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Abstract

The main objective of this thesis is to develop robust sliding mode control strategies for uncertain

systems. More specifically, the aim of this thesis is to develop sliding mode control schemes which are

successful in controlling systems affected by both matched and mismatched types of uncertainty. One

major drawback suffered by conventional sliding mode controllers is the presence of high frequency

oscillations in the control input known as chattering. Because of the discontinuous control action in

sliding mode controllers, chattering becomes an inherent undesired phenomenon. Apart from chatter-

ing, another disadvantage faced by conventional sliding mode controllers is their design prerequisite

of advance knowledge about the upper bound of the system uncertainty. This thesis is an attempt

to provide solution for these two main limitations of conventional first order sliding mode controllers.

The central focus of this thesis is to improve upon the existing sliding mode control techniques with

the prime objective of chattering mitigation. An adaptive gain tuning mechanism which can estimate

the uncertainty adaptively is proposed in this thesis. Hence prior knowledge about the upper bound

of system uncertainty is no longer a necessary requirement in the proposed adaptive sliding mode

controller. The basic idea of the proposed adaptive sliding mode controller is that the discontinuous

sign function is made to act on the time derivative of the control input and the actual control signal

obtained after integration is continuous and hence chattering is removed. The adaptive gain tuning

strategy ensures that the controller gain is not overestimated. Based upon the core idea of adaptive

sliding mode, various classes of sliding mode controllers are proposed in this thesis. In order to ensure

smooth control action throughout the entire operating range, this thesis proposes an adaptive integral

sliding mode controller. The integral sliding mode (ISM) algorithm eliminates the reaching phase.

Therefore, invariance towards matched disturbances can be ensured from the very beginning by using

this method. The proposed adaptive sliding mode control methodology is used to control nonlinear

multiple input multiple output (MIMO) systems which are highly cross-coupled. The proposed con-
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troller is used for stabilization as well as trajectory tracking of coupled MIMO systems affected by

both matched and mismatched uncertainty. Experimental studies are conducted on a single degree of

freedom (DOF) vertical take-off and landing (VTOL) aircraft system to study the real time perfor-

mance of the proposed adaptive sliding mode (SM) controller. The design prerequisite of the proposed

controller is complete knowledge about the state vector which is not available in this example. Hence

unavailable states of the 1 DOF VTOL are estimated by using an extended state observer (ESO). It is

a well established fact that finite time convergence of terminal sliding mode (TSM) control exists and

can be proved if a detailed mathematical analysis of its behaviour near the singularities is available.

However, TSM suffers from the drawback of chattering like in conventional first order sliding mode.

The proposed adaptive sliding mode strategy is used to design a terminal sliding mode controller for

linear and nonlinear uncertain systems. To improve the transient performance of uncertain systems,

a nonlinear sliding surface based adaptive chattering free sliding mode controller is proposed. The

nonlinear sliding surface changes the system’s closed loop damping ratio from its initial low value to

a final high value in accordance with the error magnitude. Hence fast initial response and gradually

diminishing overshoot are ensured. This thesis extends the nonlinear sliding surface based integral

sliding mode (ISM) controller to the discrete domain also where the controller consists of a nominal

control and ISM based discontinuous control. The nominal control is designed based on composite

nonlinear feedback (CNF) which varies the damping ratio of the closed loop system to ensure good

transient performance. The discontinuous control component rejects the matched disturbances and

model mismatches. Simulation studies are conducted involving linear and nonlinear, SISO and MIMO

systems affected by both matched and mismatched types of uncertainty and their results demonstrate

the effectiveness of the proposed adaptive chattering free sliding mode controller.
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1. Introduction

1.1 Introduction

In reality, all physical systems are affected by uncertainties occurring due to modeling error, para-

metric variation and external disturbance. Controlling dynamical systems in presence of uncertainties

is extremely difficult as performance of the controller degrades and the system may even be driven to

instability. As such, active research is continuing to develop controllers which can work successfully

in spite of uncertainties. Robust control techniques such as nonlinear adaptive control [9], model

predictive control [10], backstepping [11] and sliding mode control [12, 13] have evolved to deal with

uncertainties. These control techniques are capable of achieving the specified control objectives in

spite of modeling errors and parametric uncertainties affecting the controlled system. Beginning in

the late 1970s and continuing till today, the sliding mode control (SMC) [14, 15] methodology has

received wide attention because of its inherent insensitivity to parametric variations and external dis-

turbances. The sliding mode control (SMC) is a particular type of variable structure control system

(VSCS) which uses a discontinuous control input. Recently many successful practical applications of

sliding mode control (SMC) have established the importance of sliding mode theory. Sliding mode

controllers are now-a-days widely used in a variety of application areas like robotics, process control,

aerospace and power electronics [16, 17]. The research in this held was initiated by Emel’yanov and

his colleagues [14] and the design paradigm now forms a mature and established approach for robust

control and estimation. The idea of sliding mode control (SMC) was not known to the control com-

munity at large until an article published by Utkin [15] and a book by Itkis [18].

Design of the SMC involves two key steps, viz. (1) the design of a sliding surface in accordance with

the desired closed loop performance and (2) the design of a suitable control law. The sliding surface is

to be designed optimally to satisfy all constraints and required specifications. The initial phase when

the state trajectory is directed towards the sliding surface is called the reaching phase. During the

reaching phase, the system is sensitive to all types of disturbances. However, a control law can be

designed which ensures finite time reaching of the sliding surface even in the presence of uncertain-

ties and disturbances. For eliminating the non-robust reaching phase, an integral sliding mode was

proposed in [19, 20] which naturally allowed SMC to be combined with other techniques. The main

advantages of the SMC are the following:

(i) During the sliding mode, the system is insensitive to matched model uncertainties and distur-

bances [21].
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1.2 Motivation and purpose

(ii) When the system is on the sliding manifold, it behaves as a reduced order system with respect to

the original plant.

However, in spite of the claimed robustness, implementation of the SMC in real time is handicapped by

a major drawback known as chattering which is the high frequency bang-bang type of control action.

Chattering is caused due to the fast dynamics which are usually neglected in the ideal model of sliding

mode. In the ideal sliding mode, the control is assumed to switch with an infinite frequency. However,

in actual plants, due to the inertia of actuators and sensors as well as the presence of nonlinearities, the

switching occurs with high but finite frequency only. The main consequence is that the sliding mode

takes place in a small neighborhood of the sliding manifold, whose dimension is inversely proportional

to the control switching frequency. In sliding mode, due to the finite switching of control signal, the

states would switch about the sliding surface rather than lie directly on it. This switching can occur

at a high frequency and is called chattering. The effect of chattering is that the high frequency com-

ponents of the control propagate through the system and thereby excite the unmodeled fast dynamics

and give rise to undesired oscillations which affect the system output. This can degrade the system

performance or may even lead to instability. Moreover, the term chattering has been designated to

indicate the bad effect, potentially disruptive, that a switching control can produce on a controlled

mechanical plant. Chattering as well as the necessity of discontinuous control are two main criticisms

against practical realization of sliding mode control scheme. These drawbacks are more prominent

while dealing with mechanical systems since rapidly changing control actions induce stress and wear

in mechanical parts and the system may even suffer breakdown in a short time [22].

1.2 Motivation and purpose

In order to overcome the above mentioned drawbacks, efforts are on to find a continuous control

action which is robust against uncertainties and guarantees the same control objective as offered by the

standard sliding mode approach. Different approaches have been proposed to avoid chattering [21,23].

The main idea of such approaches was to change the dynamics in a small vicinity of the discontinuity

surface in order to avoid real discontinuity and, at the same time, to preserve the main properties

of the whole system. However, the ultimate accuracy and robustness of the sliding mode are par-

tially lost in this process. The commonly used approach is by using continuous approximations of the

sign(·) function (such as the sat(·) function, the tanh(·) function) in the implementation of the control
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1. Introduction

law. An interesting approach evolved for elimination of chattering was the higher order sliding mode

methodology introduced by Arie Levant [24–26]. The higher order sliding modes generalize the basic

sliding mode idea by acting directly on the higher order time derivatives of the sliding variable instead

of influencing its first time derivative only as it happens in standard sliding modes. Keeping the

main advantages of the original approach, higher order sliding modes remove the chattering effect and

provide even higher accuracy. A number of higher order sliding mode controllers are proposed in the

literature [12, 25–29]. However, the main constraint in implementation of higher order sliding modes

is the increasing information demand. In general, any r-th order sliding mode controller requires the

knowledge of the time derivatives of the sliding variable up to the (r-1)-th order. The only exceptions

are provided by the twisting controller [24], the super twisting controller [24] and the sub-optimal

algorithm. Among higher order sliding mode controllers, second order sliding mode controllers are

the most widely used because of their simplicity and low information demand. In second order sliding

mode methodology, the control action affects directly the sign and the amplitude of the sliding vari-

able and a suitable switching logic guarantees the finite time convergence of the state to the sliding

manifold.

Sliding mode control [30] has been extensively used in control systems perturbed by matched uncer-

tainty which enters the system through the input channel. However, designing sliding mode controllers

for systems perturbed by the mismatched type of uncertainty, which is due to perturbations in the

system parameters, still remains a challenge to the research community. The difficulty lies in the fact

that the dynamics of the uncertain system are affected even after reaching the sliding mode. Active

research is continuing in the control community for developing sliding mode controllers for systems

affected by mismatched type of uncertainty. By designing a sliding mode controller for certain states

of the system which are provided as inputs to a reduced order system can take care of mismatched

uncertainties. However, the disadvantage of this method is that uncertainties should lie in the range

space of certain matrix of the nominal system [30]. A fuzzy logic based sliding mode controller pro-

posed in [31] was successful in achieving quadratic stability for systems with mismatched uncertainty.

Even this method could handle mismatched uncertainty of a certain form only provided its bound was

known apriori [32, 33]. By introducing two sets of switching surfaces for the subsystems and hence

reducing the rank of the uncertainty, asymptotic stability was achieved in [34]. Dynamic output feed-

back sliding mode controllers were attempted in [35] and nonlinear integral type sliding surface was
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used to deal with mismatched uncertainties in [36]. All these works required prior knowledge about

the upper bound of the mismatched uncertainty which was in general difficult to obtain. Hence a

strategy to obtain the upper bound of the system uncertainty or a method which does not require this

knowledge is needed. The adaptive sliding mode controller proposed by Cheng at al. [3,37,38] provided

a solution to this problem. However, this adaptive method yielded gains which were overestimated in

many cases giving rise to large control efforts and high chattering [39,40].

Motivated by the above reasons, this thesis attempts to develop suitable sliding mode control strate-

gies which can eliminate chattering. In particular, this thesis aims for designing chattering free sliding

mode controllers which can effectively handle systems with uncertainties of both matched and mis-

matched type, without requiring the prior knowledge about the upper bound of the uncertainty. The

effectiveness of the developed sliding mode control scheme is validated by applying the controller to

important benchmark control problems like the twin rotor MIMO system (TRMS), the vertical take-

off and landing system (VTOL) and the two-link robotic manipulator which are typical examples of

highly nonlinear systems affected by severe uncertainties.

1.3 Contributions of this Thesis

The main contribution of this thesis is the design of a chattering free adaptive sliding mode

controller for systems affected by both matched and mismatched types of uncertainty. The control

law is designed in such a way that the discontinuous sign function acts on the time derivative of the

control input. So the actual control obtained after integration is continuous and hence chattering

is eliminated. Adaptive tuning mechanism is used to estimate the upper bound of the uncertainty,

thereby eliminating the necessity of its prior knowledge. The proposed idea of adaptive chattering

free sliding mode is used to design integral and terminal sliding mode controllers. A nonlinear sliding

surface based adaptive sliding mode controller is proposed for improving transient performances like

overshoot and settling time.

1.4 Organization of the Thesis

This thesis is divided into seven chapters. A brief description about each chapter is presented in

this section.
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1. Introduction

• Chapter 2: A few preliminary and basic concepts related to sliding mode control are discussed

in Chapter 2.

• Chapter 3: In this chapter a chattering free adaptive integral sliding mode controller for

uncertain systems is proposed. Instead of a regular control input, the derivative of the control

input is used in the proposed control law. The discontinuous sign function in the controller is

made to act on the time derivative of the control input. The actual control signal obtained by

integrating the derivative control signal is smooth and chattering free. The adaptive tuning law

used in the proposed controller eliminates the need of prior knowledge about the upper bound

of the system uncertainty.

• Chapter 4: In this chapter an adaptive sliding mode controller for coupled multi input multi

output (MIMO) systems affected by both matched and mismatched uncertainties is proposed.

More specifically, the problem of controlling a twin rotor MIMO system (TRMS) in cross-coupled

condition is addressed using adaptive sliding mode control technique. An adaptive mechanism

is embedded in the controller as well as the sliding surface to overcome the perturbations.

The proposed controller with adaptive sliding surface is implemented for a vertical take-off and

landing (VTOL) aircraft system affected by matched and mismatched uncertainties. An adaptive

gain tuning mechanism is used to ensure that the gain is not overestimated with respect to the

actual unknown value of the uncertainty. A case study was conducted on the laboratory set-up

of a 1 degree of freedom VTOL system to investigate the real time performance of the proposed

adaptive sliding mode controller.

• Chapter 5: In this chapter an adaptive chattering free terminal sliding mode controller is

proposed to ensure fast and finite time stabilization of uncertain systems. Instead of the normal

control input, its time derivative is used in the proposed controller. An adaptive tuning method

is utilized to deal with the system uncertainties whose upper bounds are not required to be

known in advance.

• Chapter 6: An adaptive sliding mode controller is proposed in this chapter using nonlinear slid-

ing surface which ensures better transient performance over linear sliding surfaces. One major

benefit is that chattering is completely removed from the control signal. To improve the perfor-

mance of discrete time uncertain systems, an algorithm based on integral sliding mode (ISM)
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and composite nonlinear feedback (CNF) is proposed. The discrete CNF based ISM method

ensures fast rise time and less overshoot as compared to ISM method with linear feedback.

• Chapter 7: In this chapter conclusions from the research work are drawn and the scope for

future research is outlined.
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2.1 Introduction

2.1 Introduction

In this chapter, preliminary concepts relevant to sliding mode control are discussed briefly. The

necessary fundamentals of the sliding mode are explained concisely so that the sliding mode con-

troller design and analysis carried out in the succeeding chapters can be easily followed. Chattering

phenomenon which is an undesired phenomenon occurring in conventional sliding mode controller is

explained and methods devised for chattering mitigation are introduced. Finite time stability which

is an important notion in sliding mode control is described. First and second order sliding modes are

explained to highlight the basic difference between the two.

2.2 Variable Structure System and Sliding Mode

A variable structure system (VSS) [15] is a dynamical system whose structure changes according

to an appropriate switching logic in order to exploit the desirable properties of these structures. To

illustrate, let us consider the following dynamical system

ẋ = f(t, x, u) (2.1)

where x ∈ Rn are the state variables and u ∈ Rm is the control input.

Further,

u = [u1(t, x), u2(t, x), ..., um(t, x)]T (2.2)

where

ui =


u+
i (t, x), if σi(x) > 0

u−i (t, x), if σi(x) < 0

i = 1, 2, ...m

(2.3)

Here

σ(x) = [σ1(x) σ2(x)....σm(x)]T (2.4)

is the sliding manifold and σi(x) = 0(i = 1, 2, ...m) is the i-th sliding surface. The motion on the

sliding manifold σ(x) = 0 is called the sliding mode.

The differential equation (2.1) does not formally satisfy the classical theorem on the existence and
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2. Preliminary Concepts

uniqueness of the solution since it has discontinuous right hand side. Moreover, the right hand side

is usually not defined on the discontinuity surfaces. Thus, it fails to satisfy conventional existence

and uniqueness results of differential equation theory. Nevertheless, an important aspect of sliding

mode control design is the assumption that the system state behaves in a unique way when restricted

to σ(x) = 0. Therefore, the problem of existence and uniqueness of differential equations with dis-

continuous right hand sides is of fundamental importance. Various types of existence and uniqueness

theorems are proposed by Utkin [15], Itkis [18], Hajeck [41] and Filippov [42]. The method of Filip-

pov [42] is conceptually straightforward. This method is now briefly recalled to help in understanding

variable structure system behaviour on the switching surface.

Let us now consider an n-th order VSS system with a single input as given below,

ẋ = f(t, x, u) (2.5)

with the following general control strategy

u =

 u+(t, x), if σ(x) > 0

u−(t, x), if σ(x) < 0
(2.6)

The system dynamics are not directly defined on the manifold σ(x) = 0. It has been shown by Fil-

ippov that the state trajectories of (2.5) with control (2.6) on σ(x) = 0 are the solutions of the equation

ẋ = αf+ + (1 − α)f− = f0; 0 ≤ α ≤ 1 (2.7)

where f+ = f(t, x, u+), f− = f(t, x, u−) and f0 is the resulting velocity vector of the state trajectory

while in sliding mode. The term α is a function of the system state and can be specified in such a

way that the average dynamic of f0 is tangent to the surface σ(x) = 0. The geometric concept is

illustrated in Fig. 2.1.

Therefore it may be concluded that, on the average, the solution to (2.5) with control (2.6) exists and

is uniquely defined on σ(x) = 0. This solution is called solution in the Filippov sense. It may be noted

that this technique can be used to determine the behaviour of the plant in a sliding mode.
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!(x)=0  !
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 #

Figure 2.1: Illustration of Filippov method

2.3 Stability of the Sliding mode

The objective of sliding mode control is to ensure sliding motion in finite time from an arbitrary

initial condition. The system state must approach the sliding surface at least asymptotically. The

largest such neighborhood is called the region of attraction. Stability of the sliding surface requires

to choose a generalized Lyapunov function V (t, x) which is positive definite and has a negative time

derivative in the region of attraction. Unfortunately, there are no standard methods to find Lyapunov

functions for arbitrary nonlinear systems.

For all single input systems, a suitable Lyapunov function can be chosen as

V (t, x) =
1
2
σ2(x) (2.8)

which clearly is globally positive definite.

If

V̇ (t, x) = σ(x)σ̇(x) < 0 (2.9)

in the domain of attraction, then the state trajectory converges to the sliding surface and is restricted

to the surface for all subsequent time. This latter condition is called the reaching or reachability

condition [12] [22] [30] [43] and it ensures that the sliding manifold is reached asymptotically.
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A strong condition for finite time reaching is given as follows

V̇ (t, x) = σ(x)σ̇(x) ≤ −η|σ(x)| (2.10)

for some η > 0, known as η reachability condition in the literature. For a general m input system, it

is not necessary to ensure sliding mode on each discontinuity surface but sliding mode should exist on

the intersection of all discontinuity surfaces. These conditions ascertain that sliding surfaces remain

attractive.

2.4 Relative Degree in Sliding Mode

Definition 2.1. A smooth autonomous single input single output (SISO) system ẋ = a(t, x) +

b(t, x)u with the control u and output σ is said to have the relative degree r, if the Lie derivatives

locally satisfy the conditions [44]

Lbσ = LaLbσ = .... = Lr−2
a Lbσ = 0, Lr−1

a Lbσ ̸= 0. (2.11)

It can be shown that the equality of the relative degree to r actually means that σ, σ̇, ..., σ(r−1) do

not depend on control and can be taken as a part of new local coordinates and σ(r) linearly depends

on u with the nonzero coefficient Lr−1
a Lbσ.

2.5 Order of the sliding mode

The standard sliding mode can be implemented only if the relative degree of the sliding variable

is 1, i.e. control has to appear in its first total time derivative σ̇. Another problem of the standard

sliding mode is that the high frequency switching in the control may cause dangerous vibrations called

chattering. The sliding mode order approach [24] addresses both these issues of relative degree restric-

tion and chattering while preserving the features of the sliding mode. The sliding order characterizes

the dynamics smoothness degree in the vicinity of the sliding mode and can be defined as given below:

Definition 2.2. Let us consider a discontinuous differential equation ẋ = f(t, x) understood in

the Filippov sense [42] and σ(x) is a smooth function. Then, provided that

1. σ, σ̇, ..., σ(r−1) are continuous functions of x,
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2.6 Finite time stability

2. the set

σ = σ̇ = σ̈ = ......... = σ(r−1) = 0 (2.12)

is a non-empty integral set,

the motion on set (2.12) is said to exist in r-sliding (rth-order sliding) mode [24] [45]. The set

(2.12) is called r-sliding set. It is said that the sliding order is strictly r, if the next derivative σ(r) is

discontinuous or does not exist as a single-valued function of x.

2.6 Finite time stability

The standard sliding mode used in the traditional VSSs is of the first order (σ is continuous and σ̇

is discontinuous). The standard sliding mode design suggests choosing a new auxiliary sliding variable

of the first relative degree. That variable is usually a linear combination of the sliding variable σ and

its successive total time derivatives [23], which leads to only exponential stabilization of σ. The finite

time stabilization corresponds to the high order sliding mode (HOSM) approach [24] [27]. Asymptoti-

cally stable HOSMs arise in systems with traditional sliding mode control, if the relative degree of the

sliding variable σ is higher than 1. An important property which concerns asymptotic stability is finite

time stability (FTS), i.e. the solutions of a system which reach the equilibrium point in finite time.

Finite time stability is preferable, since it offers higher robustness and higher accuracy in presence

of small sampling noises and delays. The concept of finite time stability corresponding to high order

sliding mode (HOSM) is explicitly discussed in [46] [47] [48] [49] [50] [51]. A simple definition of finite

time stability as given in [47] is stated below:

The main idea of finite time stability lies in assigning infinite eigenvalue to the closed loop system

at the origin and therefore the right hand side of the ordinary differential equation can not be locally

Lipschitz at the origin. Also there exists the settling time function T (x0) where x0 is the initial

condition that determines time for a solution to reach the equilibrium. This settling time function (in

general) depends on the initial condition of a solution.
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Let us consider the following example [49] [50] [51]

ẋ = −|x|asgn(x) x ∈ Rn, (2.13)

for which the solutions are (a ∈]0, 1[):

x(t, x0) =

 s(t, x0), if 0 ≤ t ≤ |x0|1−a

1−a

0, if t > |x0|1−a

1−a

(2.14)

with s(t, x0) = sgn(x0)(|x0|1−a − t(1 − a))
1

1−a and they reach the origin in finite time. The time

required for the solutions to reach the equilibrium is called the settling time which depends on the

initial condition of the solution.

