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Definitions Views

What are views?

Definition

Oxford dictionary meanings

Ability to see something or to be seen from a particular place

A particular way of considering or regarding something; an attitude or
opinion

Data acquired from one sensor - forms a single view of data

Data acquired from one sensor with multiple perspectives - forms multiple
views of data

Data derived by observing single sensor data from multiple perspectives

Data acquired using multiple feature extractors from one sensor - forms
multiple views of data

Data acquired from random sampling from a given distribution - multiple
views of data?

Data acquired from multiple sensors - forms multiple views of data
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Definitions Views

Example 1 - One sensor multiple perspectives

Figure 1: Pose variations. source: unknown
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Definitions Views

Example 2 - One sensor and multiple derivations

source: google images

Figure 2: Singe sensor data

Figure 3: TF-IDF Representation Figure 4: Hyperlink Graph
Representation
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Definitions Views

Example 3 - One sensor and multiple features

source: google images

Figure 5: Original Image
Figure 6: Histogram features

Figure 7: Edge features
Figure 8: Histogram Oriented Gradient
features
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Definitions Views

Example 4 - Random Sampling

Figure 9: Six random samples of the original dataset
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Definitions Views

Example 5a - Multiple Sensors

Figure 10: Image and Text. source: unknown
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Definitions Views

Example 5b - Multiple Authors

Figure 11: Different languages. source: unknown
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Definitions Views

Example 5c - Multiple Sensors and Multiple Authors

Figure 12: Photograph and Sketch. source: unknown
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Definitions Views

Single view

Data must be generated from

One sensor

One source

One perspective

One distribution

Holds the assumption i.i.d

Any one view of the above examples forms single view.
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Definitions Views

Note on multiple views

Given a data point in one view corresponding data point in other
views is assumed to be known.

View x1 x2 · · · xn
1 x1

1 x1
2 · · · x1

n

2 x2
1 x2

2 · · · x2
n

3 x3
1 x3

2 · · · x3
n

...
...

... · · ·
...

v xv1 xv2 · · · xvn
label y1 y2 · · · yn

The above assumption does not hold for random sampling method.

Every xj must be present in all the vies. That is there should not exist
a view i such that xj is present in every view except i th view.

Multi-view dataset is represented as: {(xi , yi )}ni=1 where
xi =

(
x1
i , x

2
i , · · · , xvi

)
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Definitions Views

What is Multi-view learning?

Building multiple learners on a dataset and combining their decisions

Building multiple learners on multiple views of a dataset and
combining their decisions

Underlying observation: The use of multiple learners in making
decision.
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Definitions Views

How to build multiple learners?

Building one learning function on each view independently

Formulate one objective function involving multiple views of data

In this talk I will focus on the second bullet.
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Definitions Supervised Learning

Classification

Given

{(xi , yi )}ni=1 training set with (xi , yi ) ∈ X × Y drawn i.i.d from the
distribution D(x,y).

Find

a classification function f ∈ F : X → Y such that with high probability
f (xtext) = ytest for (xtest , ytest) independently drawn from D(x,y).

ERM

The empirical risk minimization to find h solves

f = argminf ∈F =
n∑

i=1

{1− `(f (xi ), yi )} (1)

where `(a, b) = 1 if a = b; 0 otherwise.
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Definitions Unsupervised Learning

Dimensionality Reduction

Given

X = {xi}ni=1 where xi ∈ Rp and a choice of dimensionality q < p

Optimize

An objective function fX (.) to produce a linear transformation P ∈ Rq×p.
Transformed data points lie in low dimensional space as given by :
PX ∈ Rq×n.

Focus of this talk

Single view

Principal component analysis
Linear discriminant analysis

Multi view

Canonical correlation analysis
Linear discriminant analysis
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Definitions Assumptions

Single View - A Note

One view of the data - that is xi - is utilized for learning f or P.

