Bias in Neural Networks

Without Bias

$$
\bar{y}=\operatorname{Sigmoid}\left(\operatorname{Sigmoid}\left(\bar{x}^{T} W\right) \cdot V\right)
$$

What is a Bias?

[It is easier to realize from a linear function]

What is a Bias?

$$
y=m x
$$

What is a Bias?

$y=m x$

[It represents a line passing through origin. With different values of m, we get different lines passing through origin.]

What is a Bias?

$y=m x+c$

[If I want to move parallelly, I would need to add an intercept c. Here, c is a bias, which allows to move the line flexibly. So, the idea of adding a bias to a model is to make the model more flexible to fit into the problem better]

MLP with Bias

No Bias

[Let us see this simple MLP with no hidden layer.]

MLP with Bias

No Bias

[Let us see this simple MLP with no hidden layer. It is equivalent to linear function $y=m x$ without bias]

MLP with Bias

$y=m x+c$

[Now, let us add bias. It is equivalent to the linear function $y=m x+c$]

MLP with Bias

[To generalize, we can add bias to MLP as shown in figure. We are adding bias to hidden layer]

MLP with Bias

[It allows the activation function to shift by a factor defined by the bias and its corresponding weight]

MLP with Bias

$$
h_{i}=\sigma\left(\sum_{j} x_{j} W_{j i}+B_{j} b_{i}\right) \quad \text { Where } B_{j} \text { is bias weight of the node } \mathrm{j} .
$$

MLP with Bias

MLP with Bias

Summary

- Bias allows the output vector to shift by a factor defined by the bias and its corresponding weight making the model more flexible.
- Biases are hyperparameter defined by users
- The weights associated with the biases are learnable parameters.