Definition 2.3. Finite time stability of continuous autonomous systems [49] [50] [51]

Let us consider the continuous autonomous system

ẋ = f(x), x ∈ Rn (2.15)

The origin of the system (2.15) is finite time stable (on an open neighbourhood V ⊂ Rn) if [52]:

• there exits a function T : V \ {0} → R≥0 such that if x0 ∈ V \ {0} then Φx0(t) is defined (and in

particular is unique) on [0, T (x0)), Φx0(t) ∈ V \ {0} for all t ∈ [0, T (x0)) and lim
t→T (x0)

Φx0(t) = 0.

The quantity T is called settling time function of system (2.15).

• for all ϵ > 0, there exists a function δ(ϵ) > 0, for every x0 ∈ (δ(ϵ)Bn \ {0})
∩

V, Φx0(t) ∈ ϵBn

for all t ∈ [0, T (x0))

where B is the unit open ball in Rn and Φx0(t) denotes a solution of system (2.15) starting from

x0 ∈ Rn at t = 0.

Definition 2.4. Finite time stability of discontinuous systems [52]

Let us consider the differential inclusion

ẋ ∈ F (x), x ∈ Rn (2.16)

where F is a set valued function on Rn, ẋ denotes the right derivative of x. The origin of (2.16)

is finite time stable if
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• the origin of the system (2.16) is stable : if for all ϵ > 0, there is δ(ϵ) > 0 such that if x0 ∈ δ(ϵ)B,

then any solution ϕx0 starting at x0 is defined for all t ≥ 0 and ϕx0(t) ∈ ϵB for all t ≥ 0,

• there exists T0 : S → R≥0, such that for all solutions ϕx0 ∈ S(x0), ϕx0(t) = 0 for all t ≥ T0(ϕx0).

T0 is the settling time of the solution ϕx0 .

Here ϕx0(t) represents a solution of system (2.16) starting from x0, S(x0) is the set of all solutions ϕx0

and space S =
∪

x0∈Rn

S(x0).

If T (x) = sup
ϕx∈S(x)

T0(ϕx) < +∞, then T (x) is the time for the solution ϕx to reach the origin called

the settling time function of system (2.16).

2.7 Chattering

In real life applications, it is not reasonable to assume that the control signal can switch at infinite

frequency. Due to the presence of inertia in actuators and sensors, surrounding noise and exogenous

disturbances, actually the control signal commutes at a very high though finite frequency. The control

signal’s oscillation frequency turns out to be not only finite but also almost unpredictable. Its main

consequence is that the sliding mode takes place in a small neighbourhood of the sliding manifold

whose width is inversely proportional to the control switching frequency [12] [22] [30].

The notions of ideal and real sliding mode are adopted here to distinguish the sliding motion that

occurs ideally on the sliding manifold (assuming ideal control devices) from a sliding motion that,

due to the non-idealities of the control law implementation, takes place in a vicinity of the sliding

manifold, which is called the boundary layer (illustrated in Fig. 2.2).

The effect of the finite switching frequency of the control is referred in the literature as chatter-

ing [53] [54] [55]. Basically, the high frequency components of the control propagate through the

system, thereby exciting the unmodeled fast dynamics resulting in undesired oscillations which affect

the system output. This phenomenon degrades the system performance or may even lead to insta-

bility. The term chattering has also been designated to indicate the potentially disruptive affect that

a switching control force or torque can produce on a controlled mechanical plant [23] [27] [55] [56].

Chattering and high control activity are the major drawbacks of the sliding mode approach in the

practical realization of sliding mode control schemes. Active research is continuing to realize a contin-

uous control action which can overcome these drawbacks and ensure robustness against uncertainties
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Figure 2.2: The chattering effect

and disturbances and at the same time achieve the same control objective of the standard sliding mode

approach [24] [28] [57].

The most practised approach for chattering mitigation is based on the use of continuous approxi-

mations of the sign() function (such as the sat() function, the tanh()function) in the implementation

of the control law. However, by using this method, the insensitivity feature of sliding mode control is

lost. In this method, the system possesses robustness that is a function of the boundary layer width.

It is pointed out in [23] [58] that this methodology is highly sensitive to the unmodeled fast dynam-

ics and in some cases it may lead to unacceptable performance. An interesting class of smoothing

functions, characterized by time varying parameters, was proposed in [59] while attempting to find

a compromise between chattering mitigation and possible excitation of the unmodeled dynamics. In

summary, continuation approaches eliminate high frequency chattering at the price of losing invariance
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2.8 Summary

towards uncertainty. One effective approach for chattering elimination is by using the second order

sliding mode methodology [24] [27].

2.8 Summary

In this chapter, basic concepts and properties of sliding modes have been discussed concisely. The

main advantages of the sliding mode control technique are the simplicity in both implementation and

design and the inherent robustness with respect to matched internal and external uncertainties and

disturbances.

17



3
Adaptive Integral Sliding Mode

Controller

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Design of adaptive integral sliding mode controller . . . . . . . . . . . . . 21

3.4 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

18



3.1 Introduction

3.1 Introduction

Sliding mode control (SMC), developed from the variable structure system theory, has gained

much more attention for its robustness against parameter variations and external disturbances under

matching conditions [30, 43, 60]. In sliding mode control (SMC), the system states are moved from

their initial states towards a chosen manifold in the state space, called the sliding surface [30, 43].

After reaching the sliding manifold, the system becomes totally insensitive to parametric uncertainties

and external disturbances. The motion of the trajectory from the initial condition towards the sliding

surface until it hits the sliding surface is called the reaching phase. During the reaching phase, the

system is not robust and even matched uncertainty can affect the system performance. To solve this

problem, an integral sliding mode (ISM) concept was proposed in [19].

In integral sliding mode control method, an integral term was incorporated in the sliding manifold

which guaranteed that the system trajectories would start in the manifold itself from the initial time

and thus the reaching phase was totally eliminated. Hence the system became invariant towards the

matching uncertainty right from the beginning.

Although the ISM controller guarantees robustness against system uncertainty, the crucial part is the

control discontinuity leading to chattering as explained in Chapter 2. Another difficulty faced by the

ISM controller is the necessity of prior knowledge about the upper bound of the system uncertainty.

In real time application it is very difficult to get the upper bound of the uncertainty and often this

bound is overestimated yielding to excessive gain.

For circumventing the above difficulties, this chapter proposes an integral sliding surface based chat-

tering free sliding mode controller which uses an adaptive tuning law. The main attributes of the

proposed controller are robustness and smooth control signal. An adaptive tuning law is used for the

controller to estimate the unknown but bounded system uncertainties. As such the upper bounds of

the system uncertainties are not required to be known in advance. Moreover, the chattering in the

control input is eliminated by using the proposed controller.

The brief outline of this chapter is as follows. Section 3.2 briefly discusses the design problem and

the assumptions made. In Section 3.3, the proposed adaptive integral sliding mode control method is

described. Section 3.4 presents simulation examples to demonstrate the efficiency and advantages of

the proposed controller. A brief summary of the chapter is presented in Section 3.5.
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3. Adaptive Integral Sliding Mode Controller

3.2 Problem Definition

A class of nonlinear dynamic system is considered as follows:

ẋ = f(x) + g(x)u

y = σ(x) (3.1)

where x ∈ Rn are the state variables, u ∈ R is the control input and σ(x) ∈ R is the measured output

function known as the sliding variable. It is assumed that f(x) and g(x) are smooth functions.

Let the system have a relative degree r with respect to the output variable σ which means that Lie

derivatives Lgσ;LfLgσ; ...;Lr−2
f Lgσ are equal to zero identically in the vicinity of a given point and

Lr−1
f Lgσ is not zero at the point. The equality of the relative degree to r means, in a simplified way,

that u first appears explicitly only in the r-th total time derivative of σ.

Remark 3.1 For simplicity, the relative degree of the system (3.1) is assumed to be equal to the order

of the sliding surface.

Assumption 3.1 The relative degree r of the system (3.1) is known a priori.

Assumption 3.2 An exact robust differentiator is available for exactly measuring or estimating the

derivative of variables.

The aim of the first order sliding mode control is to force the state trajectories to move along the

sliding manifold σ(x) = 0. In the higher order sliding mode control, the purpose is to move the

states along the switching surface σ(x) = 0 and to keep its (r − 1) successive time derivatives viz

σ̇, σ̈, ..., σ(r−1) to zero by using a suitable discontinuous control action [24]. The r-th order derivative

of σ(x) satisfies the following equation,

σ(r)(x) = a(x) + b(x)u (3.2)

where r is the relative degree, a(x) = Lrfσ(x) and b(x) = Lr−1
f Lgσ(x). Here Lf and Lg are the Lie

derivatives [25] of the smooth functions in (3.1).

The r-th order sliding mode control of the system (3.1) with respect to the sliding variable σ(x) can

be expressed as [61],

żi = zi+1

żr = a(x) + b(x)u (3.3)

20



3.3 Design of adaptive integral sliding mode controller

where 1 ≤ i ≤ r − 1 and [z1, z2, ..., zr]T = [σ(x), σ̇(x), ..., σ(r−1)(x)]T

Assumption 3.3. Matrices a(x) and b(x) consist of the nominal parts (ā(x), b̄(x)) which are known

apriori and uncertain parts (∆a(x), ∆b(x)) which are bounded and unknown [62].

Thus the following can be written,

a(x) = ā(x) + ∆a(x)

b(x) = b̄(x) + ∆b(x) (3.4)

σ(r)(x) = (ā+ ∆a)(x) + (b̄+ ∆b)(x)u

= ā(x) + b̄(x)u+ ∆F (x, t) (3.5)

where ∆F (x, t) = ∆a(x) + ∆b(x)u includes all the uncertain parameters and external disturbance.

Using (3.4) and (3.5) with z as the state variable, the r-th order sliding mode control for the system

(3.1) can be written as,

żi = zi+1

żr = ā(z) + b̄(z)u+ ∆F (z, t) (3.6)

In the regular form, the above can be written as,

ż = Ā(z) + B̄(z)u+ ∆F (z, t) (3.7)

where z = [z1 z2...zi..zr]T , and Ā(z), B̄(z) are matrices with proper dimension. The uncertainties in

the system due to modeling error and parameter variation are denoted by ∆F (z, t) which is assumed

to be differentiable with respect to time. In this problem, the uncertainties in the system (3.6) are

assumed to meet the matching conditions. Then ∆F (z, t) ∈ span{B̄(z)} [30] meaning that ∆F (z, t)

is a matched uncertainty.

3.3 Design of adaptive integral sliding mode controller

The design procedure for the overall control signal is carried out in two parts, design of the nominal

control wnom and then design of the overall control law u. At first, the nominal control law wnom is

designed that guarantees finite time stabilization of the chain of integrators in absence of uncertainties.
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3. Adaptive Integral Sliding Mode Controller

Then the reaching law based overall control law is designed to reject the uncertainties and maintain

the sliding mode.

3.3.1 Finite time stabilization of an integrator chain system

Let us consider the nominal system which is represented by the single input single output (SISO)

integrator chain as described below,

ż1 = z2

ż2 = z3

.

żr = wnom (3.8)

The control objective is to drive the states of (3.8) to z = 0 at the fixed finite time [63].

Theorem 3.1. Let k1, k2, ...kn > 0 be such that the polynomial ϕ(λ) = λn + knλ
n−1 + ...+ k2λ+ k1

is Hurwitz. For the system (3.8), there exists a value ε ∈ (0, 1) such that for every αi ∈ (1 − ε, 1),

i = 1, 2, ...n, the origin is a globally stable equilibrium in finite time under the feedback

wnom(z) = −k1sign(z1)|z1|α1 − k2sign(z2)|z2|α2 − ...− knsign(zn)|zn|αn (3.9)

where α1, ...αn satisfy

αi−1 = αiαi+1

2αi+1−αi
, i = 2, ..., n with αn+1 = 1 [63].

3.3.2 Design of integral sliding mode controller

However, when the system is perturbed or uncertain, the finite time stabilization is not ensured

[63]. In this section a reaching law based discontinuous control law is developed which rejects the

uncertainties of the system and ensures that the control objectives are fulfilled [62].

Let us consider an integral sliding surface,

s(z) = zn − zn(0) −
∫
wnom(z)dt (3.10)

The initial condition of the system is defined by zn(0). The nominal control wnom ensures the conver-

gence of the chain of integrators in finite time as given in Theorem 3.1.
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3.3 Design of adaptive integral sliding mode controller

By taking the time derivative of (3.10), the following is obtained,

ṡ(z) = żn − wnom

= ā(z) + b̄(z)u+ ∆F (z, t) − wnom (3.11)

Using (3.11) and the constant rate reaching law ṡ(z) = −Gsign(s(z)) [30] such that it satisfies the

reachability condition s(z)ṡ(z) ≤ −η|s(z)| where η being a positive constant yields,

−Gsign(s(z)) = ā(z) + b̄(z)u− wnom (3.12)

Here G is the switching gain. The control law described above ensures finite time stabilization of the

system states and also rejects the uncertainties if G > |∆F (z, t)|. Hence the overall control law can

be obtained as [62],

u = b̄(z)−1{−ā(z) + wnom −Gsign(s(z))} (3.13)

However, the high frequency chattering is always present in the control signal.

In order to remove the undesired chattering in the control input, an adaptive integral chattering free

sliding mode controller is developed. In the proposed controller, the time derivative of the control

input, u̇ would be designed to act on the higher order derivatives of the sliding variable [64,65]. Hence

instead of the actual control u, the time derivative of the control, u̇ would be used as the control

input. The new control v = u̇ would be designed as a discontinuous signal, but its integral (the actual

control u) would be continuous thereby eliminating the high frequency chattering.

Now taking the first order time derivative of (3.11) yields,

s̈(z) = z̈n − ẇnom (3.14)

Using (3.2), (3.14) can be written as,

s̈(z) =
d

dt
(ā(z) + b̄(z)u) − ẇnom

= ˙̄a(z) + ˙̄b(z)u+ b̄(z)u̇− ẇnom

= ˙̄a(z) + ˙̄b(z)u+ b̄(z)u̇− ẇnom + ∆Ḟ (z, t) (3.15)
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3. Adaptive Integral Sliding Mode Controller

Assuming y1 = s(z) and y2 = ṡ(z), the system dynamics can be written as [66,67],

ẏ1 = y2

ẏ2 = Φ[z, u] + Ψ[z]v (3.16)

where v = u̇ and Φ[z, u] collects all the uncertain terms not involving u̇, i.e. Φ[z, u] = ˙̄a(z) + ˙̄b(z)u−

ẇnom + ∆Ḟ (z, t) and Ψ[z] = b̄(z). Thus the system (3.16) becomes a chain of integrators controlled

by the input v. So a sliding mode controller for the above system can be designed to keep the system

trajectories on the sliding manifold by using the control input v. To design an SMC for the system

(3.16), the sliding function is considered as,

σ = y2 + κy1 (3.17)

where κ is a positive constant. The derivative of (3.17) is obtained as,

σ̇ = ẏ2 + κẏ1 (3.18)

Using (3.18) and (3.15) yields,

σ̇ = ˙̄a(z) + ˙̄b(z)u+ b̄(z)u̇− ẇnom + ∆Ḟ (z, t) + κ(żn − wnom) (3.19)

Using the µ reaching law [68] yields,

σ̇ = −ρsign(σ) (3.20)

where ρ > |∆Ḟ (z, t)| to satisfy the reaching law condition σσ̇ ≤ −η|σ| where η is a positive constant

[56]. Using (3.19) and (3.20), the control law is obtained as,

u̇ = −b̄(z)−1{ ˙̄a(z) + ˙̄b(z)u− ẇnom + κ(żn − wnom) + ρsign(σ)} (3.21)

3.3.3 Design of adaptive integral chattering free sliding mode controller

In practice, the upper bound of the system uncertainty is often unknown in advance and hence the

error term |∆Ḟ (z, t)| is difficult to find. So an adaptive tuning law is proposed to estimate ρ. Then

the control law (3.21) can be written as

u̇ = −b̄(z)−1{ ˙̄a(z) + ˙̄b(z)u− ẇnom + κ(żn − wnom) + T̂ sign(σ)} (3.22)
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3.3 Design of adaptive integral sliding mode controller

where T̂ estimates the value of ρ. Defining the adaptation error as T̃ = T̂ − T , the parameter T̂ will

be estimated by using the adaptation law [40] [69,70] as given below,

˙̂
T = ν|σ| (3.23)

where ν is a positive constant. A Lyapunov function V is selected as V = 1
2σ

2 + 1
2γT̃

2 whose time

derivative is as follows,

V̇ = σσ̇ + γT̃ ˙̃T
Using (3.19) yields,

V̇ = σ[ ˙̄a(z) + ˙̄b(z)u+ b̄(z)u̇− ẇnom + ∆Ḟ (z, t) + κ(żn − wnom)] + γ(T̂ − T ) ˙̂
T

Using (3.22) and (3.23) yields,
V̇ = σ[∆Ḟ (z, t) − T̂ sign(σ)] + γ(T̂ − T )ν|σ|

The above equation can be written as
V̇ ≤ |∆Ḟ (z, t)||σ| − T̂ |σ| + T |σ| − T |σ| + γ(T̂ − T )ν|σ|

≤ (|∆Ḟ (z, t)| − T )|σ| − (T̂ − T )|σ| + γ(T̂ − T )ν|σ|
≤ −(−|∆Ḟ (z, t)| + T )|σ| − (T̂ − T )(−γν|σ| + |σ|)
≤ −βσ

√
2|σ|/

√
2 − βν

√
2γ(T̂ − T )/

√
2γ

where βσ = (T − |∆Ḟ (z, t)|) and βν = (|σ| − γν|σ|)
So, V̇ ≤ −min{βσ

√
2, βν

√
2/γ}(|σ|/

√
2 + T̃

√
γ/2)

≤ −βV 1/2 (3.24)

where β = min{βσ
√

2, βν
√

2/γ} with β > 0. The above inequality holds if ˙̂
T = ν|σ|, βσ > 0, βν >

0, T > |∆Ḟ (z, t)| and γ < 1
ν . Therefore, finite time convergence to a domain σ = 0 is guaranteed from

any initial condition [40,62].

Remark 3.2. Practically, |σ| cannot become exactly zero in finite time and thus the adaptive param-

eter ˙̂
T may increase boundlessly [40]. A simple way of overcoming this disadvantage is to modify the

adaptive tuning law (3.23) by using the dead zone technique [30,40] as

˙̂
T =

{
ν|σ|, |σ| ≥ ϵ

0, |σ| < ϵ
(3.25)

where ϵ is a small positive constant.

As is evident from (3.22), u̇ is discontinuous but integration of u̇ yields a continuous control law u.

Hence the undesired high frequency chattering of the control signal is alleviated. Thus the above

adaptive integral sliding mode control method offers two main advantages. Firstly, the knowledge
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3. Adaptive Integral Sliding Mode Controller

about the upper bound of the system uncertainties is not required. Secondly, the chattering in the

control input is eliminated.

3.4 Simulation Examples

The proposed adaptive integral chattering free sliding mode controller is applied to two examples

of uncertain system. Both the examples are simulated by using ODE 5 solver in the MATLAB -

Simulink platform with a fixed step size of 0.005 sec.

3.4.1 Adaptive integral chattering free sliding mode controller for the triple inte-
grator system

The triple integrator system [62] having parametric uncertainty is described below,

ẋ1 = x2

ẋ2 = x3

ẋ3 = u+ p(x), y = x1 (3.26)

where p(x) = sin(10x1) is the bounded uncertainty, y is the output and the initial condition of

the system is assumed as x(0) = [1 0 − 1]T . Stabilization of the above system is investigated and

simulation is performed with k1 = 1, k2 = 1.5, k3 = 1.5 (3.9) and G = 1.5 (3.13). For designing the

adaptive integral SM controller, same controller parameters as used by Defoort et al. [62] are chosen.

The adaptive tuning law (3.23) is designed as ˙̂
T = 0.8|σ| with T0 = 0.5. The sliding manifold coeffi-

cient κ (3.17) is selected as 2.

Figs. 3.1 - 3.4 show the states, the control input, the sliding surface and the estimated adaptive gain

obtained by using the proposed controller. It is obvious from Fig.3.1 that the proposed controller

converges the system states quickly to the origin. From Figs. 3.2 - 3.3 it is evident that the control

input is smooth having no chattering and the sliding surface is also chatterless. The convergence of

the estimated adaptive gain T̂ is confirmed in Fig.3.4. Notably, prior knowledge about the upper

bound of the system uncertainty is not a necessary requirement. The proposed controller adaptively

estimates the system uncertainty and hence is suitable for practical applications where the bounds of

uncertainty are difficult to be determined.
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Figure 3.1: State response with the proposed control
law (3.22)
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Figure 3.2: Control input with the proposed control
law (3.22)
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Figure 3.3: Sliding surface with the proposed control
law (3.22)
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Figure 3.4: Estimated adaptive gain with the proposed
control law (3.22)

3.4.2 Adaptive integral chattering free sliding mode controller for the single in-
verted pendulum

The dynamic equations of the single inverted pendulum are stated below [13,71],

ẋ1 = x2

ẋ2 =
g sinx1 − (mlx2

2 cosx1 sinx1/mc +m)
l[4/3 − (m cos2 x1/mc +m)]

+
cosx1/mc +m

l[4/3 − (m cos2 x1/mc +m)]
u+ ∆

y = x1 (3.27)

where ∆ is the system perturbation defined by ∆ = 7 sin(10x1) + cosx2.

The parameters of the single inverted pendulum are tabulated in Table 3.1.

27



3. Adaptive Integral Sliding Mode Controller

Table 3.1: Parameters of the single inverted pendulum

Variable name Description Values
g gravitational constant 9.8ms−2

mc mass of the cart 1kg
m mass of the pendulum 0.1kg
l effective length of the pendulum 0.5m
x1 swing angle state
x2 swing speed state

The objective is to design an adaptive integral sliding mode controller such that the system output

y (3.27) tracks the desired reference trajectory given by xd = sin(0.5πt). The sliding variable is defined

as s = x1 − xd and the proposed control law (3.22) is used. For our proposed controller (3.22) the

method given by Defoort et al. [62], is chosen with n = 2, α1 = 3/4, k1 = 3, α2 = 3/5, k2 = 2.5,

G = 10 and wnom (3.9) is calculated. The sliding manifold parameter (3.17) is selected as κ = 30. The

adaptive tuning law is designed as ˙̂
T = 5.5|σ| with T0 = 0. Figs. 3.5 - 3.8 show the system output, the

control input, the sliding manifold and the estimated adaptive gain obtained by using the proposed

controller. It is evident from these figures that apart from ensuring the desired tracking performance,

the proposed control scheme is able to eliminate the undesired high frequency chattering in the control

input.
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Figure 3.5: System output with the proposed control
law (3.22)
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Figure 3.6: Control input with the proposed control
law (3.22)
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Figure 3.8: Estimated adaptive gain with the proposed
control law (3.22)

3.5 Summary

An adaptive integral chattering free sliding mode controller for uncertain systems is proposed in

this chapter. A tuning rule is designed to deal with the unknown bounded system uncertainty. The

upper bound of the system uncertainty is not required to be known apriori as is the case with most

existing sliding mode controllers. Stabilization of the triple integrator system and tracking control of

the single inverted pendulum are investigated. It is observed that the proposed control law is capable

of achieving the control objective while eliminating the high frequency oscillations in the control input.

