of processors and provide detailed insights into the timing and

performance aspects of a target system, such as throughput, program runtime, memory system

performance, etc. Timing simulators come in various sub-types: cycle-level, event-driven, and

interval simulators. Cycle-level simulators usually replicate the architecture by mimicking the

operation of the simulated processor for each cycle. On the other hand, event-driven simulators

simulate the target system based on events rather than cycles. Typically utilizing event queues, they

advance simulation to the time when a scheduled event occurs, bypassing the need to go through

all cycles. Interval simulation represents the conventional flow of instructions through the pipeline

that can be segmented into intervals defined by certain events, such as cache misses or branch

mispredictions. Here, branch predictors and the memory system of the architectural simulators are

used to simulate the respective events and accordingly determine their precise timings.

Functional simulators are frequently combined with timing simulators to enhance simulation

flexibility and accuracy. This integration improves the precision of modelled timing-dependent

instructions, such as synchronization and I/O operations [84]. A classic example of a simulator

employing this approach is gem5 [85]. Another relevant factor when categorising simulators is

the scope of the simulated target system. Based on this criterion, simulators can be divided into

full-system and application-level/user mode simulators. A full system simulator can fully boot

an operating system and execute application benchmarks on that operating system, replicating

the normal operation on a real target machine. Application-level/user mode simulators focus on

emulating the microprocessor and a restricted set of memory and peripherals. In these simulators,

31

2.8. EXPERIMENTAL MODELLING

the system calls are typically bypassed by the simulator and are handled by the underlying host

operating system. In the subsequent sections, we discuss various simulators employed for modelling

the hardware architecture considered in the thesis, along with the tools for analysing the power and

hardware footprint of both the proposed techniques and state-of-the-art methods.

2.8.2 gem5

The gem5 is a full-system event-driven simulation tool that models a complete computer system

with a flexible and diverse set of CPU, system execution, and memory system models. It combines

the strengths of GEMS (General Execution driven Multiprocessor Simulator) [86]and M5 [84]

simulators. Here, GEMS contributes complex memory models and interconnect models to gem5.

M5 focuses on CPU models, ISAs, I/O devices, etc. The simulator operates in an event-driven

manner, allowing various components to schedule their events. gem5 is known for its flexibility and

supports various CPU models and system execution scenarios. The modular design allows seamless

integration of different components. The gem5 is predominantly written in C++, and some aspects

are written in Python, adding a layer of flexibility and ease of use to the simulation environment.

One of the primary reasons for gem5’s popularity is its ability to run real workloads. This

provides researchers with a realistic environment for testing and evaluation. This capability is

crucial for assessing the performance and behaviour of hardware architectures under conditions that

closely resemble real-world scenarios. The gem5 facilitates rapid early prototyping of hardware

architectures. Its modular and object-oriented design allows the users to prototype and experiment

with different components and configurations quickly. Memory-system modelling is a critical aspect

of computer architecture, and gem5’s ability to simulate intricate memory hierarchies, interconnects,

and interactions provides a detailed understanding of how different hardware configurations affect

overall system performance. This unique attribute allows gem5 to strike a balance between adapt-

ability in experimentation and maintaining a high level of precision, making it a versatile choice for

various stages of hardware design and validation.

Figure 2.10 shows the system-level view of gem5. It supports various Instruction Set Architec-

tures (ISAs), encompassing Alpha, ARM, MIPS, Power, SPARC, and x86. The simulator operates

in System-call Emulation (SE) mode and Full-System (FS) mode. In SE mode, gem5 emulates

common system calls. This mode is particularly useful for simulating specific functionalities or ap-

plications without requiring a complete operating system environment. In FS mode, gem5 provides

a comprehensive simulation environment that mimics a booting OS and running an application on

top of it. gem5 supports various CPU models, such as AtomicSimple, TimingSimple, InOrder, and

32

2. BACKGROUND

RISC/CISC

Decoder

TLB

Faults

Interrupts

AtomicSimple

TimingSimple

InOrder

O3

ISA Model Type

Classic

Ruby

src/arch/*

src/cpu/*

src/cpu/{simple/inorder/o3}/*

src/mem/*

recvTiming()

sendTiming()

MemoryCPU

Figure 2.10: System-level view of gem5

Out-Of-Order (O3), each designed to address specific simulation needs. The AtomicSimple model

executes all necessary operations for an instruction on every CPU tick. It ensures atomic memory

access, making it the fastest for functional simulation. In TimingSimple, memory accesses use

timing paths, and the CPU waits until the memory access returns. This model balances speed and

incorporates some level of timing considerations. The Inorder model represents a detailed in-order

CPU with a suitable pipeline. It can be configured to model different pipeline stages, issue widths,

etc. The O3 model is a detailed out-of-order CPU designed to simulate superscalar architectures

with a deeper pipeline. In terms of memory models, gem5 provides two types: Classic Memory

and Ruby model. Classic Memory, inherited from the M5 simulator, is fast, flexible, and easily

configurable, making it a reliable choice for memory system simulation. The Ruby memory model,

inherited from the GEMS simulator, is versatile. It can model various coherence implementations

such as broadcast, directory, token, and region-based coherence. For interconnection networks,

gem5 provides detailed NoC modelling, including router micro-architecture, resource contention,

and flow control timing using the Garnet module coupled with the Ruby memory model.

The gem5 simulator is generally organized into distinct modules each serving a specific purpose.

Some of the modules are shown in Figure 2.11 whose functionalities are described as follows.

• build: This module contains the ISA created or developed within the gem5 framework.

• configs: The configs module contains the simulation configuration scripts for the setup and

defines various configuration parameters for gem5 simulations.

• ext: The ext module encompasses external tools that gem5 supports. These tools may extend

33

2.8. EXPERIMENTAL MODELLING

gem5

configs srcm5out systembuild testsext

Figure 2.11: Overview of gem5 design modules

the functionality or integrate with gem5 for various purposes.

• src: The source code of gem5 is contained in the src module. It represents the core of gem5,

such as the types of ISAs, CPU, memory models supported, and interconnection models, thus

providing the implementation of its features, algorithms, and simulation logic.

• system: Within the system module, gem5 includes bootloaders that are utilized in simulated

systems. This is essential for emulating the startup processes of complete systems.

• tests: The tests module contains files used for testing gem5.

• m5out: The m5out directory stores the output of simulation statistics in the form of compre-

hensive statistics.

2.8.3 McPAT

McPAT (Multicore Power, Area, and Timing) is an integrated power, area, and timing modelling

framework used in multithreaded and multicore/many-core processors [87]. McPAT is known

for its flexibility, allowing users to specify low-level configuration details while also providing

default values for high-level architectural parameters. The framework employs an XML-based

interface for communication with performance simulators, enabling the specification of static

microarchitecture configuration parameters and the passage of dynamic activity statistics. These

parameters include fundamental elements such as frequency, Vdd (supply voltage), in-order or

out-of-order execution, cache size, NoC type, core count, and multithreaded configurations. McPAT

operates independently from the simulator, reading performance statistics and, if needed, sending

runtime power dissipation information back to the simulator through the XML interface. The

key components of McPAT include an optimizer for determining circuit-level implementations

and an internal chip representation for analyzing power, area, and timing. These statistics are

essential for understanding how efficiently the hardware resources are utilized during operation.

34

2. BACKGROUND

Users can specify target clock frequency, area, and power deviation, guiding McPAT in exploring

the optimization space. This thesis uses McPAT power analysis to assess various power-related

metrics for NoC routers. This analysis is based on the 65nm technology node, providing an accurate

representation of the impact of the design choices. Specifically, we provide the configuration file of

the NoC design being evaluated as input to McPAT and analyse the power for different hardware

components. With the help of McPAT’s power analysis, a comprehensive evaluation of power

metrics can be done, providing crucial insights for optimizing power efficiency in NoC router

designs. In this thesis, we use McPAT to analyse the peak dynamic power and runtime dynamic

power of the various architectures under evaluation. With the help of peak dynamic power analysis,

we can analyse the maximum power consumed during dynamic activities. Runtime dynamic power

represents power consumed during the active operation of the router. In NoC routers, runtime

dynamic power considers power during data packet transmissions and routing decisions.

2.8.4 Architectural Parameters

Our implementation is based on a conventional 2-stage pipelined input-buffered NoC router. To

construct the model of various NoC architectures used in the thesis and perform the experimental

evaluation, we use the Garnet framework within gem5’s ruby memory model [85]. The system

configurations used in this thesis are provided in Table 2.3. For experimental analysis, we use an

8×8 2D mesh NoC. Each tile within this TCMP consists of an advanced Out-of-Order CPU core.

The clock speed of each core is fixed at 3 GHz. Each core has a private L1 cache with a size of

32KB, a 4-way set-associative, and a cache line/block size of 64B. The shared L2 cache is 256KB, is

16-way set-associative, and has a cache line/block size of 64B. The system uses the MESI (Modified,

Exclusive, Shared, Invalid) protocol for cache coherence with a CMP (Directory-based) approach.

For inter-core communication, we follow either XY and odd-even routing algorithms. We use a

one-cycle link delay and a two-cycle router delay in our simulations. NoC has an inter-router link

bandwidth is 128 bits. Hence, control packets are transmitted as single flits, while data packets

consist of five flits. Since the cache block size is 64 B, we need four body flits to send them across

an NoC of 128-bit flit channel. Furthermore, we use a VC buffer size of four.

2.9 Application and Workloads

In TCMPs, workloads denote the set of tasks or applications running on distinct cores, encompassing

the operations and processes a system manages within a specific time frame. The nature of these

35

2.9. APPLICATION AND WORKLOADS

Table 2.3: Standard system specification considered for experimental evaluation.

Name Specifications
Processor and Cache

Processor: 64 OoO x86 cores
Processor frequency: 3 GHz
L1 cache per core: 32KB, 4-way associative, 64B block, private, split (Instruction, Data)
L2 cache: 256 KB, 16-way associative, 64B block, shared
Coherence: MESI CMP directory protocol

NoC
Topology: 8×8 2D mesh

XY-DOR Algorithm / Odd-Even Adaptive Routing Algorithm
Router Pipeline

2-stage, VC based wormhole packet-switching
Flit size 128 bits
Packet size: 1-flit control packet and 5-flit data packets
VC buffer size: 4

workloads can vary significantly based on the application or system. They are characterized by

factors such as computational intensity, memory usage, and network communication. Creating rep-

resentative workloads is essential for evaluating and understanding system behaviour under diverse

conditions. Usually, in computer architecture research, workloads are often crafted using combina-

tions of standardized benchmark suites widely accepted in the scientific community. We focus on

utilising synthetic traffic patterns as well as multi-programmed, single-threaded benchmarks.

2.9.1 Synthetic Traffic Patterns

The primary goal of synthetic traffic patterns is to mimic the communication patterns observed

in real applications closely. As cores generate and send packets, the traffic pattern guides the

destination of these packets in a manner that simulates real-world communication scenarios. One

of the key parameters in synthetic traffic simulation is the choice of injection rate, which acts as

the key parameter in determining the frequency at which cores inject packets into the network. For

instance, by specifying an injection rate, such as 0.2 (equivalent to a 20% injection rate), each core

engages in packet creation every 20 or 5 cycles.

Various synthetic traffic patterns are available to mimic specific communication behaviours

found in real-world applications. The functionality of these traffic patterns is also discussed.

• Bit Complement Pattern: In the Bit Complement traffic pattern, the destination core ID

is calculated as the complement of the source core ID, thus simulating a request-reply

communication pattern or collaborative processes.

• Bit Reversal Pattern: In the Bit Reversal traffic pattern, the destination ID is determined by

reversing the source ID. This also simulates a request-reply communication pattern.

36

2. BACKGROUND

12 13 14 15

8 9 10 11

4 5 6 7

3210

Figure 2.12: 4x4 mesh NoC with routers numbered from 0 to 1

• Transpose Pattern: The Transpose traffic pattern mimics a scenario in a core at the ith row

and jth column will send packets to the core at the jth row and ith column. This rule simulates

request-reply communication where cores exchange information like matrix transposition.

• Shuffle Pattern: In the Shuffle traffic pattern, the destination ID is determined by a left

circular shift of the source ID. This pattern is particularly interesting as it represents a set of

collaborating processes.

• Uniform Random: In a Uniform Random traffic pattern, any core can be selected as the

destination with equal probability. This pattern reflects a scenario where communication is

not influenced by specific rules or relationships between cores.

• Tornado Traffic Pattern: In a Tornado traffic pattern, the destination core is determined

by the source core’s position. Specifically, the destination is (k-1)/2 steps to the right and

(k-1)/2 steps above the source core. Here, k represents the dimension of the NoC. This pattern

introduces a structured yet calculated communication behaviour, resembling the spiralling

motion of a tornado.

Table 2.4: Synthetic traffic communication pattern

Synthetic Traffic
Pattern

Source
Core

Destination
Core

Bit complement 1 [0001] 14 [1110]
Bit Reversal 1 [0001] 8 [1000]
Transpose 1 [0001] 4 [0100]
Shuffle 1 [0001] 2 [0010], 4 [0100], 8 [1000]
Uniform 1 [0001] Random(15 [1111])
Tornado 1 [0001] 6 [0111]

Table 2.4 provides an overview of the communication patterns exhibited by synthetic traffic

when executed on a 4x4 mesh NoC, as illustrated in Figure 2.12. Assuming the source is core

37

2.9. APPLICATION AND WORKLOADS

Table 2.5: SPEC CPU 2006 benchmark suite in the context of this thesis

SPEC CPU
Benchmarks General Category Programming

Language

Misses Per
Kilo Instructions

(MPKI)
—Integer Benchmarks—

mcf Combinatorial Optimization C High
libquantum (lib) Physics / Quantum Computing ISO/IEC High
xalancbmk XML Processing C++ High
perlbench Programming Language C Low
bzip2 Compression C Low
hmmer Search Gene Sequence C Low
h264ref Video Compression C Low
sjeng Artificial Intelligence: Chess C Medium
astar Computer Games, Artificial Intelligence C++ Medium
omnetpp Discrete Event Simulation C++ Medium

—Floating Point Benchmarks—
leslie3d Fluid Dynamics Fortran High
GemsFDTD Computational Electromagnetics Fortran High
lbm Fluid Dynamics C High
povray Computer Visualization C++ Low
gromacs Biochemistry / Molecular Dynamics C, Fortran Low
cactusADM Physics / General Relativity C, Fortran Low
namd Biology / Molecular Dynamics C++ Low
zeusmp Physics / Magnetohydrodynamics Fortran Medium
sphinx Speech Recognition C Medium
soplex Simplex Linear Program (LP) Solver C++ Medium

number 1, in the case of bit-complement traffic, the destination core is chosen as 14 (complement of

1). Similarly, for bit-reversal traffic, the destination core is set to 8 (the reverse of 1). For Transpose

traffic, the destination core is set as 4. However, in shuffle traffic, a group of destinations is set

for packet traversal (i.e., from 1 to 2, then 4, 8, and finally back to 1). In uniform random traffic,

the destination core for the same source (1) is randomly selected from any core in the network.

Meanwhile, Tornado traffic sets the destination as 6.

2.9.2 SPEC CPU Benchmarks

While synthetic traffic patterns mimic the traffic patterns that may happen in TCMPs, they may not

accurately reflect the system’s performance under real-world application executions. Even though

these synthetic traffic patterns can generate the behaviour system behaviour in certain aspects, they

are not standardized or widely accepted in the research community. On the other hand, SPEC

CPU benchmarks developed by the Standard Performance Evaluation Corporation (SPEC) consist

of standardized benchmark programs which are designed to mimic real-world applications and

workloads. They encompass a diverse set of applications (including both single-threaded and

multi-threaded tasks) ranging from compilers to scientific simulations, encryption algorithms, and

image processing, thus ensuring that the benchmark results reflect the system’s performance under

38

2. BACKGROUND

Table 2.6: Overview of workloads patterns explored in the thesis

Workload Workload Pattern:
Name of the Benchmark (Number of Instances)

Workload
Characteristics

WH1
leslie3d

(16)
lbm
(16)

libquantum
(16)

mcf
(16)

WH2
GemsFDTD

(16)
lbm
(16)

xalancbmk
(16)

gobmk
(16)

WH3
leslie3d

(16)
lbm
(16)

GemsFDTD
(16)

mcf
(16)

100%
High MPKI

mixes

WL1
povray

(16)
namd
(16)

h264ref
(16)

bzip2
(16)

WL2
cactusADM

(16)
gromacs

(16)
perlbench

(16)
hmmer

(16)

WL3
h264ref

(16)
bzip2
(16)

cactusADM
(16)

gromacs
(16)

100%
Low MPKI

mixes

WM1
soplex
(16)

zeusmp
(16)

omnetpp
(16)

sjeng
(16)

WM2
astar
(16)

sjeng
(16)

omnetpp
(16)

sphinx
(16)

WM3
soplex
(16)

astar
(16)

soplex
(16)

astar
(16)

100%
Medium

MPKI mixes

WHL1
leslie3d

(8)
lbm
(8)

libquantum
(8)

mcf
(8)

bzip2
(8)

h264ref
(8)

namd
(8)

povray
(8)

WHL2
cactusADM

(8)
cactusADM

(8)
perlbench

(8)
perlbench

(8)
GemsFDTD

(8)
GemsFDTD

(8)
xalancbmk

(8)
xalancbmk

(8)

WHL3
leslie3d

(8)
bzip2

(8)
cactusADM

(8)
cactusADM

(8)
h264ref

(8)
GemsFDTD

(8)
lbm
(8)

mcf
(8)

50%
High MPKI,

50%
Low MPKI

WHM1
leslie3d

(8)
lbm
(8)

libquantum
(8)

mcf
(8)

soplex
(8)

zeusmp
(8)

omnetpp
(8)

sjeng
(8)

WHM2
GemsFDTD

(8)
xalancbmk

(8)
GemsFDTD

(8)
xalancbmk

(8)
astar
(8)

omnetpp
(8)

astar
(8)

omnetpp
(8)

WHM3
leslie3d

(8)
GemsFDTD

(8)
omnetpp

(8)
omnetpp

(8)
sjeng
(8)

soplex
(8)

astar
(8)

astar
(8)

50%
High MPKI,

50%
Medium MPKI

WLM1
soplex

(8)
zeusmp

(8)
omnetpp

(8)
sjeng
(8)

bzip2
(8)

h264ref
(8)

namd
(8)

povray
(8)

WLM2
astar
(8)

omnetpp
(8)

astar
(8)

omnetpp
(8)

cactusADM
(8)

perlbench
(8)

cactusADM
(8)

perlbench
(8)

WLM3
sjeng
(8)

bzip2
(8)

sphnix
(8)

sphnix
(8)

h264ref
(8)

astar
(8)

gromacs
(8)

cactusADM
(8)

50%
Low MPKI,

50%
Medium MPKI

real-world conditions. SPEC CPU benchmarks are widely accepted in the industry and academia

as a standard measure of CPU performance. Notably, SPEC CPU benchmarks, including the

widely recognized SPEC CPU 2006 benchmarks [88], serve as an industry standard for evaluating

CPU-intensive performance. They rigorously evaluate a system’s processor, memory subsystem,

and processor efficiency, making them a common reference point for comparing and reporting CPU

performance within the industry.

As the thesis primarily focuses on evaluating the performance of various NoC router architec-

tures under different network loads, we utilize the Misses Per Kilo Instructions (MPKI) metric as a

key parameter for classifying the benchmarks for workload creation. MPKI quantifies the frequency

of cache misses per thousand instructions executed and is commonly used to categorize applications

based on their cache miss rates. Accordingly, we choose twenty benchmarks, comprising ten from

the integer suite and ten from the floating-point suite. To ensure a comprehensive evaluation, the

selected SPEC CPU benchmarks are classified into three categories based on their MPKI values:

High MPKI (greater than 40), Medium MPKI (between 20 and 40), and Low MPKI (less than 20).

