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Introduction

Outline

What are views?

Examples
Definitions
o Supervised learning
e Unsupervised learning
e Data
e Single view
o Multi view

@ Dimensionality reduction
e Single view
o Principal Component Analysis (unsupervised)
o Linear Discriminant Analysis (supervised )
o Multi view
o Canonical Correlation Analysis (unsupervised)
o Linear Discriminant Analysis (supervised)

@ An interesting application - TM estimation and anomaly detection
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Views
What are views?

Definition
Oxford dictionary meanings

@ Ability to see something or to be seen from a particular place

@ A particular way of considering or regarding something; an attitude or
opinion

@ Data acquired from one sensor - forms a single view of data

@ Data acquired from one sensor with multiple perspectives - forms multiple
views of data

@ Data derived by observing single sensor data from multiple perspectives

@ Data acquired using multiple feature extractors from one sensor - forms
multiple views of data

@ Data acquired from random sampling from a given distribution - multiple
views of data?

@ Data acquired from multiple sensors - forms multiple views of data
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Example 1 - One sensor multiple perspectives

View 1 - 90° Right View 2 - 90° Left

View 5 —45° Left

Figure 1: Pose variations. source: unknown
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Example 2 - One sensor and multiple derivations

source: google images
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Example 3 - One sensor and multiple features

source: google images

Figure 7: Edge features Figure 8: Histogram Oriented Gradient

features
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VT
Example 4 - Random Sampling

Six datasets

Hiit

Figure 9: Six random samples of the original dataset
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Def I Views

Example 5a - Multiple Sensors

l— View 1 — Images (Histogram, SIFT features) —I

The Starry Night is an oil on canvas by the Dutch post- Salvador Dali was a prominent Spanish surrealist born in
impressionist painter Vincent van Gogh. Painted in June 1889, | | Figueres, Catalonia, Spain. The Persistence of Memory

it depicts the view from the east-facing window of his asylum (Catalan: La persisténcia de la memaéria) is a 1931 painting by
room, just before sunrise. him, and is one of his most recognizable works.

I— View 2 — Text about the image —I

Figure 10: Image and Text. source: unknown
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VT
Example 5b - Multiple Authors

View 1 - English
Chapter 1

Mr. Sherlock Holmes

Mr. Sherlock Holmes, who was usually very late in the mornings, save upon those not
infrequent occasions when he was up all night, was seated at the breakfast table. | stood
Upon the hearth-rug and picked up the stick which our visitor had left behind him the night
before. It was a fine, thick piece of wood, bulbous-headed, of the sort which is known as
a"Penang lawyer " Just under the head was a broad silver band nearly an inch across.
To James Mortimer, MR C.S.. from his friends of the C.C H." was engraved upon it, with
the date "1884." It was just such a stick as the olg-fashioned family practitioner used to
carry--dignified, solid, and reassuring

View 2 - German
Kapitel 1

Mr. Sherlock Holmes

Mr. Sherlock Holmes, der morgens sehr spat aufzustehen pfl egte — wenn man einmal
von jenen nicht setenen Gelegenheiten absah, da er die ganze Nacht aufblieb —, sad am
Frihstackstisch, wanrend ich auf dem Kaminvorieger stand und den Spazierstock
‘aufmob, den unser Besucher vergangene Nacht vergessen hatte. Es handette sich um ein
scnones, stabiles Stiick Holz mit einem knollenformigen Griff derjenigen Sorte, die bel
uns unter dem Namen ,Penang-Anwalt” bekannt st. Gleich unterhalb des Grifles war ein
qut Zwei Zentimeter breites Silberband befestigt, auf welchem die Widmung _Fir James
Mortimer. M. R. C.S., von seinen Freunden des C. C. H* eingraviert war, datiert auf das
Jahr 1884; ein Stock, gerade wie ihn ein altmodischer Hausarzt getragen hatte:

wiirdevoll, solide und zuveriassig

View 3 - Spanish CAPITULO UNO

EL SENOR SHERLOCK HOLMES

1 sefior Sherlock Holmes, que de ordinario se levantaba muy tarde, excepto en las
ocasiones nada infrecuentes en que o se acostaba en toda fa noche, estaba
desayunando. Yo, que me hallaba de pie junto ala chimenea, me agaché para recoger el
bast6n olvidado por nuestro visitante de la noche anterior. Sélido, de madera de buena
calidad y con un abultamiento a modo de empufiadura, era del tipo que se conoce como
«abogado de Penang». Inmediatamente debajo de Ia protuberancia el baston llevaba
una ancha tira de piata, de mas de dos centimetros, e Ia que estaba grabado «A James
Mortimer. MR.C.S.. de sus amigos de C.C.H.», y el afio, « 1884». Era exactamente la
clase g baston que solian levar los médicos Ge cabecera a la antigua usanza: digno,
50lido y que inspiraba confianza.