One learning function is learned that is f or P
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Definitions Assumptions

Multi-view

View sufficiency

Each view is sufficient for the learning task at hand

Compatibility

The target function of views predict the same labels with a high probability
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Definitions Assumptions

Multi-view

Conditional Independence

Assume we have two views V1 and V2. Associated learning functions are
f 1 and f 2. For any fixed (x̂1, x̂2), the following holds with non-zero
probability

Pr(x1,x2)∈D
[
x1 = x̂1|x2 = x̂2

]
= Pr(x1,x2)∈D

[
x1 = x̂1|f 2(x2) = f 2(x̂2)

]
(2)

That is x1 and x2 are conditionally independent given the label.
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Definitions Assumptions

Single-view

View sufficiency is met through feature engineering

View effectiveness goes unquestioned

Learning models are strengthened by varying

objective function
optimization methods
loss functions
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Definitions Principles

Multi-view Learning

Consensus Principle

Aims to maximize the agreement on multiple distinct views. That is:

P(f 1(x1) 6= f 2(x2)) ≥ max
{
Perr (f 1(x1)),Perr (f 2(x1))

}
(3)

and

‖f 1(x1
i )− f 2(x2

i )‖ ≤ ηi + ε (4)

Complementary Principle

Each view of the data may contain some knowledge that other views do
not have
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Mean vectors

Suppose X
′

= [X1,X2,X3, · · · ,Xp] a p × 1. random vector. Then each
element of X is a random variable. The marginal mean µi is defined as
µi = E (Xi ) ∀ i = 1, 2, · · · , p is given as

µi =


∫∞
−∞ xi fi (xi )dxi if Xi is continuous RV∑

all xi
xipi (xi ) if Xi is discrete RV
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Mean vectors

Mean of a p × 1 random vector X is given by.

E (X) =


E (X1)
E (X2)

...
E (Xp)

 =


µ1

µ2
...
µp

 = µ
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Variance

The variance σ2
i is defined as σ2

i = E (Xi − µi )2 ∀ i = 1, 2, · · · , p is given
as

σ2
i =


∫∞
−∞(xi − µi )2fi (xi )dxi if Xi is continuous RV∑
∀ xi (xi − µi )

2pi (xi ) if Xi is discrete RV

Variance’s Role

In principal component analysis variance play an important role. We
elaborate on this soon.
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Covariance Matrix

The behavior of any pair of RVs, Xi ,Xk is described by their joint
probability function and measures linear association between them

σik =


∫∞
−∞

∫∞
−∞(xi − µi )(xk − µk)fik(xi , xk)dxidxk continuous RVs∑

∀ xi
∑
∀ xk (xi − µi )(xk − µk)pik(xi , xk) discrete RVs
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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Covariance Matrix

Covariances of a p × 1 random vector X is given by.

E (X−µ)(X−µ)
′

=




X1 − µ1

X2 − µ2
...
Xp − µp

 [X1 − µ1,X2 − µ2, · · · ,Xp − µp]


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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Covariance Matrix

Covariances of a p × 1 random vector X, Σ is given by.

E


(X1 − µ1)(X1 − µ1) (X1 − µ1)(X2 − µ2) · · · (X1 − µ1)(Xp − µp)
(X2 − µ2)(X1 − µ1) (X2 − µ2)(X2 − µ2) · · · (X2 − µ2)(Xp − µp)

...
...

...
(X2 − µ2)(X1 − µ1) (X2 − µ2)(X2 − µ2) · · · (X2 − µ2)(Xp − µp)


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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Covariance Matrix

Covariance matrix is given by

Σ = E (X− µ)(X− µ)
′

=


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
...

...
σp1 σp2 · · · σpp


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Single View - Dimensionality Reduction Recap of fundamentals

Important Definitions

Correlation Coefficient

Measures amount of linear association between two random variables Xi

and Xk . Denoted by ρik is defined in terms of covariance σik and variances
σii and σkk is given as:

ρik =
σik√
σii
√
σkk

Correlation Coefficient’s Role

In canonical correlation analysis correlation coefficient play an important
role. We elaborate on this soon.
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Single View - Dimensionality Reduction Recap of fundamentals

Linear Combination

Let

c =


c1

c2
...
cp

 ,X =


X1

X2
...
Xp


Linear combination is expressed as: c′X = c1X1 + c2X2 + · · ·+ cpXp.