39

2.9. APPLICATION AND WORKLOADS

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

Pattern – 2 : WH1_B

Pattern – 4 : WH1_D

Pattern – 1 : WH1_A

Pattern – 3 : WH1_C

leslie3d lbm libquantum mcf

Figure 2.13: Four different mapping pattern considered for the workload WH1. WH1 consists of 4
benchmarks (leslie3d, lbm, libquantum, and mcf)

Consequently, we select six benchmarks from the High category (three from integer and three from

the floating point SPEC suite), eight benchmarks from the Low category (four from integer and

four from the floating point SPEC suite), and six benchmarks from the Medium category (three

from integer and three from floating point SPEC suite) for the evaluation. Table 2.6 represents

the workload mixes created using the above-mentioned benchmarks. In total, 18 workload mixes

are formulated, with benchmarks chosen from the specified MPKI categories. Three variants of

workloads are created for each category, where 100% High MPKI workload mixes are labelled from

WH1 to WH3. Similarly, 100% Medium MPKI from WM1 to WM3 and 100% Low MPKI from

WL1 to WL3. Additionally, multi-MPKI workload mixes are created, where 50% High and 50%

Low MPKI workload mixes are labelled as WHL1 to WHL3. Similarly, WHM1 to WHM3 represent

50% High and 50% Medium MPKI, and WLM1 to WLM3 represent 50% Low and 50% Medium

MPKI. This variety of workload mixes enables a thorough evaluation of the system’s responses

40

2. BACKGROUND

under diverse network loads and its effectiveness in managing a wide range of application types.

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

Pattern – 2 : WHL1_Q

Pattern – 4 : WHL1_S

Pattern – 1 : WHL1_P

Pattern – 3 : WHL1_R

leslie3d lbm libquantum mcf bzip2 h264ref namd povray

Figure 2.14: Four different mapping patterns considered for the workload WHL1. WHL1 consists
of 8 benchmarks (leslie3d, lbm, libquantum, mcf, bzip2, h264ref, named, povray)

Given that the spatial organization of applications within a mesh NoC significantly influences

its performance, we explore various static mappings of applications to cores in a 64-core mesh

NoC. Specifically, each workload mix given in Table 2.6 is executed with four combinations of

application-to-core mapping, and the mean of all these is considered for the final result. The four

mapping patterns used for workload WH1 are detailed in Figure 2.13. For instance, WH1_A means

the instance of leslie3d is mapped in each of the cores from 0 to 15, one instance of lbm is mapped

from core 10 to 31, libquantum is mapped from core 32 to 47, and the mcf benchmark is mapped

from core 48 to 63. Similarly, we explored different mapping patterns for WH1 as shown in WH1_B,

WH1_C, and WH1_D of Figure 2.13. We consider the workload performance of WH1 as the mean

of WH1_A, WH1_B, WH1_C, and WH1_D. This pattern mapping is replicated for WH2 and WH3.

Workload WH is then considered as the mean of WH1, WH2, and WH3, as shown in Table 2.7. The

41

2.10. PERFORMANCE METRICS

Table 2.7: Workload generation considered in the thesis

Workload Workload Pattern Workload Workload Pattern
WH1 mean(WH1_A, WH1_B, WH1_C, WH1_D) WH mean(WH1,WH2,WH3)
WH2 mean(WH2_A, WH2_B, WH2_C, WH2_D) WL mean(WL1,WL2,WL3)
WH3 mean(WH3_A, WH3_B, WH3_C, WH3_D) WM mean(WM1,WM2,WM3)

WH mean(WH1, WH2, WH3) WHL mean(WHL1,WHL2,WHL3)
WHL1 mean(WHL1_P, WHL1_Q, WHL1_R, WHL1_S) WHM mean(WHM1,WHM2,WHM3)
WHL2 mean(WHL2_P, WHL2_Q, WHL2_R, WHL2_S WLM mean(WLM1,WLM2,WLM3)
WHL3 mean(WHL3_P, WHL3_Q, WHL3_R, WHL3_S)

WHL mean(WHL1, WHL2, WHL3)

workloads WL, WM, WHL, WHM, and WLM are generated following a similar approach. For

workloads consisting of 8 benchmarks, we consider the mapping pattern (considered for workload

WHL1) given in Figure 2.14 and generate results for WHL, WHM, and WHM as shown in Table 2.7.

2.10 Performance Metrics

Performance metrics are fundamental in all stages of system architecture design, from initial concept

and evaluation to implementation, optimization, and validation. They provide quantitative measures

to assess and improve the performance, efficiency, and reliability of computing systems. In this

section, we discuss some of the performance metrics considered more significant for evaluating and

analyzing the effectiveness of each proposed architecture.

2.10.1 Average Packet Latency

In NoC, Average Packet Latency (APL) plays a crucial role, directly impacting the overall perfor-

mance and efficiency of the network. APL is defined as the number of cycles a packet takes to reach

its destination. APL can be represented as follows:

APL =
Network_Latency +QueuingLatency

No_of_Packets_Received
(2.1)

where network latency is defined as the time it takes for a packet to travel from the source router

to the destination router in NoC. It includes propagation delay, transmission delay, and processing

delay on a packet as it traverses the network. Queuing latency is the delay that occurs when a

packet is waiting in a queue before a router can process it. This delay is influenced by factors such

as the queue length, the packet arrival rate, and the processing speed of the NI unit in NoC. APL

significantly influences the performance of the system. Applications with real-time requirements or

strict latency constraints rely on maintaining low APL to meet their QoS effectively. Reduced latency

helps in meeting tight timing constraints, avoiding potential failures or performance degradation

42

2. BACKGROUND

due to communication delays.

2.10.2 Instructions Per Cycle (IPC)

We also analyze the impact of HT on the system performance by evaluating the system throughput.

To observe the throughput of the application running in TCMP, we analyse the number of instructions

executed per cycle (IPC). IPC is a metric that represents the average number of instructions executed

per clock cycle. It provides insights into the efficiency of the system in terms of instruction execution.

HTs have the capability to either delay packets or drop them entirely. This can lead to an increase in

the time required to process instructions, consequently resulting in a decrease in IPC.

We can define IPC as

IPC =
Total_no._of_instructions

Total_No._of_cycles_to_complete_the_instructions
(2.2)

2.11 Chapter Summary

This chapter provided a comprehensive overview of the IC supply chain, the categorization of HTs,

and the HT taxonomy. It further explored the TCMP architecture and various computer architecture

simulators, such as gem5, McPAT, and ProNoC. The use of Synopsys Design Compiler for RTL

synthesis is also presented. Furthermore, it discussed the workloads and benchmarks utilized in the

thesis, providing a detailed explanation of the experimental setup. Finally, the chapter thoroughly

examined and discussed the various performance metrics employed in the thesis.

<<=8=;;

43

3
C H A P T E R

Secure NoC by Mitigating Packet Misrouting
Trojan Attacks

This chapter presents an HT model within the NoC router, designed to initiate misrouting of packets,

resulting in DoS attack and injection suppression. Subsequently, the chapter discusses a dynamic

shielding technique capable of isolating the HT-infected router. We introduce a secure routing

algorithm to navigate around the NoC router affected by the HT.

3.1 Introduction

Among the vulnerable components in a TCMP, NoC is particularly significant due to its role

in facilitating communication between cores, thereby granting access to various system compo-

nents [9][20][21] . Consequently, any malicious circuits in an NoC IP can affect the entire system’s

performance. For instance, an HT that misroutes packets can consume network resources without

contributing to useful data transmission, effectively reducing the overall throughput of the NoC.

This inefficiency can limit the system’s ability to handle high-bandwidth applications or multiple

concurrent tasks. Researchers explored the possibility of a runtime detection algorithm for packet

misrouting HT attacks [60]. This approach uses the incoming direction of the packets to detect

the location of such HTs. However, it assumes that the operating system will provide shielding

to ensure protection. Such a hardware-software solution can lead to unacceptable performance

overhead, whereas a simple hardware-only approach may give a better action response.

3. SECURE NOC BY MITIGATING PACKET MISROUTING TROJAN ATTACKS

In this chapter, we make the following contributions:

• We implement an HT model which is designed to trigger packet misrouting in NoC routers,

resulting in the DoS attack and injection suppression.

• To counteract the impact of the HT, we propose a Trojan-aware routing framework capable of

dynamically identifying misrouting caused by the HT. The framework establishes a dynamic

protective shield around the router affected by the HT. Additionally, we introduce a bypass

routing algorithm to mitigate the effects of an HT.

• Our experimental results showcase the effectiveness of our approach in successfully mitigating

DoS attacks and injection suppression.

The remainder of this chapter is structured as follows: In Section 3.2, we discuss the routing

algorithm utilized for this work. Following that, Section 3.3 outlines the proposed threat model and

its implications for TCMPs. Subsequently, Section 3.4 presents the mitigation technique employed

for addressing HT-induced packet misrouting. The performance analysis conducted for this work

is discussed in Section 3.5. Section 3.6 presents the analysis of area and power overhead. Finally,

Section 3.7 provides a summary and conclusion for this chapter.

3.2 Dimension Order Routing

The routing scheme employed in an NoC router plays a critical role in network channel load

balancing and packet latency, impacting overall system performance. The fundamental task in the

network layer of an NoC involves designing the routing algorithm and selecting the most suitable

paths. Routing can be broadly categorized into oblivious routing and adaptive routing [89]. In

oblivious routing, a predefined set of optional paths is established in advance for each source-

destination pair, and every packet between these pairs must follow one of these predetermined paths.

Thus, the path a packet takes is solely determined by its source-destination pair or may involve a

random selection among the available options. One drawback of oblivious routing is that it does

not take into account the current network state when selecting output ports, potentially resulting

in an under-utilization of path diversity and the creation of congestion points in the system. In

contrast, adaptive routing algorithms employ strategies that consider channel load information or

any other suitable information when making routing decisions. These algorithms can be categorized

as minimal or non-minimal. Minimal routing algorithms select the shortest path to the destination.

Turn model routing protocols [90] are recent developments in routing where routing decisions are

45

3.2. DIMENSION ORDER ROUTING

12 15

8 11

4 7

30 (0,0) (1,0) (2,0) (3,0)

(3,1)(2,1)(1,1)(0,1)

(0,2)

(0,3)

(1,2) (2,2) (3,2)

(3,3)(2,3)(1,3)

Figure 3.1: A two dimension 4X4 mesh NoC topology

based on the turns taken along the routing path. These protocols are designed to prevent packet

routes that may lead to formation of cycles, livelock, and deadlock in the network.

One of the subsets of oblivious routing algorithms is the Deterministic Routing algorithm [89].

In NoC systems, deterministic routing algorithms consistently opt for the same path when routing

data between a pair of routers. This predictable behaviour can lead to an uneven distribution of

network traffic, causing some paths to become congested while others remain underutilized. Despite

this drawback, many designers choose deterministic routing for its simplicity and predictability.

Moreover, deterministic routing inherently avoids deadlock situations, ensuring smooth data flow

within the network. Dimension Order Routing (DOR) is one such deterministic routing algorithm

that selects specific dimensions (X or Y) to route the packets, thus following a specific pattern.

One of the DOR algorithms is XY, which makes routing decisions based on a comparison of NoC

router coordinates at each intermediate router. Algorithm 1 represents the XY routing algorithm.

Consider a 2-dimensional 4×4 mesh NoC given in Figure 3.1. Here, each router is identified by its

coordinates. For ease of reference, let (x, y) represent the coordinates of an NoC router. With the

XY routing algorithm in action, whenever a packet reaches an NoC router, it compares the current

router’s address (Cx, Cy) with the destination router’s address (Dx, Dy) stored in the header flit of

the packet. The rest of the routing process, as per the XY routing algorithm, is given in Algorithm 1,

which involves the following steps:

1. If the current router’s address (Cx, Cy) matches the destination router’s address (Dx, Dy),

the flits are routed to the local port of the router.

2. If the horizontal address (Cx) of the current router does not match the horizontal address

(Dx) of the destination, the routing decision is based on the comparison of Cx and Dx. Flits will be

46

3. SECURE NOC BY MITIGATING PACKET MISROUTING TROJAN ATTACKS

ALGORITHM 1: Working of XY routing algorithm
Source Router: (Sx,Sy)

Destination Router: (Dx,Dy)

Current Router: (Cx,Cy)

Output: Output direction of a flit: outv_dir

if Dx > Cx then
set outv_dir as EAST

else if Dx < Cx then
set outv_dir as WEST

else if Dx == Cx then

if Dy < Cy then
set outv_dir as SOUTH

end

else if Dy > Cy then
set outv_dir as NORTH

else if Dy == Cy then
The current router is the destination router

directed to the East port when Cx is less than Dx, to the West port when Cx is greater than Dx, and

if Cx equals Dx, the header flit is already horizontally aligned.

3. If the horizontal alignment condition is true, the vertical address (Dy) is compared to the

current router’s vertical address (Cy). Flits are routed to the South port when Cy is less than Dy and

to the North port when Cy is greater than Dy.

Let P be a packet with source S(x1, y1) and destination D(x2, y2). As per X-Y routing, when P

reaches an intermediate router R(x, y), it is forwarded along the X direction until (x < x2). When

P reaches a router where (x == x2), it changes the direction and starts travelling along the Y

direction until (y < y2). When P reaches a router where (y == y2), it reaches the destination

D(x2, y2). For example, in 4×4 NoC shown in Figure 3.1, consider core 0 wants to send a packet

to core 15. With XY routing, these packets move in X direction till they reach router 3. From there,

it moves in Y direction (upwards) to reach its destination 15.

3.3 Threat Model: Trojan Design and its Impact

In this section, we present the design of the proposed packet misrouting HT in TCMPs with

underlying routing algorithm as XY. The section also covers how such misrouting HT can affect the

system’s performance.

47

3.3. THREAT MODEL: TROJAN DESIGN AND ITS IMPACT

0

8

16

24

32

40

48

56

7

15

23

31

39

47

55

63

HT

S SESW

NW

W E

N NE

Figure 3.2: 8×8 mesh NoC with an HT at router 35

3.3.1 Packet Misrouting Trojan Design

We present an HT threat model that alters the routing algorithm (XY) employed in the Route

Computation unit of the NoC router to enable packet misrouting. When triggered, the HT maliciously

assigns a wrong output port to the head flit of a packet. Since we follow wormhole routing, all the

flits of the packet get misrouted and contribute to DoS and injection suppression. DoS is a scenario

where the flits of a packet get indefinitely delayed in the path and never reach their destination. An

injection suppression scenario is a by-product of DoS where new flits cannot be injected into the

network due to the unavailability of router buffers.

The X-Y dimension order routing algorithm decides the output port for a packet based on

the position of the destination router with respect to the current router. This routing algorithm

does not consider the input port of the packet and its previous router for its routing decisions. To

model our HT model, we exploit this feature of the routing algorithm and enable misrouting. Now,

even if a packet is misrouted and reaches a router where it should not have reached as per X-Y

routing, the employed routing algorithm cannot detect it. The packet is forwarded to the destination

without knowing the misrouting that has brought the packet to this router. Packets carry cache miss

requests, cache miss replies, evicted cache blocks, and coherence messages from the source to their

destination through the underlying NoC. A router infected with the proposed HT can misroute these

packets and degrade the application-level performance of latency-critical applications.

48

3. SECURE NOC BY MITIGATING PACKET MISROUTING TROJAN ATTACKS

0

8

16

24

32

40

48

56

7

15

23

31

39

47

55

63

S1

D1

HT

P1

P1

Figure 3.3: A denial of service (DoS) attack scenario -1

3.3.2 Impact of Packet Misrouting Trojan Attack

Figure 3.2 shows an illustration of an 8×8 mesh TCMP with the proposed HT mounted on router 35.

An adversary can insert any number of such HTs in the NoC. However, activating multiple HTs can

create an unusual variation in energy and power consumption and, hence, may be easily detected.

To make it hard to get detected, we assume that the adversary had infected only a single router with

the proposed HT. Based on the location of HT, the entire 8×8 NoC is divided into eight different

regions: N , E, S, W , NE, SE, SW and NW . When triggered, the impact of HT varies across

different regions based on their inter-core communication. The possible attack scenarios due to the

compromised TCMP are described in the following sections.

3.3.2.1 Denial-of-Service: Attack Scenario 1

To understand how a misrouting HT can initiate a DoS attack, consider a case shown in Figure 3.3

with the HT at router 35. The underlying NoC employed XY dimension order routing algorithm

for packet traversal. During inter-core communication, a packet P1 with source S1 on its way to

destination D1 reaches router 35. Instead of forwarding P1 to router 43 as per X-Y routing, the

HT at router 35 misroutes P1 to router 34. Note that the HT can misroute this packet to any other

direction than the valid one (say router 27, router 34, or router 36). When the misrouted packet

reaches router 34, following X-Y routing, it will be re-sent to router 35. Destination D1 is at router

49

3.3. THREAT MODEL: TROJAN DESIGN AND ITS IMPACT

0

8

16

24

32

40

48

56

7

15

23

31

39

47

55

63
D2

P2

P2 P2’

P2’

P2

HTS2

Figure 3.4: A denial of service attack scenario - 2

59, which is in the same column as that of HT (router 35). So, as per X-Y routing, P1 can reach

destination D1 only through router 35, which is currently compromised. Since router 35 always

misroutes, P1 will never reach its destination D1. This is a DoS attack scenario created by the

proposed misrouting HT threat model discussed in this work. According to Figure 3.2, source S1

is in region E and destination D1 is in region N . With further analysis, it is concluded that an

inter-region communication of type E −→ N leads to a DoS attack scenario. In general, for all the

inter-region communication where the destination router is on the same column as that of the HT

(router 35), this kind of DoS attack scenario is possible. Hence, any packet traversal between the

following regions is susceptible to a DoS attack scenario:

E −→ N , E −→ S, W −→ N , W −→ S NE −→ S, NW −→ S, SE −→ N , SW −→ N .

3.3.2.2 Denial-of-Service: Attack Scenario 2

Another attack scenario created by the proposed HT threat model is a delay of service, which is

a variant of a DoS attack. Consider an inter-core communication, where a packet P2 with source

S2 is travelling towards its destination D2, as shown in Fig 3.4. When P2 reaches the HT (router

35), instead of forwarding the packet towards router 36 (as per X-Y routing), the HT at router 35

misroutes P2. Since the direction of misrouting is random, packet P2 can reach any one of the

neighbours of router 35, like 27, 34 or 43. If P2 reaches either router 27 or 43, following X-Y

routing, it can reach the destination D2, incurring a small delay. However, if the HT misroutes P2

50

3. SECURE NOC BY MITIGATING PACKET MISROUTING TROJAN ATTACKS

towards router 34, then it enters a ping-pong state between router 34 and 35, something similar to

the DoS scenario (refer to Figure 3.3). But, due to the randomness of misrouting, the ping-pong

breaks when P2 gets misrouted to either router 27 or 43 in the near future. In that case, packet

P2 eventually reaches its destination with an arbitrary delay. This is another DoS attack scenario.

Again, according to Figure 3.2, source S2 is in region W and destination D2 is in region NE.

Thus, an inter-region communication of type W −→ NE creates this kind of DoS attack scenario.

To generalise, a DoS attack that ends in a packet delay-like scenario is possible when there is

communication between the following regions:

E −→W , E −→ NW , E −→ SW , W −→ E, W −→ NE, W −→ SE.

3.3.2.3 Injection Suppression: Attack Scenario 3

A misrouting HT can also create injection suppression in the network. Most of the time, this

occurs as the byproduct of a DoS attack. We defined the HT in such a way that the direction of

misrouting is non-deterministic. For example, in the case considered in Figure 3.3, the HT (router

35) can misroute packet P1 in different invalid directions at different instances. As a result, P1 gets

trapped into a ping-pong state between the neighbours of router 35, except with router 43. Packets

are buffered in VCs of routers while taking part in routing and arbitration decisions. Prolonged

ping-pong of P1 leads to VC unavailability in neighbouring routers and propagates the effect to

others by back-pressure. Eventually, a scenario of injection suppression arises. When the traffic is

high, the unavailability of NoC resources due to the ping-pong effect is also high.

3.4 TAR: Mitigation Framework for Packet Misrouting HT Attack

In order to detect and mitigate the misrouting HT in NoC, we propose a Trojan-aware Routing (TAR)

technique, which can be employed in every router on NoC. TAR involves three phases: Detection,

Shielding, and Bypass. The functionality of these phases is elaborated in the subsequent sections.

3.4.1 TAR Phase 1: Trojan Detection

To detect both packet misrouting and HTs, a detection module has been integrated into each NoC

router. This module relies on two key variables: a 1-bit alert_flag and a 3-bit alert_dir. The alert_flag

is activated only when a neighbouring router is identified as an HT router and is reset otherwise. The

alert_dir can denote either no specific direction or the specific direction in which the HT infection is

detected, including North, East, South, or West. The operation of this detection module is outlined

51

3.4. TAR: MITIGATION FRAMEWORK FOR PACKET MISROUTING HT ATTACK

ALGORITHM 2: Working of the HT detection module in TAR
Input :Input Direction of flit; in_dir

Output :Violated output direction of a flit: outv_dir

Terminology:

xdiff : Difference between the x coordinates of current and destination NoC router.

ydiff : Difference between the y coordinates of current and destination NoC router.

if xdiff < 0 and in_dir is WEST then
set outv_dir as WEST

else if xdiff > 0 and in_dir is EAST then
set outv_dir as EAST

else if xdiff > 0 and in_dir is NORTH then
set outv_dir as NORTH

else if xdiff > 0 and in_dir is SOUTH then
set outv_dir as SOUTH

in Algorithm 2. This module’s core function is to ascertain whether the routing unit returns a

misdirected output direction for a head flit by analyzing the difference in (x, y) coordinates between

the current router and the intended destination router, as denoted by xdiff and ydiff in Algorithm 2.