CHAPITRE |
M. SHERLOCK HOLMES

Ce matin-a, 1. Sherlock Holmes qui, sauf les cas assez fréquents ol il passait les
nuis, se levait tard, était assis devant la table de la salle & manger. Je me tenais prés de
1a cheminée, examinant la canne que notre visiteur de la veille avait oubliée. C'était un
Joli biton, solide, terminé par une boule — Ce qu'on est convenu d'appeler « une
permission de minuit ». Immégiatement au-dessous de 2 pomme, un cercle d'or arge de
deux centimétres, portait linscription et la date suivantes : « A M. James Mortimer, ses
amis du C. C. H. — 1884 ». Cefte canne, digne, grave, rassurante, ressemblait 3 celles
dont se servent les médecins « vieux jeu »

View 4 - French

Figure 11: Different Ianguages. source: unknown
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Definitions [EAVAEWS

Example 5¢ - Multiple Sensors and Multiple Authors

View 1 — Photograph of a person

View 2 — Sketch of the same person

Figure 12: Photograph and Sketch. source: unknown
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Single view

Data must be generated from
@ One sensor
@ One source
@ One perspective
@ One distribution
@ Holds the assumption i.i.d
Any one view of the above examples forms single view.
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Note on multiple views

@ Given a data point in one view corresponding data point in other
views is assumed to be known.

View X1 Xp Xn
1 xi x3 x!
2 x; x5 x>
3 x; x5 x>
v X{ x5 - X[
label y1 y2 -+ yn

@ The above assumption does not hold for random sampling method.

@ Every x; must be present in all the vies. That is there should not exist
a view / such that x; is present in every view except ith view.

e Multi-view dataset is represented as: {(x;, y;)}/_; where

xi= (xoE, xp)
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What is Multi-view learning?

o Building multiple learners on a dataset and combining their decisions

o Building multiple learners on multiple views of a dataset and
combining their decisions

@ Underlying observation: The use of multiple learners in making
decision.
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How to build multiple learners?

@ Building one learning function on each view independently
e Formulate one objective function involving multiple views of data

@ In this talk | will focus on the second bullet.

Vijaya Saradhi (IIT Guwahati) iWML2018 03" July 2018 14 / 76



Supervised Learning
Classification
Given

{(xi, yi)}"_; training set with (x;,y;) € X x ) drawn i.i.d from the
distribution Dy ).

Find
a classification function f € F : X — ) such that with high probability
f(Xtext) = Yrtest for (Xtest, Ytest) independently drawn from Dy, ).

ERM
The empirical risk minimization to find h solves
f = argminger = Y {1 —L(f(x;),yi)} (1)
i=1

where ¢(a, b) = 1 if a = b; 0 otherwise.
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Dimensionality Reduction

Given

X = {x;}!_; where x; € RP and a choice of dimensionality q < p

Optimize

An objective function fx(.) to produce a linear transformation P € R9*P.

Transformed data points lie in low dimensional space as given by :
PX € RI*".

Focus of this talk
@ Single view
e Principal component analysis
o Linear discriminant analysis
o Multi view

e Canonical correlation analysis
e Linear discriminant analysis

v
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Assumpions
Single View - A Note

@ One view of the data - that is x; - is utilized for learning f or P.