Hence the proposed controller promises to be highly suitable for practical applications. The stability of

the controlled system is proved by using Lyapunov stability criterion. Simulation results demonstrate

the efficacy and advantages of the proposed controller.
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4.1 Introduction

4.1 Introduction

It is evident from the discussion so far that the sliding mode control (SMC) is a robust control

strategy which is insensitive to matched uncertainty affecting a dynamic system [43]. However, in

presence of mismatched perturbations, the property of asymptotical stability is, in general, hard to

achieve by using the traditional SMC technique [59]. One significant research finding is that the

stability of the system is guaranteed if the system trajectory is driven to a bounded region [31,72,73].

Hence when the system contains mismatched perturbations, the information about the upper bound

of perturbations is needed in order to achieve asymptotical stability [32, 74, 75]. A technique was

developed in [38] where asymptotic stability could be achieved without requiring the information about

the upper bound of the system uncertainties. Here adaptive mechanism was embedded in the controller

as well as in the sliding surface, but the control input obtained by using the above-mentioned method

was not smooth and high frequency chattering was present which made the algorithm substantially

difficult to apply practically.

In this chapter, a chattering free sliding mode control scheme for multiple input multiple output

(MIMO) systems with both matched and mismatched uncertainties is proposed. A tuning rule based

sliding mode is used to design the proposed controller in order to mitigate chattering and adaptive

tuning mechanism is employed for estimating the upper bound of the system uncertainty. The twin

rotor multi input multi output system (TRMS), which is a typical example of a coupled MIMO system

with mismatched uncertainty, is considered for design and validation purpose. The TRMS is divided

into a horizontal and a vertical subsystem and an adaptive sliding mode controller is designed for each

of the subsystems. Next the adaptive sliding mode controller is applied for stabilization of the vertical

take-off and landing (VTOL) aircraft system which is affected by both matched and mismatched

types of uncertainty. To show the effectiveness of the proposed control law, experimental studies are

conducted on a single degree of freedom (DOF) vertical take-off and landing (VTOL) aircraft system

to study the real time performance of the proposed adaptive sliding mode (SM) controller. The design

prerequisite of the sliding mode controller is complete knowledge about the state vector which is not

available in this example. Hence unavailable states of the 1 DOF VTOL are estimated by using an

extended state observer (ESO).

The outline of this chapter is as follows. Section 4.2 discusses the design procedure of the adaptive

sliding mode controller. The design strategy is demonstrated by taking the TRMS into consideration
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in Section 4.3. In Section 4.4, effectiveness of this adaptive sliding mode controller is validated by

applying it for stabilization of the VTOL system. Experimental results obtained by applying the

adaptive sliding mode controller on the laboratory set-up QNET which is the prototype of VTOL

aircraft system are presented in Section 4.5. A brief summary of the chapter is presented in Section

4.6.

4.2 Adaptive sliding mode controller

Let us consider the following uncertain system

ẋ = Ax+Bu+ f(x, t) (4.1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input and the continuous function f(x, t)

represents matched and mismatched uncertainties together. Let us assume that the above system is

in the regular form requiring no transformation. Thus the system can be written as,

ẋ1 = a11x1 + a12x2 + fu(x, t)

ẋ2 = a21x1 + a22x2 +B2u+B2fm(x, t) (4.2)

where x1 ∈ Rn−m, x2 ∈ Rm, fu(x, t) is the mismatched perturbation and fm(x, t) is the matched one.

Let us consider the sliding surface given by

s = cx

= c1x1 + c2x2 (4.3)

where c1, c2 are matrices with proper dimension.

4.2.1 Stability during the sliding mode

During the sliding mode s = 0 and therefore (4.3) can be written as,

s = cx = c1x1 + c2x2 = 0

or, x2 = −c−1
2 c1x1 (4.4)
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where c2 is invertible.

Using (4.4) in the state space model (4.2) yields,

ẋ1 = a11x1 − a12c
−1
2 c1x1 + fu

= (a11 − a12c
−1
2 c1)x1 + fu

= asx1 + fu (4.5)

where as = (a11−a12c
−1
2 c1). Furthermore, fu is the uncertainty satisfying the condition ||fu|| ≤ λ̃||x1||

[8] where λ̃ is a bounded positive constant.

Remark 4.1. The above assumption is a limitation on the uncertainties that can be tolerated by the

system. From the work in [74] [76] [77], these assumptions are fundamental and reasonable. The

structural requirement on the interconnection bounds is not essential because it can be easily extended

to a more general case (for example, [78] can be referred to).

It is to be noted that c1 and c2 are designed in such a way that the eigenvalues of as lie in the left

half of the s-plane and there exits a positive definite matrix P [74] such that

aTs P + Pas = −R (4.6)

where R is also a positive definite matrix. Let a Lyapunov function for the system be defined as

V2 = xT1 Px1. The time derivative of V2 is obtained as,

V̇2 = ẋT1 Px1 + xT1 Pẋ1

= xT1 a
T
s Px1 + fTu Px1 + xT1 Pasx1 + xT1 Pfu

= xT1 (aTs P + Pas)x1 + fTu Px1 + xT1 Pfu

= −xT1Rx1 + 2xT1 Pfu (4.7)

It is known that [74] [75],

xT1Rx1 ≥ λmin(R)xT1 x1 = λmin(R)||x1||2 (4.8)

where λmin is the minimum eigen value and so,

V̇2 ≤ −λmin(R)||x1||2 + 2xT1 Pfu (4.9)
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If there exists a bounded positive constant λ̃ such that λ̃ < 0.5λmin(R)/||P ||, then

2xT1 Pfu ≤ 2λ̃||P ||||x1||2 < λmin(R)||x1||2 (4.10)

and

V̇2 ≤ −λmin(R)||x1||2 + 2xT1 Pfu < 0 (4.11)

Hence the stability in the sliding mode is proved.

4.2.2 Design of the control law

The time derivative of sliding surface

ṡ =
d

dt
(cx)

= cẋ(t)

= c(Ax+Bu+ f(x, t)) (4.12)

s̈ = cAẋ+ cBu̇+ cḟ(x, t)

= cA2x+ cABu+ cBu̇+ (cAf(x, t) + cḟ(x, t)) (4.13)

Assuming s = y1(x) and ṡ = y2(x), the system dynamics can be written as,

ẏ1(x) = y2(x)

ẏ2(x) = Φ[x, u] + Ψ[x]v (4.14)

where v = u̇ and Φ[x, u] collects all the uncertain terms not involving u̇. So a sliding mode controller

for the above system can be designed to keep the system trajectories on the sliding manifold using the

control input u̇ = v. Let the sliding function be considered as,

σ = y2(x) + κy1(x) (4.15)

where κ is a positive constant. Differentiating (4.15) yields,

σ̇ = ẏ2(x) + κẏ1(x) (4.16)
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Using (4.12), (4.13) and (4.16) yields,

σ̇ = cA2x+ cABu+ cBu̇+ (cAf(x, t) + cḟ(x, t))

+κc(Ax+Bu+ f(x, t))

= cA2x+ κcAx+ (cAB + κcB)u+ cBu̇

+c(Af(x, t) + ḟ(x, t) + κf(x, t)) (4.17)

Using the constant plus proportional reaching law gives rise to,

σ̇ = −k1σ − k2sign(σ) (4.18)

Using (4.17) and (4.18), the control law is obtained as,

u̇ = −(cB)−1((cA2 + κcA)x+ (cAB + κcB)u

+k1σ + k2sign(σ)) (4.19)

where k1 ≥ 0 and k2 > c(Af(x, t)+ ḟ(x, t)+κf(x, t)) = c∇F = Q to satisfy the reaching law condition

σσ̇ ≤ −η||σ||, where η is a positive constant.

Proof : A Lyapunov function is defined as V = 1
2σ

2 and using the control law it is easy to find that,

V̇ = σσ̇

= σ[c∇F − k1σ − k2sign(σ)]

= σ[Q− k1σ − k2sign(σ)]

≤ Q||σ|| − k2||σ|| ≤ −η||σ|| (4.20)

Clearly, (4.20) implies that if k1 ≥ 0 and k2 > Q, control law (4.19) forces the sliding manifold σ to

zero in finite time.

4.2.3 Design of the adaptive tuning law

In practice, the uncertain term ∇F is often difficult to know. Hence an adaptive tuning law is

designed to determine k2. So (4.18) can be written as

σ̇ = −k1σ − T̂ sign(σ) (4.21)
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where T̂ estimates the value of k2.

Using (4.19) and (4.21), the control law is obtained as,

u̇ = −(cB)−1((cA2 + κcA)x+ (cAB + κcB)u

+k1σ + T̂ sign(σ)) (4.22)

Defining the adaptation error as T̃ = T̂ − T , the parameter T̂ is estimated by using the adaptation

law [39,69,79]

˙̂
T =

1
γ
||σ|| (4.23)

where γ is a positive constant. A Lyapunov function is defined as V = 1
2σ

2 + 1
2γT̃

2 and it is easy to

find that,

V̇ = σσ̇ + γT̃ ˙̃T

= σ[c∇F − k1σ − T̂ sign(σ)] + γ(T̂ − T ) ˙̂
T

= σ[Q− k1σ − T̂ sign(σ)] + γ(T̂ − T ) ˙̂
T

≤ Q||σ|| − T ||σ|| ≤ −η||σ|| (4.24)

The above inequality holds if ˙̂
T = 1

γ ||σ||, η > 0 and T > Q. This ensures the convergence of σ and

guarantees that the states converges to equilibrium asymptotically.

Remark 4.2. Practically, ||σ|| cannot become exactly zero in finite time and thus the adaptive pa-

rameter ˙̂
T may increase boundlessly. A simple way of overcoming this disadvantage is to modify the

adaptive tuning law (4.23) by using the dead zone technique [30] as

˙̂
T =


1
γ ||σ||, ||σ|| ≥ ϵ

0, ||σ|| < ϵ
(4.25)

where ϵ is a small positive constant.

As is evident from (4.19), u̇ is free from any discontinuous part and so integration of u̇ yields a

continuous control law u. Hence the undesired high frequency chattering of the control signal is

eliminated.

Thus the above adaptive SM control method offers two main advantages. Firstly, the knowledge about

36



4.3 The twin rotor MIMO System

the upper bound of the system uncertainties is not required. Secondly, the chattering in the control

input is removed.

4.3 The twin rotor MIMO System

In this section the problem of controlling the twin rotor MIMO system (TRMS), which is the

prototype of a helicopter, is addressed. The above-mentioned control law is used for the TRMS

affected by mismatched uncertainty.

The TRMS has been the object of research for control theorists for many years. The TRMS resembles

a nonlinear system with heavy cross coupling effects. Hence controlling the TRMS is quite challenging

and has gained a lot of research interest [8, 80–83]. An evolutionary computation based proportional

integral derivative (PID) controller has been proposed for addressing the tracking control problem in

the TRMS [84]. A fuzzy logic based linear quadratic regulator (LQR) control has been developed

to stabilize the TRMS in presence of high cross coupling [1]. In [1] the phase portrait technique has

been used for rule reduction and obtaining the model. In [85] a robust dead beat controller has been

designed for controlling the TRMS. Here the system was decoupled into two single input single output

(SISO) models and the cross coupling was considered as disturbance for each other.

In this section, a sliding mode (SM) controller is proposed for position control of the TRMS. In

the proposed design methodology, the mathematical model of the TRMS is pseudo decoupled into a

horizontal and a vertical subsystem. The cross coupling effect between the main rotor and the tail

rotor is considered as the uncertainty in the pseudo decoupled TRMS. An adaptive tuning law is

adopted to deal with the system uncertainty. The main benefit offered by this adaptive sliding mode

controller is that apriori knowledge about the upper bound of the system uncertainty is not needed.

A proportional integral (PI) sliding surface is designed for the vertical subsystem to remove the offset

in the pitch angle. Simulation results illustrate that our proposed adaptive sliding mode controller

shows better tracking performance with lesser control effort as compared to PID controllers [84]. Even

the presence of an external disturbance in the horizontal as well as the vertical subsystem does not

degrade the performance of the proposed adaptive sliding mode controller.

4.3.1 TRMS Description

The TRMS is a laboratory setup resembling a flight control system as shown in Fig. 4.1. The

TRMS is a highly coupled nonlinear multi input multi output (MIMO) system. The TRMS consists
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horizontal trajectory 

     vertical trajectory 
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Figure 4.1: The twin rotor MIMO system (TRMS) [1]

of two rotors which are perpendicular to each other and are joined by a beam pivoted on its base in

such a way that it can rotate freely in both the horizontal and the vertical planes. The main rotor

produces a lifting force allowing the beam to rise vertically (pitch angle) while the tail rotor is used

to control the beam to turn to the left or the right (yaw angle). Both the rotors are driven by similar

independent D.C. motors which produce the aerodynamic forces. A counterbalance arm with a weight

at its end is fixed to the beam at the pivot to stabilize the TRMS. Tacho-generators are attached to

the D.C. motors to measure the angular velocities of the two rotors.

4.3.2 System Modeling

Approximate mathematical model of the twin rotor MIMO system is obtained by using Newton’s

second law of motion and is converted into the state space form [8,84] as given below:

ẋ1 = x3

ẋ2 = x4
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ẋ3 =
1
jh

[ltSfFh(wt)cosx2 − khx3 − x3x4(D −E)sin2x2 − jmrwm(x6)x4sinx2

+
jmr
Tmr

(uv − x6)
dwm(x6)
dx6

cosx2]

ẋ4 = 9.1[lmSfFv(wm) − g(0.0099cosx2 + 0.0168sinx2) − kvx4]

+9.1[−0.0252x2
3sin2x2 +

jtr
Ttr

(uh − x5)
dwt(x5)
dx5

]

ẋ5 =
1
Ttr

(uh − x5)

ẋ6 =
1
Tmr

(uv − x6) (4.26)

With uv(uh) being the input voltage of the DC motor for the main (tail) propeller, the armature

current iv(ih) can be obtained by solving the following differential equations

div
dt

=
1
Tmr

(uv − iv)

dih
dt

=
1
Ttr

(uh − ih) (4.27)

where x1 = αh is the yaw angle, x2 = αv is the pitch angle, x3 = Ωh is the angular velocity around

the horizontal axis, x4 = Ωv is the angular velocity around the vertical axis, x5 = ih is the armature

current of the tail propeller subsystem, x6 = iv is the armature current of the main propeller subsystem.

Furthermore, lm(lt) is the main (tail) length of the beam, jmr(jtr) is the moment of inertia for the main

(tail) propeller subsystem, Tmr(Ttr) is the time constant of the main (tail) motor-propeller system and

ωm(ωt) is the rotational speed of the main (tail) rotor DC motor. Moreover, kv(kh) is the friction

constant of the main (tail) propeller subsystem, Sf is the balanced scale and uv(uh) is the control

input for the main (tail) DC motor. The propulsive force to move the joined beam in the vertical

(horizontal) direction is denoted by Fv(Fh) which is approximately described by a nonlinear function of

the angular velocity ωm(ωt). Gravitational acceleration is symbolized as g and D, E, G are constants.

Furthermore,

jh = Dsin2x2 + Ecos2x2 +G

ωm(x6) = 90.99x6
6 + 599.73x5

6 − 129.26x4
6 − 1283.64x3

6 + 63.45x2
6 + 1283.41x6

ωt(x5) = 2020x5
5 − 194.69x4

5 − 4283.15x3
5 + 262.27x2

5 + 3768.83x5
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Fv(wm) = −3.48 × 10−12ω5
m + 1.09 × 10−9ω4

m + 4.123 × 10−6ω3
m − 1.632 × 10−4ω2

m

+9.544 × 10−2ωm

Fh(wt) = −3 × 10−14ω5
t − 1.595 × 10−11ω4

t + 2.511 × 10−7ω3
t − 1.808 × 10−4ω2

t

+8.01 × 10−2ωt (4.28)

Table 4.1 lists the physical parameters of the TRMS and their values.

Table 4.1: Physical parameters of the TRMS [8]

Symbol Definition value
lm Length of the main part of the beam 0.236m
lt Length of the tail part of the beam 0.25m
kv Friction coefficient of the vertical axis 0.0095
kh Friction coefficient of the horizontal axis 0.0054
jmr Moment of inertia of the DC motor main propeller 1.6543 × 10−5kgm2

jtr Moment of inertia of the DC motor tail propeller 2.65 × 10−5kgm2

Tmr Time constant of the main rotor 1.432 sec
Ttr Time constant of the tail rotor 0.3842 sec
D Mechanical related constant 1.6065 × 10−3kgm2

E Mechanical related constant 4.90092 × 10−2kgm2

G Mechanical related constant 6.3306 × 10−3kgm2

Sf Balance scale 8.43318 × 10−4

g Gravitational constant 9.81m/s2

The nonlinear state equations of the TRMS in (4.26)-(4.28) can be represented as,

Ẋ = f(X,uh, uv),where X = [x1, x2, ...., x6]T , and

f(X,uh, uv) = [f1(X,uh, uv), f2(X,uh, uv)...., f6(X,uh, uv)]T (4.29)

In order to reduce the complexity of the position controller, the complex TRMS model is divided into

a horizontal subsystem (HS) and a vertical subsystem (VS) following the approach in [1] [8]. While

designing the controller for the subsystem, a linear part is added to and the same is then subtracted

from the nonlinear part for facilitating pseudo-separation whereas the overall system remains the same.

The state equations are then written as,

ẋh = Āhxh + B̄huh + ∆Fh

ẋv = Āvxv + B̄vuv + ∆Fv (4.30)

For the above horizontal and vertical subsystems, the states and parameters are defined as, xh =

[x1, x3, x5]T , ∆Fh = [0, ∆fh(xh, xv, uv), 0]T and xv = [x2, x4, x6]T , ∆Fv = [0, ∆fv(xv, xh, uh), 0]T .
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Here,

Āh =

 ah11 ah12 ah13

ah21 ah22 ah23

ah31 ah32 ah33

 =


∂f1
∂x1

∂f1
∂x3

∂f1
∂x5

∂f3
∂x1

∂f3
∂x3

∂f3
∂x5

∂f5
∂x1

∂f5
∂x3

∂f5
∂x5


X=0

=

 0 1 0
0 − kh

E+G
301.88ltSf

E+G

0 0 −T−1
tr

 (4.31)

B̄T
h =

[
bh11 bh21 bh31

]
=
[

∂f1
∂uh

∂f3
∂uh

∂f5
∂uh

]
=
[

0 0 T−1
tr

]
(4.32)

B̄T
v =

[
bv11 bv21 bv31

]
=
[

∂f2
∂uv

∂f4
∂uv

∂f6
∂uv

]
=
[

0 0 T−1
mr

]
(4.33)

Āv =

 av11 av12 av13

av21 av22 av23

av31 av32 av33

 =


∂f2
∂x2

∂f2
∂x4

∂f2
∂x6

∂f4
∂x2

∂f4
∂x4

∂f4
∂x6

∂f6
∂x2

∂f6
∂x4

∂f6
∂x6


X=0

=

 0 1 0
−0.153g −9.1kv 1114.65lmSf

0 0 −T−1
mr

 (4.34)

∆fh(xh, xv, uv) =
1
jh

[ltSfFh(wt)cosx2 − khx3 − x3x4(D − E)sin2x2 − jmrwm(x6)x4sinx2

+
jmr
Tmr

(uv − x6)
dwm(x6)
dx6

cosx2] − ah21x1 − ah22x3 − ah23x5

∆fv(xv, xh, uh) = 9.1[lmSfFv(wm) − g(0.0099cosx2 + 0.0168sinx2) − kvx4

−0.0252x2
3sin2x2 +

jtr
Ttr

(uh − x5)
dwt(x5)
dx5

] − av21x2 − av22x4 − av23x6 (4.35)

In (4.30), ∆Fh and ∆Fv are considered as the uncertainty in the TRMS. The system (4.30) can be

partitioned into the regular form,

ż1h = a11hz1h + a12hz2h + f1h

ż2h = a21hz1h + a22hz2h + bh31uh + f2h

(4.36)

where z1h = [x1 x3]T , z2h = x5, a11h =

 ah11 ah12

ah21 ah22

, a12h =

 ah13

ah23

,

a21h = [ah31 ah32], a22h = ah33.
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Here,

f1h =

 0

∆fh(xh, xv, uv)

, f2h = 0.

Therefore the state space model of the TRMS-HS can be expressed as,

[
˙z1h
˙z2h

]
= Ah

[
z1h
z2h

]
+
[

0
B2h

]
uh +

[
∆F̃h

0

]
(4.37)

where Ah =

 a11h a12h

a21h a22h

, B2h = bh31, ∆F̃h = f1h =

 0

∆fh(xh, xv, uv)

.

Similarly the TRMS-VS can be expressed as,

ż1v = a11vz1v + a12vz2v + f1v

ż2v = a21vz1v + a22vz2v + bv31uv + f2v (4.38)

where z1v = [x2 x4]T , z2v = x6, a11v =

 av11 av12

av21 av22

, a12v =

 av13

av23

,

a21v = [av31 av32], a22v = av33.

Here, f1v =

 0

∆fv(xh, xv, uh)

, f2v = 0.

Therefore the state space model of the TRMS-VS can be expressed as,

[
˙z1v
˙z2v

]
= Av

[
z1v
z2v

]
+
[

0
B2v

]
uv +

[
∆F̃v

0

]
(4.39)

where Av =

 a11v a12v

a21v a22v

, B2v = bv31, ∆F̃v = f1v =

 0

∆fv(xv, xh, uh)

. Let the desired

reference vector be riv(rih) for ziv(zih), i = 1, 2. Then r1v = [rxv 0]T , r2v = 0 and r1h = [rxh 0]T ,

r2h = 0. Hence the error vectors eiv(eih) are obtained as,

e1v = z1v − r1v, e2v = z2v − r2v

e1h = z1h − r1h, e2h = z2h − r2h (4.40)

Without loss of generality the desired vectors are assumed to be zero [8], hence the error state space
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model becomes,

Ėv = AvEv +Bvuv + ∆Fv (4.41)

Ėh = AhEh +Bhuh + ∆Fh (4.42)

where Ev(Eh) ∈ R3 is the error state vector and uv(uh) ∈ R1 is the control input. Here Av(Ah) and

Bv(Bh) are known matrices with proper dimensions.