To achieve this, when a head flit reaches the route computation phase, the detection module

examines both the input direction of the flit and its intended destination. If the module identifies

that a packet’s intended output direction matches its input direction, it is reported as a case of packet

misrouting. For example, if a packet is moving towards the West and its input direction is also West,

this signifies that packet misrouting has occurred in the network. Subsequently, the module saves

the information regarding the violated direction (outv_dir in Algorithm 2). Whenever a router

identifies a packet misrouting incident, it sets its alert_flag and updates alert_dir with the direction

in which the violation occurred (outv_dir). This mechanism effectively aids in the detection and

flagging of packet misrouting occurrences and potential HT routers within the NoC.

Illustrative Example: While considering the DoS attack scenario shown in Figure 3.3, when HT

is active, the packet P1 is forwarded to router 34 because of the misrouting at router 35. With

the detection module in place, router 34 knows that P1 has entered through the East input port

from router 35. Analysing the position of destination D1 at router 59 with respect to router 35, the

detection module concludes that X-Y routing is violated and P1 is misrouted. Router 34 sets its

alert_flag and updates alert_dir as East since router 35 misrouted packet P1 and hence must be an

HT. alert_flag and alert_dir are also used in the subsequent phases of shielding and bypassing.

52

3. SECURE NOC BY MITIGATING PACKET MISROUTING TROJAN ATTACKS

Src Dest CTRL Bits Alert Message

Src Dest CTRL Bits msg_dir DHT_msg_dir NHT_msg_dir

1-bit 3-bits 3-bits

7-bits

msg_dir : 0: Anti-Clock, 1: Clock

DHT_msg_dir/NHT_msg_dir: 000: No Dir, 001: North, 010: West, 011: South, 100: East

Figure 3.5: Structure of an alert_flit

3.4.2 TAR Phase 2: Shielding the Trojan

Once the HT is detected by one of the neighbours of an HT, a dynamic shielding protocol is

activated. The router that detects the HT generates a special alert_flit to be sent to its neighbours

about the detection of the HT. In our proposed TAR technique, such routers are known as generators.

Neighbours, upon receiving the alert_flit, forward the message further by creating a propagation

flit. In TAR, routers generating the propagation flits are called propagators. The structure of these

special flits is very similar to normal flits, as shown in Figure 3.5. The alert_flit contains a 1-bit

msg_dir indicating the direction, to which it needs to be forwarded by the generators. A 3-bit

DHT_alert_dir indicates the direction an alert_flit needs to be forwarded by propagators. The

alert message also contains a 3-bit NHT_alert_dir, which indicates the direction where the HT is

detected. Figure 3.5 presents all the possible values for different fields of the alert_flit. When the

message of HT detection is propagated among all the neighbouring routers using these alert flits and

propagation flits, each router accordingly updates its alert_flag and alert_dir. This results in a shield

being created around the HT that successfully isolates the HT router from the rest of the network.

TAR’s third and final phase uses this shielding to route packets by bypassing the isolated HT router.

The working of the dynamic shielding phase in TAR is explained using Figure 3.6. From the

previous phase of HT detection, let us assume that router 34 has identified router 35 as an HT. The

alert_flag in router 34 is now set to 1, and the alert_dir as 100 (East). As shown in Figure 3.6, router

34 generates two alert flits, GN and GS , which are sent to its North and South neighbours. With an

alert message {msg_dir = 0, DHT_alert_dir = 100, NHT_alert_dir = 011}, alert flit GN is forwarded

from router 34 to router 42, where msg_dir = 0 indicates GN to be forwarded in clockwise direction.

DHT_alert_dir = 100 (East) in GN indicates that upon reaching router 42, the message needs to be

propagated in the East direction. Router 42 generates a propagation flit PE with an alert message

{msg_dir = 0, DHT_alert_dir = 000, NHT_alert_dir = 011} to be forwarded to router 43. When

PE reaches router 43, NHT_alert_dir = 011 (South) indicates that the HT is detected in the South

53

3.4. TAR: MITIGATION FRAMEWORK FOR PACKET MISROUTING HT ATTACK

0

8

16

24

32

40

48

56

7

15

23

31

39

47

55

63

P2

PE

P1

HT

PE’

GS

GN

GS
S : 34, D : 26

MSG : {E,N}

S : 26, D : 27

MSG : {N}

S : 42, D : 43

MSG : {S}

S : 34, D : 42

MSG : {E,S}

PE’

PEGN

Figure 3.6: Working of dynamic shielding in TAR

direction of router 43; which is router 35. The alert_flag and the alert_dir are updated as 1 and

south, respectively, in router 43, which can be a generator for other neighbours. Similarly, GS and

PE ′ (propagation flit generated by router 26) also propagate the message of HT detection to other

neighbours. Here, 27, 34, 43, and 36 are generator routers, and 26, 42, 44, and 28 are propagation

routers. The message propagation continues from both sides until a logical shield is created around

the HT. In this example, the shield is completed when alert_dir is set for router 27 as north, router 34

as east, router 43 as south, and router 36 as west. After the end of dynamic shielding, the detected

HT is isolated from the rest of the network.

3.4.3 TAR Phase 3: Trojan Bypassing

The final phase of TAR implements a bypass routing, as presented in Algorithm 3. When a packet

arrives at a router, the bypass mechanism checks the alert_flag and alert_dir of that router. Only if

the alert_flag is set and alert_dir matches with the desired output port direction of the packet bypass

routing is activated. In all other cases, a packet follows normal X-Y routing to reach its destination.

The working of the Trojan bypassing phase is explained using Figure 3.7. Let’s consider the same

scenarios of DoS attacks shown in Figure 3.3 and 3.4 for the sake of simplicity and continuity. A

packet P1 with source S1 on its way to destination D1 reaches router 36. After the completion of

shielding in the previous phase, router 36 has its alert_flag set and alert_dir as west. As per X-Y

routing, the desired output port of packet P1 at router 36 is west, which matches with the alert_dir

54

3. SECURE NOC BY MITIGATING PACKET MISROUTING TROJAN ATTACKS

ALGORITHM 3: Trojan Bypass Routing Algorithm
Input :Packet header

Output :Output port direction of a flit

Terminology
xdiff , ydiff : x and y difference between destination & current router.

in_dir: Input port direction of a flit.

out_dir: Output port direction of a flit.

maxCredit(out_dir1, out_dir2): returns out_dir with more VCs.

in_dir and out_dir ∈ (EAST ∥ WEST ∥ NORTH ∥ SOUTH)

alert_dir: HT alert direction of the current router.

alert_flag: HT alert flag of the current router.

/*Part I: Mitigation by generator routers */

if alert_flag is SET then
if xdiff ̸= 0 && ydiff ̸= 0 then

if alert_dir ̸= EAST then
if xdiff > 0 && in_dir ̸= EAST then

out_dir = EAST

else if alert_dir ̸= WEST then
if xdiff < 0 && in_dir ̸= WEST then

out_dir = WEST

else if alert_dir == EAST || WEST then
if ydiff < 0 then

out_dir = SOUTH

else
out_dir = NORTH

else if xdiff == 0 then
if (ydiff > 0 && alert_dir == NORTH) ||
(ydiff < 0 && alert_dir == SOUTH) then

out_dir = maxCredit(EAST,WEST)

else if ydiff == 0 then
if (xdiff > 0 && alert_dir == EAST) ||
(xdiff < 0 && alert_dir == WEST) then

out_dir = maxCredit(NORTH,SOUTH)

else if alert_dir ̸= NORTH then
if ydiff > 0 && in_dir ̸= NORTH then

out_dir = NORTH

else if alert_dir ̸= SOUTH then
if ydiff < 0 && in_dir ̸= SOUTH then

out_dir = SOUTH

/*Part II: Mitigation by propagation routers */

else if alert_flag is RESET then
if (xdiff < 0 && in_dir == WEST) ||
(xdiff > 0 && in_dir == EAST) then

if ydiff < 0 then
out_dir = SOUTH

else
out_dir = NORTH

else if xdiff < 0 && in_dir == SOUTH then
out_dir = WEST

else if xdiff > 0 && in_dir == NORTH then
out_dir = EAST

55

3.4. TAR: MITIGATION FRAMEWORK FOR PACKET MISROUTING HT ATTACK

0

8

16

24

32

40

48

56

7

15

23

31

39

47

55

63

P2P1

P2 P1

D2

HTS2

D1

S1

Figure 3.7: Working of Trojan bypassing in TAR

of router 36. Now, the Trojan bypass algorithm initiates and reroutes packet P1 away from the HT

(router 35) as presented in Part I of Algorithm 3. Packet P1 is rerouted from router 36 to router 44,

and Part II of Algorithm 3 is initiated since 44 is a propagation router. Now, packet P1 is forwarded

from router 44 to router 43, and from there, it directly reaches destination D1 at router 59.

Since destination D1 is in the same column as that of HT (router 35), with HT activated, it

becomes impossible for P1 to reach D1 using the conventional approach and hence it results in a

DoS-like scenario. With the Trojan bypass algorithm in place, P1 can now reach its destination,

thus mitigating the impact of DoS. Since packets like P1 are not trapped in the network anymore,

the proposed bypass routing also reduces the possibility of injection suppression. Similarly, packet

P2 with source S2 on its way to destination D2 reaches router 34. Instead of forwarding to router

35, which is HT infected, router 34 reroutes P2 towards router 42. The Trojan bypass algorithm

rerouted packet P2 in such a way that it reaches destination D2 without any additional delay. Hence,

the delay of service scenario created by the proposed HT threat model is mitigated by intelligent

bypassing. Note that router 35 misroutes only those packets that are passing through it. Hence, even

after bypassing is activated, the packets whose source or destination is router 35 will continue to

come out of/go into router 35, thus not hampering the application executing in the infected core.

Due to the nature of runtime detection, when an HT is detected, it might have already misrouted

the first few flits of some packets while the rest of the flits are on the way. Intuitively, it seems

56

3. SECURE NOC BY MITIGATING PACKET MISROUTING TROJAN ATTACKS

that the bypassing algorithm will not allow the rest of the flits to travel to the HT in order to avoid

misrouting. However, this situation will not arise since only the head flit takes part in routing and

arbitration. Hence, if a head flit is already misrouted before HT detection, all the following flits will

go through the same route. After HT detection, when such a misrouted head flit comes out of the

HT due to the ping-pong effect, it will never enter the HT again due to the employed bypassing.

Hence, even misrouted flits will eventually reach their respective destination.

Rerouting packets using the bypass algorithm violates normal X-Y routing and creates a

possibility for network deadlock. To ensure deadlock prevention, TAR employed the concept of

intermediate destination [91]. When packet P2 is rerouted from router 34 to router 42, it starts

travelling in the Y direction. However, when it travels from router 42 to router 43, P2 violates

X-Y routing since turning X from Y direction is prohibited. Using the concept of intermediate

destination, router 42 is made the new destination for packet P2. Now, after getting rerouted from

router 34, packet P2 reaches router 42 and gets space in the local input port VC. This creates

an effect that P1 has been freshly introduced into router 42 while simultaneously preventing the

selection of YX paths, thereby eliminating the possibility of deadlock.

The HT detection framework algorithm exhibits a time complexity of O(n+m), where n rep-

resents the number of intervals processed in the Traffic Monitoring Module, and m represents the

number of routers checked during cycle detection in the Path Monitoring Module. The space com-

plexity is O(m), as it depends on the number of routers involved in the cycle detection process. This

makes Trojan bypass routing algorithm is highly efficient, particularly for hardware implementation,

where minimal resource usage and predictable execution times are critical.

3.5 Results and Discussions

We assess the performance of TAR by examining effective average packet latency, effective average

deflected packet latency, IPC, and injection suppression avoidance. In our evaluation, we study the

following architectures.

• Baseline: A TCMP system having no HT.

• HT-NoC: A TCMP with the proposed packet misrouting HT in one random router.

• TAR: A TCMP system that uses Trojan-aware routing to detect and mitigate the HT.

57

3.5. RESULTS AND DISCUSSIONS

Packet Injection Rate (pkts./cycle/core)

EA
PL

 (i
n

cy
cl

es
)

0

25

50

75

100

125

0.02 0.04 0.06 0.08 0.10 0.12

Baseline HT-NoC TAR

(a) Uniform random traffic

Packet Injection Rate (pkts./cycle/core)

EA
PL

 (i
n

cy
cl

es
)

0

75

150

225

300

0.02 0.04 0.06 0.08 0.10 0.12

Baseline HT-NoC TAR

(b) Bit complement traffic

Figure 3.8: Effective average packet latency analysis using synthetic traffic patterns

Workloads

N
or

m
al

is
ed

 E
A

PL

0

1

2

3

WH WL WM WHL WHM WLM Avg

Baseline HT-NoC TAR

Figure 3.9: Comparison of effective average packet latency in real workloads consisting of SPEC
CPU2006 workloads (Normalised to Baseline)

3.5.1 Impact on Effective Average Packet Latency

When the HT is activated, in certain scenarios, the average packet latency on an NoC shows

inconsistent values. At higher injection rates, NoC with HT deploys DoS attacks that restrict the

packets never reaching their destination cores can result in packet loss and injection suppression.

Consequently, the APL values generated for such NoCs may not accurately reflect the network’s

performance. In such scenarios, we apply a more realistic metric, Effective Average Packet Latency

(EAPL), presented by Jonathan et al. [77]. EAPL is defined as follows:

EAPL = APL ∗ Packets_EjectedwithoutHT

Packets_EjectedwithHT
(3.1)

where the ratio of packets that are ejected without HT and packets that are ejected with HT quantifies

58

3. SECURE NOC BY MITIGATING PACKET MISROUTING TROJAN ATTACKS

the relative impact of the HT on packet ejection. Multiplying the APL by this ratio effectively scales

the APL based on the proportion of packets that are ejected in the presence and absence of the HT.

This portrays the influence of HT-induced packet ejection on the overall latency experienced by

packets in the NoC. During the analysis of the EAPL using synthetic traffic patterns, specifically

the Uniform Random and Bit Complement scenarios depicted in Figure 3.8a and 3.8b, a consistent

trend is observed. As the injection rate increases, packet latency also rises in all three models:

Baseline, HT-NoC, and TAR. The presence of an HT router results in packet deflection, causing

DoS and service delay attacks in the TCMP. Consequently, the HT system experiences a 2.8x

increase in average latency compared to the Baseline in Uniform Random and a 2.12x increase

in Bit Complement traffic. However, TAR achieves a reduction in EAPL when compared with

HT-NoC. By employing HT bypassing for secure communication, TAR reroutes the majority of

packets originally destined for the HT router through intermediate destinations, adding a few extra

hops to their journey. This redirection leads to an increased EAPL when compared to the Baseline

model. Simulation results indicate an 8% latency increase for TAR while applying Uniform Random

traffic and 9% while using Bit Complement traffic when compared to the Baseline.

Further analysis of EAPL with real workloads presented in Section 2.9.2, we observe that the

HT triggering induces a substantial increase in packet latency across all workload mixes, averaging

at 1.9x higher than the Baseline, as shown in Figure 3.9. But as expected, TAR demonstrates a

noteworthy reduction in EAPL, achieving a 43% decrease on average compared to the HT-NoC

model. For workloads with low MPKI benchmarks (WL), TAR demonstrates a reduction in latency

by approximately 31% compared to HT-NOC and by approximately 8% increase only, compared

to the Baseline. Similarly, for workloads with medium MPKI benchmarks (WM) and a mix of

low-medium MPKI benchmarks (WLM), TAR significantly reduces latency by approximately 42%

and 31%, respectively, compared to HT-NOC, indicating its adaptability and efficiency in optimizing

performance across varying cache sensitivities. Most notably, for high-intensity workloads with

high MPKI benchmarks (WH and WHM), TAR achieves the lowest EAPL among all scenarios,

showcasing a reduction in latency by approximately 48% and 60%, respectively, compared to

HT-NoC. Despite this improvement, TAR does incur a 7% increase in latency compared to the

Baseline. This latency variation is attributed to the implementation of bypass routing within the

NoC routers, which contributes to the overall efficacy of TAR in mitigating the HT impact.

59

3.5. RESULTS AND DISCUSSIONS

Workloads

N
or

m
al

is
ed

 E
A

D
PL

0

1

2

3

4

WH WL WM WHL WHM WLM Avg

Baseline HT-NoC TAR

Figure 3.10: Comparison of effective average deflected packet latency in real workloads consisting
of SPEC CPU2006 workloads (Normalised to Baseline)

3.5.2 Impact on Effective Average Deflected Packet Latency

Average Deflected Packet Latency (ADPL) is a metric used to measure the average latency of packets

that experience deflection while travelling through HT-NoC. When calculating ADPL in a NoC

without HT, the focus is on packets passing through a specific router. In the case of an HT-infected

NoC, ADPL is specifically computed for packets that undergo deflection due to the presence of an

HT at a particular router. This means that the ADPL metric considers the average latency only for

those packets that are affected by HT-induced deflection. Similar to effective average packet latency,

to get meaningful latency values, we use Effective Average Deflected Packet Latency (EADPL)

which is defined as follows:

EADPL = ADPL ∗ Deflected_Packets_EjectedwithoutHT

Deflected_Packets_EjectedwithHT
(3.2)

The presence of HT results in some packets entering a ping-pong state between neighbouring

routers, causing delays before reaching their destination. Figure 3.10 shows the analysis of the

HT effect on NoC while running various SPEC CPU workloads presented in Section 2.8. With

HT activation, we observe a 2.7x increase in EADPL on average compared to the Baseline. For

workload WHM, consisting of High and Medium MPKI benchmarks, as more packets enter into a

ping-pong state between the neighbouring routers, HT induces a 3.8x increase in EADPL on average

over the Baseline. TAR, incorporating a bypassing algorithm, mitigates this latency increase in

60

3. SECURE NOC BY MITIGATING PACKET MISROUTING TROJAN ATTACKS

Workloads

N
or

m
al

is
ed

 IP
C

0.00

0.25

0.50

0.75

1.00

WH WL WM WHL WHM WLM Avg

Baseline HT-NoC TAR

Figure 3.11: Comparison of processor performance in real workloads consisting of SPEC CPU2006
workloads (Normalised to Baseline)

deflected packets. For workloads with low MPKI benchmarks (WL), TAR demonstrates a notable

decrease in EADPL by approximately 56% compared to HT-NoC and by approximately 15%

increase compared to the Baseline. Similarly, for workloads with medium MPKI benchmarks (WM),

TAR achieves a reduction in EADPL by approximately 47% compared to HT-NoC, reflecting its

adaptability in optimizing performance across moderate cache misses. For high-intensity workloads

with high MPKI benchmarks (WH and WHM), TAR exhibits substantial decreases in EADPL by

approximately 71% and 60%, respectively, compared to HT-NoC. Additionally, for workloads with

low-medium MPKI benchmarks (WLM), TAR demonstrates significant reductions in EADPL by

approximately 58% compared to HT-NoC. Overall, due to the bypass-induced deflection, TAR

shows an average EADPL increase of 17% over the Baseline.

3.5.3 Impact on Processor Performance

In every network, throughput plays a vital role in determining the QoS of the underlying applications.

To analyse the throughput of the application, we analyse the IPC. Figure 3.11 shows the normalised

IPC for various architectural scenarios under diverse workloads. Experimental results show that

with an increase in HT-induced packet latency, there is a substantial performance degradation across

various workloads, signifying the adverse effects of the HT. We observe that the average percentage

decrease of IPC in HT-NoC across all workloads is approximately 77%. For workloads WH and

WHM, with the increase of EAPL and EADPL, HT creates an IPC reduction of 78% and 85%. This

61

3.5. RESULTS AND DISCUSSIONS

Time Intervals

N
or

m
al

is
ed

 V
C

 A
va

la
bi

lit
y

0.00

0.25

0.50

0.75

1.00

T0 T1 T2 T3 T4 T5

Baseline HT-NoC TAR

Figure 3.12: Injection suppression avoidance at NoC router (Normalised to Baseline)

reduction in throughput underscores the impact caused by the presence of the HT, highlighting its

disruptive influence on the system’s overall performance. Additionally, the analysis of TAR values

indicates that the TAR model suffers only an average of 3% IPC reduction over the baseline. We

observe that TAR achieves IPC close to the Baseline for workloads WL and WLM. However, with

workloads having High MPKI benchmarks, TAR shows an IPC reduction of more than 6%, due to

packet rerouting done as part of the Trojan bypass phase.

