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Abstract

This thesis deals with the analysis and design of robust fuzzy controllers for uncertain nonlin-

ear systems using Takagi-Sugeno (T-S) model based approach. A T-S fuzzy model is used here to

approximate the uncertain nonlinear systems where the nominal model and uncertain terms of the

consequent parts of the fuzzy model are identified by a linear programming approach and then they

are expressed in a form suitable for robust fuzzy controller design. With the derived T-S fuzzy

model, various types of robust fuzzy controllers are designed that guarantee not only stability but

also satisfy the specified performance criteria of the closed-loop control system. The first type of T-S

controller is a robust fuzzy guaranteed cost controller for trajectory tracking in uncertain nonlinear

systems. The fixed Lyapunov function based approach is used to develop the robust controller and

the design conditions are derived as a problem of solving a set of linear matrix inequalities (LMIs).

Next, this research work focuses on robust stabilization, robust H∞ stabilization and robust H∞

tracking control of uncertain nonlinear systems by using a richer class of Lyapunov function called

parametric Lyapunov function. This parametric Lyapunov function based approach attempts to re-

duce the conservatism associated in the controller design for nonlinear systems with slowly varying

uncertainties. The design conditions are derived as matrix inequality involving parametric uncertain-

ties and then they are reduced to finite dimensional matrix inequalities by using the multiconvexity

concept. These matrix inequalities are then solved by an iterative LMI based algorithm. Finally, the

results of standard state-space T-S fuzzy system with parametric Lyapunov function based approach

are extended to synthesize the robust controller for application to uncertain fuzzy descriptor systems.
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Chapter 1

Introduction

1.1 Research Background

Many real physical systems are nonlinear in nature. Controlling nonlinear systems is a difficult prob-

lem due to their complex nature. This problem becomes more acute when the system’s parameters

are uncertain, for example the plant, the sensor and the actuator in a control system. The most fun-

damental aspect of this connection is that the uncertainty involved in any problem solving situation

is a result of some information deficiency, which may be incomplete, imprecise, fragmentary, not fully

reliable, vague, contradictory, or deficient in some other way [3]. Uncertainty affects decision-making

and appears in a number of different forms. It is an inherent part of real world systems and the

controllers designed for such uncertain systems are required to act in an appropriate manner and

eliminate the effect of imprecise information.

Traditional control is an accurate and cost efficient solution for control problems involving simple

or linear systems. But if the system to be controlled is very complex and includes uncertainties,

fuzzy logic may be the appropriate technique [4]. Fuzzy control systems have proven to be superior

in performance when compared with conventional control systems especially in controlling nonlinear,

ill-defined and complex system [5–12]. Earlier, fuzzy controllers were designed by mimicking the

knowledge of human operator for generating the control action [13–16]. These controllers are designed

using the extensive experience of the system designers and performance of such control schemes is

generally satisfactory. However, such designs are often criticized for lack of generalized method for

stability analysis of the closed loop fuzzy control systems [17]. Therefore, many researchers have

worked to improve the performance of the fuzzy logic controllers (FLCs) by systematic design and

at the same time to ensure stability. Malki et al. [18,19] proposed a method for design of fuzzy PID

controllers ensuring stability. Tao et al. [20, 21] proposed adaptive fuzzy sliding mode controllers

(AFSMC) for linear systems with mismatched time-varying uncertainties. In recent years, a large
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number of researchers are involved in analysis and design of fuzzy controllers using the Takagi-Sugeno

(T–S) model [22,23]. Fuzzy controllers developed using the T–S fuzzy model have been applied to a

number of control problems; e.g. [2, 8, 24–32].

The T–S fuzzy model, which utilizes the local linear description, provides a basis for development

of a systematic framework for stability analysis and controller design by taking the advantage of

powerful modern control theory and techniques. Recently linear matrix inequality (LMI) based

approach has received significant attention for designing T–S fuzzy model based controller [2, 8, 12,

26,29,33–35]. The basic stability conditions in terms of linear matrix inequalities (LMIs) are derived

based on a Lyapunov approach. The fuzzy model based system is guaranteed to be asymptotically

stable if there exists a solution to Lyapunov inequalities. These LMI stability conditions can be solved

numerically and efficiently using convex programming techniques [36–38]. Therefore formulating the

control problem as an LMI problem is equivalent to finding a “solution” to the original problem [8].

1.2 Preliminaries and Overview of Previous Work

1.2.1 T–S Fuzzy System

Fuzzy system theory enables us to utilize qualitative, linguistic information about a highly complex

nonlinear system to construct a mathematical model for it. The T–S fuzzy model consists of a number

of rule-based linear models and membership functions which determine the degrees of confidence of

the rule. The T–S fuzzy model can be used to approximate the global behavior of a highly complex

nonlinear system [39]. In the T–S fuzzy model, local dynamics in different state space regions are

described by fuzzy IF-THEN rules, each of which represents the local linear subsystem in different

state-space regions. The overall model of the system is obtained by fuzzily “blending” these linear

models through nonlinear fuzzy membership functions. Unlike conventional modeling, which uses a

single model to describe the global behavior of a system, fuzzy modeling is essentially a multimodel

approach in which simple linear submodels are fuzzily combined to describe the global behavior of

the system.

2
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A continuous-time T–S fuzzy model is of the following form [40]:

Plant rule i:

IF z1(t) is Ni1 and · · · zp(t) is Nip, THEN

ẋ(t) = (Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t) + (Bwi + ∆Bwi(t))w(t)

y(t) = (Ci + ∆Ci(t))x(t) + (Di + ∆Di(t))u(t) + (Dwi + ∆Dwi(t))w(t), i = 1, 2, ..., r(1.1)

where Nij is the fuzzy set, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, w(t) ∈ Rmw

is the disturbance input and y(t) ∈ Rq is the output vector. Here, Ai ∈ Rn×n, Bi ∈ Rn×m,

Bwi ∈ Rn×mw , Ci ∈ Rq×n, Di ∈ Rq×m and Dwi ∈ Rq×mw ; z1(t), z2(t), ..., zp(t) are premise variables

and r is the number of IF-THEN rules. ∆Ai(t), ∆Bi(t), ∆Bwi(t), ∆Ci(t), ∆Di(t) are ∆Dwi(t)

uncertain matrices of appropriate dimension that represent the uncertainties and modeling error.

By fuzzy blending, the overall fuzzy model is inferred as follows [8]:

ẋ(t) =
r∑

i=1

µi(z(t))(Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t) + (Bwi + ∆Bwi(t))w(t))

y(t) =
r∑

i=1

µi(z(t))((Ci + ∆Ci(t))x(t) + (Di + ∆Di(t))u(t) + (Dwi + ∆Dwi(t))w(t)) (1.2)

where

µi(z(t)) =
ωi(z(t))∑r

i=1 ωi(z(t))
, ωi(z(t)) =

p∏

j=1

Nij(zj(t))

and Nij(zj(t)) is the degree of the membership of zj(t) in Nij . Here ωi(z(t)) ≥ 0, for i = 1, 2, ..., r

and
∑r

i=1 ωi(z(t)) > 0 for all t. Therefore, µi(z(t)) ≥ 0 for i = 1, 2, ..., r and
∑r

i=1 µi(z(t)) = 1.

1.2.2 Construction of the Fuzzy Model

A number of methods are discussed in literature for identification of T–S fuzzy model [1, 41–44].

The T–S model based fuzzy control design [8] is illustrated in Fig. 1.1. In general, there are two

approaches for obtaining the fuzzy model. One is by deriving the model using the nonlinear system

equations and the other is based on the input-output data generated using the original nonlinear

system.

In the first case, the fuzzy model identification involves deriving the structure and parameters of

the fuzzy model by linearizing the nonlinear dynamical equation about a number of operating points.

This method is suitable for system or plants that can be represented by analytical or physical models

and it is generally suitable for mechanical systems since the nonlinear dynamical equation can be

derived by Lagrange method or Newton-Euler method [42,45]. The authors in [8,42,46] explained this

3
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Fig. 1.1: T–S Model-based fuzzy control design.

method of deriving the structure and parameters of the fuzzy model by utilizing the idea of “sector

nonlinearity”, “local approximation” or a combination of them. The sector nonlinearity approach

is effective in global or semiglobal fuzzy modeling which can exactly represent the dynamics of a

nonlinear system.

In the latter approach, the fuzzy model identification determines the structure and parameters

of fuzzy models from input-output data for those cases where it is not possible or too difficult to

represent the physical (or mathematical) model of the nonlinear system. One of the most popular

methods for fuzzy model identification is by using a fuzzy clustering technique for identifying number

of rules and parameters of fuzzy membership functions and using a least squares method for the

identification of local linear models. A number of methods has been proposed for identification of

fuzzy model using the input-output data [10,41,47].

Fuzzy modeling by Local Linearization

In this method, the fuzzy model of the nonlinear system is derived from the system dynamic equa-

tions. The main aspect of this approach is the approximation of the nonlinear system by choosing

suitable linear terms. The approximation capability of the fuzzy system depends on the interpolation

properties of the neighboring subsystems.

The steps involved in deriving the fuzzy model of a nonlinear system are reviewed using the

procedure explained in [45, 48]. Let us consider a nonlinear system with its model in the following

form

ẋ(t) = f(x(t),u(t)) (1.3)
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where x ∈ Rn, u ∈ Rm and f ∈ Rn.

Expanding f by means of Taylor series around (xe,ue) yields

ẋ = f(xe,ue) +
∂f

∂x

∣∣∣∣x=xe
u=ue

(x− xe) +
∂f

∂u

∣∣∣∣x=xe
u=ue

(u− ue)

+higher order terms. (1.4)

A point (xT
e ,uT

e )T ∈ R(n+m) is an equilibrium point of (1.3) if f(xe, ue) = 0; that is at (xe, ue),

ẋ = 0. Let δx = x − xe and δu = u − ue. The linearized model about the equilibrium point

(xe, ue) is obtained by neglecting the higher order terms and observing that for the equilibrium

point f(xe, ue) = 0, the linearized model has the form

d

dt
δx = Aδx + Bδu (1.5)

where

A =
∂f

∂x

∣∣∣∣x=xe
u=ue

=




∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
. . . ∂fn

∂xn




∣∣∣∣∣∣∣∣∣∣∣∣∣∣x=xe
u=ue

and

B =
∂f

∂u

∣∣∣∣x=xe
u=ue

=




∂f1

∂u1

∂f1

∂u2
. . . ∂f1

∂um

∂f2

∂u1

∂f2

∂u2
. . . ∂f2

∂um

...
...

. . .
...

∂fn

∂u1

∂fn

∂u2
. . . ∂fn

∂um




∣∣∣∣∣∣∣∣∣∣∣∣∣∣x=xe
u=ue

.

The local linear model at (xT
e ,uT

e )T = 0 can be obtained by using the above linearization tech-

nique. Next, the local linear models describing the plant’s behavior at the remaining operating points

are considered. For example, if the local linear model with constant matrices A and B are to be

found, then in the neighborhood of (xd,ud),

ẋ(t) = Ax(t) + Bu(t). (1.6)

Let f(x(t), u(t)) = F (x(t)) + G(x(t), u(t)). Then the following condition should be satisfied in

the neighborhood of (xd, ud):

F (x(t)) + G(x(t), u(t)) u Ax(t) + Bu(t) (1.7)

Let aT
i be the ith row of matrix A and bT

i be the ith row of matrix B. Then for the purpose of
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further analysis, the following relation can be written:

fi(x(t)) + gi(x(t), u(t)) u aT
i x(t) + bT

i u(t) (1.8)

At the operating point, (1.8) becomes

fi(xd) + gi(xd, ud) u aT
i xd + bT

i ud. (1.9)

Expanding the left hand side of (1.8) about (xd, ud) by Taylor series and neglecting the higher

order terms, (1.8) becomes

fi(xd) + OT
x
fi(xd)(x− xd) + gi(xd,ud)

+OT
x
gi(xd,ud)(x− xd) + OT

u
gi(xd, ud)(u− ud) u aT

i xd + bT
i ud (1.10)

where OT
x

and OT
u

are gradients with respect to x(t) and u(t), respectively. From (1.9) and (1.10),

the following relations can be written:

OT
x
fi(xd) + OT

x
gi(xd, ud) u aT

i (1.11)

OT
u
gi(xd, ud) u bT

i . (1.12)

With the above relations, a convex constrained optimization is formulated [45] and the constant

matrices in the model are obtained by solving that optimization problem.

Stability is one important aspect in the traditional knowledge of Automatic Control. The para-

metric uncertainties are principal factors responsible for degraded stability and performance of an

uncertain nonlinear closed-loop control system. In fact, in many cases it is very difficult, if not

impossible, to obtain the accurate values of some system parameters. This is due to the inaccu-

rate measurement, inaccessibility to the system parameters or on-line variation of the parameters.

Therefore, this has promoted active research in the area of robust control for uncertain nonlinear

systems [19, 25, 27, 32]. Clearly, it is very important to study robust stability against parametric

uncertainties in the T-S fuzzy-model-based control systems.

When the interest aims at modeling an uncertain nonlinear system, a typical approach is to first

define the nominal system by an ordinary T–S fuzzy model. Next the uncertainties are introduced

into the T–S fuzzy model using norm bounded uncertain matrices [12,25,43,49,50]. These uncertain

terms usually include unmodeled dynamics. The approximation capability of a fuzzy system is

discussed in [51] and it concludes that any continuous nonlinear function can be approximated within

an error bound if sufficient number of rules are used. This approximation error influences the control

performance and this band of error is usually added to the uncertainty block of the fuzzy model.
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Taniguchi et al. [42] presented a systematic method for fuzzy control that includes fuzzy identi-

fication, rule reduction and robust compensation for nonlinear systems. Here, the uncertain blocks

compensate for modeling error. Lo and Lin [43] presented robust H∞ nonlinear modeling and control

via uncertain fuzzy systems. Here, the uncertainties are expressed using non-fuzzy uncertain bound-

ing matrices. S̆krjanc et al. [1,52,53] proposed a methodology for interval fuzzy model identification

to approximate functions from a finite set of input-output measurements. This identification method

uses the concepts from linear programming and it provides a lower and upper fuzzy model which

enclose the whole band of uncertainties. The approximation capability of this method is explained

with a first order (affine) fuzzy model and another singleton fuzzy model.

1.2.3 T–S Fuzzy Controller Design

T–S fuzzy model has been recognized as a popular and powerful tool in approximating a complex

nonlinear system and many corresponding control techniques have been developed in recent years.

The T–S model based controller design is carried out with the so-called parallel distributed compen-

sation (PDC) method proposed in [24,26,54,55]. The controller shares the same fuzzy sets with the

fuzzy model in the premise parts and each control rule is designed from the corresponding rule of

the T-S fuzzy system, respectively. The controller design is carried out using a quadratic Lyapunov

function V (x(t)) = xT (t)Px(t), where the control problem is then reformulated into another prob-

lem of solving LMIs. Then the local feedback gains can be easily obtained by solving these LMIs

using the powerful computational tools, such as MATLAB LMI solver [37] and SeDuMi [56].

In the domain of controller design, it is often of primary interest to synthesize a controller to

satisfy certain performance function in addition to ensuring stability. Several control schemes were

proposed based on this idea of performance function minimization [57–60]. A large number of

controllers have evolved that minimize the worst-case ratio of output energy to disturbance energy

which is known as an H∞ control problem [2, 27, 61, 62]. Other performance criteria which are

considered for designing a controller are quadratic cost minimization, norm minimization and pole

placement. Among them guaranteed cost control aims at stabilizing the system while maintaining an

adequate level of performance represented by a quadratic performance function and it is an important

problem for systems with uncertain parameters [63–65].

Chang and Peng [57] introduced the idea of guaranteed cost control for systems with uncertain

parameters. This approach provides a control law that guarantees an upper bound for the system

performance function. The recent results related to fuzzy guaranteed cost control are based on

7
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LMI optimization method which can be handled efficiently with interior point methods [36]. Tong

et.al [66] derived the sufficient conditions for fuzzy based robust tracking control for uncertain non-

linear systems. The conditions to satisfy a matrix inequality are derived in bilinear form and are

solved by a two-step procedure to satisfy the prescribed disturbance attenuation level. There is

no efficient algorithm for this kind of control problems involving bilinear matrix inequality (BMI).

The two-step procedure used for solving the inequality in [66] cannot be applied for a minimization

problem involving bilinear matrix inequality. Chen and Liu [64] considered the fuzzy guaranteed cost

control design problem for nonlinear systems having time-varying delay. They derived the sufficient

conditions for construction of guaranteed cost controller for both state feedback and observer-based

output feedback cases.

In most of the above cited literature, the controller design and stability analysis are carried out

using common Lyapunov function. It is required to find a common positive definite matrix satisfying

the LMIs corresponding to all the local models. Generally, conservatism exists in the results with

constant Lyapunov function based design and finding the common positive definite matrix might not

be possible especially for highly nonlinear complex systems. During the last few years, a number

of controller design methods was proposed based on some special class of Lyapunov functions such

as piecewise quadratic Lyapunov function [67–73], fuzzy Lyapunov function [74–79] and polynomial

Lyapunov function [80–82]. These types of Lyapunov function are much richer class of Lyapunov

function candidates than the common Lyapunov function and thus, these are able to deal with a

larger class of fuzzy dynamic systems. Moreover, the common or fixed Lyapunov function is a special

case of this richer class of Lyapunov function.

Design with Piecewise Quadratic Lyapunov Function

The authors in [67–73, 83] presented stability analysis and controller design for fuzzy systems with

piecewise quadratic Lyapunov function. The approach considers several Lyapunov functions across

different regions and each component of the multiple function is required to satisfy the Lyapunov

inequality for the T–S model only inside a subset of the state-space. For example, the author in [83]

considered the following state space partition in his design.

S̄i = Si ∪ ∂Si, i = 1, 2, . . . , r (1.13)

8
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where

Si = {z, µi(z) > µl(z), l = 1, 2, . . . , r, i 6= l}, i ∈ {1, 2, . . . , r} (1.14)

and its boundary

∂Si = {z, µi(z) = µl(z), l = 1, 2, . . . , r, i 6= l}, i ∈ {1, 2, . . . , r}. (1.15)

With such partitions, the global model of the fuzzy system is represented with suitable sub-

systems in each region and the stability analysis or the controller design is presented with the

following piecewise Lyapunov function candidate,

V (x(t)) = xT (t)P ix(t), z ∈ S̄i, i ∈ {1, 2, . . . , r} (1.16)

The results for stability analysis or the controller design problem are then obtained by solving a set

of LMIs or bilinear matrix inequalities (BMIs).

Design with Fuzzy Lyapunov Function

The stability analysis and the controller design using the fuzzy Lyapunov function is presented

in [74–79, 84]. Here a fuzzy Lyapunov function is obtained by fuzzy blending of multiple Lyapunov

functions. Fuzzy Lyapunov function shares the same membership function with the T–S model of

the system and it is defined as

V (x(t)) = xT (t)
r∑

i=1

µi(z)P ix(t). (1.17)

Unlike the piecewise Lyapunov function, the fuzzy Lyapunov function is smooth and therefore

the boundary condition problem does not exist. The design using the fuzzy Lyapunov function

is much more complicated than the constant Lyapunov function based approach since it involves

derivatives of the premise membership functions. Recently, the authors in [76] proposed a method

for designing the fuzzy controller using fuzzy Lyapunov function which does not require the bounds

of the derivatives of the membership functions.

Design with Polynomial Lyapunov Function

In recent years, another class of Lyapunov function which received attention in fuzzy controller

design is the polynomial Lyapunov function [80–82]. This approach is suitable for fuzzy systems

with polynomial rule consequence. Polynomial fuzzy model representation is a generalization of the
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T–S fuzzy model and it is more effective in representing a nonlinear system. The stability analysis

and the stabilizability conditions for the polynomial fuzzy systems are derived using the polynomial

Lyapunov function which is defined as

V (x(t)) = xT (x(t))P (x(t))x(x(t)) (1.18)

The conditions are derived in terms of sum of squares (SOS) which can be numerically solved

using the recently developed SOSTOOLS [85]. The conditions presented are more general and less

conservative than the LMI based approach for general T–S fuzzy system.

1.2.4 T–S Fuzzy Descriptor System and Control

The descriptor system, which differs from a state-space representation describes a wider class of sys-

tems and it can be found in certain mechanical and electrical systems [8]. The advantage of choosing

the descriptor representation over the state-space model is that the number of LMI conditions for

designing the controller can be reduced for certain problems [86,87].

A descriptor fuzzy system is defined by extending the T–S state-space model. The ordinary T–S

fuzzy model is a special case of descriptor fuzzy system. The descriptor fuzzy system is defined in

the following form [88]:

Plant rule i:

IF ze
1(t) is N e

1 , . . . , ze
pk(t) is N e

pk and z1(t) is N1, . . . ,zp(t) is Np THEN

Ekẋ(t) = Aix(t) + Biu(t) (1.19)

z1(t), · · · , zp(t) are premise variables, p is the number of premise variables, Nij (j = 1...p) is the

fuzzy set and r is the number of rules. Here, x(t) ∈ Rn×1 is the state vector and u(t) ∈ Rm×1 is the

input vector. Ai ∈ Rn×n, Bi ∈ Rn×m and Ek ∈ Rn×n are constant real matrices.

In recent years, research has progressed in the area of stability analysis, stabilization control, H∞

stabilization and model following control for fuzzy descriptor systems [86, 87, 89]. Stability analysis

and controller design are carried out by defining x∗(t) = [xT (t) ẋT (t)]T and rewriting the fuzzy

system in the following augmented form

E∗ẋ∗(t) =
r∑

i=1

re∑

k=1

µiµ
e
k(A

∗
ikx

∗(t) + B∗
i u(t)) (1.20)

where

E∗ =



I 0

0 0


 , A∗

ik =




0 I

Ai −Ek


 , B∗

i =




0

Bi


 .
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A candidate of quadratic Lyapunov function of the form

V (t) = x∗T (t)E∗T Xx∗(t) (1.21)

is considered and conditions for stability or stabilization are derived in terms of LMIs.

Today adequate literature is available that discusses about the use of linear matrix inequality

(LMI) approach for design of T–S model based fuzzy controller using the constant Lyapunov functions

(e.g., [2, 62]).

1.2.5 Observer based output feedback control

In real-world control problems, however, it is often the case that the complete information of the

states of a system is not always available. In such cases, one needs to resort to output feedback design

methods such as observer-based designs. Observer designs, and output feedback control designs with

or without various performance indexes have also been well developed for TS fuzzy systems based

on common quadratic Lyapunov functions and LMIs [31,66,84,90,91].

A typical structure of observer for TS fuzzy systems is given below [8]:

Observer rule i:

IF z1(t) is Ni1 and · · · zp(t) is Nip, THEN

ˆ̇x(t) = Aix̂(t) + Biu(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cix̂(t), i = 1, 2, ..., r (1.22)

The dependence of the premise variables on the state variables makes it necessary to consider two

cases for fuzzy observer design: (i) z1(t), . . . , zp(t) do not depend on the state variables estimated by

a fuzzy observer, (ii) z1(t), . . . , zp(t) depend on the state variables estimated by a fuzzy observer.

The fuzzy observer for case (i) is represented as follows:

ˆ̇x(t) =
r∑

i=1

µi(z(t))(Aix̂(t) + Biu(t) + Li(y(t)− ŷ(t)))

y(t) =
r∑

i=1

µi(z(t))(Cix(t)) (1.23)

For case (ii) the fuzzy observer is represented as follows:

ˆ̇x(t) =
r∑

i=1

µi(ẑ(t))(Aix̂(t) + Biu(t) + Li(y(t)− ŷ(t)))

y(t) =
r∑

i=1

µi(ẑ(t))(Cix(t)) (1.24)

In the presence of the fuzzy observer for case (i), the PDC fuzzy controller takes the following

11



Chapter 1 Introduction

form:

u(t) =
r∑

i=1

µi(z(t))(Kix̂(t)) (1.25)

Similarly for case (ii), the PDC fuzzy controller takes the following form:

u(t) =
r∑

i=1

µi(ẑ(t))(Kix̂(t)) (1.26)

The stability analysis and design of the augmented system for case (i) are more straightforward,

whereas the stability analysis and design for case (ii) is complicated since the premise variables

depend on the state variables, which have to estimated by a fuzzy observer. The controller design and

observer design can be independently carried out based on common quadratic Lyapunov functions,

and the resulting closed-loop fuzzy control system, with estimated state variables to be used for state

feedback control, will be asymptotically stable.

1.3 Motivation and Purposes

There has been a rapidly growing interest in T–S fuzzy model based robust control for controlling

uncertain nonlinear systems. This interest has developed due to the fact that fuzzy logic provides

a simple and straight forward way to decompose the task of modeling and control design into a

group of local tasks, which makes the whole procedure easier. Moreover, the stability analysis and

controller design problems can be reduced to a linear matrix inequality (LMI) problem which can

be solved easily and efficiently with the available tools such as LMI toolbox in MATLAB [37] and

SeDuMi [56].

To design a T–S fuzzy controller, the primary step involves building the T–S fuzzy model of the

uncertain nonlinear system. Therefore constructing a fuzzy model for the uncertain nonlinear system

is an important and basic step in this approach. A number of methods has been reported in the

literature for fuzzy modeling and most of them deal with the nonlinear system without uncertainties.

In robust fuzzy control methodologies used for uncertain nonlinear systems, the controller design is

carried out using a class of fuzzy system represented in the Takagi-Sugeno form with uncertainty

blocks. Few studies are reported in literature where T–S fuzzy model construction techniques for un-

certain systems are discussed. Here the experience or human knowledge to express the uncertainties

is utilized. But this technique is very difficult for systems with severe nonlinearity and uncertainties.

In some control design literatures [66], the parameters of the nominal fuzzy model are assumed to

have certain amount of perturbation and these are not estimated from the uncertainty of the original
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system. Therefore, fuzzy identification of uncertain nonlinear systems is the preliminary and basic

step towards robust fuzzy control. Hence, fuzzy model identification problem is first considered so

that a couple of effective robust fuzzy control techniques can be developed for uncertain nonlinear

systems.

In the domain of controller design, it is often of primary interest to synthesize a controller to

satisfy certain performance function in addition to ensuring stability. Several control schemes were

proposed based on this idea of performance function minimization [2,40,43,64,66]. Tracking control

is an important problem in practical applications like robotics, missile tracking and attitude tracking

of aircrafts. However it is more difficult than the regulatory control problem and only few studies

have been carried out in the area of tracking control especially for continuous-time systems [92]. LMI

approach has been successfully applied for regulatory control of nonlinear systems with quadratic

performance function [8,64]. Our research attempts towards controlling uncertain nonlinear systems

to design a fuzzy guaranteed cost controller which satisfies a given quadratic performance function

while tracking a specified trajectory.

Several studies have been reported in the literature for stability analysis and controller synthesis

of T–S model-based fuzzy control [2, 40, 43, 64, 66], in which the design problem is recast into a

set of LMIs based on a fixed or common Lyapunov function. It is required to find a common

positive definite matrix to satisfy all the LMIs corresponding to all the local models. Conservatism

would remain in this fixed Lyapunov function based approach and in some cases (especially for

highly nonlinear complex systems) it might not be possible to find the positive definite matrix. To

reduce the conservatism, different types of Lyapunov functions such as piecewise quadratic Lyapunov

function, fuzzy Lyapunov function and polynomial Lyapunov function are used in place of common

Lyapunov function. The piecewise and fuzzy Lyapunov function based design show better results

by allowing the Lyapunov function to vary across different regions while the polynomial Lyapunov

function based design is aimed at polynomial fuzzy systems. In the domain of the uncertain nonlinear

systems, conservatism can be reduced in the design by varying the Lyapunov function with respect

to the uncertainties and this class of function is called as parametric Lyapunov function. Motivated

by this concept and encouraged by the results obtained with piecewise and fuzzy Lyapunov function

based design, the research work focuses on robust fuzzy controller design using parametric Lyapunov

function.

The descriptor representation based systematic design is more difficult than the state-space based

design. In recent years, considerable work has been done with fixed Lyapunov function for stability
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analysis, stabilization, H∞ stabilization and model following control for fuzzy descriptor systems

[86, 87, 89]. The conservatism in these designs can be reduced by using a parametric Lyapunov

function in place of fixed Lyapunov function. Hence, a parametric Lyapunov function is considered

and the results are extended for synthesizing a controller for uncertain fuzzy descriptor systems.

1.4 Contributions of this Thesis

Main contributions of this thesis can be summarized as follows:

• A fuzzy identification method is proposed for deriving the T–S fuzzy model for uncertain

nonlinear systems in a form suitable for robust fuzzy control.

• Robust fuzzy guaranteed cost controller which satisfies a given quadratic performance function

is developed for application to the trajectory tracking problem of uncertain nonlinear systems.

• A framework that offers less conservative sufficient conditions for robust stabilization of un-

certain nonlinear systems built upon the T-S fuzzy model is developed by using a class of

parametric Lyapunov function.

• A controller is developed for robust control of uncertain nonlinear system modeled by fuzzy

descriptor systems using parametric Lyapunov function.

1.5 Thesis Organization

This thesis is divided into six chapters. Brief descriptions about the research contributions described

in each chapter are outlined in this subsection.

Chapter 2: This chapter describes the interval fuzzy model representation for use in robust fuzzy

control problems. A fuzzy logic based model identification method is presented and it is compared

with the method proposed by S̆krjanc et al. [1]. Suitability of the fuzzy model for application to

robust fuzzy control is also discussed and the performance of the proposed technique is demonstrated

with different examples.

Chapter 3: This chapter discusses the robust fuzzy guaranteed cost controller design for tra-

jectory tracking control problem in uncertain nonlinear systems. This chapter starts with problem

formulation and then the necessary inequality conditions are derived for guaranteed cost control in

14
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uncertain nonlinear system. The method of transforming the inequality conditions as LMI conditions

are then discussed and finally simulation results are presented.

Chapter 4: This chapter first recalls the robust stabilization results using fixed Lyapunov func-

tion. Then robust stability condition for uncertain nonlinear systems by using parametric Lyapunov

function is presented. The robust H∞ controller design methods with parametric Lyapunov function

are discussed for stabilization and tracking control problems.

Chapter 5: In this chapter, the fuzzy descriptor system is described and the tracking control

problem for uncertain fuzzy descriptor system is presented. Then robust controller design methods

are discussed with fixed and parametric Lyapunov functions for controlling uncertain fuzzy descriptor

systems.

Chapter 6: Conclusions from the research work and the scope for future research are discussed

in this chapter.
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Chapter 2

Identification of Uncertain

Nonlinear Systems for Robust Fuzzy

Control

2.1 Introduction

Fuzzy logic based control is increasingly being applied to uncertain and ill-defined nonlinear systems

and fuzzy control strongly competes with other nonlinear control techniques. Several significant

research results are reported in the literature which utilize an uncertain fuzzy model to deal with

robust fuzzy control problems [62,66,93–96]. Generally an affine T-S fuzzy model employs a constant

term in the consequent part of each rule. But in most of the aforementioned literature [62,66,93–96],

a special type of T-S fuzzy model is used which has linear rule consequence without the constant

term. In these robust fuzzy control methodologies, the controller design is carried out using a class

of fuzzy system represented in the Takagi-Sugeno form with uncertainty blocks. Apart from robust

fuzzy control, these models are also used for fault identification in uncertain nonlinear systems [50].

In the above cited literature, the uncertain fuzzy model uses the experience or human knowledge

to express the uncertainties. This may be suitable for small systems or systems with sector nonlin-

earity like a mass–spring system. But many systems have severe nonlinearity and uncertainties which

add difficulty to the identification technique. In some control design literatures [66], the parameters

of the nominal fuzzy model are assumed to have certain amount of perturbation and these are not

estimated from the uncertainty of the original system. Therefore, for these applications, the inter-

val fuzzy identification of uncertain nonlinear systems has become an important topic of scientific

research.
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Chapter 2 Fuzzy Identification of Uncertain Nonlinear Systems

This chapter discusses fuzzy model based identification of uncertain nonlinear systems suitable

for robust fuzzy control. Assumption is made that the parameters of the antecedent part are available

or the input space is uniformly partitioned for the parameters of the membership functions [96, 97].

