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Abstract

Adaptive control technique is a popular and successful control strategy for controlling nonlinear

uncertain systems. However, using adaptive control schemes in parametrically uncertain environments

often lead to poor transient response and sluggish steady state response. Use of multiple estimation

models has been found to be promising in addressing these issues. This thesis proposes an adaptive

control method for nonlinear uncertain systems using multiple models based two level adaptation

(MMTLA). At the first level, multiple models are used and a single model at the second level is

proposed by combining these first level models for controlling different classes of nonlinear uncertain

systems. The proposed control method is applied to nonlinear single-input single-output (SISO) sys-

tems with linear and nonlinear parameterizations, nonlinear multiple-input multiple-output (MIMO)

coupled systems and nonlinear MIMO model following control systems. For all the considered systems,

state transformation and feedback linearization method have been used to algebraically transform non-

linear system dynamics to linear ones. The unknown system parameters are assumed to be bounded

within a set of compact parameter space. Multiple estimation models are distributed evenly in this

region of uncertainty and their unknown parameters are tuned. The tuning laws for estimator pa-

rameters have been obtained using Lyapunov stability criterion. Stability analysis using Lyapunov’s

criterion has been carried out to assess the close loop stability and tracking error convergence of the

overall system. The transient and steady state performances using the proposed scheme are evalu-

ated by conducting simulation studies, which confirm superior performance of the proposed control

technique over some existing adaptive control methods. The common problems with adaptive control

like oscillatory transient response, poor parameter convergence and sluggish response are found to be

improved considerably by using the proposed multiple model based two level adaptive controller. In

addition to simulation studies, the proposed controller is tested experimentally on real time by apply-

ing it to a laboratory set-up of twin rotor MIMO system (TRMS). Experimental studies are performed

vi



on the TRMS model for regulation and tracking using pitch and yaw control. An extended Kalman

filter (EKF) has been used to observe the unavailable states of the TRMS. Furthermore, an adaptive

model following control of a nonlinear MIMO coupled system with unknown parameters is considered.

In this case, the system cannot be decoupled by static state feedback because of the singularity of the

decoupling matrix. A dynamic state feedback controller with nonlinear structure algorithm is designed

for the system. Simulation and experimental studies show efficacy of the proposed control scheme.
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1. Introduction

1.1 Introduction

In linear time invariant (LTI) control problems it is commonly assumed that the parametric uncer-

tainties inherent in the system under consideration are reasonably small. But due to large variations

in operating conditions, failure of system components and changes in subsystem dynamics, this as-

sumption gets often violated. As such, modern control techniques are not able to achieve the desired

closed-loop behavior and satisfy required stability conditions in such cases. A variety of areas like

biological plants, robotic manipulators, chemical reactors, finance and economics sector, aircraft and

automobile industry require mechanisms for identification and control of plants working in widely

uncertain environments [1, 2]. Adaptive control [3–13] is a widely popular technique for controlling

such systems with unknown or uncertain parameters. Adaptive control methods cope with parametric

uncertainty by tuning controller gains in response to estimated changes in the system model. Adaptive

control technique provides asymptotic stability in most applications but its transient response may not

be satisfactory in case of large parametric uncertainties [14]. It was later realized that using a classical

adaptive controller with a single adaptive model yielded slow and oscillatory response. Hence multiple

estimation models with switching and tuning were introduced [15]. The concept of multiple models

is useful when the system parameters are changing rapidly. Multiple identification models represent

the system dynamics in different environments. The control strategy is to determine the best model

for the current environment at every instant and activate the corresponding controller. The concept

of multiple models was first introduced in 1975 for stochastic control of a F-8C aircraft [15]. Later,

Narendra et al. started exploring this area in mid-90s and contributed a good number of theoretical

and practical results for adaptive control of linear time invariant (LTI) uncertain systems using mul-

tiple models [16–20]. Multiple model adaptive control (MMAC), using multiple identification models

with suitable controllers designed offline, provided a better platform to combine the adaptive and

modern robust control techniques [21]. However, certain flaws were observed in this emerging tech-

nique of multiple models with switching and tuning. One drawback of the MMAC with switching and

tuning was the requirement of a large number of models which increased exponentially with increase

in dimension of the unknown parameter vector and the system. Use of large number of models made

all of them relatively close to each other, which yielded comparable identification errors and hence

switching occurred very fast. The discontinuity arising in the control signal due to this rapid switching

reduces the performance of the system and may lead to complete system instability. This opens new
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directions of research in MMAC, and many methods came up to reduce the fast switching and number

of required models, and finally to completely discard the switching among models. One such method

proposed by Han et al. for uncertain LTI systems was multiple models with second level adapta-

tion [20]. Unlike the MMAC with switching and tuning in which only one model was selected and

used for controller design, in multiple models with two level adaptation (MMTLA), the information

from each and every model was used efficiently and all of them contributed simultaneously to control

the system. Recently Cezayirli et al. developed multiple model adaptive control (MMAC) for a class

of SISO nonlinear systems in uncertain environments [9, 10,22].

1.2 Literature Review

A well known problem in adaptive control is its poor transient response [16]. A stable strategy

was developed by Narendra et al. [16] for improving transient response of a system by developing its

multiple identification models. They proposed a general methodology for designing an adaptive control

technique using multiple models for the dynamical system operating in a rapidly varying environment.

This general methodology was next applied for controlling nonlinear systems with uncertainties [17].

Model reference adaptive control (MRAC) using multiple models for a SISO linear time invariant (LTI)

system was later developed by Narendra et al. [18]. Subsequently, Boskovic et al. [23] presented the

concept of multiple models, switching and tuning for designing a reconfigurable control strategy for

Tailless Advanced Fighter Aircraft (TAFA). The overall control system consisted of multiple parallel

identification models, describing different percentages of wing damage and corresponding controllers.

Based on a suitably chosen switching mechanism, the system quickly found the model that was closest

to the current damage mode and switched to the corresponding controller achieving excellent overall

performance. Cezayirli et al. [10] developed a multiple model adaptive control (MMAC) method for

SISO nonlinear systems with parametric uncertainties based on input-output linearization method

using multiple identification models and switching. Faster convergence of the tracking error and low

transients were achieved in this method. A multiple model adaptive control method was proposed by

Xudong Ye [14] for nonlinear systems in parametric strict feedback (PSF) form. Kuipers et al. [21]

proposed a MMAC architecture based on adaptive mixing control. Chen et al. [24] combined an

estimator-based MMAC (EMMAC) and an unfalsified MMAC (UMMAC) yielding combined MMAC

(CMMAC) which was capable of monitoring the adequacy of candidate models in terms of their
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estimation performances. The CMMAC scheme was designed for a class of nonlinear systems with

nonlinear parameterization. Ishitobi et al. [25] developed an adaptive nonlinear model following control

for a 3-DOF helicopter which contained high nonlinearity, cross-coupling and large uncertainty. The

basic idea of this controller design was linearization of the input-output relationship of the system. Han

et al. [20] proposed a MMAC technique with comparatively lesser number of models which cooperated

among themselves to yield faster system identification. Chemachema et al. [26] developed an output

feedback linearization based controller for a twin rotor MIMO system (TRMS). Cristofaro et al. [27,28]

used multiple model adaptive estimation to deal with the changing aircraft shape and parameters due

to ice layers on the surface of an aircraft. Tao et al. [29] showed an interesting use of multiple models

in model predictive control (MPC) by using the switching strategy among multiple models to improve

the tracking performance. Tan et al. [30, 31] proposed a MMAC switching scheme for multivariable

systems.

1.3 Research Motivation

As discussed above, adaptive controllers started to use multiple identification models when the

system was vulnerable to changes in the system environment, input and external disturbances. The

multiple identification models were utilized for predicting accurate estimates of the system parameters

and then using them for controlling the system. However, when the number of models required was

substantial, poor performance and instability were the major issues arising due to fast switching [20].

This opened new directions of research in MMAC. Moreover, the classes of nonlinear systems like non-

linear SISO systems with linear and nonlinear parameterization and nonlinear MIMO coupled systems

are very common in many physical systems like cart-pendulum [12], fermentation process [32], [33],

adaptive brake control [34], robot manipulators [35], electro-hydraulic system [36], bioreactors [37],

helicopters [25], TRMS [26], Unmanned Aerial Vehicles (UAVs) [27], hypersonic vehicles [29]. While

designing multiple model based adaptive control (MMAC) methods for such systems, switching among

models and optimal number of models to be chosen are vital. Moreover, ensuring fast parameter con-

vergence, speedy and satisfactory transient response, accurate tracking are the primary concerns.

Motivated by these facts, this research work attempts to design multiple model based two level adap-

tation (MMTLA) control schemes for various classes of nonlinear SISO and MIMO uncertain systems

with an aim to provide faithful tracking performance with good transient response and fast parameter
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convergence.

1.4 Contributions of the Thesis

This work is aimed at designing an adaptive controller for a class of nonlinear systems with large

parametric uncertainties. A multiple model based two level adaptation (MMTLA) technique is used in

controller which is proposed for nonlinear single-input single-output (SISO) systems with both linear

and nonlinear parameterizations. Further, the proposed MMTLA method is utilized in developing an

adaptive controller for nonlinear multiple-input multiple-output (MIMO) systems with cross-coupling.

The primary contributions of the thesis are outlined below.

(i) Controller Design for Linearly Parameterized SISO Nonlinear Systems Using Mul-

tiple Model Based Two Level Adaptation Technique

At first, a multiple model based two level adaptation (MMTLA) scheme is used to design a con-

troller for nonlinear systems with linear parameterization. A commonly accepted perception is

that the number of models chosen has a direct bearing on the system performance. Hence selec-

tion of the least possible number of models is the main concern. Multiple identification models

having identical structure and adaptive nature are developed with initial parameters optimally

spanning the given compact parameter space. The adaptive laws for identifier parameters are

obtained using Lyapunov stability criterion. Since the bounds on the parameters are known,

the initial parameters for all the models can be so chosen that the actual parameter lies in the

convex hull of those. A theorem then ensures that once the parameter vector is in the convex

hull it will always stay in there. Then the right convex combination was found asymptotically

using Lyapunov stability analysis. Thus the estimated parameter at the second level is a convex

combination of the parameters at the first level. The control input is found by using feedback

linearization technique employing the second level estimation. The proposed MMTLA method

performs at par with existing switching based multiple model adaptive control methods although

using a significantly lesser number of models. Moreover, parameter convergence of the proposed

MMTLA method is reasonably fast. Also, the control effort required is reduced in MMTLA

based adaptive control.

(ii) Controller Design for Nonlinearly Parameterized SISO Nonlinear Systems Using

Multiple Model Based Two Level Adaptation Technique

5
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Next, a multiple model based two level adaptation (MMTLA) technique is utilized for design-

ing a controller for nonlinear systems having nonlinear parameterization using similar design

methodology as mentioned above. The proposed control technique is best suited for systems

where parametric errors are large and convergence of first level models is slow. The proposed

MMTLA method offers improvement in transient and steady state performances compared to

some existing single model based adaptive control scheme. Moreover, parameter convergence

with the proposed MMTLA control method is significantly faster than the existing single model

based adaptive control technique.

(iii) Controller Design for Nonlinear Coupled MIMO Systems Using Multiple Model

Based Two Level Adaptation Technique

A multiple model based two level adaptation (MMTLA) control technique is proposed next

for nonlinear coupled MIMO systems. Feedback linearization technique is used to design the

control input which also decouples the nonlinear system. The unknown parameters present in

the model are estimated using a Kalman filter based observer. Adaptive tuning laws for the

unknown parameters are derived using Lyapunov stability criterion. Experimental studies are

conducted on a twin rotor MIMO system (TRMS) model for regulation and tracking problem

using different reference signals. Experimental results show improvement in transient and steady

state performances using the proposed multiple model based two level adaptation (MMTLA)

method compared to an existing single model based adaptive control method. The results for

pitch and yaw tracking show an improvement in overshoots, settling time, steady state error and

root mean square error. Superior tracking response, improved convergence time and smoother

control effort with reduction in control energy establish efficacy of the proposed method.

(iv) Controller Design for Nonlinear MIMO Model Following Control Systems Using

Multiple Model Based Two Level Adaptation Technique

The multiple model based two level adaptation (MMTLA) method is investigated next for the

challenging problem of controlling a class of nonlinear MIMO model following control systems.

Feedback linearization technique with dynamic state feedback and nonlinear structure algorithm

is used to design the control input and to decouple the nonlinear system having a singular

decoupling matrix. Superior tracking response, improved convergence time and smoother as
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well as lesser control effort are highlights of the proposed method.

1.5 Organization of the Thesis

This thesis includes seven chapters which are briefly introduced below.

• Chapter 2: The adaptive control method is briefly discussed and a few preliminary concepts

in multiple model adaptive control are introduced in Chapter 2.

• Chapter 3: In this chapter, a multiple model based two level adaptation (MMTLA) scheme is

designed for linearly parameterized SISO nonlinear systems. Simulation studies are conducted

and results are compared with some already existing adaptive control method.

• Chapter 4: A nonlinearly parameterized SISO nonlinear system is considered in this chapter

and MMTLA technique is used to design its controller. Simulation results are compared with

some existing method present in the literature.

• Chapter 5: In this chapter, a multiple model based two level adaptation (MMTLA) controller

is developed for a cross-coupled MIMO nonlinear system. Feedback linearization method is

utilized for linearizing as well as decoupling the system. Real time experiments are performed

on a twin rotor MIMO system (TRMS), which is a highly nonlinear cross-coupled MIMO system.

Simulation and experimental results are presented.

• Chapter 6: In this chapter, an important class of nonlinear MIMO system with cross-couplings

between its axes, but having a singular decoupling matrix is considered. After designing the con-

trol input using nonlinear adaptive model following control with nonlinear structure algorithm,

the MMTLA method is applied. Simulation studies on a 3-DOF tandem rotor model helicopter

are presented.

• Chapter 7: In this chapter conclusions from the research work are drawn and the scope for

future research is outlined.
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2.1 Introduction

2.1 Introduction

The preliminary concepts discussed here are aimed to provide the background and basics on use

of multiple models in adaptive control of systems with uncertain parameters. Before moving to the

two level adaptation, the fundamental approach of switching between different models in multiple

model adaptive control (MMAC) with switching is elucidated. Furthermore, various combinations

of available MMAC techniques like single adaptive model, single fixed model, three fixed and one

adaptive model and multiple adaptive model are briefly explained.

2.2 Change in Operating Environment

Changes in values of parameters of system occur due to change in operating environment which

can be caused due to [18]

• Faults in system

• Sensor/actuator failure

• External disturbance like varying wind speed and direction in aerospace systems, change in

air-drag and road friction for automotive systems.

• Changes in system parameters like load change in a DC motor.

2.2.1 Assumptions used regarding the environment

For using different identification models efficiently to estimate the unknown parameters of the

system, certain assumptions have to be made about the region to which the system parameter belongs

[17]. These assumptions are cited below:

• The unknown system parameters are assumed to belong to a closed and bounded set S.

• The system parameter vector P and estimator model parameter vector P̂ belong to S.

• For N models set S can be divided such that ∪N
j=1Sj = S.

2.2.2 Switching and tuning among different environments

Let us consider that S is a closed and bounded set in a finite dimensional parameter space and

system parameter vector P and model parameter vector P̂i belong to S. Corresponding to each
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2. Preliminary Concepts

parameter vector P̂i there exists a neighborhood Si ⊂ S. Here, for N models ∪N
j=1Sj = S. If at

a particular instant, controller Ci is in use and the performance index Jj of Sj happens to be the

minimum in the set {Jj}Nj=1, model Sj will be selected and the controller will switch from Ci to Cj as

shown in Figure 2.1 [18].

S1

Si

Sj

P

Tuning of 

Switching from
to 

P̂1

P̂i

P̂i

P̂j

P̂j

P̂j

Figure 2.1: Multiple models in a system environment

For example, let us consider a system having two parameters a and b, whose values get changed due

to change in environment. A bounded set for these parameters is considered as

S = {l1 6 a 6 l4, l
′
1 6 b 6 l′4} (2.1)

where l1, l4, l
′
1, l

′
4 are real constants. For N=3, the above parameter space can be divided into following

3 regions:

S1 = {l1 6 a 6 l2, l
′
1 6 b 6 l′2} (2.2)

S2 = {l2 < a 6 l3, l
′
2 < b 6 l′3} (2.3)

S3 = {l3 < a 6 l4, l
′
3 < b 6 l′4} (2.4)

Further, using three identification models whose parameters belong to these three different sets,

the model which is closest to the system will be chosen at a particular time. Parameter values of that

chosen model are then considered as the true parameters of the system and accordingly the controller

at that particular instant can be designed.
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2.3 The Adaptive Control Problem

Regulation and tracking are the two most commonly studied control problems. In the regulation

problem, the objective is to stabilize the system using input-output data around a fixed operating

point. In the tracking problem, the aim is to make the system output follow a desired reference input.

These problems can be further stated as follows:

Let us consider the following system:

ẋ(t) = Ax(t) +Bu(t) (2.5)

yp(t) = CTx(t)

where x(t) : R+ → R
n is the state vector, u(t) : R+ → R is the control input and yp : R+ → R

represents the output. Let {CT , A, B} be observable and controllable and have unknown elements.

Regulation Problem: The objective is to find a control input u using only input-output data and

a differentiator free controller, which stabilizes the system (2.5).

Tracking Problem: Let ym(t) be the uniformly bounded desired output. The aim is to determine a

bounded input u using a differentiator free controller such that lim
t→∞

|yp(t)− ym(t)| = 0.

2.4 Multiple Model Adaptive Control (MMAC) with Switching

The concept of multiple models is used to represent different environments in which the system

has to operate. If a system is required to operate in different environments (caused by external

disturbance, parameter variations, change in subsystem dynamics), a fixed system model may not

be able to estimate the controller parameters correctly. Use of multiple models and controllers have

resulted in improved performance in presence of large parametric uncertainties [16–18].

2.4.1 Basic structure of MMAC

The basic structure of MMAC is given in Figure 2.2 [18]. The system has input u and output

yp. The control system has N identification models denoted as {Ij}Nj=1 with identical structures but

with different initial estimates of the system parameters. Corresponding to each Ij, the controllers

{Cj}Nj=1 with parameter vectors θj and output uj is designed. Each identification model Ij is paired

with a controller Cj to form an indirect controller arrangement. Further, P̂j is the parameter vector

belonging to model Ij . Here ej=ŷj − yp is the identification error between j-th model and the actual

11
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system. At every instant, one of the models is selected by a switching rule, and the corresponding

control input uj is used to control the system.

    

Controller
     C1

Controller
      C2

Controller
      CN

Model

Model

Model
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W
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 I
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e2

eN

u

u1
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uN yp

MN

M2

M1

 System

ŷN

ŷ2

ŷ1

Figure 2.2: Basic Structure of MMAC

2.4.2 MMAC for linear systems

In this Section adaptive control of a linear lime invariant (LTI) system using multiple models is

considered when the states of the system are accessible [20]. Let us consider an LTI system given by

ẋ(t) = Ax(t) +Bu(t)

yp(t) = CTx(t) (2.6)

where state x(t) : R+ → R
n, input u(t) : R+ → R, A ∈ R

n×n, B ∈ R
n. It is assumed that the

above system is in companion form. Then the elements of the last row of matrix A can be written

12
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as θ = [a(1), a(2), ........, a(n)]T , where θ is the vector of unknown parameters. Here parameters

a(1), a(2), ..., a(n) are unknowns, B = [0, 0, ....., 1]T and CT = [0 0 . . . .1]. Let us consider the

reference model described by differential equation

ẋm(t) = Amxm(t) +Bmr

ym(t) = CT
mxm(t) (2.7)

where r : R+ → R is a known bounded piecewise continuous reference signal and xm(t) : R+ → R
n is

the reference model state. Here Am is stable, is in companion form and has last row as θT
m. Further,

CT
m = CT .

Now, let us consider that the unknown parameter vector θT ∈ S. The aim here is to determine

input u to the system such that output of the system tracks the output of the reference model such

that

lim
t→∞

[yp(t)− ym(t)] = 0. (2.8)

Using (2.6), (2.7) in (2.8) yields

lim
t→∞

[x(t)− xm(t)] = 0. (2.9)

2.4.3 Single identification model

To control the system (2.6) by using an indirect method, an identification model is set up [38] as

given below:

˙̂x(t) = Amx̂(t) + [Â(t)−Am]x(t) +Bu(t) (2.10)

Here also, Â(t) is assumed to be in companion form with its last row θ̂
T
(t) = [â1(t), â2(t), ..., ân(t)].

Further, [â1(t), â2(t), ..., ân(t)] are the estimates of the system parameters and can be adjusted

adaptively. Parameter identification error is defined as θ̃(t) = θ̂(t) − θ and state identification error

is defined as eI(t) = x̂(t)− x(t). Now, (2.6) - (2.10) give rise to

ėI(t) = Amx̂(t) + [Â(t)−Am]x(t) +Bu(t)−Ax(t)−Bu(t)

or, ėI(t) = AmeI(t) + [Â(t)−A]x(t) (2.11)
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where Â−A can be written as Â−A = Bθ̃
T
(t), using which, (2.11) can be written as

ėI(t) = AmeI(t) +Bθ̃
T
(t)x(t) (2.12)

Adaptive laws for identification parameters: Lyapunov stability criterion can be used here to

find an adaptive law for updating the parameters of the identification model. A suitable Lyapunov

function candidate can be chosen as:

V (eI , θ̃) = eTI PeI + θ̃
T
θ̃ (2.13)

where P is the unique positive definite solution of Lyapunov equation AT
mP + PAm = −Q, for a

positive definite matrix Q. Taking first time derivative of (2.13), gives

V̇ (eI,θ̃) = ėTI PeI + eTI PėI +
˙̃
θT θ̃ + θ̃

T ˙̃
θ (2.14)

Using (2.12) in (2.14) gives

V̇ (eI,θ̃) = [eTI A
T
m + xT θ̃BT ]PeI + eTI P[AmeI +Bθ̃

T
x] + ˙̃

θT θ̃ + θ̃
T ˙̃
θ (2.15)

or, V̇ (eI,θ̃) = eTI A
T
mPeI + xT θ̃BTPeI + eTI PAmeI + eTI PBθ̃

T
x+

˙̃
θT θ̃ + θ̃

T ˙̃
θ (2.16)

By choosing the adaptive law as
˙̃
θ =

˙̂
θ(t) = −eTI PBx(t) and using in (2.16) yields

V̇ (eI,θ̃) = eTI (t)A
T
mPeI(t) + eTI PAmeI(t)

or, V̇ (eI,θ̃) = −eTI QeI ≤ 0 (2.17)

which shows that V̇ (eI,θ̃) is negative semidefinite. This confirms that V (eI,θ̃) is a suitable Lyapunov

function for the system. Hence eI(t) and θ̃(t) or θ̂(t) are bounded.