Mean is given by: E (c′X) = c1E (X1) + c2E (X2) + · · ·+ cpE (Xp) = c
′
µ

Variance is given by: var(c′X) = E (c′X− E (c′X))2 = c′Σc
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Single View - Dimensionality Reduction Recap of fundamentals

Linear Combination

Z1 = c11X1 + c12X2 + · · ·+ c1pXp

Z2 = c21X1 + c22X2 + · · ·+ c2pXp
...

Zq = cq1X1 + cq2X2 + · · ·+ cqpXp

Let

Z =


Z1

Z2
...
Zq

 ,C =


c11 c12 · · · c1p

c21 c22 · · · c2p
...

...
. . .

...
cq1 cq2 · · · cqp

 ,X =


X1

X2
...
Xq


Linear combination is expressed as: Z = CX
Mean is given by: E (Z) = E (CX) = CµX

Covariance is given by: cov(Z) = cov(CX) = = CΣXC
′
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Single View - Dimensionality Reduction Principal Component Analysis

Intuition

Figure 13: Example dataset. source: google images
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Single View - Dimensionality Reduction Principal Component Analysis

Intuition

1 Intuition is to find a linear combination

2 Find a c1 = [c11, c12, · · · , c1p]
′

having maximum variance. That is
max var(c

′
1 X)

3 Next look for a linear combination c
′
2X uncorrelated with c

′
1X and

having maximum variance

4 Continue step 3 till the chosen q dimensions are obtained such that
c
′
qX has maximum variance and uncorrelated with

c
′
1X, c

′
2X, · · · , c

′
q−1X
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Single View - Dimensionality Reduction Principal Component Analysis

Formulation

Finding first direction

maxc1 var(c
′
1X)

s.t. c′1c1 = 1

Finding first direction

maxc1 c
′
1Σc1

s.t. c′1c1 = 1
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Single View - Dimensionality Reduction Principal Component Analysis

Formulation

Formulate Lagrangian

L(c1, λ) = c
′
1Σc1 − λ(c

′
1c1 − 1)

First Order Necessary Condition

∂L
∂c1

= Σc1 − λc1 = 0

Σc1 = λc1
∂L
∂λ = c′1c1 − 1 = 0

c′1c1 = 1

Maximum variance

Substituting result of first order necessary condition into Lagrangian we
have λ retains the maximum variance in the first direction.

L(c1, λ) = c
′
1λc1 − λ(0)

= λ
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Single View - Dimensionality Reduction Principal Component Analysis

Formulation

Finding second direction

maxc2 c
′
2Σc2

s.t. c′2c2 = 1
c′2c1 = 0

Formulate Lagrangian

L(c2, λ, φ) = c
′
2Σc2 − λ(c

′
2c2 − 1)− φc′2c1
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Single View - Dimensionality Reduction Principal Component Analysis

Optimization

First Order Necessary Condition

∂L
∂c2

= Σc2 − λc2 − φc1 = 0

multiplying this equation on the left by c
′
1 we have:

c
′
1Σc2 − λc

′
1c2 − φc

′
1c1 = 0

yielding φ = 0; Therefore the first order necessary condition becomes:

Σc2 − λc2 = 0
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Single View - Dimensionality Reduction Principal Component Analysis

Solution

Eigen vectors and Eigen values

From the above, we note that c1 is eigenvector corresponding to the
largest Eigen value of Σ. c2 correspond to second largest Eigen value.

Matrix C (slide 31) correspond to the eigenvectors of Σ.
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Single View - Dimensionality Reduction Principal Component Analysis

Observations

Single view of dataset is used.

One subspace is learned through the optimization process.