@ One learning function is learned that is  or P
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Multi-view

View sufficiency

Each view is sufficient for the learning task at hand J
Compatibility
The target function of views predict the same labels with a high probabilityJ
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Multi-view

Conditional Independence

Assume we have two views V7 and V5. Associated learning functions are

f and f2. For any fixed (&!,%2), the following holds with non-zero
probability

Proaxyep [x' = &Hx? = %%] = Priaeyep [x' = &2 (%) = £2(87)] (2)

That is x* and x? are conditionally independent given the label.
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Single-view

@ View sufficiency is met through feature engineering
o View effectiveness goes unquestioned

@ Learning models are strengthened by varying

e objective function
e optimization methods
e loss functions
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Multi-view Learning

Consensus Principle

Aims to maximize the agreement on multiple distinct views. That is:

P(f1(x") # f2(x*)) = max {Perr(1(x")), Perr(F*(x")) } (3)

and

1F(xi) — F2(x7)|| < mi + € (4)

Complementary Principle

Each view of the data may contain some knowledge that other views do
not have
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Mean vectors
Suppose X = [X1,X2,X3,- -+ ,Xp] a px 1. random vector. Then each
element of X is a random variable. The marginal mean p; is defined as
wi=E(X;) Vi=1,2,--- pis given as

75 xifi(xi)dx; if X; is continuous RV

pi =

2 all X; xipi(xi) if X is discrete RV
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Mean vectors

Mean of a p x 1 random vector X is given by.
E(X1) 111
e = | 07 =] " | =
E00) | L wp
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Variance

The variance a is defined as a =E(Xi —pij)®> Vi=1,2,---,pis given
as

S5 (i — pi)?fi(xi)dx;  if X; is continuous RV

> v (i — pi)?pi(xi) if X; is discrete RV

Variance's Role

In principal component analysis variance play an important role. We
elaborate on this soon.
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Covariance Matrix

The behavior of any pair of RVs, X;, Xy is described by their joint
probability function and measures linear association between them

250 70 (i — i) (% — pue) (i, xic)dxidxyc - continuous RVs
Oik =
ZV - ZV . (X,' = ,LL,')(Xk = ,uk)p;k(x,-, Xk) discrete RVs
iIWML2018
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Covariance Matrix

Covariances of a p x 1 random vector X is given by.

X1 — 1
/ Xo — 2
E(X—p)(X—p) = : (X1 — p1, X2 — po, -, Xp — pp]
Xo = Hp
iIWML2018 039 July 2018 26 / 76



Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Covariance Matrix

Covariances of a p x 1 random vector X, X is given by.

(X1 —pa) (X1 —pa) (X — pa)(Xo — p2)

(Xl - Ml)(Xp - Np)
(Xo = p2)(Xa — pa) (X2 — p2)(Xo — p2)

(X2 - NZ)(XP - Np)

O — )X — ) (Ko=) —p2) - (Xo— u2)(Xo — )
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Covariance Matrix
Covariance matrix is given by

= = E(X—p)(X -

011 012
021 022
Opl Op2

)
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Correlation Coefficient

Measures amount of linear association between two random variables X;
and Xj. Denoted by pjx is defined in terms of covariance ojx and variances
oji and oy is given as:

Oik

V Oiin/ O kk

Pik =

Correlation Coefficient's Role

In canonical correlation analysis correlation coefficient play an important
role. We elaborate on this soon.
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Single View - Dimensionality Reduction Recap of fundamentals

Linear Combination

o Let
a X1
(@) X2
c= X=| .
Cp Xp

@ Linear combination is expressed as: ¢’X = o1 X1 + &2 Xo + -+ + ¢ Xp.
@ Mean is given by: E(c'X) = cE(X1) + E(X2) + -+ 6E(X,) = ¢ p
@ Variance is given by: var(c'X) = E(c'X — E(c'X))? = 'S¢
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Single View - Dimensionality Reduction Recap of fundamentals

Linear Combination

Vijaya Saradhi (IIT Guwahati)

Z1 =cu Xy +cXo+ -
2y = 1 Xy + cppXo + -+

Zg=cqXi+cpXo+---

Let
Zy 1 c12
Z> o1 2
y C=
Zg Cql Cq2

+ Clep

+ C2po

+ CqpXp
Cip X1
P ) X= .)<2
Cqp Xq

Linear combination is expressed as: Z = CX

Mean is given by: E(Z) = E(CX) = Cux

Covariance is given by: cov(Z) = cov(CX) = = cxxC

iWML2018
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Single View - Dimensionality Reduction Principal Component Analysis

Intuition

20 40 60 80 100 120

Figure 13: Example dataset. source: google images
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Single View - Dimensionality Reduction Principal Component Analysis