3.5.4 Impact on Injection Suppression

We study the injection suppression created by the HT on an 8×8 TCMP by analysing the buffer (VC)

availability in NoC router during the simulation. The average number of input VCs available on

the selected NoC router during the selected simulation cycles while simulating the WLM workload

is analysed, and the results are given in Figure 3.12. For ease of reference, we map these cycle

intervals from T1 to T8. Due to the ping-pong effect, the number of packets processed around the

HT is very high. This can block the router VCs of HT and its neighbours, as well as subsequent

back pressure, leading to injection suppression. We observe that as the simulation progresses, the

impact of HT results in a fewer number of input VCs being available in the routers. When the

simulation reaches close to T4, input VC becomes zero, which indicates the injection suppression in

the whole network. TAR ensures that none of the packets are under DoS attack and that the packets

are deflected by their one-hop neighbour with the help of our shielding approach. This keeps the

input VC availability the same as the Baseline, which prevents injection suppression in the network.

62

3. SECURE NOC BY MITIGATING PACKET MISROUTING TROJAN ATTACKS

Table 3.1: Area and power overhead analysis

Metric Baseline TAR
Area (mm2) 1.14 1.17
Peak Dynamic (W) 1.02 1.05
Runtime Dynamic (W) 0.043 0.044

3.6 Area and Power Overhead Analysis

For analyzing the power overheads of the architectures under study, we utilize parameters from

McPAT [87]. Table 3.1 shows the power overhead associated with various architectures. The

TAR architecture demonstrates a 2.63% increase in area compared to the Baseline. This modest

expansion is due to the additional security and monitoring circuitry integrated into TAR. Despite

this slight increase, the overall impact on chip size remains minimal, indicating that the architecture

delivers enhanced security with negligible area overhead. In terms of power consumption, TAR

shows a 2.94% rise in peak dynamic power over the Baseline, primarily because of the extra logic

and control units required during peak load conditions. Despite this, TAR maintains efficiency,

making it suitable for applications where both performance and security are critical. The runtime

dynamic power also exhibits a 2.33% increase, which reflects the continuous operation of security

monitoring circuits. TAR’s slight percentage increases in both area and power consumption are well

justified by the significant security enhancements it offers, making it a viable solution for system

security.

3.7 Chapter Summary

This chapter discussed the design and characteristics of the misrouting HT and its potential to

disrupt the normal routing operations of deterministic NoC routers. The chapter also projected the

proposed Trojan-aware routing scheme, emphasizing its efficiency in detecting and preventing the

effect of misrouting HTs. The experimental results section provided a comprehensive evaluation of

the proposed approach, and the area and power overhead introduced by the Trojan-aware routing

mechanism were also explored.

<<=8=;;

63

4
C H A P T E R

Secure Routing Framework by Mitigating Packet
Looping Trojan Attacks

In this chapter, we explore the potential threat of an HT, targeting the NoC to launch a packet

looping attack which degrades the system performance. We focus on introducing an HT model

designed to execute a DoS attack within NoC that creates packet delay by exploiting vulnerabilities

in the path selection strategy employed by the adaptive NoC router’s Route Computation unit. We

present a detection framework that leverages packet traffic analysis and path monitoring techniques

to localize the presence of the HT precisely. Additionally, we propose the integration of a security

wrapper module for the Route Computation unit that aims to mitigate the impact of the HT at the

cost of negligible reduction in IPC.

4.1 Introduction

In TCMPs, the performance of the NoC is assessed based on the quality of service experienced by

applications. Routing algorithms in NoC routers are crucial for balancing network load and affecting

packet latency. Oblivious routing protocols (e.g., XY) use fixed paths and lack path diversity, while

adaptive routing algorithms adjust based on channel load information [23][24]. This work explores

the potential for hardware Trojan (HT) attacks targeting the routing module of NoC routers. We

propose an HT circuit that alters the Route Computation logic of NoC routers, inducing delays in

selected packets by disrupting the path selection strategy. While previous work has addressed HT

attacks in deterministic NoC routers [56][62][92], this study focuses on adaptive NoC routers. To

counteract such HT attacks, we introduce a security wrapper module, SecRC, which detects and

mitigates HT effects.

4. SECURE ROUTING FRAMEWORK BY MITIGATING PACKET LOOPING TROJAN ATTACKS

Figure 4.1 provides an overview of our approach. We implement the HT in the routing unit of

adaptive NoC routers. The HT is intermittent, and our detection framework uses a packet traffic

monitor and a path monitor to identify HT-induced cycles. For mitigation, SecRC activates a turn

violation checker and a secure routing unit to prevent packets from entering these cycles.

Traffic

Monitor

Path

Monitor

Turn

Violation

Checker

Secure

Routing

Unit

HT on Routing

Unit of Adaptive

NoC Router

Trojan Design

1

2

3

4

SecRC

Trojan Detection Framework Security Wrapper for Routing Unit

Figure 4.1: Overview of the work

Overall, in this chapter, we make the following contributions.

• The chapter highlights the modelling of an intermittent HT that modifies the output port

selection strategy used in the adaptive NoC router. Once triggered, the HT deploys a DoS

attack in the NoC by trapping certain packets in HT-induced loops/cycles. To our best

knowledge, this work is the first to present an HT model that disrupts the path selection

strategy used in the adaptive NoC router to deploy a delay of service attack.

• We propose an HT detection framework that uses a traffic monitor module to analyse the

packet traffic and detect the hotspots formed by the packets that enter into HT-induced cycles.

• Once hotspots are detected, with the help of a path monitor module, we analyse the route a

packet takes to reach its destination. We use this path information to localise the HT.

• We also implement a lightweight security wrapper (SecRC) module for the routing unit of the

NoC router to mitigate the effect of HT. Once activated, SecRC detects packets that violate

turn restrictions with the help of turn violation checker. Upon identifying an intended packet

traversal, the SecRC module activates the secure routing algorithm, localising the HT and

successfully suppressing the effect of HT.

65

4.2. THREAT MODEL: TROJAN DESIGN AND ITS IMPACT

E - N

E - S N - W

S - W

W

S

E

N

odd oddeven

(b)

RC : Route Computation Unit

VA : Virtual Channel Allocator

SA : Switch Allocator

PID : Packet’s Input Direction

KS : Kill Switch

MO : Modified Output Port

MO : HT-Infected Router

odd even odd even

S

K DW

R Q

UT

(a)

credits_out

Input

Buffer

HT

ActivePID

KS

credits_in

RC

VA

SA

Crossbar

HT

credits_in
NoC Router

MO

Path for packets in normal scenario

Path taken when HT is active

Figure 4.2: (a) Trojan design and its effect, and (b) Turn restrictions with the odd-even algorithm

The chapter is organized as follows. Section 4.2 describes the threat model. Following that,

the proposed mitigation technique for packet looping HT is explained in Section 4.3. Section 4.4

explains the performance analysis. Area and power overhead analysis of the system is done in

Section 4.5. Subsequently, the chapter is finally summarized in Section 4.6.

4.2 Threat Model: Trojan Design and its Impact

Our work focuses on the HT model that deploys an attack on special-purpose TCMPs used in IoTs,

where, more often than not, the functionalities are fixed, and the application’s traffic patterns are

predictable. We assume that the CAD tools used by SoC designers are not trustworthy. Here, the

adversary can be any rouge SoC designer who can integrate malicious circuits by modifying the IPs

during the synthesis and verification stage of IC [47][93].

4.2.1 Packet Looping Trojan Design

To implement the attack, we integrate the HT into the Route Computation (RC) unit of an adaptive

NoC router, as depicted in Figure 4.2. The HT targets the non-minimal odd-even (OE) routing

algorithm used for path selection, which does not always choose the shortest path [22]. In OE

routing, certain turns are restricted to avoid deadlock. Specifically, in even column routers, East→

North and East→ South turns are prohibited. In odd column routers, North→West and South→

West turns are prohibited (see Figure 4.2b).

66

4. SECURE ROUTING FRAMEWORK BY MITIGATING PACKET LOOPING TROJAN ATTACKS

The OE routing algorithm operates in two phases. Phase 1 determines the possible output

ports for a packet based on the routing constraints. Phase 2 selects one output port from the

possible options using a selection strategy that typically considers buffer (VC) availability to avoid

congestion [23][24]. The HT model is designed to disrupt this selection strategy. We formulate the

HT as follows:

For a packet P with source src and destination dest, the path is:

P = {Rsrc, . . . , Rk−1, Rk, Rk+1, . . . , Rdest}

where Ri denotes router i in the NoC.

The OE routing algorithm Oi at router Ri can be described as:

Oi = {Op1
i ∥ O

p2
i }

where:Op1
i computes the possible output port directions for P and Op2

i applies the selection strategy

to choose the output port from the options given by Op1
i .

The HT modifies Oi to:

Oi = {Op1
i ∥ O

p2∗
i }

where:

Op2∗
i ̸= Op2

i

The adversary introduces a violated direction into the selection strategy:

Op2∗
i = Op2

i ∪ {outv}

where outv = {North or South} for even column routers, and {West} for odd column routers.

When activated, the HT alters the packet’s output port to one of the violated directions outv,

causing the packet to enter HT-induced cycles. This manipulation increases packet latency by

creating packet loops. The HT circuit is illustrated in Figure 4.2a and detailed in Algorithm 4.

The HT is triggered based on the packet’s input direction (PID) and the activation of a kill switch

(KS) [57]. Typically, adversaries use the kill switch to prevent HT activation during logic testing.

For odd column routers, the HT is activated if the packet arrives from the North or South input port,

while in even column routers, it is triggered only for packets arriving from the West input port. Once

activated, the HT monitors the valid output port direction assigned to an incoming packet during

Phase 2 of the OE routing algorithm.

67

4.2. THREAT MODEL: TROJAN DESIGN AND ITS IMPACT

ALGORITHM 4: HT infected selection strategy in OE
Input :Output port computed by the existing selection strategy.

Output :Final output port (violated / valid).

out_dirsel: Output direction given by existing selection strategy.

out_dirfinal: Final output port selected.

/* Odd column router */

if (PID == North || PID == South) &&KS = True then
HT_active = True

MO = {West}
/* Even column router */

if PID == West &&KS = True then
HT_active = True

MO = random ({North, South})
/* Odd / even column router */

if HT_active then

if numFreeV C(out_dirsel) < numFreeV C(out_v) then
out_dirfinal = MO

else
out_dirfinal = out_dirsel

else
out_dirfinal = out_dirsel

The HT examines credit information (credits_in) from neighboring routers to evaluate the

virtual channel (VC) availability for the potentially violated output port direction (MO). This

includes North or South for even column HTs and West for odd column HTs. If the VC availability

of the violated direction exceeds that of the valid direction, the HT modifies the packet’s output

port to the violated direction (MO), causing misrouting. For example, in an even column router, an

HT may redirect a packet originally destined for the East (valid direction) to the North or South

(violated directions) only under specific conditions related to VC availability.

numFreeV C(North) > numFreeV C(East) (4.1)

numFreeV C(South) > numFreeV C(East) (4.2)

Similarly, for packets coming from the North going towards the South or packets coming from the

South going towards the North, odd column HT misroutes it to the violated direction, West, only

when one of the following occurs.

68

4. SECURE ROUTING FRAMEWORK BY MITIGATING PACKET LOOPING TROJAN ATTACKS

Table 4.1: Turn selection scenario in an even column router with HT

Input
Direction

Valid Dir
(V)

Malicious
Direction

(M)

VC
Availability

(Valid)

VC
Availability
(Malicious)

Direction
Selected

West East North 0 1 North
West East West 1 0 East
West East North 1 0 East
South East West 0 1 South

East/ North/
South/ Local

East/ North/
South/ Local

- 1 -
East/ North/
South/ Local

numFreeV C(West) > numFreeV C(North) (4.3)

numFreeV C(West) > numFreeV C(South) (4.4)

Table 4.1 shows the possibility of selecting a malicious turn when HT is triggered in an even column

NoC router. Here, the packets that are coming from the West (going towards the East) get a violated

turn only when the VC availability of North or South is higher than the valid direction (East)

allocated for the packet. Consequently, it can be noted that an NoC router selects the malicious

output direction only when the number of VCs available in the violated direction is greater than

the valid output port direction. In all other cases, when the HT is not triggered, packets travel in

the valid direction given by the existing path selection strategy of the underlying routing algorithm.

This justifies that the proposed HT is intermittent and hard to detect.

4.2.2 Sample Scenario for Packet Looping Trojan Attack

To investigate the effect of the attack, we consider the activation of two HTs on an 8×8 mesh NoC

(one in an even column, router T and another in an odd column, router U, adjacent to router T) as

shown in Figure 4.2a. Assume a scenario where a packet P , with source as S and destination as D,

reaches router T from its West input port. At router T, the path selection strategy of the underlying

OE algorithm returns East as the valid output direction for the packet P. Assume that, at this time,

the KS is activated and HT is triggered in router T. Once activated, the HT circuit in router T

compares the VC availability of router T’s East port with HT’s possible choice of violated output

directions (in this case North, and South as HT is activated in an even router) (refer Algorithm 4).

If router T finds more free VCs in the violated directions, it initiates a turn-violation to misroute

the packet to either router R or router K. Assume router T sends the packet P to router R. At

R, as per the selection strategy, consider that the P got East direction, reaching router Q. If the

packet P gets North as the valid output port at Q, it will be forwarded to router U. Assume that

the packet P, while reaching router U, gets the valid output port as North (i.e. to router W). HT in

69

4.3. SECRC: MITIGATION FRAMEWORK FOR PACKET LOOPING HT ATTACK

SPEC CPU 2006 Benchmarks

Fr
ac

tio
n

of
 H

T-
in

du
ce

d
cy

cl
es

0.00

0.04

0.08

0.12

mcf lbm

lib
quan

tum
nam

d

omnetp
p

so
plex

h26
4re

f
as

tar
bzip

2

gro
mac

s

Figure 4.3: Impact of HT-induced cycles on 8× mesh NoC while running selected SPEC CPU 2006
benchmarks

router U can redirect it to router T when it finds more free VCs towards its West output direction

than its North port. Consequently, P enters a cycle formed between T→R→Q→U→T. On the

other hand, if router T sends the P to router K, it might get trapped in a cycle formed by T→K

→W→U→T. Accordingly, P suffers a delay in reaching its destination, making it a victim of the

DoS attack. Here, the number of times P iterates the cycle depends upon HTs’ activation patterns

and VC availability of downstream routers that are part of the cycle. To understand the occurrence

of HT-induced cycles in NoC, we analyse the number of cycles generated by HT pairs in an 8×8

mesh NoC while running 64 copies of various SPEC CPU 2006 benchmarks, as shown in Figure 4.3.

We observe that up to 11% of packets in the network enter into HT-induced cycles irrespective of

the benchmark categories. This creates a delay in delivery for certain packets during their inter-core

communication. Hence, we prove that the proposed HT is capable of DoS attack.

4.3 SecRC: Mitigation Framework for Packet Looping HT attack

To keep the NoC capable of detecting the effect of packet looping HTs, we propose an HT detection

framework that can identify the irregular packet traversal pattern in the network. To achieve this, the

architecture uses a traffic monitor module and a path monitor module, as shown in Figure 4.4. With

the help of a traffic monitor module, a router detects malicious traffic in the network. When a router’s

traffic monitor module identifies a suspicious activity, it sends a notification to the neighbours to

enable a path monitor module, which detects the occurrence of HT-induced cycles. We implement a

70

4. SECURE ROUTING FRAMEWORK BY MITIGATING PACKET LOOPING TROJAN ATTACKS

Crossbar

VC Allocator

(VA)

Switch Allocator

(SA)

CreditsCredits

Path

Monitor

Module

SecRC

East

West

North

South

PE

VC 0

Input Unit

East

West

North

South

PE

R : Router

Route

Computation

(RC)

R

R

R

R

PE

Traffic

Monitor

Module

VC 1

VC 3

VC 4

Figure 4.4: NoC router architecture with HT detection framework (traffic and path monitor) and
security wrapper (SecRC).

secure wrapper module, SecRC, which will analyse the packets passing through the routing unit of

the NoC router (refer to Figure 4.4). The detailed working of the detection/mitigation framework is

described in the following sections.

4.3.1 Traffic Monitor Module

The working of the HT detection framework is presented in Algorithm 5. To analyse the impact

of HT in NoC, we integrate a traffic monitor module in each router, which monitors the presence

of irregular packet traffic in the system. We present the working of the traffic monitor module in

Module I of Algorithm 5. The traffic monitor module mainly consists of two modules: Packet

Arrival Compute (PAC) module and Notify Flit Generation module. We integrate the PAC module

to monitor the packet arrival rate in a router and detect if there is any unusual packet traffic activity.

During traffic monitoring, the PAC module is activated for [tf − ts] number of cycles with a gap

of δ cycles with ts representing the cycle at which PAC starts and tf as the cycle at which it stops.

Note that in our work, the interval [ts : tf] for PAC activation is fixed. Accordingly, multiple

PAC activation is done in the duration of T cycles. Here, δ signifies how often the PAC module

is activated, whereas the lower the δ, the more times the PAC module is activated and vice-versa.

Once monitoring stops, the traffic monitor module computes the mean of the values computed by

the PAC module from the collected samples and compares it with the pre-defined system’s traffic

threshold. Here, the traffic monitor module identifies a communication pattern of router Ri at time

T as suspicious only when

71

4.3. SECRC: MITIGATION FRAMEWORK FOR PACKET LOOPING HT ATTACK

mean(PACRi)T > (Traffic_ThresholdRi)T (4.5)

where (Traffic_ThresholdRi)T = (Legitimate_PACRi)T +∆.

Here, we include ∆ to represent the jitter associated with the variation of delay due to various

factors like network congestion. When a router’s PAC mean is greater than the traffic threshold, the

traffic monitor module informs the neighbours about this unusual activity using a control flit called

notify flit (refer Part B of Algorithm 5).

To analyse the effectiveness of the traffic monitor module, we examine the heat map generated

for Uniform Random synthetic traffic benchmark simulation in an 8×8 NoC as shown in Figure 4.5a.

From the heat map, we observe that Uniform Random exhibits a high PAC in the centre region of

NoC. Furthermore, to understand the proposed packet looping HT’s effect on packet processing

pattern in NoC routers, with the same simulation environment mentioned above, we trigger the HT

in NoC router 42 and 43 and analyse the PAC in NoC. We then compare this PAC with the packet

processing pattern of NoC without HT. Figure 4.5b shows the heat map that presents the difference

in PAC for the above experiment. We observe that the HTs’ activation increases the PAC of HTs

compared to NoC without HT. Further analysis also shows that PAC is higher in neighbouring

routers of HT. As an HT detection framework that relies only on packet arrival rate can lead to false

positives, we integrate a path monitor module in the detection framework that uses the PAC module

as a trigger logic for HT detection. The overall time complexity of the HT detection framework is

O(n+m), where n is the number of intervals in the Traffic Monitoring Module and m is the number

of routers checked in the Path Monitoring Module. The space complexity is O(m), representing the

number of routers involved in cycle detection.

4.3.2 Path Monitor Module

The path monitor module is designed to detect packet loops induced by HT, utilizing a monitor flit

and a cycle detection unit described in Module II of Algorithm 5. An NoC router activates its path

monitor module upon receiving a notify flit. Since the timing of HT triggering is unpredictable,

continuously monitoring NoC packets for irregular traffic can increase detection module overhead.

To mitigate this, we employ a special control flit called a monitor flit, which records the flit’s path

during traversal to its destination. Unlike data packets consisting of multiple flits (as described

in Chapter 2, Table 2.3), notify and monitor flits are single-flit control packets carrying addresses

and flags. The structure of a monitor flit, illustrated in Figure 4.6, includes a 28-bit message field

comprising a 4-bit flit ID and a 24-bit route information field. The route information field is divided

into multiple 6-bit rid fields storing router IDs in the flit’s traversal path. Monitor flits are generated

72

4. SECURE ROUTING FRAMEWORK BY MITIGATING PACKET LOOPING TROJAN ATTACKS

ALGORITHM 5: HT detection framework
Input :Incoming traffic

Output :HT-induced cycle detection

num_PAC_samples: No. of PAC samples generated

PACendTime: Cycle at which packet arrival computation ends.