4.3.3 Design of sliding mode controller for the TRMS horizontal subsystem

The main idea behind the proposed sliding mode is to act on the second order derivative of the

sliding variable σ(x, t) rather than the first derivative as in standard sliding modes. Besides retaining

the main benefits of the standard sliding modes, the proposed sliding mode offers the additional

advantage of eliminating the chattering effect [64]. Let the sliding surface be chosen as

sh = chEh (4.43)

where ch = [c1h c2h] are real positive constants. For the proposed sliding mode, the first and second

order time derivatives of the sliding surface are obtained as,

ṡh =
d

dt
(chEh)

= chĖh = ch(AhEh +Bhuh + ∆Fh) (4.44)

s̈h = chAhĖh + chBhu̇h + ch∆Ḟh

= chAh(AhEh +Bhuh + ∆Fh) + chBhu̇h + ch∆Ḟh

= chA
2
hEh + chAhBhuh + chBhu̇h + (chAh∆Fh + ch∆Ḟh) (4.45)

If it is possible to bring sh and ṡh to zero in by using a discontinuous control signal u̇h, then the actual

input of the system uh is the integration of the discontinuous signal. Thus uh is continuous, thereby

reducing the undesired high frequency oscillations are always present in the first order sliding mode

control. Assuming y1(Eh) = sh and y2(Eh) = ṡh, the system dynamics can be written as,

ẏ1(Eh) = y2(Eh)

ẏ2(Eh) = F [Eh, uh] +G[Eh, vh] (4.46)
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where vh = u̇h and F [Eh, uh] collects all the uncertain terms not involving u̇h. Thus the horizontal

subsystem (4.30) becomes a chain of integrators controlled by the input u̇h. So a sliding mode controller

for the above system can be designed to keep the system trajectories in the sliding manifold using the

control input vh. To design a SMC for the system (4.42), the sliding function is considered as,

σh = y2(Eh) + κhy1(Eh) (4.47)

where κh is a positive constant. Taking the derivative of (4.47) we get,

σ̇h = ẏ2(Eh) + κhẏ1(Eh) (4.48)

From (4.44), (4.45) and (4.46) we have,

ẏ1(Eh) = ch(AhEh +Bhuh + ∆Fh)

ẏ2(Eh) = chA
2
hEh + chAhBhuh + chBhu̇h + chAh∆Fh + ch∆Ḟh (4.49)

Using (4.48) and (4.49) we have,

σ̇h = chA
2
hEh + chAhBhuh + chBhu̇h + chAh∆Fh + ch∆Ḟh + κh(ch(AhEh +Bhuh + ∆Fh))

= chA
2
hEh + κhchAhEh + (chAhBh + κhchBh)uh + chBhu̇h

+(chAh∆Fh + ch∆Ḟh) + κhch∆Fh (4.50)

For designing the adaptive part of the control law, we consider

σ̇h = −k1hσh − k2hsign(σh) (4.51)

Using (4.50) and (4.51), the control law is obtained as,

u̇h = −(chBh)−1((chA2
h + κhchAh)Eh + (chAhBh + κhchBh)uh + k1hσh + k2hsign(σh)) (4.52)

where k1h ≥ 0 and k2h > ch(Ah∆Fh + ∆Ḟh + κh∆Fh) = ch∇Fh = Qh to satisfy the reaching law

σhσ̇h ≤ −ηh|σh|, where ηh > 0 [56]. Let us assume that there exits a bounded positive constant λ̃′h

such that, ||∇Fh|| ≤ λ̃′h||Eh|| [8] and Qh = λ̃′hch||Eh|| ≥ 0.
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4.3.4 Design of adaptive tuning law for the horizontal subsystem

In practice the bound of uncertainty is often not known and hence the error term ||Eh|| is difficult

to know. So an adaptive tuning law is designed to determine k2h. Then the time derivative of the

control law (4.52) can be written as

u̇h = −(chBh)−1[(chA2
h + κhchAh)Eh + (chAhBh + κhchBh)uh + k1hσh + T̂hsign(σh)] (4.53)

and consequently the actual control law can be obtained as,

uh = −(chBh)−1

∫ t

0
[(chA2

h + κhchAh)Eh + (chAhBh + κhchBh)uh + k1hσh + T̂hsign(σh)]dτ (4.54)

where chBh is nonsingular, sign(σh) is the sign function and T̂h is the unknown bound which will be

estimated adaptively.

Defining the adaptation error as T̃h = T̂h − Th, where Th is the actual gain, the parameter T̂h will be

estimated by using the adaptation law

˙̂
Th =

1
γh

|σh| (4.55)

and γh > 0 is designed positive constant, Th(0) is the initial condition. A Lyapunov function is selected

as V1h = 1
2σ

2
h + 1

2γhT̃
2
h whose time derivative is as follows,

V̇1h = σhσ̇h + γhT̃h
˙̃Th

= σh[ch∇Fh − k1hσh − T̂hsign(σh)] + γh(T̂h − Th)
˙̂
Th

= σh[Qh − k1hσh − T̂hsign(σh)] + γh(T̂h − Th)
˙̂
Th

≤ Qh|σh| − Th|σh|

≤ −ηh|σh| (4.56)

The above inequality holds if ˙̂
Th = 1

γh
|σh|, ηh > 0 and Th > Qh. Considering (4.55) and (4.56), it is

straightforward to verify that V̇1h ≤ −ηh|σh|, where ηh > 0. This ensures the convergence of σh and

guarantees that the states converge to the equilibrium asymptotically.

The adaptive law (4.55) is modified by using dead zone technique [30] as

˙̂
Th =


1
γh
|σh|, |σh| ≥ ϵh

0, |σh| < ϵh

(4.57)
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where ϵh is a small positive constant.

Initially the adaptation gain parameter γh is so chosen that it is smaller than the upper bound of

the system uncertainties. However, this is not really a restriction of the method since one can freely

choose a sufficiently small number.

4.3.5 Stability during the sliding mode

During the sliding mode sh = 0 and therefore (4.43) can be written as,

sh = chEh = c1he1h + c2he2h = 0

or, e2h = −c−1
2h c1he1h (4.58)

where c2h is invertible.

Using (4.58) in the error state space model (4.42), we get

ė1h = a11he1h − a12hc
−1
2h c1he1h + ∆F̃h

= (a11h − a12hc
−1
2h c1h)e1h + ∆F̃h = ahse1h + ∆F̃h (4.59)

where ahs = (a11h − a12hc
−1
2h c1h). Furthermore, ∆F̃h is the uncertainty satisfying the condition

||∆F̃h|| ≤ λ̃h||e1h|| [8]. It is to be noted that c1h and c2h are designed in such a way that the

eigenvalues of (a11h − a12hc
−1
2h c1h) lie in the left half of the s-plane and there exists a positive definite

matrix Ph [74] such that

aThsPh + Phahs = −Rh (4.60)

where Rh is also a positive definite matrix. Let a Lyapunov function for the system be defined as

V2h = eT1hPhe1h. The time derivative of V2h is obtained as,

V̇2h = ėT1hPhe1h + eT1hPhė1h

= eT1ha
T
hsPhe1h + ∆F̃ Th Phe1h + eT1hPhahse1h + eT1hPh∆F̃h

= eT1h(a
T
hsPh + Phahs)e1h + ∆F̃hPhe1h + eT1hPh∆F̃h

= −eT1hRhe1h + 2eT1hPh∆F̃h (4.61)

It is known that [74] [75],

eT1hRhe1h ≥ λmin(Rh)eT1he1h = λmin(Rh)||e1h||2 (4.62)
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where λmin is the minimum eigen value and so,

V̇2h ≤ −λmin(Rh)||e1h||2 + 2eT1hPh∆F̃h (4.63)

If there exists a bounded positive constant λ̃h such that λ̃h < 0.5λmin(Rh)/||Ph||, then

2eT1hPh∆F̃h ≤ 2λ̃h||Ph||||e1h||2 < λmin(Rh)||e1h||2 (4.64)

and

V̇2h ≤ −λmin(Rh)||e1h||2 + 2eT1hPh∆F̃h < 0 (4.65)

Hence the stability in the sliding mode is proved.

4.3.6 Design of sliding mode controller for the TRMS vertical subsystem

As the gravity force affects the dynamics of the vertical subsystem of the TRMS, it is difficult to

control the pitch angle at a desired reference location. In order to reduce the offset of the pitch angle,

a proportional plus integral sliding surface is designed for the vertical subsystem. Let us consider the

error state space model of the vertical subsystem given by (4.41),

Ėv = AvEv +Bvuv + ∆Fv

(4.66)

where Ev ∈ R3 is the error state vector and uv ∈ R1 is the control input. Here Av and Bv are known

matrices with proper dimensions. A proportional plus integral sliding surface is chosen as,

sv = cvEv + c3v

∫ t

0
e1vdτ (4.67)

where cv = [c1v c2v] are real positive constants and c3v is also a real positive constant whose selection

criterion is to be discussed in Section 4.3.8. For the proposed sliding mode, the first and second order

time derivatives of sv need to be considered. Thus we have,

ṡv =
d

dt
(cvEv + c3v

∫ t

0
e1vdτ)

= cvĖv + c3ve1v

= cv(AvEv +Bvuv + ∆Fv) + c3ve1v (4.68)
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s̈v = cvAvĖv + cvBvu̇v + cv∆Ḟv + c3v ė1v

= cvAv(AvEv +Bvuv + ∆Fv) + cvBvu̇v + cv∆Ḟv + c3v ė1v

= cvA
2
vEv + cvAvBvuv + cvBvu̇v + c3v ė1v + cv(Av∆Fv + ∆Ḟv) (4.69)

By following a similar procedure as described earlier in Section 4.3.3, the following is obtained in the

case of TRMS VS,

σ̇v = (cvA2
v + κvcvAv)Ev + (cvAvBv + κvcvBv)uv + cvBvu̇v + c3v ė1v

+κvc3ve1v + cv(Av∆Fv + ∆Ḟv) + κvcv∆Fv (4.70)

where κv is a positive constant. For designing the adaptive part of the control law, we consider [68]

σ̇v = −k1vσv − k2vsign(σv) (4.71)

Using (4.70) and (4.71), the control law is obtained as,

u̇v = −(cvBv)−1[(cvA2
v + κvcvAv)Ev + (cvAvBv + κvcvBv)uv

+c3v ė1v + κvc3ve1v + k1vσv + k2vsign(σv)] (4.72)

where k1v ≥ 0 and k2v > cv(Av∆Fv + ∆Ḟv) + κvcv∆Fv = cv∇Fv = Qv to satisfy the reaching

law σvσ̇v ≤ −ηv|σv| [56]. Let us assume that there exits a bounded positive constant λ̃′v such that,

||∇Fv|| ≤ λ̃′v||Ev|| [8] and Qv = λ̃′vcv||Ev|| ≥ 0.

4.3.7 Design of adaptive tuning law for the vertical subsystem

An adaptive tuning law is designed to determine k2v and so (4.72) can be written as [75]

u̇v = −(cvBv)−1[(cvA2
v + κvcvAv)Ev + (cvAvBv + κvcvBv)uv

+c3v ė1v + κvc3ve1v + k1vσv + T̂vsign(σv)] (4.73)

where T̂v estimates the value of k2v. The actual control is obtained as,

uv = −(cvBv)−1

∫ t

0
[(cvA2

v + κvcvAv)Ev + (cvAvBv + κvcvBv)uv

+c3v ė1v + κvc3ve1v + k1vσv + T̂vsign(σv)]dτ (4.74)
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The parameter T̂v is estimated as [69] [70]

˙̂
Tv =

1
γv

|σv| (4.75)

where γv is a positive constant. A Lyapunov function is chosen as V1v = 1
2σ

2
v + 1

2γvT̃
2
v whose time

derivative is obtained as,

V̇1v = σvσ̇v + γvT̃v
˙̃Tv

= σv[cv∇Fv − k1vσv − T̂vsign(σv)] + γv(T̂v − Tv)
˙̂
Tv

= σv[Qv − k1vσv − T̂vsign(σv)] + γv(T̂v − Tv)
˙̂
Tv

≤ Qv|σv| − Tv|σv|

≤ −ηv|σv| (4.76)

The above inequality holds if ˙̂
Tv = 1

γv
|σv| and Tv > Qv.

The adaptive law (4.75) is modified using the dead zone technique [30] as

˙̂
Tv =


1
γv
|σv|, |σv| ≥ ϵv

0, |σv| < ϵv

(4.77)

where ϵv is a small positive constant.

The above control law (4.74) is free from any discontinuous part and hence chattering is reduced.

4.3.8 Stability of the sliding surface

During the sliding mode sv = 0 and therefore (4.67) can be written as,

sv = c1ve1v + c2ve2v + c3v

∫ t

0
e1vdτ = 0

or, e2v = −c−1
2v (c1ve1v + c3v

∫ t

0
e1vdτ) (4.78)

Using (4.41), we have

ė1v = a11ve1v − a12vc
−1
2v (c1ve1v + c3v

∫ t

0
e1v dτ) + ∆F̃v

= (a11v − a12vc
−1
2v c1v)e1v − a12vc

−1
2v c3v

∫ t

0
e1v dτ + ∆F̃v

= avse1v − avt

∫ t

0
e1v dτ + ∆F̃v (4.79)
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where avs = (a11v − a12vc
−1
2v c1v) =

 avs11 avs12

avs21 avs22

 and avt = a12vc
−1
2v c1v =

 avt11 avt12

avt21 avt22


Let e1v = [e11v e12v]T and ∫ t

0
e12v dτ = e11v (4.80)

A new state variable χ1 is defined as χ1 =
∫ t
0 e11v dτ and hence χ̇1 = e11v. Thus (4.79) can be

represented as,

χ̇ =

 χ̇1

ė11v

ė12v

 =

 0 1 0
0 0 1

−avt21 avs21 − avt22 avs22

 χ1

e11v

e12v

+
[

0
∆F̃v

]

= avvχ+
[

0
∆F̃v

]
= avvχ+ ∆Fvv (4.81)

where ∆Fvv = [0 ∆F̃v]T . It is clear that ||∆Fvv|| = ||∆F̃v||. Here c1v, c2v and c3v are designed in

such a way that the eigenvalues of (a11v − a12vc
−1
2v c1v) lie in the left half of the s-plane and there exits

a positive definite matrix Pv such that

aTvvPv + Pvavv = −Rv (4.82)

where Rv is also a positive definite matrix. In the TRMS -VS, ∆Fvv satisfies ||∆Fvv|| ≤ λ̃v||χ|| with

λ̃v < 0.5λmin(Rv)/||Pv||. So the TRMS-VS is stable in the sliding mode. Let a Lyapunov function for

the system be selected as V2v = χTPvχ whose time derivative is obtained as,

V̇2v = χ̇TPvχ+ χTPvχ̇

= χTaTvvPvχ+ ∆F TvvPvχ+ χTPvavvχ+ χTPv∆Fvv

= χT (aTvvPvχ+ Pvavv)χ+ ∆F TvvPvχ+ χTPv∆Fvv

= −χTRvχ+ 2χTPv∆Fvv (4.83)

It is known that [8]

χTRvχ ≥ λmin(Rv)χTχ = λmin(Rv)||χ||2 (4.84)

and V̇2v ≤ −λmin(Rv)||χ||2 + 2χTPv∆Fvv if λ̃v < 0.5λmin(Rv)/||Pv||, then

2χTPv∆Fvv ≤ 2λ̃v||Pv||||χ||2 < λmin(Rv)||χ||2 (4.85)
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Therefore, V̇2v ≤ −λmin(Rv)||χ||2+2χTPv∆Fvv < 0. Hence the stability in the sliding mode is proved.

Remark 4.3. In designing the control law for the horizontal and vertical subsystems, the terms ṡh

and ṡv are needed. However, these derivative terms can neither be directly obtained nor measured.

Direct differentiation on sh(sv) is highly undesirable as practical measurement of sh(sv) in real time

application will contain high frequency noise. The first/higher order Levant’s exact differentiator [25]

[64] can be used for the estimation of ṡh(ṡv). A first order real time differentiator has the form,

ż0 = −λ1|z0 − sh(sv)|1/2sign(z0 − sh(sv)) + z1

ż1 = −λ2sign(z0 − sh(sv)) (4.86)

where λ1 > 0 and λ2 > 0 are the design parameters and the estimators are designed as ṡh(ṡv) = z1.

4.3.9 Simulation results

The proposed adaptive sliding mode controller is applied to the TRMS [8] and the performance

of the controlled system is studied by carrying out simulations using MATLAB ODE 4 solver with a

fixed step size of 0.01sec. The parameters used for the TRMS are as listed in Table 4.1.

4.3.10 Control parameters for the horizontal subsystem

In the horizontal subsystem, the sliding surface parameters ch = [c1h c2h] are chosen as c1h = [11 7]

and c2h = [7] to satisfy the condition (4.60). The values of the reaching mode coefficient k1h and

adaptive tuning parameter γh are chosen as 1.0 and 10 respectively (4.51, 4.55) by using the condition

given in Section 4.3.4. The value of κh (4.47) is chosen as 2.0. The adaptive tuning law is formed as
˙̂
Th = 0.1|σh| and T̂h(0) = 0.7 (4.55). The positive definite matrices Ph and Rh satisfying the stability

condition are selected as

Ph =
[

122.27 27.28
27.28 53.24

]
, Rh =

[
98.61 7.98
7.98 78.29

]
(4.87)

The above values of Ph and Rh are found suitable for the simulation example.

4.3.11 Control parameters for the vertical subsystem

For the vertical subsystem, the PI sliding surface parameters cv = [c1v c2v] (4.67) are chosen as

c1v = [11 8], c2v = 12 and c3v = [7 0.5] to satisfy the condition mentioned in Section 4.3.5. The values

of the reaching mode coefficient k1v and the adaptive tuning parameter γv are selected as 1.3 and 1.25
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respectively (4.71, 4.75). The value of κv is chosen as 2.0. The adaptive tuning law for the TRMS-VS

is formed as ˙̂
Tv = 0.8|σv| and T̂v(0) = 0.5. The positive definite matrices Pv and Rv satisfying the

stability condition as explained in Section 4.3.8 are found as

Pv =

 105.10 30.49 59.89
30.49 288.55 28.08
59.89 28.08 199.89

 , Rv =

 15.50 1.50 8.30
1.50 35.60 1.30
8.30 1.30 30.10

 (4.88)

The TRMS controlled by using our proposed adaptive sliding mode controller is studied for the

position as well as the tracking control problem. In the position control example, the initial condition

of the TRMS is considered as x(0) = [0 − 0.5 0 0 0 0]T . In order to study the performance of the

proposed controller for both the cases of position and tracking control, the simulation is performed by

applying three different reference signals: 1) Step input with 1 rad in the horizontal subsystem and

step input with 0.2 rad in the vertical subsystem; 2) Sine wave having amplitude 0.5 rad and frequency

0.025 Hz for the horizontal subsystem and sine wave having amplitude 0.2 rad and frequency 0.025

Hz for the vertical subsystem; 3) Square wave having amplitude 0.5 rad and frequency 0.025 Hz for

the horizontal subsystem and square wave having amplitude 0.2 rad and frequency 0.025 Hz for the

vertical subsystem.
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Figure 4.2: Step response of the TRMS using the proposed adaptive SM controller
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Figure 4.3: Adaptive gain parameter of proposed adaptive SM controller

The desired and the actual step responses of the TRMS along with the control inputs for both the

horizontal and the vertical subsystems are plotted in Fig.4.2. The adaptive gain parameters T̂h and

T̂v for the step response analysis are shown in Fig.4.3.

Table 4.2: Transient performance of the TRMS for step input

Time response parameters
Reference Rise time (sec) Settling time (sec) Peak time (sec) Peak overshoot %

Step H 3.45 4.60 5.50 0
V 2.45 2.50 2.95 2

Table 4.2 summarises the transient performance of the TRMS using the proposed adaptive sliding

mode controller for the step input case. It can be observed from Table 4.2 that for both the hori-

zontal and the vertical subsystems, the TRMS settles quickly to the desired position without much

oscillation. In the tracking control example with sine wave, the TRMS settling time is less than 10 sec

which was reported in [84]. The actual and the desired trajectory tracking (square and sine) responses

as well as the control inputs for both the horizontal and the vertical subsystems are plotted in Figs.

4.4-4.5.
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Figure 4.4: Square wave response of the TRMS using the proposed adaptive sliding mode controller
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Figure 4.5: Sine wave response of the TRMS using the proposed adaptive sliding mode controller
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Figure 4.6: Position tracking using the proposed controller subjected to an external disturbance

In order to study the robustness of the adaptive sliding mode controller, an external disturbance

d(t) as given below is applied to the TRMS.

d(t) =

 0.2, 20sec ≤ t ≤ 25sec

0, otherwise
(4.89)

Fig. 4.6 illustrates that the TRMS controlled by using the adaptive sliding mode controller stays at

the desired position even in the presence of disturbance and thereby proving its robustness.

Juang et al. in [84] illustrated that the proportional integral differential (PID) control with improved

RGA (modified real-value-type genetic algorithm (M-RGA)) offered superior control performance than

the conventional PID control and conventional realtime GA PID (C-RGA) control. In [84] the perfor-

mances of the PID, C-RGA and M-RGA controllers are compared by computing the error and control

indices which are defined as the sum of their absolute values [8]. In order to study the relative perfor-

mance of our proposed adaptive sliding mode controller against these afore-mentioned control schemes,

the same performance criteria are applied. In our comparison analysis, the error and control indices

are calculated from 0 to 50 sec with a sampling period of 0.05 sec and are tabulated in Tables 4.3

and 4.4. The error index is defined as the sum of the absolute values (i.e., error index of HS TRMS=
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∑n
k=1 |x1(k) − xd1(k)| and error index of VS TRMS=

∑n
k=1 |x2(k) − xd2(k)| where n is the number of

sampling data and x1(k), xd1(k) and x2(k), xd2(k) being the actual and desired states of the HS TRMS

and VS TRMS respectively). The control index is defined as the sum of the absolute values of control

actions (i.e., control index of HS TRMS =
∑n

k=1 |uh(k)| and control index of VS TRMS=
∑n

k=1 |uv(k)|

where uh and uv are the control inputs for the HS TRMS and VS TRMS respectively.