Feedback control: Now feedback control is used to assure the stability of the system and boundedness

of x(t). A feedback control input is chosen as

u(t) = −ΘT (t)x(t) + r(t) (2.18)

where Θ(t) = θ(t)− θm and the control error is defined as

e(t) = x(t)− xm(t). (2.19)
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An ideal control parameter is defined as Θ∗ = θ − θm. Similarly, control parameter error is defined

as Θ̃(t) = Θ∗ −Θ(t). Now, taking first time derivative of (2.19) and using (2.6) and (2.7) yields

ė(t) = ẋ(t)− ẋm(t)

or, ė(t) = Ame(t) +BΘ̃T (t)x(t) (2.20)

Further, choosing a Lyapunov function candidate as

V (e, Θ̃) = eTPe+ Θ̃T Θ̃ (2.21)

and taking first time derivative of (2.21) gives

V̇ (e, Θ̃) = ėTPe+ eTPė+ ˙̃ΘT Θ̃ + Θ̃T ˙̃Θ. (2.22)

By using control error equation (2.20) in (2.22) gives

V̇ (e, Θ̃) = [eT (t)AT
m + xT (t)k̃(t)BT ]Pe+ eTP[Ame(t) +BΘ̃T (t)x(t)]

+ ˙̃ΘT (t)Θ̃(t) + Θ̃T (t) ˙̃Θ(t) (2.23)

or, V̇ (e, Θ̃) = eT (t)AT
mPe+ xT (t)Θ̃(t)BTPe+ eTPAme(t) + eTPBΘ̃T (t)x(t)]

+ ˙̃ΘT (t)Θ̃(t) + Θ̃T (t) ˙̃Θ(t). (2.24)

By choosing adaptive law as ˙̃Θ(t) = − ˙̂
Θ(t) = −eT (t)PBx(t) and using in (2.24) yields

V̇ (e, Θ̃) = eT (t)AT
mPe(t) + eT (t)PAme(t)

or, V̇ (e, Θ̃) = −eTQe ≤ 0 (2.25)

which shows that V̇ (e, Θ̃) is negative semidefinite. This confirms the suitability of V (e, Θ̃) as Lyapunov

function for the system. Hence e(t) and Θ̃(t) or Θ(t) are bounded. Integrating (2.25) from zero to

infinity gives

−
∞∫

0

V̇ (e, Θ̃)dt = V (0)− V (∞) <∞ (2.26)

15



2. Preliminary Concepts

Using (2.25) and (2.26) yields

0 ≤
∞∫

0

eTQe <∞ (2.27)

which implies that e ∈ L2, where L2 is the Euclidean norm. Since in (2.19) xm(t) and e(t) are

bounded, x(t) is also bounded. Similarly, because all the terms on the right hand side of (2.20)

are bounded, it follows that ė(t) is also bounded. Since ė(t) is bounded and e ∈ L2, implies that

V̈ (e, Θ̃) is also bounded. Hence V̇ (e, Θ̃) is uniformly continuous. Therefore, using Barbalat’s lemma

it follows that lim
t→∞

V̇ (e, Θ̃) → 0 which also implies lim
t→∞

e(t) = 0, meaning that the control objective

lim
t→∞

[x(t)− xm(t)] = 0 is achieved.

2.4.4 Multiple identification models

In adaptive control method, multiple identification models may be used to identify the system [5].

Here N identification models with the same structure as given for single identification model in Section

2.4.3 can be used to set up N estimates of the parameter vector. The j-th identification model

(j = 1.....N) can be found as [20]:

ẋj(t) = Amxj(t) + [Aj(t)−Am]x(t) +Bu(t)

xj(t0) = x(t0) (2.28)

All the N adaptive identification models can be described by identical differential equations with the

same initial states as those of the system but with different initial values of the parameter vectors.

When dealing with N identification models, at a time only one model can be chosen by using a suitable

performance index. The model which provides the best approximation of the system parameters is

selected. Then the problem reduces to the same as described in Section 2.4.3. At any particular time,

the model chosen as the closest approximation according to the given performance index is used to

find the parameters of the controller.

Switching scheme:

The switching scheme consists of monitoring a performance index Jj(t) based on identification error

ej(t) for model Ij and switching to the controller corresponding to the model with the best performance
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index. A good choice of performance index can be [20,39]

Jj(t) = αe2j(t) + β

t∫

0

e−λ(t−τ)e2j(τ)dτ (2.29)

where α, β, λ are positive constants.

2.4.5 Various combinations of fixed and adaptive models

Various combinations of fixed and adaptive models are suggested in the literature [20, 39]. Some

of them are listed below:

• Single adaptive model

• Three fixed models

• Three adaptive models

• Three fixed and one adaptive model.

The first one is the basic adaptive control method, while the other three are multiple model adaptive

control (MMAC) methods with switching among the models.

2.5 Summary

The purpose of this chapter is to familiarize with the basics of multiple model adaptive control

(MMAC) technique. The main focus of this chapter is to discuss the motivation for using multiple

models for different environments in which the system may have to operate. The reasons for change

in the system environment are mentioned. Single and multiple identification models used in adaptive

control method are described briefly.
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3.1 Introduction

3.1 Introduction

A highly desired feature of an adaptively controlled system is to sense the current operating

condition and be able to make changes in the controller parameters accordingly. However, it was

observed that in systems having highly uncertain parameters, or the systems having parameters which

were unknown as well as changing with the change in their environment, using a classical adaptive

controller with single adaptive model yielded slow and oscillatory response [16]. Hence multiple models

with switching and tuning were introduced to enhance the performance of the classical adaptive

control [15] [16]. Narendra et al. proposed adaptive control schemes for linear time invariant (LTI)

systems using multiple models with switching and tuning [16–18] and it was found useful for uncertain

systems in a changing environment. Similarly, an interesting use of multiple models in model predictive

control (MPC) can be found in [29]. Here switching between multiple models is used to improve the

tracking performance for hardware in loop (HIL) simulation platform dspace.

In this chapter, an adaptive control strategy with multiple model based two level adaptation

(MMTLA) scheme is proposed for a class of nonlinear systems with linear parametrization. Feedback

linearization technique [4,8,40] is used to design the control input. Multiple identification models are

developed with similar structure but different initial parameter values which are chosen to optimally

span the given compact parameter space. Adaptive laws for weights at the second level are derived

using identifier error. Closed loop stability and tracking error convergence are guaranteed after intro-

duction of the second level adaptation. A commonly accepted perception is that the number of models

chosen has a direct bearing on the system performance. Here, selection of the least possible number of

models in a given compact uncertain parameter space and their distribution in the parameter region

is discussed. An important aspect of adaptive control studied by Boyd et al. in 1986 [41] and followed

by Annaswamy et al. [42], was the convergence of unknown parameters of identification models. To

ensure that the identifier parameters converge to their true values, the reference input signals are made

persistently exciting (PE) [7]. Also, to restrict the parameters from leaving the compact parameter

space, projection based adaptive laws [43, 44] have been used. A comprehensive simulation work is

presented for linearly parameterized systems and results are compared with existing adaptive control

methods.

The chapter is organized as follows. In Section 3.2 the control problem is formulated followed by

design of feedback control and estimator model for changing environments in the case of linearly
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parameterized nonlinear systems. The proposed adaptive controller using multiple model based two

level adaptation method is described in Section 3.3 including stability analysis for the overall system.

Section 3.4 presents the general flowchart outlining the procedural steps followed in the proposed

controller with multiple model based two level adaptation (MMTLA) scheme. Simulation results are

presented in Section 3.5. The chapter is summarized in Section 3.6.

3.2 Adaptive Control of Nonlinear Systems with Linear Parameter-
ization

Let us consider the following class of affine single-input single-output (SISO) nonlinear systems,

ẋ(t) = f(x(t),θ(t)) + g(x(t),θ(t))u(t)

y(t) = h(x(t)) (3.1)

where x(t) : R+ → R
n is the state vector, which is assumed to be fully available for measurement.

Next, f, g : Rn → R
n are sufficiently smooth vector fields and and h : Rn → R is a scalar valued

function. Further, θ(t) = [θ1, θ2, ..., θp]
T ∈ Sθ is the unknown parameter vector, where p is the

number of unknown parameters and Sθ ⊂ R
p is a compact set. Finally, u(t) : R+ → R is the control

input and y(t) : R+ → R represents the output. Here origin of the state space is an equilibrium point

for the system (3.1). The following assumptions are made about the system (3.1):

(i) The system dynamics in (3.1) are assumed to be linearly parameterized, meaning that vector

fields f(x,θ), g(x,θ) depend linearly on the unknown parameters θ [45, 46]. Functions f(x,θ)

and g(x,θ) can be characterized as

f(x,θ) = ωT
f (x)θ

g(x,θ) = ωT
g (x)θ (3.2)

where ωf ,ωg : R
n → R

p are known smooth functions.

(ii) The system has constant relative degree γ, meaning that

Lg(x,θ)L
i−1
f(x,θ)h(x) = 0, i = 1, 2, ..., (γ − 1) and Lg(x,θ)L

γ−1
f(x,θ)h(x) 6= 0, ∀ x ∈ R

n, θ ∈ Sθ. Here,

Lf , Lg are the Lie derivative operators [45].

(iii) The equilibrium point of the zero dynamics of the system (3.1) is asymptotically stable [45].
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3.2 Adaptive Control of Nonlinear Systems with Linear Parameterization

3.2.1 Controller Input

For the system (3.1), a diffeomorphic coordinate transformation T = Ψ(x) is defined such that

the transformed system becomes feedback linearizable [6,47]. Using this diffeomorphism, system (3.1)

can be represented in terms of linearized states τ1, τ2, ....τγ as

τ̇1 = τ2

τ̇2 = τ3

...

τ̇γ−1 = τγ

τ̇γ = Lγ
fh(x)(x,θ) + LgL

γ−1
f h(x)(x,θ)u

ξ̇ = ϕ(τ , ξ)

y = τ1 (3.3)

where ξ : R+ → R
n−γ are the unobservable states of the system and ξ̇ = ϕ(τ , ξ) represents internal

dynamics of the system which exists when relative degree is strictly lesser than the actual degree of

the system. The zero dynamics ξ̇ = ϕ(0, ξ) of the system is assumed to be asymptotically stable.

Further, Lγ
fh(x)(x,θ) and LgL

γ−1
f h(x)(x,θ) can be represented in terms of multilinear parameter

elements [10] as

Lγ
fh(x)(x,θ) = PTF(x)

LgL
γ−1
f h(x)(x,θ) = P

TG(x) (3.4)

where P represents the multilinear parameter vector and F ,G are known smooth functions. Conse-

quently, using (3.4) in (3.3) yields

τ̇γ = PT (F(x) + G(x)u). (3.5)

Choosing a virtual input v defined as v = PT (F(x) + G(x)u) yields

u =
1

PTG(x)
(−PTF(x) + v). (3.6)

The control objective here is to track a bounded desired trajectory yd(t), with bounded derivatives
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ẏd(t), ...., y
(γ)
d (t). Based on the desired trajectory information, the control signal v can be designed as

v = y
(γ)
d + cγ(y

(γ−1)
d − y(γ−1)) + ...+ c1(yd − y) (3.7)

where constants c1, ......., cγ can be chosen such that sγ+cγs
γ−1+ .....+c1 yields a Hurwitz polynomial.

3.2.2 Estimation model design at the first level

As already assumed, the system dynamics (3.1) are linearly parameterized and can be written in

the regressor form [45] as

ẋ = ωT (x, u)θ (3.8)

where ω(x, u) ∈ R
p×n is the known regressor matrix. A stable estimation model of the system is

selected such that states and output converge to those of the system as time t → ∞. The observer

based estimation model [5, 45] for the system (3.8) is defined as

˙̂x = A(x̂− x) + ωT (x, u)θ̂ (3.9)

where x̂ and θ̂ are the estimates of x and θ respectively and A ∈ R
n×n is a Hurwitz matrix. Consid-

ering the identification error eI = x̂− x and parameter error θ̃ = θ̂− θ, the identifier error dynamics

of system (3.1) is given as,

ėI = AeI + ωT (x, u)θ̃

˙̃
θ = −ω(x, u)PeI (3.10)

where P is a symmetric positive definite matrix, which is the solution of the Lyapunov equation

ATP+PA = −Q, with Q being a symmetric positive definite matrix.

Theorem 3.1 [10]: Let us consider the identifier error dynamics of the system (3.1) given in (3.10).

If the nonlinear system is bounded-input bounded-state (BIBS) stable, then lim
t→∞

eI(t) = 0.

The proof of the above theorem can be found in [10]. Also, it should be noted that, when the regressor

matrix ω(x, u) is sufficiently rich [7] (A.1 may be referred), θ̃ converges to zero asymptotically [6,45].

Subsequent derivation proves the boundedness of the control error which in turn justifies the use of

identification model (3.10).

The virtual control in (3.7) comprises of output y and its higher derivatives ẏ, ÿ, ....., y(γ−1). Since

higher derivatives ẏ, ÿ, ....., y(γ−1) are functions of unknown parameter θ, certainty equivalence princi-
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ple [7] (referred in A.1) is applied here to get

v̂ = y
(γ)
d + cγ(y

(γ−1)
d − ŷ(γ−1)) + ...+ c1(yd − y). (3.11)

Using (3.11) and replacing the unknown parameter vector P in (3.6) by its estimate P̂ , the control

input in (3.6) is obtained as

u =
1

P̂
TG(x)

(−P̂
TF(x) + v̂) (3.12)

A projection technique [48] is used to keep the parameter estimate θ̂ in a compact region Sθ.

3.2.3 Closed loop error dynamics at the first level

Now, defining the multilinear parameter error vector as P̃ = P̂ −P, (3.5) can be obtained as

τ̇γ = P̂
TF(x) + P̂

TG(x)u+ P̃
TF(x) + P̃

TG(x)u

or, τ̇γ = P̂
TF(x) + P̂

TG(x)u+ P̃
T
Ω1(x, u) (3.13)

where Ω1(x, u) is a known regressor matrix. Substituting u from (3.12) in (3.13) yields

τ̇γ = v̂ + P̃
T
Ω1(x, u). (3.14)

Further,

v̂ = v + P̃
T
Ω2(x, u) (3.15)

where Ω2(x, u) is a known regressor matrix. Using (3.15) in (3.14) yields

τ̇γ = v + P̃
T
(Ω1(x, u) +Ω2(x, u)). (3.16)

Considering the multilinear parameter vector P having dimension ℵ × 1, another regressor matrix

Ω ∈ R
ℵ×γ is introduced as

Ω = [Ω1 +Ω2]. (3.17)

Using (3.17), (3.16) can be written as

τ̇γ = v + P̃
T
Ω(x, u). (3.18)
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Further, the control error term is defined as

ei = τi − y
(i−1)
d , i = 1, ....γ. (3.19)

Rewriting (3.19) in vector form as

e = τ − r (3.20)

where r = [yd, ẏd, ...., y
(γ−1)
d ]T , τ = [τ1, τ2, ...., τγ ]

T , e = [e1, e2, ...., eγ ]
T and y

(0)
d = yd. Taking first time

derivative of (3.20) yields

ė1 = e2

ė2 = e3

...

ėγ−1 = eγ

ėγ = τ̇γ − yγd (3.21)

Using (3.18) and (3.7), (3.21) can be written as

ė = Ame+ P̃
T
Ω(x, u) (3.22)

where Am =




0 1 0 . . 0

0 0 1 . . 0

. . . . . .

. . . . . .

0 . . . . 1

c1 c2 . . . cγ




∈ R
γ×γ is a Hurwitz matrix. The complete closed loop error

dynamics can be found from (3.20), (3.22) and (3.3) as

τ = e+ r

ė = Ame+ P̃
T
Ω(x, u)

ξ̇ = ϕ(τ , ξ). (3.23)
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3.2.4 Closed loop stability at the first level

To assess the closed loop stability of the nonlinear system (3.1) with relative degree γ and having

the linearized form as (3.3), following assumptions are made:

(i) The zero dynamics ϕ(0, ξ) is asymptotically stable and internal dynamics ϕ(τ , ξ) is globally

Lipschitz in τ and ξ. An upper bound bϕ is considered such that

‖ϕ(τ , ξ)− ϕ(0, ξ)‖ ≤ bϕ‖τ‖ (3.24)

(ii) The desired trajectory yd to be tracked is considered bounded with bounded derivatives ẏd, ..., y
(γ−1)
d .

Defining bd as an upper bound on yd and its higher derivatives yields

‖τ‖ ≤ ‖e‖+ bd (3.25)

(iii) Since x is a local diffeomorphism of τ and ξ,

‖x‖ ≤ b0(‖τ ‖+ ‖ξ‖), b0 > 0 (3.26)

(iv) For every control input u, the regressor matrix Ω(x, u) is bounded for bounded x, such that for

a small positive number bΩ,

‖Ω(x, u)‖ ≤ bΩ‖x‖ (3.27)

Using (3.26) and (3.27) gives

‖2PΩ(x, u)‖ ≤ b1(‖τ‖+ ‖ξ‖), b1 > 0 (3.28)

where b1 = 2‖P‖b0bΩ and P is the solution of Lyapunov equation AT
mP+PAm = −I. Since the zero

dynamics is assumed to be asymptotically stable, there exists a Lyapunov function Vϕ(ξ) such that

c1‖ξ‖2 ≤ Vϕ(ξ) ≤ c2‖ξ‖2

∂Vϕ
∂ξ

ϕ(0, ξ) ≤ −c3‖ξ‖2

‖∂Vϕ(ξ)
∂ξ

‖ ≤ c4‖ξ‖ (3.29)
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where c1, c2, c3, c4 are positive constants. A suitable Lyapunov function for the closed loop error

dynamics (3.23) is chosen as

V (e, ξ) = eTPe+ µVϕ(ξ) (3.30)

where P is the solution of Lyapunov equation AT
mP+PAm = −I and µ is a small positive number.

Taking first time derivative of (3.30) yields

V̇ (e, ξ) = −eTe+ 2eTPP̃
T
Ω(x, u) + µ

∂Vϕ
∂ξ

ϕ(0, ξ) +

(
µ
∂Vϕ
∂ξ

ϕ(τ , ξ)− µ
∂Vϕ
∂ξ

ϕ(0, ξ)

)
(3.31)

Rewriting (3.31) yields

V̇ (e, ξ) ≤ −‖e‖2 + ‖eT ‖‖P̃‖‖2PΩ(x, u)‖ + µ‖∂Vϕ
∂ξ

ϕ(0, ξ)‖

+ µ‖∂Vϕ
∂ξ

‖ (‖ϕ(τ , ξ)− ϕ(0, ξ)‖) (3.32)

Using (3.24) in (3.32) yields

V̇ (e, ξ) ≤ −‖e‖2 + ‖eT ‖‖P̃‖‖2PΩ(x, u)‖+ µ‖∂Vϕ
∂ξ

ϕ(0, ξ)‖+ µ‖∂Vϕ
∂ξ

bϕ‖τ‖ (3.33)

Again, using (3.29) in (3.33) gives

V̇ (e, ξ) ≤ −‖e‖2 + ‖eT ‖‖P̃‖‖2PΩ(x, u)‖ − µc3‖ξ‖2 + µc4‖ξ‖bϕ‖τ‖ (3.34)

Using (3.28) in (3.34) yields

V̇ (e, ξ) ≤ −‖e‖2 + b1‖e‖(‖τ ‖+ ‖ξ‖)‖P̃‖ − µc3‖ξ‖2 + µc4‖ξ‖bϕ‖τ‖ (3.35)

Finally, using (3.25) in (3.35) gives

V̇ (e, ξ) ≤ −‖e‖2 + b1‖e‖(‖e‖+ ‖ξ‖+ bd)‖P̃‖ − µc3‖ξ‖2 + µc4bϕ‖ξ‖(‖e‖+ bd) (3.36)

Furthermore, (3.36) can be rearranged as

V̇ (e, ξ) ≤ −
(
1

2
‖e‖ − b1bd‖P̃‖

)2

−
(
1

2

√
µc3‖ξ‖ −

√
µ

c3
c4bϕbd

)2

− 3

4
‖e‖2 + (b1bd‖P̃‖)2

− 3

4
µc3‖ξ‖2 +

µ

c3
(c4bϕbd)

2 + b1‖P̃‖‖e‖2 + (b1‖P̃‖+ µc4bϕ)‖e‖‖ξ‖ (3.37)
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or, V̇ (e, ξ) ≤ −




‖e‖

‖ξ‖




T

Q




‖e‖

‖ξ‖


+ (b1bd‖P̃‖)2 + µ

c3
(c4bϕbd)

2 (3.38)

where

Q =




3
4 − b1‖P̃‖ −1

2(b1‖P̃‖+ µc4bϕ)

−1
2(b1‖P̃‖+ µc4bϕ)

3
4µc3


 (3.39)

The right hand side in (3.38) will be negative, if Q is a positive definite matrix and the magnitude

of the first term is greater than the sum of the other two terms. Since ‖P̃‖ → 0 as t→ ∞, the second

term in (3.38) will go to zero asymptotically. The matrix Q is positive definite for ‖P̃‖ ≤ 3
4b1

and

µ ≤ 9c3
4(c4bϕ)2

. Therefore, a small positive value for µ < c3
(c4bϕbd)2




‖e‖

‖ξ‖




T

Q




‖e‖

‖ξ‖


 in (3.38) will

ensure that the magnitude of the first term in (3.38) is greater than the sum of the other two terms.

Consequently, V̇ < 0 whenever ‖e‖ and ‖ξ‖ become large, implies that ‖e‖ ∈ L∞ and ‖ξ‖ ∈ L∞.

3.3 Multiple Model based Two Level Adaptation (MMTLA) method

So far, the adaptive control of a class of linearly parameterized nonlinear system using single

estimation model has been discussed. In this Section, the use of multiple estimation models and the

concept of two level adaptation will be discussed at length. In case of multiple models, the same

estimator structure (3.9) is used for all the models but with N different parameter vector estimates

θ̂j , j = 1, ..., N , placed at different starting points inside the compact space Sθ. Dynamics of N

estimation models are given as

˙̂xj = A(x̂j − x) + ωT (x, u)θ̂j, j = 1, ..., N (3.40)

where x̂j denotes the state vector of the j-th estimation model. The state estimation error and the

parameter estimation error for the j-th estimation model are defined as eIj = x̂j − x and θ̃j = θ̂j − θ

respectively. Now, following (3.10), the identifier error dynamics for N estimation models can be

found as,

ėIj = AeIj + ωT (x, u)θ̃j, j = 1, ..., N. (3.41)
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Similarly, the adaptive laws for the j-th model parameter vector θ̂j can be obtained as

˙̂
θj = −ω(x, u)PeIj , j = 1, ..., N. (3.42)

The system parameter vector θ and estimation model parameter vector θ̂j are assumed to belong to

a compact space Sθ.

