Principal Component Analysis

Dimensionality Reduction

Two Popular Methods of Dimension Reduction

• Principal Component Analysis (PCA)

Principal Component Analysis is a methods of dimensionality reduction/feature extraction that transform the data from a d-dimensional space to another coordinate system of k - dimensional space where k<=d.

• Latent Semantic Analysis (LSA)

Latent Semantic Analysis is also another methods of dimensionality reduction originally applied for topic modelling in text corpus. In recent time, it has also been applied to various domains.

Principal Component Analysis

Height Weight #Wheel CC

1	6	500	4	899
2	5.5	600	4	1000
3	6.5	550	4	800
4	3	200	2	99
5	3.5	150	2	125
6	4	250	2	100

Visualization of the Data with Single Feature

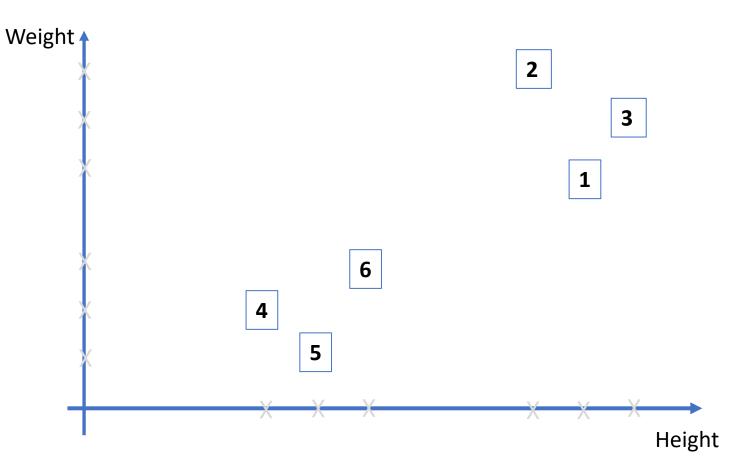
	U	0		00
1	6	500	4	899
2	5.5	600	4	1000
3	6.5	550	4	800
4	3	200	2	99
5	3.5	150	2	125
6	4	250	2	100

Height Weight #Wheel CC

Height

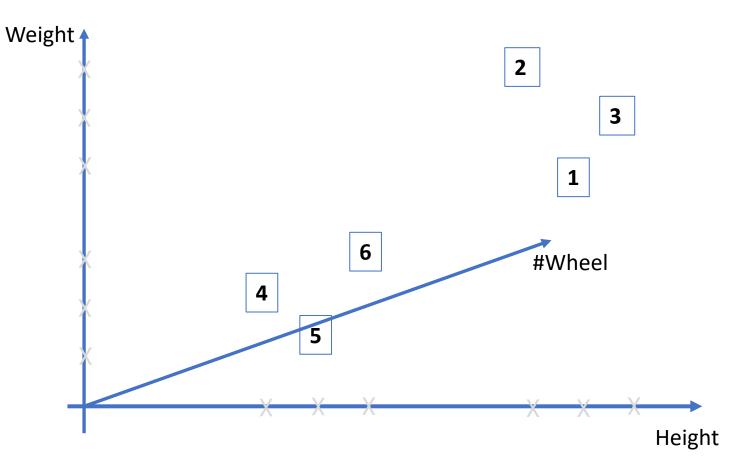
Visualization of the Data with two Features

Height Weight #Wheel CC					
1	6	500	4	899	
2	5.5	600	4	1000	
3	6.5	550	4	800	
4	3	200	2	99	
5	3.5	150	2	125	
6	4	250	2	100	



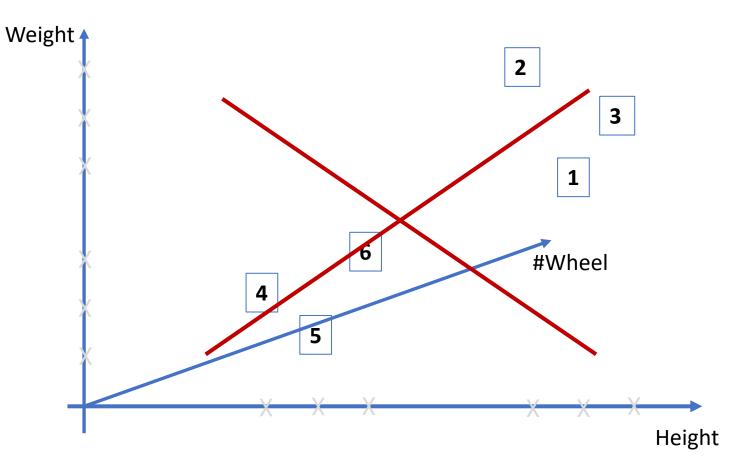
Visualization of the Data with Three Features

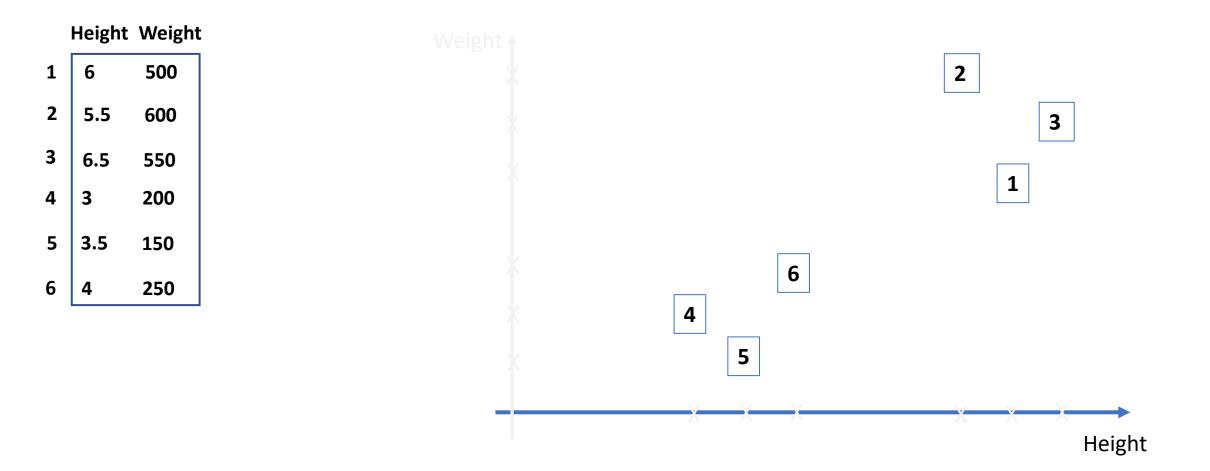
Height Weight #Wheel CC						
1	6	500	4	899		
2	5.5	600	4	1000		
3	6.5	550	4	800		
4	3	200	2	99		
5	3.5	150	2	125		
6	4	250	2	100		