Table 4.3: Comparison of Error Index among different controllers

Error index
Reference PID [84] C-RGA [84] M-RGA [84] Adaptive sliding mode

Step H 81.2 69.09 54.52 45.23
V 40.11 34.92 27.46 23.08

Sine H 23.21 19.33 20.92 32.33
V 65.74 51.78 52.61 42.20

Square H 150.22 141.52 134.03 83.70
V 112.85 96.36 90.21 45.80

Table 4.4: Comparison of Control Index among different controllers

Control Index
Reference PID [84] C-RGA [84] M-RGA [84] Adaptive sliding mode

Step H 76.71 51.34 40.47 12.45
V 812.36 701.23 617.10 645.98

Sine H 27.41 20.12 18.93 10.68
V 611.70 500.2 501.78 515.42

Square H 202 171.28 165.32 42.34
V 656.37 591.65 551.59 487.29

It is evident from these two tables that the proposed adaptive sliding mode controller exhibits

lesser error and requires lesser control action in majority of the cases as compared to the other control

methods [84].

4.4 The vertical take-off and landing (VTOL) aircraft

The vertical take-off and landing (VTOL) aircraft is a highly complex nonlinear system whose

aerodynamic parameters vary considerably during the flight. Fig.4.7 shows the typical coordinate

system for a VTOL aircraft in the vertical plane. The linearized dynamics of this VTOL aircraft in

the vertical plane can be described as,

ẋ = Ax+B[u+ ξ(t, x)] + p(t, x) (4.90)
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Figure 4.7: A typical sketch of a VTOL aircraft in the vertical plane [2].

where

x = [x1 x2 x3 x4]T

u = [u1 u2]T (4.91)

Here x1 is the horizontal velocity (knots), x2 is the vertical velocity (knots), x3 is the pitch

rate (degrees per second) and x4 is the pitch angle (degrees). Furthermore, u1 is the collective

pitch control which alters the pitch angle (angle of attack with respect to air) of the main rotor

blades collectively to provide the vertical movement. Moreover, u2 is the longitudinal cyclic pitch

control which tilts the main rotor disc by varying the pitch of the main rotor blades individually to

provide the horizontal movement. However, u1 and u2 have some cross-effect on the horizontal and

vertical velocities, respectively. The matched and mismatched perturbations are ξ(t, x) and p(t, x)

respectively [3]. Moreover, A and B are known matrices with proper dimension and B has full rank.

4.4.1 Adaptive sliding mode controller design with PI sliding surface

The sliding surface σ is designed as

σ = sx (4.92)

57



4. Adaptive Sliding Mode Controller for Multiple Input Multiple Output (MIMO) Systems

where s ∈ Rm∗n is a constant matrix designed by selecting the eigen values suitably (all negative)

to make the system stable [68]. By using the transformation [3] [35] [86]

 z

σ

 = Mx where the

transformation matrix

M =

 Wg

Bg

, Eq.(4.90) can be transformed to

ż = WgAWz +WgABσ +Wgp(t, x)

σ̇ = BgAWz +BgABσ + u+ ξ(t, x) + sp(t, x) (4.93)

Here s = Bg and Wg, Bg satisfy BgB = Im, BgW = 0, WgB = 0, and WgW = In−m. The matrix

W is chosen in such a way that J = WgAW has the desired eigen values [86] where J is a symmetric

matrix. It can be verified that

M−1 = [W B] (4.94)

When the system is in the sliding mode, it satisfies the conditions σ = 0 and σ̇ = 0. Then the

perturbation term in Eq.(4.93) becomes Wgp(t, x) = Wgp(t,Wz) = pr(t, z). Now the reduced order

equation becomes

ż = Jz + pr(t, z) (4.95)

If the mismatched perturbation pr(t, z) satisfies ||pr(t, z)|| ≤ ϕr||z|| where ϕr < −λmax(J), λmax(J)

being the maximum eigen value of the J matrix, then by choosing the Lyapunov function V = 1
2 ||z||

2,

it can be proved that [3] [38]

V̇ = zTJz + zT pr(t, z) ≤ λmax(J)||z||2 + ϕr||z||2 = [λmax(J) + ϕr]V < 0 (4.96)

The above condition means that the system will be asymptotically stable once the sliding mode is

reached. However, it is obvious from the above discussion that the sliding surface design requires the

bounds of the uncertainties to be known apriori [75] which is extremely difficult practically. Hence

the need arises for designing the sliding surface in such a way that prior knowledge about the bounds

of the uncertainties is not required.
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4.4.2 The adaptive PI sliding surface design

Let us consider the sliding surface

σ = s(t)x (4.97)

The sliding coefficient matrix s(t) ∈ Rm∗n can be designed as [3]

s(t) = B+ +N(t)Wg (4.98)

where B+ = (BTB)−1BT ∈ Rm∗n is the Moore-Penrose pseudo inverse [20] of B and N(t) ∈ Rm∗n is

designed using adaptive technique to be explained later. Let us consider the transformation z

σ

 =

 Wg

s(t)

x = M(t)x (4.99)

Now defining W (t) = W+
g − BN(t) ∈ Rn∗(n−m) and W+

g = W T
g (WgW

T
g )−1 ∈ Rn∗(n−m), it can be

verified that

M(t)−1 = [W (t) B] (4.100)

From Eq.s (4.99) and (4.100), it can be observed that

x = W (t)z +Bσ (4.101)

So, Eq.(4.90) gets transformed to

ż = WgAW (t)z +WgABσ +Wgp(t, x) (4.102)

σ̇ = s(t)AW (t)z + s(t)ABσ + u+ Ṅ(t)z + ξ(t, x) + s(t)p(t, x) (4.103)

When the system is in the sliding mode, it satisfies the conditions σ = 0 and σ̇ = 0. Then the per-

turbation term in Eq.(4.102) becomes Wgp(t, x) = Wgp(t,W (t)z) = p̄(t, z) and Eq.(4.102) transforms

into a reduced order equation as,

ż = Āz + B̄v(t) + p̄(t, z) (4.104)
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where Ā = WgAW
+
g ∈ R(n−m)∗(n−m), B̄ = WgAB ∈ R(n−m)∗m and v(t) = −N(t)z ∈ Rm.

Theorem 4.1. Let us consider the perturbed dynamic equation (4.104) under the assumption that

n ≤ 2m. Suppose that B̄ has full rank and the mismatched perturbations in the domain of interest

satisfy ∥p̄(t, z)∥ ≤ ϕ2||z||, where ϕ2 is an unknown positive constant. If the feedback gain N(t) of the

controller is designed as [38]

N(t) = K2 + [ϕ̂2(t) + ρ]B̄+ (4.105)

where ρ is a positive constant, K2 = B̄+Ā , B̄+ = B̄T (B̄B̄T )−1 ∈ Rm∗(n−m) and ϕ̂2(t) is an adaptive

gain given by

ϕ̂2(t) =
∫ t

t0

θ||z||2dτ + ϕ̂2(t0) (4.106)

with θ > 0 being a positive constant and ϕ̂2(t0) = 0 being the initial condition, then ϕ̂2(t) is bounded

and the trajectories z (4.104) and state x will be asymptotically stable in the sliding mode.

Proof. Let us consider the Lyapunov function V2(z, ϕ̃2) = 1
2 [∥z∥2 + θ−1ϕ̃2(t)2]. Here ϕ̃2(t) is the

estimation error of the adaptive gain given by ϕ̃2(t) = ϕ̂2(t) − ϕ2(t), where ϕ̂2(t) is the estimated

adaptive gain and ϕ2(t) is the actual adaptive gain [3]. Then

V̇2(z, ϕ̃2) = zT Āz + zT B̄v + zT p̄+ θ−1ϕ̃2
˙̂
ϕ2

≤ zT Āz + zT B̄v + ||z||||p̄|| + θ−1ϕ̃2
˙̂
ϕ2

≤ zT Āz + zT B̄v + ϕ2||z||2 + (ϕ̂2 − ϕ2)||z||2

≤ zT Āz + zT B̄v + ϕ̂2||z||2

≤ −ρ||z||2 ≤ 0 (4.107)

It is obvious from the above discussion that z ∈ L2 ∩ L∞ and ϕ̃2(t) ∈ L∞. Hence from Eq.s (4.104),

(4.105) and the fact that ∥p̄(t, z)∥ ≤ ϕ2 ∥z∥, it can be shown that ż ∈ L∞ as well as V̈2 ∈ L∞.

From Barbalat’s lemma [30], it is found that z → 0 as t → ∞. The bound of the adaptation law is

0 ≤ ϕ2(t) ≤ (∥z(t0)∥2 + ϕ2
2)/ρ. Moreover, it can be seen from equation (4.105) that N(t) is bounded

since ϕ̃2(t) ∈ L∞ and hence the state x(t) = W (t)z = [W+
g −BN(t)]z becomes asymptotically stable

as the system reaches the sliding mode.

It can be observed in Fig.4.7 that the VTOL weighs asymmetrically as the main propeller is heavier

than the tail propeller, i.e. the horizontal velocity and the vertical velocity would not stay in the
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desired states because of gravity. As such, control performance of the VTOL tends to be poor. In

order to eliminate the effect of the asymmetrical weight and reduce the offset in control, a proportional

plus integral sliding surface is used in the proposed controller. The sliding surface is chosen as,

σ′ = s(t)x−B+(A+BK)
∫ t

0
xdτ (4.108)

where x is the state vector and B+ = (BTB)−1BT ∈ Rm∗n is the the Moore-Penrose pseudo inverse

of B [20]. Moreover, K is the design matrix ∈ Rm∗n to satisfy the inequality

Re[λmax(A+BK) < 0] (4.109)

Taking the derivative of σ′ and using (4.103) yields

σ̇′ = s(t)AW (t)z + s(t)ABσ + u−B+(A+BK)(W (t)z +Bσ) + d(t, x) (4.110)

where,

d(t, x) = Ṅ(t)z + ξ(t, x) + s(t)p(t, x)

= θ ∥Wgx∥2 B̄+Wgx+ ξ(t, x) + s(t)p(t, x) (4.111)

The second derivative of σ′ can be expressed as

σ̈′ = ṡ(t)AW (t)z + s(t)AẆ (t)z + s(t)AW (t)ż + ṡ(t)ABσ + s(t)ABσ̇

−B+(A+BK)(Ẇ (t)z +W (t)ż +Bσ̇) + u̇+ ḋ(t, x) (4.112)

In the above equation (4.112), ḋ(t, x) is considered as unknown disturbance or perturbation.

Assumption 4.1.: The disturbance ḋ(t, x) in (4.112) is assumed to be bounded and satisfy the

following condition:

||ḋ(t, x)|| ≤
r∑
i=0

B̄i||x||i (4.113)

where B̄i are unknown bounds, which are not easily obtained due to the complicated structure of the

uncertainties in practical control systems. Furthermore, r is a positive integer determined by the

designer in accordance with the knowledge about the order of the perturbations. For example, if the

perturbations contain a term x3
1, then one may choose r = 3. However, if x4

1 exists in the perturbation,

then the inequality might not be satisfied for certain domain of x if one still chooses r = 3 [38].
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Let us define the sliding manifold l(t) such that,

l(t) = σ̇′ + κσ′

l̇(t) = σ̈′ + κσ̇′ (4.114)

Using the above equations (4.112), (4.113) and (4.114) yields

l̇(t) = ṡ(t)AW (t)z + s(t)AẆ (t)z + s(t)AW (t)ż + ṡ(t)ABσ + s(t)ABσ̇

−B+(A+BK)(Ẇ (t)z +W (t)ż +Bσ̇) + u̇+ ḋ(t, x) + κσ̇′ (4.115)

The derivative of the sliding manifold l(t) can be expressed as

l̇(t) = Φ(t, z, u) + ψ(t, z)u̇ (4.116)

where Φ(t, z, u) = ṡ(t)AW (t)z+s(t)AẆ (t)z+s(t)AW (t)ż+ṡ(t)ABσ+s(t)ABσ̇−B+(A+BK)(Ẇ (t)z+

W (t)ż + Bσ̇) + ḋ(t, x) + κσ̇′ collects all the uncertain terms not involving u̇ and ψ(t, z) = 1. From

equation (4.115), the equivalent control u̇eq for controlling the nominal system can be designed as

u̇eq = −[ṡ(t)AW (t)z + s(t)AẆ (t)z + s(t)AW (t)ż + ṡ(t)ABσ

+s(t)ABσ̇ −B+(A+BK)(Ẇ (t)z +W (t)ż +Bσ̇) + κσ̇′] if l(t) ̸= 0

= 0 otherwise (4.117)

In practice, the bounds of the system uncertainty are often unknown in advance and hence the error

term ḋ(t, x) in equation (4.112) is difficult to find. So an adaptive tuning law is proposed to estimate

ḋ(t, x). Now the proposed adaptive controller for tackling the system uncertainty is designed as [87],

u̇adp = −
r∑
i=0

ˆ̄Bi||x||isign(l(t)) if l(t) ̸= 0

= 0 otherwise (4.118)

where ˆ̄Bi is the adaptive parameter which is tuned using the following adaptive rule,

˙̄̂
Bi = −θiρi ˆ̄Bi + θi||l(t)||||x||i if l(t) ̸= 0

= 0 otherwise (4.119)

62



4.4 The vertical take-off and landing (VTOL) aircraft

where ρi and θi are positive constants, ˆ̄Bi(0) = 0 is the initial condition, 0 ≤ i ≤ r.

The switching control law u̇s can be designed as,

u̇s = −τ l(t) − ηsign(l(t)) if l(t) ̸= 0

= 0 otherwise (4.120)

where τ and η are positive constants.

Now the control law u̇ can be obtained as,

u̇ = u̇eq + u̇adp + u̇s (4.121)

where u̇eq is the equivalent control part, u̇adp is the adaptive control part and u̇s is the switching

control.

Theorem 4.2. Let us consider the system (4.90) with the adaptive sliding surface given by (4.98)

and (4.105). The trajectory of the closed loop system (4.90) can be driven onto the sliding manifold

l(t) in finite time by using the controller given by

u̇ = −[ṡ(t)AW (t)z + s(t)AẆ (t)z + s(t)AW (t)ż + ṡ(t)ABσ

+s(t)ABσ̇ −B+(A+BK)(Ẇ (t)z +W (t)ż +Bσ̇) + κσ̇′]

−
r∑
i=0

ˆ̄Bi||x||isign(l(t)) − τ l(t) − ηsign(l(t)) if l(t) ̸= 0

= 0 otherwise (4.122)

Proof. Let us define a Lyapunov function V0 as follows [40,87],

V0 =
1
2
l(t)T l(t) +

1
2

r∑
i=0

θ−1
i

˜̄B2
i (4.123)

where ˜̄Bi(t) = ˆ̄Bi(t)− B̄i are the estimation errors of the adaptive gains. The time derivative of V0 is

obtained as,

V̇0 = l(t)T l̇(t) +
r∑
i=0

θ−1
i

˜̄Bi
˙̄̃
Bi

= l(t)T [ṡ(t)AW (t)z + s(t)AẆ (t)z + s(t)AW (t)ż + ṡ(t)ABσ

+s(t)ABσ̇ −B+(A+BK)(Ẇ (t)z +W (t)ż +Bσ̇) + κσ̇′ + u̇+ ḋ(t, x)] +
r∑
i=0

θ−1
i

˜̄Bi
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= l(t)T [ṡ(t)AW (t)z + s(t)AẆ (t)z + s(t)AW (t)ż + ṡ(t)ABσ

+s(t)ABσ̇ −B+(A+BK)(Ẇ (t)z +W (t)ż +Bσ̇) + κσ̇′ + u̇+ ḋ(t, x)]

+
r∑
i=0

θ−1
i ( ˆ̄Bi(t) − B̄i)θi(−ρi ˆ̄Bi + ||l(t)|| ∥x∥i)

Using the relations in (4.117-4.120) yields,

V̇0 ≤ [−
r∑
i=0

ˆ̄Bi||x||i||l(t)|| −
r∑
i=0

B̄i||x||i||l(t)|| − τ ||l(t)|| − η||l(t)||

+
r∑
i=0

ˆ̄Bi||x||i||l(t)|| +
r∑
i=0

B̄i||x||i||l(t)||] − ρi( ˆ̄B2
i − ˆ̄BiB̄i)

≤ −ηl(t)sign(l(t)) − τ l(t)2 − ρi( ˆ̄Bi −
1
2
B̄i)2 +

1
4
ρiB̄

2
i

≤ −η||l(t)|| − τ l(t)2 +
1
4
ρiB̄

2
i (4.124)

It is clear that V̇0 < 0 if l(t) >
√

δ1
4τmin

or ||l(t)|| > δ1
4ηmin

, where η, τ are positive design parameters

and δ1 = ρiB̄
2
i . The decrease of V0 eventually drives the trajectories of the closed loop system into

l(t) >
√

δ1
4τmin

and ||l(t)|| > δ1
4ηmin

. Therefore, the trajectories of the closed loop system are bounded

ultimately as

lim
t→∞

l(t) ∈

(
l(t) >

√
δ1

4τmin

)∩(
||l(t)|| > δ1

4ηmin

)
(4.125)

which is a small set containing the origin of the closed loop system. In order to guarantee bounded

motion around the sliding surface, the positive parameters η and τ are chosen to be large enough such

that V̇0 < 0 when V0 is out of the bounded region which contains an equilibrium point [40]. It can

be observed that V̇0 < 0 is achievable which implies that the sliding manifold l(t) will approach zero

in finite time. Therefore, the control law given by (4.122) guarantees that the sliding mode will be

reached in finite time and sustained thereafter [87].

Remark 4.4. Once the sliding mode is established, the proposed gain adaptation law (4.119) allows

the gain ˆ̄Bi to decrease. Thus it is seen that the proposed gain adaptation law, while maintaining the

sliding mode, keeps the gain ˆ̄Bi at the smallest possible level to ensure accuracy.

Thus the adaptive gain tuning law is modified as,

˙̄̂
Bi = −θiρi ˆ̄Bi + θi||l(t) − ℘||||x||i if l(t) ̸= 0

= 0 otherwise (4.126)
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where 0 ≤ i ≤ r and ℘ is a small positive number.

Remark 4.5. The parameter τ in the controller (4.122) is very crucial as it is one of the parameters

responsible for determining the convergence rate of the sliding surface. It is clear that a large value of

τ will force the system states to converge to the origin at a high speed. Since a high η will require a

very high control input which is not desirable in reality, the parameter η cannot be selected too large.

Hence a compromise has to be made between the response speed and the control input.

Remark 4.6. The parameters ρ0 and ρ1 in (4.126) determine the convergence rate of the estimated

bounds ˆ̄B0 and ˆ̄B1. Large values of ρ0 and ρ1 can be chosen so that the estimated bounds ˆ̄B0 and ˆ̄B1

converge quickly to the actual bounds.

4.4.3 Effectiveness

Let us compare the proposed adaptive sliding mode controller with the adaptive sliding mode

controller (SMC) designed by Wen and Cheng [3] and given below:

u = uf + uadp + us (4.127)

where

uf = −s(t)AW (t)z − s(t)ABσ

uadp = −
r∑
i=0

ˆ̄Bi||x||i
σ

||σ||
if σ ̸= 0

= 0 otherwise

us = −η σ

||σ||
if σ ̸= 0

= 0 otherwise

(4.128)

The adaptive parameter ˆ̄Bi is tuned using the following adaptive rule,

˙̄̂
Bi = θi||x||i if σ ̸= 0

= 0 otherwise

(4.129)

where θi are positive constants, ˆ̄Bi(0) = 0 is the initial condition, 0 ≤ i ≤ r.

Implementation of the adaptive SMC (4.127-4.129) is limited by the obvious drawback of the gain ˆ̄Bi
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being susceptible to overestimation and thereby increasing the chattering in the system. Furthermore,

this approach is not directly applicable to real systems but requires modifications involving the sign

function which needs replacement by a saturation function. However, the width of the boundary layer

in the saturation function affects accuracy and robustness of the SMC. Furthermore, no methodology

for tuning the boundary layer width is provided in [3].

4.4.4 Simulation Results

The typical load and flight conditions for the VTOL aircraft are considered at the nominal airspeed

of 135 knots [3]. The linearized dynamics of this VTOL aircraft in the vertical plane can be described

by (4.90 - 4.91) where,

A =


−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 0.3681 −0.7070 1.4200

0 0 1 0

 , B =


−0.4422 0.1761
3.5446 −7.5922
−5.52 4.49

0 0



ξ(t, x) =
[

−5 sin(0.5t) + x3

2 cos(0.2x1)x2 + 3

]
, p(t, x) =


sin(0.1x2)(0.1x3 + 0.7x4)

−0.3x4 cos(0.3x4t)
−2x1 − 0.3x2

(0.2x1 + 0.4x4) sin(0.4x3)

 (4.130)

The simulation is carried out in MATLAB Simulink platform by using ODE 4 solver with a fixed

step size of 0.001sec. The reference vector is chosen as xd = [0 0 0 0]T since all the states are to be

driven to zero. For comparison purpose, the associated design parameters of the proposed adaptive

sliding mode controller are chosen following [3]. As such Wg is selected as,

Wg =

 0.0666 0.0076 0.0102 0.72

0.8879 0.1010 0.136 −0.028

 (4.131)

Hence WgB = 0 [86]. Next the pseudo control input, the adaptive controller and the adaptive gains

are designed in accordance with equations (4.105), (4.106), (4.119) and (4.126) where θ = 0.1474,

θ0 = 0.1271, θ1 = 0.1251, ρ = 0.1971, η = 2, τ = 1, κ = diag(1.25, 1.25), ρ = 0.1519 and K is so

chosen that the eigen values are placed at −0.5,−0.7,−15,−25 [20]. The initial state is assumed as

x(0) = [2 − 2 1 1]T .
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The adaptive tuning laws used for stabilization are given by,

˙̂
ϕ2 = θ||z||2

˙̄̂
B1 = −0.151 ˆ̄B1 + θ1 ||l(t) − ℘|| ||x||
˙̄̂
B0 = −0.151 ˆ̄B0 + θ0 ||l(t) − ℘||

The initial values of ϕ̂2, ˆ̄B1 and ˆ̄B0 are chosen as 0, 1, 1 respectively. The small positive constant ℘ is

chosen as ℘ = 0.01.