Here, the identification of only the consequent part is considered. The fuzzy model is expressed

by linear and uncertain terms, which represent the nominal system and parametric uncertainties

respectively. The nominal model and the bounds of the uncertain terms of the fuzzy model are

identified and the approach is based on the method proposed by S̆krjanc et al. [1]. The model

identified in this step cannot be directly employed in robust fuzzy control design and it must be

expressed in another special form. The uncertain terms are expressed in suitable form as norm

bounded uncertain matrices accompanied by constant real matrices. Simulation results show that

the fuzzy model representation is suitable for robust fuzzy control of uncertain nonlinear systems.

2.2 Fuzzy Model with Uncertainty

The continuous fuzzy system (CFS) proposed by Takagi and Sugeno [22] represents the dynamics of

nonlinear system using fuzzy IF-THEN rules. As in [62,66,93–96], rules for the typical fuzzy model

of an uncertain nonlinear system employed in robust control design are of the following form:

Plant rule i:

IF z1(t) is Ni1 and z2(t) is Ni2 and · · · zp(t) is Nip THEN

ẋ(t) = (Ai + ∆Ai(t))x(t) + (Bui + ∆Bui(t))u(t) + (Bwi + ∆Bwi(t))w(t)

y(t) = (Ci + ∆Ci(t))x(t) + (Dui + ∆Dui(t))u(t) + (Dwi + ∆Dwi(t))w(t), i = 1, 2, . . . , r, (2.1)

where z1(t), . . . , zp(t) are premise variables, p is the number of premise variables, Nij (j = 1, . . . , p)

is the fuzzy set and r is the number of rules. Here, x(t) = [x1(t), . . . , xn(t)]T ∈ Rn is the state

vector, u(t) = [u1(t), . . . , umu(t)]T ∈ Rmu is the input vector, y(t) = [y1(t), . . . , yq(t)]T ∈ Rq is the

output vector, w(t) = [w1(t), . . . , wmw(t)]T ∈ Rmw is the disturbance input vector. Ai ∈ Rn×n,

Bui ∈ Rn×mu , Bwi ∈ Rn×mw , Ci ∈ Rq×n, Dui ∈ Rq×mu , Dwi ∈ Rq×mw are constant real matrices

describing the nominal system and ∆Ai(t), ∆Bui(t), ∆Bwi(t), ∆Ci(t), ∆Dui(t) and ∆Dwi(t) are

time varying matrices of appropriate dimensions, which represent parametric uncertainties in the

plant and modeling errors respectively.

Given a pair of input and output (x(t), u(t)), the final output of the fuzzy system is inferred as
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follows [62]:

ẋ(t) =
r∑

i=1

µi(z(t))
{
(Ai + ∆Ai)x(t) + (Bui + ∆Bui)u(t) + (Bwi + ∆Bwi)w(t)

}

y(t) =
r∑

i=1

µi(z(t))
{
(Ci + ∆Ci)x(t) + (Dui + ∆Dui)u(t) + (Dwi + ∆Dwi)w(t)

}
, (2.2)

where

µi(z(t)) =
ωi(z(t))∑r

j=1 ωj(z(t))
, ωi(z(t)) =

p∏

j=1

Nij(zj(t)) (2.3)

and Nij(zj(t)) is the degree of membership of zj(t) in the fuzzy set Nij . Some basic properties of

µi(z(t)) and ωi(z(t)) are ωi(z(t)) ≥ 0,
∑r

j=1 ωj(z(t)) > 0, µi(z(t)) ≥ 0 and
∑r

j=1 µj(z(t)) = 1.

In robust control design problems, the uncertain matrices are assumed to be norm bounded and

are described by [62,66,93–96]:



∆Ai(t) ∆Bui(t) ∆Bwi(t)

∆Ci(t) ∆Dui(t) ∆Dwi(t)


 =



MxiF xi(t)(Nx1i Nx2i Nx3i)

MyiF yi(t)(Ny1i Ny2i Ny3i)


 , (2.4)

where Mxi, Myi, Nx1i, Nx2i, Nx3i, Ny1i, Ny2i and Ny3i are known real constant matrices of ap-

propriate dimension and F xi(t), F yi(t) are time varying matrix functions with Lebesgue-measurable

elements, satisfying F T
xi(t)F xi(t) ≤ I, and F T

yi(t)F yi(t) ≤ I.

2.3 Interval Fuzzy Model Identification

2.3.1 Identification with Homogenous Fuzzy Functions

Let us consider an uncertain nonlinear function g(v,γ(t)), in which v = [v1, . . . , vnv ]T ∈ Rnv is the

input vector, γ(t) = [γ1(t), . . . , γnγ (t)] ∈ Rnγ is a time varying uncertain vector with known lower

and upper bounds γ
k
, γk of γk(t) satisfying γ

k
≤ γk(t) ≤ γk, k = 1, . . . , nγ .

The uncertain fuzzy model is defined in the following form

ψ(v, t) =
r∑

i=1

µi(z(t))(θi + ∆θi(t))T v, (2.5)

where θi = [θi1, θi2, . . . , θinv ] is a constant real vector representing the nominal model of the sys-

tem and ∆θi(t) = [∆θi1(t),∆θi2(t), . . . ,∆θinv(t)] is an interval vector which represents the para-

metric uncertainties satisfying |∆θik(t)| ≤ δθik, k = 1, . . . , nv. The upper and lower bounds

of the uncertain parameters of the fuzzy model are δθT
i ϑ and −δθT

i ϑ respectively, where ϑ =

[abs(v1), abs(v1), . . . , abs(vnv)]. Now the lower and upper bounds of the fuzzy model can be defined
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as

ψ(v) =
r∑

i=1

µi(z(t))(θT
i v − δθT

i ϑ) (2.6)

ψ(v) =
r∑

i=1

µi(z(t))(θT
i v + δθT

i ϑ)). (2.7)

Next the following relation from [1] is considered for identification of interval fuzzy model from

a finite set of input-output measurements V = [v1, . . . , vN ], where vj(j = 1, . . . , N) is the set of

inputs collected from the compact set S:

ψ(vj) ≤ g(vj , γ(t)) ≤ ψ(vj), ∀ j. (2.8)

An interval valued function g(vj) is defined satisfying g(vj) ≤ g(vj , γ(t)) ≤ g(vj), where g(vj)

and g(vj) represent the lower and upper bounds of g(vi). The interval valued function g(vj) can be

easily formed by replacing the uncertain quantities with interval variables having bounds equal to

that of the uncertain term. If the interval valued function g(vj) satisfies the following inequalities

(2.9) and (2.10), then the lower and upper fuzzy model will also satisfy the relation given in (2.8).

ψ(vj) ≤ g(vj), ∀ j (2.9)

g(vj) ≤ ψ(vj), ∀ j (2.10)

If ej and ej are the approximation errors related to lower and upper fuzzy model then

ej = g(vj)− ψ(vj), ∀ j (2.11)

ej = ψ(vj)− g(vj), ∀ j. (2.12)

If the maximum approximation error related to the fuzzy model and the family of functions is

defined as

λ = max
vj∈V

{
ej + ej

}
, (2.13)

then

ej + ej ≤ λ, ∀ j. (2.14)

With (2.11) and (2.12), (2.14) can be written as:

g(vj)− ψ(vj) + ψ(vj)− g(vj) ≤ λ, ∀ j. (2.15)

With the inequalities (2.9), (2.10) and (2.15), the optimization problem for identification of the
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lower and upper fuzzy functions can be framed as:

min
ψ,ψ

λ (2.16)

subject to

g(vj)− ψ(vj) + ψ(vj)− g(vj) ≤ λ, j = 1, . . . , N

ψ(vj)− g(vj) ≤ 0, j = 1, . . . , N

g(vj)− ψ(vj) ≤ 0, j = 1, . . . , N

With the lower and upper fuzzy model defined in (2.6) and (2.7), the above optimization problem

can be formulated as following convex linear programming problem

min
θj ,δθj

λ (2.17)

subject to

g(vj)− g(vj) + 2
r∑

i=1

µi(z(t))(δθT
i ϑj) ≤ λ, j = 1, . . . , N

−g(vj) +
r∑

i=1

µi(z(t))(θT
i vj − δθT

i ϑj) ≤ 0, j = 1, . . . , N

g(vj)−
r∑

i=1

µi(z(t))(θT
i vj + δθT

i ϑj) ≤ 0, j = 1, . . . , N

and

−δθik ≤ 0, i = 1, . . . , r, k = 1, . . . , nv

where λ is a variable that represents the maximum approximation error corresponding to the lower

and upper fuzzy models.

Guidelines for selection of input–output data: In the proposed identification method, the model

is built using input-output data to replicate the behavior of a given function. A reasonable amount

of input-output data needs to be chosen from the input range. The data can be chosen randomly in

the input space or it can be obtained at equidistant points. The more the number of data points, the

better the representation of the dynamics of the original nonlinear equation will become. To decide

the number of data points, start deriving the model with a smaller number of input-output data and

again try with a greater number of input-output data until a consistent model is obtained.

Remark 2.1. The model is identified with the input-output data obtained using the nonlinear equa-

tion. A similar approach is followed in some literatures for obtaining fuzzy models (without uncer-

tainties); e.g. in Chapter 2 in [10] and also the method in [1] for modeling of uncertain nonlinear

systems. The interval fuzzy model approximates the dynamics captured by the input-output data
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Fig. 2.1: Membership function.

and the approximation may be invalid in some regions where the identification data is not present.

This limitation is explained in [1] and the same is applicable to the above fuzzy model identification

method.

Remark 2.2. In this work it has been assumed that the parameters of the antecedent part are available

or the input space is uniformly partitioned [96,97] for the parameters of the antecedent part. A fuzzy

model with narrow error band might be possible if the input space is partitioned in an optimal way.

By considering the nominal model of the given system, the antecedent part of the fuzzy model can

be identified using the approach in [41,44,47] or by considering the different sectors and applying the

method explained in [8, 42]. Using the same antecedent parameters for the uncertain fuzzy model,

the consequent part can be obtained by the method described in this section.

2.3.2 Example

Similar to the uncertain nonlinear function in [1], this example considers the class of G with gnom(v) =

cos(v) sin(v) and the uncertainty ∆g(v) = γ sin(8v), 0 ≤ γ ≤ 0.2. This function is similar to

the one considered in [1] except the presence of a sine function in the uncertainty part instead

of a cosine function and this will make the class of G to satisfy g(0) = 0. The functions from

the class are defined in the domain S = {v| − 1 ≤ v ≤ 1} and the set of “measurements” is

V = {vj |vj = 0.021k, k = −47,−46, . . . , 47} ⊂ S.

Let us consider the problem of finding the upper and lower fuzzy models in homogenous form for

the uncertain nonlinear function g(z, γ(t)). The dimensionality of the input space is 1 and therefore

the premise and consequent variables are same as the measurements, i.e., zj = vj , j = 1, . . . , N .
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Fig. 2.2: Data, lower and upper bound of the fuzzy model using membership function set – I (a) by
the proposed identification method, (b) by the identification method in [1].
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Fig. 2.3: Difference between the bounds of the fuzzy function and the actual envelope of the family
of functions (Membership function set – I) (a) by the proposed identification method, (b) by the
identification method in [1].

Similar to [1], eight and another seven triangular equidistant membership functions (Set I and II)

are considered as shown in Fig. 2.1. Here, the lower and upper fuzzy models take the following form:

Ri: IF z is Ni THEN ψ
i
= θi1v − δθi1abs(v), i = 1, . . . , r,

Ri: IF z is Ni THEN ψ
i = θi1v + δθi1abs(v), i = 1, . . . , r.

The fuzzy model is built for the membership function set – I shown in Fig. 2.1 (a) and the

results are shown in Fig. 2.2(a), where the dashed line represents the family of functions and

the solid line shows the lower and upper bounds of the fuzzy function. The approximation errors

supg∈G(ψ(v)−g(v)) and infg∈G(ψ(v)−g(v)) are presented in Fig. 2.3(a). Similarly for the membership

function set – II shown in Fig. 2.1 (b), the results and the approximation error obtained using the
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Fig. 2.4: Data, lower and upper bound of the fuzzy model using membership function set – II (a) by
the proposed identification method, (b) by the identification method in [1].
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Fig. 2.5: Difference between the bounds of the fuzzy function and the actual envelope of the family
of functions (Membership function set – II) (a) by the proposed identification method, (b) by the
identification method in [1].

proposed identification method are shown in Figs. 2.4 (a) and 2.5 (a) respectively.

For the purpose of comparison, the method proposed by S̆krjanc et al. [1] is considered here.

Fuzzy model identification using a l1 norm is considered in this case and hence, slack variables

λj , λj , j = 1, . . . , N are introduced. The interval fuzzy model is identified by the following linear

programming problem of minimizing the sum of the absolute value of the estimation errors:
N∑

j=1

λj +
N∑

j=1

λj (2.18)

subject to

inf(g(vj))−
r∑

i=1

µi(z)θT
i vj ≤ λj , j = 1, . . . , N (2.19)
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inf(g(vj))−
r∑

i=1

µi(z)θT
i vj ≥ 0, j = 1, . . . , N (2.20)

λj ≥ 0, j = 1, . . . , N (2.21)

and

−sup(g(vj)) +
r∑

i=1

µi(z)θT
i vj ≤ λj , j = 1, . . . , N (2.22)

sup(g(vj))−
r∑

i=1

µi(z)θT
i vj ≤ 0, j = 1, . . . , N (2.23)

λj ≥ 0, j = 1, . . . , N. (2.24)

In the above minimization problem, inf(g(vj)) and sup(g(vj)) are considered to minimize the

difference between the bounds of the family of functions and the fuzzy model. The identification

results for the constructed interval fuzzy model with membership function set – I are shown in Fig.

2.2(b). The solid line represents the upper and lower fuzzy model while the dashed set of lines

represents the family of functions G for some values of γ. The approximation errors supg∈G(ψ(v) −
g(v)) and infg∈G(ψ(v) − g(v)) are presented in Fig. 2.3(b). Similarly, for the membership function

set – II, the results and the approximation error obtained by using the identification method in [1]

are shown in Figs. 2.4 (b) and 2.5 (b) respectively. It is observed that the approximation error is

very high in the region near the origin. When compared to the results of S̆krjanc et al. [1], the upper

and lower fuzzy model obtained using the proposed linear programming problem enclose the region

closely and it is observed that the model approximates the family of functions in a better way (less

conservative result).

The objective function (l1 - norm) considered in this example is different from the objective

function used in [1]. The results with the objective function (l∞ - norm) in [1] are checked and in

this case also the error is very high in the region around the origin.

Comparison of Computational Complexity and Time

The number of linear inequality conditions for solving the problem by the proposed approach is

3N + rnv and for the approach in [1] (with l∞ - norm), it is 4N + 2. For the above example with

membership function set – I and II, the number of linear inequality conditions in the proposed linear

programming problem are 3 × 95 + 8 = 293 and 3 × 95 + 7 = 292 respectively. With the approach

in [1] the number of linear inequality conditions is 4× 95+2 = 382 for both set – I and II. The CPU

times for solving the proposed linear programming problem for the membership function shown in
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Fig. 2.1 are 3.12 sec and 3.04 sec for set - I and set - II respectively. For the approach in [1] with

l∞ - norm, the CPU times are 3.35 sec and 3.32 sec for membership function set - I and set - II

respectively.

2.3.3 Lower and Upper Bounds Estimation of Interval Valued Function

The linear programming problem explained in the previous subsection for interval fuzzy model iden-

tification can be solved only if the lower bound g(vj) and upper bound g(vj) of the interval valued

function g(vj) are known. Depending upon the uncertain nonlinear system, the interval valued func-

tion can be linear or nonlinear. If it is linear, it can be solved easily by inequality constrained

linear programming approach. In the case of nonlinear interval valued functions, the bounds can be

estimated from the methods addressed in the literature [98–101].

Some of the basic interval arithmetic rules involved in interval computation on a and b are listed

below:

Addition: a + b = [a + b, a + b] (2.25)

Subtraction: a− b = [a− b, a− b] (2.26)

Multiplication: a · b = [inf(ab, ab, ab, ab), sup(ab, ab, ab, ab)] (2.27)

Division: a/b = [a, a] · [1/b, 1/b], 0 /∈ b (2.28)

Division by an interval containing zero is not defined under the basic interval arithmetic. For

division by an interval including zero, the operation is carried out with multi-intervals by defining

1/[b, 0] = [−∞, 1/b] and 1/[0, b] = [1/b,∞].

The bounds (with some overestimation) of the interval valued function can be calculated using

the above interval arithmetic rules. Closer bounds for the interval function can be found by using

a branch and bound technique [98–101]. The bounds of the interval valued function can be found

by using the interval arithmetic rules combined with branch and bound technique which split boxes

adaptively until the overestimation becomes insignificant. The main advantage of this technique is

that the bounds obtained are global, but this technique suffers from more computation time and

hence, the suitability of this approach is restricted to small dimensional problems. It is also possible

to find the bounds for the interval function involving nonlinear operations on interval a like sin(a),

cos(a), etc. The readers are referred to the literature [98–101] for more details on interval analysis

using a branch and bound algorithm.
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2.4 Application to Robust Fuzzy Control

The interval fuzzy model obtained using the linear programming method explained in the previous

section is not suitable for controller design for robust fuzzy control. The uncertain fuzzy model

employed in robust fuzzy control must be expressed in the form given by (2.2) and (2.4).

Let us consider the following nonlinear system described by

ẋ(t) = gx(x(t), u(t), w(t), γ(t))

y(t) = gy(x(t), u(t), w(t), γ(t)), (2.29)

where x(t) = [x1(t), . . . , xn(t)]T ∈ Rn is the state vector, u(t) = [u1(t), . . . , umu(t)]T ∈ Rm is the

input vector, y(t) = [y1(t), . . . , yq(t)]T ∈ Rq is the output vector, w(t) = [w1(t), . . . , wmw(t)]T ∈ Rmw

is the disturbance input vector, γ(t) = [γ1(t), . . . , γnγ (t)]T ∈ Rnγ is the uncertain vector with known

lower bound γ
k

and upper bound γk satisfying γ
k
≤ γk(t) ≤ γk, (k = 1, . . . , nγ).

With v(t) = [xT (t),uT (t), wT (t)]T , the functions in (2.29) can be expressed in the following form

g(v(t),γ(t)) =



gx(v(t),γ(t))

gy(v(t), γ(t))


 . (2.30)

Suppose g(v(t),γ(t)) is written as [g1(v(t), γ(t)), . . . , g(n+q)(v(t), γ(t))]T and satisfying the con-

dition

gl(0, γ(t)) = 0, l = 1, . . . , n + q (2.31)

then according to the concept presented in [102], gl(v(t), γ(t)), l = 1, . . . , n+ q can be approximated

by an interval fuzzy model of the form

ψl(v, t) =
r∑

i=1

µi(z(t))(θli + ∆θli(t))T v, l = 1, . . . , n + q. (2.32)

With (2.30) and (2.32), the overall fuzzy model for the nonlinear system (2.29) can be written

as follows:

ẋ(t) = [ψ1(v, t), . . . , ψn(v, t)]

y(t) = [ψn+1(v, t), . . . , ψn+q(v, t)] . (2.33)

The terms θli and ∆θli(t) corresponding to (2.32) and (2.33) represent the system matrices and

uncertain matrices of the fuzzy model (2.2) and are given by

θxi =
[
θT

1i, . . . , θ
T
ni

]T
= [Ai Bui Bwi] ,
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θyi =
[
θT

(n+1)i, . . . ,θ
T
(n+q)i

]T
= [Ci Dui Dwi] ,

∆θxi(t) =
[
∆θT

1i(t), . . . , ∆θT
ni(t)

]T
= [∆Ai(t) ∆Bui(t) ∆Bwi(t)] ,

∆θyi(t) =
[
∆θT

(n+1)i(t), . . . ,∆θT
(n+q)i(t)

]T
= [∆Ci(t) ∆Dui(t) ∆Dwi(t)] . (2.34)

The parameters θxi, θyi and the bounds δθxi, δθyi of ∆θxi(t) and ∆θyi(t) can be found from

the linear programming problem explained in the previous section. But the uncertain term needs to

be expressed in a special form shown in (2.4) for application in robust fuzzy control. Let us assume

that the matrices in the right side of the equation (2.4) take the following form

Mxi =




mxi1 0 · · · 0

0 mxi2 0
...

. . .
...

0 0 · · · mxin




, Myi =




myi1 0 · · · 0

0 myi2 0
...

. . .
...

0 0 · · · myiq




, (2.35)

F xi(t) = diag(fxi11(t), fxi12(t), . . . , fxijk(t), . . .), j = 1, . . . , n k = 1, . . . , (n + mu + mw),

F yi(t) = diag(fyi11(t), fyi12(t), . . . , fyijk(t), . . .), j = 1, . . . , q, k = 1, . . . , (n + mu + mw), (2.36)

Nxi = [Nx1i Nx2i Nx3i] = [nxi1 nxi2 · · · nxin]T ,

Nyi = [Ny1i Ny2i Ny3i] = [nyi1 nyi2 · · · nyin]T , (2.37)

where mxij = [mxij1 mxij2 · · · mxij(n+mu+mw)] and myij = [myij1 myij2 · · · myij(n+mu+mw)].

The vector 0 has a length n+mu +mw with all zero entries. The entries of matrices in (2.36) satisfy

the condition |fxijk(t)| ≤ 1, and |fyijk(t)| ≤ 1. In (2.37), nxij = diag(nxij1, nxij2, . . . , nxijn) and

nyij = diag(nyij1, nyij2, . . . , nyijn). The above form of expressing the matrices of the uncertain term

in the fuzzy model is inspired from [103].

With (2.35), (2.36), (2.37) and defining l ∈ {x, y}, the matrices ∆θxi(t) and ∆θyi(t) can be

expressed as ∆θli(t) = M liF li(t)N li and

∆θli(t) =




∆θli11(t) ∆θli12(t) · · · ∆θli1k(t) · · ·
∆θli21(t) ∆θli22(t) · · · ∆θli2k(t) · · ·

...
...

. . .

∆θlij1(t) ∆θlij2(t) ∆θlijk(t)
...

...
. . .




k = 1, . . . , (n + mu + mw),

l = x, j = 1, . . . , n for ∆θxi(t),

l = y, j = 1, . . . , q for ∆θyi(t),

(2.38)

where ∆θlijk(t) = mlijkflijk(t)nlijk.
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Let us assume that mlijk and nlijk take only positive values; then the lower and upper bounds of

mlijkflijk(t)nlijk are given by −mlijknlijk and mlijknlijk. The band of ∆θlijk(t) can always be found

between the lower and upper bounds of mlijkflijk(t)nlijk, if mlijk and nlijk satisfy the following

relation,

−mlijknlijk ≤ ∆θlijk(t) ≤ mlijknlijk. (2.39)

With the above inequality, the relation between the lower and upper bounds of ∆θlijk(t) and

mlijkflijk(t)nlijk is given by

max (∆θlijk(t)) = δθlijk = mlijknlijk,

min (∆θlijk(t)) = −δθlijk = −mlijknlijk.
(2.40)

Here δθlijk ≥ 0. To satisfy the above condition in (2.40), mlijk = nlijk =
√

δθlijk is assumed.

Let us consider the uncertain terms in the results of robust fuzzy control [2, 62, 66, 93–96, 104].

The uncertainties terms are eliminated by using in an one of the following inequality

∆AT (µ, t)P + P∆A(µ, t) < εNT
x1(µ)Nx1(µ) +

1
ε
PMx(µ)MT

x (µ)P ,

or ∆AT (µ)P + P∆A(µ) < NT
x1(µ)Nx1(µ) + PMx(µ)MT

x (µ)P (2.41)

where P is the Lyapunov variable and ε is some positive scalar. Here ∆A(µ, t) =
∑n

i=1 µi∆Ai(t),

Mx(µ) =
∑n

i=1 µiMxi and Nx1(µ) =
∑n

i=1 µiNx1i. Other uncertain terms (∆Bui(µ), ∆Bwi(µ),

∆Ci(µ), ∆Dui(µ), ∆Dwi(µ)) are also transformed in a similar way. The Lyapunov variable P is

a control design variable and usually it is not available at the time of modeling. The assumption

hlijk = elijk =
√

δθlijk may yield a conservative result while designing the controller. Hence, another

variable εi is introduced and the robust stability condition is shown in the next subsection.

2.4.1 Robust Stability Condition

Let us consider a nonlinear system which can be described by the T-S fuzzy model given below:

Plant rule i:

IF z1(t) is Ni1 and · · · zp(t) is Nip, THEN

ẋ(t) = (Ai + ∆Ai)x(t) + (Bui + ∆Bui)u(t) + Bwiw(t)

y(t) = Cix(t), i = 1, 2, . . . , r, (2.42)

where Nij is the fuzzy set, x(t) ∈ Rn is the state vector, u(t) ∈ Rmu is the control input, w(t) ∈ Rmw is

the unknown but bounded disturbance input and y(t) ∈ Rq is the output vector. Here, Ai ∈ Rn×n,
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Bui ∈ Rn×mu , Bwi ∈ Rn×mw and Ci ∈ Rq×n, ∆Ai(t) and ∆Bui(t) are time-varying matrices

with appropriate dimensions and z1(t), z2(t), . . . , zp(t) are premise variables. The parameters of the

uncertain matrices are assumed to be expressed in the form given in (2.35)–(2.37).

Given a pair of (x(t), u(t)), the final output of the fuzzy system is inferred as follows:

ẋ(t) =
r∑

i=1

µi(z(t))[(Ai + ∆Ai(t))x(t) + (Bui + ∆Bui(t))u(t) + Bwiw(t)]

y(t) =
r∑

i=1

µi(z(t))Cix(t), (2.43)

where

µi(z(t)) =
ωi(z(t))∑r

i=1 ωi(z(t))
, ωi(z(t)) =

p∏

j=1

Nij(zj(t)),

and Nij(zj(t)) is the degree of the membership of zj(t) in Nij . Therefore, µi(z(t)) ≥ 0, for i =

1, 2, ..., r and
∑r

i=1 µi(z(t)) > 0 for all t.

Suppose the following fuzzy control rule is employed to stabilize the system represented by (2.43).

Control Rule i:

IF z1(t) is Ni1 and . . . zp(t) is Nip, THEN

u(t) = Kix(t), i = 1, 2, . . . , r. (2.44)

Then the overall fuzzy control law is represented by

u(t) =
r∑

i=1

µi(z(t))Kix(t) (2.45)

where Ki is the control gain.

The stability condition for the robust fuzzy state feedback control design is presented in the

following theorem:

Theorem 2.1. Consider the fuzzy model (2.43) with the T-S state feedback control law (2.45). If

there exists a symmetric and positive definite matrix P , diagonal matrices εi, some matrices Kj ,

(j = 1, 2, . . . , r) such that the following parameterized matrix inequality is satisfied:
r∑

i=1

r∑

j=1

µiµj

{
(Ai + BiKj)T P + (∗) + PMxiεiM

T
xiP

+(Nx1i + Nx2iKj)T ε−1
i (Nx1i + Nx2iKj)

}
≤ 0 (2.46)

then the uncertain nonlinear system represented by (2.43) is globally stable.

Proof: The proof is given in Appendix.

The above theorem produces the basic stability condition for an uncertain fuzzy system. Several
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approaches were discussed in the literature for solving these parametric inequality based problems

with less conservative results [105–108].

Based on the concepts presented so far, the following algorithm is proposed for identification and

robust fuzzy control design of uncertain nonlinear systems.

Algorithm 2.1: Given the nonlinear equation of the form (2.29) representing the dynamics of

the nonlinear system,

Step 1: Select the membership functions, premise and antecedent variables.

Step 2: Construct the vector V = {v1, v2, . . . ,vN} that represents the input-measurement data.

Find the upper and lower bounds of the nonlinear equation (2.29) with the concepts presented in

Section 2.3.3.

Step 3: With the input-measurement data V and the bounds of the nonlinear equation ob-

tained in the previous step, solve the linear programming problem (2.17) to find the parameters

θ1i, . . . ,θ(n+q)i and δθ1i, . . . , δθ(n+q)i corresponding to the nonlinear equations g1, . . . , gn+q. If the

nonlinear programming problem is not feasible, go to Step 6.

Step 4: Arrange the elements of θ1i, . . . ,θ(n+q)i and δθ1i, . . . , δθ(n+q)i in the form shown in (2.34)

to get the system matrices and the bounds of the uncertain matrices.

Step 5: With hlijk = elijk =
√

δθlijk, construct the matrices Mxi, Myi, Nxi and Nyi in the

form shown in (2.35) and (2.37). Design the robust fuzzy controller using the concepts presented in

Section 2.4.1. If the LMIs for the robust fuzzy control design is feasible, goto Step 7.

Step 6: Check for maximum number of iterations and adjust the membership functions, rules

and the premise and antecedent variables and goto Step 3.

Step 7: Stop.

If the above algorithm produces infeasible solution in all the iterations, then the proposed method

cannot be applied to derive a fuzzy model for designing a robust fuzzy controller.

Remark 2.3. The vector g(v(t), γ(t)) contains n+q individual equations and the nonlinearity may not

be present in all individual equations. Some equations may be represented as linear combinations of

the antecedent variables, e.g., ẋ2(t) = x1(t)+x2(t). The sub-models corresponding to these equations

can be directly written without solving the linear programming problems. Hence, these simple linear

equations can be eliminated and only the nonlinear equations can be considered while identifying

the consequent part.
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2.5 Illustrative Examples

2.5.1 Inverted Pendulum on a Cart

Let us consider an example of a nonlinear equation with parameter uncertainties given by the equation

of motion of an inverted pendulum on a cart [66,109]:

ẋ1(t) = x2(t)

ẋ2(t) =
gr sin (x1(t))− amlx2

2(t) sin (2x1(t))/2− a cos (x1(t))u(t)
4l/3− aml cos2 (x1(t))

y(t) = x1(t). (2.47)

Here x1(t) and x2(t) represent the angular displacement about the vertical axis (in rad) and the

angular velocity (in rad/sec) respectively, gr = 9.8 m/s2 is the acceleration due to gravity, a =

1/(m+M), m ∈ [mmin mmax] = [2 3] kg is the mass of the pendulum, M ∈ [Mmin Mmax] = [8 10] kg

is the mass of the cart, 2l = 1 m is the length of the pendulum and u is the force applied on the cart

(in Newton). The actuator dynamics are ignored.

The operating domain is considered as x1(t) ∈ [−π/3 π/3], x2(t) ∈ [−4 4] and the input

u(t) ∈ [−1000 1000]. The membership functions and the rules are as given below.

Plant rule i:

IF x1 is about Ni THEN

ẋ(t) = (Ai + ∆Ai)x(t) + (Bui + ∆Bui)u(t)

y(t) = Cix(t),

where Ni is the triangular fuzzy set of x1 about 0,±π/12,±π/6,±π/4,±π/3 for i = 1, 2, ..., 5

respectively.

In the equation of motion of the nonlinear system given by (2.47), ẋ1(t) and y(t) are linear

equations and the consequent part corresponding to these functions can be written directly. Only

the consequent part corresponding to ẋ2(t) needs to be identified. The matrices in the consequent

part take the following form:

Ai =




0 1

ai21 ai22


 , Bui =




0

bui21


 ,

∆Ai(t) =




0 0

∆ai21(t) ∆ai22(t)


 , ∆Bui(t) =




0

∆bui21(t)


 , Ci =

[
1 0

]
.