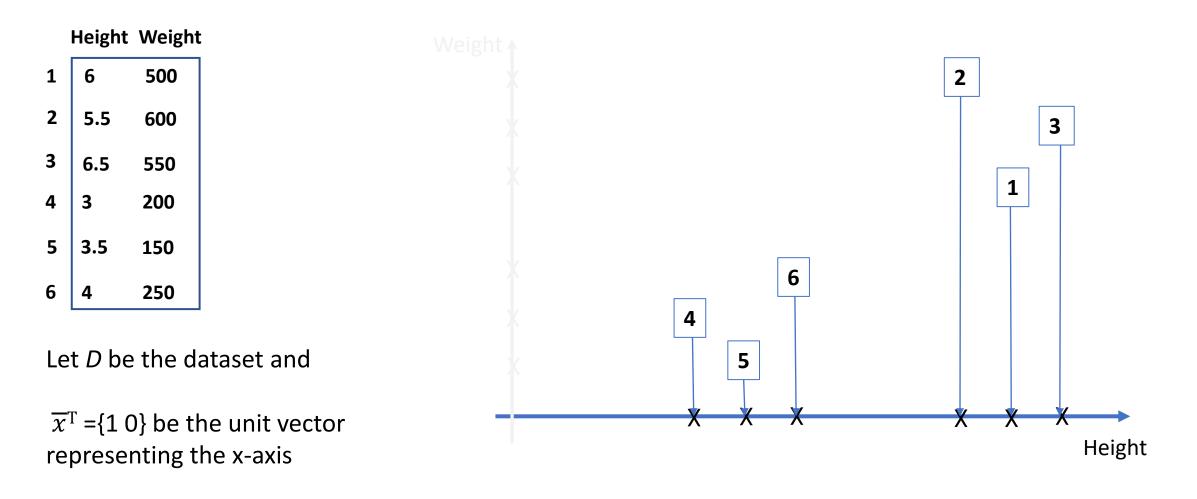


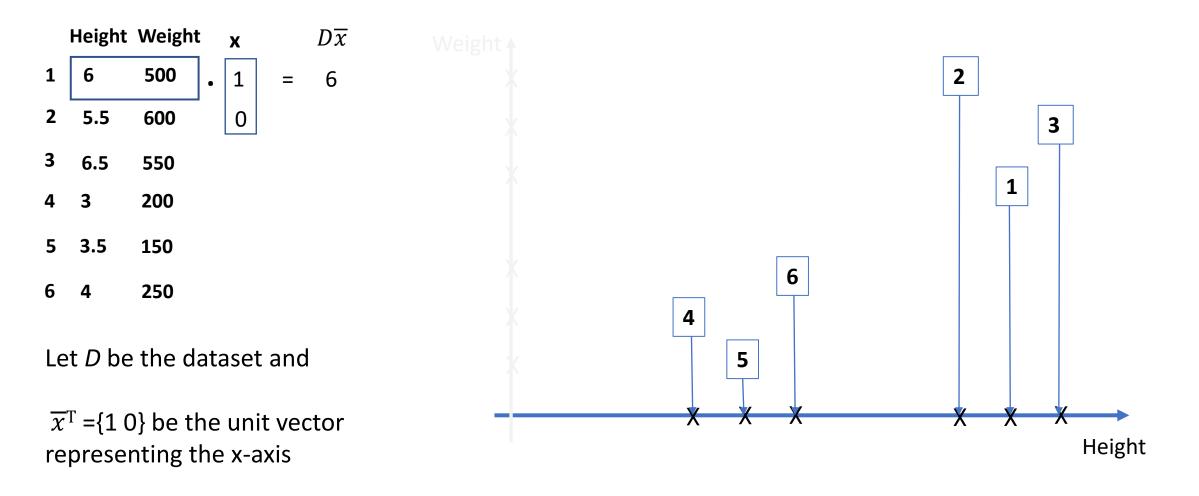
We can not visualize beyond 3 dimensions

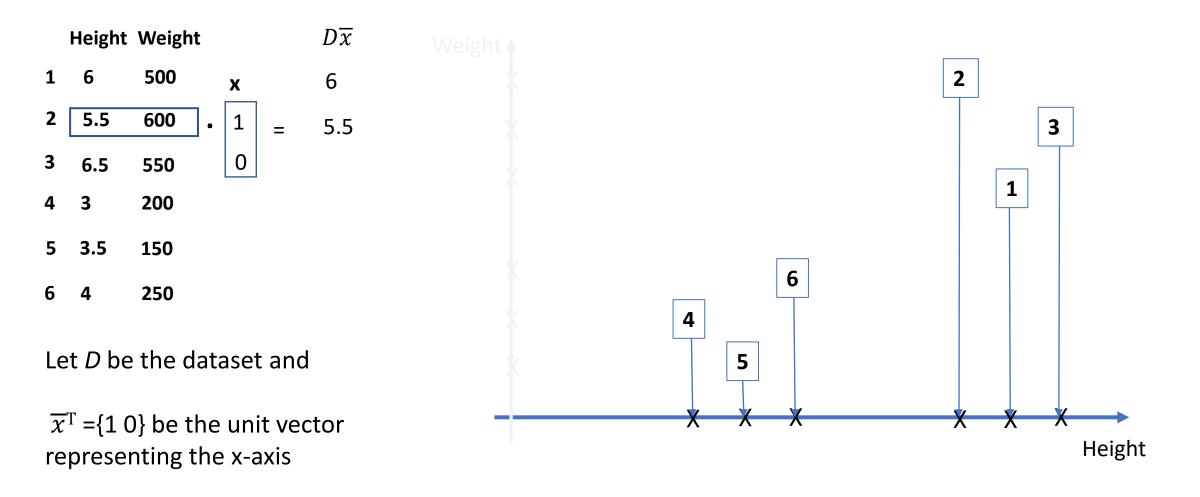
Height Weight #Wheel CC					
1	6	500	4	899	
2	5.5	600	4	1000	
3	6.5	550	4	800	
4	3	200	2	99	
5	3.5	150	2	125	
6	4	250	2	100	