Intuition

@ Intuition is to find a linear combination
. / . . . -
@ Find a ¢; = [c11,c12,- -, c1p] having maximum variance. That is
/
max var(c; X)
. . . !/ . ’

© Next look for a linear combination ¢, X uncorrelated with ¢;X and

having maximum variance

@ Continue step 3 till the chosen q dimensions are obtained such that
c'qx has maximum variance and uncorrelated with

’ / /
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Single View - Dimensionality Reduction Principal Component Analysis

Formulation

Finding first direction

’
maxg, var(c;X)
s.it. cieg=1

Finding first direction

I
maxg,  €yCy
s.it. cieg=1
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Single View - Dimensionality Reduction Principal Component Analysis

Formulation

Formulate Lagrangian

L(c1,\) = c;Xc; — Mcjer — 1)

First Order Necessary Condition

b =3c - =0
chz)\cl

% =clc;—1=0
cici=1

Maximum variance

Substituting result of first order necessary condition into Lagrangian we
have \ retains the maximum variance in the first direction.

/
L(c1,A) =c3Ae; — A(0)
=
iIWML2018 03 July 2018 35/ 76




Single View - Dimensionality Reduction Principal Component Analysis

Formulation

Finding second direction
/
maxe,  C€53iCp
s.it. chep=1
che1 =0

Formulate Lagrangian

L(co, N\, ¢) = c'22cz = A(c;cz -1)-— gbc'zcl
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Single View - Dimensionality Reduction Principal Component Analysis

Optimization

First Order Necessary Condition
St =S — A — ¢ =0
multiplying this equation on the left by c/1 we have:
c; ¢y — Acjcy — pejep = 0

yielding ¢ = 0; Therefore the first order necessary condition becomes:

2(:2 — )\Cg =0
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Single View - Dimensionality Reduction Principal Component Analysis

Solution

Eigen vectors and Eigen values

From the above, we note that c; is eigenvector corresponding to the
largest Eigen value of 3. c; correspond to second largest Eigen value.

Matrix C (slide 31) correspond to the eigenvectors of X.
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Single View - Dimensionality Reduction Principal Component Analysis

Observations

@ Single view of dataset is used.
@ One subspace is learned through the optimization process.

@ The learned subspace is used for further processing.
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IDIINENETMEINAVAELTGIiIl Canonical Correlation Analysis

Intuition

Linear Transformation
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Observations

Find a linearly transformed subspace corresponding to view 1 and
linear transformed subspace corresponding to view 2 such that
covariance between the subspaces is maximized

Two views are used

One optimization is formulated

Two subspaces - one for each view - are learned simultaneously using
one optimization formulation

@ The learned subspaces are used for further processing

Vijaya Saradhi (IIT Guwahati) iWML2018 03" July 2018 41 /76



Multi View - Dimensionality Reduction Canonical Correlation Analysis

Two View Notations

Let X! and X2 be two random vectors corresponding to two views with
g x 1 and (p — g) x 1 dimensions respectively.

X1 M1
X2 2
|- | <[]
X = q = , = E X = q =
Xg+1 [ X2 } H X) Hg+1 .U2
Xq+2 Hg+2
L Xp L Hp |
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Two View Notations

Covariance Matrix

Covariance matrix is given by

> =

EX—p)(X—p) /
(X! = ph)(X = pl) (X = ph)(X2 — p?)
(gx1) (1xq) (gx1)  (1x(p—q))

(X% — p2)(X = pl) (X% — p?)(X? — p?)

| ((p—q)x1) (1xq) ((p—q)x1) (1x(p—q))
[ 211 | =12 ]
| 221 | 222
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Two View Notations

Covariance Matrix

Covariance matrix is given by
!
Y =EX—p)(X—p) )
011 T O1q 01,q+1 O1p
_ Oq1 Oqq 0q,q+1 Ogp
Og+q,1 O0q+1,q | 9q+1,q+1 Og+1,p

L 9pl Opq Op,q+1 Opp | |
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Two View Notations

Correlation Coefficient Matrix

r I11 %1q 91,q+1 91p
911/°11 11v/7qq VO11/%q+1,q+1 911/ pp
9q1 999 9q,q9+1 Iqp
_ 949~/911 7q49/74qq 999+/%q+1,q+1 %499/ pp
L CEERL %q+1,q 9q+1,q+1 %q+1,p