With the uncertainty in m and M , the interval equation for estimating the bounds of ẋ2(t) can
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Table. 2.1: Parameters of matrices Ai, δAi, Bui and δBui – Inverted pendulum on a cart
Rule i ai21 ai22 bui21 δai21 δai22 δbui21

i = 1 16.2703 0 -0.1590 5.6613 0.0062 0.0195
i = 2 15.5785 0 -0.1516 3.3232 0.0076 0.0179
i = 3 14.9298 0 -0.1313 1.7417 0.0204 0.0158
i = 4 13.5178 0 -0.1022 1.2361 0.0090 0.0127
i = 5 12.1137 0 -0.0692 0.811 0.0040 0.0087

Table. 2.2: Parameters of the feedback gain matrices Ki - Inverted pendulum on a cart
i = 1 i = 2 i = 3 i = 4 i = 5

Ki1 780.0632 800.652 799.3351 861.6303 986.8387
Ki2 244.1326 250.8751 247.0909 266.3371 304.1544

be obtained as shown below:

g =
gr sin (x1)− (m/(m + M))lx2

2 sin (2x1)/2− (1/(m + M)) cos (x1)u
4l/3− (m/(m + M))l cos2 (x1)

. (2.48)

With the guidelines given in Section 2.3, the input data is obtained as V = {x1i|x1i = 0.0698l1,

l1 = −15,−14, . . . , 15, x2j |x2j = 2l2, l2 = −2,−1, . . . , 2, uk|uk = 500l3, l3 = −2,−1, . . . , 2} ⊂ S and

the output data is estimated from the interval valued function (2.48).

The linear programming problems are solved using SeDuMi [56] with YALMIP [110] interface.

The uncertain fuzzy model is obtained by the algorithm presented in Section 2.4 and the parameters

of the matrices Ai, Bui, δAi and δBui are tabulated in Table 2.1. All the computations are performed

on a Pentium IV 3.4 GHz processor with 1 GB RAM. The computation time for finding the bounds

of the function is 69.29 sec and the linear programming problem for finding the nominal model and

the bounds of the fuzzy model is solved in 33.25 sec.

The robust H∞ tracking control problem with the following reference model and the reference

input as given in [66] is considered:


ẋr1(t)

ẋr2(t)


 =




0 1

−4 −3






xr1(t)

xr2(t)


 +




0

sin (t)


 . (2.49)

The H∞ tracking controller is designed with the concept presented in [66] with the disturbance

input w = [0 ∆g sin(x1)/(4l/3 − aml cos2(x1)]T , where ∆g = g(6370 × 103/6370 × 103 + H),H ∈
[0, 100]. The mass of the pendulum and the cart are considered as m + ∆m(t) = 2.5 + 0.5 sin(5t)

and M + ∆M(t) = 9 + sin(4t) respectively. The LMI optimization problem is solved using the

LMI relaxations shown in Lemma A.1 (Appendix). The parameters of the feedback gain matrices

Ki = [Ki1 Ki2] obtained are shown in Table 2.2. The simulation results with the initial condition

x(0) = [π/3 0]T and xr(0) = [0 0]T are shown in Fig. 2.6.
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Fig. 2.6: Trajectories of state variables x(t) (dashed line: m = 2 kg and M = 8 kg, solid line: m =
3 kg and M = 10 kg ) and the reference trajectories xr(t) (dotted line) for an inverted pendulum.

Comparison:

In the example presented in Section 2.3.2, the proposed method was compared with the method in [1]

for an uncertain nonlinear function. In this subsection, comparison of the proposed identification

method is made with the identification method in [1] for the nonlinear system which is an Inverted

pendulum on a cart. The parameters obtained by the proposed method for the homogenous fuzzy

model are shown in Table 2.1. But in the case of [1], the linear programming problem provides an

infeasible solution for this example (inverted pendulum on a cart).

Next, an affine fuzzy modeling problem is considered for building a fuzzy model of the same

nonlinear system (inverted pendulum on a cart) with plant rules in the following form:
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Table. 2.3: Parameters of matrices a0i, δa0i, Ai, Bi, δAi and δBi by the proposed method – Inverted
pendulum on a cart (affine fuzzy model)

Rule i a20i a21 a22 b21 δa20i δa21 δa22 δb21

1 0 16.1512 0 -0.159 0.9193 2.2547 0.00795 0.01851
2 0 15.6940 0 -0.1516 0.8973 0.5043 0.00119 0.01780
3 0 14.8059 0 -0.1313 0.7528 0.6499 0.00320 0.01577
4 0 13.5023 0 -0.1022 0.5162 0.7425 0.00173 0.01257
5 0 12.1046 0 -0.0692 0.4747 0.5381 0.01352 0.00874

Table. 2.4: Parameters of matrices of lower and upper fuzzy model by the method in [1] – Inverted
pendulum on a cart (affine fuzzy model)

Rule i a20i a21 a22 b21 a20i a21 a22 b21

1 -19.279 15.7790 0 -0.1588 19.2785 15.7798 0 -0.1588
2 -18.9947 15.4305 0 -0.1520 18.9953 15.4289 0 -0.1520
3 -18.6561 14.9071 0 -0.1292 18.6558 14.9082 0 -0.1292
4 -16.4212 13.4453 0 -0.1031 16.4215 13.4449 0 -0.1031
5 -14.6017 12.1521 0 -0.0689 14.6018 12.1523 0 -0.0689

Plant rule i:

IF x1 is about Ni THEN

ẋ(t) = (a0i + ∆a0i(t)) + (Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t)

y(t) = Cix(t)

Here a0i = [0 a20i]T and ∆a0i(t) = [0 ∆a20i(t)]T are the affine terms of the fuzzy model and the

remaining terms are the same as in the homogenous fuzzy model. The parameters of the fuzzy model

obtained by the proposed method are shown in Table 2.3.

By the method in [1], the lower fuzzy model (with affine terms) takes the following form:

Plant rule i:

IF x1 is about Ni THEN

ẋ(t) = a0i + Aix(t) + Biu(t)

y(t) = Cix(t)

The upper fuzzy model takes a similar form as the lower fuzzy model. The linear programming

problem from [1] is used to identify the parameters of the lower and upper fuzzy model and the

results are shown in Table 2.4.

In the robust fuzzy control literature [62, 66, 93–96], the fuzzy controller is designed using the

homogenous fuzzy model. In this example, the method in [1] provides an infeasible solution for

homogenous fuzzy function identification. Hence a homogenous fuzzy model cannot be derived using

34



Chapter 2 Fuzzy Identification of Uncertain Nonlinear Systems

Vin

RM
D

VD

L

C

+

VC

-

R
+

VO

-

M iL

-

-

Fig. 2.7: Equivalent circuit of a buck converter

the method in [1]. But the method proposed in this paper provides a feasible solution for fuzzy

model identification in homogenous as well as affine forms. Hence the proposed method has better

approximation capability than the method in [1].

2.5.2 Regulation of a Pulse-Width Modulated Buck Converter

Next, the example considered is the regulation problem of a pulse-width modulated (PWM) buck

converter. The equivalent circuit of a PWM buck converter is shown in Fig. 2.7. The aim of this

problem is to regulate the output voltage of the converter by varying its duty ratio. By the averaged

modeling method, the dynamic equation for this PWM converter is obtained as [91,111]:

i̇L(t) = − 1
L

vC(t)− 1
L

(RM iL(t)− Vin − VD)du − VD

L

v̇C(t) =
1
C

iL(t)− 1
RC

vC(t)

where iL is the inductor current, vC is the capacitor voltage, RM = 0.27Ω is the static drain to source

resistance of the power MOSFET, VD = 0.82V is the forward voltage of the power diode and du is

the duty ratio of the PWM buck converter. Other parameters are L = 0.09858mH, C = 0.2025mF

and R = 6Ω. The input voltage is assumed to have uncertainty as Vin ∈ [Vin min Vin max] = [27 33]V.

With x(t) = [x1(t) x2(t)] = [iL(t) vC(t)] and u(t) = du, the uncertain nonlinear system can be

represented as follows:


ẋ1(t)

ẋ2(t)


 =




0 −1
L

1
C

−1
RC






x1(t)

x2(t)


 +



− 1

L(RMx1(t)− Vin − VD)

0


 u(t) +



−VD

L

0


 (2.50)

As given in [91], with x1(t) as the premise variable, the membership functions are defined as

N1 = (x1−x1)/(x1−x1) and N2 = 1−N1. x1 and x1 represent the lower and upper bounds of x1(t).

Similar to the previous example, the uncertain fuzzy model is obtained by solving the linear

programming problem presented in Section 2.3 and the parameters of the fuzzy model are obtained

35



Chapter 2 Fuzzy Identification of Uncertain Nonlinear Systems

0 0.005 0.01 0.015 0.02
0

1

2

time (sec)

i L
(A

)

0 0.005 0.01 0.015 0.02
0

5

10

15

time (sec)

Fig. 2.8: Responses x1(t) (iL(t)) and x2(t) (vc(t)) for PWM converter.

as

A1 = 103 ×




0 −10.14

4.938 −0.823


 , A2 = 103 ×




0 −10.14

4.938 −0.823


 , δA1 = 0, δA2 = 0,

B1 = 103 ×



301.68

0


 , B2 = 103 ×



312.64

0


 , δB1 =



211.5

0


 , δB2 =



209.9

0




With the above fuzzy model, the set-point tracking control can be designed using the procedure

described in [91]. Applying the method described in [91], the state feedback controller for set-point

tracking of the PWM converter is obtained as

u(t) = −µ1K1



x1 − x1d

x2 − x2d


− µ2K2



x1 − x1d

x2 − x2d


 +

x2d + VD

Vin + VD + RMx1
(2.51)

where K1 = [0.0541 −0.0298] and K2 = [0.0878 −0.0339] are the controller gains. The parameters

of these controller gains are obtained by solving the inequalities given in Theorem A.1 (Appendix)

with the terms corresponding to the uncertainty. The responses x1(t) and x2(t) are shown in Fig. 2.8.

2.5.3 Translational Oscillator with an Eccentric Rotational Proof Mass Actuator

(TORA)

Next, the identification of the translational oscillator with an eccentric rotational proof mass actuator

(TORA) [8, 112, 113] shown in Fig. 2.9 is considered. The oscillator consists of a cart of mass M

connected by a linear spring. The proof mass actuator affixed to the cart has mass m. The objective

of the problem is to damp the base translational oscillations by applying a suitable input. Let

x̄1(t) and x̄2(t) denote the translational position and velocity of the cart with x̄2(t) = ˙̄x1(t). Let

x̄3(t) = θ(t) and x̄4(t) = ˙̄x3(t) denote the angular position and velocity of the rotational proof mass.
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Fig. 2.9: TORA system.

Then the system dynamics can be described by the following equation [8]

˙̄x(t) = f(x̄(t)) + g(x̄(t))u(t), (2.52)

where u is the torque applied to the eccentric mass and

f(x̄(t)) =




x̄2(t)
−x̄1(t) + εx̄2

4(t) sin(x̄3(t))
1− ε2 cos2(x̄3(t))

x̄4(t)
ε cos(x̄3(t))(x̄1(t)− εx̄2

4(t) sin x̄3(t))
1− ε2 cos2(x̄3(t))




, g(x(t)) =




0
−ε cos(x̄3(t))

1− ε2 cos2(x̄3(t))

0
1

1− ε2 cos2(x̄3(t))




,

with ε = 0.1 being a constant which depends upon the system parameters.

Let us define the new state variables z1(t) = x̄1(t)+ ε sin(x̄3(t)), z2(t) = x̄2(t)+ εx̄4(t) cos(x̄3(t)),

y1(t) = x̄3(t), y2(t) = x̄4(t) and employ the feedback transformation

v(t) =
1

1− ε2 cos2(y1(t))

[
ε cos(y1(t))

(
z1(t)− (1 + y2

2(t))ε sin(y1(t))
)

+ u(t)
]

(2.53)

to bring the system into the following simpler form:

ż1(t) = z2(t),

ż2(t) = −z1(t) + ε sin(y1(t)),

ẏ1(t) = y2(t),

ẏ2(t) = v(t). (2.54)

The T-S fuzzy model for the TORA system is identified from (2.54) with the fuzzy rules and

premise parameters as defined in [8]. Unlike the previous examples, only the approximation error

is included in the uncertain blocks of the fuzzy model. With x(t) = [x1(t) x2(t) x3(t) x4(t)]T =

[z1(t) z2(t) y1(t) y2(t)]T , the uncertain fuzzy model takes the following form:

Rule 1:
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Table. 2.5: Parameters of matrices Ai, Bi, δAi and δBi – TORA
Rule i a23i a41i a43i b41i δa23i δa41i δa43i δa44i δb41i

1 0.0047 -0.1140 0.0012 1.0095 0.0006 0 0.0055 0 0
2 0.0663 0.0041 0.0061 0.9993 0.0007 0.0038 0.0064 0.0015 0.0007
3 0.1116 0.1132 -0.0127 1.0112 0.0048 0.0105 0.0185 0.0110 0.0027
4 0.0982 0.1114 -0.0627 1.0076 0.0001 0.0004 0.0040 0.0006 0.0006

IF y1(t) is “about −π or π rad” THEN

ẋ(t) = (A1 + ∆A1(t))x(t) + (B1 + ∆B1(t))u(t).

Rule 2:

IF y1(t) is “about −π/2 or π/2 rad” THEN

ẋ(t) = (A2 + ∆A2(t))x(t) + (B2 + ∆B2(t))u(t).

Rule 3:

IF y1(t) is “about 0 rad” and y2(t) is “about 0” THEN

ẋ(t) = (A3 + ∆A3(t))x(t) + (B3 + ∆B3(t))u(t).

Rule 4:

IF y1(t) is “about 0 rad” and y2(t) is “about −a or a” THEN

ẋ(t) = (A4 + ∆A4(t))x(t) + (B4 + ∆B4(t))u(t).

The uncertain fuzzy model is identified by the procedure explained in Section 2.3 and the following

system matrices are obtained having the parameters and uncertainty bounds given in Table. 2.5.

Ai =




0 1 0 0

−1 0 a23i 0

0 0 0 1

a41i 0 a43i 0




, Bi =




0

0

0

b41i




, i = 1, . . . , 4 (2.55)

∆Ai(t) =




0 0 0 0

0 0 ∆a23i(t) 0

0 0 0 0

∆a41i(t) 0 ∆a43i(t) ∆a44i(t)




, ∆Bi(t) =




0

0

0

∆b41i(t)




, i = 1, . . . , 4 (2.56)

A fuzzy parallel distributed compensation controller is designed for the state regulation problem

[8] with [0 0 0 0]T as the desired equilibrium point. With the control input in the form u(t) =
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Fig. 2.10: Control results for TORA system.

∑r
i=1 µiKix(t), the LMIs are solved and the parameters of the feedback gains are obtained as

K1 = [17.1021 − 8.3725 − 6.1768 − 10.4373]

K2 = [15.8944 − 7.6050 − 5.7597 − 9.7674]

K3 = [14.5570 − 6.8362 − 5.2915 − 9.0124]

K4 = [15.1720 − 7.2377 − 5.5140 − 9.3890]

Simulation results with the initial condition x(0) = [1 0 0 0]T are shown in Fig. 2.10.

2.6 Summary

In this chapter, a linear programming based method is proposed for identification of uncertain

nonlinear systems using T–S fuzzy model in a form suitable for application in robust fuzzy control.

The bounds of the given dynamic equation of the uncertain nonlinear system are estimated using

interval analysis technique combined with the branch and bound technique. With the estimated

bounds, the nominal model and the uncertainty bounds in the fuzzy model are found using linear

programming approach. The uncertain matrices are expressed in a special form using the bounds
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obtained from the linear programming problem and it has been shown that the obtained model can

be used for robust fuzzy control of uncertain nonlinear systems. The number of inequality conditions

in the linear programming problem is reduced by the proposed method and the computation time is

also less with better approximation than the method proposed by S̆krjanc et al. [1]. The limitation of

the proposed method lies in determining the bounds of the uncertain equation by a branch and bound

technique. The computational complexity of the problem will increase with an increase in dimension

of the branching space and the proposed method is not suitable for systems with a large number of

uncertain terms. The proposed modeling technique is validated by simulating with examples.
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Chapter 3

Fuzzy Guaranteed Cost Controller

for Trajectory Tracking in

Uncertain Nonlinear Systems

3.1 Introduction

In the past few years, fuzzy logic based control has been applied successfully for controlling nonlinear

systems. Takagi and Sugeno [22] suggested a method to describe a system in a fuzzified manner which

can represent highly non-linear relations in a simple form. In this model, the local dynamics are

represented in each fuzzy implication by a linear model. The overall fuzzy model is obtained by

fuzzily “blending” the linear system models. In the domain of fuzzy controller design and analysis,

current research is on establishing stringent control norms for guaranteed performance in terms of

stability, cost and robustness. For achieving the guaranteed performance, advanced mathematical

tools are increasingly being used. Linear matrix inequality (LMI) technique is one such mathematical

tool chosen by the research community to design fuzzy controllers in those application areas where

a fuzzy model of the process is available in T-S form [22]. T-S model based controllers developed

using the LMI approach have been applied to many control problems [8, 106, 114–116] of late for

guaranteeing stability and performance.

Finding a solution for an optimization or minimization problem for nonlinear systems involving

certain objective function is difficult; but if such a problem is transformed into an LMI problem (con-

vex problem), then it can be solved reliably and effectively [38]. LMI approach has been successfully

applied for regulatory control of nonlinear systems satisfying quadratic performance function and the

minimization problem was solved utilizing the powerful convex optimization technique [8]. However
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Nonlinear
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+

-

e(t)

Fig. 3.1: Control scheme

this approach has not been attempted for tracking control problems. Tracking control is an impor-

tant problem in practical applications like robotics, missile tracking and attitude tracking of aircrafts

where the system has to track a certain pre-defined trajectory accurately. However it is more difficult

than the regulatory control problem and only few studies are carried out especially for continuous-

time systems. A fuzzy controller design for tracking control of nonlinear system with guaranteed H∞

performance was proposed by Tseng et al. [92]. This method shows a perfect tracking performance,

but it is attained at the expense of large control effort. Xu et al. [117] addressed the problem of

LMI based tracking control to track a set-point. Here, a state feedback tracking guaranteed cost

controller is addressed for a class of norm bounded continuous-time uncertain systems.

In this chapter, a robust fuzzy guaranteed cost controller is designed for a trajectory tracking

problem using T-S fuzzy model. Here, a state feedback controller satisfying a quadratic performance

function is considered. The Lyapunov function based approach is employed for the design and

analysis of the guaranteed cost controller. Our design procedure is motivated by the approach

presented by Tong et al. [66]. In our proposed scheme, the controller design results in a minimization

problem involving LMIs which can be solved efficiently with the available semi-definite programming

technique. The design procedure minimizes the upper bound of the performance function and also

ensures that the closed loop system is asymptotically stable.

3.2 System Representation and Problem Formulation

A nonlinear dynamical system described by a T-S fuzzy model and a reference model driven by a

reference input are considered in this design. The reference model is considered to be linear and

its system states are bounded. The system state of the reference model represents the reference

trajectory and it need not be zero or constant. Our design objective is to determine the control
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input for the nonlinear system to push its system states to track the reference trajectory while

minimizing the cost function. The control structure is shown in Fig. 3.1. In this design problem it

is assumed that all the system states are available for measurement (state feedback problem).

The dynamic fuzzy model proposed by Takagi and Sugeno [22] described by fuzzy IF-THEN rules

is used to represent the local linear input-output relations for the nonlinear system. The overall fuzzy

model is achieved by fuzzily blending the linear system models. Given a pair of input-output, the

final output of the fuzzy system is inferred by using center of gravity method for defuzzification.

Let us consider a nonlinear system which can be described by the T-S fuzzy model [40] as described

below:

Plant rule i:

IF z1(t) is Ni1 and · · · zp(t) is Nip, THEN

ẋ(t) = (Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t)

y(t) = Cix(t), i = 1, 2, ..., r (3.1)

where Nij is the fuzzy set, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input and y(t) ∈ Rq

is the output vector. Here, Ai ∈ Rn×n, Bi ∈ Rn×m and Ci ∈ Rq×n; z1(t), z2(t), ..., zp(t) are premise

variables.

Given a pair of (x(t), u(t)), the final output of the fuzzy system is inferred as follows [8]:

ẋ(t) =
r∑

i=1

µi(z(t))((Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t)) (3.2a)

y(t) =
r∑

i=1

µi(z(t))Cix(t), (3.2b)

where

µi(z(t)) =
ωi(z(t))∑r

i=1 ωi(z(t))
, ωi(z(t)) =

p∏

j=1

Nij(zj(t))

and Nij(zj(t)) is the degree of the membership of zj(t) in Nij . Here ωi(z(t)) ≥ 0, for i = 1, 2, ..., r

and
∑r

i=1 ωi(z(t)) > 0 for all t. Therefore, µi(z(t)) ≥ 0 for i = 1, 2, ..., r and
∑r

i=1 µi(z(t)) = 1.

The uncertain matrices are assumed to be norm bounded and are described by:
[

∆Ai(t) ∆Bi(t)
]

= M iF i(t)
[

N1i N2i

]
, (3.3)

where M i, N1i and N2i are known real constant matrices of appropriate dimension and F i(t) is a

time varying matrix function with Lebesgue-measurable elements, satisfying F T
i (t)F i(t) ≤ I.
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Let us consider a reference model as follows [92]:

ẋr(t) = Arxr(t) + r(t) (3.4)

where xr(t) is the reference state, Ar is a specific asymptotically stable matrix, r(t) is a bounded

reference input.

The tracking error is defined as

e(t) = x(t)− xr(t). (3.5)

Given positive-definite symmetric matrices Q and R, the cost function considered is

J =
∫ tf

t0
{eT (t)Qe(t) + uT (t)Ru(t)}dt (3.6)

where t0 and tf are the initial and terminal time of control respectively. Associated with the cost

function represented in (3.6), the fuzzy guaranteed cost control is defined as follows.

Let us consider the system represented by (3.2). If there exists a fuzzy control law u(t) and a

scalar Jo such that the closed-loop system is asymptotically stable and the closed-loop value of the

cost function given by (3.6) satisfies J ≤ Jo, then Jo is said to be a guaranteed cost and the control

law u(t) is said to be a guaranteed cost control law for the system.

The objective is to develop a procedure to design a state-feedback guaranteed cost control law

for the tracking problem.

3.3 Fuzzy Guaranteed Cost Controller via State-feedback

In this section, a fuzzy guaranteed cost controller design is considered for a nonlinear system with-

out uncertainty. The problem of designing a robust fuzzy guaranteed cost controller for uncertain

nonlinear systems will be addressed in the next section. Let us consider a nonlinear system which

can be described by the T-S fuzzy model [40] as given below:

Plant rule i:

IF z1(t) is Ni1 and · · · zp(t) is Nip, THEN

ẋ(t) = Aix(t) + Biu(t)

y(t) = Cix(t), i = 1, 2, ..., r (3.7)
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The final output of the fuzzy system is inferred as follows [8]:

ẋ(t) =
r∑

i=1

µi(z(t))(Aix(t) + Biu(t)) (3.8a)

y(t) =
r∑

i=1

µi(z(t))Cix(t). (3.8b)

Let the following fuzzy control rule be employed to deal with the design of a fuzzy controller for

the system represented by (3.8).

Control Rule i:

IF z1(t) is Ni1 and · · · zp(t) is Nip, THEN

u(t) = K1ix(t) + K2ixr(t), i = 1, 2, . . . , r (3.9)

The overall fuzzy control law is represented by

u(t) =
r∑

i=1

µi(z(t))(K1ix(t) + K2ixr(t)) (3.10)

where K1i and K2i are controller gains. The design of the fuzzy guaranteed cost controller is to

determine the gains K1i and K2i (i = 1, 2, . . . , r) and a positive scalar Jo such that the resulting

closed-loop system is asymptotically stable and the closed-loop value of the cost-function given by

(3.6) satisfies J ≤ Jo. With the control law given by (3.10), the overall closed-loop system can be

written as

ẋ(t) =
r∑

i=1

r∑

j=1

µi(z(t))µj(z(t))[Aix(t) + Bi(K1jx(t) + K2jxr(t))] (3.11)

Combining (3.11) and (3.4), the augmented system can be expressed as

˙̄x(t) =
r∑

i=1

r∑

j=1

µi(z(t))µj(z(t))(Āi + B̄iK̄j)x̄(t) + r̄(t) (3.12)

where

x̄(t) =




x(t)

xr(t)


 , r̄(t) =




0

r(t)




Āi =




Ai 0

0 Ar


 , B̄i =




Bi

0


 , K̄j =

[
K1j K2j

]

With the augmented system represented by (3.12), the result of the guaranteed cost control

law for tracking based on a T-S fuzzy system with state feedback is summarized in the following

theorems, followed by the proof. These theorems are based on the concept presented by Tong et

al. [66] and [64,92].
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Theorem 3.1. For the fuzzy logic based tracking control of a nonlinear system represented by (3.8),

if there exists a symmetric positive definite matrix P , matrices K1j , K2j (j = 1, 2, . . . , r) and a

scalar a such that,
r∑

i=1

r∑

j=1

µi(z(t))µj(z(t))
{

Ã
T
ijP + PÃij + Q̄ + R̄j +

PP

a2

}
< 0 (3.13)

where

Ãij = Āi + B̄iK̄j , Q̄ =




Q −Q

−Q Q


 , R̄j = K̄

T
j RK̄j ,

then the feedback control law

u(t) =
r∑

j=1

µj(z(t))(K1jx(t) + K2jxr(t)) (3.14)

is a fuzzy guaranteed cost control law with the upper bound for the guaranteed cost

Jo = x̄T (0)P x̄(0) + a2
∫ tf

t0
r̄T (t)r̄(t)dt. (3.15)

Proof: Let us consider the following Lyapunov function V (t) for the closed loop system given by

(3.12). For simplicity, µi(z(t)) is denoted as µi.

V (t) = x̄T (t)P x̄(t) (3.16)

V̇ (t) = ˙̄xT (t)P x̄(t) + x̄T (t)P ˙̄x(t) (3.17)

=
r∑

i=1

r∑

j=1

µi µj

{
x̄T (t)[Ã

T
ijP + PÃij ]x̄(t)

}
+r̄T (t)P x̄(t) + x̄T (t)P r̄(t)

=
r∑

i=1

r∑

j=1

µi µj

{
x̄T (t)[Ã

T
ijP + PÃij ]x̄(t)

}
+ar̄T (t)P x̄(t)(1/a) + (1/a)x̄T (t)P r̄(t)a

Let X̃ = r̄(t)a and Ỹ = P x̄(t)(1/a). Now using the matrix inequality X̃
T
Ỹ + Ỹ

T
X̃ ≤ X̃

T
X̃ +

Ỹ
T
Ỹ given in [66], the following condition is obtained

V̇ (t) ≤
r∑

i=1

r∑

j=1

µi µj

{
x̄T (t)[Ã

T
ijP + PÃij ]x̄(t)

}
+(1/a2)x̄T (t)PP x̄(t) + a2r̄T (t)r̄(t)

≤
r∑

i=1

r∑

j=1

µi µj

{
x̄T (t)[Ã

T
ijP + PÃij + (1/a2)PP ]x̄(t)

}
+a2r̄T (t)r̄(t) (3.18)

Using the matrix inequality given in (3.13), the above inequality can be rewritten as

V̇ (t) ≤
r∑

j=1

µj{x̄T (t)[−Q̄− R̄j ]x̄(t)}+ a2r̄T (t)r(t)

≤ −
[
xT (t) xT

r (t)
]




Q −Q

−Q Q







x(t)

xr(t)



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−
r∑

j=1

µj

[
xT (t) xT

r (t)
]



KT

1jRK1j KT
1jRK2j

KT
2jRK1j KT

2jRK2j







x(t)

xr(t)




+ a2r̄T (t)r̄(t)

≤ −
[
(xT (t)− xT

r (t))Q(x(t)− xr(t))
]

−
r∑

j=1

µj

{
(xT (t)KT

1j + xT
r (t)KT

2j)R(K1jx(t) + K2jxr(t))
}
+a2r̄T (t)r̄(t)

V̇ (t) ≤ −
[
eT (t)Qe(t) + uT (t)Ru(t)

]
+ a2r̄T (t)r̄(t) (3.19)

Integrating (3.19) from t = 0 to t = tf gives,

V (tf )− V (0) ≤ −
∫ tf

0
(eT (t)Qe(t) + uT (t)Ru(t))dt + a2

∫ tf

0
r̄T (t)r̄(t)dt (3.20)

or,
∫ tf

0
(eT (t)Qe(t) + uT (t)Ru(t))dt ≤ V (0)− V (tf ) + a2

∫ tf

0
r̄T (t)r(t)dt

Since V (tf ) ≥ 0, the above inequality can be written as
∫ tf

0
(eT (t)Qe(t) + uT (t)Ru(t))dt ≤ V (0) + a2

∫ tf

0
r̄T (t)r̄(t)dt

or,
∫ tf

0
(eT (t)Qe(t) + uT (t)Ru(t))dt ≤ x̄T (0)P x̄(0) + a2

∫ tf

0
r̄T (t)r̄(t)dt (3.21)

Hence it follows from (3.21), (3.6) and (3.15) that J ≤ J0. This completes the proof.

3.3.1 Stability

The above proposed theorem states the minimization problem for guaranteed cost control of the

nonlinear fuzzy system. If there exists a common symmetric positive definite matrix P satisfying the

matrix inequality given in (3.13), then the closed loop fuzzy system given in (3.12) is quadratically

stable.

Proof: The closed loop system represented by (3.12) is associated with an external input r(t). Hence

the “input to state stability” (ISS) property [118] is used to show the stability of the system.

From (3.19),

V̇ (t) ≤ −
[
eT (t)Qe(t) + uT (t)Ru(t)

]
+ a2r̄T (t)r̄(t) (3.22)

The above inequality is a dissipation inequality with V (t) as storage function. The right hand side

of the inequality is the supply function. In this inequality, Q and R are positive definite matrices.

Hence V̇ ≤ a2r̄T (t)r̄(t) or V (t) is less than the integral of a2r̄T (t)r̄(t). This inequality satisfies the

“input to state stability condition” (ISSC) [118] and hence the system is asymptotically stable. This
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completes the proof.

The theorem described above provides the sufficient conditions for stability of the fuzzy system

with minimization of the performance function. But it does not show the method for finding the

control law which minimizes the upper bound and satisfies the inequalities with common symmetric

positive definite matrix P . The method of transforming the matrix inequality given in (3.13) into

standard LMI will solve this problem and it is shown in the following subsection.

3.3.2 Optimal Fuzzy Guaranteed Cost Control

Theorem 3.2. Let us consider the system (3.8) associated with the cost function (3.6). Suppose

the following minimization problem

min
Y ,X̄ j

{α + a2
∫ tf

0
r̄T (t)r̄(t)dt} (3.23)

subject to the following inequalities

φii < 0, i = 1, 2, . . . , r (3.24)

1
r − 1

φii +
1
2
(φij + φji) < 0, 1 ≤ i 6= j ≤ r (3.25)



−α x̄T (0)

x̄(0) −Y


 < 0 (3.26)

where

φij =




H ij ∗ ∗
W −Q−1 ∗
X̄j 0 −R−1




and H ij = Y Ā
T
i + X̄

T
j B̄

T
i + (∗) + I

a2 has a solution set a, α, Y and X̄j , where r̄(t) is the reference

trajectory. Then the control law (3.10) is a fuzzy guaranteed cost control law with minimal upper

bound for the performance function.

Proof: By Theorem 3.1, the control law u(t) satisfying (3.13) provides the fuzzy guaranteed cost

control law for the system (3.8). Pre-multiplying and post-multiplying (3.13) by Y , where Y = P−1,

yields
r∑

i=1

r∑

j=1

µiµj

{
Y (Āi + B̄iK̄j)T + (Āi + B̄iK̄j)Y + Y Q̄Y + Y R̄jY +

I

a2

}
< 0 (3.27)
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Substituting X̄j = K̄jY , W =
[

I −I

]
Y , it follows

r∑

i=1

r∑

j=1

µiµj

{
Y (Āi + B̄iK̄j)T + (Āi + B̄iK̄j)Y + W T QW + Y K̄

T
j RK̄jY +

I

a2

}
< 0

or,
r∑

i=1

r∑

j=1

µiµj

{
Y Ā

T
i + X̄

T
j B̄

T
i + ĀiY + B̄iX̄j + W T QW + X̄

T
j RX̄j +

I

a2

}
< 0 (3.28)

By Schur Complement, (3.28) is equivalent to the following LMIs,

r∑

i=1

r∑

j=1

µiµj




H ij ∗ ∗
W −Q−1 ∗
X̄j 0 −R−1




< 0 (3.29)

where, ∗ represents the transposed elements in symmetric positions. Applying Lemma A.1 (Ap-

pendix) to the above inequality, the conditions (3.24) and (3.25) are obtained. Hence if the conditions

(3.24) and (3.25) are satisfied, then u(t) is the guaranteed cost control law for the fuzzy system.