3.3.1 First level adaptation

In this section, selection and arrangement of multiple estimation models on the compact parameter

space Sθ are discussed. Here, the initially selected N identification models of the system are referred

to as the first level models. At the first level, the parameters θ̂j are adjusted using the tuning laws as

derived in the previous sections and rewritten in (3.42) for N number of models.

Selection of models at the first level: The locations of initial values of parameter estimates

θ̂j(t0) on parameter space Sθ are selected such that θ̂j(t0) covers the full parameter space.

The parameter space Sθ is a compact set implying that every element of the parameter vector θ

has a known upper and a lower bound. The parameter vector θ is a p-dimensional vector given as

θ = [θ1, θ2, ...θp]
T . The above assumption implies θ1 ∈ [θ1

min, θ1
max], .....θp ∈ [θp

min, θp
max].

If [ν1, ν2, ..., νp] ∈ Z are the number of elements between minimum and maximum values of each

parameter [θ1, ...θl, ...θp] (including θl
min and θl

max, l = 1, ..., p), the total number of models is given

by

N = ν1 × ν2..... × νp. (3.43)

The space of the models Z based on the arrangement given above will be the cartesian product of

these sets, given as

Z = [θ1
min, ..., θ1

max]× [θ2
min, ..., θ2

max]× ...... × [θp
min, ..., θp

max]. (3.44)

For example, selecting two elements between maximum and minimum provides the number of model

as N = 2p.

3.3.2 Visualization of the parameter space

In this section, an example of a system with 3 unknown parameters is considered to have a

visualization of the parameter space and adaptation at level one and level two. The combination
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of models at the first level and advancement of the second level model to reach the actual system

parameter is visible in Fig. 3.1, which shows the two level adaptation for a system with three unknown

parameters. For number of parameters p = 3, it has a 3-D co-ordinate system, one for each of

Figure 3.1: Two level adaptation (TLA)

the parameters θ1, θ2 and θ3. Here M1, ....,M8 are the first level adaptive models, Mactual and

Ms are the actual system model and the second level model respectively. Further, selecting only

the boundary values of the parameters for first level estimation models, meaning 2 models for each

unknown parameter, the number of estimation models is obtained as N = 2p = 8. Therefore, a cube

having vertices [M1, ....,M8] has formed a parameter space Sθ as can be observed in the Fig. 3.1.

Here, the models M1, ....,M8 are also adaptive in nature, but Fig. 3.1 shows only the adaptation at

the second level at any particular instant.

3.3.3 Second level adaptation

In this section the concept of second level adaptation, introduced for linear systems in [20], is

adopted for a class of nonlinear uncertain systems. The parameter estimates at first level θ̂j(t) are

combined using suitable adaptive weights to get the parameter estimate at second level.

Theorem 3.2 [20]: If the system parameter vector θ lies in the convex hull K(t0) of θ̂j(t0), then θ

lies in the convex hull K(t) of θ̂j(t) for all t ≥ t0.

Proof: The proof of this theorem is available in Theorem 1 of [20].

Since the bounds on the parameters are assumed to be known, the initial values of θ̂j(t0) at time

t0 can be suitably chosen such that the system parameter vector θ lies in their convex hull. Thus
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it will always stay in the convex hull of θ̂j(t) for all t. However, the convex parameters wj are not

known.

Adaptive law for updating the weights wj(t): The objective is to asymptotically find the adaptive

weights wj(t) such that it satisfies Theorem 3.2 given as

θ =
N∑

j=1

wj(t)θ̂j(t). (3.45)

The tuning laws for the adaptive weights wj(t) can be found using the following Theorem.

Theorem 3.3 : The convex combination of first level adaptive models with suitably chosen adaptive

weights wj(t) ensures that the estimation error dynamics at second level is Lyapunov stable.

Proof : The adaptive weights wj(t) satisfy the following conditions:

• The contribution from a model can never be negative, i.e. wj(t) ≥ 0.

• Sum of contributions from all the models must be unity i.e.,
N∑
j=1

wj(t) = 1.

Now, subtracting θ from both sides of (3.45) and using properties of adaptive weights wj(t) ≥ 0 and
N∑
j=1

wj(t) = 1, it can be shown that

N∑

j=1

wj(t)θ̃j(t) = 0. (3.46)

The adaptive weights at the second level depend on the estimation error. Therefore, considering the

identification error (3.41) and using the property of linearity as well as the fact that the initial state

errors can be chosen to be zero, it can be shown that

N∑

j=1

wj(t)eIj(t) = 0. (3.47)

Thus,

[eI1(t), eI2(t), ....eIN (t)]W = E(t)n×NWN×1 = 0n×1 (3.48)

where W(t) = [w1(t), w2(t), ....wN (t)]T and E(t) = [eI1(t), eI2(t), ....eIN (t)]. The error eIj is the

vector eIj = [e1j , e2j , ..., enj ]
T , for n number of states of the actual system. Therefore, E(t) =



e11 . . e1N

. . . .

en1 . . enN



. Alternatively, W can be written as W = [W

¯
(t)T , wN (t)]T , where
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W
¯
(t) = [w1(t), w2(t), ....wN−1(t)]

T . By using the set of differential equations derived from (3.48),

W
¯
(t) can be computed. As

N∑
j=1

wj(t) = 1, wN (t) = 1−
N−1∑
j=1

wj(t). Rewriting (3.48) as

eI1w1 + eI2w2...+ eINwN = 0

or, eI1w1 + eI2w2...+ eIN−1
wN−1 = −eINwN (3.49)

the following can be obtained:

H(t)W
¯

= k(t) (3.50)

where

H(t) = [eI1(t), eI2(t), ....eIN−1
(t)]

k(t) = −eINwN (3.51)

To estimate the values of W
¯
, an estimation model is built as

H(t)Ŵ
¯
(t) = k̂(t) (3.52)

Subtracting (3.50) from (3.52) yields

H(t)W̃
¯
(t) = k̃(t) (3.53)

where W̃
¯

= Ŵ
¯

−W
¯

and k̃ = k̂− k. Taking first time derivative of (3.53) gives

H(t) ˙̃W
¯
(t) =

˙̃
k(t). (3.54)

To design a suitable adaptive law for the weights at second level, let us choose a Lyapunov function

candidate as

V (t) =
W̃
¯

T
W̃
¯

2
+

k̃
T
k̃

2
. (3.55)

Taking first time derivative of (3.55) and using (3.53) yields

V̇ (t) = W̃
¯

T ˙̃W
¯

+ k̃
T
H(t) ˙̃W

¯
(3.56)
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Now, using adaptive law for weights as

˙̂
W
¯
(t) = −HT (t)k̃(t)

= −HT (t)H(t)Ŵ
¯
(t) +HT (t)k(t). (3.57)

Using (3.57) in (3.56) yields

V̇ (t) = −k̃
T
(t)k̃(t)− (HT (t)k̃(t))T (HT (t)k̃(t)). (3.58)

From (3.58), it is observed that V̇ (t) is negative semidefinite and hence proves that V (t) in (3.55) is

a suitable Lyapunov function. This implies that the error dynamics at the second level is Lyapunov

stable with the adaptive law (3.57). �

Finally, using the combination of first level estimates of system parameter vector θ̂j with adaptive

weights W (t) at every instant, the virtual estimate of system parameter values θs(t) can be obtained

as

θs(t) =

N∑

j=1

wj(t)θ̂j(t) (3.59)

and can be used to find the new control input as

us =
1

q(x,θs)
(−p(x,θs) + v̂) (3.60)

where p(x,θs), q(x,θs) : Rn → R
n are sufficiently smooth vector fields. In (3.60) above, q(x,θs) is

assumed to be bounded away from zero, because of the fact that θs always resides inside the convex

hull of θ̂j [6, 48]. The parameters θ̂j are kept in a certain range [48], such that, at every point inside

their convex hull, q(x,θs) is bounded away from zero.

In this work, projection based adaptive laws [43,44] are used to ensure the boundedness of estimated

parameters in the already defined compact region Sθ. Applying projection, the system parameter

estimate in (3.59) can be rewritten as

θs(t) = Projθs(t)∈Sθ





N∑

j=1

wj(t)θj(t)



 (3.61)

In adaptive control problems, the convergence of estimated parameters depends on the richness of its

reference input with respect to the frequency content [7,44]. For that purpose, persistence of excitation

(PE) of input signal is used in simulations to ensure the convergence of estimated parameters to their
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actual values. The basic control block diagram with two level adaptation is shown in Figure 3.2.

Controller Plant

Model 1

Model 2

Model N

+
−

+

+
−

−

S

L

A

yp

ŷ1

ŷ2

ŷN

θ̂1

θ̂2

θ̂N

e1

e2

eN

wj θ̂j
θs

yd

Figure 3.2: Control block diagram with second level adaptation (SLA)

3.3.4 Overall stability assessment

This subsection is dedicated to provide the overall system stability with two level adaptation as

well as convergence of control and parameter errors. From the discussions in the previous section and

using (3.23), the control error equation at the second level can be found as

ės = Ames +ΩT (x, us)P̃s (3.62)

where us = 1

P̂
T

s G(x)
(−P̂

T

s F(x) + v̂), es is the control error at the second level and P̃s = Ps − P,

with Ps being the multilinear parameter estimate at the second level. Similar to (3.23), the complete

closed loop error dynamics can be written as

τ = es + r

ės = Ames +ΩT (x, us)P̃s.

ξ̇ = ϕ(τ , ξ) (3.63)

A suitable Lyapunov function for closed loop error dynamics (3.63) is chosen as

V (es, θ̃s, ξ) = eTs Pes + θ̃T
s θ̃s + µVϕ(ξ) (3.64)
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where P is the solution of Lyapunov equation AT
mP+PAm = −I. First time differentiation of (3.64)

yields

V̇ (es, θ̃s, ξ) = −eTs es + 2eTs PΩT (x, us)P̃s + 2θ̃
T

s
˙̃
θs + µ

∂Vϕ
∂ξ

ϕ(0, ξ)

+

(
µ
∂Vϕ
∂ξ

ϕ(τ , ξ)− µ
∂Vϕ
∂ξ

ϕ(0, ξ)

)
(3.65)

Now, taking first time differentiation of (3.59) gives

θ̇s(t) =
N∑

j=1

wj
˙̂
θj(t) +

N∑

j=1

ẇj(t)θ̂j (3.66)

Since θ̃s = θs − θ, its first time differentiation provides,

˙̃
θs(t) = θ̇s(t) (3.67)

Therefore, using (3.67) in (3.66) gives,

θ̇s(t) =
˙̃
θs(t) =

N∑

j=1

wj
˙̂
θj(t) +

N∑

j=1

ẇj(t)θ̂j (3.68)

Similarly, using (3.68) in (3.65) gives

V̇ (es, θ̃s, ξ) = −eTs es + 2eTs PΩT (x, us)P̃s + 2θ̃
T

s (
N∑

j=1

wj
˙̂
θj +

N∑

j=1

ẇj θ̂j)

+ µ
∂Vϕ
∂ξ

ϕ(0, ξ) +

(
µ
∂Vϕ
∂ξ

ϕ(τ , ξ)− µ
∂Vϕ
∂ξ

ϕ(0, ξ)

)
(3.69)

Extending the adaptive law of the single model for N number of models, the following can be written,

˙̂
θj = −ω(x, us)Pej , j = 1, ..., N (3.70)

Taking first time derivative of
N∑
j=1

wj(t) = 1 yields
N∑
j=1

ẇj(t) = 0, and hence ẇN = −(ẇ1 + ..... +

ẇN−1), giving

N∑

j=1

ẇjθ̂j = ẇ1θ̂1 + .......ẇN−1θ̂N−1 − (ẇ1 + .......ẇN−1)θ̂N

= ẇ1(θ̂1 − θ̂N ) + .......ẇN−1(θ̂N−1 − θ̂N )

=
˙̂
W
¯

TZ(t) (3.71)

where Ŵ
¯

is the estimate of W
¯

as in (3.52) and Z(t) = [(θ̂1 − θ̂N ), ......(θ̂N−1 − θ̂N )]T . Using (3.70)

34



3.3 Multiple Model based Two Level Adaptation (MMTLA) method

and (3.71), (3.69) can be written as

V̇ (es, θ̃s, ξ) = −eTs es + 2eTs PΩT (x, us)P̃s + 2θ̃
T

s (−
N∑

j=1

wjω(x, us)Pej +
˙̂
W
¯
Z(t))

+ µ
∂Vϕ
∂ξ

ϕ(0, ξ) +

(
µ
∂Vϕ
∂ξ

ϕ(τ , ξ)− µ
∂Vϕ
∂ξ

ϕ(0, ξ)

)
(3.72)

Lastly, using
N∑
j=1

wjej = 0, (3.48) and (3.57), (3.72) can be written as

V̇ (es, θ̃s, ξ) = −eTs es + 2eTs PΩT (x, us)P̃s − 2H(t)k̃(t)Z(t)θ̃s

+ µ
∂Vϕ
∂ξ

ϕ(0, ξ) +

(
µ
∂Vϕ
∂ξ

ϕ(τ , ξ)− µ
∂Vϕ
∂ξ

ϕ(0, ξ)

)
. (3.73)

Using the assumption (3.24) in (3.73) gives

V̇ (es, θ̃s, ξ) = −eTs es + 2eTs PΩT (x, us)P̃s − 2H(t)k̃(t)Z(t)θ̃s

+ µ
∂Vϕ
∂ξ

ϕ(0, ξ) + µ
∂Vϕ
∂ξ

ϕ(τ , ξ)bϕ‖τ‖ (3.74)

Using the assumption (3.25)in (3.74) gives

V̇ (es, θ̃s, ξ) = −eTs es + 2eTs PΩT (x, us)P̃s − 2H(t)k̃(t)Z(t)θ̃s

+ µ
∂Vϕ
∂ξ

ϕ(0, ξ) + µ
∂Vϕ
∂ξ

ϕ(τ , ξ)bϕ(‖es‖+ bd) (3.75)

Using (3.28) in (3.75) gives

V̇ (es, θ̃s, ξ) = −‖es‖2 + ‖es‖b1(‖τ‖+ ‖ξ‖)‖P̃s‖ − 2‖H(t)‖‖k̃(t)‖‖Z(t)‖‖θ̃s‖

+ µ
∂Vϕ
∂ξ

ϕ(0, ξ) + µ
∂Vϕ
∂ξ

ϕ(τ , ξ)bϕ(‖es‖+ bd) (3.76)

Finally, using (3.29) in (3.76) gives

V̇ (es, θ̃s, ξ) ≤ −‖es‖2 + b1‖es‖(‖es‖+ ‖ξ‖+ bd)‖P̃s‖

− 2‖H‖‖k̃‖‖Z‖‖θ̃s‖ − µc3‖ξ‖2 + µc4bϕ‖ξ‖(‖es‖+ bd) (3.77)

Using the stability analysis of the first level that is, ‖P̃s‖ → 0 and ‖θ̃s‖ → 0 as t→ ∞, (3.77) can be

rewritten as

V̇ (es, θ̃s, ξ) ≤ −‖es‖2 − µc3‖ξ‖2 + µc4bφ‖ξ‖‖es‖+ µc4bdbϕ‖ξ‖ (3.78)
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Rearranging the terms in (3.78) yields

V̇ (es, θ̃s, ξ) ≤ −
(
‖es‖ −

µc4bϕ‖ξ‖
2

)2

+
(µc4bϕ‖ξ‖)2

4
− µc3‖ξ‖2 + µc4bdbϕ‖ξ‖

or, V̇ (es, θ̃s, ξ) ≤ (µc4bϕ‖ξ‖)2
4

− µc3‖ξ‖2 + µc4bdbϕ‖ξ‖ (3.79)

or, V̇ (es, θ̃s, ξ) ≤ −



√
µc3 −

(µc4bϕ)2

4
‖ξ‖ − µc4bdbϕ

2

√
µc3 − (µc4bϕ)2

4




2

+
(µc4bdbϕ)

2

4
(
µc3 − (µc4bϕ)2

4

)(3.80)

or, V̇ (es, θ̃s, ξ) ≤
(µc4bdbϕ)

2

4
(
µc3 − (µc4bϕ)2

4

) (3.81)

Right hand side in (3.81) is negative for

µc3 −
(µc4bϕ)

2

4
< 0 (3.82)

or,

µ >
4c3

(c4bϕ)2
(3.83)

Choosing a positive value for µ > 4c3
(c4bϕ)2

will ensure that Lyapunov function V̇ (es, θ̃s, ξ) is always

negative definite and hence V (es, θ̃s, ξ) is a decreasing function whose minimum is at zero. Thus the

overall system is asymptotically stable and both ‖θ̃s‖ → 0 and es(t) → 0 as t→ ∞.

3.4 General Work Flow Chart

The procedural steps undergone in this multiple model based two level adaptation (MMTLA)

method and also followed in the subsequent chapters can be represented using a general work flow

chart given in Figure 3.3.

3.5 Simulation Results

The proposed multiple model based two level adaptation (MMTLA) technique is applied to two

linearly parameterized nonlinear systems. The proposed MMTLA method is compared with already

existing adaptive control techniques having multiple models with switching.

Case 1: Numerical example
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Figure 3.3: General work flow chart

Let us consider the following nonlinear system [9],

ẋ1 = cos x2 + x3 + θ tan−1 x1

ẋ2 = x1 − x2

ẋ3 = u

y = x1 (3.84)

where θ is the unknown parameter. For designing the estimator model, the system dynamics can be

written in regressor form using (3.8) as

ẋ = ωT (x, u)P

=




cos x2 x3 tan−1 x1

x1 −x2 0

u 0 0







1

1

θ




(3.85)
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Using Theorem 3.1, the BIBS stability of the system (3.84) can be proved. The uncertain parameter θ

belongs to the compact set Sθ = [−7, 8]. For simulation purpose, the initial value of the parameter is

considered as θ = 5. At t = 4s, the value of the parameter is changed to θ = −5. At t = 8s, it is again

changed to θ = 5. In the method followed by Cezayirli et al. [10] (Appendix A.2 may be referred),

6 fixed identification models are used with parameters initialized at θj = [−7,−4,−1, 2, 5, 8] [9]. In

the proposed MMTLA control, two identical identification models are initiated at θj = ([−7, 8]). All

the states for the system and the identification models start from 0. Here, the reference trajectory is

considered as yd = 12sin(0.5π)t. Simulation results are shown in Figure 3.4 - Figure 3.6.
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Figure 3.4: Case 1: Trajectory tracking

For fair comparison with [9], parameter variation for the system is considered in the range of

[−7, 8] and this is the reason for selecting the estimator models in this range. Figure 3.4 compares

tracking results obtained by using the proposed MMTLA control method with those of [9]. In Figure

3.5 parameter convergence and control input profiles for both the methods can be found. Moreover,

Figure 3.6 presents the parameter convergence at the first and second levels and also the adaptive

weight convergence for both the models in the proposed MMTLA control.

The comparison between the transient and steady state performances of the proposed scheme with
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Figure 3.5: Case 1: Parameter convergence and control input
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Figure 3.6: Case 1: Parameter and adaptive weight convergence
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the method followed by [9] is provided in Table 3.1. The input and output performance measures used

Table 3.1: Comparison between schemes: Case 1

Adaptation
Mechanism

Performance Specification
Mp Mu ts ess tc (θ) TV CE RMSE

Cezayirli et al. [9] 6.41 % 3.08 % 18.02 s 0.0165 22.19 s 367.04 8.24× 103 0.2402
MMTLA Contol 5.16 % 2.08 % 17.5 s 0.0165 22.19 s 359.5 7.4× 103 0.2091

Mp : Peak overshoot, Mu : Peak undershoot

ts : Settling time, ess : Steady state error

tc (θ): Convergence time for parameter

TV : Total variation, CE : Control energy

RMSE : Root mean square error

in Table (3.1) for comparison purpose are defined in Appendix A.5. It is evident that from Table 3.1

that the proposed MMTLA scheme outperforms the method followed in [9] in transient performance.

The steady state performance and parameter convergence time in both the methods are equal. The

proposed MMTLA control method spends lesser energy and attains better output performance in

terms of RMSE than [9]. Smoothness of the control inputs in the two methods are almost comparable.

All these features are achieved even when the proposed MMTLA method uses only 2 models against

6 models used by [9]

Case 2: Single link robot arm driven by brushed DC motor

The proposed MMTLA control technique is next applied to a 1-link robot arm driven by a brushed

DC-motor shown in Figure 3.7 [49]. This is an example of a nonlinear single-input single-output (SISO)

system with linear parameterization. The system comprises of mechanical and electrical subsystems

with dynamics given as

Jlq̈(t) +Bf q̇(t) + Ll sin q(t) = Ia(t)

Lİa(t) +RIa(t) + kbq̇(t) = v(t) (3.86)

where Jl is the lumped inertia, Bf stands for friction coefficient, Ll denotes lumped load and q(t)

is the angular position. Similarly, Ia(t) is the rotor armature current, L denotes the rotor inductance,

R stands for rotor resistance, kb is the back emf constant and v(t) is the input voltage.

The constants Jl, Ll are given as Jl = (J/kt) + (mll
2/3kt) + (m0l

2/kt) + (2m0r
2
0/5kt) and Ll =

(mllG/2kt) + (m0lG/kt). The description and values of constants for the given electromechanical

system are given in Table 3.2. Considering x1 = q, x2 = q̇, x3 = Ia as state variables and u = v(t) as

40



3.5 Simulation Results

+

−

R

+

−

L

G
J

v(t)

B0

l, ml

m0, r0

kb
kt

Ia(t)

Figure 3.7: Model of 1-link robot arm driven by a brushed DC-motor

input, the complete system dynamics can be represented in the state-space form as

ẋ1 = x2

ẋ2 = θ2 sinx1 −Bfθ1x2 + θ1x3

ẋ3 = ̺1x2 + ̺2x3 + ̺0u

y = x1 (3.87)

where ̺0 = 1/L, ̺1 = −kb/L, ̺2 = −R/L, Bf = B0/kt, θ1 = 1/Jl, θ2 = −Ll/Jl. The system (3.87)

can easily be represented in form of (3.8) as

ẋ =




x2 0 0

0 −Bfx2 + x3 sinx1

̺1x2 + ̺2x3 + ̺0u 0 0







1

θ1

θ2




(3.88)

Accordingly, using Theorem 3.1, the BIBS stability of system (3.87) can be easily deduced. Here u

(input voltage v) is the manipulated variable and x1 (the angular position q) is the controlled variable.