9p1
L 9 pp

V9q+1,g+1v 711

711

V%a+1,q+1v/7qq

Ipq
9pp+/9qq

9q+1,9+14/%q+1,q+1

p,q+1

VOPP+/Pq+1,q+1

9q+1,q+1V PP

9 pp

vV %pp~/%pp

iWML2018
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Measuring Association

Through maximizing the correlation coefficients

Let U = x' X! be the linear transformation for view 1
Let V = y’X2 be the linear transformation for view 2
View 1: Var(U) = x' Cov(X})x = x' Z11x

View 2: Var(V) = y Cov(X?)y = y ooy

Cov(U, V) = x'Cov(X!, X?)y = x' 210y

/
maximize Corr(U, V) = x 212y

N VX Z11xv/y ooy
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Formulation

Maximizing Association
maxc, y’Ezlx
s.t. x/Enx =1
yXpy=1
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Formulation

Formulate Lagrangian

L(x, Y, px, py) = ¥ Boax — & (XIZIIX - 1) - (ylﬁzzy - 1)

First Order Necessary Condition

o =Xny-pnSux=0

% = Xax — pyy =0
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Derivation

Details

Subtract x times first equation from y  times second and we have:
y Z21x—pyy Ty — X B1ay+pxx Sp1x = 0

pxX B11x — pyy Ty = 0
Px =Py =P

Details

First sub equation of eq. (5) yields

_ 21_11212y
)

X

(6)

v
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Derivation

Details
Substituting eq. (6) in second sub eq. (5) we have:

SIS
llp 12y o pzzzy — 0

3
(B2 12 — p*52)y =0

In analogous way we can write:

(Z1225, 221 — p*Z11) x =0
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Derivation

Generalized Eigenvalue Problem

Given a symmetric matrix A € R™" and a symmetric positive definite
matrix B € R™" we consider the problem of finding a nonzero vector x
and a scalar Jambda so that Ax = ABx is the symmetric-definite
generalized eigenvalue problem.

The scalar A can be thought of as generalized eigenvalue. Determining
A(A, B) = {\|det(A— AB) =0}

Details
1251151 — P )y =0

s )

Vijaya Saradhi (IIT Guwahati) iWML2018 03" July 2018 51/ 76



Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

Intuition

Figure 15: Example dataset. source: duda hart textbook

3-class feature data

worst
1D subspace

best
1D subspace

Figure 16: Example dataset. source: google images
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

Intuition

PCA seeks directions that are efficient for representation

PCA does not need the class label information

Discriminant analysis seeks directions that are efficient for
discrimination

Uses class label information
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

Intuition

Objective function

Find a direction w that maximize the inter class distance and minimize
intra class variance.

Objective function
Maximize inter class distance is achieved by maximizing the difference
between the projected means

Minimizing intra class variance is achieved by minimizing the sum of the
class variances.

| o1 —gio|? (8)

max, - 5
W 52152

v
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

Intuition

Within and Between Class Scatter

~ 1 oo
M1 = 5 2 xep, WX =W H1
A2 _ ! ! 2
&1 —Exepl(WX—Wﬂl)

=Y e, (W (x — p1)(x — pa) w

!
=w S|w
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

Intuition

Within and Between Class Scatter

~ 1 oo
H2 = 5 2 xeD, WX =W [2
A2 _ ! ! 2
&> —Exep2(WX—Wﬂ2)

=Y e, (W (x — p2)(x — p2) w

!
=w Sow
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

The numerator

Between Class Scatter

|y — f2? = (V‘I’INI —w )2 ,
=w (1 — p2)(p1 — p2) w
= w Sgw
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

The denominator

Within Class Scatter

(7’\12 + 0’\22 = w'Slw + WISQW
=w (S1+So)w

!
=w Syw
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis
The Objective

Fisher's Linear Discriminant Analysis
w'Sgw
w'S 9)
wWwW
Equation (9) is a generalized Rayleigh quotient. w that maximizes eq. (9)
must satisfy
Sgw = ASyyw - a generalized eigenvalue problem.

maxy,
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Intuition

H .
# N =
o Near
Infrared

Discriminant Common Space

% % &

Class 1 Class 2 Class ¢

Figure 17: Example dataset. source: doi: 10.1109/TPAMI.2015.2435740
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Intuition

@ Let wi,wy, - ,w, be v linear transforms to be found.

o Let &V = {xju|i=1,2,---,c;k=1,---,n;}. jis the view index; i
is the class label index; k is the data point index;

@ Projection data is denoted as:
Y={wxjli=1,---,c;j=1,---,vik=1,-- nj}

e Objective 1: Between class variation S} from all views should be
maximized.

