

Some Popular CNN
Embedding models

VGG-16

Original paper: https://arxiv.org/abs/1409.1556

https://arxiv.org/abs/1409.1556

VGG-16

1. VGG-16 architecture consists of 12 convolutional layers, and 4 fully connected layers.

2. 138 millions parameters.

Original paper: https://arxiv.org/abs/1409.1556

https://arxiv.org/abs/1409.1556

Layer #filters Filter size Stride Size of feature map Activation function

Input - - - 224 x 224 x 3 -

2 x Conv 64 3 x 3 1 224 x 224 x 64 ReLu

MaxPool - 3 x 3 1 224 x 224 x 64 -

2 x Conv 128 5 x 5 1 112 x 112 x 128 ReLu

MaxPool - 3 x 3 2 56 x 56 x 128 -

2 x Conv 256 3 x 3 1 56 x 56 x 256 ReLu

MaxPool - 3 x 3 2 28 x 28 x 256 -

3 x Conv 512 3 x 3 1 28 x 28 x 512 ReLu

MaxPool - 3 x 3 2 14 x 14 x 512 -

3 x Conv 512 3 x 3 1 14 x 14 x 512 ReLu

MaxPool - 3 x 3 2 7 x 7 x 512 -

FC1 - - - 25088 ReLu

FC2 - - - 4096 ReLu

FC3 - - - 4096 ReLu

Output - - - 10000 Softmax

AlexNet

1. AlexNet architecture consists of 5 convolutional layers, 3 max-pooling layers, 2 normalization
layers, 2 fully connected layers, and 1 softmax layer.

2. Each convolutional layer consists of convolutional filters and a nonlinear activation function
ReLU.

3. 61 millions parameters

Layer #filters Filter size Stride Padding Size of feature map Activation function

Input - - - - 227 x 227 x 3 -

Conv 1 96 11 x 11 4 - 55 x 55 x 96 ReLu

MaxPool 1 - 3 x 3 2 - 27 x 27 x 96 -

Conv 2 256 5 x 5 1 2 27 x 27 x 256 ReLu

MaxPool 2 - 3 x 3 2 - 13 x 13 x 256 -

Conv 3 384 3 x 3 1 1 13 x 13 x 384 ReLu

Conv 4 384 3 x 3 1 1 13 x 13 x 384 ReLu

Conv 5 256 3 x 3 1 1 13 x 13 x 256 ReLu

MaxPool 2 - 3 x 3 2 - 6 x 6 x 256 -

Dropout 1 rate=0.5 - - - 6 x 6 x 256 -

FC1 - - - - 4096 ReLu

Dropout 1 rate=0.5 - - - 4096 -

FC2 - - - - 4096 ReLu

FC3 - - - - 1000 Softmax

ResNet

Residual Block

● Residual blocks is that each layer is fed to the
next layer of the network and also directly to the
next layers skipping between a few layers in
between.

● Residual blocks allow you to train much deeper
neural networks.

ResNet-34

ResNet-34 is inspired by VGG-19. Its difference is it has residual connections.

63.5 Million parameters

Original paper: https://arxiv.org/abs/1512.03385v1

https://arxiv.org/abs/1512.03385v1

Inception

All the networks are developed to go deeper, but Inception introduce
the concept to go wider. Its main component is the inception module

Inception module

● An Inception Module consists of the following components
● Input layer
● filters with multiple sizes
● Max pooling layer
● Concatenation layer

• Among the filters, it uses 1x1 because it learns patterns across the depth of the input

• Filters of other size (it used 3x3 and 5x5) enable the network to learn various spatial patterns at different scales
as a result of the varying conv filter sizes.

Inception v1(GoogLeNet)

Original paper: https://www.arxiv.org/pdf/1512.00567v1.pdf

● The naive inception module allows for the
utilisation of varying convolutional filter sizes
to learn spatial patterns at different scales.
But the problems with the naive inception
module is that it can quickly accumulate
substantial computational cost.

● The benefits of using the Inception
architecture is lost to the massive
computational disadvantage.

https://www.arxiv.org/pdf/1512.00567v1.pdf

Inception v1(GoogLeNet)

Original paper: https://www.arxiv.org/pdf/1512.00567v1.pdf

The challenge in naive inception module is
addressed by introducing 1x1 conv as shown in
the figure

https://www.arxiv.org/pdf/1512.00567v1.pdf

Inception v1(GoogLeNet)

Original paper: https://www.arxiv.org/pdf/1512.00567v1.pdf

https://www.arxiv.org/pdf/1512.00567v1.pdf

Inception v2

Original paper: https://arxiv.org/pdf/1512.00567v3.pdf

● Inception v2 and Inception v3 were presented in the same
paper.

● The authors proposed a number of upgrades to the version 1
which increased the accuracy and reduced the
computational complexity.

Upgrades in v1 to get v2

● Reduce time: Factorize convolutions of filter size nxn to a
combination of 1xn and nx1 convolutions as shown in the
figure. For example, a 3x3 convolution is equivalent to first
performing a 1x3 convolution, and then performing a 3x1
convolution on its output.

● Increase accuracy: The filter in the module were expanded
(made wider instead of deeper) to remove the
representational bottleneck. If the module was made
deeper instead, there would be excessive reduction in
dimensions, and hence loss of information.

https://arxiv.org/pdf/1512.00567v3.pdf

Inception v3 is the same architecture as v2 (minor changes) with different training algorithm (RMSprop, label smoothing
regularizer, adding an auxiliary head with batch norm to improve training etc).

Inception v3

Inception v4

Ity tries to make the modules more uniform. The authors noticed that some of the modules were more complicated than
necessary. Removing and modification tho those unnecessary complicated modules enable the model to boost
performance

Some other CNN
● Xception
● MobileNet
● DenseNet
● EfficientNet

https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1905.11946

Pre-trained CNN models

● Pre-trained model are used in transfer learning (Transfer learning is a machine learning method where a
model developed for a task is reused as the starting point for a model on a second task.)

● Most of the pretrained version of all the models (except for AlexNet and UNet) are provided by Keras.
https://keras.io/api/applications/ (Pretrained AlexNet is available in pytorch
https://pytorch.org/hub/pytorch_vision_alexnet/)

● All of them are trained on ImageNet data.
● Imagenet is a large collection of image data containing 1000 categories of images.
● These pretrained models are capable of classifying any image that falls into these 1000 categories of images.
● Some well-known articles discussing transfer learning using pretrained model:

● https://machinelearningmastery.com/use-pre-trained-vgg-model-classify-objects-photographs/
● https://towardsdatascience.com/how-to-use-a-pre-trained-model-vgg-for-image-classification-

8dd7c4a4a517
● https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3

https://keras.io/api/applications/
https://pytorch.org/hub/pytorch_vision_alexnet/
https://image-net.org/challenges/LSVRC/index.php
https://machinelearningmastery.com/use-pre-trained-vgg-model-classify-objects-photographs/
https://towardsdatascience.com/how-to-use-a-pre-trained-model-vgg-for-image-classification-8dd7c4a4a517
https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3