/* Module I: Traffic Monitoring Module (TM)*/

if TM is active then
/* Part A: Packet Arrival Compute (PAC) */

for interval I[ts : tf] do

if Curcycle = Curcycle + δ < I then
PAC = PAC + Packet_processed at cycle interval I Increment num_PAC_sample

/* Part B: Notify Flit Generation*/

if Curcycle == PACendTime then

Compute mean(PAC) if mean(PAC) > Traffic_Threshold then
Generate notify_flit

/* Module II: Path Monitoring Module (PM)*/

if PM is active then
/* Part C: Monitor Flit Generation */

if notify_flitreceived <= 2 then
Generate monitor flits

Activate cycle detection unit
/* Part D: Cycle Detection Unit (CD) */

if CD is active then
Analyse incoming monitor flit by checking the rid field in the route info of monitor flit

(m_routefm)

if curRouterId /∈ m_routefm then
m_routefm += currRouterId

else if curRouterId ∈ m_routefm then
Report cycle detection

73

4.3. SECRC: MITIGATION FRAMEWORK FOR PACKET LOOPING HT ATTACK

(a) PAC when no HT is activated (b) Difference in PAC with and without HT

Figure 4.5: Analysis of Packet Arrival Compute (PAC) on 8×8 NoC while running uniform
synthetic traffic benchmark. The row and column of heat-map represent the x-coordinate and

y-coordinate of the router. The normalized form packet processing rate is given in the legend of
each heat map.

rid rid rid rid

6 bits

24 bits

28 bits

Message

rid : specifies the id of the router that receives

the monitor flit

route infosrc dest ctrl flit id

4 bits

Figure 4.6: Structure of a monitor flit

by a NoC router’s path monitor module upon receiving two or more notify flits. Once activated,

the path monitor module dispatches monitor flits to one-hop and two-hop neighbors. By utilizing

a cycle detection unit, the path monitor module monitors the traversal of monitor flits and detects

cycle formations in the network.

The operation of the cycle detection unit, detailed in Part D of Algorithm 5, employs monitor

flits to identify HT-induced cycles. Upon receiving a monitor flit, a router adds its router ID (rid) to

the monitor flit’s route information field and forwards it to the next router. However, each router

checks whether its cycle detection module is activated before adding its router ID to the monitor flit.

If activated, it verifies whether it has processed the same flit earlier by examining the stored route

in the monitor flit. Let m_routefm denote the flit route stored in a monitor flit fm. If the current

router’s ID is not in the stored path (m_routefm), it adds its rid to the monitor flit and forwards it

to neighbors. For instance, during HT activation, if a monitor flit forms a cycle such as T→ R→ Q

→ U→ T (as depicted in Figure 4.2a), the rid fields in m_routefm contain T, R, Q, and U when

leaving router U. When router T receives this, it reports HT-induced cycle detection as its router

74

4. SECURE ROUTING FRAMEWORK BY MITIGATING PACKET LOOPING TROJAN ATTACKS

Valid

Output

Port

Secure

Routing

Unit

Comparator

(CP)

List of valid output ports

generated in phase 1 of

odd-even routing

Output Port East

Output Port West

Output Port North

Output Port South

Input Port East

Input Port West

Input Port North

Input Port South

Input Direction of

the Flit

Pre-computed

Output Direction

for the Flit

Parity

Check

Router Id

4x2

Encoder

(E1)

A

B

C

4x2

Encoder

(E2)

D

Enable

Turn Violation Checker

Figure 4.7: Structure of SecRC

ID is identified in the monitor flit’s route information field. In general, a router Ri detects a cycle

if its router ID is present in an incoming monitor flit fm. At this stage, it’s crucial to ensure that

the NoC can intelligently overcome or bypass the impact of such potential cycle sources without

disrupting the flow of legitimate packets. For this purpose, we design a security wrapper module for

the routing unit, which is explained in the following section.

4.3.3 Security Wrapper for Routing Unit

Once a router detects a cycle using the monitor flit path, a security wrapper module (SecRC) is

activated in all NoC routers. Figure 4.7 illustrates the structure of SecRC, which incorporates a

turn violation checker and a secure routing unit. The workings of these components are detailed in

Algorithm 6. Phase 1 of Algorithm 6 describes the operation of the turn violation checker. Upon

activation, SecRC provides the packet’s input and output ports to the turn violation checker. Each

direction is assigned a two-bit ID (00: East, 01: West, 10: North, and 11: South). Figure 4.7 shows

the integration of the turn violation checker within SecRC. The checker employs two 4×2 encoders

(E1 and E2), where E1 processes the input direction of the packet and E2 processes the output

direction determined by the adaptive routing unit. Based on these input and output directions, the

turn violation checker generates a unique 4-bit turn_id for each packet. A parity bit is assigned, set

to 1 for all odd-column routers and 0 otherwise. The turn_id and parity bit are used to determine

whether a packet is making a valid or invalid turn. The truth table for the turn violation checker is

presented in Table 4.2, indicating whether the output port assigned by the routing unit results in a

valid or invalid turn.

75

4.3. SECRC: MITIGATION FRAMEWORK FOR PACKET LOOPING HT ATTACK

ALGORITHM 6: Working of SecRC module
Input :Input (in_dir) and computed output port (out_dir) for a flit.

Output :Output port selected for a flit

Terminology
out_dirlist: set of possible output direction computed in the phase 1 of odd-even algorithm.

out_dirsc: Output port direction computed by the SecRC

out_tvc(turn_id): Output of the turn violation checker for the given turn_id.

genTurnid(in_dir, out_dirrc): returns turn id generated for the input-output direction combination.

turn_id: represents the turn id for a turn.

if security_flag is SET then
/* Phase I: Turn violation checking */

out_dirtemp = out_dir

turn_id= genTurnID(in_dir, out_dirtemp)

if router id is even then
Set parity bit as 1

else
Set parity bit as 0

if out_tvc(turn_id) is 1 then
Set violation(turn_id) as TRUE

/* Phase II: Secure routing */

if violation(turn_id) is TRUE then
while turn_id ∈ turn_restrict do

out_dirsc = random(out_dirlist)

turn_id = genTurnID(in_dir, out_dirsc)
out_dir = out_dirsc

else
out_dir = out_dirtemp

When an invalid turn is detected, the secure routing unit is activated. Phase II of Algorithm 6

outlines the operation of the secure routing unit. It triggers new route computation by randomly

selecting one of the output directions computed during Phase I of the odd-even routing as the

valid output direction. To avoid turn violations, the secure routing unit generates a turn_id for the

newly computed output direction and cross-references it with potentially violated turn IDs from

the odd-even routing algorithm. For example, odd-column routers store turn_ids 1001 (North -

West) and 1101 (South - West), while even-column routers store turn_ids 0010 (East - North) and

0011 (East - South). If head flits already have valid turns, the secure unit assigns the pre-computed

output direction as the output for the flit. For instance, if a packet arriving at an even-column

router from the West is routed East, and the computed output direction is South, the SecRC module

assigns a turn_id of 0011 and a parity bit of 0. The turn violation checker then verifies whether

76

4. SECURE ROUTING FRAMEWORK BY MITIGATING PACKET LOOPING TROJAN ATTACKS

Table 4.2: Truth table for turn violation checker

Input - Output
Direction ABCD/Turn id Even/Odd

Parity (P)
X= A ’ .B ’.C.P ’

+ A.C ’.D.P Outcome

East - West 0001 0 0 Valid
East - North 0010 0 1 Invalid
East - South 0011 0 1 Invalid
West - East 0100 0 0 Valid

West - North 0110 0 0 Valid
West - South 0111 0 0 Valid
North - East 1000 0 0 Valid
North - West 1001 1 1 Invalid
North - South 1011 0 0 Valid
South - East 1100 0 0 Valid
South - West 1101 1 1 Invalid
South - North 1110 0 0 Valid

the East-South turn is valid, returning 1 for an invalid turn and 0 for a valid turn. Since East-South

is a violation in an even-column router, the checker returns 1, activating the secure routing unit

to assign one of the pre-computed output directions from Phase 1 of the OE routing. The SecRC

module algorithm has a time complexity of O(m), where m represents the number of possible output

directions. This complexity arises from the potential number of iterations needed to find a valid turn

direction in the secure routing phase. The space complexity is O(m) due to the storage requirements

for the turn_restrict list. The algorithm efficiently handles secure routing with these complexities,

ensuring scalability and effectiveness in detecting and mitigating turn violations.

4.4 Results and Discussions

In our experimental evaluation, we compare the proposed security architecture with two existing

works: RLAN [62] and SECTAR [92], which address HT-induced packet delays, detection, and

mitigation. Both techniques share similarities with our HT model, potentially leading to DoS attacks.

To provide a comprehensive comparison, we implement RLAN and SECTAR and conduct a detailed

study to evaluate their effectiveness relative to our proposed detection and mitigation approach.

For this evaluation, we consider the following architectures:

• Baseline: A TCMP system with no HT.

• HT-NoC: A TCMP system with the proposed packet looping HT.

• SECTAR: A TCMP system using Trojan-aware routing [92] to detect and mitigate HT-

induced misrouting.

77

4.4. RESULTS AND DISCUSSIONS

Workloads

N
or

m
al

is
ed

 A
vg

. N
o.

 o
f H

op
s

0.0

0.5

1.0

1.5

WH WL WM WHL WHM WLM Avg

Baseline HT-NoC SECTAR SecRC

Figure 4.8: Comparison of the average number of hops in real workloads consisting of SPEC CPU
2006 workloads. (Normalised to Baseline)

• RLAN: A TCMP system that detects HT-induced bandwidth denial attacks [62].

• SecRC: A TCMP system with the proposed architecture for HT detection and mitigation.

HT-NoC represents a system with HTs intentionally inserted into the NoC router hardware. To

model HT-NoC, we modified the route computation unit of the NoC router, incorporating additional

logic that alters the output port direction, thereby assessing the impact of HT on NoC functionality

and security. SECTAR [92] addresses a misrouting HT by modifying the routing module (using

the XY routing algorithm) of an NoC router to maliciously assign incorrect output ports, leading to

DoS and network injection suppression. SECTAR’s mitigation technique, TAR, re-routes packets

from HT’s neighbors to avoid HT, and we compare TAR’s performance with our SecRC approach.

RLAN [62] proposes an HT model that deploys a bandwidth attack, manipulating on-chip resource

availability. RLAN’s detection module uses a Proximity Analog Packet (PAP) to measure latency at

nodes near HT nodes, comparing it to latency from original packets. We evaluate RLAN’s detection

technique in the presence of our proposed HT and compare it to the performance of our SecRC

approach.

4.4.1 Impact on Average Network Hops

Our analysis shows that when HT is activated, HT-induced cycles increase the average network hops

for selected packets. Figure 4.8 illustrates this, with a 22% increase in average hops for packets in

HT-NoC. SECTAR, designed for HT mitigation, introduces a 16% increase in hop count compared

78

4. SECURE ROUTING FRAMEWORK BY MITIGATING PACKET LOOPING TROJAN ATTACKS

Packet Injection Rate (pkts/cycle/core)

A
ve

ra
ge

 P
kt

. L
at

en
cy

 (i
n

cy
cl

es
)

18

22

26

30

34

0.02 0.04 0.06 0.08 0.10

Baseline HT(42,43) HT(28,29) HT(10,11) HT(52,53)

(a) Single HT pair.

Packet Injection Rate (pkts./cycle/core)

A
ve

ra
ge

 P
kt

. L
at

en
cy

 (i
n

cy
cl

es
)

18

22

26

30

34

0.02 0.04 0.06 0.08 0.10

Baseline HT(42,43)(28,29) HT(42,43)(10,11)
HT(42,43)(52,53) HT(28,29)(10,11) HT(28,29)(52,53)

(b) Two HT pairs.

Packet Injection Rate (pkts/cycle/core)

A
ve

ra
ge

 P
kt

. L
at

en
cy

 (i
n

cy
cl

es
)

18

22

26

30

34

0.02 0.04 0.06 0.08 0.10

Baseline HT(42,43)(28,29)(10,11) HT(42,43)(52,53)(10,11)
HT(28,29)(10,11)(52,53) HT(52,53)(42,43)(28,29)

(c) Three HT pairs.

Packet Injection Rate (pkts/cycle/core)

A
ve

ra
ge

 P
kt

. L
at

en
cy

 (i
n

cy
cl

es
)

18

22

26

30

34

0.02 0.04 0.06 0.08 0.10

Baseline HT(42,43)(28,29)(10,11)(52,53)

(d) Four HT pairs.

Figure 4.9: Average packet latency analysis with uniform random synthetic traffic in 8×8 mesh
NoC with HT: (a) represents the single HT pair activation. (b) represents the impact while two HT
pairs are activated. (c) represents three HT pairs activation and its impact and (d) represents four

HT pairs activation and its impact on latency. Here, lower the line on the graph, the better.

to the Baseline, as it bypasses potentially compromised routers to enhance security, though at the

cost of additional routing steps. In contrast, SecRC takes a different approach, allowing packets

to pass through potentially compromised routers while implementing secure routing techniques.

This results in a 12.5% reduction in hop count compared to SECTAR and keeps hop counts close to

Baseline levels, with only a 1.4% increase. SecRC’s approach effectively balances security with

network efficiency, minimizing the impact on latency and path length.

4.4.2 Impact on Average Packet Latency

Figure 4.9 illustrates the impact on Average Packet Latency (APL) under synthetic traffic with

various injection rates and multiple HT pairs activated in different network regions. With a single HT

pair (28, 29), APL increases by 15% compared to the Baseline (Figure 4.9a). The packet processing

pattern shows a concentration in specific areas, indicating potential exploitation by an adversary

familiar with the traffic. As injection rates rise, packet latency consistently increases across different

79

4.4. RESULTS AND DISCUSSIONS

Workloads

N
or

m
al

is
ed

 A
vg

. P
kt

. L
at

en
cy

0.0

0.5

1.0

1.5

WH WL WM WHL WHM WLM Avg

Baseline HT-NoC SECTAR SecRC

Figure 4.10: Comparison of average packet latency in real workloads consisting of SPEC CPU 2006
workloads. (Normalised to Baseline)

HT pairs due to more packets entering HT-induced cycles. At higher injection rates, HT pair (42,

43) has a similar impact on latency as (28, 29). Activating both pairs simultaneously results in a

25% increase in APL over the Baseline (Figure 4.9b), while three HT pairs can increase APL by

over 35%, and four pairs by 39% (Figure 4.9c, Figure 4.9d).

When running SPEC 2006 benchmarks with three activated HT pairs, HT-NoC shows a 15.9%

increase in APL over the Baseline, with high MPKI workloads like WH seeing more than a 20%

increase. SECTAR mitigates HT effects with a 5% APL increase over the Baseline due to its HT

bypass routing. In contrast, SecRC limits the increase to 1.7%. For workload WH, SecRC reduces

APL by 15% compared to HT-NoC, outperforming SECTAR’s 14% reduction. SecRC also achieves

reductions of 12.4% and 12.1% in APL for WL and WM workloads, respectively. Overall, SecRC

reduces APL by 9.9% for WHL, 15.7% for WHM, and 8.4% for WLM compared to HT-NoC, with

a slight 1.7% increase over the Baseline due to non-minimal routing paths.

4.4.3 Impact on Maximum Packet Latency

We also study the Maximum Packet Latency (MPL) which is defined as the highest latency incurred

by packets passing through HT-infected routers. We define MPL in the NoC architecture without

any HT as the highest latency incurred by packets passing through routers that are chosen to deploy

the HT. The analysis of maximum packet latency performed on various architectures is illustrated

in Figure 4.11. Our analysis shows that HT-NoC has significantly high MPL across all workloads

80

4. SECURE ROUTING FRAMEWORK BY MITIGATING PACKET LOOPING TROJAN ATTACKS

Workloads

N
or

m
al

is
ed

 M
ax

im
um

 P
kt

. L
at

en
cy

0.0

0.5

1.0

1.5

WH WL WM WHL WHM WLM Avg

Baseline HT-NoC SECTAR SecRC

Figure 4.11: Comparison of maximum packet latency in real workloads consisting of SPEC CPU
2006 workloads. (Normalised to Baseline)

with an average of 22.4%. Similarly, in the case of SECTAR, due to the added cycles for packet

traversal introduced by bypass routing, we observe an average MPL increase of 17.7%. In contrast,

our proposed technique, SecRC, shows a slightly higher MPL (only 6.1%) than the Baseline across

all workloads. SecRC shows an average reduction of 9.8% in MPL compared to SECTAR. This

enhancement is attributed to the secure routing unit integrated into SecRC, which uses pre-computed

output ports for HT mitigation, thereby eliminating the need for HT bypassing.

4.4.4 Impact on Processor Performance

To analyze the throughput of applications running in a TCMP, we examined the number of instruc-

tions executed per cycle (IPC). Figure 4.12 shows the normalized IPC for various architectural

scenarios under different workloads. The HT-NoC architecture demonstrates an average IPC re-

duction of 19% compared to the Baseline, due to delays caused by packets traversing HT-induced

cycles (as discussed in Section 4.4.2). These delays slow down instruction execution, leading to a

decrease in IPC and overall application performance. Our analysis highlights the effectiveness of

the proposed SecRC technique in mitigating HT impact. SecRC achieves IPC levels close to the

Baseline, with only a 1% average reduction. The SECTAR technique, which reroutes packets to

bypass HTs, results in a 6.1% average reduction in IPC compared to the Baseline. We also examined

the impact of HT on the throughput of different applications running concurrently, as higher IPC

generally contributes to increased throughput. Specifically, we analyzed the core-wise IPC of WHM,

81

4.5. AREA AND POWER OVERHEAD ANALYSIS

Workloads

N
or

m
al

is
ed

 IP
C

0.00

0.25

0.50

0.75

1.00

WH WL WM WHL WHM WLM Avg

Baseline HT-NoC SECTAR SecRC

Figure 4.12: Comparison of IPC in real workloads consisting of SPEC CPU 2006 work-
loads.(Normalised to Baseline)

which includes High MPKI and Medium MPKI benchmarks. High MPKI benchmarks typically

represent mission-critical or computationally intensive tasks, while Medium MPKI benchmarks are

less critical but still important for system efficiency.

When HT is activated, High MPKI applications on cores 0 to 31 (Figure 4.13) experience an

average IPC degradation of 18%, while Medium MPKI applications on cores 32 to 63 (Figure 4.14)

show a 17% IPC drop, impacting throughput by slowing task execution. However, with the proposed

SecRC technique, throughput is effectively maintained. High MPKI applications on cores 0 to 31 see

only a 1.8% average IPC reduction compared to the Baseline, and Medium MPKI benchmarks on

cores 32 to 63 experience a 2.6% drop. These results highlight SecRC’s effectiveness in preserving

performance in a TCMP environment with varying application criticality.

4.5 Area and Power Overhead Analysis

For the detection and mitigation of HT, additional circuitry is integrated into each NoC router.

This circuitry includes a detection module with a 1-bit security flag to activate the Secure Routing

Control (SecRC) unit, a 1-bit flag for the secure routing unit, a 5-bit counter for traffic monitoring,

and a 15-bit register for storing the Packet Acceptance Criterion (PAC) threshold. The total storage

overhead for this added circuitry amounts to 176 bytes (22 bits × 64 cores). This overhead is

essential to support the enhanced security functionalities embedded within the router, ensuring that

it can effectively detect and respond to HT-induced threats. To evaluate the impact of this additional

82

4. SECURE ROUTING FRAMEWORK BY MITIGATING PACKET LOOPING TROJAN ATTACKS

Core Number

N
or

m
al

is
ed

 IP
C

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Baseline HT-NoC SecRC

Figure 4.13: Core-wise comparison of IPC SPEC CPU 2006 workload WHM - core 0 to core 32

Core Number

N
or

m
al

is
ed

 IP
C

0.0

0.2

0.4

0.6

0.8

1.0

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Baseline HT-NoC SecRC

Figure 4.14: Core-wise comparison of IPC SPEC CPU 2006 workload WHM - core 33 to core 63

circuitry, both in terms of area and power consumption, we utilized parameters from McPAT [87]

and conducted a comparative analysis against other security techniques, specifically RLAN and

SECTAR. The results of this analysis are summarized in Table 4.3.

