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Network Embedding

Network Embedding

Suppose G(V ,E ) represents a network then Network Embedding refers to
generating low dimensional network features corresponding to Node, Edge,
Substructure, and the Whole-Graph [1].

Figure: Different taxonomies of Network Embedding, Picture Source: Cai et. al.
”https://arxiv.org/pdf/1709.07604.pdf”

Akash Anil Network Embedding September 11, 2019 3 / 25



Network Embedding

Network Embedding

Suppose G(V ,E ) represents a network then Network Embedding refers to
generating low dimensional network features corresponding to Node, Edge,
Substructure, and the Whole-Graph [1].

Figure: Different taxonomies of Network Embedding, Picture Source: Cai et. al.
”https://arxiv.org/pdf/1709.07604.pdf”

Akash Anil Network Embedding September 11, 2019 3 / 25



Network Embedding Applications

Applications
1 Automatic feature vector generation helps in solving traditional

problems on graph e.g. node classification, relation prediction,
clustering, etc.

2 Recent Uses
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Network Embedding Why Neural Network ??

Why Neural Network based Network Embedding ??

Traditional approaches based on matrix factorization (e.g. SVD) are
not scalable to networks with large number of nodes.
Recent advances in unsupervised word embedding using single layer
neural network (e.g. Word2Vec [3]).
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Word Embedding

Word Embedding (Word2Vec)
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Skip-Gram Based Neural Node Embedding

A generalized framework used for Node Embedding
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Skip-Gram Based Neural Node Embedding

A generalized framework used for Node Embedding
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DeepWalk

DeepWalk [4]

DeepWalk is the first network embedding model exploiting neural
networks.
Scalable to the large real-world networks.
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DeepWalk

Designing DeepWalk Model

1 Generate node sequences (input corpus) using truncated random walk.
2 Iterate random walks from same source node 80 times for

convergence.
3 Supply the node sequences as input to skip-gram model.
4 Maximize the probability of neighborhoods for the given node.
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DeepWalk Results

Multi-label Classification for Blog-Catalog Data
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DeepWalk Results

Multi-label Classification for Flickr Data
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DeepWalk Results

Limitations of DeepWalk

Relying on rigid notion of network neighborhood or local
characteristics.
Fails to captures proximity of different semantics.
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Node2Vec

Node2Vec [2]

Uses 2nd Order Random walk to generate corpus.
Presents a semi-supervised model which balances the trade-offs of
capturing local and global network characteristics.
Scalable model applicable to any type of graph e.g., (un)directed,
(un)weighted, etc.
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Node2Vec

Designing Node2Vec (I)

Suppose a random walker just traversed edge (t, v) ∈ E and now resting
at node v . To estimate the transition probability to visit next node x
originating from v , Node2Vec sets the transition probability wvx to
πvx = αpq(t, v).wvx , where

αpq(t, v) =


1
p if dtx = 0
1 if dtx = 1
1
q if dtx = 2

here dtx is the shortest distance be-
tween nodes t to x .
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Node2Vec

Designing Node2Vec (II)

p is treated as Return Parameter.
q is treated as in-out parameter.
High q gives BFS like behaviour and low represents DFS.
BFS is helpful in capturing local proximities between nodes.
DFS is helpful in capturing global proximities between nodes.

Node sequences are generated using truncated random walks of
length 80.
From each node random walk iterates 10 times.
Using 10% of the dataset sample, Node2Vec sets the
hyper-parameters p and q.
Supply the node sequences as input to skip-gram model and maximize
the neighborhood probability.
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Node2Vec results

Efficiency of Node2Vec over Multi-label classification
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Limitation

Limitations of DeepWalk and Node2Vec

fail to capture different types of similarity naturally observed in
real-world networks.
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VERSE

Versatile Graph Embeddings (VERSE) [5]

Proposes a model capable of capturing different types of similarity
distributions.
Uses state-of-the-art similarity measures to instantiate the model.
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VERSE

Designing VERSE

Select a similarity measure, such as Personalized PageRank, SimRank,
etc. and generate the similarity distribution matrix SimG .
Initialize the Embedding space SimE with random weights.
Minimize the KL-divergence between distributions SimG and SimE :∑

v∈V KL(SimG(v , .)||SimE (v , .))
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VERSE results

Efficiency of VERSE over Multi-class classification for
Co-cit data
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Thank You
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