
Performance Optimized Approach for Automatic
Fiducial Segmentation in Medical Imaging to Assist

Robot-guided Neurosurgery
Shwetank Panwar

Dept. of Bioscience and Bioengineering
Indian Institute of Technology

Guwahati, India
panwar1997shwetank@iitg.ac.in

Cota Navin Gupta
Dept. of Bioscience and Bioengineering

Indian Institute of Technology
Guwahati, India

cngupta@iitg.ac.in

Abstract—Registration of patient head with the surgical plan-
ning software is crucial for attaining precision in autonomous
robot-guided neurosurgery. The most minimally invasive reg-
istration approach is to use skin-attached fiducial markers
and segmenting these markers in MRI/CT modality images to
accurately register them in a physical-coordinate system. While
the past approaches to segment and localize these markers have
improved in accuracy, they have become increasingly complex
and computationally heavy over time. Our proposed approach
tackles this problem and maintain a balance in terms of both
accuracy and speed. We propose three major improvements for
cutting down the iterations required in the computation - 1.
Down-sampling the image space through max-pooling optimiza-
tion, 2. Applying convolutional filter search in this space and
3. Mapping the searched seed points back to original image
for performing clustering. Our algorithm attained reasonable
localization accuracy on phantom-skull CT as well as simulated
sMRI scan and needed very less computational time compared
to past approaches. All fiducial markers- 14 in phantom CT and
6 in simulated sMRI were successfully clustered and localized.

Index Terms—Robot-guided Neurosurgery, Fiducial Localiza-
tion, Max-Pooling, Convolution filter

I. INTRODUCTION

Development of modern instrumentation and computation
techniques have led to some incredible advancements in the
field of robot-guided neurosurgical systems. These surgical
systems utilizes prior knowledge of patients head anatomy
with an image-guided system. Registration of patient with
the surgery-planning software is crucial to attain surgical
precision. Images of the patient obtained through modalities
like MRI and CT are utilized for registration purpose. In
this procedure, CT or MRI scan of patient is performed with
physical markers called fiducials, attached to patients head.
These markers are segmented in the 3D medical image and
their center coordinate is used to perform registration with the
surgical system.

So far, these fiducial markers are the most minimally inva-
sive method of patient registration. Even today, most advanced
surgical robots such as STAR relies on manual registration
of patient by a human operator [1]. This makes the regis-

Fig. 1. STAR surgical robot(left) [1], Fiducial markers attached to the
phantom skull(right) [3]

tration process susceptible to human error. While approaches
proposed in the past to automatically register fiducials marker
are quite accurate, they are computationally intensive. This
increases the resources required by these algorithms and
ultimately their hardware cost. These past approaches can be
understood in 3 broad categories 1) Searching for fiducial
projections in 2D slices of the 3D volume, 2) Applying
morphological operations and hand-crafted filters for cross-
correlation in 2D as well as 3D image space and 3) Surfaces
extraction from 3D volume and performing an extensive search
for marker geometry.

The first approach proposed by Chen et. al. uses curve
fitting and template matching across all the 2D slices of the
3D volume [2]. The major problem with this approach is
that certain markers might not have their proper detectable
projections in 2D space [2]. This sometimes gives false
positive results. The second approach proposed by Terry et.
al. is computationally heavy and time consuming because of
its use of morphological operations in 3D space [3]. Another
approach in the second category uses hand-crafted correlation
filters to obtain regions with maximum confidence for markers
but this approach is also inaccurate and produce false positive
results [4]. The third approach proposed by Fattori et. al.
employs graphical processing, as well as, isosurface extraction



[5], making it unfit to run on low-end systems. Therefore, we
need an algorithm that provides decent registration accuracy, as
well as, computation speed while performing the localization
operation.

Our proposed approach achieves this balance by searching
the fiducial markers in downsampled image space for fiducial
seeds and then mapping these seeds back to the original image.
There is no need to search for seed points for segmentation in
the entire image space when the points can be easily mapped
back to the original space by a linear transformation.