Further, parameters θ1 and θ2 are uncertain, because of the unknown and sudden changes in the load.

It is observed that the relative degree of the system, γ = 3. The transformation used to linearize the

system is given by the diffeomorphism




τ1

τ2

τ3




=




x1

x2

θ2 sinx1 −Bfθ1x2 + θ1x3




(3.89)
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Table 3.2: Electromechanical system constants for single link robot arm.

Symbol Description Value Unit
J motor inertia 1.625× 10−3 kg −m2/rad
r0 radius of the load 0.02 m
l link length 0.3 m
R rotor resistance 5.0 Ω
L rotor inductance 25× 10−3 H
m0 load mass 0.45 kg
ml link mass 0.5 kg
G gravity constant 9.81 kg −m/s2

B0 viscous friction coefficient 16.25× 10−3 N −m− s/rad
kt torque constant of motor 0.90 N −m/A
kb back-emf constant 0.90 N −m/A

where unknown parameter vector θ = [θ1, θ2]
T are the elements of compact set Sθ = [7, 16] ×

[−37,−32]. For fair comparison, the initial values of load mass and load radius are set to m0 = 1.55kg

and r0 = 0.34m as in [10], which makes the initial values of parameters as θ1 = 10 and θ2 = −33.

At t = 10s, sudden change in load parameters to m0 = 1.26kg and r0 = 0.256m made the values of

parameters as θ1 = 14.5 and θ2 = −36.7.

Cezayirli et al. [10] (Appendix A.2 may be referred) used 24 fixed identification models with

parameters initialized at θj =

([11.5,−34.5], [11.5,−36], [11.5,−34], [11.5,−32], [7,−34.5], [7,−36], [7,−34], [7,−32],

[9,−34.5], [9,−36], [9,−34], [9,−32], [11,−34.5], [11,−36], [11,−34], [11,−32],

[13,−34.5], [13,−36], [13,−34], [13,−32], [16,−34.5], [16,−36], [16,−34], [16,−32]).

On the contrary, in the proposed MMTLA method, only 4 identical identification models are initiated

at θj = ([7,−37], [7,−32], [16,−37], [16,−32]). All the states for the system as well as the identification

models start from 0. Here the reference trajectory is considered as yd = 2(1 − e−0.6t) sin(1.8π)t.

Simulation results obtained by using the proposed MMTLA control method are shown in Figure

3.8 - Figure 3.12. Figure 3.8 compares tracking results obtained by using the proposed MMTLA

control method with those of [10]. In Figure 3.9 parameter convergence in both the methods can be

observed. Figure 3.10 presents the control inputs for both the methods. Moreover, Figure 3.11 shows

the parameter estimation profile in the proposed MMTLA approach for first and second levels for

both the parameters. Finally, Figure 3.12 shows the adaptive weight convergence in all the four models

in the proposed MMTLA approach. Table 3.3 compares the transient and steady state performances

of the proposed MMTLA scheme with Cezayirli et al.’s method [10]. It is evident from Table 3.3 that
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Figure 3.8: Case 2: Trajectory tracking by angular position of robot arm
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Figure 3.11: Case 2: First and second level Parameter convergence

Table 3.3: Comparison between schemes: Case 2

Adaptation
Mechanism

Performance Specification
Mp Mu ts ess tc (θ1) tc (θ2) TV CE RMSE

Cezayirli et al. [10] 57.87 % 21.3 % 27.2 s 0.134 32.1 s 29.25 s 10.52 1.85× 103 0.4037
MMTLA Control 22.17 % 6.3 % 23.9 s 0.093 26.7 s 25.1 s 10.50 1.77× 103 0.2916

Mp : Peak overshoot, Mu : Peak undershoot

ts : Settling time, ess : Steady state error

tc (θ1), tc (θ2): Convergence time for first and second parameter respectively

TV : Total variation, CE : Control energy

RMSE : Root mean square error
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3.6 Summary
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all the transient performance indices like peak overshoot, peak undershoot, settling time are lesser

in the proposed MMTLA control. Also, the steady state error in the proposed MMTLA method

is substantially reduced than the Cezayirli at al.’s method [10]. In the proposed MMTLA control,

the convergence time for both the parameters is lesser than [10]. Smoothness of the control input is

comparable in both the methods. However, control energy spent by the proposed MMTLA control

is reduced and the output performance in terms of RMSE is substantially improved in the proposed

method. Most importantly, the number of models used in the proposed scheme is significantly lesser

compared to the number of models used by [10]. Furthermore, the parameter convergence time in the

proposed MMTLA method is decreased which is crucial for online tuning.

3.6 Summary

A multiple model based two level adaptation (MMTLA) control method is proposed in this chap-

ter. The proposed control scheme is designed for a nonlinear system with linear parameterization.

The control input is found by using feedback linearization technique. The adaptive laws for unknown

parameters at the first level are obtained using Lyapunov stability criterion. Multiple identification

models have been developed with the same structure and different initial parameters which are chosen

to optimally span the given compact parameter space. All the identification models are adaptive in

nature. Adaptive laws for weights at the second level are derived using the identifier error. It is

observed from simulation studies that the positions of identification models need to be selected judi-

ciously to minimize the control effort. Simulation results confirm that the proposed MMTLA control

method outperforms existing switching based multiple model adaptive control method. The underly-
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ing importance of the proposed MMTLA control method is that the number of identification models

required in the proposed MMTLA method is significantly lesser than that of existing multiple model

based techniques. Moreover, parameter convergence in the proposed MMTLA method is reasonably

fast. This is a significant benefit of the proposed MMTLA control method which makes it appropriate

for practical applications. Also, the control effort required is reduced in MMTLA control method.

46



4
Adaptive Controller Design for

Nonlinearly Parameterized SISO
Nonlinear Systems Using Multiple

Model Based Two Level Adaptation
Technique

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Nonlinearly Parameterized Nonlinear System Description . . . . . . . . . 49

4.3 Adaptive Feedback Controller and Estimation Model Design . . . . . . . 50

4.4 Multiple Model Based Two Level Adaptation Technique . . . . . . . . . . 54

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

47



4. Adaptive Controller Design for Nonlinearly Parameterized SISO Nonlinear Systems Using
Multiple Model Based Two Level Adaptation Technique

4.1 Introduction

Adaptive control of nonlinear systems [3,4,6–8,12,50,51] has continued to be a topic of extensive

research in the past. However, most of the results in the literature are available for linearly param-

eterized nonlinear systems, although, nonlinear parameterization is often observed in many physical

systems like the cart-pendulum system [12], fermentation process [32,33], adaptive brake control [34],

robotic manipulators [35], electro-hydraulic system [36] and bioreactors [37]. In [1], Boskovic et al.

presented a stable adaptive control method based on modified adaptive algorithms developed for first

order nonlinearly parameterized plants. Furthermore, Ge et al. [12] used weighted control Lyapunov

function (WCLF) for adaptive tracking control of nonlinearly parameterized nonlinear systems. Anu-

radha et al. [42, 52] discussed the problem of parameter convergence using error model approach to

establish new adaptation algorithms for nonlinearly parameterized systems.

A few recent works on multiple model adaptive control (MMAC) includes control of nonlinear

systems using multiple model adaptive control based parallel dynamic neural networks (PDNNs) [53].

A multiple model based adaptive control methodology for uncertain linear systems was proposed in [54]

which was able to ensure stability and guarantee performance. Recently, Xie et al. [55] applied MMAC

to switched systems. A smooth controller design using only fixed models for nonlinear systems was

reported in [56]. However, it was later observed that lack of proper switching schemes for controllers

in MMAC made this approach not very useful practically. Therefore, researchers started looking for

methods to reduce number of models or to find alternative for switching.

In this chapter, a multiple model with two level adaptation (MMTLA) control is introduced for

nonlinear systems having nonlinear parameterization. The control input is designed using feedback

linearization for the nonlinearly parameterized system [40, 45, 47]. State estimation error between

the system and its estimation model is used to find the tuning law for the unknown parameters

using Lyapunov stability criterion [5]. Multiple adaptive estimation models having same structure

but distinct initializations for estimated parameters are designed. The tuning laws for estimation of

parameters for every model are combined to find a single tuning law for each parameter and this is

known as second level adaptation. The asymptotic stability and parameter convergence for the system

after two levels is established using Lyapunov stability criterion.

Simulation studies are carried out to establish the theoretical propositions. A numerical example

and a cart-pendulum system are simulated and the relevant results are compared with an already
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existing method [12]. From simulation results it is found that there is a significant improvement in

transient performance using the proposed MMTLA control method and in addition, the control energy

expense is considerably reduced.

4.2 Nonlinearly Parameterized Nonlinear System Description

A class of nonlinearly parameterized system is considered as:

ẋi = xi+1, i = 1, ..., n − 1

ẋn =
1

d(x,θ)
[f(x,θ) + g(x)u]

y = x1 (4.1)

where the state vector x : R+ → R
n is considered measurable. Moreover, u : R+ → R is the control

input and y : R+ → R represents the output. Further, f(x,θ), d(x,θ) : Rn → R
n are sufficiently

smooth vector fields and g(x) : Rn → R
n is a known continuous function. Functions f(x,θ) and

d(x,θ) can be characterized as

f(x,θ) =

p∑

l=1

θlfl(x) = ωT
f (x)θ

d(x,θ) =

p∑

l=1

θldl(x) = ωT
d (x)θ (4.2)

where θ = [θ1, θ2, ......, θp]
T and p is the number of unknown parameters, ωf (x) ∈ R

p and ωd(x) ∈ R
p

are known smooth functions. Here f(x,θ), d(x,θ) are linearly parameterized functions, but d(x,θ) in

the denominator of (4.1) causes the unknown parameter θ enter into the system ia a nonlinear fashion,

making it a nonlinearly parameterized system. The following assumptions are made about the system

(4.1):

(i) It is assumed that g(x)/d(x,θ) 6= 0,∀x ∈ R
n. Without losing generality, it is assumed that

g(x) > 0 and d(x,θ) > 0 ∀x ∈ R
n.

(ii) The unknown parameter θ ∈ Sθ, where Sθ ⊂ R
p is a compact set.

(iii) The system has full relative degree n.

(iv) The equilibrium point of the zero dynamics of the system (4.1) is asymptotically stable.
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4.3 Adaptive Feedback Controller and Estimation Model Design

Feedback linearization [40] is a widely explored nonlinear control technique where a nonlinear

state feedback in the control converts the nonlinear system into a stable linear system. This common

methodology includes two consecutive operations, (i) nonlinear change of coordinates, (ii) nonlinear

state feedback controller design. Here, step (i) is not required as the system (4.1) is assumed to have

full degree.

Therefore, a virtual input v = 1
d(x,θ) [f(x,θ) + g(x)u] can be considered to get the control input

as

u =
1

g(x)
(−f(x,θ) + d(x,θ)v). (4.3)

Using (4.2) in (4.3) gives

u =
1

g(x)
(−ωT

f (x)θ + ωT
d (x)θv). (4.4)

The virtual input v for a tracking problem can be designed using the required trajectory information

as [10,45]

v = y
(n)
d + cn(y

(n−1)
d − y(n−1)) + ..... + c1(yd − y) (4.5)

where c1, ......., cn are the constant coefficients of a Hurwitz Polynomial sn + cns
n−1 + .....+ c1 and yd

is the desired trajectory.

The designed controller in (4.4) is impractical because it contains unknown parameter vector θ.

Therefore, a stable estimation model [5, 45] for the system (4.1) is developed as

˙̂xi = λi(x̂i − xi) + xi+1, i = 1, 2, ...., n − 1

˙̂xn = λn(x̂n − xn) +
1

d̂(x, θ̂)

[
f̂(x, θ̂) + g(x)u

]
(4.6)

such that its states and output converge to the system as time t → ∞. Here, {x̂i, i = 1, 2, ..., n} is

the estimate of {xi, i = 1, 2, ..., n}, θ̂ is the estimate of θ and λi, λn are negative constants. Also,

f̂(x, θ̂) = ωT
f (x)θ̂ and d̂(x, θ̂) = ωT

d (x)θ̂. Now, subtracting (4.1) from (4.6) and using (4.2), the
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identifier error dynamics of system (4.1) are found as

ėIi = λieIi

ėIn = λneIn +
1

ωT
d (x)θ̂

[
ωT

f (x)θ̂ + g(x)u
]
− 1

ωT
d (x)θ

[
ωT

f (x)θ + g(x)u
]

(4.7)

or,

ėIi = λieIi

ėIn = λneIn +
ωT

d (x)θ[ω
T
f (x)θ̂ + g(x)u]−ωT

d (x)θ̂[ω
T
f (x)θ + g(x)u]

(ωT
d (x)θ̂)(ω

T
d (x)θ)

(4.8)

where eIi = x̂i − xi, i = 1, 2, ..., n. The above error equation can be rewritten as

ėIi = λieIi

ėIn = λneIn +
(ωT

d (x)θ̂)(ω
T
f (x)θ̃)− (ωT

d (x)θ̃)(ω
T
f (x)θ̂)− (ωT

d (x)θ̃)g(x)u

(ωT
d (x)θ̂)(ω

T
d (x)θ)

(4.9)

where θ̃ = θ̂ − θ is the parameter error.

4.3.1 System stability and adaptive law design

To investigate the stability properties of the nonlinear system (4.1), a suitable Lyapunov function

is considered as

V (eI , θ̃) = σ1
eTI eI
2

+ σ2
θ̃
T
θ̃

2
(4.10)

where eI = [eI1 , eI2 , ....., eIn ]
T and σ1 and σ2 are positive constants. The adaptive law is used as

˙̃
θ = −σ1

σ2

(ωd
T θ̂)ωf

T − ωd
T (ωf

T θ̂)− ωT
d gu

(ωT
d θ̂)(ω

T
d θ)

eIn

or,
˙̂
θ = −σ1

σ2

(ωT
d θ̂)ω

T
f − ωT

d (ω
T
f θ̂)− ωT

d gu

(ωT
d θ̂)(ω

T
d θ)

eIn . (4.11)

Using estimate θ̂ in place of unknown parameter vector θ in (4.11) yields the final adaptive law,

˙̂
θ = −σ1

σ2

ωf (ω
T
d θ̂)− ωd(ω

T
f θ̂)− ωT

d gu

(ωT
d θ̂)

2
eIn . (4.12)

Taking first time derivative of Lyapunov equation (4.10) and using adaptive law (4.12) gives

V̇ (eI , θ̃) = σ1

n−1∑

i=1

λie
2
Ii
+ σ1λne

2
In ≤ 0. (4.13)
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From (4.13), boundedness of the parameter error θ̃ and the estimation error eI are established. Since

all the terms in the right hand side of (4.9) are bounded, boundedness of ėI is assured. Now, taking

first time derivative on both sides of (4.13) gives

V̈ (eI , θ̃) = 2σ1

n−1∑

i=1

λieIi ˙eIi + 2σ1λneIn ˙eIn . (4.14)

As is evident in (4.14), boundedness of eI and ėI implies that V̈ (eI , θ̃) has a finite value and hence,

lim
t→∞

V̇ (eI , θ̃) → 0 satisfies Barbalat’s lemma meaning that lim
t→∞

eI(t) = 0. Moreover, having suffi-

ciently rich [7] (A.1 may be referred) regressor vectors ωf ,ωd in (4.11), implies that lim
t→∞

θ̃(t) = 0

(using Theorem 2.1 in [45]).

Furthermore, the virtual control signal v in (4.5) consists of y and its derivatives ẏ, ÿ, ....., y(n−1), which

are functions of unknown parameter θ. Now, certainty equivalence principle [7] (A.1 may be referred)

is applied to yield v̂ = y
(γ)
d + cγ(y

(γ−1)
d − ŷ(γ−1)) + ........+ c1(yd − y). Consequently, the control input

in (4.4) can be deduced by replacing θ and v with their estimate θ̂ and v̂ respectively yielding

u =
1

g(x)
(−ωT

f (x)θ̂ + ωT
d (x)θ̂v̂). (4.15)

In the preceding paragraphs, the convergence of estimation and parameter errors was established.

Now, the closed loop stability of the system at the first level including boundedness of the control

error will be discussed.

The control error is represented as

ei = xi − y
(i−1)
d , i = 1, ....n. (4.16)

Taking first time derivative of (4.16) gives

ė1 = e2

ė2 = e3

...

ėn−1 = en

ėn = ẋn − y
(n)
d (4.17)
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Using (4.17) and properties of v̂, the vector form of control error equation is represented as

ė = Ae+B(ẋn − v̂) (4.18)

where A =




0 1 0 . . 0

0 0 1 . . 0

. . . . . .

. . . . . .

0 . . . . 1

c1 c2 . . . cn




is a Hurwitz matrix and B = [0, 0, ..., 1]T . Using (4.1) and (4.15),

(4.18) can be written as

ė = Ae+
1

θTωd

[
θTωf + gu

]
− 1

θ̂
T
ωd

[
θ̂
T
ωf + gu

]
. (4.19)

Following assumptions are made to analyze the closed loop stability of the system (4.1):

(i) The reference trajectory yd is bounded with bounded derivatives ẏd, ..., y
n−1
d . For yd and its

higher derivatives upper bounded by bd, one can write

‖ x ‖≤‖ e ‖ +bd (4.20)

(ii) Since ωf and ωd are known regressor vectors and are bounded, parameter estimate θ̂ is a known

bounded vector and this gives

‖ (ωf )(θ̂
T
ωd)− (ωd)(θ̂

T
ωf )− (ωd)g(x)u

(θ̂
T
ωd)2

‖‖ θ̃
T ‖≤ bω ‖ x ‖‖ θ̃

T ‖ (4.21)

where θ̃ = θ̂ − θ and bω is a small positive constant chosen by the designer.

Consequently, a Lyapunov function for closed loop error dynamics (4.19) can be selected as

V (e) = eTPe. (4.22)

Taking first differentiation of (4.22) with respect to time and using (4.19) gives

V̇ (e) = eT (ATP+PA)e+ 2eTP
(θ̃

T
ωf )(θ̂

T
ωd)− (θ̃

T
ωd)(θ̂

T
ωf )− (θ̃

T
ωd)g(x)u

(θ̂
T
ωd)(θ

Tωd)
(4.23)

where P is a symmetric positive definite matrix, found by solving Lyapunov equation ATP+PA = −I.
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Again, using estimate θ̂ in place of the unknown parameter vector θ, (4.23) can be written as

V̇ (e) = −eTe+ 2eTP
(θ̃

T
ωf )(θ̂

T
ωd)− (θ̃

T
ωd)(θ̂

T
ωf )− (θ̃

T
ωd)g(x)u

(θ̂
T
ωd)2

. (4.24)

Now, using (4.20) and (4.21), (4.24) yields

V̇ (e) ≤ − ‖ e ‖2 +2Pbω ‖ x ‖‖ θ̃
T ‖‖ e ‖ (4.25)

or, V̇ (e) ≤ −
(
‖ e ‖ −1

2
bω ‖ x ‖‖ θ̃

T ‖
)2

+
1

4

(
bω ‖ x ‖‖ θ̃

T ‖
)2

(4.26)

If the magnitude of the second term in (4.26) is lesser than the magnitude of the first term, V̇ (e) will

become negative definite. Therefore, design parameter bω can be chosen such that

b2ω
4

(
‖ x ‖‖ θ̃

T ‖
)2

≤
(
‖ e ‖ −1

2
bω ‖ x ‖‖ θ̃

T ‖
)2

. (4.27)

Consequently, bω ≤ ‖e‖

‖x‖‖θ̃
T
‖
will ensure that V̇ (e) ≤ 0, which implies that ‖e‖ ∈ L∞.

4.4 Multiple Model Based Two Level Adaptation Technique

This section is devoted to discuss the concept of two level adaptation using multiple estimation

models Mj(j = 1, ..., N). Therefore, extending the basic structure of the single estimator model as

given in (4.6) for N multiple models provides

˙̂xij = λij (x̂ij − xi) + xi+1, i = 1, 2, ...., n − 1

˙̂xnj
= λnj

(x̂nj
− xn) +

1

d̂(x, θ̂j)

[
f̂(x, θ̂j) + g(x)u

]
, j = 1, ..., N (4.28)

where parameter vector estimates θ̂j, j = 1, ..., N are placed at different starting points inside the

compact space Sθ. Here, x̂ij , x̂nj
, j = 1, ..., N is the state vector of the j-th model and λij , λnj

are

negative constants. Defining the identifier error dynamics for each model as,

ėIij = λijeIij

ėInj
= λnj

eInj
+

(ωT
d (x)θ̂j)(ω

T
f (x)θ̃j)− (ωT

d (x)θ̃j)(ω
T
f (x)θ̂j)− (ωT

d (x)θ̃j)g(x)u

(ωT
d (x)θ̂j)(ωT

d (x)θ)
(4.29)

where eIij = x̂ij −xi, eInj
= x̂nj

−xn and θ̃j = θ̂j−θ are the state estimation error and the parameter

error for the j-th model respectively. Using (4.12), the adaptive law for the j-th parameter vector is
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deduced as

˙̂
θj = −σ1j

σ2j

ωf (ω
T
d θ̂j)− ωd(ω

T
f θ̂j)− ωT

d gu

(ωT
d θ̂j)2

eInj
(4.30)

where σ1j , σ2j are positive constants.

The first level models θ̂j(t) are combined in a convex manner, using weights wj(t) which are also

adaptive in nature, resulting in the desired second level model θs(t) given as

θs(t) =

N∑

j=1

wj(t)θ̂j(t) (4.31)

where the weights wj(t) satisfy the rules given in Section 3.3.3. Therefore, identification of θ is now

transformed to estimation of wj(t) at the second level. Thus, as discussed in Section 3.3.3, the error

and weight relationship can be written as

[e1(t), e2(t), ........eN (t)]W = E(t)n×NWN×1 = 0n×1 (4.32)

where W(t) = [w1(t), w2(t), ....wN (t)]T and E(t) = [e1(t), e2(t), ....eN (t)].

Similarly, using (3.57) the adaptive weights have the tuning laws given as

˙̂
W
¯
(t) = −H(t)k̃(t) (4.33)

= −HT (t)H(t)Ŵ
¯
(t) +HT (t)k(t).