Also, it follows from Schur complement that (3.26) is equivalent to x̄T (0)Y −1x̄(0) < α. Hence

x̄T (0)P x̄(0) + a2
∫ tf

0
r̄T (t)r̄(t)dt < α + a2

∫ tf

0
r̄T (t)r̄(t)dt

From (3.15), it follows that

J0 < α + a2
∫ tf

0
r̄T (t)r̄(t)dt (3.30)

Thus minimization of α + a2
∫ tf
0 r̄T (t)r̄(t)dt implies minimization of the upper bound of the

guaranteed cost J0 for the system (3.8). This completes the proof.

The matrix inequalities given by (3.13) are expressed as standard LMIs in Theorem 3.2 and these

can be solved easily and efficiently for a, P , K1jand K2j . In the upper bound of the total cost J0,

the term α is the transient cost component. The steady state cost component is given by the term

a2
∫ tf
0 r̄T (t)r̄(t)dt.

Remark 3.1. The above LMI design condition depends on the initial state of the system. If the

initial state is changed or unknown, the feedback gains K1j and K2j need to be changed. This

is a disadvantage in this method. The way of overcoming the problem of initial state dependence

is discussed in [8] and the above theorem can be used by adding the conditions provided in [8] to

overcome this disadvantage.

Remark 3.2. In Theorem 3.2, the LMI conditions were presented using the relaxations in Lemma

A.1 (Appendix) from [105]. Solving these LMI based problems to get less conservative results is

an interesting problem and several approaches were proposed in the literature [106, 107, 119]. Some
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of these methods provide relaxations with additional artificial decision variables. The number of

artificial decision variables increases with the increase in the number of rules. This results in more

computation time for solving the LMIs. These factors must be considered before using these LMI

relaxations for problems with more number of rules.

3.4 Robust Fuzzy Guaranteed Cost Controller via State-feedback

In the previous section, the fuzzy guaranteed cost controller design for nonlinear systems without

any uncertainty was discussed. Now, the design of a robust fuzzy guaranteed cost controller via

state-feedback for an uncertain nonlinear system is considered. Let us consider the uncertain fuzzy

system in the form (3.2), with the control law given by (3.10). The overall closed-loop system can

be written as

ẋ(t) =
r∑

i=1

r∑

j=1

µiµj

{
(Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))(K1jx(t) + K2jxr(t))

}
(3.31)

Combining (3.31) and (3.4), the augmented system can be expressed as

˙̄x(t) =
r∑

i=1

r∑

j=1

µiµj

{
(Āi + ∆Āi(t)) + (B̄i + ∆B̄i(t))K̄jx̄(t) + r̄(t)

}
(3.32)

where

x̄(t) =




x(t)

xr(t)


 , r̄(t) =




0

r(t)


 , Āi =




Ai 0

0 Ar


 , ∆Āi(t) =




∆Ai(t) 0

0 0


 ,

B̄i =




Bi

0


 , ∆B̄i(t) =




∆Bi(t)

0


 , K̄j =

[
K1j K2j

]

[
∆Āi(t) ∆B̄i(t)

]
= M̄ iF i(t)

[
N̄1i N̄2i

]

M̄ i =




M i

0


 , N̄1i =

[
N1i 0

]
, N̄2i = N2i

With the augmented system represented by (3.32), the result of the guaranteed cost control law

for a T-S fuzzy system with state feedback applied for trajectory tracking is summarized in the

following theorems, followed by the proof.

Theorem 3.3. Let us consider the nonlinear system and the reference model represented by (3.2)

and (3.4). With the augmented system represented by (3.32), if there exists a symmetric positive
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definite matrix P , matrices K1j , K2j (j = 1, . . . , r) of appropriate dimension and a scalar ‘a’ such

that,
r∑

i=1

r∑

j=1

µi(z(t))µj(z(t))
{

(ĀT
i + B̄

T
i K̄j)T P + (∗) +

PP

a2
+ PM̄ iεiM̄

T
i P

+(N̄1i + N̄2iK̄j)T ε−1
i (N̄1i + N̄2jK̄j) + Q̄ + R̄j

}
< 0 (3.33)

where

Q̄ =




Q −Q

−Q Q


 , R̄j = K̄

T
j RK̄j

then the feedback control law

u(t) =
r∑

j=1

µj(z(t))(K1jx(t) + K2jxr(t)) (3.34)

is a fuzzy guaranteed cost control law with the upper bound for the guaranteed cost

Jo = x̄T (0)P x̄(0) + a2
∫ tf

t0
r̄T (t)r̄(t)dt. (3.35)

Proof: Let us consider the following Lyapunov function V (t) for the closed loop system given by

(3.32).

V (t) = x̄T (t)P x̄(t) (3.36)

V̇ (t) = ˙̄xT (t)P x̄(t) + x̄T (t)P ˙̄x(t) (3.37)

=
r∑

i=1

r∑

j=1

µiµj

{
x̄T (t)

(
(Āi + ∆Āi(t) + (B̄i + ∆B̄i(t))K̄j)T P + (∗)

)
x̄(t)

+x̄T (t)P r̄(t) + r̄T (t)P x̄(t)
}

=
r∑

i=1

r∑

j=1

µiµj

{
x̄T (t)

(
(Āi + ∆Āi(t) + (B̄i + ∆B̄i(t))K̄j)T P + (∗) + (1/a2)PP

)
x̄(t)

+a2r̄T (t)r̄(t) (3.38)

With (3.32) and using the matrix inequality X̃
T
Ỹ + Ỹ

T
X̃ ≤ X̃

T
X̃ + Ỹ

T
Ỹ given in [66], the

uncertain terms in the above equation can be represented as,
r∑

i=1

r∑

j=1

µiµjx̄
T (t)

(
(∆Āi(t) + ∆B̄i(t)K̄j)T P + (∗)

)
x̄(t)

=
r∑

i=1

r∑

j=1

µiµjx̄
T (t)

(
(M̄ iF i(t)(N̄1i + N̄2iK̄j))T P + (∗)

)
x̄(t)

<
r∑

i=1

r∑

j=1

µiµjx̄
T (t)

(
PM̄ iεiM̄

T
i P + (N̄1i + N̄2iK̄j)T ε−1

i (N̄1i + N̄2jK̄j)
)
x̄(t) (3.39)

51



Chapter 3 Fuzzy Tracking Guaranteed Cost Controller Design

With the above inequality (3.39), the relation in (3.38) can be written as

V̇ (t) <
r∑

i=1

r∑

j=1

µiµj

{
x̄T (t)

(
(Āi + B̄iK̄j)T P + (∗) + (1/a2)PP + PM̄ iεiM̄

T
i P

+(N̄1i + N̄2iK̄j)T ε−1
i (N̄1i + N̄2jK̄j)

)
x̄(t) + a2r̄T (t)r̄(t) (3.40)

Using Schur complement and applying similar steps as in the proof of Theorem 3.1 to the matrix

inequality given in (3.33), the following condition is obtained

V̇ (t) ≤
r∑

i=1

µi{x̄T (t)[−Q̄− R̄i]x̄(t)}+ arT (t)r(t)

≤ −
[
eT (t)Qe(t) + uT (t)Ru(t)

]
+ arT (t)r(t) (3.41)

Integrating (3.41) from t = 0 to t = tf , yields

V (tf )− V (0) ≤ −
∫ tf

0
(eT (t)Qe(t) + uT (t)Ru(t))dt + a

∫ tf

0
rT (t)r(t)dt (3.42)

Since V (tf ) ≥ 0, it follows
∫ tf

0
(eT (t)Qe(t) + uT (t)Ru(t))dt ≤ x̄T (0)P x̄(0) + a

∫ tf

0
rT (t)r(t)dt (3.43)

Hence it follows from (3.43), (3.6) and (3.35) that J ≤ J0. This completes the proof.

3.4.1 Robust Optimal Fuzzy Guaranteed Cost Control

Theorem 3.4. Let us consider the system (3.2) associated with the cost function (3.6). Suppose

the following minimization problem

min
Y ,X̄ j

{α + a2
∫ tf

0
r̄T (t)r̄(t)dt} (3.44)

subject to the following inequalities

φ̂ii < 0, i = 1, 2, . . . , r (3.45)

1
r − 1

φ̂ii +
1
2
(φ̂ij + φ̂ji) < 0, 1 ≤ i 6= j ≤ r (3.46)



−α x̄T (0)

x̄(0) −Y


 < 0 (3.47)

where

φ̂ij =




Ĥ ij ∗ ∗ ∗
N̄1iY + N̄2iX̄j −εi ∗ ∗

W 0 −Q−1 ∗
X̄j 0 0 −R−1




52



Chapter 3 Fuzzy Tracking Guaranteed Cost Controller Design

and Ĥ ij = Y Ā
T
i + X̄

T
j B̄

T
i + (∗) + I

a2 + M̄ iεiM̄
T
i has a solution set a, α, Y and X̄j , where r̄(t)

is the reference trajectory. Then the control law (3.10) is a fuzzy guaranteed cost control law with

minimal upper bound for the performance function.

Proof: By Theorem 3.3, the control law u(t) satisfying (3.33) yields the fuzzy guaranteed cost

control law for the system (3.8). Pre-multiplying and post-multiplying (3.33) by Y , where Y = P−1,

produces the following inequality,
r∑

i=1

r∑

j=1

µiµj

{
Y (Āi + B̄iK̄j)T + (∗) +

I

a2
+ M̄ iεiM̄

T
i

+Y (N̄1i + N̄2iK̄j)T ε−1
i (N̄1i + N̄2iK̄j)Y + Y Q̄Y + Y R̄jY

}
< 0 (3.48)

Substituting X̄j = K̄jY , W =
[

I −I

]
Y , yields,

r∑

i=1

r∑

j=1

µiµj

{
Y (Āi + B̄iK̄j)T + (∗) + M̄ iεiM̄

T
i +

I

a2

+Y (N̄1i + N̄2iK̄j)T ε−1
i (N̄1i + N̄2iK̄j)Y + W T QW + Y K̄

T
j RK̄jY

}
< 0

or,
r∑

i=1

r∑

j=1

µiµj

{
Y Ā

T
i + X̄

T
j B̄

T
i + (∗) + M̄ iεiM̄

T
i +

I

a2

+(N̄1iY + N̄2iX̄j)T ε−1
i (N̄1iY + N̄2iX̄j) + W T QW + X̄

T
j RX̄j

}
< 0 (3.49)

By Schur Complement, (3.49) is equivalent to the following LMIs,

r∑

i=1

r∑

j=1

µiµj




Ĥ ij ∗ ∗ ∗
N̄1iY + N̄2iX̄j −εi ∗ ∗

W 0 −Q−1 ∗
X̄j 0 0 −R−1




< 0 (3.50)

where, ∗ represents the transposed elements in symmetric positions. Applying Lemma A.1 to the

above inequality, the conditions (3.45) and (3.46) are obtained. Hence if the conditions (3.45) and

(3.46) are satisfied, then u(t) is the guaranteed cost control law for the fuzzy system.

Also, it follows from Schur complement that (3.47) is equivalent to x̄T (0)Y −1x̄(0) < α. Hence

x̄T (0)P x̄(0) + a2
∫ tf

0
r̄T (t)r̄(t)dt < α + a2

∫ tf

0
r̄T (t)r̄(t)dt

From (3.35), it follows that

J0 < α + a2
∫ tf

0
r̄T (t)r̄(t)dt (3.51)

Thus minimization of α + a2
∫ tf
0 r̄T (t)r̄(t)dt implies minimization of the upper bound of the

guaranteed cost J0 for the system (3.2). This completes the proof.
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q1

q2
m1

m2

l1

l2

Fig. 3.2: Configuration of a two-link robotic manipulator

The matrix inequalities given by (3.33) are expressed as standard LMIs in Theorem 3.4 and these

can be solved easily and efficiently for a, P , K1jand K2j .

3.5 Simulation Results

3.5.1 Optimal Fuzzy Guaranteed Cost Control

The performance of the proposed fuzzy logic based controller is tested on the tracking control problem

for a two-link robotic manipulator. The configuration of a two-link robotic manipulator is shown in

Fig. 3.2. The dynamics of a two-link robotic manipulator can be expressed as [92],

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (3.52)

where

M(q) =




(m1 + m2)l21 m2l1l2(s1s2 + c1c2)

m2l1l2(s1s2 + c1c2) m2l
2
2




C(q, q̇) = m2l1l2(c1s2 − s1c2)




0 −q̇2

−q̇1 0


 , G(q) =



−(m1 + m2)l1gs1

m2l2gs2




Here, q(t) = [q1(t), q2(t)], where q1(t) and q2(t) are angular positions of joints 1 and 2, M(q) is the

inertia matrix, C(q, q̇) is the centripetal Coriolis matrix, G(q) is the gravity vector and τ = [τ1, τ2]T

is the applied torque. The two links of the manipulator have masses m1, m2 in kilograms and lengths

l1, l2 in meters. The acceleration due to gravity g is 9.81 m/s2. Here s1 = sin(q1), s2 = sin(q2),

c1 = cos(q1), and c2 = cos(q2). Friction terms are ignored.

The two-link robotic manipulator has four inner states x1(t) = q1(t), x2(t) = q̇1(t), x3(t) = q2(t)
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and x4(t) = q̇2(t), two output states y1(t) = q1(t) and y2(t) = q2(t), and two inputs u1(t) = τ1 and

u2(t) = τ2. The nine rule T-S fuzzy model as reported in [92] is used to represent the dynamics of

this nonlinear system. In this model, link masses m1 = 1 kg, m2 = 1 kg and link lengths l1 = 1 m,

l2 = 1m are considered. The angular positions q1(t) and q2(t) are constrained within [−π/2, π/2].

Triangular type of membership function as shown in Fig. 3.3 is assumed for x1(t) and x3(t) in rule

1 to rule 9.

The nine rule fuzzy model is given below:

Rule 1: IF x1(t) is about −π
2 and x3(t) is about −π

2 , THEN

ẋ(t) = A1x(t) + B1u(t)

y(t) = C1x(t)

Rule 2: IF x1(t) is about −π
2 and x3(t) is about zero, THEN

ẋ(t) = A2x(t) + B2u(t)

y(t) = C2x(t)

Rule 3: IF x1(t) is about −π
2 and x3(t) is about π

2 , THEN

ẋ(t) = A3x(t) + B3u(t)

y(t) = C3x(t)

Rule 4: IF x1(t) is about zero and x3(t) is about −π
2 , THEN

ẋ(t) = A4x(t) + B4u(t)

y(t) = C4x(t)

Rule 5: IF x1(t) is about zero and x3(t) is about zero, THEN

ẋ(t) = A5x(t) + B5u(t)

y(t) = C5x(t)

Rule 6: IF x1(t) is about zero and x3(t) is about π
2 , THEN

ẋ(t) = A6x(t) + B6u(t)

y(t) = C6x(t)
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Rule 7: IF x1(t) is about π
2 and x3(t) is about −π

2 , THEN

ẋ(t) = A7x(t) + B7u(t)

y(t) = C7x(t)

Rule 8: IF x1(t) is about π
2 and x3(t) is about zero, THEN

ẋ(t) = A8x(t) + B8u(t)

y(t) = C8x(t)

Rule 9: IF x1(t) is about π
2 and x3(t) is about π

2 , THEN

ẋ(t) = A9x(t) + B9u(t)

y(t) = C9x(t)

where

A1 =




0 1 0 0

5.927 −0.001 −0.315 −8.4× 10−6

0 0 0 1

−6.859 0.002 3.155 6.2× 10−6




, A2 =




0 1 0 0

3.0428 −0.001 0.1791 −0.0002

0 0 0 1

3.5436 0.0313 2.5611 1.14× 10−5




,

A3 =




0 1 0 0

6.2728 0.003 0.4339 −0.0001

0 0 0 1

9.1041 0.0158 −1.0574 −3.2× 10−5




, A4 =




0 1 0 0

6.4535 0.0017 1.243 0.0002

0 0 0 1

−3.187 −0.031 5.191 −1.8× 10−5




,

A5 =




0 1 0 0

11.1336 0 −1.8145 0

0 0 0 1

−9.0918 0 9.1638 0




, A6 =




0 1 0 0

6.1702 −0.001 1.6870 −0.0002

0 0 0 1

−2.3559 0.0314 4.5298 1.1× 10−5




,

A7 =




0 1 0 0

6.1206 −0.0041 0.6205 0.0001

0 0 0 1

8.8794 −0.0193 −1.0119 4.4× 10−5




, A8 =




0 1 0 0

3.6421 0.0018 0.0721 0.0002

0 0 0 1

2.4290 −0.031 2.9832 −1.9× 10−5




,
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Fig. 3.3: Membership for the input variables x1 and x3

A9 =




0 1 0 0

6.293 −0.001 −0.218 −1.2× 10−5

0 0 0 1

−7.464 0.0024 3.2693 9.2× 10−6




,

B1 =




0 0

1 −1

0 0

−1 2




, B2 =




0 0

0.5 0

0 0

0 1




, B3 =




0 0

1 1

0 0

1 2




, B4 =




0 0

0.5 0

0 0

0 1




, B5 =




0 0

1 −1

0 0

−1 2




,

B6 =




0 0

0.5 0

0 0

0 1




, B7 =




0 0

1 1

0 0

1 2




, B8 =




0 0

0.5 0

0 0

0 1




, B9 =




0 0

1 −1

0 0

−1 2




,

Ci =




1 0 0 0

0 0 1 0


 for i = 1, ...., 9.

The reference model and reference input in [92] are given as:

ẋr(t) = Arxr(t) + r(t) (3.53)

where

Ar =




0 1 0 0

−6 −5 0 0

0 0 0 1

0 0 −6 −5




(3.54)
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Fig. 3.4: Trajectories of state variables x(t) (dashed line and dotted line for Q = 25 × 103I, R =
diag[0.5 0.5], and Q = 10 × 103I, R = diag[2 2] respectively) and the reference trajectories xr(t)
(solid line) with Ar, r(t) as defined in (3.54) and (3.55).

and

r(t) = [0, 8sin(t), 0, 8cos(t)]T . (3.55)

The matrix inequalities in Theorem 3.2 are solved using the LMI solver ‘mincx’ available in

MATLAB Robust Control Toolbox while minimizing the performance function J for Q = 25× 103I,

where I is the identity matrix of appropriate dimension and R = diag[0.5 0.5] (Desired control results

can be obtained by proper choice of Q and R). The initial conditions are assumed as x1(0) = 0.5,

x2(0) = 0, x3(0) = −0.5, x4(0) = 0 and xr1(0) = −0.5, xr2(0) = 0, xr3(0) = 0.5, xr4(0) = 0. The

value of a, P and the feedback gain matrices K1j and K2j obtained are given below.

a = 1838.4

P =



P 11 P 12

P T
12 P 22



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Fig. 3.5: Tracking error between actual and reference trajectories for different state variables (Dashed
and dotted line for Q = 25×103I, R = diag[0.5 0.5] and Q = 10×103I, R = diag[2 2] respectively)
with Ar, r(t) as defined in (3.54) and (3.55)

where

P 11 =




110773 ∗ ∗ ∗
4195.4 854.46 ∗ ∗
85109 3847.5 110482 ∗
3512.9 496.54 3748.6 723.8




, P 22 =




110195 ∗ ∗ ∗
4036.7 825.7 ∗ ∗
84735 3719 110242 ∗
3448.8 490.1 3685.5 712.3




P 12 =




−110414 −4031.8 −84981 −3456.2

−4141.3 −824.6 −3833.2 −493.49

−84834 −3716.7 −110336 −3682.9

−3491.5 −488.38 −3726.9 −710.59




K11 =



−2098 −713.1 −1236 153.7

−4640 −456.7 −5429 −1236


 K21 =



2040 676.3 1242 −141.3

4632 461.1 5391 1209




K12 =



−4614 −938.6 −4233 −547.4

−5185 −728.4 −5545 −1074


 K22 =



4554 906 4217 544

5155 716.8 5512 1055



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Fig. 3.6: Control input (Dashed and dotted line for Q = 25 × 103I, R = diag[0.5 0.5], and
Q = 10× 103I, R = diag[2 2] respectively) with Ar, r(t) as defined in (3.54) and (3.55)

K13 =



−9965 −1788 −9719 −1519

−7363 −1154 −7590 −1359


 K23 =



9862 1736 9674 1500

7308 1128 7548 1337




K14 =



−4474 −901.8 −4126 −542.8

−4828 −702 −5110 −968.3


 K24 =



4417 870.8 4110 539.1

4799 689.3 5079 951.0




K15 =



−2389 −684.8 −1712 −3.43

−3948 −436.1 −4507 −985


 K25 =



2335 652.7 1713 11.34

3937 436.3 4477 964.3




K16 =



−4398 −892.2 −4041 −525.5

−4755 −681.9 −5053 −966.4


 K26 =



4342 861.2 4027 522.1

4726 670.1 5023 949




K17 =



−8334 −1513 −8084 −1245

−6016 −926.6 −6241 −1133


 K27 =



8246 1468 8048 1230

5974 906.8 6206 1114



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K18 =



−4488 −911.2 −4121 −534.9

−4733 −666.9 −5057 −978.3


 K28 =



4430 879.5 4106 531.5

4705 656.1 5027 960.4




K19 =



−2700 −698.3 −2118 −110.6

−4282 −495.6 −4831 −1036


 K29 =



2648 667.8 2116 115.8

4266 494 4800 1015




The value of K1j is closer to the value of −K2j , which is in agrement with the control structure

u(t) =
∑r

j=1 µj [Kj(x(t)− xr(t))] considered in [92]. The value of α is 5.1× 104. The upper bound

for the performance function J0 is obtained as 3.108×108. The closed loop system is simulated with

the initial conditions of the system state and reference state as x1(0) = 0.5, x2(0) = 0, x3(0) = −0.5,

x4(0) = 0 and xr1(0) = −0.5, xr2(0) = 0, xr3(0) = 0.5, xr4(0) = 0.

Next the system with different values for Q and R matrices are considered. Let Q = 10× 103I

and R = diag[2 2]. When compared to the previous case with Q = 25×103I and R = diag[0.5 0.5],

now lower weightage is given for the error and higher weightage is given for the input. The controller

is designed for this performance measure where the value of α is 2.1 × 104, the upper bound for J0

is found to be 1.2716× 108 and some of the obtained controller parameters are given below.

K11 =



−656 −242.2 −368.3 45.82

−950.7 −89.21 −1183 −325.5


 K21 =



578.9 197.7 369.4 −34.94

920.9 82.7 1141 297.3




K15 =



−690.5 −224.2 −462.8 2.455

−844.5 −98.45 −1005 −261.1


 K25 =



618.6 184.2 459.4 3.857

813.5 88.44 971 239.2




K19 =



−751.2 −225 −550.2 −25.48

−908.9 −111 −1067 −272.7


 K29 =



678.7 185.7 543.1 29.18

872.4 99.12 1031 250




It is observed that increase of the weightage on R will decrease the controller gain K1j and

K2j and hence lower the magnitude of the control input u(t) =
∑r

j=1 µj(K1jx(t) + K2jxr(t)). The

simulation results for both the above cases are plotted in Figs. 3.4 – 3.6. Results for Q = 25× 103I,

R = diag[0.5 0.5] are shown by dashed lines and results for Q = 10×103I, R = diag[2 2] are shown

by dotted lines. Fig. 3.4 compares the actual trajectory for these two cases (dashed and dotted

lines) with the reference trajectory (solid line) for the state variables x1(t), x2(t), x3(t) and x4(t).

Fig. 3.5 compares the error between the reference trajectory and the actual trajectory for both these

cases for all the states x1(t), x2(t), x3(t) and x4(t). Fig. 3.6 shows the control inputs u1(t) and

u2(t) for the given performance measure. Above simulation results illustrate the effectiveness of the

proposed controller design. It is observed from the Figs. 3.4 – 3.6 that the desired control result can

be obtained by suitable selection of Q and R matrices.
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Fig. 3.7: Trajectories of state variables x(t) (dashed line) and the reference trajectories xr(t) (solid
line) with Ar, r(t) as defined in (3.56) and (3.57)

Now the reference model (3.4) with different value of Ar and r(t) are considered as given below:

Ar =




0 1 0 0

0 0 1 0

0 0 0 1

−1 −2 −3 −4




(3.56)

and

r(t) = [0, 0.5sin(2t), 0, 2cos(2t)]T . (3.57)

The feedback gain matrices are obtained with the reference model parameters as given in (3.56)

and (3.57) and Q = 25× 103I, R = diag[0.5 0.5]. The simulation results are shown in Fig. 3.7 and

in this case also the system states closely track the reference trajectory.
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3.5.2 Robust Optimal Fuzzy Guaranteed Cost Control

Let us consider the nonlinear equation with parameter uncertainties representing the equation of

motion of an inverted pendulum on a cart as given below (Fig. 3.8) [66,109].

ẋ1(t) = x2(t)

ẋ2(t) =
gr sin (x1(t))− amlx2

2(t) sin (2x1(t))/2− a cos (x1(t))u(t)
4l/3− aml cos2 (x1(t))

y(t) = x1(t). (3.58)

Here x1(t) and x2(t) represent the angular displacement about the vertical axis (in rad) and the

angular velocity (in rad/sec) respectively, gr = 9.8 m/s2 is the acceleration due to gravity, a =

1/(m+M), m ∈ [mmin mmax] = [2 3] kg is the mass of the pendulum, M ∈ [Mmin Mmax] = [8 10] kg

is the mass of the cart, 2l = 1 m is the length of the pendulum and u(t) is the force applied on the

cart (in Newton).

Fig. 3.8: Configuration of an inverted pendulum

The fuzzy model of this system is derived in Chapter 2 and it is used to design the controller.

The model is described by the following rules:

Plant rule i:

IF x1 is about Ni THEN

ẋ(t) = (Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t)

y(t) = Cix(t),

where Ni is the triangular fuzzy set of x1 about 0,±π/12,±π/6,±π/4,±π/3 for i = 1, 2, ..., 5
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Table. 3.1: Parameters of the feedback gain matrices Ki for robust fuzzy guaranteed cost controller
– Inverted pendulum

i = 1 i = 2 i = 3 i = 4 i = 5
K11i 15213 15862 14646 12155 5978.4

Q = 105I, K12i 1789.5 1866.4 1723.4 1429.5 695.85
R = 1 K21i -14252 -14864 -13725 -11385 -5545.2

K22i -1777.9 -1854.4 -1712.3 -1420.3 -691.53
K11i 5382.8 5611.4 5180.7 4300.6 2187.1

Q = 5× 104I, K12i 1070.6 1117.2 1031.5 855.04 422.08
R = 2 K21i -4014.4 -4189 -3867.6 -3205.7 -1586

K22i -846.74 -883.58 -815.79 -676.21 -334.03
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Fig. 3.9: Trajectories of state variables x(t) (dashed line: Q = 105I and R = 1, dotted line:
Q = 5× 104I and R = 2) and the reference trajectories xr(t) (solid line).

respectively. The matrices Ai, Bi, ∆Ai, and ∆Bi take the following forms,

Ai =




0 0

ai21 ai22


 , Bi =




0

bi21


 , ∆Ai(t) =




0 0

∆ai21(t) ∆ai22(t)


 , ∆Bi(t) =




0

∆ai21(t)


 ,

Ci =
[
1 0

]
.

where the parameters of Ai, Bi and the bounds of ∆Ai(t), ∆Bi(t) are shown in Table 2.1 (Chap-

ter 2).

For the tracking control problem, the reference model and the reference input given in [66] are

considered as shown below:


ẋr1(t)

ẋr2(t)


 =




0 1

−4 −3






xr1(t)

xr2(t)


 +




0

5 sin (t)


 . (3.59)

Similar to the example shown in the previous subsection, two cases, viz (i) Q = 105I and R = 1

and (ii) Q = 5× 104I and R = 2 are considered. With the LMI optimization problem described in

Theorem 3.4, the parameters of feedback gain matrices K1i = [K11i K12i], K2i = [K21i K22i] are
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obtained as shown in Table 3.1. The parameters of P is The upper bounds of the cost function J0 are

obtained as 1.26×109 and 6.65×108 for the first and second case, respectively. Mass of the pendulum

and the cart are assumed to vary as m + ∆m(t) = 2.5 + 0.5 sin2(5t) and M + ∆M(t) = 9 + sin(4t)

respectively. The simulation results with initial condition x(0) = [π/3 0]T and xr(0) = [0 0]T are

shown in Fig. 3.9. It is observed from Fig. 3.9 that using the proposed controller, the closed loop

system is able to track the reference trajectory closely even in the presence of uncertainties.

3.6 Summary

In this chapter, a T-S model based robust guaranteed cost controller is proposed for trajectory

tracking in nonlinear systems. The problem of performance function minimization is formulated with

the sufficient conditions in terms of polynomial matrix inequalities (PMIs). The matrix inequalities

are then recast into standard LMIs which can be solved using the efficient convex optimization

algorithm. To show the effectiveness of our proposed controller design, simulation is carried out

for two examples: a two-link robotic manipulator and an inverted pendulum on a cart. Simulation

results show that our proposed controller maintains an upper bound on a given cost function while

closely tracking the reference trajectory.
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Chapter 4

Robust Fuzzy Control of Uncertain

Nonlinear Systems via Parametric

Lyapunov Function

4.1 Introduction

Fuzzy logic based control has proven to be a successful approach for controlling nonlinear systems

[8, 40, 66, 104, 120]. The fuzzy-model proposed by Takagi and Sugeno [22], known as the T-S fuzzy

model, is a popular type of model representation. There are many successful applications of the T-S

fuzzy model based approach in nonlinear control systems. Linear matrix inequality (LMI) based T–S

fuzzy control is one important and successful approach used in nonlinear control. Today adequate

literature is available that discusses linear matrix inequality (LMI) based T-S fuzzy control system

design using the fixed Lyapunov function (e.g., [2, 62, 115, 121–123]). Though LMI-based approach

gained popularity and great success, conservatism is still dominant in fixed quadratic Lyapunov

function based approach due to the limited choice of Lyapunov function [108].

To reduce the conservatism in the stabilization problems, different types of Lyapunov functions

such as piecewise Lyapunov function and fuzzy Lyapunov function are used in place of parameter

independent or fixed Lyapunov function. These Lyapunov functions reduce the conservatism by al-

lowing the Lyapunov function to vary across the different regions. In uncertain nonlinear systems the

presence of uncertainty introduces conservatism in the design. For systems with severe uncertainties,

the results may be highly conservative. To reduce the conservatism introduced by the uncertain

terms, a richer class of Lyapunov function called parametric Lyapunov function is considered in the

proposed approach. This design is mainly aimed at nonlinear systems with severe uncertainties.
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The stability of uncertain linear systems using the parametric Lyapunov function was analyzed

in [124,125]. It is also reported that the parametric Lyapunov function is a richer class of Lyapunov

function candidate suitable for systems with uncertainties. It has been observed that the design

with parametric Lyapunov function is less conservative than the fixed Lyapunov function based

design [124, 125]. The fixed Lyapunov function is a special case of general parametric Lyapunov

function. Apart from being used for stability analysis, parametric Lyapunov function is also used in

controller design for linear systems with parameterically varying uncertainties [126].

Motivated from the results of [124,125], this chapter discusses the robust fuzzy control system de-

sign using parametric Lyapunov function for nonlinear systems with slowly varying uncertainties. At

first, the sufficient conditions for basic quadratic stabilization with parametric Lyapunov function are

derived. Next, robust controller design methods are discussed for H∞ stabilization and H∞ tracking

control. The results obtained for robust H∞ stabilization with parametric Lyapunov function are

presented after reviewing the results from literature for fixed Lyapunov function based robust H∞

stabilization. In the case of tracking control problem, the design with fixed Lyapunov function based

approach proposed by [66, 92] is in bilinear form and it is solved by a two-step procedure. In this

thesis, an LMI based robust H∞ controller with fixed Lyapunov function is discussed for tracking the

states of a reference model. Finally, robust H∞ tracking controller design with parametric Lyapunov

function is presented.