The SecRC architecture incurs a 6.1% increase in area compared to the Baseline design, which

is justified by its enhanced security features, allowing for effective detection and mitigation of

hardware trojans (HTs) with minimal impact on chip size. When compared to SECTAR, SecRC’s

area increase is 3.4%, while it shows a 6.2% reduction in area compared to RLAN, underscoring its

compact design. In terms of power, SecRC demonstrates a 4.9% increase in peak dynamic power

over the Baseline, which is significantly lower than the 10.7% increase for RLAN and only slightly

higher than SECTAR’s 2.9%. For runtime dynamic power, SecRC’s 4.7% increase is higher than

SECTAR’s 2.3% but much lower than RLAN’s 11.6%. This slight rise is due to the continuous

operation of additional monitoring components but remains efficient for practical use.

83

4.6. CHAPTER SUMMARY

Table 4.3: Area and power overhead analysis

Metric Baseline RLAN SECTAR SecRC
Area (mm2) 1.14 1.29 1.17 1.21
Peak Dynamic (W) 1.02 1.13 1.05 1.07
Runtime Dynamic (W) 0.043 0.048 0.044 0.045

4.6 Chapter Summary

This chapter demonstrated how an HT modifying the routing unit of an NoC router can launch a

DoS attack. Experimental results reveal that the proposed system effectively detects and mitigates

HT effects with minimal area overhead and power consumption, while maintaining application QoS

with controlled performance degradation.

<<=8=;;

84

5
C H A P T E R

Fortifying NoC Security Against Trojan-Induced
Packet Duplication Attacks

This chapter introduces an HT which is embedded within the NI of NoC and is capable of initiating

packet duplication attacks. To counteract the adverse effects of HT-induced packet duplication,

we present a comprehensive mitigation framework which is deployed within the NI and actively

monitors the incoming and outgoing messages within the NoC. Through experimental evaluation,

we demonstrate that the mitigation framework effectively suppresses the HT’s impact, restoring

system performance with minimal hardware overhead.

5.1 Introduction

Even though NoC is one of the front-end RTL IPs, the design team usually configures it at the end

based on the requirements of the TCMP architecture. Any interference in NoC during the inter-core

communication of critical applications can create damage in the system [9][20][21][92][94][95].

For instance, a malicious IP can exploit the NoC to extract data without the need to hack individual

IPs [25]. In this context, HTs can be inserted into the NoC design by adversaries with access to the

RTL or netlist of the NoC IP. These HTs are often triggered intermittently and selectively duplicate

NoC packets, making them challenging to detect. Several known attacks have proposed data theft

through NoC packet duplication [9][68][80]. To enhance security, manufacturers often implement

encryption and decryption mechanisms for NoC packet communication. Since the NoC packet’s

header is crucial for routing and arbitration decisions at intermediate routers, it cannot be encrypted.

We exploit this vulnerability to enable packet duplication by placing an HT in the NI, which can

affect system performance [95]. Designing a countermeasure to mitigate HTs capable of executing

5.1. INTRODUCTION

packet duplication and adversely affecting the system poses significant challenges. The placement

of the mitigation framework becomes a critical concern, as its effectiveness depends on its location

relative to the HT. For instance, the countermeasure may prove ineffective if the HT is embedded

in the NI while the mitigation unit is kept in the router. The existing countermeasures discussed

in the literature are HT-specific, addressing specific attack scenarios. However, these mitigation

techniques often fall short when confronted with novel versions of HT duplication attacks in TCMPs.

Therefore, the optimal solution involves designing a versatile mitigation framework capable of

neutralizing current and potential future attacks of a similar nature. This work also attempts to

design a ubiquitous mitigation framework for such packet duplication attacks.

The chapter initially focuses on the proposed HT model named LOKI1, which can sit in NI

and simultaneously create detrimental effects in different NoC components without hacking into

them [95]. Then, to counter LOKI-like HTs, we propose a ubiquitous mitigation framework named

HULK2. This chapter makes the following significant contributions:

1. We present how the proposed HT, LOKI, can selectively duplicate NoC control packets, which

can degrade the system performance.

2. We show that LOKI can impact the packet latency, miss penalty and system speedup to

degrade the overall TCMP performance. We also compare LOKI against a similar state-of-

the-art HT and discuss how LOKI can bypass existing mitigation techniques and the need for

a better solution.

3. We propose the framework, HULK, to mitigate LOKI-like HTs that attack TCMPs through

packet duplication. HULK is integrated into the NI and monitors all the messages going in

and out of the NoC. Hence, HULK can handle any anomalies happening in the NI, the routers

or the links.

4. We evaluate HULK to show that it can neutralise LOKI’s impact, thereby improving the

system’s performance. We also compare HULK against a similar state-of-the-art mitigation

technique to show its effectiveness. With negligible hardware overhead, we propose that

HULK could be employed as a ubiquitous framework to mitigate packet duplication attacks.

1God of Mischief in Norse Mythology and a Supervillain in Marvel Comics [96].
2A Superhero in Marvel Comics who defeats LOKI [96].

86

5. FORTIFYING NOC SECURITY AGAINST TROJAN-INDUCED PACKET DUPLICATION ATTACKS

NoC Packet Structure

PayloadHeader

DEST SIZESRC TYPE

DEST SIZESRC TYPE . . .

. . .

DATA

Address

Control Packet

Data Packet

Address

Figure 5.1: Structure of a NoC packet exchanged between IPs

The rest of the chapter is organized as follows. Section 5.2 outlines the proposed packet

duplication HT threat model and the potential consequences of attacks on TCMPs. Section 5.3

describes the existing mitigation techniques to handle packet duplication attacks, while the proposed

mitigation framework is discussed in Section 5.4. The experimental analysis, focusing on perfor-

mance, is presented in Section 5.5. Subsequently, Section 5.6 presents the power and area overhead

analysis of the system under evaluation. Finally, the chapter concludes in Section 5.7.

5.2 Threat Model: Trojan Design and its Impact

This section introduces the design of the proposed HT, LOKI, which includes a circuit diagram

depicting a feasible method of integrating it into the NI. Subsequently, example scenarios are

examined to showcase how LOKI operates and its impact on system performance.

5.2.1 Packet Duplication Trojan Design

IPs in TCMPs communicate with each other by exchanging NoC packets with each other, which

consist of a header and a payload3, as depicted in Figure 5.1. Here, the header packet contains

essential information such as source (SRC), destination (DEST), message size (SIZE), message type

(TYPE), etc., for packet traversal, while the payload carries data that is to be sent to the destination.

Usually, these NoC packets are either control or data types, with control packets used to request data

or send coherence messages and having a payload that carries the requested memory address [25].

When an IP source (IPSRC) wants to communicate with its destination (IPDEST), it sends the

message to the NI (green IP node in Figure 5.2). NI then converts the message (purple) into a control

or data packet (yellow) and sends it to the router to traverse the NoC and reach the destination. A

similar process occurs in reverse to receive messages at the destination (blue IP node). To prevent
3Packet payload and HT payload are entirely different

87

5.2. THREAT MODEL: TROJAN DESIGN AND ITS IMPACT

IPSRC

NI

NI R

. . .

. . .

. . .

. . .

Message

Packet

IP

SoC

IP Node

NI

R

IP Core

Network Interface

Router
RNIIPSRC

R

IPDEST

R NI IPDEST

Figure 5.2: Communication between IPs in a TCMP

data stealing in modern TCMPs, various encryption techniques have been proposed that encrypt

only the payload of the packet, as the header information is required for routing and arbitration

decisions in the NoC. On the other hand, control packets, which do not carry any data, are not

usually encrypted. LOKI takes advantage of this vulnerability by duplicating control packets in

the NI to launch an attack on TCMPs. LOKI not only duplicates packets but also impacts the

system performance with minimal resource usage. Raparti et al. [9] introduced an HT model similar

to LOKI in their work, focusing on duplicating packets in the NI’s flit queue to execute a data

snooping attack. The significance of LOKI lies in being the first attempt to utilize control packets

for deploying a packet duplication attack in TCMPs which can degrade the system performance.

Figure 5.3 represents a potential method for incorporating the proposed HT LOKI into an IP

node’s NI. Whenever an IPSRC sends a message to the IPDEST , the NI, as shown in Figure 5.2,

converts a message to a packet and vice versa. Typically, the NI employs two modules: the Packetiser

for the source IP node and the De-Packetiser for the destination IP node. In this case, LOKI is

integrated into the Packetiser, so we have not included details about the De-Packetiser in Figure 5.3.

When the NI receives a message from the source IP core, the Packet Generator sub-module converts

it into a packet. Next, the Flit Generator sub-module converts the packet into one or more flits

and stores them in the circular Flit Queue. Finally, the stored flits are inserted into the NoC router

and sent to their respective destination IP nodes.LOKI’s attack can be initiated by a backdoor Kill

Switch (KS) [57]. The Packet Type (PT) indicates the message type (TYPE from Figure 5.1), and

the Flit Type (FT) indicates the type of flit. To reduce storage overhead, we target read requests as

they are control packets with only one head flit. LOKI uses a buffer of 1-flit size and can store only

88

5. FORTIFYING NOC SECURITY AGAINST TROJAN-INDUCED PACKET DUPLICATION ATTACKS

PT

RQ₁RQ₂

RQ₁

Packet

Generator
Flit

Generator

PT FT

KS
Flit

Queue

DF

Packetiser

PT

FT

KS

IP

NI R

FTPacket Type Flit Type KS Kill Switch DF Duplicate Flit RQ i Request i

DF

De-Packetiser

RQ₁

Figure 5.3: Insertion of the proposed packet duplication HT (LOKI) in NI

one duplicate read request packet at a time. As shown in Figure 5.3, LOKI is triggered only when

PT=READ, FT=HEAD, and KS=EN4. LOKI then copies a head flit (read request packet) from the

Flit Generator sub-module into its buffer and keeps inserting this duplicate flit into the Flit Queue

until KS=DS. The duplicate flit is inserted only in the free locations to avoid interrupting the usual

communication flow.

5.2.2 Impact of Packet Duplication Trojan Attack

Consider an SoC with a 2-level on-chip caching, as depicted in Figure 5.4. Each IP core has a

private L1 Instruction cache (L1I) and Data cache (L1D), while the LLC is shared and distributed

across the cores. An IP core searches for the instruction or data in the L1 cache, and upon a miss,

the corresponding L1 cache Controller (L1 CTLR) sends a request message to the next-level LLC

bank Controller (LLC CTLR). The requested cache block is then supplied to the IP core. Here, we

assume that LOKI is mounted on the NI of the green IP node in Figure 5.4 and is triggered by the

KS. We present two scenarios to illustrate how LOKI can launch an attack on NoC at once.

4READ = Read request, EN = Enable, and DS = Disable

89

5.2. THREAT MODEL: TROJAN DESIGN AND ITS IMPACT

Scenario 2

NI R

IPSRC1

NI R

RQ1

RQ1

. . .

RQ2

RP1

. . .

RP1

NI

IPSRC2

R

RQ i RP i B i
Request i Reply i Block i

B3

.

.

.

Scenario 1

NI R

RP1

. . .

RP1

NI

RQ1

RQ1

. . .

IPDEST

LLC

CPU

L1 D

L1 I

B3 / B7

.

.

.

LLC

CPU

L1 D

L1 I

IPDEST

R

IPSRC1

Figure 5.4: Demonstration of the LOKI attack.

5.2.2.1 Impact on NoC: Attack Scenario 1

IPSRC1 (green) requests a cache block B3, leading to an L1 cache miss. The L1 CTLR sends a read

request message RQ1 to the NI for the destination LLC bank at IPDEST (blue), where B3 is cached.

The LLC CTLR replies with the requested cache block in a reply message RP1. When LOKI is

active, it copies RQ1 from the Flit Generator into its buffer and keeps inserting this duplicate request

in free locations of the Flit Queue. These duplicate requests are treated like genuine requests by

the LLC CTLR, leading to multiple replies with RP1. Since IPSRC1 and IPDEST are sufficiently

spaced, the duplicate requests and replies (red) spread across the entire SoC, increasing contention

in the routers and links and resulting in increased packet latency.

5.2.2.2 Impact on Cache: Attack Scenario 2

While Scenario 1 is in progress, IPSRC2 (purple) sends a read request message RQ2 to IPDEST

for the cache block B7. The destination LLC bank maps B3 and B7 to the same set due to the

employed mapping strategy (modulo 4). Due to frequent requests for B3 by duplicate RQ1, B7

could be evicted from the LLC bank, leading to a thrashing phase where useful blocks are evicted

to service duplicate requests. Future requests for these evicted blocks encounter LLC miss, which

increases the miss penalty (affecting the caches). As a result of the increased packet latency and

miss penalty, instruction execution by sources like IPSRC2 will be delayed, leading to delayed

commit and the delayed issue of new instructions. This decreases the system speedup, affecting the

90

5. FORTIFYING NOC SECURITY AGAINST TROJAN-INDUCED PACKET DUPLICATION ATTACKS

core. Even though LOKI is mounted on a single NI, it can affect cache and processor performance

without directly intruding on them.

5.3 Mitigating Packet Duplication Trojan Using Existing Techniques

We have seen how LOKI activation triggers read request duplication attacks and leads to performance

impact at the cache and core levels. An attempt to isolate and prevent duplicate packets from entering

the on-chip network is proposed in SeRA [61]. An NoC router has input buffers called VCs to store

incoming packets while participating in routing and arbitration decisions. SeRA detects the VCs

storing duplicate messages and masks them at runtime to deny entry into the network. However,

VC isolation reduces their utilisation and hampers network performance. The situation worsens

with LOKI, as the duplicate packets from the NI can be stored in any of the free VCs, rendering

SeRA’s mitigation approach ineffective. PLDU [74] is a proposal that assigns a unique identity to

every packet and can detect duplicates. Here, the source and destination of a packet are tagged with

a dynamic random value, and the tag is scrambled with the data payload. If an adversary alters

either of the source, destination, data and tag, it gets detected at the destination IP core. But LOKI

targets control packets without data payload and does not alter anything in the packet header. Hence,

the duplicate packets by LOKI could become false negatives with PLDU. Similar proposals for

duplicate packet detection, when integrated on routers, are ineffective as LOKI deploys attacks

from the NI itself. SIM [9] is a duplicate packet detection approach that primarily attempts to block

packets with invalid headers from entering the network. To validate packets, SIM relies on a unique

key, which is a function of multiple variables, including the destination field of a packet. When an

invalid packet is detected, SIM sends a signal to the Flit Queue at NI to discard duplicates. While

SIM is ideal for detecting information leakage attacks through modified packet destinations, LOKI

is not one of them. As LOKI does not alter anything in the packet header, the SIM approach may

also generate false negatives.

5.4 HULK: Mitigation Framework for Packet Duplication HT Attacks

In Section 5.3, it is highlighted that current detection methods for packet duplication attacks primarily

focus on safeguarding and verifying packet header information and how LOKI bypasses these

existing detection techniques. To overcome these challenges, we introduce a security framework

called HULK, which uses Packet Status Holding Registers (PSHR) to counter packet duplication

attacks. Similar to how non-blocking cache controllers utilize Miss Status Holding Registers

91

5.4. HULK: MITIGATION FRAMEWORK FOR PACKET DUPLICATION HT ATTACKS

IP

NI R

MID SRC DEST CS

MID SRC DEST CS

MID SRC DEST CS

PSHR ₁

PSHR 0

PSHR i

Packetiser De-Packetiser

PSHRs

Figure 5.5: Packet Status Holding Registers (PSHRs) used in HULK

(MSHRs) to manage outstanding misses and prevent redundant requests for the same cache block,

HULK employs PSHRs at the NIs to monitor in-flight request packets. This section describes the

design of HULK and its working using the previous example from Figure 5.4.

HULK mainly uses message ID (MID) to filter out duplicate messages before processing them

in NI. The simplest solution to avoid duplication is assigning a unique identity to each message

(MID). However, trivial MIDs like monotonically increasing ones are easily predicted by adversaries

looking to insert duplicates. Hence, HULK calculates MID as given below:

MID = SRC ⊕DEST ⊕NISRC ⊕KEY (5.1)

Here, SRC and DEST represent the source and destination core ID and NISRC as the source NI.

The KEY is an 8-bit key generated using a pseudo-random number generator. To incorporate MID

into the packet, we modified the header field of the NoC packet given in Figure 5.1. Whenever the

core generates a message, an MID is calculated at the Miss Status Holding Register (MSHR) of

the L1 CTLR and added to the packet header as shown in Figure 5.1. To preserve the authenticity

of the messages, HULK also generates a checksum (CS) before transmission and appends it to the

message header. For CS calculation, we apply Alder-32 [26] on the MID. Alder-32 is one of the

simplest cryptographic hash functions and trades reliability for speed with the Cyclic Redundancy

Check (CRC) of the same length.

92

5. FORTIFYING NOC SECURITY AGAINST TROJAN-INDUCED PACKET DUPLICATION ATTACKS

ALGORITHM 7: Working of PSHR
Input: Incoming request message

Output: Add or discard message

MID: ID of the incoming message

CS: Checksum of the incoming message

PSHRi: An entry in the PSHR

Alder32: The cryptographic hash function

if ∃PSHRi | PSHRi[MID] == MID then
/* Duplicate message detected */

Discard the message

else
CheckSum← Alder32(MID)

if Checksum == CS then
Add an entry in the PSHR

else
/* Corrupted message detected */

Discard the message

As detailed in Section 5.2.1, the Packetiser and De-Packetiser modules of the NI handle the

injection and ejection of flits from routers, respectively. In our proposed framework, these modules

are integrated with PSHRs, as illustrated in Figure 5.5. Once HULK is activated, all the in-flight

messages to NI first pass through PSHR before it is forwarded to the network, as shown in Fig.5.5.

Upon receiving a request message from a connected core, the NI creates a unique entry in the PSHRs.

Subsequently, upon receiving a response packet, the corresponding PSHR entry is removed before

the De-Packetiser begins processing. The size of the PSHR aligns with that of the MSHR, ensuring

that the NI effectively manages the same set of request messages. As MID uniquely identifies the

incoming messages, there is no possibility of in-flight messages having the same MID. Thus, if

PSHR encounters a message with an already existing MID, it discards the message and continues

processing other messages.

To understand how HULK mitigates packet duplication attacks, consider the same scenario

from Figure 5.4. Once HULK is activated, before the read request RQ1 is inserted into the router

from the Flit Queue, a unique entry is added to the PSHR. As shown in Figure 5.6, HULK compares

the MID of RQ1 with all the PSHR entries. The possibility of having a match is none as every MID

is unique. When LOKI is active, RQ1 is duplicated and attempts are made to insert them into the

router. With the proposed HULK in place, these duplicates will be detected and discarded. So, even

93

5.5. RESULTS AND DISCUSSIONS

MID SRC DEST CS

MID SRC DEST CS

MID SRC DEST CS

SRC DEST ADDR TYPE MID CS

Alder32

==

==

PSHRs

==

==

Incoming Packet

1 = Valid Packet

0 = Invalid Packet

Figure 5.6: Working of the proposed HULK inside the NI

if LOKI successfully duplicates RQ1, they will never enter the network. The working of HULK to

add or discard an incoming message in the PSHR is presented in Algorithm 7. Similar steps are

followed to delete or discard a response message. If LOKI-like adversaries try to outsmart HULK

by using a new MID for RQ1, the checksum test in line 10 of Algorithm 7 will fail. In fact, if an

adversary tries to modify any of the MID, SRC, DEST and CS, HULK can detect and mitigate them.

There could be a scenario where a duplicate RQ1 is inserted only after the genuine one is serviced

and its PSHR entry is deleted. In such a scenario, HULK cannot detect the duplicate RQ1. LOKI

can insert just one such duplicate at any given time. These duplicate insertions will be sufficiently

spaced in time and, hence, will not impact the overall system performance. HULK can be viewed as

a ubiquitous mitigation framework offering the combined benefits of SeRA, PLDU and SIM-like

proposals, as it can detect duplicate and corrupted request messages.

The PSHR algorithm operates with a constant time complexity of O(1) for checking duplicates,

calculating the checksum, and adding entries, assuming efficient implementations of data structures

and constant-size inputs. The space complexity is O(n), where n represents the number of entries in

the PSHR. This efficient performance ensures rapid processing and minimal memory overhead for

managing incoming messages.