The algorithm we propose works in the following sequence:
1) Searching for circular points in the initial 2D slices of the
volume and determining the intensity range for fiducials. 2)
Down-sampling the image space through pooling operation.
3) Clipping the image region out of intensity range and
applying Otsu thresholding method. 4) Applying convolution
filter to find dense regions with fiducial voxels. 5) Mapping the
searched points back to original image space and performing
clustering. Each step will be explained in the later sections.

II. METHODOLOGY

A. Circle Detection in Initial Slices

This first step in the process plays a crucial role in obtaining
knowledge about fiducial intensity range and its voxel volume.
These parameters are essential for cross-validation to avoid
false-positive results. As we can observe in the Fig. 2, the
cylindrical markers appear as circles in the initial slices. We
apply Hough circle transformation [6] to the first 20 slices for
finding fiducials. Houghs method parametrizes the pixels with
the following equation:

(x− a)2 + (y − b)2 = R2 (1)

where a,b are coordinates and R is radius of circle.

Fig. 2. Fiducial markers visible as circles in initial slices of the image volume.

B. Image Downsampling

A typical MRI or CT scan may vary in volume from 100
to 250 voxels in one of the three dimensions. Such volume
size makes any 3D spatial search algorithm to become highly
expensive in terms of computation. As shown in Fig. 3, pooling

can downsize our feature space while maintaining the vital
features. We have used max-pooling with zero padding and
stride of 3 for this purpose:

A′ij = max {akl ∈ A} (2)

where A’ is the downsampled image and A is the region inside
pooling window.

Fig. 3. Original image(left), Image downsampled by Max-Pooling(right)

C. Global Thresholding Operations

Before thresholding, we clip the voxels outside the intensity
range of fiducial markers as shown in Fig. 4. Even after
clipping, some noisy voxels are still present. These voxels
can be minimized using the method proposed by Nobuyuki
Otsu, also known as ’Otsu thresholding’ [7]. In this approach,
we try to minimize intra-class variance, defined as a weighted
sum of variances of the two clustered classes:

σ2
w(t) = ω0(t)σ

2
0 + ω1(t)σ

2
1 (3)

Weights ω0 and ω1 are the probability of the two classes
separated by a threshold t and σ0,σ1 are variances of these
two classes.

Fig. 4. Noisy voxels visible in the image apart from the dense fiducial markers
after thresholding. Source: BARC Phantom CT skull dataset.

D. Convolutional search

Once we obtain a binary image after thresholding, it is
necessary to obtain the seeding voxels for segmentation of
the whole fiducial in the original image space. To search for



dense fiducial regions, we apply a simple convolution filter on
this image [8].

I ′ = I ⊗ F (4)

The convolution operation (4) can be simply understood in the
following form:

I ′ =

i−1∑
a=0

j−1∑
b=0

k−1∑
c=0

I[m− a, n− b, o− c] · F [a, b, c] (5)

Here, I’is the output matrix obtained after the convolution
of image matrix I and spherical structuring element kernel
F of dimensions [5,5,5](used in this case). While choosing
the kernel size, we kept it slightly bigger than a fiducial
marker dimensions in downsampled image to capture the dense
point cloud around fiducials. Next, we find the points of local
maxima inside the matrix obtained after convolution [9].

Fig. 5. Mapping the coordinate back to the original image.

The process of mapping the coordinates back to original image
is shown in Fig. 5. We start the mapping process from the
convolution output array with the points of local maxima
inside it(as visible in Fig. 6). The region corresponding to these
point is mapped back to the downsampled image from where
the mapped region is again inverse-mapped back to the original
image space. Again, a voxel point lying in the intensity range
of the fiducial marker is taken and clustering starts as per the
process explained in the section E.