4.2 T-S Fuzzy Model and Constant Lyapunov Function based Sta-

bility Conditions

This section starts with introduction to T-S fuzzy model and then stability conditions with a constant

Lyapunov function are summarized. The continuous fuzzy model proposed by Takagi and Sugeno [22]

represents the dynamics of a nonlinear system using fuzzy IF-THEN rules. Let us consider the fuzzy

model of an uncertain nonlinear system in the following form:

Plant rule i:

IF z1(t) is Ni1 and z2(t) is Ni2 and....zp(t) is Nip THEN

ẋ(t) = (Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t)

y(t) = Cix(t), i = 1, 2, ...r (4.1)

where z1(t), ..., zp(t) are premise variables, p is the number of premise variables, Nij (j = 1...p) is
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the fuzzy set and r is the number of rules. Here, x(t) ∈ Rn×1 is the state vector, y(t) ∈ Rny×1 is the

controlled output and u(t) ∈ Rm×1 is the input vector. Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rny×n are

constant real matrices and ∆Ai(t), ∆Bi(t), are time varying matrices of appropriate dimensions,

which represent parametric uncertainties.

Given a pair of input and output (x(t), u(t)), the final output of the fuzzy system is inferred as

follows:

ẋ(t) =
r∑

i=1

µi(z(t))
{
(Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t)

}

y(t) =
r∑

i=1

µi(z(t))Cix(t) (4.2)

where

µi(z(t)) =
ζi(z(t))∑r

j=1 ζj(z(t))
, ζi(z(t)) =

p∏

j=1

Nij(zj(t))

and Nij(zj(t)) is the degree of membership of zj(t) in the fuzzy set Nij .

The uncertain matrices ∆Ai(t), ∆Bi(t) are assumed to be norm bounded and are described

by [2]:
[

∆Ai(t) ∆Bi(t)
]

=
L∑

l=1

M il∆il(t)
[

N i1l N i2l

]
, (4.3)

where M il, N i1l and N i2l are known real constant matrices of appropriate dimension and ∆il(t) is

a time–varying function, satisfying |∆il(t)| < 1, ∀ t > 0.

Let us consider the Parallel Distributed Compensation(PDC) fuzzy controller [8],

u(t) =
r∑

i=1

µiKix(t). (4.4)

By employing a constant quadratic Lyapunov function xT (t)Px(t), the stabilization conditions

for a closed loop fuzzy system are given by the following theorem.

Theorem 4.1. [2]: Let us consider the fuzzy model (4.2) with the T-S state feedback control law

(4.4). If there exists a symmetric and positive definite matrix Y , some matrices W j , (j = 1, 2, ..., r)

and εl,(l = 1, 2, ..., L) such that the following matrix inequality is satisfied:

φii < 0, i = 1, 2, . . . , r (4.5)

1
r − 1

φii +
1
2
(φij + φji) < 0, 1 ≤ i 6= j ≤ r (4.6)
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where

φij =




Y AT
i + BT

i W T
j + (∗) ∗ . . . ∗ ∗ . . . ∗

ε1M
T
i1 ε1

...
. . . 0

εlM
T
il εl

N i11Y + N i21W j ε1
... 0

. . .

N i1lY + N i2lW j εl




,

and W j = KjY , then the uncertain nonlinear system represented by (4.2) with control law (4.4) is

globally asymptotically stable.

Proof: The proof is given in Appendix A.

4.3 Robust Stabilization with Parametric-Lyapunov Function

In the previous section, the results obtained from robust stabilization conditions based on fixed

quadratic Lyapunov function have been summarized. In order to reduce the conservatism existing in

the results obtained by using fixed Lyapunov function, the parametric-Lyapunov function proposed

by Barmish [127] is considered for deriving the conditions for robust stabilization of fuzzy systems.

4.3.1 T-S Fuzzy Model with Uncertainty

Let us consider the fuzzy model of an uncertain nonlinear system in the following form:

Plant rule i:

IF z1(t) is Ni1 and z2(t) is Ni2 and....zp(t) is Nip THEN

ẋ(t) =

(
Ai0 +

L∑

l=1

θl(t)Ail

)
x(t) +

(
Bi0 +

L∑

l=1

θl(t)Bil

)
u(t)

y(t) = Cix(t), i = 1, 2, ...r, (4.7)

where z1(t), ..., zp(t) are premise variables, p is the number of premise variables, Nij (j = 1...p) is

the fuzzy set and r is the number of rules. Here, x(t) ∈ Rn×1 is the state vector, y(t) ∈ Rny×1 is

the controlled output and u(t) ∈ Rm×1 is the input vector. Ai0 ∈ Rn×n, Ail ∈ Rn×n, Bi0 ∈ Rn×m,

Bil ∈ Rn×m, Ci ∈ Rny×n are constant real matrices and θl(t) represents time varying parametric

uncertainties with known lower and upper bounds of uncertainty.
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The final output of the fuzzy system can be represented as

ẋ(t) =
r∑

i=1

µi(z(t))
{
Ai(θ(t))x(t) + Bi(θ(t))u(t)

}

y(t) =
r∑

i=1

µi(z(t))Cix(t). (4.8)

where Ai(θ(t)) = Ai0 +
∑L

l=1 θl(t)Ail and Bi(θ(t)) = Bi0 +
∑L

l=1 θl(t)Bil. For simplicity Ai(θ(t))

and Bi(θ(t)) are denoted as Ai(θ) and Bi(θ).

4.3.2 Parametric Lyapunov Function

The fixed Lyapunov function will guard against arbitrarily fast parameter variations. Hence,the

results will be conservative for systems with slowly-varying uncertainties [124]. To reduce the con-

servatism, a class of parameter-dependent Lyapunov functions or parametric Lyapunov function is

considered as given by

V (t, θ) = xT (t)P (θ(t))x(t) (4.9)

where

P (θ(t)) = P 0 +
L∑

l=1

θl(t)P l.

For uncertain linear systems Gahinet et al. [124] presented the LMI conditions with parametric

Lyapunov function for robust stability analysis and showed that results are less conservative than

the fixed Lyapunov function. For simplicity P (θ(t)) is denoted as P (θ).

4.3.3 Robust Stabilization

This subsection discusses the conditions for robust stabilization of uncertain fuzzy systems with

parametric Lyapunov function.

Theorem 4.2. Let us consider the fuzzy system represented by (4.8) with the PDC control law

(4.4). If there exist symmetric matrices P 0, P l, (l = 1, ..., L) and some matrices Kj , (j = 1, ..., r)

such that

P 0 +
L∑

l=1

θl(t)P l > 0 (4.10)

r∑

i=1

r∑

j=1

µiµj

(
(Ai(θ) + Bi(θ)Kj)T P (θ) + (∗) + (P (θ̇)− P 0)

)
< 0 (4.11)

hold for all admissible trajectories of the parameter vector θ, then the uncertain nonlinear system

represented by (4.8) with control law (4.4) is asymptotically stable.
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Proof: Let us consider the following parametric-Lyapunov function

V (t, θ) = xT (t)P (θ)x(t) (4.12)

where

P (θ) = P 0 +
L∑

l=1

θl(t)P l > 0.

The time derivative of (4.12) along the trajectory of (4.8) is

V̇ (t,θ) =
r∑

i=1

r∑

j=1

µiµjx
T (t)

(
(Ai(θ) + Bi(θ)Kj)T P (θ) + (∗) +

d

dt
P (θ)

)
x(t) (4.13)

=
r∑

i=1

r∑

j=1

µiµjx
T (t)

(
(Ai(θ) + Bi(θ)Kj)T P (θ) + (∗) + Ṗ (θ)

)
x(t) (4.14)

=
r∑

i=1

r∑

j=1

µiµjx
T (t)

(
(Ai(θ) + Bi(θ)Kj)T P (θ) + (∗) +

(
P (θ̇)− P 0

))
x(t) (4.15)

From (4.15), V̇ (t, θ) < 0 if the following inequality is satisfied:
r∑

i=1

r∑

j=1

µiµj

(
(Ai(θ) + Bi(θ)Kj)T P (θ) + (∗) +

(
P (θ̇)− P 0

))
< 0 (4.16)

Hence proved.

4.3.4 Reduction to Finite Dimensional Matrix Inequalities

The matrix inequalities in the Theorem 4.2 affinely depend on the parameter vector θ. Using the

concept of multiconvexity and some assumptions, this parameter dependence can be avoided. As

in [124] and [125], it is assumed that the lower and upper bounds of the uncertain parameter and

their rates of variation are known. Specifically:

1. Each parameter θl ranges between the known lower and upper bounds θl and θl respectively,

i.e.,

θl ∈ [θl θl], (4.17)

2. The rate of variation θ̇l is well defined at all times and satisfies

θ̇l ∈ [vl vl], (4.18)

where vl and vl are known lower and upper bounds of θ̇l

With these assumptions, the parameter vector θl takes values within the hyper-rectangle called

parameter box and the rate vector θ̇l takes values in another hyper-rectangle called rate box. It is
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denoted as,

V := {(ν1, ν2, ..., νL)T : νl ∈ {θl θl}}, (4.19)

W := {(ω1, ω2, ..., ωL)T : ωl ∈ {vl vl}}, (4.20)

which are the set of 2L vertices of the parameter box and the rate box respectively.

Theorem 4.3. Consider the fuzzy system represented by (4.8) with the PDC control law (4.4). If

there exist symmetric matrices P 0, P l, (l = 1, ..., L) and some matrices Kj , (j = 1, ..., r) such that

P 0 +
L∑

l=1

νlP l > 0, ∀ ν ∈ V (4.21)

Γii(ν, ω) < 0, ∀ (ν, ω) ∈ V ×W, i = 1, 2, . . . , r (4.22)

1
r − 1

Γii(ν, ω) +
1
2
(Γij(ν, ω) + Γji(ν,ω)) < 0, ∀ (ν, ω) ∈ V ×W, 1 ≤ i 6= j ≤ r (4.23)

Πlii ≥ 0, l = 1, ..., L, i = 1, 2, . . . , r (4.24)

1
r − 1

Πlii +
1
2
(Πlij + Πlji) ≥ 0, l = 1, ..., L, 1 ≤ i 6= j ≤ r (4.25)

where Γij(ν, ω) = (Ai(ν)+Bi(ν)Kj)T P (ν)+(∗)+(P (ω)−P 0) and Πlij = (Ail +BilKj)T P l +(∗)
hold, then the uncertain nonlinear system represented by (4.8) with control law (4.4) is asymptotically

stable for all admissible trajectories of the parameter vector θ(t).

Proof: Applying the multi-convexity concept [124] for the conditions in Theorem 4.2, the closed

loop system will be stable in the uncertainly domain (for all admissible values of θl and θ̇l) if the

following conditions are satisfied:

(i) The inequalities (4.10) and (4.11) are satisfied in the vertices V ×W
and

(ii) the following inequality holds

∂2

∂θ2
l




r∑

i=1

r∑

j=1

µiµj

(
(Ai(θ) + Bi(θ)Kj)T P (θ) + (∗) + (P (θ̇)− P 0)

)

 ≥ 0, ∀ l = 1, ..., L. (4.26)

The above condition (i) hold for all admissible values of θl and θ̇l if the following inequality (4.27)

and (4.28) are satisfied.

P 0 +
L∑

l=1

νlP l > 0, ∀ ν ∈ V (4.27)

r∑

i=1

r∑

j=1

µiµj

(
(Ai(ν) + Bi(ν)Kj)T P (ν) + (∗) + (P (ω)− P 0)

)
< 0, ∀ (ν, ω) ∈ V ×W (4.28)

72



Chapter 4 Robust Fuzzy Control via Parametric Lyapunov Function

From condition (ii), the following inequality (4.29) is obtained.
r∑

i=1

r∑

j=1

µiµj

(
(Ail + BilKj)T P l + (∗)

)
≥ 0, ∀ l = 1, ..., L (4.29)

Applying Lemma A.1 (Appendix) to (4.28) and (4.29), the inequalities (4.22) to (4.25) are obtained.

Hence proved.

The inequalities in Theorem 4.3 are not standard LMIs with respect to P 0, P l and Kj and

it is difficult to solve them simultaneously. It is easily observed that if the matrices Kj are fixed

then the inequalities in Theorem 4.3 will become standard LMIs and these can be easily solved. For

finding the value of Kj the constant Lyapunov function based approach discussed in Section 4.2 can

be used. But the results with the constant Lyapunov function based approach may be conservative

than the parametric Lyapunov function based approach. Hence instead of finding the value of Kj

with entire range of uncertainty, a fraction of the uncertainty can be considered for designing Kj

for the fixed Lyapunov function based approach. If this value of Kj is feasible in the entire range of

uncertainty with the parametric Lyapunov function based approach then the controller will stabilize

the fuzzy system (2.2) over the entire range of the uncertainty. Based on this, the following iterative

LMI (ILMI) based algorithm is proposed for solving the inequalities in Theorem 4.3.

Algorithm 4.1:

Step 1: Derive the fuzzy model for the given uncertain nonlinear system.

Step 2: Set counter, c = 1. Choose σ a small positive fraction say 0.05.

Step 3: By the fixed Lyapunov function based approach solve for feedback gain matrices Kj . If

the LMIs are infeasible, goto Step 5.

Step 4: Substitute the value of Kj in the inequalities given by Theorem 4.3 and solve for P 0,

P l. If the inequalities are infeasible, goto Step 6.

Step 5: If (1− cσ) > 0, reduce the bounds of the uncertainty range θl and θl by (1 − cσ)θl and

(1 − cσ)θl for l = 1, ..., L and derive the fuzzy model with the new range of uncertainty. Increment

the counter c and goto Step 3.

Step 6: Choose the value of Kj with the latest feasible solution obtained during the previous

iterations in Step 4 and Stop. If the conditions in Step 4 are infeasible during all the iterations, then

controller cannot be designed with the proposed method.
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4.3.5 Example

Let us consider the following nonlinear system and its fuzzy model from [2, 40]. The system is

open-loop unstable. The nonlinear system is shown below after including a few additional uncertain

terms.

ẋ1(t) = x2(t) + (1 + d2) sinx3(t) + [(1 + d1)x2
1 + 1]u(t)

ẋ2(t) = (1 + 0.5d1)x1(t) + (2 + d1)x2(t) + 0.75d1x3(t) + 0.1w1(t)

ẋ3(t) = (1 + d1)x2
1(t)x2(t) + x1(t)

ẋ4(t) = (1 + d2) sin x3(t) + 0.1w2(t)

y(t) = 0.1x2(t) + 0.1x4(t) (4.30)

where x1(t) ∈ [−a a], x2(t) ∈ [−b b] with a = 0.8 and b = 0.6. The uncertainties are d1 =

ad1 sin (t/2)/
√

8 and d2 = ad2 cos (t/2)/2. Here the stabilization problem is considered and hence the

disturbance input is set to w(t) = 0. This disturbance inputs will be considered later.

The fuzzy model of the nonlinear system is given by:

Plant rule i:

IF x1(t) is F i
1 and x3(t) is F i

3 THEN

ẋ(t) =

(
Ai0 +

L∑

l=1

θlAil

)
x(t) +

(
Bi0 +

L∑

l=1

θlBil

)
u(t)

y(t) = Cx(t), i = 1, 2, ...4 (4.31)

where the fuzzy sets F i
1, F i

3, and the parameters of the constant matrices Ai0, Bi0, i = 1, ..., 4 can

be found in [40]. The matrices related to the uncertainty θ1(t) = d1(t) and θ2(t) = d2(t) are given

by

A11 = A21 =




0 0 0 0

0.5 1 0.75 0

0 a2 0 0

0 0 0 0




, A31 = A41 =




0 0 0 0

0.5 1 0.75 0

0 0 0 0

0 0 0 0




A12 = A32 =




0 0 1 0

0 0 0 0

0 0 0 0

0 0 1 0




, A22 = A42 =




0 0 sin b
b 0

0 0 0 0

0 0 0 0

0 0 sin b
b 0



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(b) With Constant Lyapunov function [2]

Fig. 4.1: Stabilization region (o – Feasible point, × – Infeasible point).

B11 = B21 =




a2

0

0

0




, B31 = B41 = 04×1, B12 = ... = B42 = 04×1, C =
[
0 0.1 0 0.1

]

In the case of fixed Lyapunov function based approach, the uncertainties are expressed in the

form given in (4.3). The uncertain matrices ∆A1 and ∆B1 are given by

∆A1(t) = M11∆11(t)N111 + M12∆12(t)N112
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=




0

1
a

a

0




d1(t)
[

a
2 a 3a

4 0
]

+




1

0

0

1




d2(t)
[

0 0 1 0
]

∆B1(t) = M11∆11(t)N121 =




a

0

0

0




d1(t)
[

a

]
.

The other matrices related to the uncertain terms are also expressed in a similar form. The

matrices M il, N i1l and N12l are multiplied by suitable constants depending upon the values of

ad1 and ad2 for modeling the uncertainties and satisfying the condition |dl(t)| < 1. Feasibility

arising from the conditions of Theorem 4.3 are evaluated for different values of ad1 and ad2 and the

feasible points are shown in Fig. 4.1. The feasible and infeasible points are marked by ‘o’ and ‘×’

respectively. Results from Fig. 4.1 illustrate that the parametric Lyapunov function based approach

is less conservative than the fixed Lyapunov function based approach. In the above form of expressing

∆A1(t), the term M11∆111(t)N111 is conservative and it includes additional uncertainty. Hence the

feasibility points for different uncertain terms with ∆A1(t) = M11∆111(t)N111 are checked and in

this case also the proposed parametric Lyapunov function based approach yields less conservative

result.

4.4 Robust H∞ Control

The robust stabilization conditions with a parametric Lyapunov function are presented in the previ-

ous section. This section proposes robust H∞ controller design methods for stabilization and tracking

control problems.

4.4.1 Robust H∞ Stabilization

Here the H∞ controller design that stabilizes an uncertain fuzzy system is considered. The perfor-

mance criterion under zero initial condition assumption is defined as
∫ tf

0
yT (t)Qy(t)dt ≤ γ2

∫ tf

0
wT (t)w(t)dt, (4.32)
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where Q is a symmetric positive definite weighting matrix, w(t) is the external disturbance, tf is

the terminal time of control and γ is the prescribed disturbance attenuation level.

Design with Fixed Lyapunov Function

Let us cosider the fuzzy system (4.2) with external disturbance w(t). The inferred fuzzy model is

described by the following fuzzy system:

ẋ(t) =
r∑

i=1

µi(z(t))
{
(Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t) + Diw(t)

}

y(t) =
r∑

i=1

µi(z(t))Cix(t) (4.33)

The robust H∞ fuzzy stabilization results from [2] are summarized in the following theorem:

Theorem 4.4. [2]: Let us consider the fuzzy system (4.33) with the T-S state feedback control

law (4.4). With the given disturbance attenuation level γ, if there exist a symmetric and positive

definite matrix Y , some matrices W j , (j = 1, 2, ..., r) and εl,(l = 1, 2, ..., L) such that the following

matrix inequality is satisfied:

φ̄ii < 0, i = 1, 2, . . . , r (4.34)

1
r − 1

φ̄ii +
1
2
(φ̄ij + φ̄ji) < 0, 1 ≤ i 6= j ≤ r (4.35)

where

φ̄ij =




Y AT
i + W T

j BT
i + (∗) ∗ ∗ ∗ . . . ∗ ∗ . . . ∗

DT
i −γ2I ∗ ∗ . . . ∗ ∗ . . . ∗

CiY 0 −Q−1 ∗ . . . ∗ ∗ . . . ∗
ε1M

T
i1 0 0 ε1

...
...

...
. . . 0

εlM
T
il 0 0 εl

NT
i11 + W T

j NT
i21 0 0 ε1

...
...

... 0
. . .

NT
i1l + W T

j NT
i2l 0 0 εl




and W j = KjY , then the uncertain fuzzy system represented by (4.33) is asymptotically stable

with the control law (4.4) and satisfies the performance criteria (4.32).
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Design with Parametric Lyapunov Function

In this section, robust H∞ controller design with parametric Lyapunov function is discussed . Let us

consider the fuzzy system (4.8) with some external disturbance w(t). The final output of the fuzzy

system can be represented as

ẋ(t) =
r∑

i=1

µi(z(t))
{
Ai(θ)x(t) + Bi(θ)u(t) + Diw(t)

}

y(t) =
r∑

i=1

µi(z(t))Cix(t). (4.36)

The result of the H∞ controller design for the T-S fuzzy model with parametric uncertainties is

summarized in the following theorem.

Theorem 4.5. Let us consider the fuzzy system represented by (4.36) with the PDC control law

(4.4). If there exists symmetric matrices P 0, P l, (l = 1, ..., L) and some matrices Kj , (j = 1, ..., r)

such that

P 0 +
L∑

l=1

νlP l > 0, ∀ ν ∈ V (4.37)

Γ̄ii(ν, ω) < 0, ∀ (ν, ω) ∈ V ×W, i = 1, 2, . . . , r (4.38)

1
r − 1

Γ̄ii(ν, ω) +
1
2
(Γ̄ij(ν, ω) + Γ̄ji(ν,ω)) < 0, ∀ (ν, ω) ∈ V ×W, 1 ≤ i 6= j ≤ r (4.39)

Π̄lii ≥ 0, l = 1, ..., L, i = 1, 2, . . . , r (4.40)

1
r − 1

Π̄lii +
1
2
(Π̄lij + Π̄lji) ≥ 0, l = 1, ..., L, 1 ≤ i 6= j ≤ r (4.41)

where

Γ̄ij(ν, ω) =




Λ̄ij(ν, ω) ∗
DT

i P (ν) −γ2I




and Π̄lij = (Ail + BilKj)T P l + (∗) and Λ̄ij(ν, ω) = (Ai(ν) + Bi(ν)Kj)T P (ν) + (∗) + (P (ω) −
P 0)+CT

i QCi, then the H∞ performance given by (4.32) is guaranteed for the overall fuzzy system.

Proof: Let us consider the following parametric Lyapunov function,

V (t,θ) = xT (t)P (θ)x(t). (4.42)

Then from the time derivative of V (t,θ) along the trajectory of the fuzzy system (4.36), it follows

V̇ (t,θ) + yT (t)Qy(t)− γ2wT (t)w(t)

=
r∑

i=1

r∑

j=1

µiµjx
T (t)

(
(Ai(θ) + Bi(θ)Kj)T P (θ) + (∗) +

d

dt
P (θ) + CT

i QCi

)
x(t)

+xT (t)P (θ)Diw(t) + wT (t)DT
i P (θ)x(t)− γ2wT (t)w(t) (4.43)
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=
r∑

i=1

r∑

j=1

µiµj




x(t)

w(t)




T 


Λ̄(θ, θ̇) ∗
DT

i P (θ) −γ2I







x(t)

w(t)


 (4.44)

where

Λ̄(θ, θ̇) =
(
(Ai(θ) + Bi(θ)Kj)T P (θ) + (∗) + (P (θ̇)− P 0) + CT

i QCi

)

Based on Lemma A.1 (Appendix) and the multi-convexity and the concepts explained in Theo-

rems 4.2 and 4.3, if the conditions (4.38) to (4.41) are satisfied, then the following inequality holds,

r∑

i=1

r∑

j=1

µiµj




Λ̄(θ, θ̇) ∗
DT

i P (θ) −γ2I


 < 0 (4.45)

From (4.44) and (4.45), the following condition is obtained

V̇ (t, θ) + yT (t)Qy(t)− γ2wT (t)w(t) < 0 (4.46)

Integrating the above inequality from 0 to ∞ yields

V (∞)− V (0) +
∫ ∞

0
yT (t)Qy(t)−

∫ ∞

0
γ2wT (t)w(t) < 0 (4.47)

With zero initial condition, V (0) = 0 and hence
∫∞
0 yT (t)Qy(t) <

∫∞
0 γ2wT (t)w(t). Thus the

proof is complete.

Similar to the steps given in Algorithm 4.1, the robust H∞ controller can be designed as follows:

Algorithm 4.2:

Step 1: Derive the fuzzy model for the given uncertain nonlinear system.

Step 2: Given the disturbance attenuation level γ2, set counter c = 1. Choose σ, a small positive

fraction say 0.05.

Step 3: By fixed Lyapunov function based H∞ design approach solve for the feedback gain

matrices Kj . If the LMIs are infeasible, goto Step 5.

Step 4: Substitute the value of Kj in the inequalities given by Theorem 4.5 and solve for Y 0,

Y l. If the inequalities are infeasible, goto Step 6.

Step 5: If (1− cσ) > 0, reduce the bounds of the uncertainty range θl and θl by (1 − cσ)θl and

(1 − cσ)θl for l = 1, ..., L and derive the fuzzy model with the new range of uncertainty. Increment

the counter c and goto Step 3.

Step 6: Choose the value of Kj with the latest feasible solution obtained during the previous

iterations in Step 4 and Stop. If the conditions in Step 4 are infeasible during all the iterations, then

controller cannot be designed with the proposed method.
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4.4.2 Robust H∞ Tracking Control

This subsection discusses the design of robust H∞ tracking controller to track the states of a given

reference model and satisfy the given performance measure.

Let us consider the uncertain fuzzy system (4.36) with external disturbance w̃(t) and a reference

model in the form:

ẋr(t) = Arxr(t) + Drr(t) (4.48)

where xr(t) is the reference state, Ar is a specific asymptotically stable matrix, Dr is a constant

matrix and r(t) is a bounded reference input.

The tracking error is defined as

e(t) = x(t)− xr(t) (4.49)

Let us consider the H∞ tracking performance related to the tracking error e(t) as follows [66]:
∫ tf

0
eT (t)Qe(t)dt ≤ ρ2

∫ tf

0
w̃T (t)w̃(t)dt (4.50)

where Q is a positive definite weight matrix, tf is the terminal time of control and ρ is the prescribed

disturbance attenuation level.

Design with Fixed Lyapunov Function

The design with fixed Lyapunov function based approach proposed by [66, 92] is in bilinear form

and it is solved by a two-step procedure. Hence, an LMI formulation of robust H∞ controller design

method for a fixed Lyapunov function based approach is proposed in this subsection to track the

states of a reference model.

Let us consider the fuzzy system represented by (4.33) and the reference model (4.48). Suppose

the following fuzzy control rule is employed to deal with the design of a fuzzy controller for the

system represented by (4.33).

Control Rule i:

IF z1(t) is Ni1 and z2(t) is Ni2 and....zp(t) is Nip THEN

u(t) = K1ie(t) + K2ixr(t), i = 1, 2, . . . , r (4.51)

Then, the overall fuzzy control law is represented by

u(t) =
r∑

i=1

µi(K1ie(t) + K2ixr(t)) (4.52)
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where K1i and K2i are the controller gains. A fuzzy controller is to be designed with the feedback

gains K1i and K2i (i = 1, 2, ..., r) such that the resulting closed-loop system is asymptotically stable

and also satisfies H∞ performance given in (4.50). With the control law given by (4.52), the overall

closed-loop system can be written as

ė(t) =
r∑

i=1

r∑

j=1

µiµj
{
(Ai + ∆Ai(t))(e(t) + xr(t))−Arxr(t)

+(Bi + ∆Bi(t))(K1je(t) + K2jxr(t)) + Diw(t)−Drr(t)
}

(4.53)

Combining (4.53) and (4.48), the augmented system can be expressed as

˙̃x(t) =
r∑

i=1

r∑

j=1

µiµj
{
(Ãi + ∆Ãi(t) + (B̃i + ∆B̃i(t))K̃j)x̃(t) + D̃iw̃(t) (4.54)

where

x̃(t) =




e(t)

xr(t)


 , w̃(t) =




w(t)

r(t)


 ,

Ãi =




Ai Ai −Ar

0 Ar


 , ∆Ãi(t) =




∆Ai(t) ∆Ai(t)

0 0


 , B̃i =




Bi

0


 , ∆B̃i(t) =




∆Bi(t)

0


 ,

D̃i =




Di −Dr

0 Dr


 , K̃j =

[
K1j K2j

]

With the augmented system represented by (4.54), the results of T-S fuzzy model based H∞

tracking controller design are summarized in the following theorem.

Theorem 4.6. Let us consider the fuzzy system (4.33) and the reference model (4.48) with the T-S

control law (4.52). With the given disturbance attenuation level ρ2, if there exist a symmetric and

positive definite matrix Y , certain matrices X1j , X2j , (j = 1, 2, ..., r) and scalars εil,(l = 1, 2, ..., L)

such that the following matrix inequality is satisfied:

φ̃ii < 0, i = 1, 2, . . . , r (4.55)

1
r − 1

φ̃ii +
1
2
(φ̃ij + φ̃ji) < 0, 1 ≤ i 6= j ≤ r (4.56)

where

Y =




Y 11 ∗
Y 21 Y 22


 , φ̃ij =




A11
ij ∗ ∗

A21
ij −εi ∗

A31
ij 0 −εi




,
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A11
ij =




H11
ij ∗ ∗ ∗ ∗

H21
ij H22

ij ∗ ∗ ∗
DT

i 0 −ρ2I ∗ ∗
−DT

r DT
r 0 −ρ2I ∗

Y 11 Y T
21 0 0 −Q−1




, A21
ij =




ε1M
T
i1 0 0 0

...
...

...
...

εlM
T
il 0 0 0




,

A31
ij =




N i11(Y 11 + Y 21) + N i21X1j N i11(Y T
21 + Y 22) + N i21X2j 0 0

...
...

...
...

N i1l(Y 11 + Y 21) + N i2lX1j N i1l(Y T
21 + Y 22) + N i2lX2j 0 0




,

H11
ij =

(
(Y 11 + Y T

21)A
T
i − Y T

21A
T
r + XT

1jB
T
i )

)
+

( ∗ )

H21
ij = (Y 21 + Y 22)AT

i − Y 22A
T
r + XT

2jB
T
i + ArY 21

H22
ij = (Y 22A

T
r ) + (∗)

εi = diag(εi1, ...., εil)

and X1j = K1jY 11 + K2jY 21, X2j = K1jY
T
21 + K2jY 22, then the uncertain nonlinear system

represented by (4.2) is globally asymptotically stable and satisfies the performance criteria (4.50).

Proof: Applying Lemma A.1 (Appendix) to the inequalities (4.55) and (4.56), the following param-

eterized inequality is obtained,
r∑

i=1

r∑

j=1

µiµjφ̃ij < 0. (4.57)

From the above equation, it follows that

r∑

i=1

r∑

j=1

µiµj




H11
ij + ∆H11

ij (t) ∗ ∗ ∗ ∗
H21

ij + ∆H21
ij (t) H22

ij ∗ ∗ ∗
DT

i 0 −ρ2I ∗ ∗
−DT

r DT
r 0 −ρ2I ∗

Y 11 Y T
21 0 0 −Q−1




< 0 (4.58)

where

∆H11
ij (t) =

(
(Y 11 + Y T

21)∆AT
i (t) + XT

1j∆BT
i (t)

)
+

( ∗ )

∆H21
ij (t) = (Y 21 + Y 22)∆AT

i (t) + XT
2j∆BT

i (t)
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Using the augmented system represented in (4.54), the inequality in (4.58) can be written as

r∑

i=1

r∑

j=1

µiµj




Ω̃ij(t) + Y Q̃Y ∗
D̃

T
i −ρ2I


 < 0 (4.59)

where Ω̃ij(t) = Y (Ãi + ∆Ãi(t) + (B̃i + ∆B̃i(t))K̃j)T + (∗) and Q̃ = diag(Q,0).