@ Objective 2: Within class variation S% from all views should be
minimized.
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Intuition

Objective function

tr(SY.
arg max r B)

1
Wi, ,Wy tr(s}‘;v) ( 0)

Within Class Scatter

° S|y/v = Z:—l j 1 Zk 1(yuk Hi)(yljk — pi)

@ where u; = i . IZk 1Yijk is the mean of all sample of it" class

over all views in the common subspace.

v
° nj =) ;i 1N
_ 1 v nj; . .
O p= 5301 > 1D 4y Yij is the mean of all samples over all views.

°on=37 10
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Intuition

Between Class Scatter
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Matrix Form

Within Class Scatter

Su1 Siv wi
y _ / / . .
Sw _|:W1"'Wv] : :
sv1 svv Wy
!
=W SW
details: doi:10.1109/ TPAMI.2015.2435740
Between Class Scatter
D11 D1, wi
y _ i ! . .
Sk _[Wl”'wv} : g
Dvl va w,
/
=W DW
details: doi:10.1109/TPAM|.2015.2435740
v
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Formulation

Objective function

W' DW
arg max

— (11)
wi, w, W SW
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An Application Network wide Anomaly Detection

Introduction

1. PoP-pair level
-0D flow level
- Columns : PoP pairs
- Eg. LOSA-CHIN

2. Link level
- Columns :links
- Eg. LOSA'SNVA

Figure 18: Abilene Network. source: google images

Time interval P1-P1 P1-P2 e Pn-Pn
30-June-2018 09:00-09:05 3475 4928 cee 4983
30-June-2018 09:05-09:10 3474 4228 cee 2746
06-Jul-2018 11:55-00:00 3347 4274 ... 3748
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DA e e
PCA subspace based method

‘U N ﬂ 005
I : |

§ i )
A b ]
i i o
o
{ 2 .
T Ve T W & W T W T W5 & T e W e W S I I S
ug u ug ug
(a) Normal Behavior (b) Anomalous Behavior

Figure 19: Anomaly detection. source: doi: 10.1145/1015467.1015492
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An Application Network wide Anomaly Detection

Limitations

PCA subspace method highly popular for network wide anomaly detection.
However, this method is shown to be sensitive to:

@ Small differences in the number of principal components in the
normal subspace.

o Level of aggregation of the traffic measurements.
@ Detection threshold.

@ Propose to alleviate sensitivies by the use of multi-view subspace
learning method.

@ Multiple views for traffic matrix is a non-trivial task and is
non-intuitive.
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DA e e
Multiple View Of Traffic Matrix

P}D«n/rs/

X(i,j) = Volume of traffic
£ | poppair | flow across j-th PoP p:
E| ™ during i-th time-interval
£
E
Links
2 snva S
g Link TM Miswia
K v)
H ”
E
(i) = Volume of traffic
flow across j-th link
duri h time- Views]

Ingress PoPs

Ingress
PoP TM
(0]

Time-intervals

1(i,j) = Volume of traffic
flow entering the
network through j-th
ingress PoP during i-th
time-interval

P(ij) = Volume of traffic
flow across j-th PoP pair
during i-th time-interval

Direct measurements

Time-intervals
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View 4

PoP pairs

Previous
week TM
3

iWML2018

View

Estimation
Techniques

—>
Locallyfinformed Chaff Selection
—

Gen. Gravity N

Uninformed Chaff Selection

Globally]informed chaff SelectiaR pop pais
uniform
synthetic  [——> )
eneration Synthetic
- sl ™ (s)
Views =
Nem
No measurement
Gravity
— inks /PoP pairs

Estimated

Time-intervals

PcA 3
Fanout

Indirect measurements
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Network wide Anomaly Detection

Multiple View Subspace learning

X, (View 1) X,{View 2)