Finally, using the estimate of system parameter θs, the control input at the second level can be derived

as

us =
1

g(x)
(−ωT

f (x)θs + ωT
d (x)θsv̂). (4.34)

4.4.1 Complete system stability after two level adaptation

To achieve the overall system stability and tracking convergence, control error equation (4.19) is

modified here by replacing θ̂ with second level estimate θs as

ės = Aes +
1

θT
s ωd

[
θT
s ωf + gus

]
− 1

θTωd

[
θTωf + gus

]
(4.35)
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where us = 1
g(x)(−ωT

f (x)θs + ωT
d (x)θsv̂). Rewriting (4.21) for second level parameter estimate θs,

which is also a known bounded vector, gives

‖ (ωf )(θ
T
s ωd)− (ωd)(θ

T
s ωf )− (ωd)g(x)us

(θT
s ωd)2

‖‖ θ̃
T

s ‖≤ bω ‖ x ‖‖ θ̃
T

s ‖ (4.36)

where θ̃s = θs− θ. An appropriate Lyapunov function for closed loop error dynamics (4.35) is chosen

as

Vs(es, θ̃s) = eTs Pes + θ̃
T

s θ̃s (4.37)

where P is a symmetric positive definite matrix, obtained by solving Lyapunov equation ATP+PA =

−I. Differentiating (4.37) with respect to time and using (4.35) yields

V̇s(es, θ̃s) = eTs (A
TP+PA)es + 2θ̃

T

s
˙̃
θs + 2eTs P

(θ̃
T

s ωf )(θ
T
s ωd)− (θ̃

T

s ωd)(θ
T
s ωf )− (θ̃

T

s ωd)g(x)us

(θT
s ωd)(θ

Tωd)

(4.38)

Replacing unknown parameter θ with its estimate θs, (4.38) is rewritten as

V̇s(es, θ̃s) = −eTs es + 2θ̃
T

s
˙̃
θs + 2eTs P

(θ̃
T

s ωf )(θ
T
s ωd)− (θ̃

T

s ωd)(θ
T
s ωf )− (θ̃

T

s ωd)g(x)us

(θT
s ωd)2

(4.39)

Now, differentiating θ̃s in (4.31) with respect to time yields

˙̃
θs = θ̇s =

N∑

j=1

wj
˙̂
θj +

N∑

j=1

ẇjθ̂j (4.40)

Using (4.40) in (4.39) gives

V̇s(es, θ̃s) = −eTs es + 2eTs P
(θ̃

T

s ωf )(θ
T
s ωd)− (θ̃

T

s ωd)(θ
T
s ωf )− (θ̃

T

s ωd)g(x)us

(θT
s ωd)2

+ 2θ̃
T

s (
N∑

j=1

wj
˙̂
θj +

N∑

j=1

ẇj θ̂j) (4.41)

Using

N∑

j=1

wj(t) = 1

or,

N∑

j=1

ẇj(t) = 0

(4.42)
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for j = 1, ..., N , (4.42) can be written as

ẇN = −(ẇ1 + .......ẇN−1). (4.43)

The above discussion gives

N∑

j=1

ẇj θ̂j = ẇ1θ̂1 + .......ẇN θ̂N

= ẇ1(θ̂1 − θ̂N ) + .....ẇN−1(θ̂N−1 − θ̂N )

=
˙̂
W
¯
Z(t) (4.44)

where W
¯

is estimated by Ŵ
¯

and Z(t) = [(θ̂1 − θ̂N ), ......(θ̂N−1 − θ̂N )]. Using (4.30) and (4.44), (4.41)

is represented by

V̇s(es, θ̃s) = −eTs es + 2eTs P
(θ̃

T

s ωf )(θ
T
s ωd)− (θ̃

T

s ωd)(θ
T
s ωf )− (θ̃

T

s ωd)g(x)us

(θT
s ωd)2

+ 2θ̃
T

s (−
N∑

j=1

wj
σ1
σ2

(ωT
d θ̂j)ω

T
f − ωT

d (ω
T
f θ̂j)− ωT

d gus

(ωT
d θ̂)

2
enj

+
˙̂
W
¯
Z(t)). (4.45)

Using (4.32) and (4.33), (4.45) can be written as

V̇s(es, θ̃s) = −eTs es + 2eTs P
(θ̃

T

s ωf )(θ
T
s ωd)− (θ̃

T

s ωd)(θ
T
s ωf )− (θ̃

T

s ωd)g(x)us

(θT
s ωd)2

− 2H(t)k̃(t)Z(t)θ̃s

(4.46)

Now, using (4.21) and (4.36) in (4.46) gives

V̇s(es, θ̃s) ≤ − ‖ es ‖2 +2‖P‖bω ‖ x ‖‖ θ̃s ‖‖ es ‖ +2 ‖ H ‖‖ k̃ ‖‖ Z ‖‖ θ̃s ‖ . (4.47)

A suitable design parameter bω can be chosen such that bω <
‖es‖2−2‖H‖‖k̃‖‖Z‖‖θ̃s‖

2‖P‖‖x‖‖θ̃s‖‖es‖
for ensuring negative

definiteness of the Lyapunov function V̇s(es, θ̃s). Consequently, the asymptotic stability of the overall

system is attained. Since V̇s is negative definite, Vs is a decreasing function whose minimum value is

zero. Also, Vs is positive definite, which implies that it will be zero only when es(t) and θ̃s(t) are both

zero, inferring that lim
t→∞

es(t) = 0 and lim
t→∞

θ̃s(t) = 0.

4.5 Simulation Results

The proposed MMTLA controller is applied to a numerical example and a cart-pendulum system

which are nonlinearly parameterized nonlinear systems. Moreover, the results obtained with MMTLA
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control method are compared with a single model adaptive control method developed by Ge et al. [12]

discussed in A.3.

Case 1: Numerical example

Let us consider a nonlinearly parameterized nonlinear system as given below [12]:

ẋ1 = x2

ẋ2 =
x21 + u

e−x2

1(θ1 + θ2x22)
(4.48)

where θ1 and θ2 are the unknown parameters. Using (4.6), the estimation model for system (4.48) is

built as

˙̂x1 = λ1(x̂1 − x1) + x2

˙̂x2 = λ2(x̂2 − x2) +
x21 + u

e−x2

1(θ̂1 + θ̂2x
2
2)

(4.49)

The control input for system (4.48) is found using (4.15) resulting in

u = −x21 + v̂(θ̂1 + θ̂2x
2
2)e

−x2

1 (4.50)

Adaptive laws for system (4.48) are found using (4.30) yielding

˙̂
θ1 = l1

(x21 + u)e2

e−x2

1(θ̂1 + θ̂2x22)
2

˙̂
θ2 = l2

(x21 + u)x22e2

e−x2

1(θ̂1 + θ̂2x22)
2

(4.51)

where e2 = x̂2 − x2. Controller gains for virtual input v in (4.5) are chosen as c1 = 3, c2 = 1 and

gains l1, l2 in (4.51) are chosen as l1 = 10, l2 = 25 as per [12] for fair comparison. The unknown

parameter vector for this system θp = [θ1, θ2]
T = [2, 0.5]T lies in the compact and bounded set

Sθ = [0.5, 3.5] × [−0.5, 1.5]. In Ge et al. [12] given in A.3, a single identification model is used where

starting values of parameters are θ̂ = [0, 0]T . In the proposed MMTLA control method, 4 models

are initialized at θj = ([0.5,−0.5], [0.5, 1.5], [3.5,−0.5], [3.5, 1.5]). The system and the estimation

model states start from [0.5, 0]. The reference trajectory to be tracked is chosen as yd = 3sin(0.5t).

The simulation results are plotted in Figure 4.1 - Figure 4.4. Table 4.1 compares the transient and

steady state performances of the MMTLA control method with those of Ge et al.’s method [12]. The

definitions of performance specifications can be found in A.5.
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Figure 4.1: Case 1: Trajectory tracking

Table 4.1: Simulation results: Case 1

Adaptation
Mechanism

Performance Specification
Mp Mu ts ess tc (θ1) tc (θ2) TV CE RMSE

Ge et al. [12] 13.076 % 14.63 % 19.87 s 0 23.6 s 18.7 s 5.53 1.57× 103 0.072
MMTLA Control 9.94 % 8.60 % 10.8 s 0 9.8 s 8.89 s 4.75 1.54× 103 0.051

Mp : Peak overshoot, Mu : Peak undershoot

ts : Settling time, ess : Steady state error

tc (θ1), tc (θ2): Convergence time for first and second parameter respectively

TV : Total variation, CE : Control energy

RMSE : Root mean square error
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Figure 4.2: Case 1: Parameter Convergence
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Figure 4.3: Case 1: Control Input
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From Table 4.1 it is evident that transient performance of the MMTLA control technique is far

superior than that of Ge et al.’s [12] method. The control energy for both the methods are almost

equal. However, smoother control input and faster convergence of parameters are advantages of the

proposed MMTLA control method. It may be noted that parameter convergence time is drastically

reduced in the MMTLA control method making it a potential candidate for online tuning problems.

Case 2: Cart-pendulum system

The proposed MMTLA control method is applied next to a cart-pendulum system shown in Figure 4.5.

The design objective here is to control the vertical angle of the inverted pendulum by manipulating

the balanced force applied to the cart. Attitude control of booster rocket at take-off is a real-world

application of inverted pendulum control example. The cart-pendulum system is a second order non-

linearly parameterized nonlinear single-input single-output (SISO) system as described below [12]:

Figure 4.5: Cart-pendulum system
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ẋ1 = x2

ẋ2 =
g sinx1 − mlx2

2
sinx1 cos x1

M+m

l
(
4
3 − m cos2 x1

M+m

) +
cos x1

M+m

l
(
4
3 − m cos2 x1

M+m

)u

y = x1 (4.52)

where x1 and x2 are the two states of the system, which physically represent the angular displacement

and angular velocity of the pendulum respectively. Further, u is the applied control force. For

simplicity, the system dynamics with respect to cart (cart distance, cart velocity) are ignored in the

simulation study. The physical constants involved in the system (4.52) are specified in Table 4.2.

System (4.52) can be described in the form of (4.1 - 4.2) as

Table 4.2: Physical system constants of cart-pendulum system

Symbol Description Value Unit
M Mass of cart 1 kg
m Mass of the pendulum 0.2 kg
l Half length of the pendulum 0.5 m
g gravity constant 9.81 kg −m/s2

ẋ1 = x2

ẋ2 =
g sinx1 +

θ2x
2

2
sinx1 cos x1

θ1(
4l
3 + θ2 cos2 x1

θ1

) +
cos x1

θ1(
4l
3 + θ2 cos2 x1

θ1

)u

y = x1 (4.53)

with

θp =




θ1

θ2

θ3



=




M +m

−ml
4
3 l(M +m)




(4.54)

ωf (x) =




g sinx1

x22 sinx1 cos x1

0



, ωd(x) =




0

cos2 x1

1




and

g(x) = cos x1 (4.55)
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which gives rise to control input,

u =
1

g(x)

[
−θ̂

T
ωf + θ̂

T
ωdv̂

]
(4.56)

with adaptive laws given by (4.12) as

˙̂
θ1 = −g1(θ̂2g sinx1 cos

2 x1 + θ̂3g sinx1)e2/(θ̂2 cos
2 x1 + θ̂3)

2

˙̂
θ2 = −g2(θ̂3x

2
2 sinx1 cos x1 − θ̂1g sinx1 cos

2 x1 − u cos3 x1)e2/(θ̂2 cos
2 x1 + θ̂3)

2

˙̂
θ3 = −g3(−θ̂1g sinx1 − θ̂2x

2
2 sinx1 cos x1 − u cos x1)e2/(θ̂2 cos

2 x1 + θ̂3)
2. (4.57)

Constants used in the virtual control v are chosen as c1 = 8, c2 = 10 and for controller param-

eters in (4.57), g1 = 1, g2 = 1, g3 = 1 are selected as per [12] for fair comparison. Assump-

tion (i) in Section 4.2 for g(x) = cos x1 is satisfied only for |x1| < π/2. Hence, the simulation

parameters need to be selected such that |x1| < π/2 holds true for all time. Elements of the un-

known parameter vector θp = [θ1, θ2, θ3]
T = [1.2,−0.1, 0.8]T belong to the compact and bounded set

Sθ = [−3,−0.4,−3]× [3, 0.4, 3]. In Ge et al. [12] given in A.3, a single adaptive identification model is

used with parameters initialized at θ̂ = [0, 0, 0]T . Likewise, for the proposed MMTLA control method

N = 8 models are initialized at

θj = ([−3,−0.4,−3], [−3,−0.4, 3], [−3, 0.4,−3], [−3, 0.4, 3], [3,−0.4,−3], [3,−0.4, 3], [3, 0.4,−3], [3, 0.4, 3]).

All the states of system and the identification models are initialized at 0. For tracking, yd = (π/6)sin(t)

is chosen as the desired trajectory. Figure 4.6 - Figure 4.9 compare the simulation results obtained

using the proposed MMTLA control method with those obtained using Ge et al.’s method [12].

Further, Table 4.3 compares the transient and steady state performances of the system using the

proposed MMTLA controller with those of Ge et al.’s method [12]. Table 4.3 clearly shows superi-

ority of the proposed MMTLA control scheme over Ge et al.’s method [12] for all the transient and

steady state performance specifications. The control input in the proposed MMTLA control method

is far smoother than that of Ge et al.’s method [12]. Moreover, convergence time of the unknown pa-

rameters in the MMTLA method is significantly lesser. Additionally, the MMTLA controller achieves

comparable output performance in terms of RMSE with those of [12] by spending lesser control energy.
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Figure 4.6: Case 2: Trajectory tracking

Table 4.3: Simulation results: Case 2

Adaptation
Mechanism

Performance Specification
Mp Mu ts ess tc (θ1) tc (θ2) tc (θ3) TV CE RMSE

Ge et al. [12] 70.35 % 5.4 % 18.62 s 0 20.1 s 40.3 s 30.56 s 3.54 1.217× 103 0.0663
MMTLA Control 52.7 % 4.57 % 9.47 s 0 7.72 s 40.1 s 25.1 s 1.74 1.091× 103 0.0662

Mp : Peak overshoot, Mu : Peak undershoot

ts : Settling time, ess : Steady state error

tc (θ1), tc (θ2), tc (θ3): Convergence time for first, second and third parameter respectively

TV : Total variation, CE : Control energy

RMSE : Root mean square error
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Figure 4.9: Case 2: Adaptive weights

4.6 Summary

A nonlinearly parameterized nonlinear system is adaptively controlled using the multiple model

based two level adaptation (MMTLA) control method. The control input is found using the feedback

linearization technique. The tuning laws for identifier parameter are obtained using Lyapunov stability

criterion. Identification models at the first level are combined using adaptive weights efficiently to get

the single second level model. Overall closed loop stability of the system and tracking error convergence

with MMTLA control are established using Lyapunov criterion. Simulation results suggest that the

offline selection of starting values of identifier parameters should be precise to minimize the control

effort. Simulation results confirm improvement in transient, input and output performances with

the MMTLA controller compared to an existing adaptive control technique. The MMTLA control

technique is best suited for systems where parametric errors are large and convergence of first level

models are slow.
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5. Adaptive Controller Design for Nonlinear Coupled MIMO Systems Using Multiple Model
Based Two Level Adaptation Technique

5.1 Introduction

Controller design for nonlinear coupled MIMO systems is a challenging problem. Efforts are

continuing to design controllers for nonlinear coupled MIMO systems by effectively handling the

coupling [57–59]. In [57], a robust adaptive sliding mode controller was designed using fuzzy modeling

for a class of uncertain MIMO nonlinear systems. Lee et al. [59] presented an adaptive control method

for a class of nonlinear MIMO coupled systems where backstepping and adaptive fuzzy logic control

were combined effectively to design a robust controller.

In this chapter, an adaptive controller using multiple model based two level adaptation (MMTLA)

approach is designed for a class of nonlinear MIMO systems with cross-coupling. Unlike the MMAC

with switching and tuning, in MMTLA the information from each and every model is used efficiently

and all of them contribute simultaneously to control the system. Well known feedback linearization

technique is used to design the control input which also decouples the nonlinear system [4,6,8,40,48].

The unknown parameters present in the model are estimated using an observer based estimation

model [5,45]. Adaptive tuning laws for the unknown parameters are derived using Lyapunov stability

criterion. Further, for validating the proposed MMTLA method, a twin rotor MIMO system (TRMS)

is considered. A TRMS is a nonlinear MIMO aerodynamical system with high cross-coupling between

its two propellers [60]. A high nonlinearity, unstable system dynamics, inter-axis cross-coupling and

parameter uncertainty are some basic challenges in designing a controller for the TRMS, which mimics

a helicopter. In a real helicopter, the aerodynamic force is controlled by varying the angle of attack

of the propeller blades. On the contrary, the TRMS is designed such that the angle of attack is fixed

and the aerodynamic force is controlled by changing the speed of the motors [61]. A twin rotor MIMO

system (TRMS) is an excellent and widely used laboratory model to test the performance of controllers

designed for nonlinear MIMO cross-coupled systems. A good number of techniques has already been

reported in the literature for designing controllers for the TRMS. Most of the methods available in

literature use decoupling techniques to separate the system in the horizontal and vertical subsystems

and treat the couplings as the uncertainty between subsystems [62–64]. Few other techniques using

decoupling method include sliding mode controller [65, 66], backstepping controller [67], T-S fuzzy

model based controller [68]. Similarly, there are methods available where coupling effects are treated as

an integral part of the system and the controllers are designed without creating decoupled subsystems

[26,69]. Further, many other research groups like Liu et al. [70–72] contributed useful techniques and
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results on helicopter control. Few recent works on helicopter control includes the robust controller

design using backstepping decentralized method [73]. Similarly, a fault tolerant control (FTC) method

using adaptive neural network is recently published [74].

Extensive simulation and and experimental studies are conducted on the TRMS for pitch and yaw

control using the proposed MMTLA method.

5.2 System Description

A class of nonlinear multi-input multi-output (MIMO) system [6] is considered as

ẋ = f(x,θf ) +

m∑

i=1

gi(x,θg)ui

yi = hi(x), i = 1, ...,m (5.1)

where x : R+ → R
n is the state vector which is assumed to be fully available for measurement. Next,

ui, yi : R
+ → R are the control inputs and system outputs respectively. Further, f, gi : R

n → R
n,

and hi : R
n → R are sufficiently smooth vector fields. Lastly, θf ∈ Sf , θg ∈ Sg are the unknown

parameter vectors with compact sets Sf ⊂ R
pf , Sg ⊂ R

pg . Here, it is assumed that all the inputs

ui’s are interacting with all the outputs yi’s or the system (5.1) is a coupled system. Additionally, the

following properties are assumed about the system (5.1):

(i) Functions f(x,θf ) and gi(x,θg) are characterized as

f(x,θf ) = ωT
f (x)θf

gi(x,θg) = ωT
gi
(x)θg (5.2)

where ωf (x) and ωgi(x) are known matrices.

(ii) The system has constant relative degree γi [6], i.e.

(a) Lgi(x,θg)L
i−1
f(x,θf )

hi(x) = 0, i = 1, 2, ..., (γi − 1)

(b) Lgi(x,θg)L
γi−1
f(x,θf )

hi(x) 6= 0, ∀ x ∈ R
n, θf ∈ Sf , θg ∈ Sg.

where L is the Lie derivative defined as Lfh(x) =
dh(x)
dx

f(x).

(iii) The equilibrium point of the zero dynamics of the system (5.1) is asymptotically stable [6].
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5.3 Design of Estimation Model

In this section, an observer based estimation model [5, 45] is designed for the system (5.1). Using

(5.2), (5.1) can be written as

ẋ = ωT
f (x)θf +

m∑
i=1

ωT
gi
(x)θgui (5.3)

The observer based estimation model [5, 45] for the system (5.3) is defined as

˙̂x = A(x̂− x) + ωT
f (x)θ̂f +

m∑
i=1

ωT
gi
(x)θ̂gui (5.4)

Consequently, the estimation error dynamics for (5.2) are given as

ėI = AeI + ωT
f (x)θ̃f +

m∑
i=1

ωT
gi
(x)θ̃gui (5.5)

with eI = x̂−x, θ̃f = θ̂f −θf , θ̃g = θ̂g −θg. Also, the matrix A ∈ R
n×n is a stable matrix chosen by

the designer. A suitable Lyapunov function V (eI , θ̃f , θ̃g) = eTI PeI + θ̃
T

f θ̃f + θ̃
T

g θ̃g is chosen, where P

is the positive definite matrix solution of the Lyapunov function ATP+PA = −Q and Q = QT > 0.

Thereupon, using adaptive laws for the parameter estimates as

˙̃
θf =

˙̂
θf = −ωT

f (x)PeI

˙̃
θgi =

˙̂
θgi = −ωT

gi
(x)uiPeI (5.6)

it can be guaranteed that eI → 0 as t → ∞, following Theorem 2.1 in [45]. Also, if the regressor

vectors ωf (x),ωgi(x) are rich enough [7] (A.1) , θ̃ = [θ̃f , θ̃g]
T converges to zero asymptotically [6,45].

5.4 Controller Design Using Feedback Linearization

A tracking control problem is considered now. For a MIMO system with a well defined relative

degree ‘γi’, a virtual control input ‘vi’ can be defined such that the system nonlinearity is cancelled.

This gives a simple integrator system between output and new input ‘vi’, making the design of the

controller simple using a linear technique. If the desired output and its derivatives [ydi , ẏdi , ....., y
(γi)
di

]

are smooth and bounded, ‘vi’ can be designed to follow the desired trajectory ydi , such that the

whole system remains bounded and tracking error ei = ydi − yi converges to zero asymptotically. The

feedback linearization technique used to design a state feedback controller for a nonlinear coupled

MIMO system which is also decoupled in the process is discussed in this section. The decoupling
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problem or noninteracting control problem is solvable using static state feedback if and only if the

system has a relative degree γi [8] at the equilibrium point.

The outputs yi in (5.1) are differentiated γi times with respect to time, such that at least one of

the inputs appears in y
(γi)
i [6], i.e.

y
(γi)
i = Lγi

f(x,θf )
hi(x) +

m∑

i=1

Lgi(L
γi−1
f(x,θf )

hi(x))ui (5.7)

with at least one of the Lgi(L
γi−1
f(x,θf )

hi(x)) 6= 0, ∀ x ∈ R
n, θf ∈ Sf , θg ∈ Sg. Thereafter, a m × 1

matrix B(x,θf ) and a m×m matrix A(x,θf ,θg) are defined respectively as

B(x,θf ) =




Lγ1
f(x,θf )

h1(x)

.

.

.

Lγm
f(x,θf )

hm(x)




,

A(x,θf ,θg) =




Lg1(x,θg)(L
γ1−1
f(x,θf )

h1(x)) . . . Lgm(x,θg)(L
γ1−1
f(x,θf )

h1(x))

. .

. .

. .