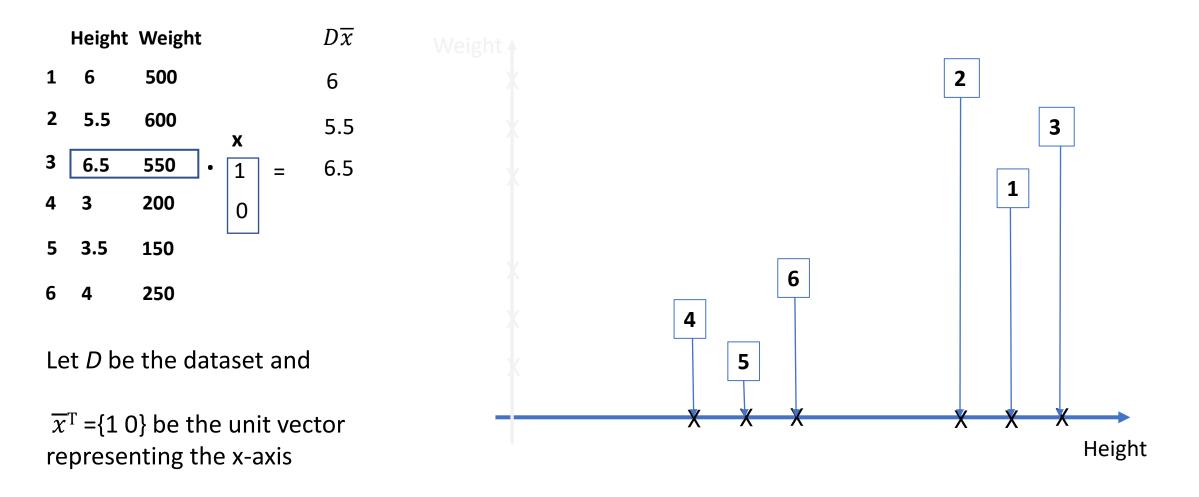


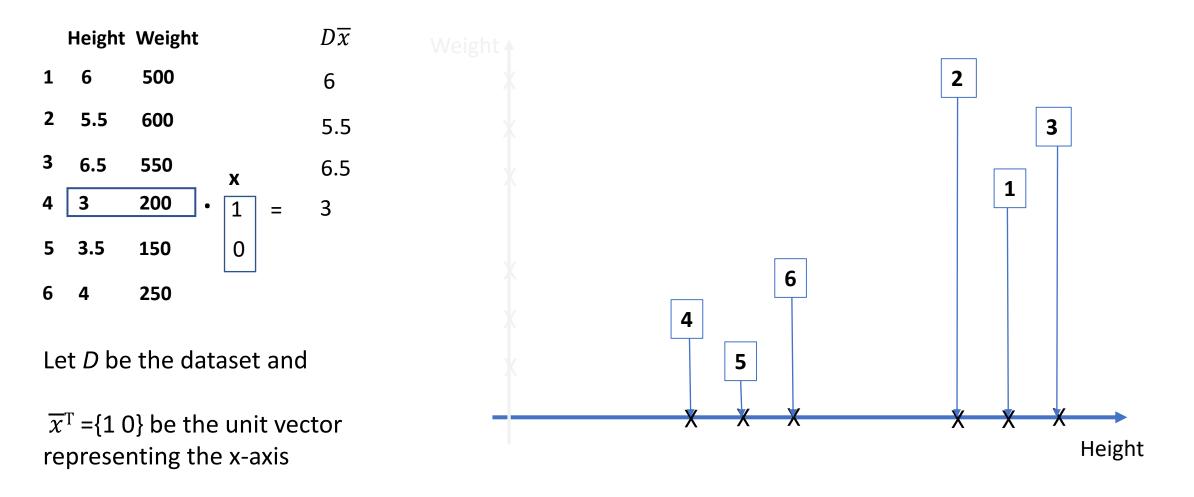


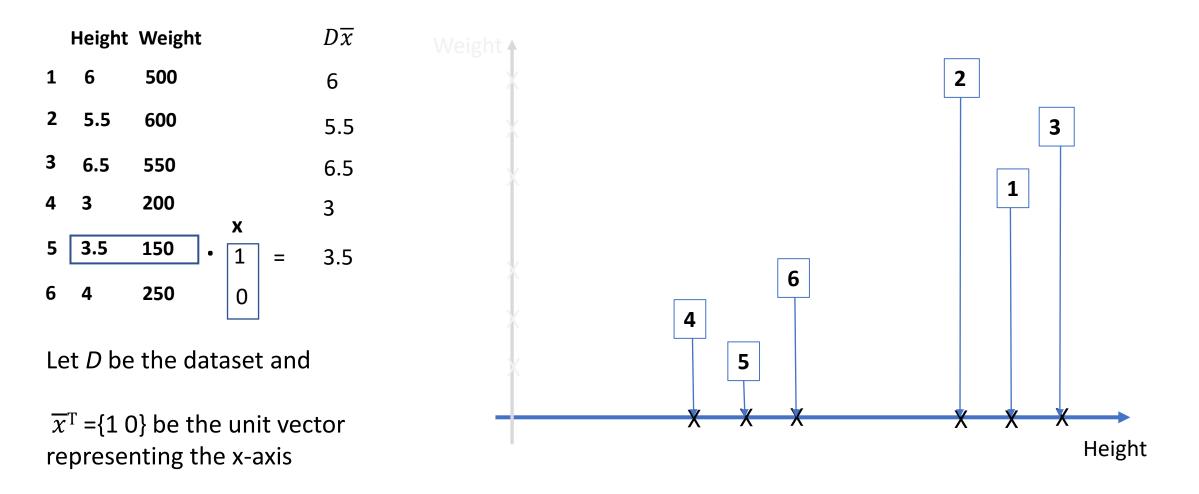


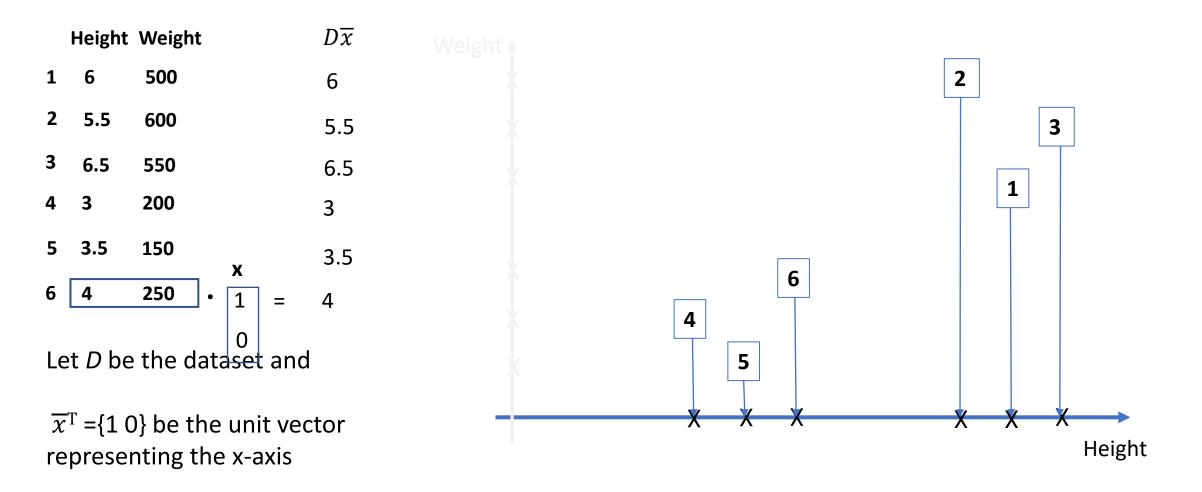


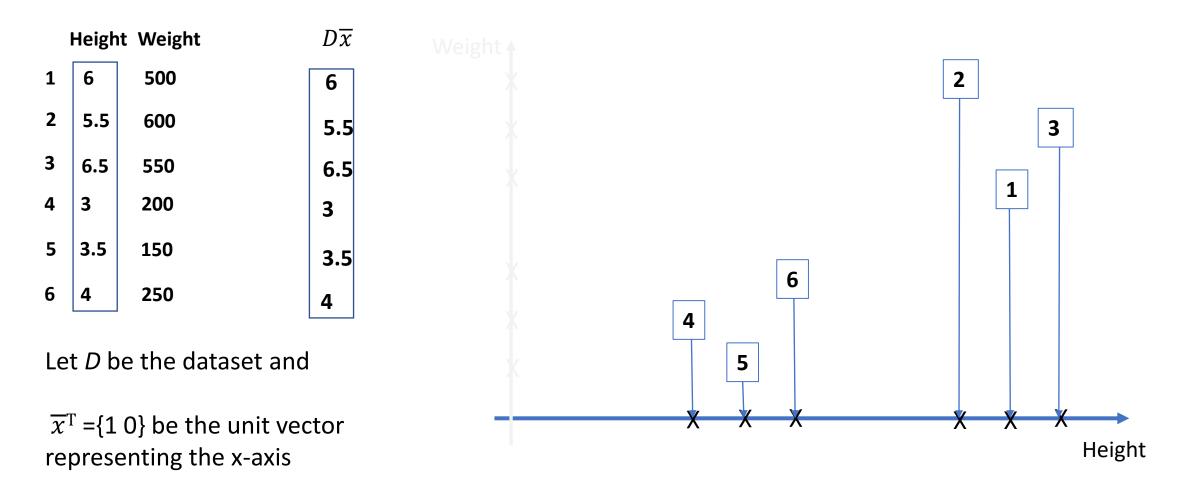


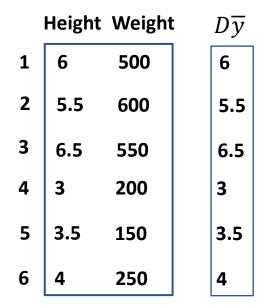