5.5 Results and Discussions

For performance evaluation, we assess the effectiveness of our proposed mitigation technique,

HULK, by comparing it with SIM, a recent packet duplication mitigation approach [9]. Since the

referenced work introduces an HT circuit similar to the one proposed in our study, assessing its

performance in addressing LOKI-like HTs provides an insight into its effectiveness relative to our

94

5. FORTIFYING NOC SECURITY AGAINST TROJAN-INDUCED PACKET DUPLICATION ATTACKS

Workloads

N
or

m
al

is
ed

 A
ve

ra
ge

 P
kt

. L
at

en
cy

0

1

2

3

WH WL WM WHL WHM WLM AVG

Baseline LOKI SIM HULK

Figure 5.7: Comparison of average packet latency in real workloads consisting of SPEC CPU
workloads (Normalised to Baseline)

mitigation technique, HULK. We consider the following architectures for evaluation:

• Baseline: A TCMP system without any HT.

• LOKI: A TCMP system with LOKI HT on NI.

• SIM: A TCMP system with the existing mitigation technique, SIM [9] on every NI to mitigate

packet duplication.

• HULK: A TCMP system with the proposed HULK on every NI to mitigate packet duplication.

5.5.1 Impact on Average Packet Latency

The time a packet takes to travel from its source to its destination is known as packet latency.

Figure 5.7 depicts the average packet latency (normalised with respect to the Baseline) for various

architectures under study. The duplication of request and reply packets by LOKI leads to NoC

congestion, resulting in an average packet latency increase of 2.5x (red bars). While analysing

HT’s effect on workloads WL and WHL, we can see that, with HT in action, APL increases by

an average of 2.9x times over the Baseline. Here, the duplicate packets in the network play a

non-negligible part in network congestion, thus increasing the network delay. A similar trend can be

seen in queuing delay, where genuine packets experience more queuing delay due to the injection

of duplicate packets in the NI buffer. The effectiveness of the existing SIM mitigation framework

on LOKI is very random (purple bars). We observe that SIM exhibits worse performance while

95

5.5. RESULTS AND DISCUSSIONS

Workloads

N
or

m
al

is
ed

 L
LC

 M
is

s

0.00

0.25

0.50

0.75

1.00

1.25

WH WL WM WHL WHM WLM AVG

Baseline LOKI SIM HULK

Figure 5.8: Comparison of LLC misses in real workloads consisting of SPEC CPU 2006 workloads
(Normalised to Baseline)

running workload mixes consisting of High and Medium MPKI benchmarks due to the increase in

queuing time associated with packet validation in the NI. In general, SIM shows an average packet

latency increase of 1.4x (purple bars) compared to the Baseline. However, the proposed HULK

mitigation framework shows steady performance, with an average packet latency decrease of 31%

compared to SIM. Moreover, HULK offers average packet latency close to the Baseline across all

the evaluated workloads (green bars).

5.5.2 Impact on LLC Miss

Figure 5.8 shows the normalized LLC misses in the presence of LOKI, SIM and HULK. We observe

that the duplication of requests results in intermittent probing of the same data block in the LLC

bank, leading to the eviction of a few blocks. As a result, LOKI shows an increase in LLC misses by

an average of 14.3% across all the workloads (red bars) for LOKI. Workloads WL, WHL and WLM,

consisting of Medium and Low MPKI applications, experience an average increase of LLC misses by

15.9%. This is attributed to these workloads’ low packet injection rate, allowing LOKI to inject more

duplicate requests into the Flit Buffer. The effectiveness of the existing SIM mitigation framework

on LOKI is counter-productive (refer to purple bars). It can be noted that the SIM framework mainly

detects the HT that modifies the destination of an NoC packet. Although such security-enhanced NI

is ideal for detecting information leakage attacks, it may encounter false negatives while detecting

LOKI in some instances, as the HT does not change any header information for packet duplication.

96

5. FORTIFYING NOC SECURITY AGAINST TROJAN-INDUCED PACKET DUPLICATION ATTACKS

Workloads

N
or

m
al

is
ed

 L
LC

 M
is

s
Pe

na
lty

0.0

0.5

1.0

1.5

WH WL WM WHL WHM WLM AVG

Baseline LOKI SIM HULK

Figure 5.9: Comparison of L1 cache miss penalty in real workloads consisting of SPEC CPU 2006
workloads (Normalised to Baseline)

This makes it challenging for SIM to identify LOKI attacks in specific scenarios. Consequently,

SIM exhibits an increase in LLC misses. In contrast, the proposed HULK mitigation framework

demonstrates consistent response, with an average LLC misses decrease of 6.3% compared to SIM

and very close to Baseline. Additionally, HULK can block duplicate requests, obtaining a similar

Baseline trend of LLC misses in all the evaluated workloads (indicated by green bars).

5.5.3 Impact on L1 Cache Miss Penalty

The time taken to service an L1 cache miss by bringing in the requested data block is known as the

L1 cache miss penalty. With the increase in LLC misses, the L1 cache miss penalty is also bound

to increase, as the missed data blocks are fetched from the off-chip main memory. According to

Figure 5.9, the presence of LOKI (represented by the red bars) leads to a maximum increase of up to

35% and an average increase of 19% on the L1 cache miss penalty. This indicates that LOKI affects

the performance of L1 cache accesses. Even though SIM can reduce the LOKI-induced miss penalty

by 9%, it still exhibits an average of 11% increase in miss penalty compared to the Baseline. This

highlights that SIM provides some mitigation against the LOKI’s effect on L1 cache performance

but cannot completely eliminate the increase in L1 cache miss penalty. HULK demonstrates an L1

cache miss penalty behaviour that closely resembles the Baseline.

97

5.6. AREA AND POWER OVERHEAD ANALYSIS

Workloads

N
or

m
al

is
ed

 IP
C

0.00

0.25

0.50

0.75

1.00

WH WL WM WHL WHM WLM AVG

Baseline LOKI SIM HULK

Figure 5.10: Comparison of system speedup in real workloads consisting of SPEC CPU 2006
workloads (Normalised to Baseline)

Table 5.1: Area and Power overhead analysis

Metric Basleine LOKI SIM HULK
Area (mm2) 1.14 1.16 1.23 1.19
Peak Dynamic (W) 1.02 1.05 1.09 1.06
Runtime Dynamic (W) 0.043 0.044 0.046 0.045

5.5.4 Impact on Processor Performance

Packet latency and L1 cache miss penalty have a direct impact on instruction execution time. To

compare the system speedup between the Baseline and other architectures, we use Instructions Per

Cycle (IPC). Figure 5.10 illustrates that LOKI is able to indirectly attack multiple components like

NoC, cache, etc and decrease the system speedup. The IPC graph indicates a maximum reduction

of up to 20% and an average reduction of 11.8% when comparing LOKI to the Baseline. This

observation highlights how LOKI can bring down the system’s overall performance. On the other

hand, HULK achieves a similar IPC to the Baseline, indicating that it maintains a comparable

level of performance. However, SIM exhibits a 5.5% reduction in IPC compared to the Baseline,

suggesting a slight decrease in performance.

5.6 Area and Power Overhead Analysis

We evaluate the power overhead of NoC architectures using McPAT [87]. Table 5.1 shows the

power overhead when LOKI is active, and various security schemes are applied. LOKI exhibits

98

5. FORTIFYING NOC SECURITY AGAINST TROJAN-INDUCED PACKET DUPLICATION ATTACKS

minimal overhead, with a 1.75% increase in area, 2.94% in peak dynamic power, and 2.33% in

runtime dynamic power, making it highly efficient at remaining undetected. To mitigate LOKI, SIM

introduces the highest overhead, with an 8.33% area increase, 7.84% rise in peak dynamic power,

and 7% in runtime dynamic power, making it more detectable. HULK offers a balanced solution

with moderate increases: 4.39% in area, 3.92% in peak dynamic power, and 4.65% in runtime

dynamic power.

5.7 Chapter Summary

This chapter discussed the threat model surrounding packet duplication HT attacks, which can

have potential impacts on TCMPs. Here, we presented the design and implementation of HULK

as a robust defence mechanism against packet duplication HT attacks. We also presented the

experimental results obtained from evaluating HULK’s performance, thus highlighting its strengths

and comparing it with other state-of-the-art techniques. Furthermore, this chapter analyzed the

overhead associated with implementing HULK, providing insights into the practical implications of

deploying our defence strategy.

<<=8=;;

99

6
C H A P T E R

Conclusion and Future Directions

In this thesis, we explored potential HT threats in ICs, specifically focusing on integrating HTs

in various locations within TCMPs, as detailed in Chapter 2. Primarily, we investigated major

threats in NoC, including packet misrouting, packet looping, and packet duplication attacks that

can deploy DoS attacks. Despite existing techniques that address the issues to some extent, we

observed that these methods either incur significant hardware overhead or lack a comprehensive

mitigation framework. Through this thesis, we presented the possibilities of Trojan models deployed

in different locations in NoC routers. Additionally, we proposed detection and mitigation techniques

with negligible hardware overhead. The thesis summary is outlined in the following section, while

Section 6.2 offers insights into potential future works in a similar direction.

6.1 Summary of Thesis

Figure 6.1 summarises the contributions made within the thesis. The primary emphasis of the

thesis is the modelling of HTs in NoC that deploys variants of DoS attacks. Through Thesis

Contribution 1, we proposed an efficient detection and mitigation technique to address the impact of

packet misrouting HT attacks in NoC. With the proposed technique, TAR, we demonstrated that the

effects of HT can be mitigated using Trojan-aware routing algorithm. In Thesis Contribution 2, we

discussed the mitigation of packet looping HT attacks on NoC by adapting the security wrapper

module and implementing packet monitoring techniques. Also, this thesis explored the various

effects of packet duplication HT attacks in NoC through Thesis Contribution 3. While existing

works offer mitigation strategies for HT-induced packet duplication, they often fall within specific

HT attack mitigation categories. Our thesis proposed a novel technique utilizing Packet Status

Holding registers in the NI, which effectively mitigates HT-induced packet duplication across NoC.

6. CONCLUSION AND FUTURE DIRECTIONS

Attack: DoS

Hardware Trojan on NoC:

Attack Modelling & its Mitigation

Attacks: DoS,

Injection

Suppression

Trojan-Aware

Routing

Thesis
Contribution 1

Mitigation

Packet Status

Holding Register

Thesis
Contribution 3

Mitigation

Modelling of

Packet

Misrouting HT

Modelling of

Packet Looping

HT

Modelling of

Packet

Duplication HT

Variants of Denial of Service Attacks

Attacks: DoS,

Increase in

Latency, Cache

Misses

Thesis
Contribution 2

Security Wrapper

with Path

Monitoring

Mitigation

Figure 6.1: Summary of thesis

The experimental framework utilized to model each contribution is elaborated in Section 2.8.4.

The major performance metrics of each contribution and the additional hardware requirements are

shown in Figure 6.2. While analyzing the average packet latency, we observed that the misrouting HT

incurs a significant 1.9x increase, packet looping HT shows a 1.5x increase and packet duplication

HT demonstrates a substantial 2.5x increase compared to the Baseline. Furthermore, investigation

into the mitigation techniques reveals that while HULK achieves performance similar to the Baseline,

SecRC incurs a slight 1.7% increase, and TAR introduces a 7% increase in average packet latency

compared to the Baseline. In terms of IPC, misrouting HT shows an average of 77% decrease,

packet looping HT shows a 19% decrease, and packet duplication HT shows an average of 11.8%

decrease compared to the Baseline. However, analysis of the proposed mitigation techniques shows

that TAR exhibits a 3% decrease, and SecRC shows an average of 1% decrease over the Baseline.

In contrast, HULK achieves remarkable performance similar to Baseline.

Regarding the area overhead, TAR incurs only a minimal 2.6% increase compared to the

Baseline, while SecRC shows an 6.1% increase. However, HULK shows a 4.4% increase in area

relative to the Baseline, thus indicating varying levels of resource utilization across the proposed

systems. Further analysis of dynamics power overhead shows that TAR exhibits a moderate 2.6%

increase compared to the Baseline, while SecRC results in a higher 4.8% increase. However, HULK

101

6.2. FUTURE WORK

Performance Summary of Thesis
Contributions with respect to the

Baseline Architecture

Average Packet
Latency

IPC Area Power

TAR:
2.6% increase

SecRC:
4.8% increase

HULK:
4.3% increase

Packet Misrouting HT:
1.9x increase

TAR: 7% increase

Packet Looping HT:
1.5x increase

SecRC: 1.7% increase

Packet Duplication HT:
2.5x increase

HULK: Close to Baseline

Packet Misrouting HT:
77% decrease

TAR: 3% decrease

Packet Looping HT:
19% decrease

SecRC: 1% decrease

Packet Duplication HT:
11.8% decrease

HULK: Close to Baseline

TAR:
2.6% increase

SecRC:
6.1% increase

HULK:
4.4% increase

Figure 6.2: Summary of performance analysis

shows a comparatively lower 4.3% increase, suggesting different power consumption characteristics

across the proposed solutions. It is observed that TAR, SecRC, and HULK utilize slightly more

LUTs compared to the Baseline, indicating a moderate increase in resource consumption. Moreover,

it is noted that all three thesis contributions ensure that the proposed solutions meet the timing

requirements, ensuring that the enhanced NoC architectures can still maintain system performance.

6.2 Future Work

The contributions of the thesis can be extended in many ways. Some of the possible works that can

be explored in future directions are summarized below.

• In Chapter 4, the work focuses on the activation of a misrouting HT within a specific NoC

router at a particular time. However, there is potential for additional research regarding the

positioning of misrouting HT instances that cooperate to trigger their attack across the NoC.

Such an approach has the capacity to magnify the system’s susceptibility to damage. As TAR

deals with HT mitigation through the implementation of HT-induced router bypassing, it

introduces a trade-off concerning packet latency. This aspect prompts further exploration to

devise a solution that mitigates HT without necessitating the isolation of the HT.

102

• In Chapter 5, SecRC deals with the mitigation of HTs that modifies the selection strategy of

odd-even routing. Further research can be done to study the impact of packet-looping HT

attacks in other adaptive routing algorithms.

• In Chapter 6, HULK deals with the detection and mitigation of packet duplication attacks that

degrade the system performance as a whole. Here, further research can be done to explore the

integration of artificial intelligence and machine learning algorithms to enhance the HULK

framework’s ability to autonomously detect and respond to emerging threats in real-time.

<<=8=;;

103

Bibliography

[1] W. H. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor System-on-Chip (MPSoC) Tech-

nology,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 27, pp. 1701–1713, 2008.

[2] (2020) Arteris IP FlexNoC. [Online]. Available: https://www.arteris.com/products/

non-coherent-noc-ip/flexnoc

[3] W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection networks,” in

Proceedings of the Design Automation Conference, 2001, pp. 684–689.

[4] N. Potlapally, “Hardware security in practice: Challenges and opportunities,” in IEEE Interna-

tional Symposium on Hardware-Oriented Security and Trust, 2011, pp. 93–98.

[5] F. Farahmandi, Y. Huang, P. Mishra, F. Saqib, and J. Plusquellic, System-on-Chip Security:

Validation and Verification, 2019.

[6] A. P. D. Nath, S. Ray, A. Basak, and S. Bhunia, “System-on-chip security architecture and

CAD framework for hardware patch,” Asia and South Pacific Design Automation Conference,

pp. 733–738, 2018.

[7] R. JayashankaraShridevi, D. M. Ancajas, K. Chakraborty, and S. Roy, “Security Measures

Against a Rogue Network-on-Chip,” Journal of Hardware and Systems Security, vol. 1, pp.

173–187, 2017.

[8] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar, “SECA: security-enhanced communi-

cation architecture,” in Proceedings of the International Conference on Compilers, Architec-

tures and Synthesis for Embedded Systems, 2005, pp. 78–89.

[9] V. Y. Raparti and S. Pasricha, “Lightweight Mitigation of Hardware Trojan Attacks in NoC-

based Manycore Computing,” in Proceedings of the Annual Design Automation Conference,

2019, pp. 1–6.

[10] S. Hansman and R. Hunt, “A taxonomy of network and computer attacks,” Computers Security,

vol. 24, pp. 31–43, 2005.

104

https://www.arteris.com/products/non-coherent-noc-ip/flexnoc
https://www.arteris.com/products/non-coherent-noc-ip/flexnoc

[11] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Countermeasures: The Case of

AES,” in Proceedings of the Topics in Cryptology: The Cryptographers’ Track at the RSA

Conference., 2006, pp. 1–20.

[12] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A high resolution, low noise, L3 cache side-

channel attack,” in Proceedings of the USENIX Conference on Security Symposium, 2014, pp.

719–732.

[13] (2019) Glitching: The hardware attack that can disrupt se-

cure software. [Online]. Available: https://www.darkreading.com/edge/theedge/

glitching-the-hardware-attack-that-can-disrupt-secure-software-/b/d-id/1336119

[14] H. Li, Q. Liu, and J. Zhang, “A survey of hardware Trojan threat and defense,” Integration,

vol. 55, pp. 426–437, 2016.

[15] M. M. Ahmed, A. Dhavlle, N. Mansoor, S. M. P. Dinakarrao, K. Basu, and A. Ganguly, “What

Can a Remote Access Hardware Trojan do to a Network-on-Chip?” in IEEE International

Symposium on Circuits and Systems, 2021, pp. 1–5.

[16] E. Choi and S. Chang, “A consumer tracking estimator for vehicles in GPS-free environments,”

IEEE Transactions on Consumer Electronics, vol. 63, no. 4, pp. 450–458, 2017.

[17] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and Y. Makris, “Counterfeit

Integrated Circuits: A Rising Threat in the Global Semiconductor Supply Chain,” Proceedings

of the IEEE, vol. 102, pp. 1207–1228, 2014.

[18] (2021) Mobileye SuperVision™ for Hands-free ADAS. [Online]. Available: https:

//www.mobileye.com/super-vision/

[19] R. Torrance and D. James, “The State-of-the-Art in IC Reverse Engineering,” in International

Workshop on Cryptographic Hardware and Embedded Systems, 2009, pp. 363–381.

[20] S. Charles, V. Bindschaedler, and P. Mishra, “Digital Watermarking for Detecting Malicious

Intellectual Property Cores in NoC Architectures,” IEEE Transactions on Very Large Scale

Integration Systems, vol. 30, pp. 952–965, 2022.

[21] P. Mishra and S. Charles, Network-on-Chip Security and Privacy, 2021.

105

https://www.darkreading.com/edge/theedge/glitching-the-hardware-attack-that-can-disrupt-secure-software-/b/d-id/1336119
https://www.darkreading.com/edge/theedge/glitching-the-hardware-attack-that-can-disrupt-secure-software-/b/d-id/1336119
https://www.mobileye.com/super-vision/
https://www.mobileye.com/super-vision/

BIBLIOGRAPHY

[22] G. Ascia, V. Catania, M. Palesi, and D. Patti, “Implementation and Analysis of a New Selection

Strategy for Adaptive Routing in Networks-on-Chip,” IEEE Transactions on Computers,

vol. 57, pp. 809–820, 2008.

[23] P. T. Huang and W. Hwang, “An adaptive congestion-aware routing algorithm for mesh

network-on-chip platform,” in IEEE International SOC Conference, 2009, pp. 375–378.

[24] L. Liu, Y. Sun, Z. Zhu, and Y. Yang, “A congestion-aware OE router employing fair arbitration

for network-on-chip,” Journal of Semiconductors, vol. 39, p. 125006, 2018.

[25] S. Charles and P. Mishra, “A Survey of Network-on-Chip Security Attacks and Countermea-

sures,” ACM Computing Surveys, vol. 54, pp. 1–36, 05 2021.

[26] P. Deutsch and J.-L. Gailly, “Rfc1950: Zlib compressed data format specification version 3.3,”

Tech. Rep., 1996.

[27] O. Wallach. (2021) Visualizing the global semiconductor supply chain. [Online]. Available:

https://www.visualcapitalist.com/sp/visualizing-the-global-semiconductor-supply-chain/

[28] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware Security: Models, Methods,

and Metrics,” Proceedings of the IEEE, vol. 102, pp. 1283–1295, 2014.

[29] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. Pande, C. Grecu,

and A. Ivanov, “System-on-Chip: Reuse and Integration,” Proceedings of the IEEE, vol. 94,

pp. 1050–1069, 2006.

[30] (2023) Arteris ip. [Online]. Available: https://www.arteris.com/

[31] T. Feng, H. Pei, Z. Jin, and X. Wu, “A survey and perspective on electronic design automation

tools for ensuring SoC security,” in International SoC Design Conference, 2022, pp. 215–216.

[32] (2023) Qflow. [Online]. Available: http://opencircuitdesign.com/qflow//

[33] “Ngspice:Open Source Mixed Mode, Mixed Level Circuit Simulator.” Based on Berkeley’s

Spice3f5, 1992.

