Principal Component Analysis



Dimensionality Reduction

Two Popular Methods of Dimension Reduction

* Principal Component Analysis (PCA)

Principal Component Analysis is a methods of dimensionality reduction/feature
extraction that transform the data from a d-dimensional space to another coordinate

system of k - dimensional space where k<=d.

* Latent Semantic Analysis (LSA)

Latent Semantic Analysis is also another methods of dimensionality reduction originally
applied for topic modelling in text corpus. In recent time, it has also been applied to

various domains.



Principal Component Analysis
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Visualization of the Data with two Features
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Visualization of the Data with Three Features

Height Weight #Wheel Weight 4
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5.5 600 4 3
6.5 550 4
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We can not visualize beyond 3 dimensions

Height Weight #Wheel cc Weight 4
6 500 4 899 ' 2
5.5 600 4 1000 | 3
6.5 550 4 800
3 200 2 99 :
3.5 150 2 125
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Representation of the data along X-Axis
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Representation of the data along X-Axis

Height Weight

1|6 500 2
2 |55 600 3
3 |65 550
4 |3 200 1
5 (3.5 150
6 |4 250 6
4

Let D be the dataset and J( 5

- }( X 7 S — >

xT ={1 0} be the unit vector
representing the x-axis

The projections of the data in D on x-axis are Dx



Representation of the data along X-Axis

Height Weight Dx
1|6 500 (., (1 = 6
2 55 600 0

3 6.5 550

4 3 200

5 35 150

6 4 250

Let D be the dataset and

Se— Ul

xT ={1 0} be the unit vector
representing the x-axis

The projections of the data in D on x-axis are Dx



Height Weight

1 6 500
2 |55 600
3 6.5 550
4 3 200
5 35 150
6 4 250

Representation of the data along X-Axis

Dx
X 6
11| - 55

Let D be the dataset and

xT ={1 0} be the unit vector
representing the x-axis

The projections of the data in D on x-axis are Dx

Se— Ul




Representation of the data along X-Axis

Height Weight Dx
1 6 500 6
2 55 600 55

X :

3[65 55 |-[{]= 65
4 3 200 0
5 35 150
6 4 250

Let D be the dataset and

Se— Ul

xT ={1 0} be the unit vector
representing the x-axis

The projections of the data in D on x-axis are Dx



Representation of the data along X-Axis

Height Weight Dx
1 6 500 6
2 55 600 55
3 65 550 . 6.5
a3 200 |.[7]- 3
5 35 150 0
6 4 250

Let D be the dataset and

Se— Ul

xT ={1 0} be the unit vector
representing the x-axis

The projections of the data in D on x-axis are Dx



Representation of the data along X-Axis

Height Weight Dx
1 6 500 6
2 55 600 55
3 65 550 6.5
4 3 200 3
X
5[35 150 .77 - 35
6 4 250 0

Let D be the dataset and

Se— Ul

xT ={1 0} be the unit vector
representing the x-axis

The projections of the data in D on x-axis are Dx



Representation of the data along X-Axis

Height Weight Dx
1 6 500 6
2 55 600 55
3 6.5 550 6.5
4 3 200 3
5 3.5 150
X 3.5
6 |4 250 [+ [1 1= 24
0
Let D be the dataset and

Se— Ul

xT ={1 0} be the unit vector
representing the x-axis

The projections of the data in D on x-axis are Dx



Height Weight

1|6

2 |55

3 |6.5
4 (3

5 |35

6 (4

500
600

550
200

150

250

Representation of the data along X-Axis

Dx
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Let D be the dataset and

xT ={1 0} be the unit vector
representing the x-axis

The projections of the data in D on x-axis are Dx

Se— Ul




Representation of the data along Y-Axis

Height Weight Dy Weight 4
16 500 6 X 2
2 (55 600 5.5 Y 3
3
6.5 550 6.5 % .
4 |3 200 3
5 (3.5 150 3.5
¥ 6
6 |4 250 4
X 4
Let D be the dataset and X 5
y! ={0 1} be the unit vector

representing the y-axis

The projections of the data in D on y-axis are Dy



Representation of the data along a random vector

Height Weight
1|6 500
2 |55 600
3 6.5 550
4 |3 200
5|35 150
6 |4 250

The projections of the data in D on
A random direction v are Dv
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Projection of a point on a random vector
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<|

Height



Projection of a point on a random vector

Weight 4

<|

c2=a?+ b?

Height

Data Cleaning



Projection of a point on a random vector
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Projection of a point on a random vector

c2=a?+ b?