With P = Y −1, pre-multiplying and post-multiplying by diag(P , I), the following inequality is

obtained

r∑

i=1

r∑

j=1

µiµj




P Ω̃ij(t)P + Q̃ ∗
D̃

T
i P −ρ2I


 < 0 (4.60)

Let us consider a Lyapunov function V (t) = x̃T (t)P x̃(t) for the closed loop system given by

(4.54). Then from the derivative of the Lyapunov function, it follows that

V̇ (t) + x̃T (t)Q̃x̃(t)− ρ2w̃T (t)w̃(t)

=
r∑

i=1

r∑

j=1

µiµj

{
x̃T (t)

(
(Ãi + ∆Ãi(t) + (B̃i + ∆B̃i(t))K̃j)T P + (∗) + Q̃

)
x̄(t)

}

+x̃T (t)PD̃iw̃(t) + w̃T (t)D̃
T
i P x̃(t)− ρ2w̃T (t)w̃(t) (4.61)

=
r∑

i=1

r∑

j=1

µiµj




x̃(t)

w̃(t)




T 


P Ω̃ij(t)P + Q̃ ∗
D̃

T
i P −ρ2I







x̃(t)

w̃(t)


 (4.62)

From (4.62) and (4.60), it follows that

V̇ (t) + x̃T (t)Q̃x̃(t)− ρ2w̃T (t)w̃(t) < 0 (4.63)

Integrating the above inequality from 0 to ∞, on both sides, yields

V (∞)− V (0) +
∫ ∞

0
x̃T (t)Q̃x̃(t)−

∫ ∞

0
ρ2w̃T (t)w̃(t) < 0 (4.64)

With zero initial condition, V (0) = 0 and hence
∫ ∞

0
x̃T (t)Q̃x̃(t) <

∫ ∞

0
ρ2w̃T (t)w̃(t) (4.65)

∫ ∞

0
eT (t)Qe(t) <

∫ ∞

0
ρ2w̃T (t)w̃(t) (4.66)

Thus the proof is complete.

Design with Parametric Lyapunov Function

This sub-subsection presents the design methodology for a robust H∞ tracking controller with para-

metric Lyapunov function. Here the uncertain fuzzy system (4.36) and the reference model (4.48)
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are considered with the control law (4.52). The augmented system can be expressed as

˙̃x(t) =
r∑

i=1

r∑

j=1

µiµj
{
(Ãi(θ) + B̃i(θ)K̃j)x̃(t) + D̃iw̃(t)

}
(4.67)

where

x̃(t) =




e(t)

xr(t)


 , w̃(t) =




w(t)

r(t)


 ,

Ãi(θ) = Ã0i +
L∑

l=1

θlÃli, B̃i(θ) = B̃0i +
L∑

l=1

θlB̃li

Ã0i =




A0i A0i −Ar

0 Ar


 , Ãli =




Ali Ali

0 0


 , B̃0i =




B0i

0


 , B̃li =




Bli

0


 ,

and the other matrices K̃j and D̃i are the same as discussed in the previous sub-subsection.

With the augmented system represented by (4.67), the results of the T-S model based H∞ track-

ing controller design with parametric Lyapunov function are summarized in the following theorem,

followed by the proof.

Theorem 4.7. Let us consider the augmented fuzzy system represented by (4.67) with the PDC

control law (4.52). For a given disturbance attenuation level ρ2, if there exist symmetric matrices

P 0, P l, (l = 1, ..., L) and some matrices Kj , (j = 1, ..., r) such that

P 0 +
L∑

l=1

νlP l > 0, ∀ ν ∈ V (4.68)

Γ̃ii(ν, ω) < 0, ∀ (ν, ω) ∈ V ×W, i = 1, 2, . . . , r (4.69)

1
r − 1

Γ̃ii(ν, ω) +
1
2
(Γ̃ij(ν, ω) + Γ̃ji(ν,ω)) < 0, ∀ (ν, ω) ∈ V ×W, 1 ≤ i 6= j ≤ r (4.70)

Π̃lii ≥ 0, l = 1, ..., L, i = 1, 2, . . . , r (4.71)

1
r − 1

Π̃lii +
1
2
(Π̃lij + Π̃lji) ≥ 0, l = 1, ..., L, 1 ≤ i 6= j ≤ r (4.72)

where

Γ̃ij(ν,ω) =




Λ̃(ν, ω) ∗
D̃

T
i P (ν) −ρ2I


 ,

Π̃lij = (Ãil + B̃ilK̃j)T P l + (∗) and Λ̃(ν, ω) = (Ãi(ν) + B̃i(ν)K̃j)T P (ν) + (∗)− (P (ω)−P 0) + Q̃,

then the H∞ performance given by (4.50) is guaranteed for the overall fuzzy system.

Proof: Let us consider the following parametric Lyapunov function,

V (t,θ) = x̃T (t)P (θ)x̃(t). (4.73)

84



Chapter 4 Robust Fuzzy Control via Parametric Lyapunov Function

Then from time derivative along the trajectory of the fuzzy system (4.67), it follows that

V̇ (t,θ) + x̃T (t)Q̃x̃(t)− γ2w̃T (t)w̃(t)

=
r∑

i=1

r∑

j=1

µiµj




x̃(t)

w̃(t)




T 


Λ̃(θ, θ̇) ∗
D̃

T
i P (θ) −ρ2I







x̃(t)

w̃(t)


 (4.74)

where

Λ̃(θ, θ̇) =
(
(Ai(θ) + Bi(θ)Kj)T P (θ) + (∗) + (P (θ̇)− P 0) + Q̃

)

Based on Lemma A.1 (Appendix) and the multi-convexity and the concepts explained in Theo-

rems 4.2 and 4.3, if the conditions (4.68) to (4.72) are satisfied, then the following inequality holds,

r∑

i=1

r∑

j=1

µiµj




Λ̃(θ, θ̇) ∗
D̃

T
i P (θ) −ρ2I


 < 0 (4.75)

From (4.74) and (4.75), the following condition is obtained

V̇ (t,θ) + x̃T (t)Q̃x̃(t)− ρ2w̃T (t)w̃(t) < 0 (4.76)

With zero initial condition, V (0) = 0. Integrating the above inequality from 0 to ∞, on both

sides yields
∫∞
0 eT (t)Qe(t) <

∫∞
0 γ2w̃T (t)w̃(t). Thus the proof is complete.

Similar to the steps given in Algorithm 4.2, the robust H∞ tracking controller with parametric

Lyapunov function can be designed.

In the H∞ stabilization design with parametric Lyapunov function, with the following mini-

mization problem the disturbance attenuation level γ2 in (4.32) can be minimized so that the H∞

performance can be reduced:

min
P0

,Pl
,Kj

γ2

subject to the inequalities (4.37) – (4.41).

The disturbance attenuation level in (4.50) for a tracking control problem can also be minimized

in a similar way.

Remark 4.1. In some cases, the controller gains obtained with the fixed Lyapunov function based

approach may be very high which may be unacceptable for practical applications. This problem can

be overcome by including some additional LMI constraints. In robust H∞ stabilization design, the

controller gain is given by Kj = XjY
−1. In this case, the controller gain can be limited by including
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the following constraints:

Y > a1I (4.77)

−a2I ∗
XT

j −I


 < 0, j = 1, ..., r (4.78)

where a1 and a2 are some positive constants. The matrix norm constraint ||Y || > a1 can be repre-

sented by (4.77). The second constraint (4.78) is included for ||XT
j || < a2 [36]. Hence the choice of

a1 and a2 limits the magnitude of the parameters of Y −1 and Xj . Thereby the magnitude of Kj can

be limited. Initially, a small positive value for a1 and a large positive value for a2 are to be chosen.

If the obtained gains are very high and not acceptable, then the value of a1 is to be increased while

the value of a2 is to be reduced till appropriate gains are obtained.

In a similar way, the gains in robust H∞ tracking controller can be limited by the following

additional LMI constraints:

Y > a1I (4.79)


−a2I ∗ ∗
XT

1j −I ∗
XT

2j 0 −I




< 0, j = 1, ..., r (4.80)

4.5 Simulation Results

4.5.1 Robust H∞ Stabilization

Let us consider the example presented in Section 4.3.5 with d1 = sin (t/2)/
√

8 and d2 = cos (t/2)/2.

The disturbance inputs w1(t) and w2(t) are assumed to be periodical square waves of period 1 sec

with amplitude 1 for t ≤ 5 and 0 otherwise. The matrices Di (i = 1, ..., 4) corresponding to the

disturbance input are the same as in [2] and it is given by

Di =




0 0

0.1 0

0 0

0 0.1




.

With Q = 1, the H∞ controller is designed for different values of γ2 using the LMI toolbox in

MATLAB. The trajectories of state variables with an initial condition of x(0) = [0 0 0 0]T using

the controllers designed with γ2 = 0.08, γ2 = 0.1 and γ2 = 0.5 are shown in Fig. 4.2. In Fig. 4.3, the
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Fig. 4.2: Trajectories of state variables x(t) with parametric Lyapunov function based approach for
γ2 = 0.08 (dashed line), γ2 = 0.1 (solid line)and γ2 = 0.5 (dotted line).
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Fig. 4.3: Control input u(t) with parametric Lyapunov function based approach for γ2 = 0.08
(dashed line), γ2 = 0.1 (solid line)and γ2 = 0.5 (dotted line).
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Table. 4.1: Parameters of feedback gain matrices for H∞ stabilization with γ2 = 0.1 (for the example
in Section 4.5.1)

Parametric Lyapunov Fixed Lyapunov
function based approach function based approach

K1i K2i K3i K4i K1i K2i K3i K4i

i = 1 -41.87 -379.3 135.8 26.85 -124.7 -1472 604.2 99.60
i = 2 -42.09 -381.6 136.7 27.02 -124.5 -1469 603.3 99.44
i = 3 -34.73 -310.3 110.0 21.76 -105.4 -1238 506.7 83.60
i = 4 -35.12 -314.1 111.4 22.06 -107.6 -1265 517.7 85.42

corresponding control input u(t) are plotted. Similar to the results shown in [2], the chattering and

overshoot appearing in x(t) are due to disturbance and uncertainties present in the system.

Using one of the above values of γ2, viz γ2 = 0.1, let us consider the parametric Lyapunov

function based approach and compare the results with those obtained by using the fixed Lyapunov

function based approach. For the parametric Lyapunov function based approach, a feasible solution

is obtained with cσ = 0.9. The values of feedback gain matrices Ki = [K1i K2i K3i K4i] for these

cases are shown in Table 4.1. The parameters of the parametric Lyapunov function are given below:

P 0 =




0.1814 ∗ ∗ ∗
1.6846 23.09 ∗ ∗
−0.6131 −9.4643 4.2464 ∗
−0.1211 −1.873 0.8597 0.263




, P 1 = 10−6 ×




−0.743 ∗ ∗ ∗
−7.247 25.319 ∗ ∗
3.6347 20.19 93.15 ∗
0.5971 −0.992 10.07 5004




P 2 =




0.0202 ∗ ∗ ∗
0.2603 3.0825 ∗ ∗
−0.0986 −1.3846 0.6414 ∗
−0.0196 −0.2604 0.12 0.0191




The trajectories of the state variables x(t) for both the fixed and parametric Lyapunov function

based controller with an initial condition x(0) = [0.8 0.1 − 0.1 − 0.5]T are shown in Fig. 4.4. In

Fig. 4.5, the corresponding control inputs u(t) are plotted. In this example with the proposed design

method based on parametric Lyapunov function, the controller design shows feasible solution with

10% of the uncertainties considered in Step 3 (Algorithm 4.2). The time taken in the final iteration

with the feasible solution is 92.64 sec on a Pentium 4 processor with 2GB RAM.

It is observed in Fig. 4.5 that the control signal is very high in the case of the design with fixed

Lyapunov function. This high gain is due to the conservatism existing in the fixed Lyapunov function

based design. A large magnitude in the control effort can be seen in the transient region which is
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Fig. 4.4: Trajectories of state variables x(t) with parametric Lyapunov function based approach
(solid line) and fixed Lyapunov function based approach (dotted line) [2] for γ2 = 0.1.
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Fig. 4.5: Control input u(t) with parametric Lyapunov function based approach (solid line) and fixed
Lyapunov function based approach (dotted line) [2] for γ2 = 0.1.
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undesirable for the actuator and it can be seen in the initial portion of the simulation results. It

is to be noted that the gain can be reduced by adjusting the desired performance measure (with a

high value of γ2). Hence the effect of conservatism will reduce the freedom in choosing the desired

performance measure while designing the controller.

For both the above cases of fixed and parametric Lyapunov function based approaches, the

constants a1 and a2 are chosen as 0.001 and 100 respectively and the controller is designed with

the minimum possible disturbance attenuation level γ2. In the parametric Lyapunov function based

approach, the minimum value of γ2 for which the H∞ controller exists is found as γ2 = 0.076,

whereas, in the case of fixed Lyapunov function based approach, it is found to be γ2 = 0.087. Hence,

it is clear that the parametric Lyapunov function based approach is less conservative than the fixed

Lyapunov function based approach.

4.5.2 Robust H∞ Tracking Control

The problem of balancing an inverted pendulum is considered in this subsection to demonstrate the

results obtained by using a robust H∞ tracking controller. Let us consider the nonlinear equation

representing the equation of motion of an inverted pendulum on a cart given in [66,93]. The equation

of motion with an external disturbance w(t) is given by

ẋ1(t) = x2(t)

ẋ2(t) =
gr sin (x1(t))− amlx2

2(t) sin (2x1(t))/2− ηa cos (x1(t))u(t)
4l/3− aml cos2 (x1(t))

+ w(t)

y(t) = x1(t). (4.81)

Here x1(t) and x2(t) represent the angular displacement about the vertical axis (in rad) and the

angular velocity (in rad/sec) respectively, gr = 9.8 m/s2 is the acceleration due to gravity, a =

1/(m + M), m = 2 kg is the mass of the pendulum, M = 8 kg is the mass of the cart, 2l = 1 m is

the length of the pendulum, η = 1000 is a constant and u(t) is the force applied on the cart (in kN).

Here the external disturbance is assumed to be w(t) = (5 sin(3t)/(t + 0.1))2.

The operating domain is considered as x1(t) ∈ [−75π/180 75π/180], x2(t) ∈ [−6 6] and the

input u(t) ∈ [−1000 1000]. The two rule fuzzy model is given by [93]:

Plant rule i:

IF x1 is about Ni THEN

ẋ(t) = Ai(θ)x(t) + Bi(θ)u(t) + Diw(t)
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y(t) = Cix(t),

where N1 = cos(x1), N2 = 1− cos(x1). The parameters of matrices A0i and Ali are

A01 =




0 1

g
4l
3
−aml

0


 , A02 =




0 1

2g

π( 4l
3
−amlβ2)

0


 ,

B01 =




0

−ηa
4l
3
−aml


 , B02 =




0

−ηaβ
4l
3
−amlβ2


 ,

A1i =




0 0

4.6757 0


 , A2i =



0 0

0 0.813


 , A3i =



0 0

0 0


 , i = 1, 2

B1i = B2i =



0

0


 , B3i =




0

8.9697


 , Ci =

[
1 0

]
, Di =



0

1


 , i = 1, 2.

For fixed Lyapunov function based design, the uncertain matrices are expressed in the following

form:

∆Ai(t) = M i1∆i1(t)N i11 + M i2∆i2(t)N i12 + M i3∆i3(t)N i13

=



0

1


 d1(t)

[
4.6757 0

]
+



0

1


 d2(t)

[
0 0.813

]
+



0

1


 d3(t)

[
0 0

]
, i = 1, 2

∆Bi(t) = M i1∆i1(t)N i21 + M i2∆i2(t)N i22 + M i3∆i3(t)N i23

=



0

1


 d1(t)

[
0
]

+



0

1


 d2(t)

[
0
]

+



0

1


 d3(t)

[
8.9697

]
, i = 1, 2.
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Fig. 4.6: Trajectories of state variables x(t), reference trajectories xr(t) (solid line) for ρ2 = 0.01
(dashed line), ρ2 = 0.05 (dotted line) and ρ2 = 0.1 (dash–dotted line).

The rate of variation of uncertain terms θ̇l, (l = 1, ..., L) are assumed to be within the extremal
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Fig. 4.7: Tracking error e(t) for ρ2 = 0.01 (dashed line), ρ2 = 0.05 (dotted line) and ρ2 = 0.1
(dash–dotted line).
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Fig. 4.8: Control input u(t) for ρ2 = 0.01 (dashed line), ρ2 = 0.05 (dotted line) and ρ2 = 0.1
(dash–dotted line).
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values of −4 and 4. Similar to [66], the following reference model and reference input are considered:


ẋr1(t)

ẋr2(t)


 =




0 1

−4 −3






xr1(t)

xr2(t)


 +




0

5 sin (t)


 . (4.82)

0 5 10 15

−1

−0.5

0

0.5

1

time (sec)

x
1
(t

),
x

r
1
(t

)
(r

ad
)

0 5 10 15
−4

−3

−2

−1

0

1

time (sec)
x

2
(t

),
x

r
2
(t

)(
ra

d
/
se

c)

Fig. 4.9: Trajectories of state variables x(t), reference trajectories xr(t) (solid line) for ρ2 = 0.05
with parametric Lyapunov function based approach (dashed line) and fixed Lyapunov function based
approach (dotted line).
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Fig. 4.10: Tracking error e(t) for ρ2 = 0.05 with parametric Lyapunov function based approach
(dashed line) and fixed Lyapunov function based approach (dotted line).

With Q = 100I, the H∞ tracking controller is designed for different values of ρ2 with the concept

presented in Section 4.4.2. The trajectories of the state variable x(t) and the error e(t) are shown

in Figs. 4.6 and 4.7, for different disturbance attenuation levels ρ2 = 0.01, ρ2 = 0.05 and ρ2 = 0.1.

The corresponding control inputs u(t) are plotted in Fig. 4.8.

Let us next consider the parametric Lyapunov function based approach and compare the results

with those obtained using fixed Lyapunov function based approach. With Q = 100I and ρ2 = 0.05,

a feasible solution is obtained with ce = 1, and hence the parametric Lyapunov function based

approach is less conservative than the fixed Lyapunov function based approach. The parameters
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Fig. 4.11: Control input u(t) for ρ2 = 0.05 with parametric Lyapunov function based approach
(dashed line) and fixed Lyapunov function based approach (dotted line).

Table. 4.2: Parameters of feedback gain matrices for H∞ tracking control with ρ2 = 0.05 (for the
example in Section 4.5.2)

Parametric Lyapunov Fixed Lyapunov
function based approach function based approach

K11i K21i K12i K22i K11i K21i K12i K22i

i = 1 10.139 2.4517 0.1307 0.0123 58.624 27.700 0.2215 0.2055
i = 2 9.3189 3.0388 0.2819 0.0627 63.365 29.703 0.4579 0.2542
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of the feedback gain matrices K1i = [K11i K21i] and K2i = [K12i K22i] obtained for both fixed

and parametric Lyapunov function based approaches are shown in Table 4.2. The parameters of

parametric Lyapunov function are shown below:

P 0 =




791.26 ∗ ∗ ∗
2.5845 0.9442 ∗ ∗
−0.4872 0.0088 0.3973 ∗
1.7213 0.00528 0.0843 0.1047




, P 1 =




−19.747 ∗ ∗ ∗
−0.00658 0 ∗ ∗
−1.6611 −0.00658 0.01407 ∗
0.03455 0 −0.00262 0.00297




P 2 =




4.9563 ∗ ∗ ∗
0 −0.00216 ∗ ∗

−0.3686 0 −0.0002 ∗
−0.4591 −0.00216 −0.00024 −0.00103




, P 3 =




−119.09 ∗ ∗ ∗
0 0 ∗ ∗

−0.8038 0 0.0155 ∗
−0.3571 0 −0.0014 0.001275




In the case of parametric Lyapunov function based approach, the time taken in the final iteration

with feasible solution is 272.6 sec on a Pentium 4 processor with 2GB RAM. The state and reference

trajectories with the initial condition x(0) = [π/3 0]T and xr(0) = [0 0]T are shown in Fig. 4.9

for both fixed and parametric Lyapunov function based approaches. The corresponding tracking

error plots are shown in Fig. 4.10. The control efforts u(t) for both fixed and parametric Lyapunov

function based approach are shown in Fig. 4.11.

As in the previous example, the magnitude of the feedback gain is very high in the fixed Lyapunov

function based approach and the effect of this high gain can be observed in the control input (transient

region in Fig. 4.11). The high gain is due to the conservatism existing in the fixed Lyapunov function

based approach.

For both the above cases of fixed and parametric Lyapunov function based approaches, the

constants a1 and a2 are chosen as 0.001 and 10 respectively. In the parametric Lyapunov function

based approach, the minimum possible value of disturbance attenuation level ρ2 for which the H∞

controller exists is ρ2 = 0.01. In the case of fixed Lyapunov function based approach this condition

is attained for ρ2 = 0.0326. Hence, it is clear that the parametric Lyapunov function based approach

shows less conservative results than the fixed Lyapunov function based approach.

The parametric Lyapunov function based approach proposed in this chapter produces less con-

servative results than the fixed Lyapunov function based approach for fuzzy systems with uncertain

parameters. In the piecewise quadratic Lyapunov function based approach [67, 68, 73, 83] or fuzzy

Lyapunov function based approach [74,75,79,84], conservatism is reduced by varying the Lyapunov
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function across different regions. But in our proposed approach, conservatism is reduced by vary-

ing the Lyapunov function with respect to the uncertainties. Hence the proposed method is more

suitable for fuzzy systems with large uncertainties.

4.6 Summary

This chapter has examined the problem of stabilizing an uncertain nonlinear system represented by

its fuzzy model by using a fuzzy state feedback controller. An uncertain nonlinear system is first

represented by a T-S fuzzy model. Then based on a parametric Lyapunov function based approach,

a technique for designing a fuzzy state feedback control law is developed which guarantees stability

over the entire range of uncertainties. In contrast to the result based on fixed Lyapunov function,

the parametric Lyapunov function based approach shows less conservative result. Using the results

of basic stabilization conditions, robust H∞ controller design methods are presented for stabilization

and tracking control problems. Finally, design examples of fuzzy controllers satisfying the H∞

performance for stabilization and tracking control are presented. The advantage of the proposed

parametric Lyapunov function based controller design method over the fixed Lyapunov function

based design is that the proposed parametric Lyapunov function based method is less conservative,

thereby admitting a wider range of uncertainties.
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Chapter 5

Robust H∞ Tracking Control for

Uncertain Fuzzy Descriptor Systems

5.1 Introduction

In the robust control approaches discussed in previous chapters, a T-S fuzzy model is employed,

where its consequent parts are represented by linear state-space systems. The descriptor system [8],

which differs from a state-space representation describes a wider class of systems and it can be found

in certain mechanical and electrical systems [8]. The ordinary T-S model is a special case of the

descriptor fuzzy model. The advantage of choosing the descriptor representation over the state-

space model is that the number of LMI conditions for designing the controller can be reduced for

certain problems [86, 87]. Compared with the state-space based system representation, descriptor

representation has more complicated structure and hence the controller design is also more complex.

In recent years, considerable work has been done involving stability analysis, stabilization control,

H∞ stabilization and model following control for fuzzy descriptor systems [86, 87, 89]. The need for

such control techniques arises primarily from the increased practical interest for a more general

system description which takes the intrinsic physical system model structure into account. Besides,

the standard state-space system problem is a special case of descriptor systems formulations and

therefore can be solved reliably by using descriptor system computational techniques.

A model following control is considered in [86] and observer based H∞ tracking control problem

is considered in [87]. For a state feedback H∞ tracking control problem, the approach in [87] will

yield the conditions in terms of bilinear matrix inequalities which are usually solved by a two step

algorithm. With the approach in [87], the sufficient conditions for designing a state feedback con-

troller cannot be framed as LMIs. Hence in this chapter, an LMI formulation of design conditions

97



Chapter 5 Robust H∞ Tracking Control for Uncertain Fuzzy Descriptor Systems

using fixed Lyapunov function is considered for a model reference trajectory tracking problem having

H∞ performance criteria. Next these results are combined with the concepts presented in the pre-

vious chapter (Chapter 4) and parametric Lyapunov function based design for controlling uncertain

descriptor fuzzy systems is proposed here.

5.2 T-S Fuzzy Descriptor System

This section starts with introduction to T-S fuzzy model and then H∞ tracking control problem is

formulated.

The continuous fuzzy model proposed by Takagi and Sugeno [22] represents the dynamics of

a nonlinear system using fuzzy IF-THEN rules. Let us consider the descriptor fuzzy model of a

nonlinear system in the following form:

Plant rule:

IF ze
1(t) is N e

k1,..., ze
pk(t) is N e

kpk and z1(t) is Ni1,...,zp(t) is Nip THEN

Ekẋ(t) = Aix(t) + Biu(t)

y(t) = Cix(t), i = 1, 2, ..., r, k = 1, 2, ..., re (5.1)

where z1(t), ..., zp(t) are premise variables, p is the number of premise variables, N e
kj (j = 1...pk),

Nij (j = 1...p) are the fuzzy sets and r is the number of rules. Here, x(t) ∈ Rn×1 is the state vector,

y(t) ∈ Rny×1 is the controlled output and u(t) ∈ Rm×1 is the input vector. Ai ∈ Rn×n, Bi ∈ Rn×m,

Ci ∈ Rny×n and Ek ∈ Rn×n are constant real matrices.

Given a pair of input and output (x(t), u(t)), the final output of the fuzzy system is inferred as

follows:
re∑

k=1

µe
k(z(t))Ekẋ(t) =

r∑

i=1

µi(z(t))
{
Aix(t) + Biu(t) + Diw(t)

}

y(t) =
r∑

i=1

µi(z(t))Cix(t) (5.2)

where

µi(z(t)) =
ζi(z(t))∑r

j=1 ζj(z(t))
, ζi(z(t)) =

p∏

j=1

Nij(zj(t))

µe
k(z(t)) =

ζe
k(ze(t))∑re

j=1 ζe
j (ze(t))

, ζe
k(ze(t)) =

pe∏

j=1

N e
kj(z

e
j (t))

and Nij(zj(t)), N e
kj(z

e
j (t)) are the degrees of membership of zj(t) and ze

j (t) in the fuzzy set Nij and
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N e
kj respectively. Here

∑r
i=1 µi(z(t)) = 1 and

∑re
k=1 µk(z(t)) = 1.

Let us consider a reference model as follows [92]:

ẋr(t) = Arxr(t) + Drr(t) (5.3)

where xr(t) is the reference state, Ar is a specific asymptotically stable matrix, r(t) is a bounded

reference input.

The tracking error is defined as

e(t) = x(t)− xr(t) (5.4)

Let us consider the H∞ tracking performance related to the tracking error e(t) as follows [66]:
∫ tf

0
eT (t)Qe(t)dt ≤ ρ2

∫ tf

0
wT (t)w(t)dt (5.5)

where Q is a positive definite weight matrix, tf is the terminal time of control and ρ is the prescribed

disturbance attenuation level.

Let us consider the Parallel Distributed Compensation(PDC) fuzzy controller [8],

u(t) =
r∑

i=1

re∑

k=1

µiµk(K1ike(t) + K2ikxr(t)). (5.6)

where K1ik and K2ik are the controller gains. A fuzzy controller is to be designed with the feed-

back gains K1ik and K2ik (i = 1, ..., r, k = 1, ..., re) such that the resulting closed-loop system is

asymptotically stable and also satisfies the H∞ performance criterion given in (5.5).

Combining (5.2) and (5.3), the augmented system can be expressed as

E∗ẋ∗(t) =
r∑

i=1

re∑

k=1

µiµk

{
A∗

ikx
∗(t) + B∗

i u(t) + D∗
i w

∗(t)
}

(5.7)

where

x∗(t) =




e(t)

xr(t)

ė(t)




, w∗(t) =




w(t)

r(t)


 , E∗ =




I 0 0

0 I 0

0 0 0




A∗
ik =




0 0 I

0 Ar 0

Ai (Ai −EkAr) −Ek




, B∗
i =




0

0

Bi




, D∗
i =




0 0

0 Dr

Di −EkDr



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5.3 H∞ Trajectory Tracking Control

For the augmented system represented by (5.7), the result of the H∞ trajectory tracking control is

summarized in the following theorem, followed by the proof.

Theorem 5.1. Let us consider the fuzzy descriptor system (5.2) with the control law (5.6). If there

exist certain matrices X11, X21, X22, X31, X32, X33 and W 1jk, W 2jk (j = 1, ..., r, k = 1, ..., re)

such that the following matrix inequalities are satisfied

S = ST > 0 (5.8)

φiik < 0, i = 1, 2, . . . , r, k = 1, 2, . . . , re (5.9)

1
r − 1

φijk +
1
2
(φijk + φjik) < 0, 1 ≤ i 6= j ≤ r, k = 1, 2, . . . , re (5.10)

where

S =



X11 XT

21

X21 X22




φijk =




H11 ∗ ∗ ∗ ∗ ∗
H21 H22 ∗ ∗ ∗ ∗
H31

ijk H32
ijk H33

k ∗ ∗ ∗
0 0 DT

i −ρ2I ∗ ∗
0 DT

r −DT
r ET

k 0 −ρ2I ∗
X11 XT

21 0 0 0 −Q−1




H11 = XT
31 + (∗)

H21 = XT
32 + ArX21

H22 = ArX22 + (∗)

H31
ijk = XT

33 + AiX11 + (Ai −EkAr)X21 −EkX31 + BiW 1jk

H32
ijk = AiX

T
21 + (Ai −EkAr)X22 −EkX32 + BiW 2jk

H33
k = −XT

33E
T
k − (∗)

then the closed loop system with the controller gain matrices [K1jk K2jk] = [W 1jk W 2jk] ×
[X11 XT

21;X21 X22]−1 satisfy the given H∞ performance criteria.
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Proof: Let us consider a candidate of Lyapunov function

V (t) = x∗T (t)E∗T X−1x∗(t) (5.11)

where

X =




X11 XT
21 0

X21 X22 0

X31 X32 X33




and

E∗T X−1 = X−T E∗ ≥ 0

Applying Lemma A.1 (Appendix) to the conditions in Theorem 5.1, if the inequalities in (5.9)

and (5.10) are satisfied then
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµkφijk < 0 (5.12)

The above inequality can be written as

r∑

i=1

r∑

j=1

re∑

k=1

µiµjµk



XT ΩijkX + XT Q∗X ∗

D∗T
i −ρ2I


 < 0 (5.13)

where Ωijk = (A∗
ik + B∗

i K
∗
jk)

T X−1 + (∗) and Q∗ = block diag{Q,0,0}.
Pre-multiplying and post multiplying the above inequality by block diag[X−T ,0] and block

diag[X−1,0], the following parameterized matrix inequality is obtained

r∑

i=1

r∑

j=1

re∑

k=1

µiµjµk



Ωijk + Q∗ ∗
D∗T

i X−1 −ρ2I


 < 0 (5.14)

Let us consider the candidate of Lyapunov function (5.11)

V (t) = x∗T (t)E∗T X−1x∗(t) (5.15)

Let K∗
ik = [K1ik K2ik 0]. Then from the derivative of the Lyapunov function, it follows that

V̇ (t) + x∗T (t)Q∗x∗(t)− ρ2w∗T (t)w∗(t)

=
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµk

{
x∗T (t)

(
(A∗

ik + B∗
i K

∗
jk)

T X−1 + (∗) + Q∗
)
x∗(t)

}
+x∗T (t)X−T D∗

i w
∗(t)

+w∗T (t)D∗T
i X−1x∗(t)− ρ2w∗T (t)w∗(t) (5.16)

=
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµk

[
x∗T (t) w∗T (t)

]


Ωijk + Q∗ ∗
D∗T

i X−1 −ρ2I







x∗(t)

w∗(t)


 (5.17)
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From (5.17) and (5.14), the following inequality is obtained

V̇ (t) + x∗T (t)Q∗x∗(t)− ρ2w∗T (t)w∗(t) < 0 (5.18)

Integrating the above inequality from 0 to ∞ on both sides, yields

V (∞)− V (0) +
∫ ∞

0
(x∗T (t)Q∗x∗(t)− ρ2w∗T (t)w∗(t))dt < 0 (5.19)

With zero initial condition, V (0) = 0 and hence
∫ ∞

0
x∗T (t)Q∗x∗(t)dt <

∫ ∞

0
ρ2w∗T (t)w∗(t)dt (5.20)

∫ ∞

0
eT (t)Qe(t)dt <

∫ ∞

0
ρ2w∗T (t)w∗(t)dt (5.21)

Thus the proof is complete.

5.3.1 Stability Analysis

Let us consider (5.18). If w∗(t) = 0, then V̇ (t) < 0, which implies that the closed loop system is

asymptotically stable.