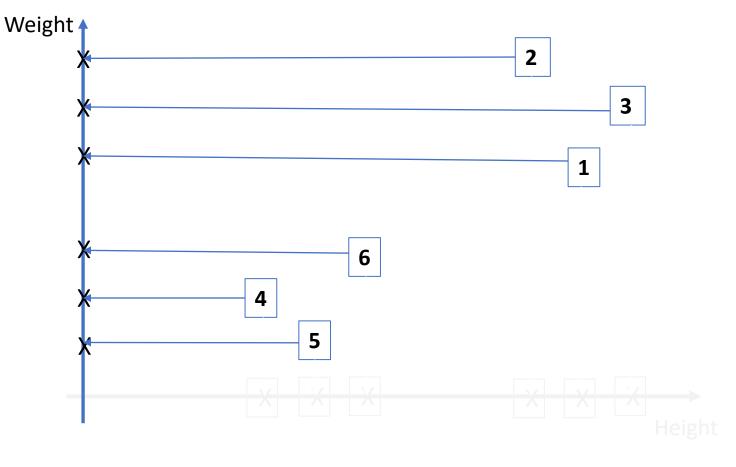




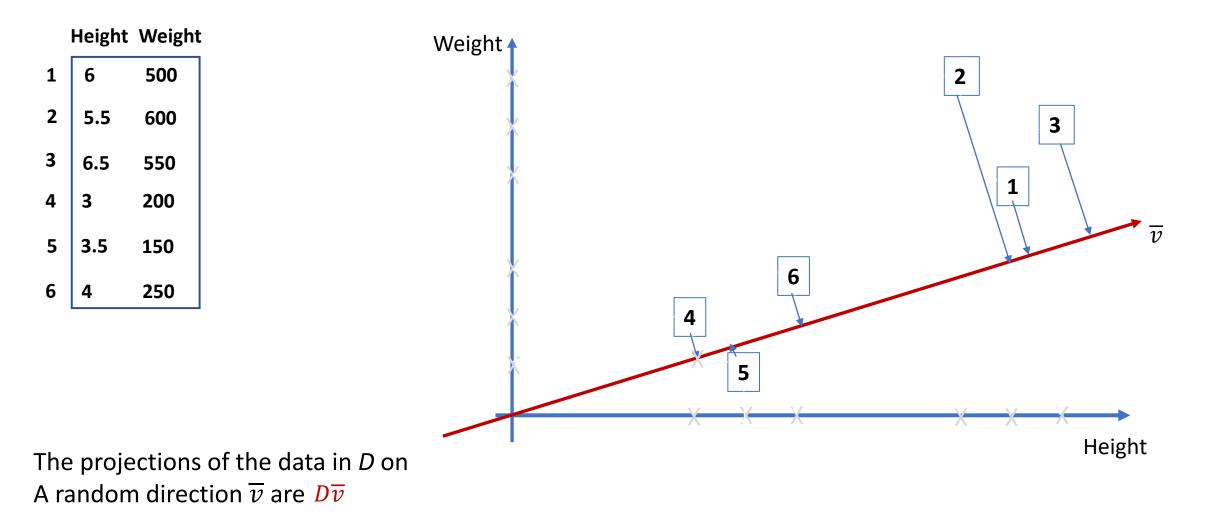


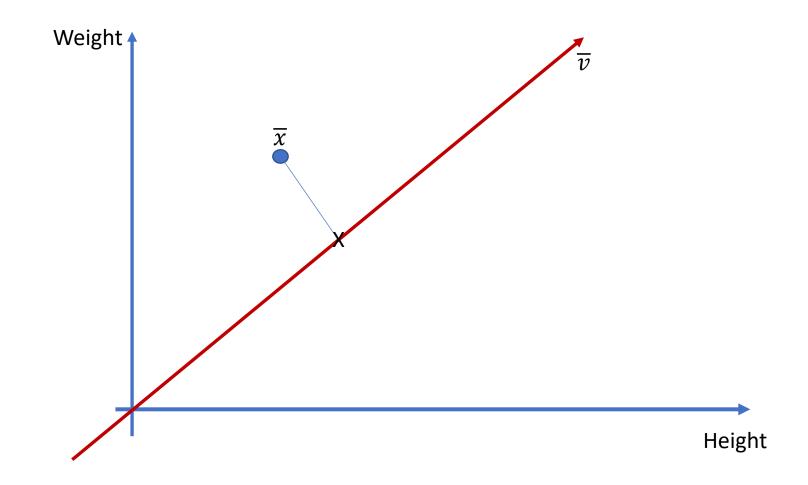
Let *D* be the dataset and

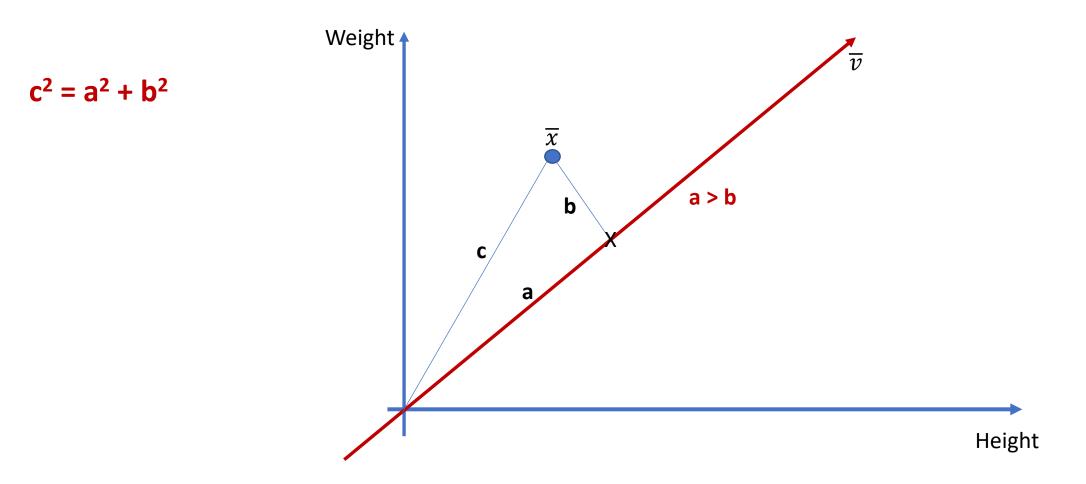
 $\overline{y}^{T} = \{0 \ 1\}$ be the unit vector representing the y-axis