As b increases,
a decreases

and vice versa
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Height Weight
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Height Weight
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Mean adjusted
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Mean adjusted
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Mean adjusted
h-m w-m
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Best Fit

Sum of Error = p, + p, + p3 + p, + pPs + Pg

Sum of Square Error
= p,° 4 P2+ P+ g+ ps? + pg’

Vector with the

Weight

A

P

<

minimum sum of square error
is the Best fit vector.
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Mean adjusted
h-m w-m
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Best Fit

Sum distance=d, +d,+d; +d, +d; +d,

Sum of square distance
=d,?2+d,2+d;2+d,2+d.2+d.?

Vector with the

Weight

A

maximum sum of square distance
is the Best fit vector.
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Principal Components

Weight

Mean adjusted
h-m w-m

1.25 125 Sum of square distance
0.75 225 =d2+d,2+d2+d.2+d2+d2
1.75 175 Let us say, U is the best fitting unit vector
-1.75 -175
195 225 v is tl.we ?alled . —
1%t Principal Component (eigenvector) / Height
-0.75 -125 &
4
The mean of sum of square distance 5

(variance)
is called Eigenvalue
of the 15t Principal Component




Mean adjusted
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Principal Components

Let u be a vector the vector orthogonal
to

vector v. Then, u is called

2"d Principal Component

Sum of square distance
=d,2+d,2+d;2+d,2+d.2+d;?

The mean of square distance is called | 4

Eigenvalue
of the 2" Principal Component
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Principal Components

Weight
Mean adjusted
h-m w-m

1.25 125 Large the variance, , (1PC)
0.75 225 more is the importance of the PC .
175 175 1PC is more important than the
-1.75 -175 2PC g 1

i >
-1.25 -225 :

) Height
-0.75 -125 &

4
> u (2PC)




Data points on Principal Components

Mean adjusted
h-m w-m 1PC  2PC
v (1PC)

1.25 125 x11 x21 2

0.75 225 x12 x22 3
1.75 175 x13 x23 \

-1.75 -175 x14 x24 1
-1.25 -225 x15 x25 /

-0.75 -125 x16  x26 &

4
5 u (2PC)




Data points on Principal Components

Mean adjusted

Projected Data on PCs

Dataset
Y1 Y2 Y3 Yd
Y1 Y21 Y31 Ya1
Y12 Y22 Y32 Ya2
Y13 Y23 Y33 Ya3
Yia Y2, Y3a Yda
Yin Yan Y3n Ydn

Yi—M; Y,—M; Y3—My Ya — My
ma; ma; Mmag Magy,
ma;, ma; Mmag may,
ma;; Ma,; Mag mays
ma,, may, Mag, mag,
ma,, ma;, ma,, magy,

PC, PC, PC, PC,
X11 X21 Xi1 Xd1
X12 X2, Xi2 Xd2
X13 X33 Xk3 Xy3
X14 X4 Xia X4a
X1n Xon Xin Xdn




Dimension Reduction

Mean adjusted

Projected Data on PCs

Dataset
Y1 Y2 Y3 Yd
Y1 Y21 Y31 Ya1
Y12 Y22 Y32 Ya2
Yi3 Y23 Y33 Ya3
Yia Y2, Y3s Yda
Yin Yan Y3n Ydn

Yi—M; Y,—M; Y3—My Ya — My
ma; ma; Mmag Magy,
ma;, ma; Mmag may,
ma;; Ma,; Mag mays
ma,, may, Mag, mag,
ma,, ma;, ma,, magy,

PC, PC, PC, PC,
X11 X1 Xi1 Xq1
X12 X2 Xi2 Xq42
X3 X3 Xi3 X43
X1a X24 Xya Xda
x1n xZn xkn xdn

< k >
“ d >




PCA Theoretical Aspects

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.

vV unit

Y1 Y2 Y3 Y vector

Yu  Ya  Ya o Ya x1 Projection of D on vector v: D.v

Y12 Y2 Y32 Ya2 X2

Y13 Y23 Y33 Ya3 x3 . —
Best fit vector v,

Y1a Y24 Y34 Yaa ) . . —_
vector with maximum variance: maxvar(D. V)

xd v
y1n yZn y3n ydn




Variance of the Projected Points on v

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.

__ Unit

V1 Y2 Ys Yd V vector

Y11 Y21 Y31 Ya1 X, var (D v) —_ ﬁTSﬁ Where S is the covariance

matrix of D

Y12 Y2 VEYS Ya2 X,

Yi3 Y23 Y33 Ya3 X3

Yia Y24 Y34 Yaa
Xy

yln yZn y3n ydn




Variance of the Projected Points on v

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.