5.3.2 Common B Matrix case

In this subsection, the common B matrix case is considered, where Bi = B (i = 1, 2, ..., r). The

LMI conditions for designing the controller are given by the following Theorem.

Theorem 5.2. Let us consider the fuzzy descriptor system (5.2) with the control law (5.6). If there

exist some matrices X11, X21, X22, X31, X32, X33 and W 1ik, W 2ik (i = 1, ..., r, k = 1, ..., re) such

that the following matrix inequalities are satisfied

S = ST > 0 (5.22)




M11 ∗ ∗ ∗ ∗ ∗
M21 M22 ∗ ∗ ∗ ∗
M31 M32 M33 ∗ ∗ ∗
0 0 DT

i −ρ2I ∗ ∗
0 DT

r −DT
r ET

k 0 −ρ2I ∗
X11 XT

21 0 0 0 −Q−1




< 0, i = i, ..., r, k = 1, ..., re
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where

S =



X11 XT

21

X21 X22




M11 = XT
31 + (∗)

M21 = XT
32 + ArX21

M22 = ArX22 + (∗)

M31 = XT
33 + AiX11 + (Ai −EkAr)X21 −EkX31 + BW 1ik

M32 = AiX
T
21 + (Ai −EkAr)X22 −EkX32 + BW 2ik

M33 = −XT
33E

T
k − (∗)

then the closed loop system with the controller gain matrices [K1ik K2ik] = [W 1ik W 2ik] ×
[X11 XT

21;X21 X22]−1 satisfy the given H∞ performance criteria.

In this case, the LMI conditions for controller design are simpler and number of LMI conditions

is also less than that of the general case.

5.3.3 Simulation Results

Let us consider the simple nonlinear system presented in [86] with some external disturbance. The

system is represented by

(1 + a cos(θ(t)))θ̈(t) = −bθ̇3(t) + cθ(t) + du(t) + 0.1w(t) (5.23)

where a = 0.2, b = 1, c = −1, d = 10, w(t) = sin (5t) and the range of θ̇(t) is |θ̇(t)| < φ, φ = 4. This

descriptor fuzzy model is given by [86]
2∑

k=1

µe
k(z(t))Ekẋ(t) =

2∑

i=1

µi(z(t))
{
Aix(t) + Biu(t) + Diw(t)

}

y(t) =
2∑

i=1

µi(z(t))Cix(t) (5.24)

where x(t) = [x1(t) x2(t)]T = [θ(t) θ̇(t)]T . The parameters of the constant matrices are

E1 =



1 0

0 1 + a


 , E2 =



1 0

0 1− a


 ,

A1 =



0 1

c −b · φ2


 , A2 =



0 1

c 0


 , B1 = B2 =



0

d


 , Di =




0

0.1


 , i = 1, 2
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Fig. 5.1: Trajectories of state variables x(t) (dashed line) and the reference trajectories xr(t) (solid
line).

µ1(x2(t)) =
x2

2(t)
2

, µ2(x2(t)) = 1− x2
2(t)
2

,

µe
1(x1(t)) =

1 + cos(x1(t))
2

, µe
2(x1(t)) =

1− cos(x1(t))
2

.

The following reference model and reference input are considered:


ẋr1

ẋr2


 =




0 1

−2 −3






xr1

xr2


 +




0

2 sin (t/2)


 .

The H∞ tracking controller is designed by solving the LMI conditions in Theorem 5.2. With

Q = 0.1I and ρ2 = 0.01, the parameters of Lyapunov function and the feedback gain matrices K1ik,

K2ik obtained are given below:

X11 =




3.6783 −9.2633

−9.2633 109.4131


 , X21 =




0.5044 0.9124

−0.5114 −2.8609


 , X22 =




362.01 −71.42

−71.42 227.28


 ,

X31 =



−4.92× 108 112.29

−0.6444 −81775


 , X32 =



1.0239 −2.8364

79.828 −352.48


 , X33 =



4.92× 108 −3.107

−3.1071 81291


 ,
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K111 =
[
−8.5519 −1.7772

]
, K112 =

[
−8.7643 −1.8713

]
,

K121 =
[
−6.9749 −2.7477

]
, K122 =

[
−6.8766 −2.7285

]
,

K211 =
[
−0.0271 1.0333

]
, K212 =

[
−0.0201 1.0119

]
,

K221 =
[
−0.0111 −0.2714

]
, K222 =

[
0.0302 −0.1605

]
.

State and reference trajectories x(t) and xr(t) with the initial condition x(0) = [0.5 0]T and

xr(0) = [0 0]T are shown in Fig. 5.1.

5.4 Uncertain T-S Fuzzy Descriptor System

This section starts with introduction to uncertain T-S descriptor fuzzy model and then the robust

H∞ tracking control problem is formulated.

The continuous fuzzy model proposed by Takagi and Sugeno [22] represents the dynamics of

a nonlinear system using fuzzy IF-THEN rules. Let us consider the descriptor fuzzy model of an

uncertain nonlinear system in the following form:

Plant rule:

IF ze
1(t) is N e

k1, · · · , ze
pk(t) is N e

kpk and z1(t) is Ni1, · · · ,zp(t) is Nip THEN

(Ek(θ) + ∆Ek(t))ẋ(t) = (Ai(θ) + ∆Ai(t))x(t) + (Bi(θ) + ∆Bi(t))u(t) + Diw(t)

y(t) = Cix(t), i = 1, 2, · · · , r, k = 1, 2, · · · , re (5.25)

where Ai(θ) = Ai0 +
∑L

l=1 θl(t)Ail, Bi(θ) = Bi0 +
∑L

l=1 θl(t)Bil, Ek(θ) = Ek0 +
∑L

l=1 θl(t)Ekl,

z1(t), · · · , zp(t) are premise variables, p is the number of premise variables, N e
kj (j = 1...pk), Nij

(j = 1...p) are the fuzzy sets and r is the number of rules. For simplicity θ(t) is denoted as θ. Here,

x(t) ∈ Rn×1 is the state vector, y(t) ∈ Rny×1 is the controlled output and u(t) ∈ Rm×1 is the input

vector. Ai0 ∈ Rn×n, Ail ∈ Rn×n, Bi0 ∈ Rn×m, Bil ∈ Rn×m, Ek0 ∈ Rn×n, Ekl ∈ Rn×n, Ci ∈ Rny×n

are constant real matrices, θl(t) represents time varying parametric uncertainties; ∆Ai(t), ∆Bi(t)

and ∆Ek(t) are time varying matrices of appropriate dimensions, which represent modeling errors.

Given a pair of input and output (x(t), u(t)), the final output of the fuzzy system is inferred as

follows:
re∑

k=1

µe
k(Ek(θ) + ∆Ek(t))ẋ(t) =

r∑

i=1

µi
{
(Ai(θ) + ∆Ai(t))x(t) + (Bi(θ) + ∆Bi(t))u(t) + Diw(t)

}
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y(t) =
r∑

i=1

µiCix(t) (5.26)

where

µi =
ζi(z(t))∑r

j=1 ζj(z(t))
, ζi(z(t)) =

p∏

j=1

Nij(zj(t))

µe
k =

ζe
k(ze(t))∑re

j=1 ζe
j (ze(t))

, ζe
k(ze(t)) =

pe∏

j=1

N e
kj(z

e
j (t))

Nij(zj(t)) and N e
kj(z

e
j (t)) are the degrees of membership of zj(t) and ze

j (t) in the fuzzy set Nij and

N e
kj respectively. Here

∑r
i=1 µi(z(t)) = 1 and

∑re
k=1 µk(z(t)) = 1. For simplicity, µe

k(z(t)) and

µi(z(t)) are represented as µe
k and µi respectively.

The uncertain matrices ∆Ai(t), ∆Bi(t) and ∆Ek(t) are assumed to be norm bounded and are

described by [2]:
[

∆Ai(t) ∆Bi(t)
]

=
La∑

l=1

Ma
il∆

a
il(t)

[
Na

i1l Na
i2l

]
,

∆Ek(t) =
Le∑

l=1

M e
kl∆

e
kl(t)N

e
kl (5.27)

where Ma
il, M e

kl, Na
i1l, Na

i2l and N e
k1l are known real constant matrices of appropriate dimension

and ∆a
il(t), ∆e

il(t) are time varying functions, satisfying |∆a
il(t)| < 1, |∆e

kl(t)| < 1, ∀ t > 0.

Let us consider a reference model and the H∞ performance measure as given in Section 5.2 with

the Parallel Distributed Compensation(PDC) fuzzy controller [8],

u(t) =
r∑

i=1

re∑

k=1

µiµ
e
k(K1ike(t) + K2ikxr(t)). (5.28)

where K1ik and K2ik are the controller gains. A fuzzy controller is to be designed with the feed-

back gains K1ik and K2ik (i = 1, ..., r, k = 1, ..., re) such that the resulting closed-loop system is

asymptotically stable and also satisfies the H∞ performance given in (5.5).

Combining (5.26) and (5.3) with the control law (5.28), the augmented fuzzy descriptor system

can be expressed as

E∗ẋ∗(t) =
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
k

{
(A∗

ik(θ)+∆A∗
ik(t)+ (B∗

i (θ)+∆B∗
i (t))K

∗
jk)x

∗(t)+D∗
i w

∗(t)
}

(5.29)

where

x∗(t) =




e(t)

xr(t)

ė(t)




, w∗(t) =




w(t)

r(t)


 , A∗

ik(θ) =




0 0 I

0 Ar 0

Ai(θ) Ai(θ)−Ek(θ)Ar −Ek(θ)



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∆A∗
ik(t) =




0 0 0

0 0 0

∆Ai(t) ∆Ai(t)−∆Ek(t)Ar −∆Ek(t)




, B∗
i (θ) =




0

0

Bi(θ)




, ∆B∗
i =




0

0

∆Bi(t)




K∗
jk =

[
K1jk K2jk 0

]
, D∗

ik =




0 0

0 Dr

Di −Ek(θ)Dr




, E∗ =




I 0 0

0 I 0

0 0 0




[
∆A∗

ik(t) ∆B∗
i (t)

]
=

La∑

l=1

Ma∗
il ∆a

il(t)
[

Na∗
i1l Na∗

i2l

]
+

Le∑

l=1

M e∗
kl∆

e
kl(t)N

e∗
kl (5.30)

Ma∗
il =




0

0

Ma
il




, M e∗
kl =




0

0

M e
kl




,

Na∗
i1l =

[
Na

i1l Na
i1l 0

]
, Na∗

i2l = Na
i2l, N e∗

kl =
[

0 N e
kl 0

]

The fuzzy descriptor system (5.29) affinely depends on the parameter vector θ. As in [124]

and [125], the lower and upper bounds of the uncertain parameter and their rates of variation are

assumed to be known. Specifically:

1. Each parameter θl ranges between the known lower bound θl and upper bound θl, i.e.,

θl ∈ [θl θl], (5.31)

2. The rate of variation θ̇l is well defined at all times and satisfies

θ̇l ∈ [vl vl], (5.32)

where vl and vl are known lower and upper bounds of θ̇l

With these assumptions, the parameter vector θl takes values within the hyper-rectangle called

parameter box and the rate vector θ̇l takes values in another hyper-rectangle called rate box. It is

denoted as,

V := {(ν1, ν2, ..., νL)T : νl ∈ {θl θl}}, (5.33)

W := {(ω1, ω2, ..., ωL)T : ωl ∈ {vl vl}}, (5.34)

which are the set of 2L vertices of the parameter box and the rate box respectively.
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5.5 Robust H∞ Tracking Control with Fixed Lyapunov Function

In this section, fixed Lyapunov function based robust H∞ tracking controller design for fuzzy de-

scriptor systems is presented. Let us consider the fixed Lyapunov function in the following form

V (t) = x∗T (t)E∗T X−1x∗(t) (5.35)

where

X =




X11 XT
21 0

X21 X22 0

X31 X32 X33




and

E∗T X−1 = X−T E∗ ≥ 0

Theorem 5.3. Let us consider the fuzzy descriptor system (5.29) with the control law (5.28). If

there exist certain matrices X as defined in (5.35) and W jk (j = 1, ..., r, k = 1, ..., re) such that the

following matrix inequalities are satisfied,

ST = S > 0 (5.36)

φ∗iik(ν) < 0, ∀ ν ∈ V, i = 1, 2, . . . , r, k = 1, 2, . . . , re (5.37)

1
r − 1

φ∗iik(ν) +
1
2
(φ∗ijk(ν) + φ∗jik(ν)) < 0, ∀ ν ∈ V, 1 ≤ i 6= j ≤ r, k = 1, 2, . . . , re (5.38)

where

S =



X11 XT

21

X21 X22




φ∗ijk(ν) =




A11
ijk(ν) ∗ ∗ ∗ ∗ ∗ ∗
D∗T

ik −ρ2I ∗ ∗ ∗ ∗ ∗
Y 0 −Q−1 ∗ ∗ ∗ ∗

A31
i 0 0 −εa

i ∗ ∗ ∗
A41

ijk 0 0 0 −εa
i ∗ ∗

A51
k 0 0 0 0 −εe

k ∗
A61

k 0 0 0 0 0 −εe
k



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A31
i =




εa
i1M

a∗
i1

T

...

εa
iLa

Ma∗
iLa

T




, A41
ijk =




(Na∗
i11X + Na∗

i21W jk)
...

(Na∗
i1La

X + Na∗
i2La

W jk)




,

A51
k =




εe
k1M

e∗
k1

T

...

εe
kLe

M e∗
kLe

T




, A61
k =




N e∗
k1X

...

N e∗
kLe

X




, Y = X

[
I 0 0

]

A11
ijk(ν) = XT A∗T

ik (ν) + W ∗T
jk B∗T

i (ν) + (∗), εa
i = diag(εa

i1, · · · , εa
iLa

), εe
k = diag(εe

k1, · · · , εe
kLe

) and

W ∗
jk = K∗

jkX, then the closed loop system is asymptotically stable and satisfies the given H∞

performance criteria.

Proof: Applying Lemma A.1 (Appendix) to the inequalities in Theorem 5.3, the following parame-

terized inequality is obtained
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
kφ

∗
ijk(ν) < 0, ∀ ν ∈ V (5.39)

If the above inequality is satisfied in the vertices ν of the parameter box V, then the inequality holds

for the range of θ defined in the parameter box [128]. Hence,
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
kφ

∗
ijk(θ) < 0 (5.40)

With (5.27), using the Schur complement Lemma and the inequality Y T Z+ZT Y ≤ Y T Y +ZT Z

given in [66], the matrices related to ∆Ai, ∆Bi and ∆Ek can be rewritten as follows
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
kΥ

∗
ijk(t, θ) < 0 (5.41)

where

Υ∗
ijk(t, θ) =




Ω∗
ijk(t,θ) ∗ ∗
D∗T

i −ρ2I ∗
Y 0 −Q−1




Ω∗
ijk(t,θ) = XT A∗T

ik (θ) + W ∗T
jk B∗T

i (θ) + XT ∆A∗T
ik (t) + W ∗T

jk ∆B∗T
i (t) + (∗)

Again by Schur complement, the above inequality can be expressed as

r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
k



Ω∗

ijk(t, θ) + XT Q∗X ∗
D∗T

i −ρ2I


 < 0 (5.42)

where Q∗ = diag(Q,0,0).
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Pre-multiplying (5.42) by diag(X−T , I) and post-multiplying by diag(X−1, I) yields,

r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
k



X−T Ω∗

ijk(t,θ)X−1 + Q∗ ∗
D∗T

i X−1 −ρ2I


 < 0 (5.43)

Let us consider a candidate of Lyapunov function V (t) = x∗(t)E∗T X−1x∗(t). Then from the

derivative of V (t), it follows,

V̇ (t) + x∗T (t)Q∗x∗(t)− ρ2w∗T (t)w∗(t)

=
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
k

{
x∗T (t)

(
X−T Ω∗

ijk(t, θ)X−1 + Q∗
)
x∗(t)

}
+x∗T (t)X−T D∗

i w
∗(t)

+w∗T (t)D∗T
i X−1x∗(t)− ρ2w∗T (t)w∗(t) (5.44)

=
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµk

[
x∗T (t) w∗T (t)

]


X−T Ω∗

ijk(t,θ)X−1 + Q∗ ∗
D∗T

i X−1 −ρ2I







x∗(t)

w∗(t)


 (5.45)

From (5.43) and (5.45), the following inequality can be obtained,

V̇ (t) + x∗T (t)Q∗x∗(t)− ρ2w∗T (t)w∗(t) < 0 (5.46)

Integrating the above inequality from 0 to ∞, yields

V (∞)− V (0) +
∫ ∞

0
(x∗T (t)Q∗x∗(t)− ρ2w∗T (t)w∗(t))dt < 0 (5.47)

With zero initial condition, V (0) = 0 and hence
∫ ∞

0
x∗T (t)Q∗x∗(t)dt <

∫ ∞

0
ρ2w∗T (t)w∗(t)dt (5.48)

∫ ∞

0
eT (t)Qe(t)dt <

∫ ∞

0
ρ2w∗T (t)w∗(t)dt (5.49)

Thus the proof is complete.

5.5.1 Special cases

In this subsection, some special cases are considered and the condition for designing the controller

for these cases are presented. When B1(θ) = B2(θ) = · · · = Br(θ) and ∆B = 0, the conditions for

controller design can be simplified as given below in Theorem 5.4.

Theorem 5.4. Let us consider the fuzzy descriptor system (5.29) with Bi(θ) = B(θ) (i = 1, . . . , r)

and ∆B = 0 and the control law given by (5.28). If there exist some matrices X as defined in (5.35)

and W ∗
ik (i = 1, · · · , r, k = 1, · · · , re) such that the following matrix inequalities are satisfied

ST = S > 0 (5.50)

φ∗ik(ν) < 0, ∀ ν ∈ V, i = 1, 2, · · · , r, k = 1, 2, . . . , re (5.51)
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where

S =



X11 XT

21

X21 X22




φ∗ik(ν) =




A11
ik (ν) ∗ ∗ ∗ ∗ ∗ ∗
D∗T

ik −ρ2I ∗ ∗ ∗ ∗ ∗
Y 0 −Q−1 ∗ ∗ ∗ ∗

A31
i 0 0 −εa

i ∗ ∗ ∗
A41

ik 0 0 0 −εa
i ∗ ∗

A51
k 0 0 0 0 −εe

k ∗
A61

k 0 0 0 0 0 −εe
k




A31
i =




εa
i1M

a∗
i1

T

...

εa
iLa

Ma∗
iLa

T




, A41
ik =




Na∗
i11X

...

Na∗
i1La

X




, A51
k =




εe
k1M

e∗
k1

T

...

εe
kLe

M e∗
kLe

T




, A61
k =




N e∗
k1X

...

N e∗
kLe

X




,

Y = X

[
I 0 0

]

A11
ik (ν) = XT A∗T

ik (ν) + W ∗T
ik B∗T (ν) + (∗), εa

i = diag(εa
i1, · · · , εa

iLa
), εe

k = diag(εe
k1, · · · , εe

kLe
) and

W ∗
jk = K∗

jkX, then the closed loop system is asymptotically stable and satisfies the given H∞

performance criteria.

Next the special case, where µi(z(t)) = µe
k(z(t)) and r = re is considered. In this case, the H∞

controller design can be simplified as given in Theorem 5.5.

Theorem 5.5. Let us consider the fuzzy descriptor system (5.29) with the special case µi(z(t)) =

µe
k(z(t)), r = re and the control law given by (5.28). If there exist certain matrices X as defined in

(5.35) and W ∗
j (j = 1, ..., r) such that the following matrix inequalities are satisfied

ST = S > 0 (5.52)

φ∗ii(ν) < 0, ∀ ν ∈ V, i = 1, 2, . . . , r (5.53)

1
r − 1

φ∗ii(ν) +
1
2
(φ∗ij(ν) + φ∗ji(ν)) < 0, ∀ ν ∈ V, 1 ≤ i 6= j ≤ r (5.54)

where

S =



X11 XT

21

X21 X22



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φ∗ij(ν) =




A11
ij (ν) ∗ ∗ ∗ ∗ ∗ ∗
D∗T

i −ρ2I ∗ ∗ ∗ ∗ ∗
Y 0 −Q−1 ∗ ∗ ∗ ∗

A31
i 0 0 −εa

i ∗ ∗ ∗
A41

ij 0 0 0 −εa
i ∗ ∗

A51
i 0 0 0 0 −εe

i ∗
A61

i 0 0 0 0 0 −εe
i




A31
i =




εa
i1M

a∗
i1

T

...

εa
iLa

Ma∗
iLa

T




, A41
ij =




Na∗
i11X + Na∗

i21W j

...

Na∗
i1La

X + Na∗
i2La

W j)




,

A51
i =




εe
i1M

e∗
i1

T

...

εe
iLe

M e∗
iLe

T




, A61
i =




N e∗
i1X

...

N e∗
iLe

X




, Y = X

[
I 0 0

]

A11
ij (ν) = XT A∗T

i (ν) + W ∗T
j B∗T

i (ν) + (∗), εa
i = diag(εa

i1, · · · , εa
iLa

), εe
i = diag(εe

i1, · · · , εe
iLe

) and

W ∗
j = K∗

jX, then the closed loop system is asymptotically stable and satisfies the given H∞

performance criteria.

When B1(θ) = B2(θ) = · · · = Br(θ), ∆B = 0, µi(z(t)) = µe
k(z(t)) and r = re, the conditions in

Theorem 5.3 can be simplified as in Theorem 5.6 given below.

Theorem 5.6. Let us consider the fuzzy descriptor system (5.29) (special case with Bi(θ) = B(θ)

(i = 1, . . . , r), ∆B = 0, µi(z(t)) = µe
k(z(t)) and r = re) with the control law given by (5.28). If there

exist certain matrices X as defined in (5.35) and W ∗
i (i = 1, ..., r) such that the following matrix

inequalities are satisfied

ST = S > 0 (5.55)

φ∗i (ν) < 0, ∀ ν ∈ V, i = 1, 2, . . . , r (5.56)

where

S =



X11 XT

21

X21 X22



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φ∗i (ν) =




A11
i (ν) ∗ ∗ ∗ ∗ ∗ ∗
D∗T

i −ρ2I ∗ ∗ ∗ ∗ ∗
Y 0 −Q−1 ∗ ∗ ∗ ∗

A31
i 0 0 −εa

i ∗ ∗ ∗
A41

i 0 0 0 −εa
i ∗ ∗

A51
i 0 0 0 0 −εe

i ∗
A61

i 0 0 0 0 0 −εe
i




A31
i =




εa
i1M

a∗
i1

T

...

εa
iLa

Ma∗
iLa

T




, A41
i =




Na∗
i11X

...

Na∗
i1La

X




, A51
i =




εe
i1M

e∗
i1

T

...

εe
iLe

M e∗
iLe

T




, A61
i =




N e∗
i1Y

...

N e∗
iLe

Y




,

Y = X

[
I 0 0

]

A11
i (ν) = XT A∗T

i (ν) + W ∗T
i B∗T (ν) + (∗), εa

i = diag(εa
i1, · · · , εa

iLa
), εe

i = diag(εe
i1, · · · , εe

iLe
) and

W ∗
i = K∗

i X, then the closed loop system is asymptotically stable and satisfies the given H∞

performance criteria.

5.6 Robust H∞ Tracking Control with Parametric Lyapunov Func-

tion

In this section, the robust H∞ tracking controller design for uncertain descriptor fuzzy systems is

discussed.

Let us consider a parametric Lyapunov function in the following form

V (t,θ) = x∗T (t)E∗T X−1(θ)x∗(t) (5.57)

where

E∗T X−1(θ) = X−T (θ)E∗ ≥ 0

X(θ) = X0 +
L∑

i=1

θlX l

and

X0 =




X011 XT
021 0

X021 X022 0

X031 X032 X033




, X l =




X l11 XT
l21 0

X l21 X l22 0

X l31 X l32 X l33



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For the uncertain descriptor system represented by (5.29), the result for H∞ tracking control

problem with parametric Lyapunov function (5.57) is summarized in the following theorem, followed

by the proof.

Theorem 5.7. Let us consider the uncertain fuzzy descriptor system represented by (5.29) with the

PDC control law (5.28). For a given disturbance attenuation level ρ2, if there exist certain matrices

X0, X l, (l = 1, ..., L) as defined in (5.57) and certain matrices K∗
jk, (j = 1, ..., r, k = 1, ..., re) such

that

ST (ν) = S(ν) > 0, ∀ ν ∈ V (5.58)

Γ∗iik(ν,ω) < 0, ∀ (ν, ω) ∈ V ×W,

i = 1, 2, · · · , r, k = 1, 2, · · · , re (5.59)

1
r − 1

Γ∗iik(ν, ω) +
1
2
(Γ∗ijk(ν, ω) + Γ∗jik(ν,ω)) < 0, ∀ (ν, ω) ∈ V ×W,

1 ≤ i 6= j ≤ r, k = 1, 2, · · · , re (5.60)

Π∗
liik ≥ 0, l = 1, ..., L,

i = 1, 2, . . . , r, k = 1, 2, · · · , re (5.61)

1
r − 1

Π∗
liik +

1
2
(Π∗

lijk + Π∗
ljik) ≥ 0, l = 1, ..., L,

1 ≤ i 6= j ≤ r, k = 1, 2, · · · , re (5.62)

where

S(ν) =



X11(ν) XT

21(ν)

X21(ν) X22(ν)




Γ∗ijk(ν, ω) =




Λ∗
ijk(ν, ω) ∗ ∗ ∗ ∗ ∗ ∗
D∗T

ik −ρ2I ∗ ∗ ∗ ∗ ∗
Y(ν) 0 −Q−1 ∗ ∗ ∗ ∗
A31

i 0 0 −εa
i ∗ ∗ ∗

A41
ijk(ν) 0 0 0 −εa

i ∗ ∗
A51

k 0 0 0 0 −εe
k ∗

A61
k (ν) 0 0 0 0 0 −εe

k




,
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A31
i =




εa
i1M

a∗
i1

T

...

εa
iLa

Ma∗
iLa

T




, A41
ijk =




Na∗
i11X(ν) + Na∗

i21W jk

...

Na∗
i1La

X(ν) + Na∗
i2La

W jk




,

A51
k =




εe
k1M

e∗
k1

T

...

εe
kLe

M e∗
kLe

T




, A61
k =




N e∗
k1X(ν)

...

N e∗
kLe

X(ν)




, Y(ν) = X(ν)
[

I 0 0
]

Λ∗
ijk(ν, ω) = XT (ν)(A∗

i (ν)+B∗
i (ν)K∗

jk)
T +(∗)−E∗(X(ω)−X0), Π∗

lijk = XT
l (A∗

il+B∗
ilK

∗
jk)

T +(∗),
εa
i = diag(εa

i1, · · · , εa
iLa

) and εe
k = diag(εe

k1, · · · , εe
kLe

) then the H∞ performance given by (5.5) is

guaranteed for the overall fuzzy system.

Proof: Let us consider the inequalities (5.59) to (5.62) given in Theorem 5.7. By the multi-convexity

concept explained in [124], if these inequalities are satisfied in the corners defined by the rate box V
and the parameter box W then it will hold for all values of θ, θ̇ inside the parameter box V and rate

box W. Hence,

Γ∗iik(θ, θ̇) < 0, i = 1, 2, · · · , r, k = 1, 2, · · · , re (5.63)

1
r − 1

Γ∗iik(θ, θ̇) +
1
2
(Γ∗ijk(θ, θ̇) + Γ∗jik(θ, θ̇) < 0, 1 ≤ i 6= j ≤ r, k = 1, 2, · · · , re (5.64)

By applying Lemma A.1 (Appendix) to the above inequality, the following parameterized in-

equality is obtained
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
kΓ
∗
ijk(θ, θ̇) < 0 (5.65)

With (5.27), applying Schur complement and using the inequality Y T Z + ZT Y ≤ Y T Y + ZT Z

given in [66], the above inequality (5.65) can be reduced to

r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
k



Λ̃
∗
ijk(t, θ, θ̇) + XT (θ)Q∗X(θ) ∗

D∗T
ik −ρ2I


 < 0 (5.66)

where

Λ̃
∗
ijk(t,θ, θ̇) = Λ∗

ijk(θ, θ̇) + ∆Λ∗
ijk(t, θ)

Λ∗
ijk(θ, θ̇) = XT (θ)(A∗

i (θ) + B∗
i (θ)K∗

jk)
T + (∗)−E∗(X(θ̇)−X0)

∆Λ∗
ijk(t, θ) = XT (θ)(∆A∗

i (t) + ∆B∗
i (t)K

∗
jk)

T + (∗)
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Pre-multiplying (5.66) by diag(X−T (θ), I) and post-multiplying by diag(X−1(θ), I), gives

r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
k



X−T (θ)Λ̃

∗
ijk(t,θ, θ̇)X−1(θ) + Q∗ ∗
D∗T

ik X−1(θ) −ρ2I


 < 0 (5.67)

Let us consider the parametric Lyapunov function given by (5.57),

V (t, θ) = x∗T (t)E∗T X−1(θ)x∗(t). (5.68)

The time derivative of V (t, θ) along the trajectory of (5.29) is

V̇ (t, θ) = ẋ∗T (t)E∗T X−1(θ)x∗(t) + x∗T (t)E∗T X−1(θ)ẋ∗(t)

+ x∗T (t)E∗T d

dt
X−1(θ)x∗(t) (5.69)

E∗T d

dt
X−1(θ) = −E∗T X−1(θ)

(
d

dt
X(θ)

)
X−1(θ) (5.70)

= −E∗T X−1(θ)
(
X(θ̇)−X0

)
X−1(θ) (5.71)

= −X−T (θ)E∗
(
X(θ̇)−X0

)
X−1(θ) (5.72)

V̇ (t, θ) = ẋ∗T (t)E∗T X−1(θ)x∗(t) + x∗T (t)X−T (θ)E∗ẋ∗(t)

− x∗T (t)X−T (θ)E∗
(
X(θ̇)−X0

)
X−1(θ)x∗(t) (5.73)

=
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
kx

∗T (t)
{
(A∗

i (θ) + ∆A∗
i (t) + (B∗

i (θ) + ∆B∗
i (t))K

∗
jk)

T X−1(θ) + (∗)

− X−T (θ)E∗
(
X(θ̇)−X0

)
X−1(θ)

}
x∗(t) (5.74)

Then from V̇ (t, θ), it follows that

V̇ (t,θ) + x∗T (t)Q∗x∗(t)− ρ2w∗T (t)w∗(t)

=
r∑

i=1

r∑

j=1

re∑

k=1

µiµjµ
e
k




x∗(t)

w∗(t)




T 

X−T (θ)Λ̃

∗
ijk(t,θ, θ̇)X−1(θ) + Q∗ ∗
D∗T

i X−1(θ) −ρ2I







x∗(t)

w∗(t)


 (5.75)

From (5.67) and (5.75), the following inequality condition can be obtained

V̇ (t,θ) + x∗T (t)Q∗x∗(t)− ρ2w∗T (t)w∗(t) < 0 (5.76)

With zero initial condition, V (0) = 0. Integrating the above inequality from 0 to ∞, produces

the inequality condition
∫∞
0 eT (t)Qe(t) <

∫∞
0 ρ2w∗T (t)w∗(t). Thus the proof is complete.
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5.6.1 Special case

In this subsection, a special case, where Bi(θ) = B(θ) (i = 1, . . . , r), ∆B = 0, µi(z(t)) = µe
i (z(t))

and r = re are considered. The LMI conditions for designing the controller are given by the following

theorem.