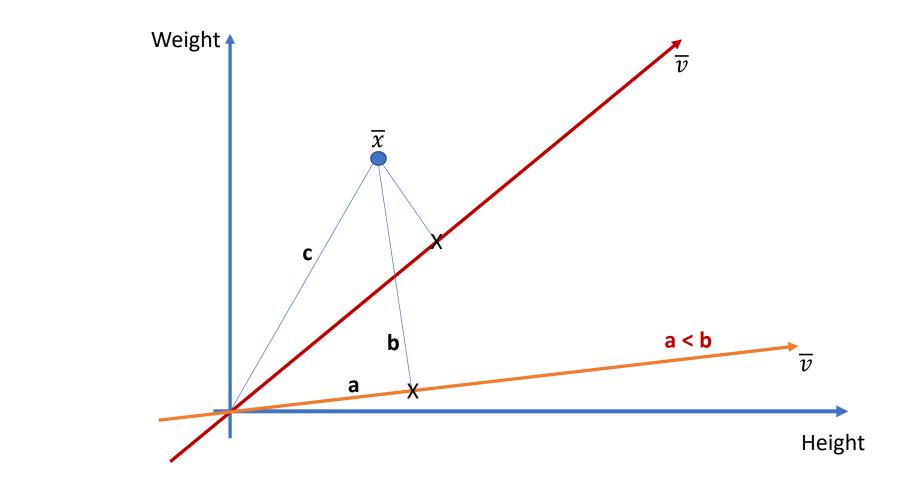


Representation of the data along a random vector

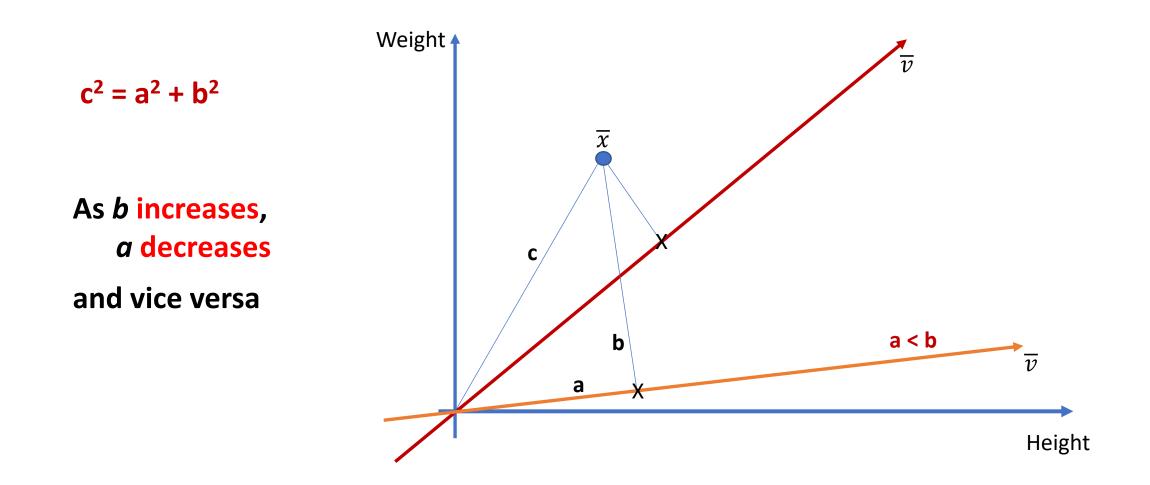




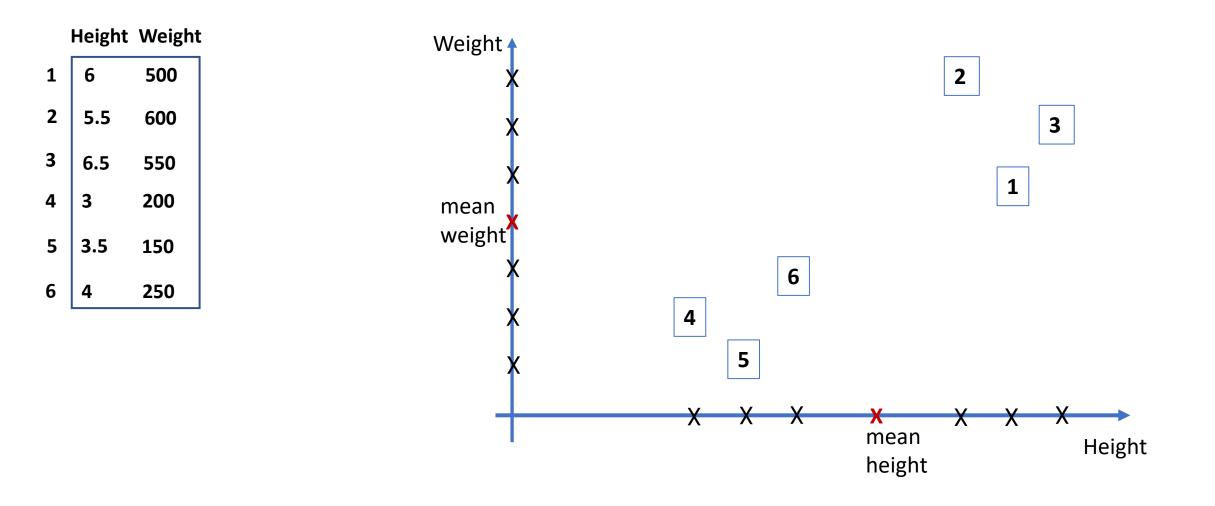




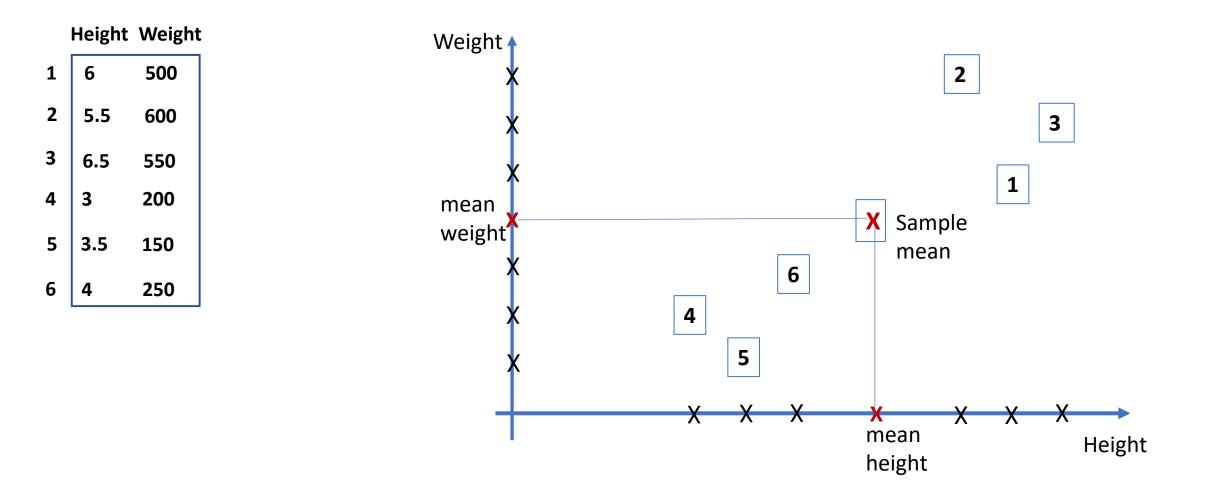
 $c^2 = a^2 + b^2$



Sample Mean

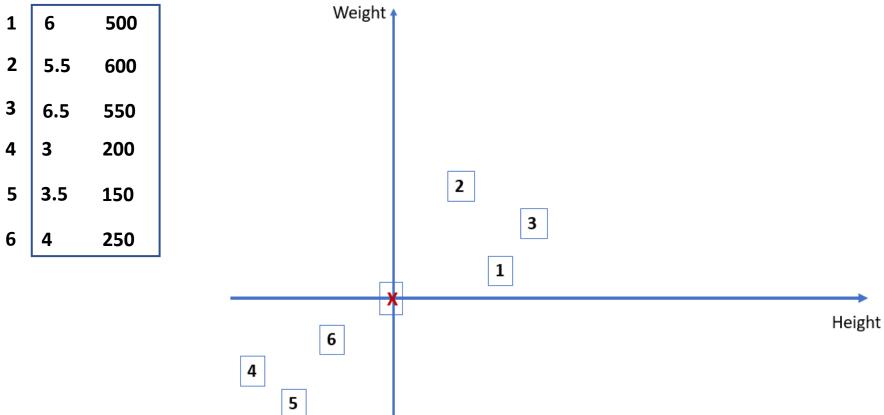


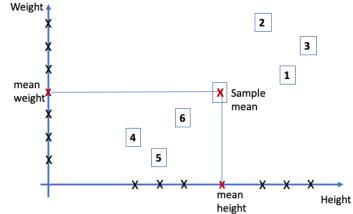
Sample Mean



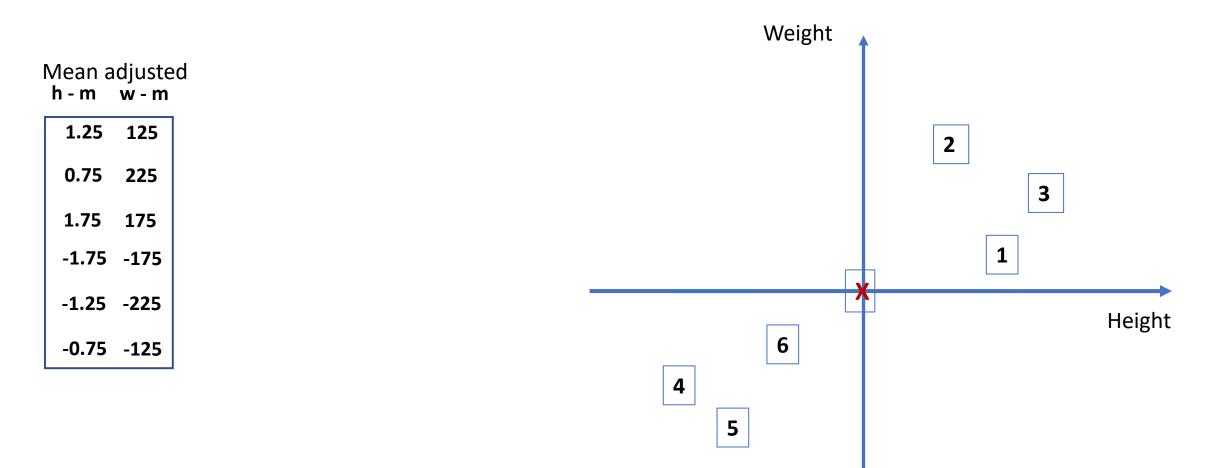
Shifting Mean

Height Weight