Y1 Y2 Y3 Yd v  Dv
Vi1 Va1 R VN X: || p, var (D _ U) — vTSv Where S is the covariance
matrix of D
Y12 Y22 Y32 Ya2 X, || p,
Y13 Y23 Y33 Ya3 X3 || p; Variance of the projected points
n
Y14 Y24 Y34 Yas 1 _\? _ . .
var(D.v) = n (p; — D) Where p is the projected
Xg n—l& sample mean
yln y2n y3n ydn pn




Variance of the Projected Points on v

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.

Dv

Y1 Y2 Y3 Yd v
Y11 Y21 Y31 Ya1 X;
Y12 Y22 Y32 Ya2 X,
Yi3 Ya3 Y33 Ya3 X3
Yia Yaa Y34 Yaa

Xq
Yin Yon Y3n Yan

P1
P2

P3

Pn

Where S is the covariance
matrix of D

var(D.v) = v'Sv

Variance of the projected points
n

1
var(D.v) = — E (p; —P)*>  Where p is the projected
1 sample mean

n

1 — = .

var(D.v) = — Z(dei — de)Z \r;VQ:r:e d is the sample
1



Variance of the Projected Points on v

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.

Dv

Y1 Y2 Y3 Yd v
Y11 Y21 Y31 Ya1 X;
Y12 Y22 Y32 Ya2 X,
Yi3 Ya3 Y33 Ya3 X3
Yia Y4 Y34 Yaa

Xq
Yin Yon Y3n Yan

P1
P2

P3

Pn

Where S is the covariance
matrix of D

var(D.v) = v'Sv

Variance of the projected points
n

1
var(D.v) = — E (p; —P)*>  Where p is the projected
1 sample mean

n

1 — — .

var(D.v) = — Z(dei — de)Z \r;VQ:r:e d is the sample
1

var(D.v) = v'Sv

where S is the covariance matricof Di.e. S =

n

D (di - dy(d; - @)

1

n—1




Best vector that maximizes the variance

var(D.v) = v'Sv

Optimization

max (v’ Sv)
v



Best vector that maximizes the variance

var(D.v) = v'Sv

Optimization

max(vTSv) It is quadratic and has no upper bound
%



Best vector that maximizes the variance

var(D.v) = v'Sv

Optimization

max(vTSv) It is quadratic and has no upper bound
%

Maximize with constraints

v Sv st. viv=1




Best vector that maximizes the variance

var(D.v) = v'Sv

Optimization

max(vTSv) It is quadratic and has no upper bound
%

Maximize

vI'Sv — A(w'v—1) where A Lagrange Multiplier




Best vector that maximizes the variance

Liw, ) =v'Sv—-AwT'v-1)

oL
— =25v—-2Av =0
v

Sv = Av



Best vector that maximizes the variance

Liw, ) =v'Sv—-AwT'v-1)

oL
— =25v—-2Av =0
v

> SVv=AV < Eigenvector expression




Best vector that maximizes the variance

Liw, ) =v'Sv—-AwT'v-1)

oL
— =25v—2Av =0
ov

> SVv=AV < Eigenvector expression

Which Eigenvector ?



Best vector that maximizes the variance

Liw, ) =v'Sv—-AwT'v-1)

oL
— =25v—2Av =0
ov

= Sv=Av
=>viSv=21

= var(Dv) = v'Sv =1 < Largest Eigenvalue

Principal Eigenvector



Dimension Reduction

e 15t Principal Component  => 15t Principal Eigenvector
« 2" Principal Component =>vector perpendicular to 15t PC
=> 2" Principal Eigenvector
» 3" Principal Component =>vector perpendicular to 15t PC and 2" PC

=> 2"d Principal Eigenvector
...50 0N

Select the k principal components and project the data point over the selected eigenvectors



Dimension Reduction

Select the k principal components and project the data point over the selected eigenvectors

U be the matrix whose column vectors are the selected eigenvectors of D such that

15t column vector is the 1 principal eigenvector, 2" is the 2"d eigenvector ....

EV, EV, EV, Vi Y Ys Yo EV, EV, EV,
Pii P21 v Pia Y1 Y21 Y31 e Y X X X1
- P12 P2 Pi2 Y12 Y22 Y32 Ya2 X12 Xy X2
D — DU P13 P2 Pi3 — Yi3 Y23 Y33 Ya3 X13 X3 X3
Pia P2 Pra Yia Y2q Y3a Yaa
X14  Xpg Xiq
Piv Pan P Yin  Van  Van Yar U oxk

nxd

D nxk D



PCA Summary

Covariance Matrix S of the Data matrix D
Estimate Eigenvectors of the S
Select k principal eigenvectors

Project the data matrix on the selected k Eigenvectors



