
Principal Component Analysis



Dimensionality Reduction

Two Popular Methods of Dimension Reduction

• Principal Component Analysis (PCA)

• Latent Semantic Analysis (LSA)

Principal Component Analysis is a methods of dimensionality reduction/feature
extraction that transform the data from a d-dimensional space to another coordinate
system of k - dimensional space where k<=d.

Latent Semantic Analysis is also another methods of dimensionality reduction originally
applied for topic modelling in text corpus. In recent time, it has also been applied to
various domains.
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Visualization of the Data with Single Feature
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Visualization of the Data with two Features
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Visualization of the Data with Three Features



We can not visualize beyond 3 dimensions
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Representation of the data along X-Axis
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Representation of the data along X-Axis
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Let D be the dataset and

𝑥T ={1 0} be the unit vector 
representing the x-axis

The projections of the data in D on x-axis are 



Representation of the data along X-Axis
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Representation of the data along X-Axis

Height

6

5.5

6.5

3

3.5

4

Weight

500

600

550

200

150

250

1

2

3

4

5

6

☓ ☓ ☓ ☓ ☓ ☓

☓

☓

☓

☓

☓

☓

5

4

6

2

1

3

Height

Weight

𝐷𝑥

Let D be the dataset and

𝑥T ={1 0} be the unit vector 
representing the x-axis

The projections of the data in D on x-axis are 

1

0

x 6

. 5.5=

𝐷𝑥



Representation of the data along X-Axis
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Representation of the data along X-Axis

Height

6

5.5

6.5

3

3.5

4

Weight

500

600

550

200

150

250

1

2

3

4

5

6

☓ ☓ ☓ ☓ ☓ ☓

☓

☓

☓

☓

☓

☓

5

4

6

2

1

3

Height

Weight

𝐷𝑥

Let D be the dataset and

𝑥T ={1 0} be the unit vector 
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Representation of the data along X-Axis
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Representation of the data along X-Axis
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Representation of the data along X-Axis
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Representation of the data along Y-Axis

Let D be the dataset and

𝑦T ={0 1} be the unit vector 
representing the y-axis

The projections of the data in D on y-axis are 𝐷𝑦
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The projections of the data in D on 
A random direction 𝑣 are 𝐷𝑣

Representation of the data along a random vector
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Data Cleaning
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Best Fit?
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Principal Components
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Data points on Principal Components
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Dimension Reduction 
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PCA Theoretical Aspects

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.
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Variance of the Projected Points on ҧ𝑣

Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.
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Let D be the dataset with n number of samples and each sample is defined by a d dimensional features.
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Variance of the Projected Points on ҧ𝑣



Best vector that maximizes the variance

𝑣𝑎𝑟(𝐷. 𝑣) = 𝒗𝑇𝑆𝒗

Optimization

max(𝒗𝑇𝑆𝒗)
𝒗



𝑣𝑎𝑟(𝐷. 𝑣) = 𝒗𝑇𝑆𝒗

Optimization

max(𝒗𝑇𝑆𝒗)
𝒗

It is quadratic and has no upper bound

Best vector that maximizes the variance



𝑣𝑎𝑟(𝐷. 𝑣) = 𝒗𝑇𝑆𝒗

Optimization

max(𝒗𝑇𝑆𝒗)
𝒗

It is quadratic and has no upper bound

𝒗𝑇𝑆𝒗

Maximize with constraints

s.t. 𝒗𝑇𝒗 = 1

Best vector that maximizes the variance



𝑣𝑎𝑟(𝐷. 𝑣) = 𝒗𝑇𝑆𝒗

Optimization

max(𝒗𝑇𝑆𝒗)
𝒗

It is quadratic and has no upper bound

𝒗𝑇𝑆𝒗 − 𝝀(𝒗𝑻𝒗 − 𝟏)

Maximize

where 𝝀 Lagrange Multiplier

Best vector that maximizes the variance



𝐿 𝒗, 𝜆 = 𝒗𝑇𝑆𝒗 − 𝝀(𝒗𝑻𝒗 − 𝟏)

𝜕𝐿

𝜕𝒗
= 2𝑆𝒗 − 2𝜆𝒗 = 0

𝑆𝒗 = 𝜆𝒗

Best vector that maximizes the variance



𝐿 𝒗, 𝜆 = 𝒗𝑇𝑆𝒗 − 𝝀(𝒗𝑻𝒗 − 𝟏)

𝜕𝐿

𝜕𝒗
= 2𝑆𝒗 − 2𝜆𝒗 = 0

⇒ 𝑆𝒗 = 𝜆𝒗 Eigenvector expression

Best vector that maximizes the variance



𝐿 𝒗, 𝜆 = 𝒗𝑇𝑆𝒗 − 𝝀(𝒗𝑻𝒗 − 𝟏)

𝜕𝐿

𝜕𝒗
= 2𝑆𝒗 − 2𝜆𝒗 = 0

⇒ 𝑆𝒗 = 𝜆𝒗 Eigenvector expression

Which Eigenvector ?

Best vector that maximizes the variance



𝐿 𝒗, 𝜆 = 𝒗𝑇𝑆𝒗 − 𝝀(𝒗𝑻𝒗 − 𝟏)

𝜕𝐿

𝜕𝒗
= 2𝑆𝒗 − 2𝜆𝒗 = 0

⇒ 𝑆𝒗 = 𝜆𝒗

⇒ 𝒗𝑇𝑆𝒗 = 𝜆

⇒ 𝑣𝑎𝑟 𝐷𝒗 = 𝒗𝑇𝑆𝒗 = 𝜆 Largest Eigenvalue

Principal Eigenvector

Best vector that maximizes the variance



Dimension Reduction

• 1st Principal Component => 1st Principal Eigenvector

• 2nd Principal Component => vector perpendicular to 1st PC 

=> 2nd Principal Eigenvector

• 3rd Principal Component => vector perpendicular to 1st PC and 2nd PC

=> 2nd Principal Eigenvector
…so on

Select the k principal components and project the data point over the selected eigenvectors



Dimension Reduction

Select the k principal components and project the data point over the selected eigenvectors

ሖ𝐷 = 𝐷𝑈

U be the matrix whose column vectors are the selected eigenvectors of D such that 

1st column vector is the 1 principal eigenvector, 2nd is the 2nd eigenvector  ….

EVk

xk1

xk2

xk3

.

xkd

EV2

x21

x22

x23

.

x2d

EV1

x11

x12

x13

.

x1d

……

y3

y31

y32

y33

y34

.

y3n

yd

yd1

yd2

yd3

yd4

.

ydn

y2

y21

y22

y23

y24

.

y2n

y1

y11

y12

y13

y14

.

y1n

….

EVk

pk1

pk2

pk3

pk4

.

pkn

EV2

p21

p22

p23

p24

.

p2n

EV1

p11

p12

p13

p14

.

p1n

….

=

ሖ𝐷 𝐷
𝑈

nxk nxd

dxk



PCA Summary

• Covariance Matrix S of the Data matrix D

• Estimate Eigenvectors of the S

• Select k principal eigenvectors

• Project the data matrix on the selected k Eigenvectors