Theorem 5.8. Let us consider the fuzzy descriptor system (5.26) (special case with Bi(θ) = B(θ)

(i = 1, . . . , r), ∆B = 0, µi(z(t)) = µe
i (z(t)) and r = re) with the control law given by (5.28). If there

exist certain matrices X0, X l (l = 1, · · · , L) as defined in (5.57) and Kik (i = 1, ..., r, k = 1, . . . , re)

such that the following matrix inequalities are satisfied,

ST (ν) = S(ν) > 0, ∀ ν ∈ V (5.77)

Γ∗i (ν, ω) < 0, ∀ (ν, ω) ∈ V ×W, i = 1, 2, · · · , r (5.78)

Π∗
li ≥ 0, l = 1, ..., L, i = 1, 2, . . . , r (5.79)

where

S(ν) =



X11(ν) XT

21(ν)

X21(ν) X22(ν)




Γ∗i (ν,ω) =




Λ∗
i (ν, ω) ∗ ∗ ∗ ∗ ∗ ∗
D∗T

i −ρ2I ∗ ∗ ∗ ∗ ∗
Y(ν) 0 −Q−1 ∗ ∗ ∗ ∗
A31

i 0 0 −εa
i ∗ ∗ ∗

A41
i (ν) 0 0 0 −εa

i ∗ ∗
A51

i 0 0 0 0 −εe
i ∗

A61
i (ν) 0 0 0 0 0 −εe

i




,

A31
i =




εa
i1M

a∗
i1

T

...

εa
iLa

Ma∗
iLa

T




, A41
i =




Na∗
i11X(ν)

...

Na∗
i1La

X(ν)




,

A51
i =




εe
i1M

e∗
i1

T

...

εe
iLe

M e∗
iLe

T




, A61
i =




N e∗
i1X(ν)

...

N e∗
iLe

X(ν)




, Y(ν) = X(ν)
[

I 0 0
]

εa
i = diag(εa

i1, · · · , εa
iLa

), εe
i = diag(εe

i1, · · · , εe
iLe

), Π∗
li = XT

l (A∗
il + B∗

l K
∗
i )

T + (∗) and Λ∗
i (ν, ω) =

XT (ν)(A∗
i (ν) + B∗(ν)K∗

jk)
T + (∗)−E∗(X(ω)−X0), then the H∞ performance given by (5.5) is
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guaranteed for the overall fuzzy system (5.26).

In Theorem 5.8, the controller design for Bi(θ) = B(θ), ∆B = 0, µi(z(t)) = µe
i (z(t)) (i =

1, 2, ..., r) and r = re is presented. The conditions for designing the controller for other special cases

can be derived in a similar way.

The inequalities in Theorems 5.7 and 5.8 and are not standard LMIs with respect to X0, X l,

Kjk and it is difficult to solve them simultaneously. It is easily observed that, if the matrices Kjk

are fixed then the inequalities in Theorems 5.7 and 5.8 will become standard LMIs and these can

be easily solved. For finding the value of Kjk, the constant Lyapunov function based approach

discussed in Section 5.5 can be used. But the results obtained using constant Lyapunov function

based approach may be conservative than the parametric Lyapunov function based approach. Hence

instead of finding the value of Kjk with entire range of uncertainty, a fraction of the uncertainty

can be considered for designing Kjk for the fixed Lyapunov function based approach. If this value

of Kjk is feasible in the entire range of uncertainty with the parametric Lyapunov function based

approach then the controller will satisfy the given H∞ performance. Based on this, the following

iterative LMI (ILMI) based algorithm is proposed for solving the inequalities in Theorems 5.7 and

5.8.

Algorithm 5.1:

Step 1: Derive the fuzzy model for the given uncertain nonlinear system.

Step 2: Set counter, c = 1. Choose ε a small positive fraction say 0.05.

Step 3: By fixed Lyapunov function based approach solve for feedback gain matrices Kjk. If the

LMIs are infeasible, goto Step 5.

Step 4: Substitute of value of Kjk in the inequalities given by Theorems 5.7 or 5.8 and solve for

Y 0, Y l. If the inequalities are infeasible, goto Step 6.

Step 5: If (1 − cε) > 0, reduce the bounds of the uncertainty range θl and θl by (1 − cε)θl and

(1 − cε)θl for l = 1, ..., L and derive the fuzzy model with the new range of uncertainty. Increment

the counter c and goto Step 3.

Step 6: Choose the value of Kjk with the latest feasible solution obtained during the previous

iterations in Step 4 and Stop. If the conditions in Step 4 are infeasible during all the iterations, then

controller cannot be designed with the proposed method.
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q1

q2
m1

m2

l1

l2

Fig. 5.2: Configuration of a two-link robotic manipulator

Table. 5.1: Premise variables for the fuzzy rules – Two link robotic manipulator
Rule i Ni1 Ni2

1 Negative Negative
2 Negative Zero
3 Negative Positive
4 Zero Negative
5 Zero Zero
6 Zero Positive
7 Positive Negative
8 Positive Zero
9 Positive Positive

5.7 Simulation Results

5.7.1 Two Link Robotic Manipulator

Let us consider the two-link robotic manipulator (Fig. 5.2) explained in Chapter 3. The dynamic

equation of the two-link robotic manipulator [92] is expresses as,

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (5.80)

The nominal parameters of the system are the link masses m1 = m2 = 1kg, link lengths l1 = l2 =

1m and the gravitational acceleration gr = 9.81m/s2. In this example, structural uncertainties in

masses are considered and the perturbation is assumed to be within ±5% from their nominal value.

The operating domain is considered as x1(t) ∈ [−π/3 π/3], x3(t) ∈ [−π/3 π/3], x2(t) ∈ [−5 5],

x4(t) ∈ [−5 5] and the input u1(t) ∈ [−25 25] and u2(t) ∈ [−15 15].

Equidistant triangular membership functions with centers −π/3, 0 and π/3 are assumed for x1(t)

and x3(t). With the uncertainties in mass m1 and m2, the uncertainties in the fuzzy model can be

derived as θ1(t) ∈ [−0.05 0.05] and θ2(t) ∈ [−0.05 0.05]. The fuzzy rules are considered to be in
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Table. 5.2: Parameters of matrices Ai(θ) and Bi(θ) – Two link manipulator
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

ai021 13.85 14.52 14.50 19.28 18.53 19.28 14.50 14.52 13.85
ai023 2.41 1.155 -0.085 2.01 2.488 2.01 -0.085 1.155 2.41
ai041 -2.34 -1.88 -1.259 -1.91 -1.78 -1.91 -1.259 -1.88 -2.34
ai043 10.49 12.08 8.531 10.10 12.19 10.10 8.531 12.08 10.49
ai121 9.244 7.775 7.25 10.29 10.98 10.29 7.25 7.775 9.244
ai123 -0.975 -0.963 -0.881 0.196 0.385 0.196 -0.881 -0.963 -0.975
ai221 19.99 4.645 2.719 13.68 10.95 13.68 2.719 4.645 19.99
ai223 -11.72 -8.13 -3.93 3.913 6.144 3.913 -3.93 -8.13 -11.72
ai241 17.37 -6.08 -0.069 5.564 -5.65 5.564 -0.069 -6.08 17.37
ai243 -8.967 3.193 9.147 13.92 14.44 13.92 9.147 3.193 -8.967

the following form.

Plant rule i:

IF x1 is Ni1 and x3 is Ni2 THEN

(Ei(θ) + ∆Ei(t))ẋ(t) = (Ai(θ) + ∆Ai(t))x(t) + Bu(t) + Diw(t)

y(t) = Cix(t), i = 1, · · · , 9

where

Ai0 =




0 1 0 0

a21i0 0 a23i0 0

0 0 0 1

a41i0 0 a43i0 0




, Ail =




0 0 0 0

a21il 0 a23il 0

0 0 0 0

a41il 0 a43il 0




, B =




0 0

1 0

0 0

0 1




, Ci =



0 1 0 0

0 0 0 1


 ,

Ei0 =




1 0 0 0

0 2 0 e24i0

0 0 1 0

0 e42i0 0 1




, ∆Ai(t) =




0 0 0 0

∆a21i(t) ∆a22i(t) ∆a23i(t) ∆a24i(t)

0 0 0 0

∆a41i(t) ∆a42i(t) ∆a43i(t) ∆a44i(t)




, Di =




0 0

1 0

0 0

0 1




,

Ei1 =




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




, Ei2 =




0 0 0 0

0 1 0 ei24

0 0 0 0

0 ei42 0 1




,∆Ei(t) =




0 0 0 0

0 0 0 ∆e24i(t)

0 0 0 0

0 ∆e42i(t) 0 0




.

The fuzzy sets Ni1 and Ni2 for rule i = 1, . . . , 9 are shown in Table 5.1. The parameters of the

fuzzy model are obtained by the linear programming method discussed in Chapter 2. The parameters

of Ai(θ) and Bi(θ) are shown in Table 5.2. The parameters of ∆Ai(t) are shown in Table 5.3. For

Ei(θ) and ∆Ei(t), the parameters are shown in Table 5.4.
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Table. 5.3: Parameters of matrices δAi – Two link manipulator
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

δai21 0.835 1.489 1.152 1.331 1.588 1.331 1.152 1.489 0.835
δai22 0.067 0 0 0 0 0 0 0 0.067
δai23 0.209 0.894 0.66 1.489 1.678 1.489 0.66 0.894 0.209
δai24 0.057 0 0 0 0 0 0 0 0.057
δai41 0.463 1.502 0.925 1.13 1.464 1.13 0.925 1.502 0.463
δai42 0.05 0 0 0 0.66 0 0 0 0.05
δai43 0.68 1.283 0.94 1.508 1.516 1.508 0.94 1.283 0.68
δai44 0.068 0 0 0 0 0 0 0 0.068

Table. 5.4: Parameters of matrices Ei(θ), ∆Ei – Two link manipulator
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

e240i, ei420i 1.061 0.641 -0.574 0.641 1.206 0.641 -0.574 0.641 1.061
ei224, ei242 1.024 0.653 0.037 0.653 1.149 0.653 0.037 0.653 1.024

∆ei24, ∆ei42 0.256 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.256

Let us consider the following reference model:

ẋr(t) = Arxr(t) + r(t) (5.81)

where

Ar =




0 1 0 0

−6 −5 0 0

0 0 0 1

0 0 −6 −5




and

r(t) = [0, 7 sin(t), 0, 7 cos(t)]T

The H∞ tracking controller design problem is considered with the above reference model given by

(5.81). In this example, the descriptor fuzzy model satisfies the condition µi = µe
i and r = re. Let us

assume the mass of the links as m1 +∆m1 = 1+0.05 sin(2t) and m2 +∆m2 = 1+0.05 cos(2t). Here

0.05 sin(2t) and 0.05 cos(2t) represent the uncertainties. The external disturbances (e.g., cogging

torque in the actuator) are assumed to be w1(t) = 0.4 cos(10t) cos(2t) + 0.2 exp(−t) sin(4t) and

w2(t) = 0.3 sin(5t) + 0.25 exp(−2t).

With Q = 0.01I, the H∞ tracking controller is designed for different values of ρ2 using the

Algorithm 5.1. With zero initial condition, the simulation results are shown in Figs. 5.3 – 5.5 for

ρ2 = 0.001 and ρ2 = 0.01. In Fig. 5.3, the trajectories of the state variables x(t) and the reference

trajectories xr(t) for ρ2 = 0.001 and ρ2 = 0.01 are shown. The tracking error plots for these two

values of ρ2 are shown in Fig. 5.4. The corresponding control inputs u(t) are plotted in Fig. 5.5.
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Fig. 5.3: Trajectories of state variables x(t) (dashed line and dotted line for ρ2 = 0.001 and ρ2 = 0.01
respectively) and the reference trajectories xr(t) (solid line).
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Fig. 5.4: Tracking error e(t) (dashed line and dotted line for ρ2 = 0.001, and ρ2 = 0.01 respectively).
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Fig. 5.5: Control input u(t) (dashed line and dotted line for ρ2 = 0.001 and ρ2 = 0.01 respectively).

Let us consider one of the above case with ρ2 = 0.001. The parameters of the parametric

Lyapunov function and the feedback gain matrices are given below.

X110 =




31.58 ∗ ∗ ∗
−89.05 3013 ∗ ∗
0.1910 −0.8244 31.28 ∗
−0.3849 −1060 −88.50 3770




X210 =




−19.48 69.32 −1.425 −5.683

26.69 −202.6 3.350 48.24

−0.6686 0.0216 −16.96 64.95

−1.635 −0.4088 19.38 −177.9




X220 =




5555 ∗ ∗ ∗
−10467 40977 ∗ ∗
6.500 −11.89 5692 ∗
−11.30 43.15 −11272 42848




X310 =




−79387 2923 −0.7348 −1078

−136.5 −208310 181.7 53738

−0.2953 −1082 −79386 3706

151.0 64491 −276.9 −259494




X320 =




43.21 −163.7 0.4827 −2.134

−1494 9731 105.8 3391

−6.524 52.24 43.47 −157.1

552.5 −974.7 −1722 6579




X330 =




79342 ∗ ∗ ∗
−11.68 342555 ∗ ∗
0.0299 −3.466 79342 ∗
−4.752 −185278 −8.180 489497




X111 =




0.1535 ∗ ∗ ∗
0.1777 −198.4 ∗ ∗
−0.0489 −0.6233 0.062 ∗
0.4618 373.1 0.043 −659.9




X211 =




13.83 70.81 26.19 137.1

−32.0 −76.24 −70.5 −217.7

−24.5 −128.5 13.21 66.28

64.19 208.4 −32.87 −96.30




X221 =




−7.720 ∗ ∗ ∗
14.38 −66.65 ∗ ∗
15.80 −18.46 −35.88 ∗
−91.38 73.75 142.1 −531.1




X311 =




0.04473 −171.0 −0.5668 315.3

86.84 7927 −160.8 −25798

0.5195 318.0 0.0211 −565.7

−175.1 13624 333.2 7505



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X321 =




52.50 −78.52 −97.82 196.0

2293 −4402 14046 −27490

101.8 −203.2 52.03 −99.04

670.6 1504 −11478 19024




X331 =




−0.042 ∗ ∗ ∗
−4.465 −49635 ∗ ∗
0.0159 5.389 −0.0027 ∗
5.052 59452 −4.524 −96536




X112 =




4.296 ∗ ∗ ∗
5.364 6974 ∗ ∗
−3.150 −11.38 2.616 ∗
4.677 −8983 1.840 13072




X212 =




18.13 137.8 −21.64 −167.7

−86.53 −508.9 106.0 648.3

−28.44 −181.2 59.78 326.7

109.0 561.9 −180.5 −711.6




X222 =




4.499 ∗ ∗ ∗
−80.16 682.1 ∗ ∗
0.07371 120.9 −14.32 ∗

19.9 −563.2 −78.70 489.0




X312 =




0.8063 6613 −8.033 −8354

−5539 −47038 7172 227228

8.033 −8581 −0.8477 12217

6612 −53504 −9766 −123222




X322 =




113.7 −425.2 −144.0 461.5

−13484 52214 15979 −53224

−139.3 536.6 253.7 −624.6

16363 −50661 −30390 102718




X332 =




−1.52 ∗ ∗ ∗
−0.21 1124456 ∗ ∗
1.118 −9.794 −0.895 ∗
−7.92 −1374376 20.915 1872734




K11 =



−811.3 −282.5 −256.1 −89.72

−235.4 −84.05 −628.8 −219.2


 K21 =



−25.65 −9.785 −8.670 −5.192

−3.919 −5.192 −16.38 −4.891




K12 =



−814.2 −283.3 −126.3 −44.20

−107.3 −38.53 −628.2 −218.4


 K22 =



−26.31 −9.782 −4.937 −3.137

−1.900 −3.137 −17.98 −4.888




K13 =



−820.7 −285.6 247.0 87.48

264.1 93.15 −618.1 −216.1


 K23 =



−26.30 −9.780 3.472 2.808

4.646 2.809 −14.42 −4.886




K14 =



−819.0 −283.3 −127.1 −44.20

−107.2 −38.53 −626.2 −218.4


 K24 =



−31.08 −9.782 −5.793 −3.137

−1.876 −3.137 −15.99 −4.888




K15 =



−815.2 −282.2 −300.4 −105.4

−280.2 −99.71 −631.3 −219.5


 K25 =



−30.33 −9.787 −9.603 −5.900

−5.336 −5.900 −18.09 −4.892




K16 =



−819.0 −283.3 −127.1 −44.20

−107.3 −38.53 −626.2 −218.4


 K26 =



−31.08 −9.782 −5.793 −3.137

−1.876 −3.137 −15.99 −4.888




K17 =



−820.7 −285.6 247.0 87.48

264.1 93.15 −618.1 −216.1


 K27 =



−26.30 −9.800 3.472 2.808

4.646 2.809 −14.42 −4.886



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Fig. 5.6: Trajectories of state variables x(t) (dashed line and dotted line for parametric and fixed
Lyapunov function based approach respectively) and the reference trajectories xr(t) (solid line) for
ρ2 = 0.001.
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Fig. 5.7: Tracking error e(t) (dashed line and dotted line for parametric and fixed Lyapunov function
based approach respectively) for ρ2 = 0.001.
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K18 =



−814.2 −283.3 −126.3 −44.20

−107.3 −38.53 −628.2 −218.4


 K28 =



−26.31 −9.782 −4.937 −3.137

−1.900 −3.137 −17.98 −4.888




K19 =



−811.3 −282.5 −256.1 −89.72

−235.4 −84.05 −628.8 −219.2


 K29 =



−25.65 −9.785 −8.700 −5.192

−3.919 −5.192 −16.38 −4.890




The initial condition x(0) = [0.5 0 − 0.5 0]T and xr(0) = [−0.5 0 0.5 0]T are chosen for

simulation.

The same problem is solved by using fixed Lyapunov function based approach and the following

controller parameters are obtained:

K11 =



−41645 −5611 5096 689.2

5168 696.5 −42911 −5797


 K21 =



−166.5 −34.51 9.151 −1.881

13.26 −2.127 −169.1 −33.34




K12 =



−40740 −5488 8444 1141

8371 1128 −41958 −5668


 K22 =



−163.7 −33.47 24.68 2.191

25.93 1.532 −166.7 −32.17




K13 =



−40395 −5442 19120 2584

18959 2555 −41742 −5640


 K23 =



−162.2 −33.06 70.99 15.17

68.16 13.62 −162.2 −31.90




K14 =



−40770 −5492 8431 1139

8386 1130 −41926 −5664


 K24 =



−168.5 −33.50 23.84 2.175

25.99 1.549 −164.6 −32.14




K15 =



−41141 −5542 3755 508

3542 477.3 −43014 −5811


 K25 =



−169.7 −33.93 3.713 −3.511

6.451 −3.984 −171.6 −33.46




K16 =



−40770 −5492 8431 1139

8386 1130 −41926 −5664


 K26 =



−168.5 −33.50 23.84 2.175

25.99 1.549 −164.6 −32.14




K17 =



−40395 −5442 19120 2584

18959 2555 −41742 −5640


 K27 =



−162.2 −33.06 70.99 15.17

68.16 13.62 −162.2 −31.90




K18 =



−40740 −5488 8444 1141

8371 1128 −41958 −5668


 K28 =



−163.7 −33.47 24.68 2.191

25.93 1.532 −166.7 −32.17




K19 =



−41645 −5611 5096 689.2

5168 696.5 −42911 −5797


 K29 =



−166.5 −34.51 9.151 −1.881

13.26 −2.127 −169.1 −33.34




Same initial conditions x(0) = [0.5 0 − 0.5 0]T and xr(0) = [−0.5 0 0.5 0]T are chosen for

simulation. Fig. 5.6 shows the state trajectories x(t) and the reference trajectories xr(t) for these

two cases. The tracking error plots obtained by using these two approaches are shown in Fig. 5.7.
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Fig. 5.8: Control inputs u(t) (dashed line and dotted line for parametric and fixed Lyapunov function
based approach respectively) for ρ2 = 0.001.

Fig. 5.8 shows the control inputs u(t) needed for these two approaches. From Fig. 5.8, it is observed

that the magnitude of the feedback gains obtained by using fixed Lyapunov function based approach

is very high compared to the parametric Lyapunov function based approach. The effect of this high

gain can be observed in the control input (transient region in Fig. 5.8). The control input is very high

in this region which is undesirable in practical applications. The high gain in the fixed Lyapunov

function based approach is due to the conservatism existing in the design. In the case of parametric

Lyapunov function based approach, the gain obtained is of lower value and it is achieved by relaxing

the conservatism in the design.

By Algorithm 5.1, the feasible solution is obtained with (1− cε) = 0 and hence for the uncertain

fuzzy descriptor systems, the parametric Lyapunov function based approach is less conservative than

the fixed Lyapunov function based approach.

5.8 Summary

This chapter has examined the problem of designing a model reference trajectory controller satisfying

H∞ performance criterion for uncertain fuzzy descriptor systems. Sufficient conditions for controller

design which meet the given H∞ performance criterion are formulated in terms of matrix inequalities.

The proposed descriptor system approach yields lesser number of inequality conditions than those

obtained using the standard state-space approach. It is shown that, by the proposed design method,

the desired tracking controller can be obtained by solving a set of inequalities and the specified H∞

disturbance attenuation level can be obtained. To show the effectiveness of the proposed controller

design, tracking control of a two link robotic manipulator is considered and the simulation results
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show that the system states closely track the reference trajectory.
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Chapter 6

Conclusions and Future Work

In this chapter, the main contributions of this research work are summarized and a few directions

for future research are outlined.

6.1 Concluding Remarks

The central objective of this thesis is to build a systematic framework for stabilization and controller

design for a class of uncertain nonlinear systems represented by T-S type fuzzy model. The research

work carried out in this thesis resulted in the following contributions:

i) A fuzzy identification method for deriving the fuzzy model of an uncertain nonlinear system

in a form suitable for robust fuzzy control is developed.

ii) A robust fuzzy guaranteed cost controller for trajectory tracking in uncertain nonlinear systems

is built.

iii) Robust stabilization, H∞ stabilization and H∞ tracking control for uncertain nonlinear systems

using parametric Lyapunov function are analyzed.

iv) Parametric Lyapunov function based robust H∞ tracking control design for uncertain descriptor

fuzzy systems is proposed.

The fuzzy logic based identification technique for modeling an uncertain nonlinear system is pre-

sented in Chapter 2. Here, the antecedent part of the T-S fuzzy model used for modeling is assumed

to be available and the method of finding the consequent part is investigated. The identification of

the consequent part involves identifying the nominal model and the uncertain terms of the T-S fuzzy

model. The suitability of the derived model for robust fuzzy control is substantiated illustrating the

robust stability conditions.
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A robust fuzzy guaranteed cost controller design for trajectory tracking in uncertain nonlinear

systems is proposed in Chapter 3. A quadratic performance function is considered and the controller

design method for finding the feedback gain matrices of the fuzzy controller is derived in terms of

matrix inequalities. These matrix inequalities are then transformed into standard LMIs which can

be solved easily and efficiently. The derived controller satisfies the defined performance measure and

also ensures closed loop stability.

Chapter 4 focuses on designing a T-S fuzzy controller for uncertain nonlinear systems using a

richer class of Lyapunov function called parametric Lyapunov function. The proposed method is

aimed at designing a fuzzy controller for stabilization and tracking control of nonlinear systems with

slowly varying uncertainties. The conditions for designing the controller are derived in terms of matrix

inequalities involving uncertain terms which are then reduced to finite dimensional inequalities by

applying multi-convexity concept. These inequalities are not standard LMIs and hence, an iterative

LMI based algorithm is proposed for solving these inequalities in order to obtain the parameters

of the parametric Lyapunov function as well as the feedback gain matrices. Use of the parametric

Lyapunov function reduces conservatism in the design which is achieved because of varying the

Lyapunov function along the uncertainties. Simulation results show that the parametric Lyapunov

function based approach is less conservative than the fixed Lyapunov function based approach and

hence it can admit a wider range of uncertainties.

Chapter 5 deals with the uncertain fuzzy descriptor system which is an extension to standard

T-S fuzzy system. Initially a fixed Lyapunov function based approach is considered and controller

design for this rich class of fuzzy descriptor systems is formulated as a problem of solving a set

of LMIs. Finally, the concepts of fixed Lyapunov function based approach are combined with the

parametric Lyapunov function based approach presented in Chapter 4 for designing a controller to

control the uncertain descriptor fuzzy system. The design conditions for the descriptor fuzzy system

are more complicated than the standard state-space based systems. However, the descriptor fuzzy

system based approach has the advantage of possessing fewer number of matrix inequality conditions

for certain special cases [8]. Hence, it is suitable for complex systems represented in descriptor form

which is often observed in nonlinear mechanical systems.
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6.2 Directions for Future Work

Following the design methods described in this thesis, a few tracks for future research are listed

below that can be taken up for robust control of uncertain nonlinear systems:

• Identification of the antecedent part of the fuzzy model with uncertain data by tuning the

parameters using min-max optimization may yield a better model with less number of rules.

• In this thesis, all the design are carried out for state feedback case. But in practice, all the

system states may not be available for measurement and in that case we need to design an

observer to reconstruct the missing states for observer based output feedback control. This can

be carried out using the separation principle [8].

• The parametric Lyapunov function based approach can be extended by making the Lyapunov

function dependent on the membership function which can further reduce the conservatism in

the design.

• Many complicated nonlinear systems can be approximated by fuzzy large-scale systems which

are composed of a number of T-S fuzzy subsystems. The suitability of the parametric Lyapunov

function based approach for robust fuzzy control of uncertain fuzzy large scale systems can be

examined.

• In the parametric Lyapunov function based approach, the matrix inequalities involving the

parametric uncertainties are reduced to finite dimensional matrix inequalities by using the

multi-convexity concept. It is required to check the inequalities at the corners of the parameter

box and the rate box and this will result in large number of inequalities for systems having more

uncertain terms. Hence, finding a better way to solve the parametric dependent inequalities is

another interesting problem.

• In the T-S fuzzy model considered in this thesis, time delay is not considered in the system.

However, time delay often occurs in many dynamical systems such as chemical and biological

systems. The existence of time delay may result in instability and poor performance. The

problem of robust controller design for this class of nonlinear time-delay systems is another

interesting problem that deserves attention.
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Appendix A

Supplementary Materials

Lemma A.1. [105]: The parameterized linear matrix inequality,
r∑

i=1

r∑

j=1

µi µjMij < 0 (A.1)

is fulfilled, if the following condition holds:

Mii < 0, i = 1, 2, . . . , r (A.2)

1
r − 1

Mii +
1
2
(Mij +Mji) < 0, 1 ≤ i 6= j ≤ r (A.3)

A.1 Output Tracking control

This section reviews the method of finding the feedback gain matrices for output tracking control

design problem in [91]. Let us consider the fuzzy model of a nonlinear system in the following form:

Plant rule i:

IF z1(t) is F1i and · · · and zp(t) is Fpi THEN

ẋ(t) = Aix(t) + Biu(t), i = 1, 2, . . . , r (A.4)

where z1(t), . . . , zp(t) are the premise variables; Fji(j = 1, . . . , p) are the fuzzy sets; r is the number

of fuzzy rules; x is the state variable; u(t) is the input; Ai and Bi are the system matrices of

appropriate dimensions. The overall fuzzy system is inferred as

ẋ(t) =
r∑

i=1

µi {Aix(t) + Biu(t)} (A.5)

For output tracking control, the control law is required to satisfy

y(t)− r(t) → 0 as t →∞ (A.6)
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where r denotes the desired trajectory or reference signal and y(t) is the output variable. In order

to convert the output tracking problem into a stabilization problem, a set of virtual desired variable

xd is introduced which will be tracked by the state variable x(t). Let x̃(t) = x(t)−xd(t) denote the

tracking error for the state variables. A fuzzy PDC controller is considered with the following form:

τ (t) = −
r∑

i=1

µiKix̃(t). (A.7)

With the above fuzzy PDC controller (A.7), the closed loop system can be obtained as

x̃(t) =
r∑

i=1

r∑

j=1

µiµj(Ai −BiKj)x̃(t). (A.8)

Theorem A.1. [91]: Suppose that the virtual desired variable xd and its derivative ẋd are bounded.

The augmented error system (A.8) is exponentially stable if there exist a common positive-definite

matrix P = P T > 0 and symmetric positive-definite matrices D and Qij such that

ΛT
iiP + PΛii + Qii + DPD < 0, i = 1, . . . , r (A.9)

ΛT
ijP + PΛij + Qij ≤ 0, i < j ≤ r (A.10)




Q11 Q12 . . . Q1r

Q12 Q22 . . . Q2r

...
...

. . .
...

Q1r Q2r . . . Qrr




= Q̃ > 0 (A.11)

where Gij = Ai −BiKj , Λii = Gii and Λij = (Gij + Gji)/2.

Proof of Theorem 2.1: Consider the Lyapunov function candidate V (t) = xT (t)P x(t). Then,

V̇ (t) = ẋT (t)Px(t) + xT (t)P ẋ(t) (A.12)

=
r∑

i=1

r∑

j=1

µiµj

{
xT (t)

( (
(Ai + BiKj)T P + (∆Ai(t) + ∆Bi(t)Kj)T P

)
+

(
∗

)T )
x(t)

}

(A.13)

Since F xi(t) in (2.36) and εi in (2.46) are diagonal matrices, 1√
εi

F xi(t) = F xi(t) 1√
εi

. With this

condition and the inequality XT Z + ZT X ≤ XT X + ZZT given in [66], it can be derived as,

xT (t)
((

(∆Ai(t) + ∆Bi(t)Kj)T P
)

+
(
∗

)T
)

x(t)

= xT (t)
((

(MxiF xi(t)(Nx1i + Nx2iKj))T P
)

+
(
∗

)T
)

x(t)

= xT (t)

((
(Mxi

√
εi

1√
εi

F xi(t)(Nx1i + Nx2iKj))T P
)

+
(
∗

)T
)

x(t)
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= xT (t)

((
(Mxi

√
εiF xi(t)

1√
εi

(Nx1i + Nx2iKj))T P
)

+
(
∗

)T
)

x(t)

≤ xT (t)

(
(Nx1i + Nx2iKj)T 1√

εi
F T

xi(t)F xi(t)
1√
εi

(Nx1i + Nx2iKj)

+PMxiεiM
T
xiP

)
x(t)

≤ xT (t)
(
(Nx1i + Nx2iKj)T ε−1

i (Nx1i + Nx2iKj) + PMxiεiM
T
xiP

)
x(t) (A.14)

Substituting (A.14) into (A.13) yields:

V̇ (t) ≤
r∑

i=1

r∑

j=1

µi µj

{
x̄T (t)

(
((Ai + BiKj)T P ) + (∗)T + PMxiεiM

T
xiP

+ (Nx1i + Nx2iKj)T ε−1
i (Nx1i + Nx2iKj)

)
x̄(t)

}
(A.15)

Hence proved.

Proof of Theorem 4.1: Consider a Lyapunov function V (t) = xT (t)Px(t). The time derivative

of V (t) along the trajectory is given by

V̇ (t) =
r∑

i=1

r∑

j=1

µiµjx
T (t)

(
((Ai + ∆Ai(t)) + (Bi + ∆Bi(t))Kj)T P + (∗)

)
x(t) (A.16)

=
r∑

i=1

r∑

j=1

µiµjx
T (t)


(Ai + BiKj)T P +

(
L∑

l=1

M il∆il(t)(N i1l + N i2lKj)

)T

P + (∗)

 x(t)

(A.17)

If the following inequality is satisfied, then V̇ (x) ≤ 0 and the fuzzy system (4.2) will be stable.

r∑

i=1

r∑

j=1

µiµj


(Ai + BiKj)T P +

(
L∑

l=1

M il∆il(t)(N i1l + N i2lKj)

)T

P + (∗)

 < 0 (A.18)

With this condition and the inequality XT Y + Y T X ≤ XT X + Y Y T given in [66], the following

inequality condition can be obtained
r∑

i=1

r∑

j=1

µiµj

(
(Ai + BiKj)T P + (∗) +

L∑

l=1

PM ilεlM
T
ilP

+
L∑

l=1

(N i1l + N i2lKj)T ε−1
l (N i1l + N i2lKj)

)
< 0 (A.19)

Pre-multiplying and post-multiplying the above inequality by Y , where Y = P−1 and by Schur
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complement, the inequality can be transformed as

r∑

i=1

r∑

j=1

µiµj




Y AT
i + BT

i W T
j + (∗) ∗ . . . ∗ ∗ . . . ∗

ε1M
T
i1 ε1

...
. . . 0

εlM
T
il εl

N i11Y + N i21W j ε1
... 0

. . .

N i1lY + N i2lW j εl




< 0. (A.20)

Applying Lemma A.1 to the above inequality, the inequalities in Theorem 4.1 are obtained. Hence

proved.
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