The adaptive first order sliding mode controller proposed by Wen and Cheng [3] (4.127 - 4.129) is

applied to the VTOL aircraft system (4.90 - 4.91). The design parameters are chosen as θ = 0.3,

θ0 = 0.21, θ1 = 0.27, η = 4 and ρ = 1. The initial state is assumed as x(0) = [2 − 2 1 1]T .

From simulation results obtained in Figs. 4.8 - 4.9 it can be observed that although the system states

converge to the equilibrium, the control inputs are not smooth and contain excessive chattering.

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

Time(sec)

S
ys

te
m

 s
ta

te
s

 

 

x
1

x
2

x
3

x
4

Figure 4.8: State responses with the method proposed by Wen and Cheng [3]

The simulation results obtained by using the proposed adaptive sliding mode controller to the VTOL

aircraft system are shown in Figs. 4.10 - 4.13. It is observed from Fig. 4.10 that all the states converge

to the origin quickly. Moreover, comparison of Fig. 4.10 with Fig. 4.8 reveals that in the proposed

method, the states converge in lesser time as compared to Wen and Cheng [3]. From Fig. 4.9 and Fig.
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Figure 4.9: Control inputs with the method proposed by Wen and Cheng [3]
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Figure 4.10: State responses using the proposed adaptive sliding mode controller

4.11 it is evident that chattering present in the control inputs obtained by using the proposed adaptive

sliding mode controller is significantly lesser as compared to that in [3]. The bounded convergence of

the adaptive gains ˆ̄B0, ˆ̄B1 and ϕ̂2 are confirmed in Fig. 4.12. From Fig. 4.13 it can be observed that

the proportional plus integral sliding surface σ′ and the sliding manifold l(t) are smooth and both

approach zero quickly.
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Figure 4.11: Control inputs using the proposed adaptive sliding mode controller
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Figure 4.12: Estimated parameters using the proposed adaptive sliding mode controller
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Figure 4.13: Sliding surface and sliding manifold using the proposed adaptive sliding mode controller

4.5 Case study on 1 degree of freedom (DOF) vertical take-off and
landing (VTOL) aircraft system

The 1 DOF VTOL system moves vertically up and down about its axis and this motion is called

pitch motion. Real world examples of the VTOL aircraft system are aerospace vehicles which comprise

of helicopters, rockets, balloons and harrier jets. All aerospace vehicles are difficult to model due to

their changing aerodynamic parameters and environmental behavior during flight. Hence VTOL

aircraft system is a suitable example of uncertain systems. The vertical take-off and landing (VTOL)

system [88] with one degree of freedom (pitch motion) is considered here for practical demonstration

of the proposed adaptive sliding mode controller. The modelling of 1 DOF VTOL system is presented

in the Appendix A. The design prerequisite of the sliding mode controller is the complete knowledge

about the state vector which is practically difficult to get. Hence unavailable states of the VTOL are

estimated by using the extended state observer (ESO) [89]. The ESO can estimate the uncertainties

along with the states of the system. Unlike traditional (linear or nonlinear) observers, the ESO

estimates the uncertainties, unmodeled dynamics and external disturbances as extended states of the

original system [90].
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4.5.1 Linear extended state observer (LESO) design

The idea of LESO is explained in the following single input single output (SISO) system,

x(n)(t) = f(x(n−1)(t), x(n−2)(t), ..., x(t), d(t), t) + bu(t)

y = x(t) (4.132)

where x(t) is the nth order state vector, y is the output, u is the input, b is a constant, d(t) is the

external disturbance, f(·) is an unknown function which can be viewed as the total uncertainties or

disturbances, both internal and external, acting on the system. Now v = df
dt is introduced such that if

the function f is nonsmooth, v denotes the generalized derivative of f(·). Treating the uncertainty f

as an extended state of the system (4.132), Eq. (4.132) can be written in the state space form as,

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)

.

.

ẋn−1(t) = xn(t)
ẋn(t) = xn+1(t) + b0u

ẋn+1(t) = v(·) (4.133)

where X = [x1, x2, ..., xn, xn+1]T ∈ Rn+1 represents the state of the system and b0 is best estimate

of b(4.132). Now, LESO for estimating both the states and the extended state for the uncertain system

(4.132) can be obtained as follows [91]

ż1 = z2 − δ1e1

ż2 = z3 − δ2e1

.

.

żn−1 = zn − δn−1e1

żn = zn+1 − δne1 + b0u

żn+1 = −δn+1e1 (4.134)

where Z = [z1, z2, ..., zn, zn+1]T ∈ Rn+1, e1 = z1 − x1 and δi(i ∈ n + 1) are the states of LESO,

the observation error and observer gains, respectively. LESO (4.134) is designed to have the property,

zi(t) → xi(t)(i ∈ n+ 1).
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Writing the extended order system (4.133) in the state space form gives rise to,

Ẋ = AX +Bu+ Ev (4.135)

where X = [x1, x2, ..., xn, xn+1]T is the state vector of the extended order system. Here A, B and

E matrices are given by,

A =



0 1 .... 0 0
0 0 1 .... 0
.
.
0 0 0 .... 1
0 0 0 .... 0

 , B =



0
0
.
.
b0
0

 , E =



0
0
.
.
0
1

 (4.136)

So (4.134) represents LESO for the system (4.135). The state space model of the LESO dynamics

can be written as

Ż = AZ +Bu+ L(y − CZ) (4.137)

where L = [δ1 δ2....δn δn+1]T is the observer gain vector, y is output vector and C = [1 0 0.....0] is

the output matrix.

The parameters are chosen in a special way as sn+1 +δ1sn+ ....+δn+1 = (s+ω0)n+1, where ω0 denotes

the bandwidth of the LESO (4.134) [92]. It is proved that if f is differentiable with respect to t and

v = ḟ is bounded, then the LESO (4.134) can estimate f(t) with bounded error and also estimates

the unknown states.

Remark 4.7. In the control law (4.22), the derivative term ṡ is needed. However, in real time

implementation, direct differentiation will lead to erroneous result as the measurements are often

noisy. There are three methods to resolve this issue, namely, the derivative estimator, the suboptimal

algorithm and the twisting algorithm. In experimental study of the VTOL system, the first method is

utilized. A derivative estimator is designed using the method in [25] [64] and is given below,

ż0 = −λ1|z0 − s|1/2sign(z0 − s) + z1

ż1 = −λ2sign(z0 − s) (4.138)

where λ1 > 0 and λ2 > 0 are the design parameters and the estimators are designed as ṡ = z1.
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4.5.2 Experimental Results

Experiments are conducted on the laboratory set-up QNET VTOL which was controlled by ap-

plying the adaptive sliding mode controller. Figure 4.14 shows the experimental board QNET VTOL

trainer on ELVIS II which basically consists of a variable speed fan with a safety guard mounted on an

arm. An adjustable counterweight is attached to the other end of the arm. This counterweight allows

position of the weight to be changed which in turn affects the system dynamics. A rotary encoder

shaft to measure the VTOL pitch position is attached to an arm assembly.

The nominal values of the VTOL parameters are given in the QNET manual [88] as,

Figure 4.14: QNET VTOL trainer on ELVIS II

Table 4.5: Parameters of 1DOF VTOL system

Variable name Description Values
Lm Motor inductance 53.8 mh
Rm Motor resistance 3 Ω
kt Torque thrust constant 0.0108 Nm/A
j Moment of inertia 0.00347 kg −m2

bv Viscous damping 0.002 Nms/rad
k Stiffness constant 0.0373 Nm/rad

Experiments are carried out on the QNET VTOL ElVIS II board using LABVIEW software for
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interfacing. Furthermore, Runge Kutta 4 algorithm with step size of 0.1 ms is used in a PC with 2.50

GHz Core I-7 processor having 4GB memory for simulation purpose.

Using the parameter values given above, the transfer function for the 1 DOF VTOL [88] (A.1.12)

is obtained as,

G(s) =
θ(s)
Vm(s)

=
57.78

s2 + 0.576s+ 10.7
(4.139)

where θ is the pitch angle and Vm is the motor voltage. Accordingly, the state space model for the

above system (A.1.13) in presence of matched uncertainty can be described as, ẋ1

ẋ2

 =

 0 1

−10.7 −0.576


 x1

x2

+

 0

57.78

u+

 0

57.78

 fm(x, t) (4.140)

and the output matrix C = [1 0]. Here x1 is the pitch angle and x2 is the angular velocity. The

uncertainty is chosen as,

fm(x, t) = 0.25 sin(0.1x1) (4.141)

The control law (4.22) is applied to the above system where, κ = 0.25, k1 = 5, γ = 2 and c = [5 1].

The LESO observer gain parameter is

L =
[

19.5 126.75 274.625

]T
(4.142)

considering ω0 = 6.5.

The initial condition for the VTOL system is chosen as [−0.45 0]T and the initial condition for the

observer is also selected as [−0.45 0]T .

The adaptive tuning law is designed as ˙̂
T = 0.5|σ| with T0 = 0. Boundary layer ϵ is chosen as 0.05.

The parameters of the derivative estimator in (4.138) are λ1 = 100 and λ2 = 200.

The desired trajectory xd(t) to be tracked is chosen as xd(t) = 0, i.e the VTOL system will have to

position itself to the horizontal plane. The control signal is applied to the VTOL lab module through

QNET’s interfacing hardware board. The experimental results obtained are shown in Fig.s 4.15 - 4.19.

In Fig. 4.15, the tracking performance is presented from where it can be observed that the VTOL

tracks the reference accurately.

The angular velocity (x2), sliding surface (s), and control input (u) are shown in Fig.s 4.16 - 4.18.
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From Fig 4.18 it is clearly observed that the proposed control law is smooth and chattering free. The

convergence of the adaptive gain is confirmed in Fig. 4.19.

Figure 4.15: Angular position (x1) obtained by using the proposed adaptive sliding mode controller

Figure 4.16: Angular velocity (x2) obtained by using the proposed adaptive sliding mode controller
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Figure 4.17: Sliding surface s obtained by using the proposed adaptive sliding mode controller

Figure 4.18: Control input u obtained by using the proposed adaptive sliding mode controller
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system

Figure 4.19: Adaptive gain (T̂ ) obtained by using the proposed adaptive sliding mode controller
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Figure 4.20: Experimental results using the proposed method when parameters are changed by 25%

77



4. Adaptive Sliding Mode Controller for Multiple Input Multiple Output (MIMO) Systems

In order to check the robustness of the proposed adaptive sliding mode controller, the plant param-

eter matrices are perturbed by 25%. In Fig. 4.20, the experimental results are shown with Â = 1.25A

and B̂ = 1.25B. It is observed from Fig. 4.20 that the proposed adaptive sliding mode controller

integrated with LESO observer still works reliably demonstrating the robustness of the proposed con-

troller - observer pair.

4.6 Summary

This chapter proposes an adaptive sliding mode (SM) controller for multi-input multi-output

(MIMO) systems. The proposed controller is applied to the twin rotor MIMO system (TRMS) which

is an example of a highly coupled nonlinear system perturbed by mismatched uncertainty. The cross-

coupling between the main and the tail rotor of the TRMS is considered as an uncertainty. An

adaptive tuning rule is designed to deal with the unknown but bounded uncertainty. However, the

upper bound of the system uncertainty is not required to be known apriori as is the case with most

sliding mode controllers. A proportional plus integral sliding surface is used to eliminate the offset

present in the pitch angle. Simulation results show that the proposed adaptive sliding mode controller

demonstrates satisfactory tracking performance and is robust to cross-coupling effect and external

disturbances. Moreover, the proposed adaptive sliding mode controller shows, in general, lesser error

with lower control effort than the PID controllers [84] reported in the literature for the TRMS.

Next, the proposed controller is applied for stabilizing a vertical take-off and landing (VTOL) aircraft

system affected by both matched and mismatched kind of uncertainties. The proposed sliding mode

controller uses a proportional plus integral sliding surface and an adaptive gain tuning law. Prior

knowledge about the upper bound of the system uncertainty, which is the design prerequisite of most

sliding mode controllers, is eliminated by using this adaptive method. Moreover, the adaptive gain

tuning mechanism also ensures that the gain is not overestimated with respect to the actual unknown

value of the uncertainty. Simulation is performed by applying the adaptive sliding mode controller to

the linearized model of the VTOL aircraft. From simulation results, the proposed controller is found

to be superior in chattering mitigation than some already existing similar kind of adaptive sliding

mode controller. Also, the states show faster convergence in the case of the proposed adaptive sliding

mode controller. For application to uncertain systems affected by severe matched and mismatched
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uncertainties like the VTOL aircraft, the proposed adaptive sliding mode control strategy promises

to be a suitable method. Real time experiments conducted on a 1 DOF VTOL system using its

laboratory prototype QNET VTOL are described. The proposed adaptive sliding mode controller

is applied to the 1 DOF VTOL system for tracking a desired reference trajectory and experimental

performance is studied. In the experimental set-up, pitch velocity of the VTOL is the unavailable

state which is required for designing the controller. So a linear extended state observer (LESO) is

combined with the adaptive sliding mode controller to estimate pitch velocity. Experimental results

obtained confirm that the proposed controller is successful in achieving faithful trajectory tracking

for the 1 DOF VTOL. Moreover, chattering in the control input is found to be reduced substantially

corroborating the fact observed earlier in theoretical simulation studies.
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5.1 Introduction

5.1 Introduction

It is well recognized that, conventional switching manifolds are usually linear hyper planes which

guarantee asymptotic stability. However, for nonlinear systems, nonlinear sliding surface can also be

selected [12]. In linear sliding mode (LSM), error dynamics cannot converge to zero in finite time

although the parameters can be adjusted to make the convergence arbitrarily fast. However, this

will, in turn, increase the control gain, which may cause severe chattering on the sliding surface and,

therefore, deteriorate the system performance. To tackle the problems of globally asymptotic stabi-

lization, terminal sliding mode (TSM) control scheme has been developed [5, 93–97] to achieve finite

time stabilization. Unfortunately, the terminal sliding mode control features the same drawback of

chattering [30] as in the case of conventional sliding mode control. In [98] a second order sliding mode

controller was developed for multivariable linear systems using the nonsingular terminal sliding man-

ifold. The major disadvantage of this method is that the application is restricted to linear uncertain

systems only and the upper bound of the system uncertainty must be known in advance. In [5, 94]

a continuous finite time control scheme for rigid robotic manipulators affected by uncertainty and

external disturbance was proposed using a new form of terminal sliding mode. In both these methods,

the bound of the uncertainty must be known in advance. Moreover, in these methods a boundary layer

technique is used to replace the discontinuous control action by a saturating continuous approximation

to reduce the chattering. However, its consequence is that invariance property of the SMC is lost.

In this chapter, a chattering free adaptive terminal sliding mode (TSM) controller is proposed to

achieve fast and finite time convergence. In the proposed controller, a nonsingular terminal sliding

manifold is used to design the control law. The time derivative of the control signal is used as the

control input instead of the actual control. The derivative control law is a discontinuous signal because

of the presence of the sign function. However, its integral which is the actual control, is continuous

and hence the chattering is eliminated. An adaptive tuning law is used here to estimate the unknown

uncertainties. This adaptive tuning method does not require prior knowledge about the upper bound

of the system uncertainty for designing the terminal sliding mode controller as was the case with the

terminal sliding mode controllers developed so far [5, 64,93,94,97–99].

The outline of this chapter is as follows. In Section 5.2, the proposed chattering free adaptive terminal

sliding mode (TSM) control strategy is derived. In Section 5.3 the proposed adaptive TSM controller

is applied to stabilize a triple integrator system and the performance is studied. Trajectory tracking
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problem of a robotic manipulator is considered in Section 5.4 to investigate the efficacy of the proposed

adaptive TSM controller. Summary is drawn in Section 5.5.

5.2 Design of chattering free adaptive terminal sliding mode con-
troller

Let us consider a class of nonlinear system

ẋ = f(x) + ∆f(x) + d(t) +Bu (5.1)

where x = [x1 x2 x3....xn]T ∈ Rn is the state vector. Furthermore, ∆f(x) ∈ Rn is an uncertain term

representing the unmodelled dynamics or structural variation of the system (5.1) and d(t) ∈ Rn is an

external disturbance. Moreover, u ∈ Rm is the input and B is a known matrix of order n ×m. The

uncertainties of the system (5.1) are assumed to be bounded and matched such that ∆f(x) and d(t)

∈ span B. The control objective is to track a given reference signal xd in finite time from any initial

state.

Let the desired state vector be xd = [x1d x2d x3d....xnd]T . The tracking error is defined as,

e = x− xd = [(x1 − x1d) (x2 − x2d) .....(xn − xnd)]T

= [e1, e2, ......en]T . (5.2)

The goal is to design a chattering free adaptive terminal sliding mode controller for a given target xd

such that the resulting tracking error satisfies

lim
t→∞

||e|| = lim
t→∞

||x− xd|| → 0 (5.3)

where || · || denotes the Euclidean norm of a vector.

The controller is designed in two steps. At first, a linear sliding surface is defined and then using

the sliding surface, a terminal sliding manifold is obtained so that the derivative of the control input

occurs at the first derivative of the terminal sliding manifold. The actual control input is obtained

by integrating the derivative of the control signal which contains the discontinuous function and thus

eliminates the chattering [27,65,66]. The uncertainty is estimated by using an adaptive tuning law.

A set of sliding surfaces is defined in the error space passing through the origin to represent a sliding

82



5.2 Design of chattering free adaptive terminal sliding mode controller

manifold as fo1lows:

s = [s1, s2, ..., sm]T = cT e = [c1 c2 ...ci...cm]T e

=



c1nen + c1(n−1)en−1 + ...+ c11e1

c2nen + c2(n−1)en−1 + ...+ c21e1

.

cinen + ci(n−1)en−1 + ...+ ci1e1

.

cmnen + cm(n−1)en−1 + ...+ cm1e1


(5.4)

and ci = [cin ci(n−1)....ci1] be such that all roots of the polynomial

ϕ(λ(ei)) = cinλ
n−1 + ci(n−1)λ

n−2 + ...+ ci1λ (5.5)

are in the open left half-plane [100], i = 1, 2, ..,m. The choice of c determines the convergence rate to

the sliding surface. Let us consider (5.4), where e = x− xd. The first time derivative of (5.4) yields

ṡ = cT ė

= cT (ẋ− ẋd) (5.6)

Using (5.1) and (5.6) yields,

ṡ = cT (f(x) + ∆f(x) + d(t) +Bu− ẋd) (5.7)

Taking the derivative of (5.7) gives rise to

s̈ = cT (
d

dt
f(x) +

d

dt
∆f(x) + ḋ(t) +Bu̇− ẍd)

= cT (ḟ(x) + ∆ḟ(x) + ḋ(t) +Bu̇− ẍd) (5.8)

A nonsingular terminal sliding mode manifold is first designed as

σ = s+ βṡ
p
q (5.9)

Here β = diag(β1, β2, ...., βn) is a positive constant and p/q (p and q are positive odd integers) is chosen

in such a way that the condition 1 < p
q < 2 holds [94]. The linear sliding surface s is combined with

the nonsingular terminal sliding manifold σ to realize the terminal sliding mode control. As σ reaches

83



5. Adaptive Terminal Sliding Mode Controller

zero in finite time, both s and ṡ are bound to reach zero. Then, the tracking error e asymptotically

converges to zero.

Taking the time derivative of (5.9) yields,

σ̇ = ṡ+ β(
p

q
)ṡ

p
q
−1
s̈

= β(
p

q
)ṡ

p
q
−1(s̈+ β−1(

p

q
)−1ṡ

2−( p
q
)) (5.10)

Assumption 5.1. The first time derivative of the uncertain term, ∆ḟ(x) and the first time derivative

of the disturbance, ḋ(t) are assumed to be bounded and satisfy the following condition:

||cT (∆ḟ(x) + ḋ(t))|| ≤
r∑
i=0

B̄i||x||i r = 0, 1, ..n (5.11)

where B̄i are unknown positive constants, which are not easily obtained due to the complicated structure

of the uncertainties in practical control systems. The number of adaptive rules r is determined by the

designer in accordance with the knowledge of the relative order of perturbation that the system might

encounter. For designing the traditional sliding mode controller, one usually assumes that the upper

bound of lumped perturbations satisfies certain conditions. For example, if r = 0, then the nature of

the disturbance is periodic and it is well represented by a known constant value. If we choose r = 1,

it covers more area in the range space rather than when r = 0 is considered. Thus rest of the control

law is designed by considering r = 1.

It will be proven in Theorem 5.1 that since the derivative of the control input contains the discon-

tinuous term, the actual control signal which will be obtained after the integration operation will not

contain any high frequency switching component. Thus the proposed terminal sliding mode controller

will be free from the chattering phenomenon. Moreover, the controller does not need prior knowledge

about the upper bound of the disturbance. Instead, the upper bound is obtained by designing an

adaptive tuning law.

Theorem 5.1. Considering the uncertain system (5.1), the tracking error dynamics (5.6) can asymp-

totically converge to zero if the nonsingular terminal sliding manifold is chosen as (5.9) and the control

law is obtained as follows:

u̇ = −(cTB)−1[cT ḟ(x) + β−1(
p

q
)−1ṡ

2−( p
q
) + (B̄0 + B̄1||x||)sign(σ) +K†σ − cT ẍd] (5.12)
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where (cTB)−1 is nonsingular, B̄0 , B̄1 and K† = diag(K†
1....K

†
m) > 0 are the designed parameters.

In practice the bounds of the uncertain term (B̄0 + B̄1||x||) in (5.12) is often difficult to know. Hence

an adaptive tuning law is designed to determine B̄0 and B̄1. So the control law is represented as,

u = −(cTB)−1

∫ t

0
[cT ḟ(x)dτ + β−1(

p

q
)−1ṡ

2−( p
q
) + ( ˆ̄B0 + ˆ̄B1||x||)sign(σ) +K†σ − cT ẍd]dτ(5.13)

where ˆ̄B0 and ˆ̄B1 estimate the bounds of uncertainty, i.e. cT (||∆ḟ(x)+ ḋ(t)||) ≤ B̄0 + B̄1||x||. Defining

the adaptation error as ˜̄B0 = ˆ̄B0−B̄0 and ˜̄B1 = ˆ̄B1−B̄1, the parameter ˆ̄B0 and ˆ̄B1 are to be estimated

by using the adaptation law

˙̄̂
B0 =

1
ν0

(
p

q
)||β|| ||ṡ(

p
q
)−1

σ|| (5.14)

and

˙̄̂
B1 =

1
ν1

(
p

q
)||β|| ||ṡ(

p
q
)−1

σ|| ||x|| (5.15)

where ν0 and ν1 are the positive tuning parameters.