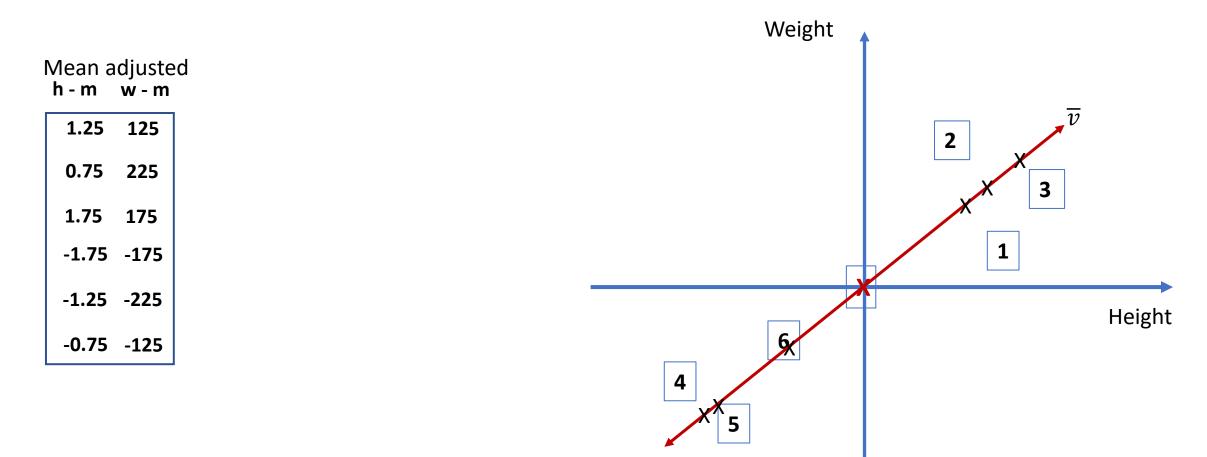




Best Fit?



Best Fit

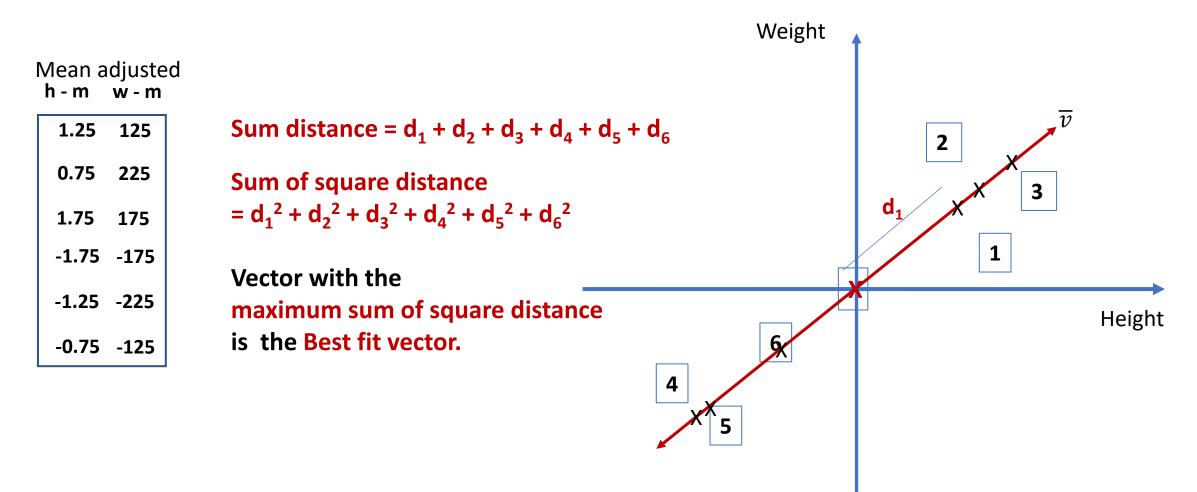


Best Fit

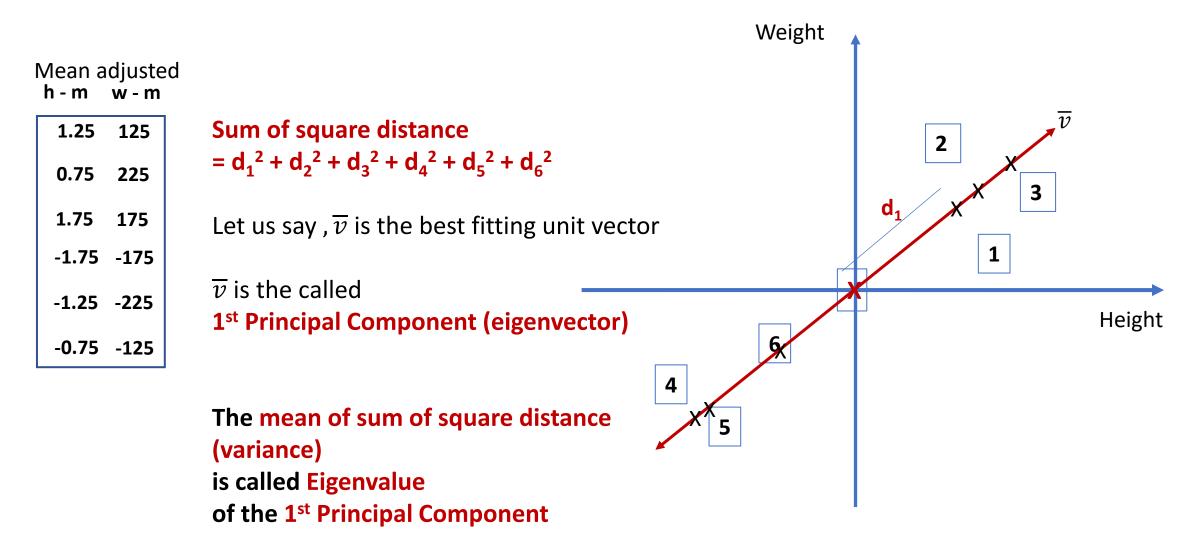
Weight Mean adjusted h-m w-m \overline{v} Sum of Error = $p_1 + p_2 + p_3 + p_4 + p_5 + p_6$ 1.25 125 2 0.75 225 Sum of Square Error 3 $= p_1^2 + p_2^2 + p_3^2 + p_4^2 + p_5^2 + p_6^2$ 1.75 175 -1.75 -175 1 Vector with the -1.25 -225 minimum sum of square error Height is the Best fit vector. -0.75 -125 6 4