Lg1(x,θg)(L
γm−1
f(x,θf )

hm(x)) . . . Lgm(x,θg)(L
γm−1
f(x,θf )

hm(x))




(5.8)

such that (5.7) can be written as

y
(γi)
i = B(x,θf ) + A(x,θf ,θg)ui. (5.9)

Here matrix A is referred to as decoupling matrix. As stated earlier, the decoupling problem is solvable

if and only if the system has a vector relative degree or the decoupling matrix A is nonsingular.

Subsequently, if A(x,θf ,θg) ∈ R
m×m is bounded away from singularity, the state feedback control law

ui = A(x,θf ,θg)
−1[−B(x,θf ) + vi], i = 1, ...,m (5.10)

yields the closed-loop decoupled, linear system

y
(γi)
i = vi, i = 1, ...,m (5.11)
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Here control vi is chosen to make the outputs yi(t) track their respective desired outputs ydi(t), i.e.,

vi = y
(γi)
di

+ c1i(y
(γi−1)
di

− y
(γi−1)
i ) + ...+ cγi(ydi − yi) (5.12)

with all c1i , ...., cγi chosen so that sγi + c1is
γi−1 + ..... + cγi are Hurwitz polynomials. The feedback

law in (5.10) is popularly known as static state-feedback linearizing control law [6].

Further, as θ = [θf ,θg]
T is the unknown parameter vector, at any time t, the estimates of f and

g are

f(x, θ̂f ) = ωT
f (x)θ̂f

gi(x, θ̂g) = ωT
gi
(x)θ̂g (5.13)

with θ̂, θ̂f , θ̂g being the estimates of θ,θf ,θg respectively at time t. Therefore, the control law (5.10)

is rewritten as

ui = A(x, θ̂f , θ̂g)
−1[−B(x, θ̂f ) + v̂i] (5.14)

with the unknown parameter vector θ = [θf ,θg] in (5.10) being replaced by its estimate θ̂ = [θ̂f , θ̂g]
T .

In (5.14), the parameter estimate θ̂ can be chosen such that A(x, θ̂) is non-singular [6]. To do so,

projection technique [44] is used to keep parameter estimates θ̂ in a compact region Sθ [48]. Also, v̂i

is the estimate of vi given as,

v̂i = y
(γi)
di

+ c1i(y
(γi−1)
di

− ŷ
(γi−1)
i ) + ...+ cγi(ydi − ŷi). (5.15)

The estimate v̂i is required since derivatives of output ẏi, ÿi, ....., yi
(γi−1) in (5.7) are functions of

unknown parameters θ.

Moreover, if A(x,θ) defined in (5.8) is nonsingular for all x ∈ R
n, a diffeomorphism (τ , ξ) = ψ(x)

can be defined [6] as

τ =




h1 Lfh1 . . Lγ1−1
f h1

. . .

. . .

hm Lfhm . . Lγm−1
f hm




(5.16)
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Therefore, (5.1) can be reclassified in terms of these new co-ordinates as

τ̇11 = τ12

.

τ̇1γ1 = f1(τ , ξ) + g1(τ , ξ)u1

τ̇21 = τ22

.

τ̇2γ2 = f2(τ , ξ) + g2(τ , ξ)u2

.

.

τ̇m1 = τm2

.

τ̇mγm = fm(τ , ξ) + gm(τ , ξ)um

ξ̇ = ϕ(τ , ξ)

y1 = τ11

y2 = τ21

.

ym = τm1

(5.17)

where f1(τ , ξ) stands for Lγ1
f h1(x) and g1(τ , ξ) stands for the first row of A(x,θ) in the (τ , ξ) co-

ordinates. Besides, for x = 0, equilibrium point of the system (5.1), the dynamics ξ̇ = ϕ(0, ξ) is

referred to as the zero dynamics, which is assumed to be asymptotically stable for this case. The

asymptotic boundedness of zero dynamics can be easily established using Proposition 2.1 of [6] for a

MIMO system.

Furthermore, for the system given in (5.17), applying input (5.14) in the re-arranged form as




u1

u2

.

um




= A(τ , ξ)−1




−B(τ , ξ) +




v̂1

v̂2

.

v̂m







(5.18)
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will provide a system characterized by the following set of equations:

τ̇11 = τ12

.

τ̇1γ1 = v1

τ̇21 = τ22

.

τ̇2γ2 = v2

.

.

τ̇m1 = τm2

.

τ̇mγm = vm

yi = τi1, 1 ≤ i ≤ m

(5.19)

The structure of the m set of equations given in (5.19) shows that noninteraction among the loops is

achieved. As can be observed in Figure 5.1, the input v1 is affecting only output y1 through a chain

of γ1 integrators. Similarly the other set of inputs v2, ...vm is controlling only their respective outputs

y2, ....ym [8].

∫

∫

∫

∫

∫

∫

v1

vm

τ1γ1

τmγm

τ1γ2

τmγ2

τ11 = y1

τm1
= ym

ξ̇ = ϕ(τ, ξ)

Figure 5.1: Noninteracting control
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5.5 Introduction of Multiple Models

The previous sections are dedicated to adaptive control design of a class of nonlinear MIMO coupled

system using single estimation model. In case of multiple models, the same estimator structure (5.4)

is used for all the models but with N different parameter vector estimates θ̂fj , θ̂gj , j = 1, ..., N , placed

at different starting points inside the compact space Sf ,Sg. Therefore, dynamics of N estimation

models are given as

˙̂xj = A(x̂j − x) + ωT
f (x)θ̂fj +

m∑
i=1

ωT
gi
(x)θ̂gjui (5.20)

where x̂j denotes the state vector of the j-th estimation model. Following the earlier approach, the

identifier error dynamics for each model is given as

ėIj = AeIj + ωT
f (x)θ̃fj +

m∑
i=1

ωT
gi
(x)θ̃gjui (5.21)

Similarly, the adaptive laws for the j-th model parameter vector θ̂j = [θ̂fj , θ̂gj ]
T can be found as

˙̃
θfj =

˙̂
θfj = −ωT

f (x)PeIj

˙̃
θgij

=
˙̂
θgij

= −ωT
gi
(x)uiPeIj (5.22)

with system parameter vector θf ,θg and estimator model parameter vector θ̂fj , θ̂gj both belonging

to compact spaces Sf and Sg. The initial values of parameter estimates θ̂j(t0) = [θ̂fj(t0), θ̂gj(t0)]
T

on parameter space Sf , Sg are selected such that θ̂j(t0) covers the full parameter space [10].

5.6 Two Level Adaptation for Nonlinear MIMO Systems

In this section, the concept of second level adaptation introduced by Narendra et al. [20] for linear

systems will be extended for a class of nonlinear MIMO coupled systems as discussed in Section 5.2.

In methods reported earlier [9,16], multiple models with switching selected one particular model at a

time, based on the control error and changed the controller parameters accordingly. In the proposed

case of multiple model based two level adaptation (MMTLA), there is no switching between models

and all the models are used in the two levels. The regions of uncertainty of all the parameters are

known and bounded. If the uncertainty region is big, initiation of a single estimation model farther

from the actual value will lead to high transients and poor convergence. Therefore, different estimation

models are initiated at different points within the bounded region. Adaptation of models at the first
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level and their combination at the second level will enable the parameters to reach closer to their

actual values with lesser transients and faster convergence. The combination of parameter models at

the first level is done in such a manner that it follows the properties of convexity as defined in Section

3.3.3.

Following definition 3.1 in Section 3.3.3, the convex combination of first level models θ̂fj (t), θ̂gj(t)

with suitably chosen adaptive weights wj(t) gives rise to another single adaptive model termed as

second level model θs(t) = [θsf (t),θsg(t)]
T given as

θsf (t) =

N∑

j=1

wj(t)θ̂fj (t)

θsg(t) =
N∑

j=1

wj(t)θ̂gj(t) (5.23)

with the adaptive weights wj(t) satisfying the convexity conditions as wj(t) ≥ 0 and
N∑
j=1

wj(t) = 1.

The adaptive law for the adaptive weights wj(t) is provided in Section 3.3.3. Basically, the aim here

is to assure that actual parameter vector θ(t) = [θf (t),θg(t)]
T and second level parameter vector

θs(t) = [θsf (t),θsg(t)]
T lie in the convex region of first level parameter vectors θ̂j = [θ̂fj , θ̂gj ]

T for all

t ≥ t0.

Therefore, following Theorem 3.3 and using the second level parameter vector θs(t) with adaptive

weights wj(t) at every instant, the new control input usi can be obtained as

usi = As(x,θs)
−1[−Bs(x,θsf ) + v̂i] (5.24)

In (5.24) above, As(x,θs) is assumed to be bounded away from zero because of the fact that θs always

resides inside the convex hull of θ̂j [6,48]. Following Theorem 7.3.1 of [48], the parameters θ̂j are kept

in a certain range, such that, at every point inside their convex hull, As(x,θs) is bounded away from

zero.

In this work, projection based adaptive laws [43,44] are used to ensure the boundedness of estimated

parameters to the predefined compact region Sθ = [Sf ,Sg]. Therefore, applying projection, the

system parameter estimate in (5.23) can be rewritten as

θs(t) = Projθs(t)∈Sθ





N∑

j=1

wj(t)θ̂j(t)



 . (5.25)

Moreover, in adaptive control problems, the convergence of estimated parameters depends on the rich-

76



5.6 Two Level Adaptation for Nonlinear MIMO Systems

ness of its reference input with respect to the frequency content [7, 44]. For that purpose, persistence

of excitation (PE) [7] of input signal is assumed to ensure the convergence of estimated parameters to

their actual values.

5.6.1 System stability and tracking error convergence using two level adaptation

This section discussed the overall system stability with two level adaptation as well as convergence

of control and parameter errors.

Representing Bs(x,θsf ),As(x,θsf ,θsg) of (5.24) in terms of multilinear parameter elements [6,10]

as

Bs(x,θsf ) = PT
f F(x)

As(x, θsf ,θsg) = P
T
gfG(x) (5.26)

with PT
f = [Pf1 , ...,Pfm ], F(x) = [F1(x), ....,Fm(x)]T and PT

gf =




Pg1f1 . Pgmf1

. . .

Pg1fm . Pgmfm



,

G(x) = [G1(x), ....,Gm(x)]T .

Consequently, rewriting control input usi in (5.24) in terms of estimated values of multilinear

parameter elements Pfs,Pgfs as

usi = (PT
gfs

G(x))−1[−P
T
fsF(x) + v̂i] (5.27)

and writing (5.17) in terms of multilinear parameters for second level gives

τ̇iγi = PT
fi
Fi(x) + PT

gifi
Gi(x)usi . (5.28)

Here, subscript i can be dropped for convenience and consequently (5.28) becomes,

τ̇ = P
T
f F(x) +P

T
gfG(x)us. (5.29)

Again, rearranging terms in (5.29) as

τ̇ = P
T
f F(x) +P

T
gfG(x)us + [PT

fsF(x) +P
T
gfsG(x)us]− [PT

fsF(x) +P
T
gfsG(x)us] (5.30)
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and defining the multilinear parameter error vector as P̃fs = Pf −Pfs, P̃gfs = Pgf −Pgfs yields

τ̇ = P
T
fsF(x) +P

T
gfsG(x)us + P̃

T

fsF(x) + P̃
T

gfsG(x)us. (5.31)

Thereafter, replacing us in the second term of (5.31) from (5.27) yields

τ̇ = v̂ + P̃
T

fsF(x) + P̃
T

gfsG(x)us (5.32)

Subsequently, defining the control error term as ei = yi − ydi and using (5.17) gives the first control

error term as

e1 = y1 − yd1

or, e1 = τ11 − yd1

or, τ11 = e1 + yd1 . (5.33)

Using (5.33), the complete control error is written as

τiγi = ei + ri. (5.34)

Using (5.34), the control error in vector form is given as

τ = e+ r (5.35)

with r = [r1, r2, ...., rγ ] = [yd, ẏd, ..., y
(γ−1)
d ]. Further, taking first time differentiation in (5.35) yields

ė1 = e2

ė2 = e3

...

ėγ−1 = eγ

ėγ = τ̇ − ṙγ . (5.36)

Using (5.32) in (5.36) gives

ė = v̂ + P̃
T

fsF(x) + P̃
T

gfsG(x)us − ṙγ (5.37)
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Using (5.15), (5.37) can be rearranged as

ė = Ae+ P̃
T

fsF(x) + P̃
T

gfsG(x)us (5.38)

where A =




0 1 0 . . 0

0 0 1 . . 0

. . . . . .

. . . . . .

0 . . . . 1

cγ cγ−1 . . . c1




is a Hurwitz matrix. Therefore, using (5.17), (5.35) and (5.38),

the complete closed loop error dynamics can be written as

τ = e+ r

ė = Ae+ P̃
T

fsF(x) + P̃
T

gfsG(x)us

ξ̇ = ϕ(τ , ξ) (5.39)

Further, to assess the closed loop stability of the nonlinear coupled MIMO system (5.1) with relative

degree γi and normal form as given in (5.17), following assumptions are made:

(i) The zero dynamics ϕ(0, ξ) is asymptotically stable and internal dynamics ϕ(τ , ξ) is globally

Lipschitz in τ and ξ. There exists an upper bound bϕ as such that

‖ϕ(τ , ξ)− ϕ(0, ξ)‖ ≤ bϕ‖τ‖. (5.40)

(ii) The trajectory yd to be tracked is bounded with bounded derivatives ẏd, ..., y
(γ−1)
d . Defining bd

as an upper bound on yd and its derivatives, it can be found that

‖τ‖ ≤ ‖e‖+ bd. (5.41)

(iii) The regressor vectors F(x),G(x)us are bounded for bounded x and every bounded control input

us with bf , bg as the upper bounds can be expressed as

‖F(x)‖ ≤ bf‖x‖

‖G(x)us‖ ≤ bg‖x‖. (5.42)
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(iv) Since x is a local diffeomorphism of τ and ξ,

‖x‖ ≤ b0(‖τ‖+ ‖ξ‖), b0 > 0 (5.43)

Now that the zero dynamics is assumed to be asymptotically stable, there exists a Lyapunov function

Vϕ(ξ) such that

c1‖ξ‖2 ≤ Vϕ(ξ) ≤ c2‖ξ‖2

∂Vϕ
∂ξ

ϕ(0, ξ) ≤ −c3‖ξ‖2

‖∂Vϕ(ξ)
∂ξ

‖ ≤ c4‖ξ‖ (5.44)

where c1, c2, c3, c4 are positive constants. Similarly, a suitable Lyapunov function for closed loop error

dynamics (5.39) is chosen as

V (e, ξ) = eTPe+ µVϕ(ξ) (5.45)

where P is the solution of Lyapunov equation ATP + PA = −I and µ is a small positive constant.

Taking first time derivative of (5.45) yields

V̇ (e, ξ) = ėTPe+ eTP ė+ µ
∂Vϕ
∂ξ

ϕ(τ , ξ) (5.46)

Using (5.39) gives

V̇ (e, ξ) = −eTe+ 2eTP[P̃
T

fsF(x) + P̃
T

gfsG(x)us] + µ
∂Vϕ
∂ξ

ϕ(0, ξ)

+

(
µ
∂Vϕ
∂ξ

ϕ(τ , ξ)− µ
∂Vϕ
∂ξ

ϕ(0, ξ)

)
(5.47)

Using the assumptions (i) - (iv) yields

V̇ (e, ξ) ≤ −‖e‖2 + ‖e‖(‖e‖+ ‖ξ‖+ bd)[bf0‖P̃fs‖+ bg0‖P̃gfs‖]− µc3‖ξ‖2 + µc4bϕ‖ξ‖(‖e‖+ bd)

(5.48)

with bf0 = bfb0, bg0 = bgb0. Again, rearranging the above equation provides

V̇ (e, ξ) ≤ [bf0‖P̃fs‖+ bg0‖P̃gfs‖ − 1]‖e‖2 − µc3‖ξ‖2 + [bf0‖P̃fs‖+ bg0‖P̃gfs‖

+ µc4bϕ]‖ξ‖‖e‖+ [bdf0‖P̃fs‖+ bdg0‖P̃gfs‖]‖e‖+ µc4bϕbd‖ξ‖ (5.49)

with bdf0 = bdbf0 , bdg0 = bdbg0 . Moreover, defining Z1 = [bf0‖P̃fs‖ + bg0‖P̃gfs‖], Z2 = [bdf0‖P̃fs‖ +
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bdg0‖P̃gfs‖] gives

V̇ (e, ξ) ≤ −(‖e‖ − Z2

2
)2 − (

√
µc3 ‖ξ‖ −

µc4bϕbd
2
√
µc3

)2 +




‖e‖

‖ξ‖




T

Q




‖e‖

‖ξ‖


+

Z2
2

4
− µ

4c3
(c4bϕbd)

2

(5.50)

where Q =




Z1
Z1+µc4bϕ

2

Z1+µc4bϕ
2 −µc3


. The third term in the right hand side of (5.50) will be negative if

Q is a negative semidefinite matrix, which is possible if 2µc3

(√
1 +

bϕ
c3

− 1

)
+µc4bϕ < Z1 ≤ 0. Also,

the last two terms in (5.50) will result in negativity if Z2 <
√

µ
c3
c4bϕbd. These conditions will ensure

that V̇ < 0 for all t > 0. Since V̇ is negative definite, V is a decreasing function whose minimum value

is zero. Also, V is positive definite, which implies it will be zero only when e and ξ are both zero.

Therefore, lim
t→∞

e = 0 and lim
t→∞

ξ = 0.

5.7 Simulation and Experimental Results

The proposed MMTLA controller is applied to a twin rotor MIMO system (TRMS) which is a

benchmark example of highly nonlinear coupled MIMO system having unstable system dynamics and

parametric uncertainty. Figure 5.2 shows the TRMS set-up [60] available in the laboratory. The

TRMS model is interfaced to a Windows 7 PC with 4 GB RAM, installed with Matlab/simulink

R2011a using advantech PCI card. Two encoders attached to the two rotors communicate the pitch

and yaw angle measurements to the PC. The digital signal generated by the controller is converted

to an analog signal comprising two voltages and are sent to the two motors attached to the rotors. A

schematic description of the TRMS is provided in Figure 5.3 where it can be observed that the TRMS

has two propellers attached at both ends of a beam pivoting on its base and driven by a DC motor.

The two propellers are perpendicular to each other, designed such that these can rotate freely both

in the horizontal and vertical planes. A counterbalance arm with a weight at its end is fixed to the

horizontal beam. The main rotor causes the vertical movement known as the pitch motion and the

tail rotor causes the horizontal movement called the yaw motion. In TRMS the angle of attack is fixed

and the aerodynamic force is controlled by varying speed of the rotors. The dynamic cross-coupling

in the TRMS is shown in Figure 5.4 [60], where αv is the pitch angle, αh is the yaw angle and uv, uh

are input voltages to the main and tail rotors respectively.
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Figure 5.2: TRMS laboratory model
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Figure 5.3: A schematic description of TRMS
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Figure 5.4: Cross coupled TRMS system

The dynamics of the TRMS in the state space form (Appendix A.6) can be written in terms of

the unknown parameters as:

ẋ1 = x2

ẋ2 = θ1x5
2 + θ2x5 − θ3sinx1 − θ4x2 + θ5x4

2sin(2x2)

−θ6x4x52cos(x1)− θ7x4x5cos(x1)

ẋ3 = x4

ẋ4 = θ8x6
2 + θ9x6 − θ10x4 − θ11x5

2 − θ12x5

ẋ5 = −θ13x5 + θ14uv

ẋ6 = −θ15x6 + θ16uh

y1 = x1, y2 = x3

(5.51)

where x1 denotes the pitch angle, x2 denotes the pitch angular velocity, x3 represents the yaw

angle, x4 represents the yaw angular velocity, x5 denotes the momentum of the main motor and x6

denotes the momentum of the tail motor. Similarly, y1, y2 denote the outputs. The vector of unknown

parameters θ = [θf ,θg]
T is given by θf = [θ1, ...., θ13, θ15]

T , θg = [θ14, θ16]
T .

The above unknown parameters are given in terms of the TRMS physical parameters by

θ1 = a1/l1; θ2 = b1/l1; θ3 =Mg/l1; θ4 = B1αv/l1; θ5 = 0.0326/2l1 ; θ6 = kgya1/l1;

θ7 = kgyb1/l1; θ8 = a2/l2; θ9 = b2/l2; θ10 = B1αh
/l2; θ11 = −1.75kca1/l2;

θ12 = −1.75kcb1/l2; θ13 = T10/T11; θ14 = km/T11; θ15 = T20/T21; θ16 = kt/T21

(5.52)
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The above physical parameters belonging to the TRMS laboratory set-up used for simulation and

experimental studies are described in Table 5.1 [60] below.

Table 5.1: Physical parameters of the TRMS

Symb. Description Value Unit
l1 Moment of inertia of vertical rotor 0.068 kg-m2

l2 Moment of inertia of horizontal rotor 0.02 kg-m2

a1 Static characteristic parameter 0.0135 -
b1 Static characteristic parameter 0.0294 -
a2 Static characteristic parameter 0.02 -
b2 Static characteristic parameter 0.09 -
Mg Gravity momentum 0.32 N-m
B1αv

Friction momentum function parameter 0.006 N-m-s/rad
B1αh

Friction momentum function parameter 0.1 N-m-s/rad
kgy Gyroscopic momentum parameter 0.0155 s/rad
km Main rotor gain 1.1 -
kt Tail rotor gain 0.8 -
T11 Main rotor denominator parameter 1.1 -
T10 Main rotor denominator parameter 1 -
T21 Tail rotor denominator parameter 1 -
T20 Tail rotor denominator parameter 1 -
Tp Cross reaction momentum parameter 2 -
T0 Cross reaction momentum parameter 3.5 -
kc Cross reaction momentum gain -0.2 -

Among the 6 states, only pitch angle x1 and yaw angle x3 are available for measurement. Therefore,

an Extended Kalman Filter (EKF) [75,76] (A.4)is used to estimate all the states of the system. The

parameters used in the EKF are the variances Q = 1/3, R = 0.1/3 and the error covariance matrix Γ

is an unit matrix of 6× 6 dimension as required. The initial condition of the TRMS is considered as

x(0) = [0, 0, 0, 0, 0, 0]T . Consequently, the initial states of identification and observer models are also

set to zero. Further, the initial values of the unknown parameters for the single model case are chosen

as θ̂ = [3, 3, 8, 2, 3, 2, 2, 3, 8, 8,−2,−2, 3, 3, 3, 3]T . For the multiple model case, 4 models are chosen

with initial parameters as given below:

Model 1 = [−1,−1, 3,−1,−1,−1,−1,−1, 3, 3,−2,−2,−1,−1,−1,−1]

Model 2 = [1, 1, 4, 0, 1, 0, 0, 1, 4, 4,−1,−1, 1, 1, 1, 1]

Model 3 = [2, 2, 7, 1, 2, 1, 1, 2, 7, 7, 0, 0, 2, 2, 2, 2]

Model 4 = [3, 3, 8, 2, 3, 2, 2, 3, 8, 8, 1, 1, 3, 3, 3, 3]

(5.53)

Here the number of models is searched heuristically. The number of models based on the discussion

in Section 3.3.1 is N = 2p. In the TRMS model, the number of unknown parameters is p = 16,
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which is a high number. However, it is found that it becomes computationally prohibitive to ex-

periment for more than 8 number of models. Therefore, the experiments are started with 8 number

of models. It is observed that for number of models 4 and higher, similar results are obtained.