Proof : Let us consider the following Lyapunov function

V (t) =
1
2
σTσ +

1
2
ν0

˜̄B2
0 +

1
2
ν1

˜̄B2
1 (5.16)

Using (5.8 - 5.15), the time derivative of the Lyapunov function V (t) is obtained as,

V̇ (t) = σT σ̇ + ν0
˜̄B0

˙̄̂
B0 + ν1

˜̄B1
˙̄̂
B1

= β(
p

q
)ṡ(

p
q
)−1

σT (s̈+ β−1(
p

q
)−1ṡ

2−( p
q
)) + ν0( ˆ̄B0 − B̄0)

˙̄̂
B0 + ν1( ˆ̄B1 − B̄1)

˙̄̂
B1

= β(
p

q
)ṡ(

p
q
)−1

σT [cT (
d

dt
f(x) +

d

dt
∆f(x) + ḋ(t) +Bu̇− ẍd) + β−1(

p

q
)−1ṡ

2−( p
q
)]

+( ˆ̄B0 − B̄0)(
p

q
)||β|| ||ṡ(

p
q
)−1

σ|| + ( ˆ̄B1 − B̄1)(
p

q
)||β|| ||ṡ(

p
q
)−1

σ|| ||x||

≤ ||β||(p
q
)||ṡ(

p
q
)−1

σT || [B̄0 + B̄1||x|| −K†||σ|| − ( ˆ̄B0 + ˆ̄B1||x||)sign(σ)]

+( ˆ̄B0 − B̄0)(
p

q
)||β|| ||ṡ(

p
q
)−1

σ|| + ( ˆ̄B1 − B̄1)(
p

q
)||β|| ||ṡ(

p
q
)−1

σ|| ||x||

≤ −K†||σ|| (5.17)

The above inequality holds if
˙̄̂
B0 = 1

ν0
(pq )||β|| ||ṡ

( p
q
)−1

σ|| and
˙̄̂
B1 = 1

ν1
(pq )||β|| ||ṡ

( p
q
)−1

σ|| ||x||. Moreover,

||ṡ(
p
q
)−1|| > 0 for any ṡ ̸= 0 and ṡ(

p
q
)−1 = 0 only when ṡ = 0. Therefore, the convergence to a domain

σ = 0 is guaranteed from any initial condition [30].
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Suppose that tr is the time when σ reaches zero from σ(0) ̸= 0 , i.e. σ = 0 for all t ≥ tr. Once σ

reaches zero, it will stay at zero using the control law (5.12). Thus the sliding surface s will converge

to zero in finite time tf . The total time from σ(0) ̸= 0 to stf can be calculated by using the equation

s+ βṡ
( p

q
) = 0 (5.9) from which the time taken from str to stf [94] is obtained as,

tf = tr +
(pq )

(pq ) − 1
β
−( p

q
)||str||(

p
q
)−1 (5.18)

Hence the error (5.2) asymptotically converges to zero and the system reaches the equilibrium. This

completes the proof.

Remark 5.1. Practically, ||σ|| cannot become exactly zero in finite time and thus the adaptive pa-

rameter
˙̄̂
Bi may increase boundlessly. A simple way of overcoming this disadvantage is to use the dead

zone technique [30] and modify the adaptive tuning law (5.14 - 5.15) as,

˙̄̂
B0 =


1
ν0

(pq )||β|| ||ṡ
( p

q
)−1

σ||, ||σ|| ≥ ε

0, ||σ|| < ε
(5.19)

and

˙̄̂
B1 =


1
ν1

(pq )||β|| ṡ
( p

q
)−1

σ|| ||x||, ||σ|| ≥ ε

0, ||σ|| < ε
(5.20)

where ε is a small positive constant.

Remark 5.2. The parameter ϵ in controller (5.13) is very important and it is one of the parameters

determining the convergence rate of the sliding surface. It is clear that a large ϵ will force the system

states to converge to the origin with a high speed. However, a very large value of ϵ will require a very

high control input but in reality it is always bounded. Thus the parameter ϵ cannot be selected to be

too large. In practice, a compromise has to be made between the response speed and the control input.

Remark 5.3.The parameters ν0 and ν1 in (5.14 - 5.15) determine the convergence rate of the esti-

mated bounds ˆ̄B0 and ˆ̄B1. Large values of ν0 and ν1 can be chosen to force the estimated bounds ˆ̄B0

and ˆ̄B1 to rapidly converge to the actual bounds.

Remark 5.4. An exact robust differentiator is available for accurately measuring or estimating the

derivative of variables.
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5.3 Stabilization of a triple integrator system

5.3 Stabilization of a triple integrator system

The adaptive terminal sliding mode controller proposed above is applied to a triple integrator

system with uncertainty as described below [62],

ẋ1 = x2

ẋ2 = x3

ẋ3 = u+ p(x)
y = x1 (5.21)

where p(x) = 7sin(10x1) is the bounded uncertainty, y is the output and the initial condition of

the system is assumed as x(0) = [1 0 − 1]T [61]. The desired state is xd = [0 0 0]T as it is a

stabilization problem. Hence in this case the error and state are equivalent i.e, e = x− xd = x.

The third order sliding mode controller presented by Defoort et al. [4] using twisting sliding modes

to achieve finite time control is compared with the proposed adaptive TSM controller. As explained

in [61] and [62], the control for the system given by (5.21) can be obtained as [4],

u = unom + udisk (5.22)

Let k1, k2, ..., kn > 0 be such that the polynomial λn + knλ
n−1 + ...+ k2λ+ k1 is Hurwitz. The system

(5.21) can be stabilized to the origin using the feedback control law given in [4, 61,62] as

unom = −k1sign(x1)|x1|α1 − k2sign(x2)|x2|α2 ...− knsign(xn)|xn|αn (5.23)

where α1, ..., αn satisfy αi−1 =
αiαi+1

2αi+1 − αi
for i = 2, ..., n with αn+1 = 1 (5.24)

With n = 3, k1 = 1, k2 = k3 = 1.5 and α3 = 3/4, the control law (5.22) can be expressed as [4],

unom = −sign(x1)|x1|
1
2 − 1.5sign(x2)|x2|

3
5 − 1.5sign(x3)|x3|

3
4

udisk = udisk,1 + udisk,2 (5.25)

where the sliding surface σ = x3 −
∫ t
0 unomdτ and udisk is given by [4],

udisk,1 = −ζ
∫ t

0
sign(σ)τ

udisk,2 = −ϑ|σ|
1
2 sign(σ) (5.26)
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5. Adaptive Terminal Sliding Mode Controller

where ζ and ϑ are chosen as 100 and 5 respectively.

Fig. 5.1 shows the system trajectories and the control input obtained by using the third order sliding

mode controller proposed by Defoort et al. [4]. Though the twisting control law reduces the chattering,

still the control signal is not smooth as is observed in Fig. 5.1.
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Figure 5.1: State response and control input with the controller proposed in [4]

In the proposed adaptive TSM controller (5.13), the parameters are selected as cT = [3 2 1], β =

1, p
q = 5/3, and K† = 15. Hence the adaptive tuning laws for the triple integrator system are found

as,

˙̄̂
B0 = 1.51||ṡp/q−1 σ||
˙̄̂
B1 = 1.71||ṡp/q−1 σ|| ||x||

The initial conditions of ˆ̄B0 and ˆ̄B1 are chosen as 0, 0 respectively.

The state trajectory and the control input obtained by using the proposed adaptive TSM controller

are shown in Fig. 5.2. From Fig. 5.2 it is clear that the system states converge quickly to the origin in

spite of the uncertainty and disturbance and the undesired chattering in the control input is eliminated

effectively. The corresponding estimated parameters are shown in Fig. 5.3.
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Figure 5.2: State response and control input with the proposed adaptive TSM controller
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ˆ̄B1 with the proposed adaptive TSM controller
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5.4 Tracking control of a robotic manipulator

The dynamics of an n-link robotic manipulator can be expressed as [5],

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τd (5.27)

where q, q̇, q̈ ∈ Rn represent the position, velocity and acceleration of the joints respectively,

M(q) = M0(q) + ∆M(q) ∈ Rn×n stands for the inertia matrix, C(q, q̇) = C0(q, q̇) + ∆C(q, q̇) ∈ Rn×n

is the centripetal Coriolis matrix, G(q) = G0(q) + ∆G(q) ∈ Rn is the gravitational vector, τ ∈ Rn is

the joint torque vector and τd ∈ Rn is the disturbance torque vector. Here M0(q), C0(q, q̇), G0(q) are

the nominal terms and ∆M(q), ∆C(q, q̇), ∆G(q) represent the perturbations in the system matrices.

Then the dynamic model of the robotic manipulator can be written as,

M0(q)q̈ + C0(q, q̇)q̇ +G0(q) = τ + τd + F (q, q̇, q̈) (5.28)

where F (q, q̇, q̈) = −∆M(q) − ∆C(q, q̇) − ∆G(q) ∈ Rn is the lumped system uncertainty which is

bounded by the following function

||F (q, q̇, q̈)|| ≤ ρ0 + ρ1||q|| + ρ2||q̇||2 (5.29)

where ρ0, ρ1 and ρ2 are positive constants.

Suppose the control objective is to make the robotic manipulator track a reference trajectory. Let qd

and q be the desired and actual position vectors. The tracking error and its derivatives are defined as

e = q − qd, ė = q̇ − q̇d and ë = q̈ − q̈d. Using (5.28),

ë = M−1
0 (q)[τ + τd + F (q, q̇, q̈) − C0(q, q̇)q̇ −G0(q)] − q̈d (5.30)

The time derivative of (5.30) yields,

d

dt
ë = M−1

0 (q)[τ̇ + τ̇d + Ḟ (q, q̇, q̈) − d

dt
(C0(q, q̇)q̇ +G0(q))]

+Ṁ−1
0 (q)[τ + τd + F (q, q̇, q̈) − C0(q, q̇)q̇ −G0(q)] −

d

dt
q̈d

= M−1
0 (q)[τ̇ − d

dt
(C0(q, q̇)q̇ +G0(q))] + Ṁ−1

0 (q)[τ − C0(q, q̇)q̇ −G0(q)] −
d

dt
q̈d

+M−1
0 (q)τ̇d +M−1

0 (q)Ḟ (q, q̇, q̈) + Ṁ−1
0 (q)τd + Ṁ−1

0 (q)F (q, q̇, q̈)
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5.4 Tracking control of a robotic manipulator

= M−1
0 (q)[τ̇ − d

dt
(C0(q, q̇)q̇ +G0(q))]

+Ṁ−1
0 (q)[τ − C0(q, q̇)q̇ −G0(q)] −

d

dt
q̈d + F̄ (q, q̇, q̈) (5.31)

where F̄ (q, q̇, q̈) = M−1
0 (q)τ̇d +M−1

0 (q)Ḟ (q, q̇, q̈) + Ṁ−1
0 (q)τd + Ṁ−1

0 (q)F (q, q̇, q̈)

such that,

F̄ (q, q̇, q̈) ≤ B̄0 + B̄1||q|| + B̄2||q̇||2 (5.32)

Here B̄0, B̄1 and B̄2 are positive constants.

Remark 5.5. The assumptions in the above inequalities are valid as the input disturbance τd is

assumed to be bounded, i.e. ||τd|| < χ where χ is a positive constant. Furthermore, the modeling

uncertainty F (q, q̇, q̈) is also bounded by the assumption ||F (q, q̇, q̈)|| ≤ ρ0 + ρ1||q|| + ρ2||q̇||2.

Let us consider the linear sliding surface as,

s = ė+ ce (5.33)

where c = diag(c1, ..., cn) is a design matrix. The first and second derivative of (5.33) can be obtained

as,

ṡ = ë+ cė

s̈ =
d

dt
ë+ cë =

d

dt
(q̈ − q̈d) + cë (5.34)

The nonsingular terminal sliding manifold (NTSM) for an n-link robotic manipulator is chosen as

σ = s+ βṡp/q (5.35)

where Here β = diag(β1, β2, ...., βn) is a design matrix.

Taking the derivative of (5.35) yields

σ̇ = ṡ+ β(p/q)ṡ(p/q)−1s̈

= β(p/q)ṡ(p/q)−1(s̈+ (q/p)β−1ṡ2−(p/q)) (5.36)

For an n-link robotic manipulator (5.27), if the NTSM manifold is chosen as (5.35), then the tracking

error e will converge to zero if the time derivative of the control input is selected as,

τ̇ = u̇0 + u̇1 (5.37)
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where

u̇0 = M0(q)
d

dt
q̈d +

d

dt
[C0(q, q̇)q̇ +G0(q)] − ((q/p)β−1M0ṡ

2−(p/q)) − cM0ë

−M0Ṁ0
−1

(τ − C0(q, q̇)q̇ −G0(q)) (5.38)

u̇1 = −K†M0(q)σ −M0(q)(B̄0 + B̄1||q|| + B̄2||q̇||2)sign(σ) (5.39)

Here K† = diag(k†1..k
†
n) is a positive matrix.

Defining the adaptation error as ˜̄B0 = ˆ̄B0 − B̄0, ˜̄B1 = ˆ̄B1 − B̄1 and ˜̄B2 = ˆ̄B2 − B̄2, the parameters ˆ̄B0,

ˆ̄B1 and ˆ̄B2 are to be estimated by using the adaptation law

˙̄̂
B0 =

1
ν0

(
p

q
)||β|| ||ṡ(

p
q
)−1

σ|| (5.40)

˙̄̂
B1 =

1
ν1

(
p

q
) ||β|| ||ṡ(

p
q
)−1

σ|| ||q|| (5.41)

˙̄̂
B2 =

1
ν2

(
p

q
) ||β|| ||ṡ(

p
q
)−1

σ|| ||q̇||2 (5.42)

where ν0, ν1 and ν2 are the positive tuning parameters.

The dead zone technique [30] is used to modify the adaptive tuning law as

˙̄̂
B0 =

{
1
ν0

(pq )||β|| ||ṡ
( p

q
)−1

σ||, ||σ|| ≥ ε

0, ||σ|| < ε

˙̄̂
B1 =

{
1
ν1

(pq )||β|| ||ṡ
( p

q
)−1

σ|| ||q||, ||σ|| ≥ ε

0, ||σ|| < ε

˙̄̂
B2 =

{
1
ν2

(pq )||β|| ||ṡ
( p

q
)−1

σ|| ||q̇||2, ||σ|| ≥ ε

0, ||σ|| < ε
(5.43)

where ε is a small positive constant.

Now the adaptive terminal sliding mode control law for the robotic manipulator is obtained as,

u̇1 = −K†M0(q)σ −M0(q)( ˆ̄B0 + ˆ̄B1||q|| + ˆ̄B2||q̇||2)sign(σ) (5.44)

Using Lyapunov stability criterion as discussed earlier in Section 5.2, the NTSM manifold σ in (5.35)

can be shown to possess finite time reachability to zero which ensures that the tracking error of the

robotic manipulator e = q − qd converges to zero in finite time.
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5.4.1 Effectiveness

Let us compare the proposed adaptive terminal sliding mode (TSM) controller with the NTSM

controller designed by Feng et al. [5] described by:

τ = C0(q, q̇)q̇ +G0(q) +M0(q)q̈d + ua + ub (5.45)

where

ua = −q
p
M0(q)β−1ė

2−p/q

ub = −p
q

[sTβ diag(ėp/q−1M0
−1(q))]T

||sTβ diag(ėp/q−1M0
−1(q))||

×[||s|| ||β diag(ṡp/q−1)M0
−1(q) ||(ρ0 + ρ1||q̇|| + ρ2||q̇||2)] (5.46)

Here ρ0, ρ1 and ρ2 are supposed to be known parameters, that means ||F (q, q̇, q̈)|| (5.29) must be

known. It is obvious that implementation of the NTSM controller (5.45 - 5.46) is highly complicated

as it involves computation of the nominal model of the robotic manipulator accompanied by the

difficult compulsion of knowing ||F (q, q̇, q̈)|| apriori. Both these requirements are difficult enough to

discourage practical implementation of the NTSM controller. Moreover, if the switching control ub

is not approximated by the saturation function, the NTSM controller exhibits high chattering in the

control signal. On the other hand, the proposed adaptive TSM controller has the major advantage

that prior knowledge about the bounds ||F̄ (q, q̇, q̈)|| (5.32) are not required as these are adaptively

estimated. Again, since the actual control is obtained by integrating the discontinuous switching

function, the control signal is smoother and chatterless as compared to the NTSM controller proposed

in [5].

5.4.2 Simulation Studies

The proposed chattering free adaptive terminal sliding mode (TSM) controller is applied for tra-

jectory tracking of a two-link rigid robotic manipulator shown in Fig.5.4.

For the above two-link manipulator, the dynamic equation (5.27) has the following parameters,

M(q) =

 (m1 +m2)l21 +m2l
2
2 + 2m2l1l2cos(q2) + J1 m2l

2
2 +m2l1l2cos(q2)

m2l
2
2 +m2l1l2cos(q2) m2l

2
2 + J2


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C(q, q̇)q̇ =

 −m2l1l2sin(q2)q̇22 − 2m2l1l2sin(q2)q̇1q̇2

m2l1l2sin(q2)q̇22

 ,
G(q) =

 (m1 +m2)l1gcos(q1) +m2l2gcos(q1 + q2)

m2l2gcos(q1 + q2)

 (5.47)

Figure 5.4: Configuration of a two-link robotic manipulator

Here q(t) = [q1(t), q2(t)]T is the angular position vector where q1(t) and q2(t) are the angular positions

of joints 1 and 2, M(q) is the inertia matrix, C(q, q̇) is the centripetal Coriolis matrix, G(q) is the

gravity vector and τ = [τ1, τ2]T is the applied torque. The two-link robotic manipulator has four inner

states x1(t) = q1(t), x2(t) = q̇1(t), x3(t) = q2(t), x4(t) = q̇2(t), two output states y1(t) = q1(t) and

y2(t) = q2(t) and two inputs u1(t) = τ1 and u2(t) = τ2. Friction terms are ignored. Table 5.1 lists the

physical parameters of the two-link robotic manipulator considered in the simulation study [5]. The

Table 5.1: Physical parameters of the two-link robotic manipulator [5]

Symbol Definition value
l1 Length of the first link 1m
l2 Length of the second link 0.85m
J1 Moment of inertia of the D.C. motor 1 5kg −m
J2 Moment of inertia of the D.C. motor 2 5kg −m
m1 Mass of the link 1 0.5kg
m2 Mass of link 2 1.5kg
m̂1 Nominal Mass of link 1 0.4kg
m̂2 Nominal Mass of link 2 1.2kg
g Gravitational constant 9.81m/s2

reference signals are qd1 = 1.25 − (7/5)e−t + (7/20)e−4t and qd2 = 1.25 + e−t − (1/4)e−4t. The initial
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5.4 Tracking control of a robotic manipulator

states are selected as q1(0) = 0, q2(0) = 2.5, q̇1(0) = 0 and q̇2(0) = 0. The external disturbances

considered are τd1 = 2sint + 0.5sin200πt and τd2 = cos2t + 0.5sin200πt [94]. The parameters of

the proposed controller are selected as p = 5, q = 3, β = diag(0.023, 0.023), c = diag(45, 45) and

K† = diag(60, 60).

The choice of the design parameters ν0, ν1 and ν2 is influenced by the convergence rate of the estimated

bounded parameters ˆ̄B0, ˆ̄B1 and ˆ̄B2 and the adaptation update laws used are given by

˙̄̂
B0 = 1.74||β|| ||ṡ(

p
q
)−1

σ||
˙̄̂
B1 = 1.45||β|| ||ṡ(

p
q
)−1

σ|| ||q||
˙̄̂
B2 = 3.30||β|| ||ṡ(

p
q
)−1

σ|| ||q̇||2

respectively with initial conditions ˆ̄B0(0) = 1, ˆ̄B1(0) = 1 and ˆ̄B2(0) = 1.

The simulations are carried out in the MATLAB - Simulink platform by using ODE 4 solver with a

fixed step size of 0.005 sec.

The tracking response and the control input obtained by using the NTSM controller (5.45 - 5.46)
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Figure 5.5: Output tracking response of joint 1 and joint 2 with the controller proposed in [5]

proposed by Feng et al. [5] are shown in Fig. 5.5 and Fig. 5.6 respectively. It is observed from
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these figures that although the tracking performance is satisfactory, the major drawback of the NTSM

controller is the high frequency chattering present in the control input. Moreover, another design

constraint the NTSM controller suffers from is that the parameters ρ0, ρ1 and ρ2, i.e. ||F (q, q̇, q̈)||

(5.29) are needed to be known apriori.
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Figure 5.6: Control input of joint 1 and joint 2 with the controller proposed in [5]

Simulation results obtained by applying the proposed adaptive TSM control laws (5.38) and (5.44)

are shown in Fig. 5.7 - Fig. 5.10. It is observed from Fig. 5.7 that both the joints 1 and 2 track the

reference trajectory faithfully. The control inputs applied to both the joints show no chattering as is

evident in Fig. 5.8. The convergence plots of the estimated parameters ˆ̄B0, ˆ̄B1 and ˆ̄B2 are shown in

Fig. 5.9. The sliding surfaces and the sliding manifolds are plotted in Fig. 5.10 which confirms that

these converge to zero quickly.

For comparison purpose, another class of sliding mode controller is considered in the simulation

study. The third order sliding mode controller developed by Defoort et al. [4] is now applied to the
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Figure 5.7: Output tracking response of joint 1 and joint 2 using the proposed controller
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Figure 5.8: Control input of joint 1 and joint 2 using the proposed controller
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Figure 5.9: Estimated parameters ˆ̄B0, ˆ̄B1 and ˆ̄B2 using the proposed adaptive tuning method
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Figure 5.10: Sliding surfaces and sliding manifolds using the proposed controller

98



5.4 Tracking control of a robotic manipulator

robotic manipulator example. The sliding mode function is chosen as [4]

s = ė−
∫ t

0
unomdτ

unom = −k1|e|α1sign(e) − k2|ė|α2sign(ė)

with control parameters k1 = 40I, k2 = 17I and α1 = 3/5, α2 = 3/4. The control law proposed by

Defoort et al. [4] is given by τ = M0(q, q̇)q̈d + C0q̇ +G0 +M0(q, q̇)unom +M0(q, q̇)udisk where udisk

is obtained by using the twisting algorithm given by udisk = −ζ
∫ t
0 sign(s)dτ − ϑ|s|1/2sign(s). The

design parameters ζ and ϑ are are chosen as 15I and 1I respectively.