E. Clustering

In order to cluster the fiducial markers, we consider the
fiducial seed voxel as the center of the sphere with diameter
D obtained from the circle detection step. We achieve the
clustering of the whole fiducial in these steps:

1) Initialize the radius of the sphere as R = 0.
2) Keep increasing the radius and select the points with

same intensity range as the fiducial marker.
3) Repeat the process until R = D.
4) Check whether the volume of cluster V’ is equal to

fiducial volume V.
5) If V’ == V, then count as a fiducial point. Else, reject

the cluster.
6) Repeat the steps 1-5 for another seed point.

Similar clustering approach is available in ITK toolkit library
as Connected Threshold Image Filter which can be utilized in
case of more complex cluster shapes [10].

F. Localization

In order to find the fiducial center of the markers for reg-
istration process, we calculate the intensity weighted centroid
coordinates(X,Y,Z) by taking into consideration the intensity
A(x,y,z) of the corresponding voxel coordinates.

X =

imax∑
i=0

xiA(xi)

imax∑
i=0

A(xi)

;A(xi) =

jmax∑
j=0

kmax∑
k=0

I(xi, yj , zk) (6)

Y =

jmax∑
j=0

yjA(yj)

jmax∑
j=0

A(yj)

;A(yj) =

imax∑
i=0

kmax∑
k=0

I(xi, yj , zk) (7)

Z =

kmax∑
k=0

zkA(zk)

kmax∑
k=0

A(zk)

;A(zi) =

jmax∑
j=0

kmax∑
k=0

I(xi, yj , zk) (8)

where (xi, yi, zi) and I(xi, yi, zi) are coordinates and cor-
responding intensity values in the fiducial cluster, and
imax, jmax and kmax are the no. of voxels in the X,Y and
Z direction of the fiducial cluster respectively.

III. RESULTS AND OBSERVATIONS

We tested our approach on two Bhabha Atomic Research
Center(BARC) datasets of different modalities and no. of
fiducial markers as given in Table I. Shape of fiducial marker
was cylindrical in both the datasets. The first dataset consisted
of CT scan of phantom skull with fiducial markers attached
to it. The second dataset was prepared through simulation and
consists of a cuboidal box with cylindrical fiducials attached to
it. Both of these datasets are part of Project RATHNA, Bhabha
Atomic Research Center(BARC) [11].

Fig. 6. Original image(left), Max-pooled image(center), Output array after
convolution(right). Source: BARC Simulated MRI dataset

IV. CONCLUSION

As shown in Fig. 7 and Fig. 8, all the fiducial markers
in both the datasets were successfully clustered and localized
using our proposed approach. The algorithm provided decent
detection accuracy while being less computationally expensive



Fig. 7. Clustered fiducial marker in BARC phantom skull dataset.

Fig. 8. Clustered regions in the BARC phantom skull dataset.

TABLE I
TEST DATASETS AND THEIR INFORMATION.

Name No. of Fiducials Dimensions Diameter(mm)
Phantom skull 14 512*512*144 12.5

Simulated dataset 6 512*512*720 12.5

TABLE II
ALGORITHM RUNTIME

Algorithm CPU Time(seconds)
Proposed Approach Intel i3-5th Gen 90.5

Surface processing[5] Intel i7-820QM Gen 50

Fig. 9. Clustered fiducial marker in the BARC simulated MRI dataset with
some error points clustered at the right.

and time consuming. Even on the simulated dataset, it took
around 90.6 s for complete run on Intel i3 CPU. According
to [5], the surface processing approach took nearly 50.0 s to
run on i7 system, which is nearly close to our algorithm.(See
Table II)

As shown in Fig. 9, the algorithm clustered some erroneous
voxels in some clusters which might be due to the similar
intensity levels of these error voxels. This lead to some devia-
tion from the actual fiducial centroid coordinate. Robustness of
the algorithm can be increased by using connectivity threshold
filter which works on neighbourhood connectivity detection.

FUTURE SCOPE OF WORK

Our algorithm tackles the specific problem of localizing
fiducial markers in a 3D volume. This problem can be further
generalized as the segmentation problem in multi-dimensional
space and can be approached using ICA and Neural Networks.
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