5

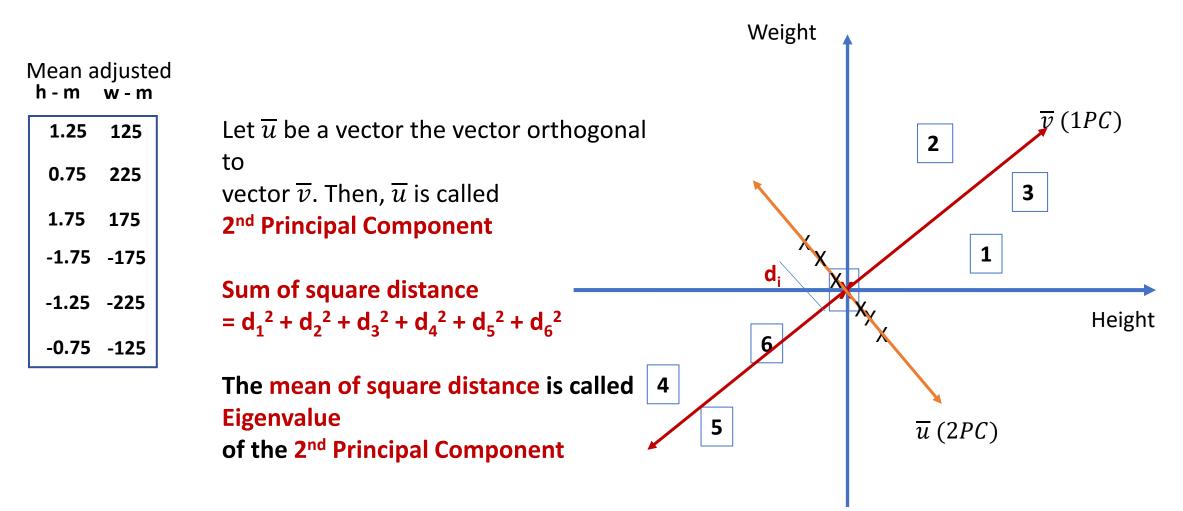
Best Fit



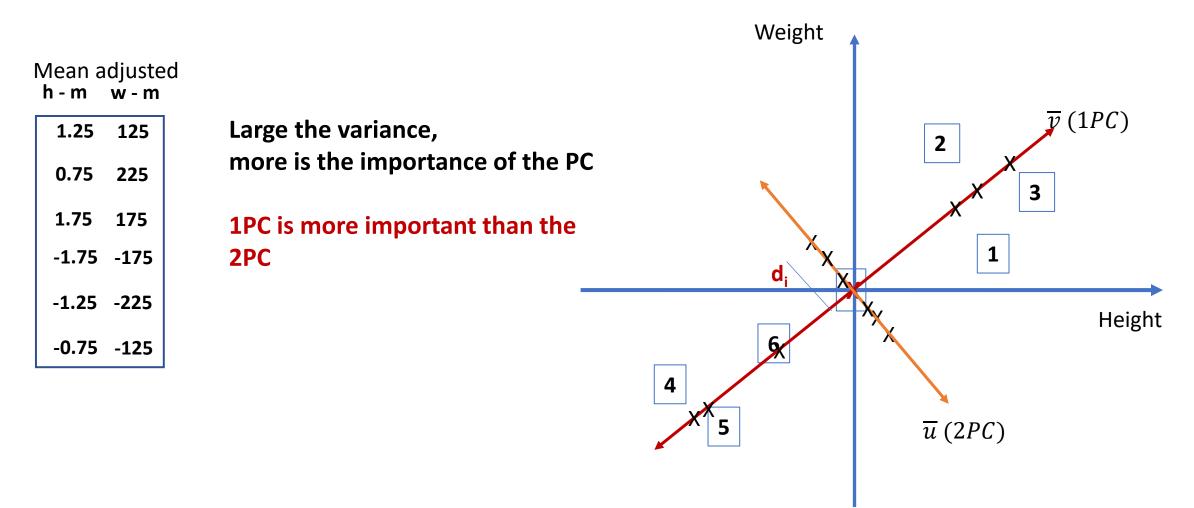
Principal Components



Principal Components

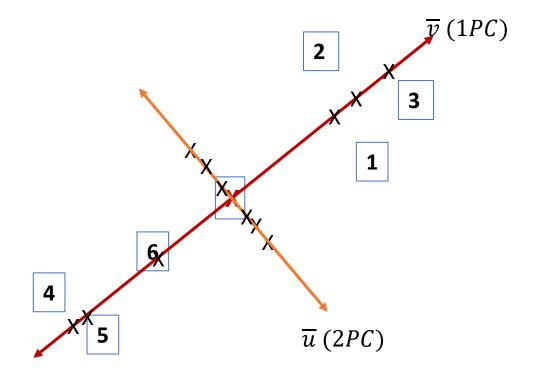


Principal Components

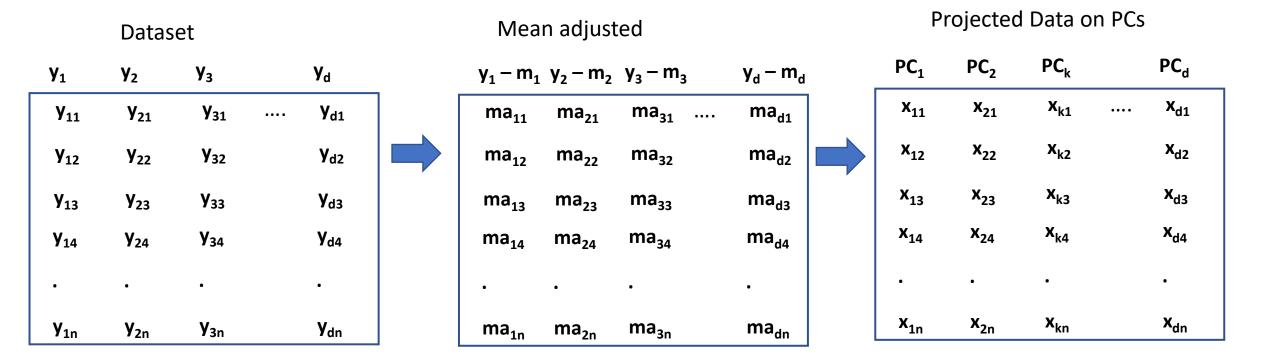


Data points on Principal Components

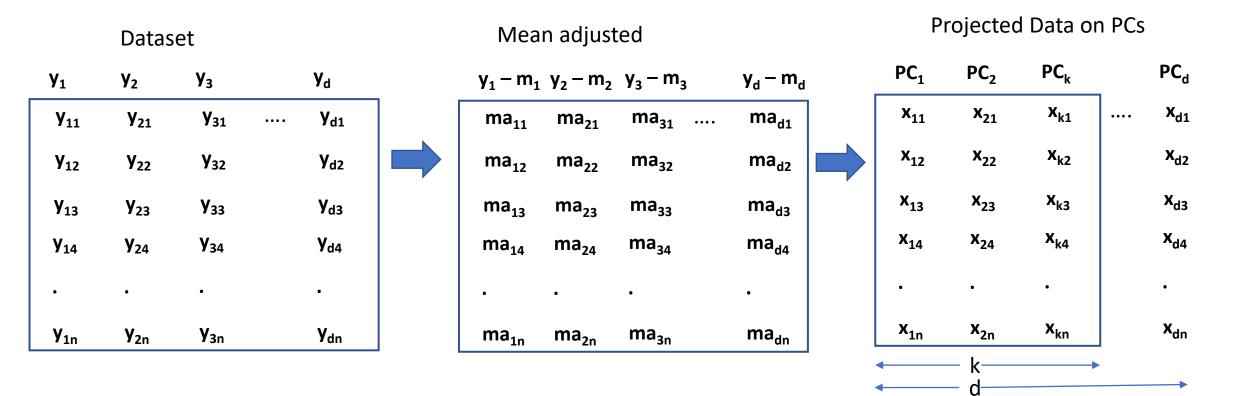
Mean adjusted h - m w - m	1PC 2PC
1.25 125	x11 x21
0.75 225	x12 x22
1.75 175	x13 x23
-1.75 -175	x14 x24
-1.25 -225	x15 x25
-0.75 -125	x16 x26



Data points on Principal Components



Dimension Reduction



K<=d

PCA Theoretical Aspects

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.

Y ₁	¥2	y ₃	Y _d	\overline{v} unit vector
Y ₁₁	Y ₂₁	Y ₃₁	Y _{d1}	x1
Y ₁₂	Y ₂₂	Y ₃₂	y _{d2}	x2
У ₁₃	Y ₂₃	Y ₃₃	У _{d3}	x3
Y ₁₄	У ₂₄	Y ₃₄	Y _{d4}	
	•	•		xd
y _{1n}	y _{2n}	y _{3n}	y _{dn}	

Projection of D on vector \overline{v} : $D. \overline{v}$

Best fit vector \overline{v} , vector with maximum variance: max var(D. \overline{v}) \overline{v}

D

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.

 \mathbf{X}_{1}

X₂

X₃

Xd

Y 1	Y ₂	Y ₃	Yd
Y ₁₁	Y ₂₁	Y ₃₁	Y _{d1}
У ₁₂	Y ₂₂	Y ₃₂	y _{d2}
У 13	У ₂₃	У ₃₃	У _{d3}
Y 14	Y ₂₄	Y ₃₄	Y₀₄
	•	•	
Y 1n	y _{2n}	y _{3n}	y _{dn}

 \overline{v} Unit vector $var(D\overline{v}) = \overline{v}^T S \overline{v}$

Where *S* is the covariance matrix of D

D

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.