PoP . PoP pairs
op pairs | {PP1 PP2 PP3
PP2 PP1 PP2 PP3 v PR P2
T m ) (e vac atume samples i , o
e[| vttt ume sampte-2 ol .
. - atic at ime sample3 S i
w o e pe3 oSl m e - PPl
3 les o e o vaticatimesampied oy ws  ag)  PP3 4T O
Traffic at each time-interval exn) s (exn) Traffic at each time-interval
as a point in 3D space as a point in 3D space
w, M \/(nx d) d = min(rank(X,), rank(X,))
-
(=Y Traffic measured at a time sample using

both measurement methods are closer in
intermediate space

Inter iate Space or C Sub: Anomaly
(maximally correlated subspace)

Detection
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An Application Network wide Anomaly Detection

Non-contamination of Normal Subspace

®
@

H 8 *True TM
g *Week 1 e
2 g +-Week 2 és Gravity TM
E] ~CCA H
2 -
: 24
B ;
5
HE <2
i e
o o
g0 - 2o
X08 X10 X12 X14 X16 X18 X20 X22 X24 X02 X04 X06 X08 X10 X12 X14 X16 X18 X20 X22
Tratfic Matrices Traffic Matrices
(a) Previous and Current Week TM (b) Direct and Estimated TM
g
920 True TM
: W True M g° -Link TM
& -&Synthetic TM 8 4 coa
519 ~-CCA 3
i 1
E10 5 2
H 2
c £ 1
3’ ¢
£ LA g
u o PAANAY L by

X02 X04 X06 X08 X10 X12 X14 X16 X18 X20 X22 X0z X04 X065 X08 x"?laﬂﬂ%ﬂalﬁ(‘::s X6 xie X0 xe2 Xz

Traffic Matrices

(c) Direct and Synthetic TM (d) TM of two different aggregation level

Figure 22: Number of PCs in the Normal Subspace TMs
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An Application Network wide Anomaly Detection

Insensitive to Number of PCs in normal subspace

2500 2500
H a
g H
3 2000 e ——t % 2000,
H 2
ftsm *X18 2 4500 +*+X19
2 -X19 s *Gravnyxls
2100 ~ccA S —cca
F 3
s £
F 500 5 500
e 2 \
2 3 4 5 6 7 8 9 10 3
Number of PCs in normal subspace Nimber of PCs I normal ubspace
(a) Previous and Current Week TM (b) Direct and Estimated TM
2500, , 250
2 H
rg;m — i —_— 4
3 3 *X18
3 X19 T 1500
515 X (NCIM) ° Y19
Z100 ~cca 21000 ~CcA
2 2
5 50 s 500
4 8
o 2 3 4 5 6§ 71 8 9 10
3 4 5 6 7 8 9 10 N
Number of PCs in normal subspace Number of PCs in normal subspace
(c) Direct and Synthetic TM (d) TM of two different aggregation level

Figure 23: Impact of number of PCs in the Normal Subspace for X19
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An Application Network wide Anomaly Detection

Insensitive to Detection threshold

2500, o 2500
2 £
.§ 20001 /’____.,__._4 '% 20001
I NN 7/“——’_ﬁ .
H axislop=2 < Gravity (09, =2)
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Detection Threshold Detection Threshold
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(c) Direct and Synthetic TM (d) T™ of two different aggregation level
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Summary

@ (Unsupervised) Dimensionality reduction

o single view: Principal component analysis
e multi view: Canonical correlation analysis

@ (Supervised) Dimensionality reduction

e single view: linear discriminant analysis
o multi view: multi-view linear discriminant analysis

@ Presented an application.
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End of Presentation

@ Thank You.

Vijaya Saradhi (HT Guwahati) iIWML2018 03 July 2018 76 / 76



	Introduction
	Definitions
	Views
	Supervised Learning
	Unsupervised Learning
	Assumptions
	Principles

	Single View - Dimensionality Reduction
	Recap of fundamentals
	Principal Component Analysis

	Multi View - Dimensionality Reduction
	Canonical Correlation Analysis

	Single View - Supervised Dimensionality Reduction
	Linear Discriminant Analysis

	Multi-view View - Supervised Dimensionality Reduction
	Multi-view Linear Discriminant Analysis

	An Application
	Network wide Anomaly Detection

	Summary
	References
	End of Presentation