The learned subspace is used for further processing.
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Intuition

Figure 14: Example dataset

Vijaya Saradhi (IIT Guwahati) iWML2018 03rd July 2018 40 / 76



Multi View - Dimensionality Reduction Canonical Correlation Analysis

Observations

Find a linearly transformed subspace corresponding to view 1 and
linear transformed subspace corresponding to view 2 such that
covariance between the subspaces is maximized

Two views are used

One optimization is formulated

Two subspaces - one for each view - are learned simultaneously using
one optimization formulation

The learned subspaces are used for further processing
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Two View Notations

Let X1 and X2 be two random vectors corresponding to two views with
q × 1 and (p − q)× 1 dimensions respectively.

X =



X1

X2
...
Xq

Xq+1

Xq+2
...
Xp


=

[
X1

X2

]
;µ = E (X) =



µ1

µ2
...
µq
µq+1

µq+2
...
µp


=

[
µ1

µ2

]
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Two View Notations

Covariance Matrix

Covariance matrix is given by

Σ = E (X− µ)(X− µ)
′

=


(X1 − µ1)

(q×1)

(X1 − µ1)
′

(1×q)

(X1 − µ1)
(q×1)

(X2 − µ2)
′

(1×(p−q))

(X2 − µ2)
((p−q)×1)

(X1 − µ1)
′

(1×q)

(X2 − µ2)
((p−q)×1)

(X2 − µ2)
′

(1×(p−q))


=

[
Σ11 Σ12

Σ21 Σ22

]
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Two View Notations

Covariance Matrix

Covariance matrix is given by

Σ = E (X− µ)(X− µ)
′

=



σ11 · · · σ1q σ1,q+1 · · · σ1p
...

. . .
...

...
. . .

...
σq1 · · · σqq σq,q+1 · · · σqp
σq+q,1 · · · σq+1,q σq+1,q+1 · · · σq+1,p

...
. . .

...
...

. . .
...

σp1 · · · σpq σp,q+1 · · · σpp


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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Two View Notations

Correlation Coefficient Matrix

ρ =



σ11√
σ11

√
σ11

· · ·
σ1q√

σ11
√
σqq

σ1,q+1√
σ11
√
σq+1,q+1

· · ·
σ1p√

σ11
√
σpp

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
σq1√

σqq
√
σ11

· · · σqq√
σqq

√
σqq

σq,q+1√
σqq
√
σq+1,q+1

· · · σqp√
σqq

√
σpp

σq+1,1√
σq+1,q+1

√
σ11

· · ·
σq+1,q√

σq+1,q+1
√
σqq

σq+1,q+1√
σq+1,q+1

√
σq+1,q+1

· · ·
σq+1,p√

σq+1,q+1
√
σpp

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
σp1√

σpp
√
σ11

· · · σpq√
σpp

√
σqq

σp,q+1√
σpp
√
σq+1,q+1

· · · σpp√
σpp

√
σpp


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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Measuring Association

Through maximizing the correlation coefficients

Let U = x
′
X1 be the linear transformation for view 1

Let V = y
′
X2 be the linear transformation for view 2

View 1: Var(U) = x
′
Cov(X1)x = x

′
Σ11x

View 2: Var(V) = y
′
Cov(X2)y = y

′
Σ22y

Cov(U, V) = x
′
Cov(X1,X2)y = x

′
Σ12y

maximize Corr(U, V) = x
′
Σ12y√

x′Σ11x
√

y′Σ22y
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Formulation

Maximizing Association

maxc1 y
′
Σ21x

s.t. x
′
Σ11x = 1

y
′
Σ22y = 1
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Formulation

Formulate Lagrangian

L(x, y, ρx , ρy ) = y
′
Σ21x− ρx

2

(
x
′
Σ11x− 1

)
− ρy

2

(
y
′
Σ22y− 1

)
First Order Necessary Condition

∂L
∂x = Σ12y− ρxΣ11x = 0

∂L
∂y = Σ21x− ρyΣ22y = 0

(5)
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Derivation

Details

Subtract x
′

times first equation from y
′

times second and we have:

y
′
Σ21x−ρyy

′
Σ22y− x

′
Σ12y+ρxx

′
Σ11x = 0

ρxx
′
Σ11x− ρyy

′
Σ22y = 0

ρx = ρy = ρ

Details

First sub equation of eq. (5) yields

x =
Σ−1

11 Σ12y

ρ
(6)
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Derivation

Details

Substituting eq. (6) in second sub eq. (5) we have:

Σ21
Σ−1

11 Σ12y
ρ − ρΣ22y = 0(

Σ21Σ
−1
11 Σ12 − ρ2Σ22

)
y = 0

In analogous way we can write:(
Σ12Σ

−1
22 Σ21 − ρ2Σ11

)
x = 0
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Multi View - Dimensionality Reduction Canonical Correlation Analysis

Derivation

Generalized Eigenvalue Problem

Given a symmetric matrix A ∈ Rn×n and a symmetric positive definite
matrix B ∈ Rn×n we consider the problem of finding a nonzero vector x
and a scalar lambda so that Ax = λBx is the symmetric-definite
generalized eigenvalue problem.

The scalar λ can be thought of as generalized eigenvalue. Determining
λ(A,B) = {λ|det(A− λB) = 0}

Details (
Σ
′
12Σ

−1
11 Σ12 − ρ2Σ22

)
y = 0(

Σ12Σ
−1
22 Σ

′
12 − ρ2Σ11

)
x = 0

(7)
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

Intuition

Figure 15: Example dataset. source: duda hart textbook

Figure 16: Example dataset. source: google images
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

Intuition

PCA seeks directions that are efficient for representation

PCA does not need the class label information

Discriminant analysis seeks directions that are efficient for
discrimination

Uses class label information
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

Intuition

Objective function

Find a direction w that maximize the inter class distance and minimize
intra class variance.

Objective function

Maximize inter class distance is achieved by maximizing the difference
between the projected means

Minimizing intra class variance is achieved by minimizing the sum of the
class variances.

maxw
|µ̂1−µ̂2|2
σ̂1

2+σ̂2
2 (8)
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

Intuition

Within and Between Class Scatter

µ̂1 = 1
n1

∑
x∈D1

w
′
x = w

′
µ1

σ̂1
2 =

∑
x∈D1

(w
′
x−w

′
µ1)2

=
∑

x∈D1
(w
′
(x− µ1)(x− µ1)

′
w

= w
′
S1w
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

Intuition

Within and Between Class Scatter

µ̂2 = 1
n2

∑
x∈D2

w
′
x = w

′
µ2

σ̂2
2 =

∑
x∈D2

(w
′
x−w

′
µ2)2

=
∑

x∈D2
(w
′
(x− µ2)(x− µ2)

′
w

= w
′
S2w
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

The numerator

Between Class Scatter

|µ̂1 − µ̂2|2 = (w
′
µ1 −w

′
µ2)2

= w
′
(µ1 − µ2)(µ1 − µ2)

′
w

= w
′
SBw
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

The denominator

Within Class Scatter

σ̂1
2 + σ̂2

2 = w
′
S1w + w

′
S2w

= w
′
(S1 + S2)w

= w
′
SWw
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Single View - Supervised Dimensionality Reduction Linear Discriminant Analysis

The Objective

Fisher’s Linear Discriminant Analysis

maxw
w
′
SBw

w′SWw
(9)

Equation (9) is a generalized Rayleigh quotient. w that maximizes eq. (9)
must satisfy
SBw = λSWw - a generalized eigenvalue problem.

Vijaya Saradhi (IIT Guwahati) iWML2018 03rd July 2018 59 / 76



Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Intuition

Figure 17: Example dataset. source: doi: 10.1109/TPAMI.2015.2435740
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Intuition

Let w1,w2, · · · ,wv be v linear transforms to be found.

