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1. Introduction

e Welcome to the presentation

e Overview
o Explore the intersection of linguistic science and technology

e Agenda
o Journey through key NLP applications

o Significance of these applications in addressing everyday linguistic challenges
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3. The Linguistic Landscape
Why is NLP difficult?

Beyond text (tones and gestures)

It's hot
in here.

Really: “I'm bored and tired and | hate you for bringing me here.”

Pragmatics (how people use language)



Progress in NLP

NLP Progress

1950s: Rules-based fe 1anes tnintcEl Early 2010s: Neural

revolution”; incorporating ) :
systems. Machine Learning. Networks; Deep Learning.



4. NLP Tasks and Applications

Common NLP Tasks and Applications

B B2 <D

Summarization

Translation

||||| —

Speech Recognition Classification Assisted Writing

Question Answering

And so much more...
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4.1 Few Classic NLP Problems: POS
Part-of-Speech (POS) Tagging

Classifying how a word is used in a sentence.

{ noun, verb, adjective, ... }

Parts of speech can help discover intent or action.

é “How can | help you today?”

o,

“I want to book a hotel room.” e.g. you could scan for
0 —_ VERB-NOUN patterns. Scanning
/ \ for POS patterns can also help
with other tasks such as
VERB NOUN information extraction.
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Part-of-Speech (POS) Tagging

Classifying how a word is used in a sentence.

{ noun, verb, adjective, ... }

Simply scanning for keywords like “book” isn't enough.

“I want to book a hotel room.” vs. “| left the book in the hotel room.”

VERB NOUN

POS tagging will help with word sense disambiguation, determining which meaning of a word
is intended based on its context or grammatical relationship with neighbouring words.
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4.2 Few Classic NLP Problems: NER
Named Entity Recognition (NER)

Tagging named (“real-world”) entities.

{ a person, a location, an organization, ... }

(roughly) anything that can be referred by a proper name.

Named Entity: They often have a Proper Noun (PROPN) POS tag.

But also often extended to other types
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Named Entity Recognition (NER)

Tagging named (“real-world”) entities.

{ a person, a location, an organization, ... }

Useful in a variety of tasks and applications...

Organizing/Categorizing corpus

e.g. identify medical
procedures or diseases in
research, or categorize
support tickets based on
entities mentioned.

Question answering

e.g. extract entities from a question
and use NER to narrow down possible
candidate answers. A question about a
country's capital is going to result in an
answer that's either LOC or GPE.

=X
Critical in information extraction

e.g. extracting events and
relationships between
entities.
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An entity can span multiple tokens

“Alexander Hamilton”

Entity spans two tokens and
the system must identify the
boundaries correctly.



4.2 Few Classic NLP Problems: NER
Named Entity Recognition (NER)

Tagging named (“real-world”) entities.

{ a person, a location, an organization, ... }

Challenges...
An entity can span multiple tokens Type ambiguity
“Alexander Hamilton” /“Hamilton"\
Entity spans two tokens and U.S. President? \ F1 driver?
the systgm must identify the Musical?
boundaries correctly.
City?

Watch company?
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4.3 Few Common NLP Problems: Classification

Some observation

Classification

| Assign the observation
! to aclass from a finite
set of discrete classes.



4.3 Few Common NLP Problems: Classification
Classification

Product review
sentiment
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4.4 Few Advanced NLP Problems: SequenceZSequence

Summarization

Dialogue

X0

Question Answering
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Video-To-Music



5. Importance of NLP in Multidisciplinary Context

®  Cross-Industry Applications: Similar NLP approaches can be applied in various industries:
o  Healthcare: Accurate translation in medical contexts for better patient care.

NLP in Industry

7 Clinical decision support in medicine.
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o

Information extraction to help with precedence search in law.
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®  Cross-Industry Applications: Similar NLP approaches can be applied in various industries:
o  Finance: Report and News analysis in Finance.

NLP in Industry

Report and news analysis in finance.®__



5. Importance of NLP in Multidisciplinary Context

® Cross-Industry Applications: Similar NLP approaches can be applied in various industries:
o  Education: Language learning apps that adapt to individual needs.

0.0

duolingo a




b. Synergy of Linguistic Science and Technology

® Linguistic Expertise Enhances NLP

o  Rule Formulation:
m Linguistic experts formulate rules and guidelines. For example, understanding that names can
have different forms, titles, or nicknames helps improve the precision of NER models.
o  Training Data Creation:
m  Expertise crucial for creating training data in tasks like Machine Translation, POS Tagging,
Dependency Parsing etc. for state-of-the-art models.
o  Outcome Validation:
= Only linguistic experts can effectively validate outcomes of certain linguistic experiments.
o Key to Research:
m  Well-versed linguistic experts are essential for multidisciplinary computational linguistic
research.



b.

Synergy of Linguistic Science and Technology

Technology Facilitates Linguistic Research

o Automatic POS and NER Tagger:
m Build an automatic system for part-of-speech (POS) tagging and Named Entity
Recognition (NER) to enhance linguistic analysis
o Automatic Translator and Transliterator:
m Create an automated system for translation and transliteration tasks.
o Automatic Sentiment Analyzer, Language Identifier:
m Build an automated system for sentiment analysis and language identification.
o Chatbots, Conversational Al models:
m Develop intelligent Chatbots and state-of-the-art Conversational Al model like ChatGPT,
GPT4 for interactive linguistic interactions.
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8. Conclusion

® Linguistic-Technology Fusion

® Diverse NLP Applications

® Significance in Multidisciplinary Context
® Ongoing Challenges and Future Directions

® Call to Collaborate
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8. Conclusion and Q&GA

1. Linguistic-Technology Fusion:

o The presentation showcased the powerful fusion of linguistic insights with technological
advancements in the realm of Natural Language Processing (NLP).

2. Diverse NLP Applications:

o From automatic POS and NER tagging to translation, sentiment analysis, and chatbots, NLP
applications demonstrated the versatility of linguistic science and technology collaboration.

3. Significance in Multidisciplinary Context:

o Highlighted the relevance of NLP in diverse fields, emphasizing its importance in healthcare,
business, education, and beyond.

4, Ongoing Challenges and Future Directions:

o Acknowledged current challenges in tasks like sentiment analysis, processing user-generated
data and looked ahead to future directions, indicating the continuous evolution of NLP.

5. Call to Collaborate:

o Encouraged ongoing collaboration between linguists and technologists, underlining the
collective impact in advancing natural language understanding and technology integration.