У ₁	У ₂	У ₃	y _d		\overline{v}	$D\overline{v}$
Y ₁₁	Y ₂₁	Y ₃₁	••••	y_{d1}	x ₁	p ₁
У ₁₂	Y ₂₂	Y ₃₂		y _{d2}	x ₂	p ₂
У ₁₃	Y ₂₃	У ₃₃		γ_{d3}	x ₃	p ₃
У ₁₄	Y ₂₄	У ₃₄		\mathbf{y}_{d4}		
	•				x _d	
Y _{1n}	y _{2n}	y _{3n}		Y dn		p _n

$$var(D.v) = v^T S v$$

Where *S* is the covariance matrix of D

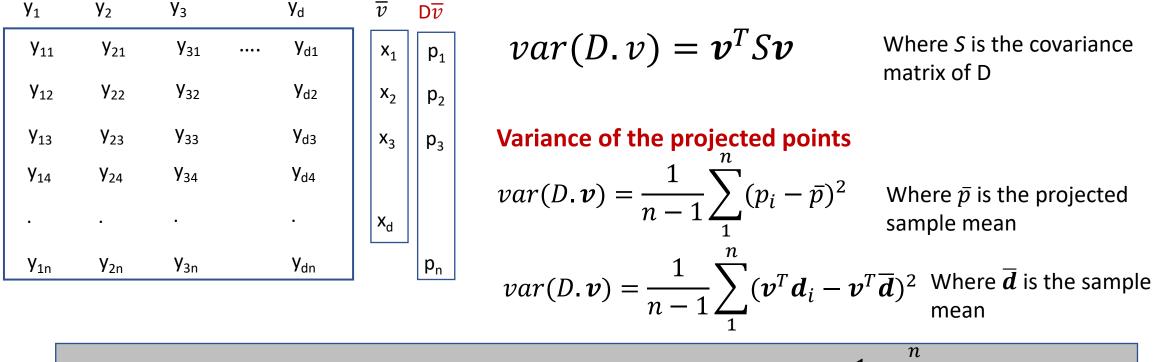
Variance of the projected points				
$var(D.v) = \frac{1}{n-1} \sum_{1}^{n} (p_i - \bar{p})^2$				

Where \bar{p} is the projected sample mean

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.

Y ₁	У ₂	У ₃	Уd	\overline{v} D \overline{v}	
У ₁₁	Y ₂₁	Y ₃₁	Y _{d1}	x ₁ p ₁	$var(D, v) = v^T S v$ Where S is the covariance matrix of D
У ₁₂	Y ₂₂	У ₃₂	y_{d2}	x ₂ p ₂	
У ₁₃	Y ₂₃	У ₃₃	Y _{d3}	x ₃ p ₃	Variance of the projected points n
Y ₁₄	y_{24}	Y ₃₄	y_{d4}		$var(D, v) = \frac{1}{m-1} \sum_{i=1}^{n} (p_i - \bar{p})^2$ Where \bar{p} is the projected
		•		x _d	$n-1\sum_{1}^{n-1}$ sample mean
Y _{1n}	y _{2n}	y _{3n}	y _{dn}	p _n	$var(D, v) = \frac{1}{n-1} \sum_{1}^{n} (v^T d_i - v^T \overline{d})^2$ Where \overline{d} is the sample mean
					$n - 1 \sum_{i=1}^{n-1} (\nu u_i - \nu u) mean$

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.



 $var(D.v) = v^T S v$ where S is the covariance matric of D i.e. $S = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d}) (d_i - \overline{d})^T$

$$var(D,v) = v^T S v$$

Optimization

 $\max_{\boldsymbol{v}}(\boldsymbol{v}^T S \boldsymbol{v})$

$$var(D.v) = v^T S v$$

Optimization

 $\max_{\boldsymbol{v}}(\boldsymbol{v}^T S \boldsymbol{v})$

It is quadratic and has no upper bound

$$var(D.v) = v^T S v$$

Optimization

 $\max_{\boldsymbol{v}}(\boldsymbol{v}^T S \boldsymbol{v}) \qquad \text{It is quadratic and has no upper bound}$

Maximize with constraints

 $\boldsymbol{v}^T S \boldsymbol{v}$ s.t. $\boldsymbol{v}^T \boldsymbol{v} = 1$

$$var(D.v) = v^T S v$$

Optimization

 $\max_{\boldsymbol{v}}(\boldsymbol{v}^T S \boldsymbol{v}) \qquad \text{It is quadratic and has no upper bound}$

Maximize

 $v^T S v - \lambda (v^T v - 1)$ where λ Lagrange Multiplier

$$L(\boldsymbol{\nu},\boldsymbol{\lambda}) = \boldsymbol{\nu}^T S \boldsymbol{\nu} - \boldsymbol{\lambda} (\boldsymbol{\nu}^T \boldsymbol{\nu} - \mathbf{1})$$

$$\frac{\partial L}{\partial \boldsymbol{v}} = 2S\boldsymbol{v} - 2\lambda\boldsymbol{v} = 0$$

$$S\boldsymbol{v} = \lambda\boldsymbol{v}$$

$$L(\boldsymbol{\nu},\boldsymbol{\lambda}) = \boldsymbol{\nu}^T S \boldsymbol{\nu} - \boldsymbol{\lambda} (\boldsymbol{\nu}^T \boldsymbol{\nu} - \mathbf{1})$$

$$\frac{\partial L}{\partial \boldsymbol{v}} = 2S\boldsymbol{v} - 2\lambda\boldsymbol{v} = 0$$

$$L(\boldsymbol{\nu},\boldsymbol{\lambda}) = \boldsymbol{\nu}^T S \boldsymbol{\nu} - \boldsymbol{\lambda} (\boldsymbol{\nu}^T \boldsymbol{\nu} - \mathbf{1})$$

$$\frac{\partial L}{\partial \boldsymbol{v}} = 2S\boldsymbol{v} - 2\lambda\boldsymbol{v} = 0$$

Which Eigenvector ?

$$L(\boldsymbol{\nu},\boldsymbol{\lambda}) = \boldsymbol{\nu}^T S \boldsymbol{\nu} - \boldsymbol{\lambda} (\boldsymbol{\nu}^T \boldsymbol{\nu} - \mathbf{1})$$

$$\frac{\partial L}{\partial \boldsymbol{v}} = 2S\boldsymbol{v} - 2\lambda\boldsymbol{v} = 0$$

$$\Rightarrow Sv = \lambda v$$

$$\Rightarrow v^{T}Sv = \lambda$$

$$\Rightarrow var(Dv) = v^{T}Sv = \lambda$$
Largest Eigenvalue
Principal Eigenvector

Dimension Reduction

- 1st Principal Component => 1st Principal Eigenvector
- 2nd Principal Component => vector perpendicular to 1st PC

=> 2nd Principal Eigenvector

 3rd Principal Component => vector perpendicular to 1st PC and 2nd PC => 2nd Principal Eigenvector

...so on

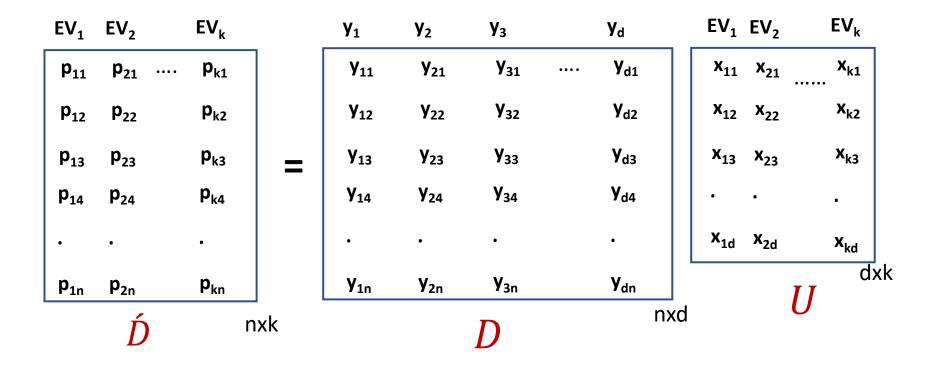
Select the k principal components and project the data point over the selected eigenvectors

Dimension Reduction

Select the k principal components and project the data point over the selected eigenvectors

U be the matrix whose column vectors are the selected eigenvectors of D such that

1st column vector is the 1 principal eigenvector, 2nd is the 2nd eigenvector



 $\hat{D} = DU$

PCA Summary

- Covariance Matrix S of the Data matrix D
- Estimate Eigenvectors of the S
- Select k principal eigenvectors
- Project the data matrix on the selected k Eigenvectors