Therefore, number of models is selected as 4 . Initial values of all the four weights are selected as

wj(0) = [0.25, 0.25, 0.25, 0.25]. Also, for the two-input two-output TRMS system the relative degrees

are found to be γ1 = 3, γ2 = 3. Therefore, the constants used in (5.15) for both inputs vi, i = 1, 2

are chosen as c1i = [30, 45, 60], c2i = [15, 30, 15]. The matrix A in (5.4) for both inputs is chosen as

A = [−3, 0, 0; 0,−8, 0; 0, 0,−3]. The actual control input voltages for main and tail DC motors are

maintained within the permitted range of [−2.5, 2.5] volts.

5.7.1 Case 1: Step input tracking

The TRMS is made to follow the desired outputs yd1 = 0.5 and yd2 = 1 for pitch and yaw angles

respectively. The initial values of pitch and yaw angles are set at the TRMS equilibrium state [0, 0].

Figures 5.5-5.9 compare simulation and experimental results obtained by using the proposed MMTLA

controller with a single model based adaptive control method.

Tables 5.2 and 5.3 compare the transient and steady state performances and also show the input

and output performances for pitch angle tracking and yaw angle tracking respectively. The definitions

of performance specifications can be found in A.5. It is observed from Tables 5.2 and 5.3 that in

Table 5.2: Comparison between single model and MMTLA: Pitch control for step input

Simulation

Adaptation
Mechanism

Performance Specifications
Mp Mu ts ess TV CE ISE IAE

single model 12.02 % 0 % 3.33 s 0 3.13× 103 455.15 149.03 724.718
MMTLA Control 9.91 % 0 % 3.04 s 0 915.017 412.83 148.6 669.71

Experimental

Adaptation
Mechanism

Performance Specifications
Mp Mu ts ess TV CE ISE IAE

single model 35.6 % 7.9 % - 0.0983 164.5 480.67 1.49× 103 1.12× 104

MMTLA Control 35.6 % 6.12 % 20.0 s 0.0246 677.4 435.89 197.68 3.7× 103

Mp : Peak overshoot, Mu : Peak undershoot

ts : Settling time, ess : Steady state error

TV : Total variation, CE : Control energy

ISE : Integral square error, IAE : Integral absolute error
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Single model Reference Proposed method

(a) Simulation: Pitch angle tracking
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Single model Reference Proposed method

(b) Experimental: Pitch angle tracking
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Single model Reference Proposed method

(c) Simulation: Yaw angle tracking
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Single model Reference Proposed method

(d) Experimental: Yaw angle tracking

Figure 5.5: Trajectory tracking for Step input

86



5.7 Simulation and Experimental Results

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time (s)

P
it
ch

tr
ac
ki
ng

er
ro
r

 

 

Single model Proposed method

(a) Simulation: Pitch tracking error
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Single model Proposed method

(b) Experimental: Pitch tracking error
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Single model Proposed method

(c) Simulation: Yaw tracking error
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Single model Proposed method

(d) Experimental: Yaw tracking error

Figure 5.6: Tracking error for step input
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(a) Simulation: Pitch response for single model
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(b) Experimental: Pitch response for single model
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(c) Simulation: Pitch response for proposed method
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(d) Experimental: Pitch response for proposed method

Figure 5.7: Observed vs actual pitch angle for step input
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(a) Simulation: Yaw response for single model
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(b) Experimental: Yaw response for single model
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(c) Simulation: Yaw response for proposed method

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

Y
aw

an
gl
e
[r
ad

]

 

 

Yaw observed Yaw actual

(d) Experimental: Yaw response for proposed method

Figure 5.8: Observed vs actual yaw angle for step input

Table 5.3: Comparison between single model and MMTLA: Yaw control for step input

Simulation

Adaptation
Mechanism

Performance Specifications
Mp Mu ts ess TV CE ISE IAE

single model 0.68 % 0 % 7.7 s 0 2.42× 103 340.468 986.6 2.1× 103

MMTLA Control 0.63 % 0 % 6.74 s 0 811.39 286.72 912.02 1.93× 103

Experimental

Adaptation
Mechanism

Performance Specifications
Mp Mu ts ess TV CE ISE IAE

single model 12.59 % 20.85 % 20.0 s 0.0523 199.4 153.76 2.013× 103 7.7× 103

MMTLA Control 0 % 0 % 12.9 s 0.0216 441.6 147.42 1.2× 103 4.19× 103

Mp : Peak overshoot, Mu : Peak undershoot

ts : Settling time, ess : Steady state error

TV : Total variation, CE : Control energy

ISE : Integral square error, IAE : Integral absolute error

both simulation and experimental studies, the MMTLA control method outperforms the single model

based adaptive control method in both transient and steady state performances at the expense of

lesser control energy. Moreover, the output tracking performance in the case of MMTLA controller is

superior than the single model based adaptive control method as indicated by ISE and IAE values. A
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Single model Proposed method

(a) Simulation: Main rotor control input (volts)
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Single model Proposed method

(b) Experimental: Main rotor control input (volts)

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (s)

Ta
il
ro
to
r
co
nt
ro
li
np

ut

 

 

Single model Proposed method

(c) Simulation: Tail rotor control input (volts)
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Single model Proposed method

(d) Experimental: Tail rotor control input (volts)

Figure 5.9: Control input for step trajectory tracking
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higher total variation (TV) value in the experimental case suggests increased chattering in the control

inputs and this is expected in the real time experiment scenario because of unwanted disturbances

like air gust, voltage fluctuation etc.

5.7.2 Case 2: Sinusoidal input tracking

Next, the TRMS output is made to follow a sinusoidal trajectory with amplitude 0.3 rad for pitch

and 0.5 rad for yaw and time period of 40 s in each case. The pitch and yaw angle tracking results

are shown in Figures 5.10-5.12 and summarized in Tables 5.4 and 5.5. It can be observed in Figures

Table 5.4: Comparison between single model and MMTLA: Pitch control for sinusoidal input

Simulation

Adaptation
Mechanism

Performance Specifications
Mp Mu TV CE RMSE ISE IAE

single model 0 % 93.80 % 2.17× 103 195.08 0.0267 71.07 2.37× 103

MMTLA Control 0 % 90.79 % 1.26× 103 192.1 0.02 70.6 2.35× 103

Experimental

Adaptation
Mechanism

Performance Specifications
Mp Mu TV CE RMSE ISE IAE

single model 80.1 % 161.27 % 2.3× 103 243.6 0.0551 304.1 3.39× 103

MMTLA Control 55.7 % 72.85 % 3.09× 103 250.9 0.0371 137.3 2.83× 103

Mp : Peak overshoot, Mu : Peak undershoot

TV : Total variation, CE : Control energy

RMSE : Root mean square error

ISE : Integral square error, IAE : Integral absolute error

5.10-5.12 that in the case of single model based adaptive control, high transients occur every time the

trajectory of the output signal crosses a peak, but for the proposed MMTLA method these transients

are significantly reduced. Tables 5.4 and 5.5 confirm superiority of the MMTLA control method over

the single model based adaptive control method in transient performance. Also, the output tracking

performance in the case of MMTLA control method is better. The MMTLA controller achieves

superior transient and output performances than the single model adaptive control method at the

expense of almost the same control energy. Moreover, the smoothness of the control signal in the

MMTLA controller is comparable with the single model adaptive control method.
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Single model Reference Proposed method

(a) Simulation: Pitch tracking
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Single model Reference Proposed method

(b) Experimental: Pitch tracking
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Single model Reference Proposed method

(c) Simulation: Yaw tracking
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Single model Reference Proposed method

(d) Experimental: Yaw tracking

Figure 5.10: Trajectory tracking for sinusoidal input
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(a) Simulation: Pitch tracking error
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Single model Proposed method

(b) Experimental: Pitch tracking error
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Single model Proposed method

(c) Simulation: Yaw tracking error

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

Y
aw

tr
ac
ki
n
g
er
ro
r

 

 

Single model Proposed method

(d) Experimental: Yaw tracking error

Figure 5.11: Trajectory tracking error for sinusoidal input

Table 5.5: Comparison between single model and MMTLA: Yaw control for sinusoidal input

Simulation

Adaptation
Mechanism

Performance Specifications
Mp Mu TV CE RMSE ISE IAE

single model - 95.21 % 2.17× 103 122.56 0.043 185.09 3.83× 103

MMTLA Control - 94.6 % 543.8 113.35 0.042 179.5 3.79× 103

Experimental

Adaptation
Mechanism

Performance Specifications
Mp Mu TV CE RMSE ISE IAE

single model 24.5 % 60.08 % 1.16× 103 211.77 0.0509 259.316 4.08× 103

MMTLA Control 19.9 % 21.07 % 1.01× 103 180.98 0.0459 210.325 4.14× 103

Mp : Peak overshoot, Mu : Peak undershoot

TV : Total variation, CE : Control energy

RMSE : Root mean square error

ISE : Integral square error, IAE : Integral absolute error
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Single model Proposed method

(a) Simulation: Main rotor control input (volts)
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Single model Proposed method

(b) Experimental: Main rotor control input (volts)
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Single model Proposed method

(c) Simulation: Tail rotor control input (volts)
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Single model Proposed method

(d) Experimental: Tail rotor control input (volts)

Figure 5.12: Control input for sinusoidal trajectory tracking
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5.7.3 Case 3: Square input tracking

Finally, tracking responses of the TRMS for a square reference input is investigated. The input

square wave has amplitude 0.3 rad for pitch and 0.5 rad for yaw and a time period of 50 s for each

case. Figures 5.13 - 5.15 compare trajectory tracking results for the MMTLA controller with the single

model based adaptive controller. Tables 5.6 and 5.7 tabulate these tracking reults for pitch and yaw

angle tracking respectively. As can be observed from Figure 5.13, the pitch responds better at sig-

Table 5.6: Comparison between single model and MMTLA: Pitch control for square input

Simulation

Adaptation
Mechanism

Performance Specifications
TV CE RMSE ISE IAE

single model 225.49 327.94 0.127 1.61× 103 5.1× 103

MMTLA Control 166.3 316.9 0.125 1.56× 103 5.03× 103

Experimental

Adaptation
Mechanism

Performance Specifications
TV CE RMSE ISE IAE

single model 1.72× 103 270.3 0.1598 2.55× 103 1.11× 104

MMTLA Control 2.6× 103 274.02 0.1654 2.73× 103 1.16× 104

TV : Total variation, CE : Control energy

RMSE : Root mean square error

ISE : Integral square error, IAE : Integral absolute error

nal rise, whereas it gives a sluggish response at signal fall. Further, while the behavior of pitch angle

tracking with the proposed MMTLA control method are almost similar with those by the single model

cases, the yaw angle tracking performance in the proposed MMTLA method is considerably better.

From Tables 5.6 and 5.7 it is evident that output tracking performance by the MMTLA method is

better than the single model case at the expense of comparable control energy.
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Single model Reference Proposed method

(a) Simulation: Pitch tracking
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Single model Reference Proposed model

(b) Experimental: Pitch tracking

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

Time (s)

Ya
w

an
gl
e
[ra

d]

 

 

Single model Reference Proposed method

(c) Simulation: Yaw tracking
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Single model Reference Proposed method

(d) Experimental: Yaw tracking

Figure 5.13: Trajectory tracking for square input
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Single model Proposed method

(a) Simulation: Pitch tracking error

0 10 20 30 40 50 60 70 80 90 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

P
it
ch

tr
ac
ki
n
g
er
ro
r

 

 

Single model Proposed method

(b) Experimental: Pitch tracking error
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Single model Proposed method

(c) Simulation: Yaw tracking error
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Single model Proposed method

(d) Experimental: Yaw tracking error

Figure 5.14: Trajectory tracking error for square input

Table 5.7: Comparison between single model and MMTLA: Yaw control for square input

Simulation

Adaptation
Mechanism

Performance Specifications
TV CE RMSE ISE IAE

single model 112.25 172.12 0.221 4.9× 103 9.3× 103

MMTLA Control 75.0 170.1 0.206 4.27× 103 7.79× 103

Experimental

Adaptation
Mechanism

Performance Specifications
TV CE RMSE ISE IAE

single model 485.7 131.69 0.2792 7.8× 103 2.5× 104

MMTLA Control 876.9 128.63 0.2655 7.05× 103 2.36× 104

TV : Total variation, CE : Control energy

RMSE : Root mean square error

ISE : Integral square error, IAE : Integral absolute error
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Single model Proposed method

(a) Simulation: Main rotor control input (volts)
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Single model Proposed method

(b) Experimental: Main rotor control input (volts)
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Single model Proposed method

(c) Simulation: Tail rotor control input (volts)
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Single model Proposed method

(d) Experimental: Tail rotor control input (volts)

Figure 5.15: Control input for square trajectory tracking
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5.8 Summary

An adaptive controller using multiple model based two level adaptation (MMTLA) strategy is

proposed for nonlinear coupled MIMO systems. A feedback linearization technique is used to design

the control input, while also decoupling the system. Multiple estimation models are used to tune the

unknown parameters. The adaptive weights at the second level combine all the parameter vectors

of the first level to provide a single parameter vector to be used in the controller. A twin rotor

MIMO system (TRMS) is used for conducting simulation and experimental studies to investigate the

performance of the proposed MMTLA control method. Step and sinusoidal reference inputs are applied

to assess the tracking performance of the proposed control method. A square reference input is used to

investigate the controller’s performance in the case of sudden input change. The control energy used

by the controller is computed in all these applications to evaluate the input performance. Simulation

and experimental results for pitch and yaw angle tracking show improvement in transient and steady

state performances using the proposed multiple model with two level adaptation (MMTLA) method

compared to the existing single model based adaptive control method. Superior tracking response,

improved transients and smoother control effort with reduction in energy establish efficacy of the

proposed method. Results of real time experiments conducted on the TRMS support theoretical

propositions of the proposed MMTLA control method.
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6. Adaptive Controller Design for Nonlinear MIMO Model Following Control Systems Using
Multiple Model Based Two Level Adaptation Technique

6.1 Introduction

A good number of methods exist in literature to design controllers for nonlinear multi-input multi-

output (MIMO) coupled systems [62,66,67]. However, most of these methods are based on decoupling

techniques [62,66–68]. In [62], the MIMO coupled system is divided into horizontal and vertical subsys-

tems and the coupling is treated as the uncertainty between subsystems. Few other techniques using

decoupling method include sliding mode controller [66], backstepping controller [67], T-S fuzzy model

based controller [68]. In [77], a nonlinear model predictive control based on successive linearization

of nonlinear helicopter model is presented. In designing controllers for nonlinear multi-input multi-

output (MIMO) coupled systems, the commonly utilized practice is to use the feedback linearization

technique to design the control input which also decouples the nonlinear system [8]. However, if the

decoupling matrix happens to be singular, the common static state feedback is not be able to decouple

the system. To deal with this type of system, a nonlinear adaptive model following control design

using nonlinear structure algorithm is presented in [25, 78]. In this case a dynamic state feedback

controller is designed which also decouples the system.

This chapter investigates the application of multiple models with two level adaptation (MMTLA)

for adaptive control of a class of nonlinear MIMO systems with cross-couplings which cannot be

decoupled using static state feedback because of singularity of the decoupling matrix. A dynamic

state feedback controller is designed here to decouple the system. The MMTLA method is used

and unknown parameters present in the model are estimated using an observer based estimation

model [5,45]. Adaptive tuning laws for the unknown parameters are derived using Lyapunov stability

criterion.

Simulation studies are conducted on a 3-degrees-of-freedom (DOF) laboratory helicopter [79,80] is

a classic example of above mentioned class of nonlinear MIMO system with inter-axis cross-coupling

and singular decoupling matrix. The proposed MMTLA method is compared with a single model

based adaptive controller.
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6.2 System Model

6.2 System Model

This work considers a class of nonlinear multi-input multi-output (MIMO) system [6]

ẋ = f(x,θ) +

m∑

i=1

gi(x,θ)ui

yi = hi(x), i = 1, ...,m (6.1)

where x ∈ R
n, ui, yi : R

+ → R, and f(x,θ), gi(x,θ), hi(x) are smooth functions. Besides, θ ∈ Sθ

is the unknown parameter vector with a compact set Sθ. Moreover, the system (6.1) is assumed to

satisfy the following properties:

(i) Functions f(x,θ) and gi(x,θ) can be characterized as

f(x,θ) = ωT
f (x)θf

gi(x,θ) = ωT
gi
(x)θg (6.2)

where ωf (x) and ωgi(x) are known functions.

(ii) The system has constant relative degree γi [6], i.e.

Lgi(x,θ)L
i−1
f(x,θ)hi(x) = 0, i = 1, 2, ..., (γi − 1) and Lgi(x,θ)L

γi−1
f(x,θ)hi(x) 6= 0, ∀ x ∈ R

n, θ ∈ Sθ.

(iii) The system (6.1) has zero dynamics with asymptotically stable equilibrium point [6].

6.3 Estimation Model Architecture

In this Section, an estimation model is designed for the system under consideration. The adaptive

laws for tuning of unknown parameter vector θ is derived using Lyapunov technique. Using (6.2), the

system (6.1) can be rewritten as

ẋ = ωT
f (x)θf +

m∑
i=1

ωT
gi
(x)θgui (6.3)

An observer based estimation model [5, 45] for the system (6.3) defined as

˙̂x = A(x̂− x) + ωT
f (x)θ̂f +

m∑
i=1

ωT
gi
(x)θ̂gui (6.4)

Subtracting (6.3) from (6.4) gives the estimation error dynamics for system (6.3) as

ėI = AeI + ωT
f (x)θ̃f +

m∑
i=1

ωT
gi
(x)θ̃gui (6.5)
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with eI = x̂−x, θ̃ = θ̂− θ. Here, the matrix A ∈ R
n×n is considered as stable. A suitable Lyapunov

function is chosen as V (eI , θ̃f , θ̃gi) = eTI PeI + θ̃
T

f θ̃f + θ̃
T

gi
θ̃gi where P is the positive definite matrix

solution of the Lyapunov equation ATP +PA = −Q and Q = QT > 0. Considering adaptive laws

for the parameter estimates as

˙̃
θf =

˙̂
θf = −ωT

f (x)PeI

˙̃
θgi =

˙̂
θgi = −ωT

gi
(x)uiPeI (6.6)

and following Theorem 2.1 in [45], it can be guaranteed that eI → 0 as t → ∞. Besides, regressor

vectors ωf (x),ωgi(x) which are rich in frequency contents [7] (A.1) will lead to asymptotic convergence

of θ̃ = [θ̃f , θ̃g]
T to zero [6, 45].

6.4 Model Following Controller Architecture

The dynamic sate feedback controller design using which the output of a nonlinear system follows

that of a nonlinear reference model is presented in details in [78]. In this section, a nonlinear model

following control [78] is described for the nonlinear MIMO coupled system (6.1). The outputs yi are

differentiated γi times with respect to time, such that at least one of the inputs appear in y
(γi)
i [6], i.e.

y
(γi)
i = L

γj
f(x,θ)hi(x) +

m∑

i=1

Lgi(L
γi−1
f(x,θ)hi(x))ui (6.7)

with at least one of the Lgi(L
γi−1
f(x,θ)hi(x)) 6= 0, ∀ x ∈ R

n, θ ∈ Sθ. Further, m× 1 vector B(x,θ) and

m×m matrix A(x,θ) are defined as
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6.4 Model Following Controller Architecture

B(x,θ) =




Lγ1
f(x,θ)h1(x)

.

.

.

Lγp

f(x,θ)hm(x)




, (6.8)

A(x,θ) =




Lg1(x,θ)(L
γ1−1
f(x,θ)h1(x)) . . Lgm(x,θ)(L

γ1−1
f(x,θ)h1(x))

. .

. .

. .

Lg1(x,θ)(L
γm−1
f(x,θ)hm(x)) . . Lgm(x,θ)(L

γm−1
f(x,θ)hm(x))




Now (6.7) can be written as

y = B(x,θ) + A(x,θ)u (6.9)

where y and u are m-dimensional column vectors. The matrix A(x,θ) in (6.8) is the decoupling

matrix. If A(x,θ) is nonsingular, the design of feedback controller using static state feedback is

straightforward [8,48]. However, in cases where the decoupling matrix A(x,θ) is singular, static state

feedback technique cannot be applied, Consequently, such a system is not decouplable by static state

feedback. The well known nonlinear structure algorithm [25, 78] is used here to design the model

following control for the nonlinear coupled MIMO system (6.1). The reference model is chosen as

ẋM = fM (xM ,θ) +

m∑

i=1

gMi(xM ,θ)uMi

yMi = hMi(xM ), i = 1, ...,m (6.10)

Now, using (6.1) and (6.10), the error between the output of the reference model and the system

output is found as

ei = hMi(xM )− hi(x), i = 1, ...,m (6.11)

The nonlinear structure algorithm [78] states that, elimination of one of the inputs and differentiation

of the error equation (6.11) is repeated until a nonsingular decoupling matrix appears. Following the
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steps of nonlinear model following control [78], the compensator used to control the system (6.1) is

considered in dynamic state feedback form as

u = α(x,θ) + β(x,θ)uM . (6.12)

Replacing unknown values of parameter θ with their estimates θ̂ provides

u = α(x, θ̂) + β(x, θ̂)uM (6.13)

where α(x, θ̂), β(x, θ̂) can be found using Theorem 3.1 in [78]. Theorem 3.1 in [78] discusses the

conditions for existence of α and β such that (6.10) is a model following control system.

6.5 Controller Design Using MMTLA Method

Multiple estimation models Mj(j = 1, ..., N) and two level adaptation method are used next. In

case of multiple models, the same estimator structure (6.4) is used for all the models but with N

different parameter vector estimates θ̂j placed at different starting points inside the compact space

Sθ.

