Convolutional Neural Network(CNN)

Two Concerns

- Large number of parameters while applying MLP on domains like images
- Need of extracting high level localized features

Large number of parameters

1024x1024x3

31,45,728

Large number of parameters

1024x1024x3

Large number of parameters

Parameters : W matrix of order **3145728**x1000 and V matrix of the order **1000**x2

Need of extracting features from localize region

Need of extracting features from localize region

CNN tried to address these two concerns by extracting localized features.

CNN has three basic layers

Convolutional Layer

CNN has three basic layers

Convolutional Layer

Pooling Layer

CNN has three basic layers

5	6	7	5	6	7
6	7	8	6	7	8
7	8	9	7	8	9
5	6	7	5	6	7
6	7	8	6	7	8
7	8	9	7	8	9

Filter F

Convolution C

41

- Filters/Kernels define the local region for extracting localized features.
- They move around the input image to high level extract features

Input Matrix A

5	6	7	5	6	7
6	7	8	6	7	8
7	8	9	7	8	9
5	6	7	5	6	7
6	7	8	6	7	8
7	8	9	7	8	9

Convolution C

Input Matrix A

 $C_{00} = A_{00}F_{00} + A_{01}F_{01} + A_{02}F_{02}$ $+ A_{10}F_{10} + A_{11}F_{11} + A_{12}F_{12}$ $+ A_{20}F_{20} + A_{21}F_{21} + A_{22}F_{22}$

Extracted feature is defined by the summation of the element wise multiplication between the filter and the local region

0 1 0 2 0 1 1 1 0

Convolution C

Input Matrix A

 $C_{01} = A_{01}F_{00} + A_{02}F_{01} + A_{03}F_{02}$ $+ A_{11}F_{10} + A_{12}F_{11} + A_{13}F_{12}$ $+ A_{21}F_{20} + A_{22}F_{21} + A_{23}F_{22}$

- The position of the shift of the filter is known as **Stride**.
- This example has **stride length =1**

Input Matrix A

Convolution C

 $\begin{aligned} & C_{02} \\ &= A_{02}F_{00} + A_{03}F_{01} + A_{04}F_{02} \\ &+ A_{12}F_{10} + A_{13}F_{11} + A_{14}F_{12} \\ &+ A_{22}F_{20} + A_{23}F_{21} + A_{24}F_{22} \end{aligned}$

5	6	7	5	6	7
6	7	8	6	7	8
7	8	9	7	8	9
5	6	7	5	6	7
б	7	8	6	7	8
7	8	9	7	8	9

Input Matrix A

Convolution C

 $C_{03} = A_{03}F_{00} + A_{04}F_{01} + A_{05}F_{02}$ $+ A_{13}F_{10} + A_{14}F_{11} + A_{15}F_{12}$ $+ A_{23}F_{20} + A_{24}F_{21} + A_{25}F_{22}$

5	6	7	5	6	7
6	7	8	6	7	8
7	8	9	7	8	9
5	6	7	5	6	7
6	7	8	6	7	8
7	8	9	7	8	9

Input Matrix A

Convolution C

 $\begin{array}{l} C_{10} \\ = A_{10}F_{00} + A_{11}F_{01} + A_{12}F_{02} \\ + A_{20}F_{10} + A_{21}F_{11} + A_{22}F_{12} \\ + A_{30}F_{20} + A_{31}F_{21} + A_{32}F_{22} \end{array}$

Multiple Filters

- Multiple filters of different sizes can be applied.
- Each filter focuses on extracting features of different types (Say, eyes, mounth)

Input Matrix could be multi dimensional

Output of the convolution Layer

5	6	7	5	6	7
6	7	8	6	7	8
7	8	9	7	8	9
5	6	7	5	6	7
6	7	8	6	7	8
7	8	9	7	8	9

Input Matrix = 6×6 Filter = 3×3 Stride = 1Padding = 0

Output Matrix = 4 x 4 (the number of shifts)

Size of the output matrix is smaller than the input.

Padding – add Zeros

0	0	0	0	0	0	0	0
0	1	2	3	1	2	3	0
0	1	3	3	1	2	3	0
0	1	2	3	1	2	3	0
0	1	2	3	1	2	3	0
0	1	2	3	1	2	3	0
0	1	2	3	1	2	3	0
0	0	0	0	0	0	0	0

Input Matrix = 6×6 Filter = 3×3 Stride = 1Padding = 1

Output Matrix = 6 x 6 (the number of shifts)

Pooling

- **Reduces** the spatial size of the Convolved Features.
- **Decreases** the computational power required to process the data.
- Extracts dominant features which are rotational and positional invariant

Two types of Pooling

- Max Pooling : maximum value from the portion covered by the Kernel
 - Remove noise by removing non-dominant features
- Average Pooling : average of all the values from the portion covered by the Kernel
 - Remove noise by averaging

Two types of Pooling

Flattening and Dense Layer

Flatten the output of the pooling layer

Deep CNN

Three Components

- **Convolution:** Extract high level features from local regions
- **Pooling:** Reduce dimension and denoise
- Flattening and Dense layer: Design the network for the underlying task