[34] J. Verley, E. R. Keiter, and H. K. Thornquist, “Xyce: Open Source Simulation for Large-Scale

Circuits.” Sandia National Lab, Tech. Rep., 2018.

[35] C. Wolf., “Yosys open synthesis suite.” Tech. Rep., 2018.

106

https://www.visualcapitalist.com/sp/visualizing-the-global-semiconductor-supply-chain/
https://www.arteris.com/
http://opencircuitdesign.com/qflow//

[36] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan, “DREAMPlace:

Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, pp.

748–761, 2021.

[37] T. Ajayi and D. Blaauw, “OpenROAD: Toward a Self-Driving, Open-Source Digital Layout

Implementation Tool Chain,” in Proceedings of Government Microcircuit Applications and

Critical Technology Conference, 2019.

[38] C. Rooney, A. Seeam, and X. Bellekens, “Creation and Detection of Hardware Trojans Using

Non-Invasive Off-The-Shelf Technologies,” Electronics, vol. 7, p. 124, 2018.

[39] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware Trojan attacks: Threat

analysis and countermeasures,” Proceedings of the IEEE, vol. 102, pp. 1229–1247, 2014.

[40] M. Areno, “Supply Chain Threats Against Integrated Circuits,” Intel Whitepaper, 2020.

[41] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, “Side-Channel Trojan Insertion - A Practical

Foundry-Side Attack via ECO,” in IEEE International Symposium on Circuits and Systems,

2021, pp. 1–5.

[42] F. Almeida, M. Imran, J. Raik, and S. Pagliarini, “Ransomware Attack as Hardware Trojan: A

Feasibility and Demonstration Study,” IEEE Access, vol. 10, pp. 44 827–44 839, 2022.

[43] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon Demonstration of Hardware Trojan

Design and Detection in Wireless Cryptographic ICs,” IEEE Transactions on Very Large Scale

Integration Systems, vol. 25, pp. 1506–1519, 2017.

[44] M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill, “Ten years of hardware Trojans: a survey from

the attacker’s perspective,” IET Computers & Digital Techniques, vol. 14, pp. 231–246, 2020.

[45] T. Zhang, J. Park, M. Tehranipoor, and F. Farahmandi, “PSC-TG: RTL Power Side-Channel

Leakage Assessment with Test Pattern Generation,” in ACM/IEEE Design Automation Confer-

ence, 2021, pp. 709–714.

[46] H. Pearce, V. R. Surabhi, P. Krishnamurthy, J. Trujillo, R. Karri, and F. Khorrami, “Detecting

hardware trojans in pcbs using side channel loopbacks,” IEEE Transactions on Very Large

Scale Integration Systems, vol. 30, pp. 926–937, 2022.

107

BIBLIOGRAPHY

[47] C. Pilato, K. Basu, M. Shayan, F. Regazzoni, and R. Karri, “High-Level Synthesis of Benev-

olent Trojans,” in Design, Automation & Test in Europe Conference Exhibition, 2019, pp.

1124–1129.

[48] K. Basu, S. M. Saeed, C. Pilato, M. Ashraf, M. T. Nabeel, K. Chakrabarty, and R. Karri,

“CAD-Base: An Attack Vector into the Electronics Supply Chain,” ACM Transactions on

Design Automation of Electronic Systems, vol. 24, pp. 1–30, 2019.

[49] W. J. Dally and B. P. Towels, Principles and Practices of Interconnection Networks. Morgan

Kaufmann, 2004.

[50] M. B. Taylor, W. Lee, J. E. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann, P. R.

Johnson, J. S. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. I. Frank, S. Amarasinghe,

and A. Agarwal, Tiled multicore processors, 2009.

[51] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of Network-on-chip,”

ACM Computing Surveys, vol. 38, pp. 1–es, 2006.

[52] A. Agarwal, C. Iskander, and R. Shankar, “Survey of Network on Chip (NoC) Architectures

Contributions,” Journal of Engineering, Computing and Architecture, vol. 3, pp. 21–27, 2009.

[53] W. Dally, “Virtual-channel flow control,” IEEE Transactions on Parallel and Distributed

Systems, vol. 3, pp. 194–205, 1992.

[54] Y. Lyu and P. Mishra, “Scalable Activation of Rare Triggers in Hardware Trojans by Repeated

Maximal Clique Sampling,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 40, pp. 1287–1300, 2020.

[55] R. JS, K. Chakraborty, and S. Roy, “Hardware Trojan Attacks in SoC and NoC,” The Hardware

Trojan War: Attacks, Myths, and Defenses, pp. 55–74, 2018.

[56] S. Charles, Y. Lyu, and P. Mishra, “Real-time Detection and Localization of DoS Attacks in

NoC based SoCs,” in Design, Automation Test in Europe Conference Exhibition, 2019, pp.

1160–1165.

[57] T. Boraten and A. K. Kodi, “Mitigation of Denial of Service Attack with Hardware Trojans in

NoC Architectures,” in International Parallel and Distributed Processing Symposium, 2016,

pp. 1091–1100.

108

[58] V. J. Kulkarni, R. Manju, R. Gupta, J. Jose, and S. Nandi, “Packet Header Attack by Hardware

Trojan in NoC based TCMP and its Impact Analysis,” in IEEE/ACM International Symposium

on Networks-on-Chip, 2021, pp. 21–28.

[59] M. H. Khan, R. Gupta, J. Jose, and S. Nandi, “Dead Flit Attack on NoC by Hardware Trojan

and Its Impact Analysis,” in Proceedings of the International Workshop on Network on Chip

Architectures, 2021, pp. 10–15.

[60] L. Daoud and N. Rafla, “Routing Aware and Runtime Detection for Infected Network-on-Chip

Routers,” in International Midwest Symposium on Circuits and Systems, 2018, pp. 775–778.

[61] N. Prasad, R. Karmakar, S. Chattopadhyay, and I. Chakrabarti, “Runtime mitigation of illegal

packet request attacks in Networks-on-chip,” in IEEE International Symposium on Circuits

and Systems, 2017, pp. 1–4.

[62] J. Rajesh, D. M. Ancajas, K. Chakraborty, and S. Roy, “Runtime Detection of a Bandwidth

Denial Attack from a Rogue Network-on-Chip,” in Proceedings of the International Symposium

on Networks-on-Chip, 2015, pp. 1–8.

[63] M. Hussain, A. Malekpour, H. Guo, and S. Parameswaran, “EETD: An Energy Efficient

Design for Runtime Hardware Trojan Detection in Untrusted Network-on-Chip,” in IEEE

Computer Society Annual Symposium on VLSI, 2018, pp. 345–350.

[64] R. Gupta, V. J. Kulkarni, J. Jose, and S. Nandi, “Securing On-Chip Interconnect against Delay

Trojan Using Dynamic Adaptive Caging,” in Proceedings of the Great Lakes Symposium on

VLSI, 2022, pp. 411–416.

[65] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ Flush: A Fast and Stealthy Cache

Attack,” in Detection of Intrusions and Malware, and Vulnerability Assessment: International

Conference, 2016, pp. 279–299.

[66] G. Saileshwar, C. W. Fletcher, and M. K. Qureshi, “Streamline: A Fast, Flushless Cache Covert-

Channel Attack by Enabling Asynchronous Collusion,” in ACM International Conference

on Architectural Support for Programming Languages and Operating Systems, 2021, pp.

1077–1090.

[67] C. Reinbrecht, A. Susin, L. Bossuet, G. Sigl, and J. Sepúlveda, “Side channel attack on

NoC-based MPSoCs are practical: NoC Prime+ Probe attack,” in Symposium on Integrated

Circuits and Systems Design, 2016, pp. 1–6.

109

BIBLIOGRAPHY

[68] D. M. Ancajas, K. Chakraborty, and S. Roy, “Fort-NoCs: Mitigating the threat of a compro-

mised NoC,” in ACM/EDAC/IEEE Design Automation Conference, 2014, pp. 1–6.

[69] C. Sudusinghe, S. Charles, S. Ahangama, and P. Mishra, “Eavesdropping Attack Detection

Using Machine Learning in Network-on-Chip Architectures,” IEEE Design Test, vol. 39, pp.

28–38, 2022.

[70] S. Charles and P. Mishra, “Lightweight and Trust-Aware Routing in NoC-Based SoCs,” in

IEEE Computer Society Annual Symposium on VLSI, 2020, pp. 160–167.

[71] S. Charles and P. Mishra, “Securing Network-on-Chip Using Incremental Cryptography,” in

IEEE Computer Society Annual Symposium on VLSI, 2020, pp. 168–175.

[72] Y. Wang and G. E. Suh, “Efficient Timing Channel Protection for On-Chip Networks,” in

IEEE/ACM International Symposium on Networks-on-Chip, 2012, pp. 142–151.

[73] T. Boraten and A. Kodi, “Mitigation of Hardware Trojan based Denial-of-Service attack for

secure NoCs,” Journal of Parallel and Distributed Computing, vol. 111, pp. 24–38, 2018.

[74] M. Hussain and H. Guo, “Packet Leak Detection on Hardware-Trojan Infected NoCs for

MPSoC Systems,” in Proceedings of the International Conference on Cryptography, Security

and Privacy, 2017, pp. 85–90.

[75] A. K. Biswas, S. Nandy, and R. Narayan, “Router Attack toward NoC-enabled MPSoC and

Monitoring Countermeasures against such Threat,” Circuits, Systems, and Signal Processing,

vol. 34, pp. 3241–3290, 2015.

[76] X. Cui, E. Koopahi, K. Wu, and R. Karri, “Hardware Trojan Detection Using the Order of Path

Delay,” ACM Journal on Emerging Technologies in Computing Systems, vol. 14, pp. 1–23,

2018.

[77] J. Frey and Q. Yu, “A hardened network-on-chip design using runtime hardware Trojan

mitigation methods,” Integration, vol. 56, pp. 15–31, 2017.

[78] M. H. Khan, R. Gupta, V. J. Kulkarni, J. Jose, and S. Nandi, “Hardware Trojan Mitigation for

Securing On-chip Networks from Dead Flit Attacks,” in IEEE International Conference on

Very Large Scale Integration, 2022, pp. 1–6.

110

[79] Q. Yu and J. Frey, “Exploiting error control approaches for Hardware Trojans on Network-

on-Chip links,” in IEEE International Symposium on Defect and Fault Tolerance in VLSI and

Nanotechnology Systems, 2013, pp. 266–271.

[80] S. Charles, M. Logan, and P. Mishra, “Lightweight Anonymous Routing in NoC based SoCs,”

in Design, Automation Test in Europe Conference Exhibition, 2020, pp. 334–337.

[81] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S. Mangard, “ScatterCache:

Thwarting Cache Attacks via Cache Set Randomization,” in Proceedings of the USENIX

Conference on Security Symposium, 2019, pp. 675–692.

[82] S. Lukovic and N. Christianos, “Enhancing network-on-chip components to support security

of processing elements,” in Proceedings of the Workshop on Embedded Systems Security, 2010,

pp. 1–9.

[83] S. Charles, Y. Lyu, and P. Mishra, “Real-Time Detection and Localization of Distributed DoS

Attacks in NoC-based SoCs,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 39, pp. 4510–4523, 2020.

[84] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt, “The M5 Simulator:

Modeling Networked Systems,” IEEE Micro, vol. 26, pp. 52–60, 2006.

[85] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.

Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.

Wood, “The Gem5 Simulator,” ACM SIGARCH Computer Architecture News, vol. 39, pp. 1–7,

2011.

[86] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E.

Moore, M. D. Hill, and D. A. Wood, “Multifacet’s General Execution-Driven Multiprocessor

Simulator Toolset,” SIGARCH Computer Architecture News, vol. 33, pp. 92–99, 2005.

[87] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “McPAT:

An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore

Architectures,” in Annual IEEE/ACM International Symposium on Microarchitecture, 2009,

pp. 469–480.

[88] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH Computer Architecture

News, vol. 34, pp. 1–17, 2006.

111

BIBLIOGRAPHY

[89] J. Duato, S. Yalamanchili, and L. Ni, CHAPTER 4 - Routing Algorithms. Morgan Kaufmann,

2003.

[90] C. Glass and L. Ni, “The Turn Model for Adaptive Routing,” in International Symposium on

Computer Architecture, 1992, pp. 278–287.

[91] A. Das, S. Babu, J. Jose, S. Jose, and M. Palesi, “Critical Packet Prioritisation by Slack-Aware

Re-Routing in On-Chip Networks,” in IEEE/ACM International Symposium on Networks-on-

Chip, 2018, pp. 1–8.

[92] R. Manju, A. Das, J. Jose, and P. Mishra, “SECTAR: Secure NoC using Trojan Aware Routing,”

in IEEE/ACM International Symposium on Networks-on-Chip, 2020, pp. 1–8.

[93] J. Lecler, Jean and G. Baillieu, “Application driven network-on-chip architecture exploration

& refinement for a complex SoC,” Design Automation for Embedded Systems, vol. 15, pp.

133–158, 2011.

[94] R. Manju, M. Choksey, and J. Jose, “Runtime Detection of Time-Delay Security Attack in

System-an-Chip,” in IEEE/ACM International Workshop on Network on Chip Architectures,

2022, pp. 1–6.

[95] R. Manju, A. Das, and J. Jose, “LOKI: A Hardware Trojan Affecting Multiple Components of

an SoC,” in IEEE Computer Society Annual Symposium on VLSI, 2022, pp. 176–181.

[96] (1961) Marvel comics. [Online]. Available: https://www.marvel.com/

112

https://www.marvel.com/

LIST OF PUBLICATIONS

PUBLICATIONS FROM THESIS WORK

Book Chapter:

1. Manju Rajan, Abhijit Das, John Jose, and Prabhat Mishra, “Trojan-Aware Network-on-Chip
Routing ”, Network-on-Chip Security and Privacy (NSP), Springer International Publishing,
January 2021.
DOI: 10.1007/9783030691318_11

Refereed Journals:

2. Manju Rajan, Mayank Choksey, and John Jose, “Secure Routing Framework for Mitigat-
ing Time-Delay Trojan Attack in System-on-Chip ”, Elsevier Journal of Systems Architec-
ture (JSA), Volume 144, Issue 1, November 2023.
DOI: 10.1016/j.sysarc.2023.103

3. Manju Rajan, Abhijit Das, John Jose “Fortifying System-on-Chip Security Against Trojan-
Induced Packet Duplication Threats”, ACM Transactions on Design Automation and Elec-
tronics Systems (ACM TODAES). (Submitted).

Refereed Conferences:

4. Manju Rajan, Mayank Choksey, and John Jose, “Runtime Detection of Time-Delay Security
Attack in System-on-Chip ”, 2022 15th IEEE/ACM International Workshop on Network on
Chip Architectures (NoCArc), 2022, pp. 1-6.
DOI: 10.1109/NoCArc57472.2022.9911380

5. Manju Rajan, Abhijit Das, and John Jose, “LOKI: A Hardware Trojan Affecting Multiple
Components of an SoC ”, 2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
2022, pp. 176-181.
DOI: 10.1109/ISVLSI54635.2022.00043

6. Manju Rajan, Abhijit Das, and John Jose, “SECTAR: Secure NoC using Trojan Aware
Routing ”, 2020 14th IEEE/ACM International Symposium on Networks-on-Chip (NOCS),
2020, pp. 1-8.
DOI: 10.1109/NOCS50636.2020.9241711

113

PUBLICATIONS OTHER THAN THESIS WORK

1. Vedika J Kulkarni, Manju Rajan, Ruchika Gupta, and John Jose, “Packet Header Attack
by Hardware Trojan in NoC based TCMP and its Impact Analysis ”, 2021 15th IEEE/ACM
International Symposium on Networks-on-Chip (NOCS), pp. 21-28, October 2021.

114

VITAE

Manju R commenced her Ph.D. journey in the Department
of Computer Science and Engineering at the Indian Institute
of Technology Guwahati, India, in July 2018. Throughout
her tenure at IIT Guwahati, she was actively engaged with
the Multi-core ARchitecture and Systems Lab (MARS Lab)
within the Department of Computer Science and Engineering.
She earned her Master of Technology in Computer Science
and Engineering from Dr. M.G. R. Educational & Research
Institute, Chennai, in 2006. Prior to this, she accomplished
her Bachelor of Technology in Information Technology from

Manonmaniam Sundarnar University, Tamil Nadu, in 2003. Her Ph.D. research is focused on
tackling Hardware Trojan attacks in Network-on-Chip-based MPSoCs. Her work involves modeling
various Trojan scenarios that could be integrated into NoC, along with the development of methods
to detect and mitigate the impact of these Trojans, ultimately enhancing system performance.
Beyond her primary focus, her research interests extend to multicore architecture and Quantum
Computing.

Contact Information

E-mail: manju18@iitg.ac.in

manjurajanv@gmail.com

Phone: +91-9961330220

Website: https://www.iitg.ac.in/stud/186101012/

<<=8=;;

115

http://www.iitg.ac.in/stud/d.dipika/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Multiprocessor System-on-Chip Security
	Hardware Trojan Attacks in Tiled Chip Multicore Processors
	Thesis Motivation
	Thesis Contribution
	Secure NoC by Mitigating Packet Misrouting Trojan Attacks
	Secure Routing Framework by Mitigating Packet Looping Trojan Attacks
	Fortifying NoC Security Against Trojan-Induced Packet Duplication Attacks

	Thesis Organization

	Background
	Introduction
	IC Supply Chain and EDA Tools: An Overview
	Hardware Trojan Circuit in Integrated Circuits
	Hardware Trojan Taxonomy
	Overview on Tiled Chip Multicore Processors
	Hardware Trojan Impact on NoC
	Denial of Service Attack
	Information Leakage Attack
	Data Corruption Attack
	Functional Modification Attack

	Classification of HT locations in NoC Routers
	Trojan in Route Computation Unit
	Trojan in Network Interface
	Trojan in Switch Allocator
	Trojan in Input/Output Buffers
	Trojan in Network Link
	Trojan in Processing Cores

	Experimental Modelling
	Computer Architecture Simulators
	gem5
	McPAT
	Architectural Parameters

	Application and Workloads
	Synthetic Traffic Patterns
	SPEC CPU Benchmarks

	Performance Metrics
	Average Packet Latency
	Instructions Per Cycle (IPC)

	Chapter Summary

	Secure NoC by Mitigating Packet Misrouting Trojan Attacks
	Introduction
	Dimension Order Routing
	Threat Model: Trojan Design and its Impact
	Packet Misrouting Trojan Design
	Impact of Packet Misrouting Trojan Attack
	Denial-of-Service: Attack Scenario 1
	Denial-of-Service: Attack Scenario 2
	Injection Suppression: Attack Scenario 3

	TAR: Mitigation Framework for Packet Misrouting HT Attack
	TAR Phase 1: Trojan Detection
	TAR Phase 2: Shielding the Trojan
	TAR Phase 3: Trojan Bypassing

	Results and Discussions
	Impact on Effective Average Packet Latency
	Impact on Effective Average Deflected Packet Latency
	Impact on Processor Performance
	Impact on Injection Suppression

	Area and Power Overhead Analysis
	Chapter Summary

	Secure Routing Framework by Mitigating Packet Looping Trojan Attacks
	Introduction
	Threat Model: Trojan Design and its Impact
	Packet Looping Trojan Design
	Sample Scenario for Packet Looping Trojan Attack

	SecRC: Mitigation Framework for Packet Looping HT attack
	Traffic Monitor Module
	Path Monitor Module
	Security Wrapper for Routing Unit

	Results and Discussions
	Impact on Average Network Hops
	Impact on Average Packet Latency
	Impact on Maximum Packet Latency
	Impact on Processor Performance

	Area and Power Overhead Analysis
	Chapter Summary

	Fortifying NoC Security Against Trojan-Induced Packet Duplication Attacks
	Introduction
	Threat Model: Trojan Design and its Impact
	Packet Duplication Trojan Design
	Impact of Packet Duplication Trojan Attack
	Impact on NoC: Attack Scenario 1
	Impact on Cache: Attack Scenario 2

	Mitigating Packet Duplication Trojan Using Existing Techniques
	HULK: Mitigation Framework for Packet Duplication HT Attacks
	Results and Discussions
	Impact on Average Packet Latency
	Impact on LLC Miss
	Impact on L1 Cache Miss Penalty
	Impact on Processor Performance

	Area and Power Overhead Analysis
	Chapter Summary

	Conclusion and Future Directions
	Summary of Thesis
	Future Work

	Bibliography
	List of Publications