Let X j = {xijk |i = 1, 2, · · · , c ; k = 1, · · · , nij}. j is the view index; i
is the class label index; k is the data point index;

Projection data is denoted as:
Y = {w′xijk |i = 1, · · · , c ; j = 1, · · · , v ; k = 1, · · · , nij}
Objective 1: Between class variation Sy

B from all views should be
maximized.

Objective 2: Within class variation Sy
W from all views should be

minimized.
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Intuition

Objective function

arg max
w1,··· ,wv

tr(Sy
B)

tr(Sy
W )

(10)

Within Class Scatter

Sy
W =

∑c
i=1

∑v
j=1

∑nij
k=1(yijk − µi )(yijk − µi )

′

where µi = 1
ni

∑v
j=1

∑nij
k=1 yijk is the mean of all sample of i th class

over all views in the common subspace.

ni =
∑v

j=1nij

µ = 1
n

∑c
i=1

∑v
j=1

∑nij
k=1 yijk is the mean of all samples over all views.

n =
∑c

i=1 ni
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Intuition

Between Class Scatter

Sy
B =

c∑
i=1

ni (µi − µ)(µi − µ)
′
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Matrix Form

Within Class Scatter

Sy
W =

[
w
′
1 · · ·w

′
v

] S11 · · · S1v
...

. . .
...

Sv1 · · · Svv


 w1

...
wv


= W

′
SW

details: doi:10.1109/TPAMI.2015.2435740

Between Class Scatter

Sy
B =

[
w
′
1 · · ·w

′
v

] D11 · · · D1v
...

. . .
...

Dv1 · · · Dvv


 w1

...
wv


= W

′
DW

details: doi:10.1109/TPAMI.2015.2435740
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Multi-view View - Supervised Dimensionality Reduction Multi-view Linear Discriminant Analysis

Formulation

Objective function

arg max
w1,··· ,wv

W
′
DW

W
′
SW

(11)
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An Application Network wide Anomaly Detection

Introduction

Figure 18: Abilene Network. source: google images

Time interval P1-P1 P1-P2 · · · Pn-Pn
30-June-2018 09:00-09:05 3475 4928 · · · 4983
30-June-2018 09:05-09:10 3474 4228 · · · 2746

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
06-Jul-2018 11:55-00:00 3347 4274 · · · 3748
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An Application Network wide Anomaly Detection

PCA subspace based method

Figure 19: Anomaly detection. source: doi: 10.1145/1015467.1015492
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An Application Network wide Anomaly Detection

Limitations

PCA subspace method highly popular for network wide anomaly detection.
However, this method is shown to be sensitive to:

Small differences in the number of principal components in the
normal subspace.

Level of aggregation of the traffic measurements.

Detection threshold.

Propose to alleviate sensitivies by the use of multi-view subspace
learning method.

Multiple views for traffic matrix is a non-trivial task and is
non-intuitive.
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An Application Network wide Anomaly Detection

Multiple View Of Traffic Matrix

Figure 20: Anomaly detection.
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An Application Network wide Anomaly Detection

Multiple View Subspace learning

Figure 21: Multi-view Subspace Learning Anomaly Detection.
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An Application Network wide Anomaly Detection

Non-contamination of Normal Subspace

Figure 22: Number of PCs in the Normal Subspace TMs
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An Application Network wide Anomaly Detection

Insensitive to Number of PCs in normal subspace

Figure 23: Impact of number of PCs in the Normal Subspace for X19
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An Application Network wide Anomaly Detection

Insensitive to Detection threshold

Figure 24: Impact of Detection thresholdVijaya Saradhi (IIT Guwahati) iWML2018 03rd July 2018 73 / 76



Summary

Summary

(Unsupervised) Dimensionality reduction

single view: Principal component analysis
multi view: Canonical correlation analysis

(Supervised) Dimensionality reduction

single view: linear discriminant analysis
multi view: multi-view linear discriminant analysis

Presented an application.
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End of Presentation

Thank You.
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