The initial values of parameter estimates θ̂j are chosen such that these cover the entire compact

space Sθ. Consequently, the observer based estimation model (6.4) for N different parameter estimates

can be given as

˙̂xj = A(x̂j − x) + ωT
f (x)θ̂fj +

m∑
i=1

ωT
gi
(x)θ̂gjui (6.14)

which provides the identifier error dynamics for each model as

ėIj = AeIj + ωT
f (x)θ̃fj +

m∑
i=1

ωT
gi
(x)θ̃gjui (6.15)

The adaptive tuning laws for the j-th model parameter vector θ̂j = [θ̂fj , θ̂gj ]
T can be found as

˙̃
θfj =

˙̂
θfj = −ωT

f (x)PeIj

˙̃
θgij

=
˙̂
θgij

= −ωT
gi
(x)uiPeIj (6.16)

where θ, θ̂j ∈ Sθ.

Now, the MMTLA method discussed in Section 3.3.3 is applied to the nonlinear MIMO coupled

system described in Section 6.2.
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The parameter vector θs(t) of the second level model is a convex combination of the first level

models θ̂j(t), given by

θs(t) =

N∑

j=1

wj(t)θ̂j(t) (6.17)

with the adaptive weights wj(t) satisfying the convexity conditions as, wj ≥ 0 and
N∑
j=1

wj(t) = 1. The

adaptive tuning law for the adaptive weights wj(t) is provided in Section 3.3.3. Consequently, using

the combination of θs with adaptive weights wj(t) at every instant, the new control input is found as

us = αs(x,θs) + βs(x,θs)uMi (6.18)

where αs(x,θs), βs(x,θs) are similar to α(x, θ̂), β(x, θ̂) after incorporating the second level parame-

ters θs.

The Lyapunov stability analysis after second level and control error convergence for this Chapter

can be directly assessed following the analysis provided in Section 5.6.1.

6.6 Simulation Results

A 3 degrees of freedom (DOF) helicopter model [25, 80] is a good example of a nonlinear MIMO

system with inter-axes cross-coupling and having a singular decoupling matrix. Hence, simulation

studies are conducted on a 3-DOF helicopter model shown in Figure 6.1 [25] and results are compared

with a single model based adaptive control method. As observed in Figure 6.1, the 3-DOF helicopter

has a front rotor and a rear rotor. The three degrees of freedom are the elevation ε, pitch Θ and travel

φ. The aim here is to control elevation and travel angles using the voltages generated by two DC

motors attached to the propellers. The dynamical equation of helicopter model in state space form is

given as [80]:

ẋ1 = x2

ẋ2 = θ1cosx1 + θ2sinx1 + θ3x2 + θ4cosx3u1

ẋ3 = x4

ẋ4 = θ5cosx3 + θ6sinx3 + θ7x4 + θ8u2

ẋ5 = x6

ẋ6 = θ9x6 + θ10sinx3u1

y1 = x1, y2 = x5

(6.19)
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Figure 6.1: 3-DOF laboratory helicopter model

where x1 denotes the elevation angle, x2 denotes the elevation angular velocity, x3 represents the

pitch angle, x4 denotes the pitch angular velocity, x5 represents the travel angle, x6 denotes the travel

angular velocity and y1, y2 are the outputs. Similarly, u1 = Vf + Vb, u2 = Vf − Vb denotes the

control inputs to the main rotor and tail rotor respectively. Here, Vf , Vb are the voltages applied

to the front and rear motors respectively. The unknown parameter vector θ = [θf ,θg]
T is given by

θf = [θ1, θ2, θ3, θ5, θ6, θ7, θ9]
T , θg = [θ4, θ8, θ10]

T . The system (6.19) has constant relative degrees

γ1 = 2 and γ2 = 2. In (6.19), the unknown parameters comprise of

θ1 = [−(Mf +Mb)gLa +McgLc]/Jε

θ2 = −[(Mf +Mb)gLatanδa +McgLctanδc]/Jε

θ3 = −ηε/Jε
θ4 = KmLa/Jε

θ5 = −(Mf +Mb)gLh/JΘ

θ6 = −(Mf +Mb)gLhtanδh/JΘ

θ7 = −ηp/JΘ
θ8 = KmLh/JΘ

θ9 = −ηt/Jφ
θ10 = −KmLa/Jφ

(6.20)
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where δa = tan−1{(Ld + Le)/La}, δc = tan−1(Ld/Lc) and δh = tan−1(Le/Lh). The nominal values of

above physical constants belonging to 3-DOF helicopter model shown in Figure 6.1 are provided in

Table 6.1 [80]. The two reference inputs uM1, uM2 are chosen as square waves having amplitudes 0.3,

Table 6.1: Physical parameters of the 3 DOF helicopter model

Symb. Description Value Unit
Jε Moment of inertia about elevation 0.086 kg-m2

JΘ Moment of inertia about pitch 0.044 kg-m2

Jφ Moment of inertia about travel 0.82 kg-m2

ηε Coefficient of viscous friction abt elevation 0.001 kg-m2/s
ηΘ Coefficient of viscous friction abt pitch 0.001 kg-m2/s
ηφ Coefficient of viscous friction abt travel 0.005 kg-m2/s
La Distance AC in (6.1) 0.62 m
Lc Distance AB in (6.1) 0.44 m
Ld Distance OA in (6.1) 0.05 m
Le Distance CD in (6.1) 0.02 m
Lh Distance DE=DF in (6.1) 0.177 m
Mf Mass of front section 0.69 kg
Mb Mass of rear section 0.69 kg
Mc Mass of counterbalance 1.67 kg
Km Force constant 0.5 N/V
g Gravity constant 9.81 m/s2

0.8 respectively, with time period of 50 sec in each case. Further, the initial values of the unknown

parameter vector θ for the single model case are chosen as

θ̂ = [−2.5,−3.0,−0.5, 0.1,−0.8,−8.0,−0.8, 1.5,−0.8,−0.8]T . For the multiple model case, N = 4

number of models are chosen as

Model 1 = [−2.5,−3.0,−0.5, 0.1,−0.8,−8.0,−0.8, 1.5,−0.8,−0.8]

Model 2 = [−2.0,−2.4,−0.3, 0.3,−0.4,−7.0,−0.6, 1.7,−0.5,−0.6]

Model 3 = [−1.4,−1.8,−0.1, 0.4, 0.1,−6.0,−0.3, 2.0,−0.2,−0.4]

Model 4 = [−0.8,−1.2, 0, 0.6, 0.5,−5.2, 0, 2.2, 0,−0.2]

(6.21)

As in Chapter 5, here also the number of models is searched heuristically. The simulations are started

with 16 number of models. It is found that simulation results with 4 number of models do not vary

for number of models greater than 4. Therefore, number of models is selected as 4. The observer gain
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matrix is chosen as

A =




−1 0 0 0 0 0

0 −2 0 0 0 0

0 0 −1 0 0 0

0 0 0 −2 0 0

0 0 0 0 −1 0

0 0 0 0 0 −2




(6.22)

for both single and multiple models. Simulation results obtained using the proposed method with

N = 4 number of models are compared with those obtained by using only single model as shown

in Figures 6.2 - Figure 6.4. Tables 6.2 summarize the transient and steady state performances for
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(a) Elevation angle tracking reference trajectory
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(b) Travel angle tracking reference trajectory

Figure 6.2: Reference trajectory tracking

elevation and travel angles. Moreover, the input performances in terms of total variation (TV) and

control energy (CE) and the output performance in terms of root mean square error (RMSE) are

provided in the tables for comparative analysis of a single adaptation model against the proposed

method with N = 4 models and two level adaptation. The definitions of performance specifications
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(a) Elevation angle tracking error
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Single model Proposed method

(b) Travel angle tracking error

Figure 6.3: Tracking error
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(a) Front rotor control input
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(b) Rear rotor control input

Figure 6.4: Control input
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can be found in A.5. From Table 6.2 it is observed that the overshoots in case of elevation control are

eliminated completely using the proposed method. Also, there is significant improvement in overshoot

for travel angle control. Similarly, the improvements in settling time is visible in both the cases.

Also, while there is mild improvement in smoothness of the control signal for travel angle, it is quite

significant for elevation control. The reduction in control energy for both elevation and travel control

is an added advantage of the proposed method. RMSE in output tracking is comparable in both the

methods indicating similar performance. Besides, parameter estimates converge to the actual values

for all the persistently exciting input signals.

Table 6.2: Comparison between single model and MMTLA

Elevation angle tracking

Adaptation
Mechanism

Performance Specifications
Mp Mu ts ess TV CE RMSE

single model 25.56 % 13.4 % 9.84 s 0 104.31 1424.7 0.0195
MMTLA Control 0 % 0 % 4.64 s 0 38.17 1415 0.0225

Travel angle tracking

Adaptation
Mechanism

Performance Specifications
Mp Mu ts ess TV CE RMSE

single model 9.8 % 30.9 % 23.0 s 0 18.37 106.7 0.1232
MMTLA Control 3.4 % 17.78 % 15.5 s 0 16.47 83.02 0.0576

Mp : Peak overshoot, Mu : Peak undershoot

ts : Settling time, ess : Steady state error

TV : Total variation, CE : Control energy

RMSE : Root mean square error

6.7 Summary

A multiple model with two level adaptation technique is proposed for a class of nonlinear MIMO

coupled system which cannot be decoupled using traditional static state feedback control technique

because of the singularity in the decoupling matrix. An adaptive model following control, using

nonlinear structure algorithm with dynamic state feedback is designed. An observer based estimation

model with Lyapunov technique is used to find the adaptive laws for online estimation of unknown

parameters of the system. The MMTLA technique is introduced for the system under consideration.

The same observer based estimation model is now equipped with multiple parameter models with
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different initial values covering the full compact space. A combination of multiple models at first level

provides the single virtual parameter model termed as second level adaptation model. Better tracking

response, improved settling time and smoother as well as lesser control effort establish efficacy of the

proposed method.
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7.1 Conclusions

In this thesis, an adaptive controller using multiple model based two level adaptation technique is

developed for nonlinear uncertain systems.

At first, a multiple model based two level adaptation (MMTLA) control technique is proposed for

a SISO nonlinear system with linear parameterization. The control input is found by using feedback

linearization method. The adaptive laws for unknown parameters at the first level are computed

using Lyapunov stability criterion. Thereafter, multiple estimation models having identical structures

and adaptive nature are built. The initial parameters of the estimation models are chosen to span

the entire compact parameter space. The multiple estimation models at the first level are combined

using adaptive weights to get a single virtual adaptive model referred to as the second level model.

The adaptive tuning laws for weights at the second level are found using the identifier error. Overall

closed loop stability of the system and tracking error convergence with MMTLA are derived using

Lyapunov stability analysis. Simulation results establish that the proposed MMTLA control method

outperforms existing switching based multiple model adaptive control method. A notable feature of

the proposed MMTLA control method is that it requires significantly lesser number of identification

models than that of existing multiple model based techniques at no cost on the overall performance.

Moreover, the proposed MMTLA method offers quick parameter convergence.

An adaptive controller design using MMTLA method for SISO nonlinear systems having nonlinear

parameterization is proposed next. The controller design follows similar design methodology as used for

linearly parameterized SISO systems. Simulation results confirm improvement in transient, input and

output performances with the MMTLA controller compared to an existing adaptive control technique.

The MMTLA control technique is best suited for systems where parametric errors are large and

convergence of first level models is slow.

An adaptive controller using MMTLA technique is proposed next for nonlinear coupled MIMO

systems. Feedback linearization technique is used to design a static state feedback control input which

also decouples the system. The design of multiple estimation models follows similar design method

as used for nonlinear SISO systems. The model states are estimated using an Extended Kalman

Filter (EKF). A twin rotor MIMO system (TRMS) which is a benchmark example of highly nonlinear

uncertain coupled MIMO system is considered for testing the proposed controller. Simulation and

experimental studies are conducted on the TRMS applying different types of reference inputs like
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step, sinusoidal and square signals to evaluate the performance of the proposed MMTLA approach.

Superior tracking response, improved transients and smoother control effort with reduction in control

energy establish efficacy of the proposed method. Results of real time experiments conducted on the

TRMS support theoretical propositions of the proposed MMTLA control method. The input reference

signal is considered to be persistently exciting which ensures convergence in tuning.

The MMTLA control technique is investigated next for the challenging problem of controlling a

class of nonlinear MIMO model following control systems. A model following method using feedback

linearization technique with dynamic state feedback and nonlinear structure algorithm are used to

tackle the singularity arising in the decoupling matrix. After designing the control input, the proposed

MMTLAmethod is applied to control a 3-degrees-of-freedom (DOF) laboratory helicopter model which

is an appropriate example of MIMO coupled nonlinear systems having singular decoupling matrix. An

Extended Kalman Filter (EKF) is used to find the system states. Simulation studies confirm that

the proposed MMTLA method outperforms existing switching based multiple model adaptive control

methods but using lesser number of models.

Considerable improvement in transient and steady state performances is noticed by using the

proposed multiple model based two level adaptive control scheme compared to existing single model

based adaptive control methods. Moreover, smoother as well as lesser control effort establish efficacy of

the proposed method. Further, parameter convergence of the proposed MMTLA method is reasonably

fast which makes it appropriate for practical applications requiring online tuning. Requirement of

lesser number of models is another advantage of using two level adaptation. Therefore, sufficient

number of multiple adaptive models is evenly distributed to cover the complete range of parameter

space. Simulation results show that if the positions of selected models are not optimal, the control

effort needed is high.

7.2 Scope for Future Work

Future possible directions of research based on the MMTLA method developed in this thesis are

outlined below:

• In the proposed MMTLA technique the parameters which are far away from their actual values

have little contribution in the second level model. An intelligent system can be built such that the

models whose contribution is lesser than a prescribed threshold can automatically get removed.
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This intelligent system should be able to add/delete the new models online.

• Autonomous vehicles having huge number of uncertain parameters and expected to perform

in dynamic environment may use this technique for longitudinal and lateral course correction

during adaptive cruise control.

• The proposed technique may find application in electronic stability program (ESP) and antilock

braking system (ABS).

• Longitudinal speed control of autonomous vehicle at different speed ranges: In au-

tonomous vehicles, a driver controller is used to control the speed of vehicles. The driver

controller takes feedback from different sensors present in modern vehicles [81]. Any Level 2

autonomous vehicle (or a vehicle with basic advanced driver assistance system (ADAS) features)

is expected to perform some basic manoeuvers involving speed control [82]. Few basic manoeu-

vers are cruise control, automatic lane change, automatic overtaking, automatic parking, remote

parking. In all these applications, the speed to be controlled is different, varying from very

low speed for remote parking to high speed for cruise control. The scope of a single conven-

tional controller to operate in this wide range may be limited. The proposed multiple models

with two level adaptive (MMTLA) control would be a potential choice for the above discussed

applications.

• Adaptive vehicle navigation: Many companies and research laboratories like google, tesla,

uber, intel, nuTonomy and many others [83] are ready with their own versions of autonomous

cars. The current challenging topic in autonomous vehicles is the complete testing of vehicles

for their full life cycle, which is around 11 billion miles [84]. The solution to this challenge is

simulation of critical scenarios, which can exponentially reduce the testing time for deployment of

autonomous vehicles on the road. The research in this area requires adaptive vehicle navigation

in a real-time traffic scenario [85] [86]. The proposed MMTLA technique is a promising candidate

for adaptive vehicle navigation to improve navigation performance.
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A.1 Definitions

A.1 Definitions

(i) Sufficiently rich condition: As discussed in Chapter 8 of [7], the stability and convergence of

adaptive controllers require the signals in the system to be sufficiently rich so that the estimated

parameters converge to the true parameters.

(ii) Certainty equivalence principle: As mentioned in Chapter 8 of [7], the controller parameters

are computed from the estimates of the system parameters as if they were the true system

parameters. This idea is often called the certainty equivalence principle.

A.2 Cezayirli et al.’s method

In Cezayirli et al.’s method [9] [10], an indirect adaptive controller for a class of SISO nonlin-

ear systems is designed using multiple fixed identification models and switching. The system under

consideration is given as [10]

ẋ(t) = f(x(t),θ(t)) + g(x(t),θ(t))u(t)

y(t) = h(x(t)) (A.2.1)

where x(t) : R+ → R
n is the state vector, which is assumed to be fully available for measurement.

Next, f, g : Rn → R
n are sufficiently smooth vector fields and and h : Rn → R is a scalar valued

function. Further, θ(t) = [θ1, θ2, ..., θp]
T ∈ S is the unknown parameter vector, where p is the number

of unknown parameters and S ⊂ R
p is a compact set. Finally, u(t) : R+ → R is the control input and

y(t) : R+ → R represents the output.

Thereafter, N fixed identification model for the system (A.2.1) is designed as

˙̂xj = A(x̂j − x) + ωT (x, u)θ̂j , j = 1, ..., N (A.2.2)

with the control input given as

u =
1

P̂
TG(x)

(−P̂
TF(x) + v̂) (A.2.3)

The cost function for the switching between fixed models given as

Jj(t) = x̃T
j (t)Gx̃j(t), j = 1, ..., N (A.2.4)
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where G ∈ R
n×n is a positive-definite weight matrix. The switching logic based on the cost function

(A.2.4) is given as

j∗(t) = {j(t) : (J0(t)−min Jj(t)) ≥ κ > 0}, j = 1, ..., N, t ∈ [Ti, Ti+1) (A.2.5)

where j∗ gives the index for the chosen identification model.

A.3 Ge et al.’s method

In [12], Ge et al. designed an adaptive controller for nonlinear systems having nonlinear parame-

terization. A nonlinearly parameterized nonlinear system is considered as [12]

ẋi = xi+1, i = 1, ..., n − 1

ẋn =
1

β(x)
[f(x) + g(x)u]

y = x1 (A.3.1)

where the state vector x : R+ → R
n is measurable. Moreover, u : R+ → R is the control input and

y : R+ → R represents the output. Further, f(x), β(x) : Rn → R
n are sufficiently smooth vector fields

and g(x) : Rn → R
n is a known continuous function. Control input for the system (A.3.1) is derived

as

u =
1

g(x)
[− kεs
α(x)

− θ̂
T
w(z)− h(z)] (A.3.2)

with adaptive tuning law for the estimate of unknown parameter θ given as

˙̂
θ = Γw(z)α(x)εs (A.3.3)

where k, εs, α(x), z, w(z), h(z) and Γ can be found in [12].

A.4 Extended Kalman Filter (EKF)

For the state estimation of nonlinear systems, the Kalman filter estimate is based on the linearized

system and the new filter is called Extended Kalman Filter (EKF) [76]. The nonlinear system dynamics
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are

ẋ = f(x, u, w)

y = h(x, v) (A.4.1)

where x(t) is the state vector and f, h are nonlinear functions [76]. Here w ∼ N (0, Q) and v ∼ N (0, R)

are normally distributed state and measurement noises respectively, with Q, R the corresponding

covariance matrices. The linearized dynamics for (A.4.1) can be given as

F =
∂f(x)

∂x

∣∣∣∣
x=x̂

N =
∂f(x)

∂w

∣∣∣∣
x=x̂

H =
∂h(x)

∂x

∣∣∣∣
x=x̂

M =
∂h(x)

∂v

∣∣∣∣
x=x̂

(A.4.2)

The Extended Kalman Filter update equations are given as

˙̂x = f(x̂, u, w) +K[y − h(x̂, v)]

K = ΓHTR−1
c

Γ̇ = FΓ + ΓF T +Qc − ΓHTR−1
c HΓ (A.4.3)

where K is the Kalman gain matrix and Γ is the error covariance matrix. The matrices Qc = NQNT

and Rc =MRMT are used.

A.5 Performance Specifications

The performance indices like peak overshoot (Mp), peak undershoot (Mu), settling time (ts) rep-

resent the transient performance and ess represents the steady state performance of the controlled

system. The control energy (CE) given by ‖u‖2 denotes the input performance. The root mean

square error (RMSE), integral square error (ISE) and integral absolute error (IAE) denoting the

output tracking performance and are given as

RMSE =

√√√√√
ns∑
l=1

e2i (l)

ns
(A.5.1)
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ISE =

ns∑

l=1

e2i (l) (A.5.2)

IAE =

ns∑

l=1

|ei(l)|

where ei is the control error with i = 1 for SISO system and i = 2, ...,m for MIMO system. Further,

ns is the number of samples used.

Lastly, total variation (TV) characterizes smoothness of the control signal and input usage and is

given as

TV =

ns∑

l=1

|ui(l + 1)− ui(l) | (A.5.3)

where ui(1), ui(2), ...., ui(ns) is the discretized sequence of the input signal. A low value of TV indicates

smoothness of the control input.

A.6 Momentum equation for TRMS

The momentum equation for the vertical movement of the TRMS is given as [60]:

l1α̈v =M1 −MFG −MBαv −MG (A.6.1)

where

M1 = a1ℑ1
2 + b1ℑ1 denotes nonlinear static characteristic

MFG =Mg sinαv denotes gravity momentum

MBαv = B1αv α̇v − 0.0326
2 sin 2αvα̇

2
h represents friction forces momentum

MG = kgyM1α̇h cosαv represents gyroscopic momentum

The relation between the main motor input voltage uv and the momentum ℑ1 can be approximated

by a first order transfer function given as

ℑ1 =
km

T11s+ T10
uv (A.6.2)

Similarly, the momentum equation for the horizontal movement is given as:

l2α̈h =M2 −MBαh
−MR (A.6.3)
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where

M2 = a2ℑ2
2 + b2ℑ2 denotes nonlinear static characteristic

MBαh
= B1αh

α̇h represents friction forces momentum

and MR is the cross reaction momentum approximated by

MR =
kc(Tos+ 1)

(Tps+ 1)
M1 (A.6.4)

Further, the relation of tail motor momentum ℑ2 with its input voltage uh can be given as

ℑ2 =
kt

T21s+ T20
uh (A.6.5)

Therefore, the dynamics of the TRMS in the state space form can be derived as [60]:

ẋ1 = x2

ẋ2 =
a1
l1
x5

2 + b1
l1
x5 − Mg

l1
sinx1 − B1αv

l1
x2 +

0.0326
2l1

x4
2sin(2x2)

−kgya1
l1

x4x5
2cos(x1)− kgyb1

l1
x4x5cos(x1)

ẋ3 = x4

ẋ4 =
a2
l2
x6

2 + b2
l2
x6 − B1αh

l2
x4 +

1.75kca1
l2

x5
2 + 1.75kcb1

l2
x5

ẋ5 = −T10

T11
x5 +

km
T11
uv

ẋ6 = −T20

T21
x6 +

kt
T21
uh

y1 = x1, y2 = x3

(A.6.6)

where x1 denotes the pitch angle, x2 denotes the pitch angular velocity, x3 represents the yaw angle,

x4 represents the yaw angular velocity, x5 denotes the momentum of the main motor and x6 denotes

the momentum of the tail motor. Further, y1, y2 denote the outputs.
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