The tracking performance and the control inputs with the same initial conditions as in the previous
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Figure 5.11: Output tracking response of joint 1 and joint 2 with the controller proposed by Defoort et al. [4]

examples are plotted in Fig. 5.11 and Fig. 5.12. It is observed from these figures that although the

control law proposed by Defoort et al. [4] assures fast convergence of the states to the reference, the

transient response is highly oscillatory at start. In addition, the controller proposed by Defoort et

al. [4] is affected by the chattering phenomenon. Moreover, the variation seen in the control input

in [4] is quite high which is undesirable as a high input variation can damage the actuator or it may

get saturated. In contrast the proposed adaptive TSM controller input is smooth and chattering free.
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Figure 5.12: Control input of joint 1 and joint 2 with the controller proposed by Defoort et al. [4]

Output Performance: To evaluate the output performance, the integrated absolute error (IAE)

of the output is computed. The IAE is defined as the sum of the absolute values, i.e., IAE of joint-1

=
∑n

k=1 |q1(k)− qd1(k)| and IAE of joint-2 =
∑n

k=1 |q2(k)− qd2(k)| where n is the number of sampling

instants and qd1(k) and qd2(k) are the desired positions of joint-1 and joint-2 respectively at the k-th

sampling instant.

Input Performance : To evaluate the manipulated input usage, the total variation (TV) [101]

of the input u(t), which is sum of all its moves up and down is computed. It is is difficult to de-

fine TV compactly for a continuous signal, but if the input signal is discretized as a sequence, i.e

u1, u2, u3, ..., ui, ...un, then TV can be defined as

TV =
n∑
i=1

|ui+1 − ui| (5.48)

The total variation is a good measure of the smoothness of a signal. TV is desired to have a small value

because a large value of TV means more excessive input usage or a more complicated controller [101].

Energy of the input is calculated by using the 2-norm method. The control energy is expected to be

as small as possible. The output and input performances are calculated for the period from 0 to 10s
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5.5 Summary

with a sampling time of 0.05s.

Table 5.2: Comparison of controller performance

Controller performance
Types of controller IAE Total variation (TV) 2-norm of input

Feng et al. [5] Joint-1 14.85 205.01 72.22
joint-2 7.22 127.92 207.79

Defoort et al. [4] Joint-1 7.03 523.10 581.98
joint-2 5.01 563.44 446.85

Proposed adaptive TSM controller joint-1 7.01 114.29 114.61
joint-2 4.05 74.02 140.03

The output and input performances of the proposed adaptive TSM controller as well as the con-

trollers designed by Feng et al. [5] and Defoort et al. [4] for the two-link robotic manipulator are

tabulated in Table 5.2. It is noted that the proposed adaptive TSM controller offers comparable

tracking performance by applying a smoother control input having minimal total variation as com-

pared to the controllers designed by Feng et al. [5] and Defoort et al. [4]. Moreover, the overall control

energy spent in the case of the proposed adaptive TSM controller is not more than those in the other

two methods.

5.5 Summary

A chattering free adaptive terminal sliding mode controller for uncertain systems is proposed in this

chapter. The nonsingular terminal sliding manifold guarantees fast and finite time convergence. The

controller acts on the first derivative of the control input which contains the switching term involving

the sign function. The actual control law is obtained by integrating the discontinuous derivative

control signal and hence it is continuous. The requirement of prior knowledge about the uncertainty

bounds for designing terminal sliding mode controllers is not a necessary requirement in the proposed

controller. The proposed adaptive TSM controller is successfully applied for stabilization of a triple

integrator system affected by uncertainty. Trajectory tracking of a two-link robotic manipulator

which is a nonlinear system with mismatched uncertainty is also considered in our simulation study.

Simulation results demonstrate that the proposed control strategy is successful in eliminating the

undesired chattering in the control input while ensuring satisfactory stabilization as well as tracking

performances. Hence the proposed controller is suitable for practical applications.
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6.1 Introduction

6.1 Introduction

In the previous chapters, stabilization and tracking problems of linear as well as nonlinear uncertain

systems were considered and attempts were made for their improvement using chattering free adaptive

sliding mode control which employed a linear sliding surface. In general, fast settling time and small

overshoot are the two important requirements in most of the design problems. However, it is well

known that quick response produces a large overshoot which is not at all desirable in many practical

electromechanical applications [102]. On the other hand, a low overshoot can be achieved at the cost

of a high settling time. However, a short settling time is also necessary for a quick response, but it

increases the overshoot. Thus the user has to choose between fast response and low overshoot and

most of the design problems make a trade-off between these two transient indices keeping the damping

ratio fixed.

This particular problem can be solved by using the composite nonlinear feedback (CNF) technique

[103–105]. CNF method uses a variable damping ratio to achieve high transient performance. Initially,

the damping ratio is chosen as a very low value to ensure quick response and as the output approaches

the reference, the damping ratio is increased to reduce the overshoot.In [6, 67, 106, 107], the CNF

method was used to design a nonlinear sliding surface which increased the damping ratio from its

initial low value as the output approached the set point. This resulted in a fast response at the

beginning and gradually as the output approached the set point, the effect was to reduce the settling

time and overshoot.

This chapter focuses to improve the transient performance of an uncertain system by developing a

chattering free sliding mode controller which uses a nonlinear sliding surface. Here a proportional

plus constant reaching law based chattering free sliding mode controller is proposed using nonlinear

sliding surface to improve the transient performance. An adaptive tuning law is used to deal with

unknown but bounded system uncertainties. Further, a discrete integral sliding mode controller based

on nonlinear sliding surface is designed to investigate the performance in the discrete domain.

This chapter is organized as follows:

The proposed adaptive sliding mode (SM) controller using nonlinear sliding surface is discussed in

Section 6.2. Section 6.3 discusses about nonlinear sliding surface based discrete integral sliding mode

controller for uncertain systems. A brief summary is presented in Section 6.4.
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6. Nonlinear Sliding Surface based Adaptive Sliding Mode Controller

6.2 Adaptive chattering free sliding mode (SM) controller using
nonlinear sliding surface

A class of dynamic system is considered as follows,

ẋ = f(x) + g(x)u

y = σ(x) (6.1)

where x ∈ Rn is the state variable, u ∈ Rm is the control input, y ∈ R is the output and σ(x) ∈ R

is the measured output function known as the sliding variable. Moreover, f(x) and g(x) are smooth

functions.

Using appropriate transformation, the above nonlinear system (6.1) can be transformed into the

following Brunowsky canonical form [106],

ẋi = xi+1 i = 1, ..., (n− 1)

ẋn = an1x1 + an2x2 + .....+ annxn +Bnu+Bnfm(x, t) (6.2)

The above system can be expressed as,

ẋ = Ax+B(u+ fm(x, t))

y1 = C1x (6.3)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, y1 is the output and fm(x, t) ∈ Rm rep-

resents parametric perturbation and external disturbances and is assumed to be matched. Here A, B

and C1 are known matrices with proper dimensions and n, m are also known. The system (6.3) can be

transformed into regular form by using a transformation matrix Tr [106], such that z = Trx = [z1 z2]T .

Then the following transformed system is obtained,

ż1 = a11z1 + a12z2

ż2 = a21z1 + a22z2 +B2u+B2fm(z, t)

y1 = Cz1 (6.4)
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6.2 Adaptive chattering free sliding mode (SM) controller using nonlinear sliding surface

Here, z1 ∈ Rn−1, z2 ∈ R and C = C1(Tr)−1.

From (6.4) the following can be written,

ż = Aregz +Bu+Bfm(z, t) (6.5)

where fm(z, t) contains all the uncertain terms along with disturbances and Areg can be expressed as,

Areg =
[
a11 a12

a21 a22

]
B = [0 B2]T (6.6)

The nonlinear sliding surface is selected as [106],

cT (t) = [F − Υ(r, y)aT12P 1] (6.7)

where Υ(r, y) is a negative nonlinear function and F is a real matrix. Then

s = cT (t)e
= [F − Υ(r, y)aT12P 1]e (6.8)

where e = [e1 e2]T = [z1−z1d z2−z2d]T and zd = [z1d z2d]T is the desired state. Here F is chosen

such that (a11−a12F ) has stable poles and the dominant poles have low damping ratio. Furthermore,

Υ(r, y) is a negative nonlinear function which raises its value starting with zero such that the damping

ratio for the overall system increases from an initial low value to higher ones [67,106]. Moreover, P is

a positive definite matrix which can be found by solving the Lyapunov criterion given by,

(a11 − a12F )TP + P (a11 − a12F ) = −R (6.9)

where R is also a positive definite matrix.

6.2.1 Stability in sliding mode

During the sliding mode, s = 0 and hence from (6.8)

e2 = −Fe1 + Υ(r, y)aT12Pe1 (6.10)
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6. Nonlinear Sliding Surface based Adaptive Sliding Mode Controller

Using (6.5) and (6.10) yields

ė1 = (a11 − a12F + a12Υ(r, y)aT12P )e1 + h (6.11)

where h = a11z1d + a12z2d − ż1d. Suppose that the desired trajectory zd is consistently generated by

using the system model. Then there exists some control u such that

ż1d = a11z1d + a12z2d

ż2d = a21z1d + a22z2d +B2u (6.12)

Using (6.11) and (6.12) yields,

ė1 = (a11 − a12F + a12Υ(r, y)aT12P )e1 (6.13)

To prove the stability in the sliding mode, let us consider the following Lyapunov function,

V1 = eT1 Pe1

Taking its derivative and using (6.13) yields

V̇1 = ėT1 Pe1 + eT1 P ė1

= eT1 (a11 − a12F )TPe1 + eT1 P (a11 − a12F )e1 + 2eT1 Pa12Υ(r, y)aT12Pe1

= eT1 [(a11 − a12F )TP + P (a11 − a12F )]e1 + 2eT1 Pa12Υ(r, y)aT12Pe1

= eT1 [(a11 − a12F )TP + P (a11 − a12F ) + 2Pa12Υ(r, y)aT12P ]e1

= eT1 [−R+ 2Pa12Υ(r, y)aT12P ]e1

Let there exist a matrix Q = eT1 Pa12. Thus V̇1 can be simplified as,

V̇1 = −eT1Re1 + 2QΥ(r, y)QT

Since R > 0 and Υ(r, y) < 0,

V̇1 < 0 (6.14)

Thus stability in sliding mode is proved. Taking first derivative of s and using (6.8) and (6.5), the

following is obtained:

ṡ = ċT (t)z − ċT (t)zd − cT (t)żd + cT (t)(Aregz +Bu+Bfm(z, t)) (6.15)
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6.2 Adaptive chattering free sliding mode (SM) controller using nonlinear sliding surface

Taking the second derivative of s yields

s̈ = ċT (t)ż + c̈T (t)z + cT (t)Areg ż + ċT (t)Aregz + cT (t)Bu̇+ ċT (t)Bu

+cT (t)Bḟm(z, t) + ċT (t)Bfm(z, t) − d

dt
(ċT (t)zd + cT (t)żd)

= cT (t)A2
regz + 2ċT (t)Aregz + c̈T (t)z + cT (t)AregBu

+2ċT (t)Bu+ cT (t)B2u̇− c̈T (t)zd − ċT (t)żd − cT (t)z̈d

−ċT (t)żd + cT (t)AregBfm(z, t) + 2ċT (t)Bfm(z, t) + cT (t)Bḟm(z, t) (6.16)

Let all the uncertainties be norm bounded and

(cT (t)AregBfm(z, t) + 2ċT (t)Bfm(z, t) + cT (t)Bḟm(z, t)) = ∆F (z, t).

Assuming y1(z) = s and y2(z) = ṡ, the system dynamics can be written as,

ẏ1(z) = y2(z)

ẏ2(z) = Φ(z, u) + Ψ(z)v (6.17)

where v = u̇ and Φ(z, u) collects all the uncertain terms not involving u̇. Thus the systems (6.15) and

(6.16) are now controlled by the input v. A sliding mode controller can be designed for the above

system using the control input v to keep the system trajectories in the sliding manifold.

Let the sliding manifold be considered as,

σ = y2(z) + κy1(z) (6.18)

where κ is a positive constant.

Taking the derivative of (6.18) yields,

σ̇ = ẏ2(z) + κẏ1(z) (6.19)

Using (6.15) and (6.16), the following is obtained,

σ̇ = cT (t)A2
regz + 2ċT (t)Aregz + c̈T (t)z + cT (t)AregBu

+ 2ċT (t)Bu+ cT (t)Bu̇− c̈T (t)zd − ċT (t)żd − cT (t)z̈d

− ċT (t)żd + κṡ+ ∆F (z, t) (6.20)
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6. Nonlinear Sliding Surface based Adaptive Sliding Mode Controller

Using the constant plus proportional reaching law yields,

σ̇ = −k1σ − k2sign(σ) (6.21)

Using (6.20) and (6.21), the control law is obtained as,

u̇ = −(cT (t)B)−1[cT (t)A2
regz + 2ċT (t)Aregz + c̈T (t)z

+ cT (t)AregBu+ 2ċT (t)Bu− c̈T (t)zd − ċT (t)żd − cT (t)z̈d

− ċT (t)żd + k1σ + k2sign(σ) + κṡ] (6.22)

where k1 ≥ 0 and k2 > {|(cT (t)AregBfm(z, t) + 2ċT (t)Bfm(z, t) + cT (t)Bḟm(z, t))| = |∆F (z, t)|} to

satisfy the reaching law condition σσ̇ ≤ −η|σ| for some η > 0.

In practice, the upper bound of the system uncertainty is often unknown in advance and hence the

error term |∆F (z, t)| is difficult to find. An adaptive tuning law is proposed to estimate k2 using

which the control law (6.22) can be written as

u̇ = −(cT (t)B)−1[cT (t)A2
regz + 2ċT (t)AregBz + c̈T (t)z

+ cT (t)AregBu+ 2ċT (t)Bu− c̈T (t)zd − ċT (t)żd − cT (t)z̈d

− ċT (t)żd + k1σ + T̂ sign(σ) + κṡ] (6.23)

where T̂ estimates the value of k2. Defining the adaptation error as T̃ = T̂ − T , the parameter T̂ is

estimated by using the adaptation law as in (4.57) [40,69,70,108] and given below,

˙̂
T = ν|σ| (6.24)

where ν is a positive constant. A Lyapunov function V2 is selected as V2 = 1
2σ

2 + 1
2γT̃

2 whose time

derivative is as follows,

V̇2 = σσ̇ + γT̃ ˙̃T
Using (6.20) yields,

V̇2 = σ[cT (t)A2
regz + 2ċT (t)Aregz + c̈T (t)z + cT (t)AregBu
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6.2 Adaptive chattering free sliding mode (SM) controller using nonlinear sliding surface

+ 2ċT (t)Bu+ cT (t)Bu̇− c̈T (t)zd − ċT (t)żd − cT (t)z̈d − ċT (t)żd

+ κṡ+ ∆F (z, t)] + γ(T̂ − T ) ˙̂
T

Using (6.23) and (6.24) yields,
V̇2 = σ[∆F (z, t) − T̂ sign(σ) − k1σ] + γ(T̂ − T )ν|σ|

Since k1 ≥ 0, the above equation can be written as
V̇2 ≤| ∆F (z, t) | |σ| − T̂ |σ| + T |σ| − T |σ| + γ(T̂ − T )ν|σ|

≤ (|∆F (z, t)| − T )|σ| − (T̂ − T )|σ| + γ(T̂ − T )ν|σ|
≤ −(−|∆F (z, t)| + T )|σ| − (T̂ − T )(−γν|σ| + |σ|)
≤ −βσ

√
2|σ/

√
2| − βν

√
γ/2(T̂ − T )/

√
γ/2

where βσ = (T − |∆F (z, t)|) and βν = (|σ| − γν|σ|)
So, V̇2 ≤ −min{βσ

√
2, βν

√
2/γ}(|σ/

√
2| + T̃

√
γ/2)

≤ −βV 1/2
2 (6.25)

where β = min{βσ
√

2, βν
√

2/γ} with β > 0. The above inequality holds if ˙̂
T = ν|σ|, βσ > 0, βν >

0, T > |∆F (z, t)| and γ < 1
ν . Therefore, finite time convergence to a domain σ = 0 is guaranteed

from any initial condition [40,62]. The adaptive tuning law (6.24) is modified by using the dead zone

technique.

It is evident from (6.23) that u̇ is discontinuous but integration of u̇ yields a continuous control law

u. Hence the undesired high frequency chattering of the control signal is eliminated. Thus the above

adaptive SM control with nonlinear sliding surface offers following advantages. Firstly, an improved

transient performance can be obtained without the knowledge about the upper bound of the system

uncertainties. Secondly, the chattering in the control input is eliminated.

Assumption 6.1. An exact robust differentiator is available for exactly measuring or estimating the

derivative of variables.

6.2.2 Choice of nonlinear function Υ(r, y)

The nonlinear function Υ(r, y) is used to change the system’s damping ratio as the output y

approaches the reference position r [104] [67]. It possesses the properties mentioned below:

• When the output is far from the reference value, Υ(r, y) equals to zero (or a very small value).

• As the output approaches its final desired value, Υ(r, y) value gradually becomes highly negative.

• The nonlinear function Υ(r, y) should be continuous, differentiable and its higher derivatives

must exist.
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6. Nonlinear Sliding Surface based Adaptive Sliding Mode Controller

The choice of Υ(r, y) is not unique. Some examples of Υ(r, y) used in literature are discussed below

[102].

Υ(r, y) = −ϱe−ψ(y−r)2 (6.26)

where r and y are the reference input and the system output respectively. Here ϱ > 0, ψ > 0 are

the tuning parameters. It is observed that the nonlinear function decreases its value from 0 to −ϱ as

the value of error (y − r) decreases from infinity (very high value) to zero. Another type of nonlinear

function Υ(r, y) used is given by,

Υ(r, y) = −ϱe−ψ|y−r| (6.27)

The value of Υ(r, y) changes from 0 to −ϱ as the error (y− r) approaches zero [109] from a high value.

Υ(r, y) can assume the following form also,

Υ(r, y) = − ϱ

1 − e−1
(e−(1−(y−y0)/(r−y0))2 − e−1) (6.28)

where r is the reference input, y0 = y(0) is the initial state and ϱ is the tuning parameter. The

function Υ(r, y) changes its value from 0 to −ϱ as the error (y− r) approaches zero from a high value.

6.2.3 Simulation Results

The proposed controller is simulated in MATLAB-Simulink by using ODE 8 solver with a fixed

step size of 0.005 sec.

6.2.3.1 Time response of second order process with time delay

The proposed adaptive SM controller is applied to a second order uncertain system with time delay.

The performance of the proposed adaptive SM controller using nonlinear sliding surface is compared

with that obtained by using adaptive SM controller with different linear sliding surfaces. The second

order process with time delay is given by [9]

G(s) =
0.05e−0.5s

(1 + 0.1s)(1 + s)
(6.29)

which can be simplified to the following form using Padé approximation,

G(s) =
0.05

(1 + 0.5s)(1 + 0.1s)(1 + s)
(6.30)
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The state space model given by Eq.(6.3) is obtained with

A =

 0 1 0
0 0 1

−20 −32 −13

 , B =

 0
0
1

 , C1 = [ 1 0 0 ] (6.31)

The matched uncertainty considered here is fm(x, t) = 0.5sin(10t).

Since the system is already in the regular form, the following submatrices can be written,

z1 = [x1 x2]T , z2 = x3 and coefficient matrices

a11 =
[

0 1
0 0

]
, a12 =

[
0
1

]
a21 =

[
−20 −32

]
, a22 = −13, B2 = 1, C = C1 (6.32)

• Design of nonlinear sliding surface:

The nonlinear sliding surface consists of a linear and a nonlinear term. Initially, the nonlinear term

has a very low value and as the system gradually approaches its desired position, the nonlinear term

decreases its value to a high negative value and thereby changes the value of the damping ratio. As a

result, the system response has low overshoot and small settling time. Let us recall,

cT (t) = [F − Υ(r, y)aT12P 1] (6.33)

Here the gain matrix F is designed for low damping ratio and high setting time. Moreover, F can be

designed by using pole placement technique. Let initially the system have damping ratio ξ1 and settling

time ts1. The closed loop poles are located at (−ξ1ωn +
√

(ξ21 − 1)ωn) and (−ξ1ωn −
√

(ξ21 − 1)ωn).

The natural frequency of oscillations ωn is given by,

ωn =
4

ξ1ts1
(6.34)

Let us choose the initial damping ratio ξ1 = 0.4 and settling time ts1 = 3.5. Using (6.34), the poles

can be found to be located at −1.1429 + 2.6186i,−1.1429 − 2.6186i. Thus F can be calculated using

pole placement technique as F = [8.1633 2.2857]. Solution of the Lyapunov equation (6.9) yields,

P =
[

0.2144 0.0061
0.0061 0.0246

]
using R =

[
0.1 0
0 0.1

]
(6.35)
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The nonlinear function Υ(r, y) is designed as,

Υ(r, y) = −215.04e−ψ(y−r)2 (6.36)

where ψ = 10,r = 1.

• Design of control law

Using nonlinear sliding surface, the overall SM control law is obtained from (6.22) choosing κ = 15,

k1 = 10. The adaptive tuning law is designed as ˙̂
T = 0.015|σ| with T0 = 0. Here Areg, B are obtained

by using the equations (6.6) and (6.32). The nonlinear sliding surface cT (t) is designed as explained

earlier.

6.2.3.2 Comparison with adaptive SM controller using linear sliding surface

Transient Performance of the nonlinear sliding surface based adaptive SM controller is compared

against the adaptive SM controller using linear sliding surface. Following three different linear sliding

surfaces are chosen for our comparison:

1. Linear sliding surface 1 with ξ = 0.4, ts = 3.5sec

2. Linear sliding surface 2 with ξ = 0.5, ts = 3.0sec

3. Linear sliding surface 3 with ξ = 0.7, ts = 2.5sec

The adaptive SM control law with linear sliding surface is obtained from (6.22), given by

u̇ = −(cT (t)B)−1[cT (t)A2
regz + cT (t)Bu+ κṡ+ k1σ + T̂ sign(σ)

−cT (t)z̈d] (6.37)

The output which is the angular position is plotted in Fig. 6.1 for the nonlinear sliding surface based

as well as linear sliding surface based adaptive SM controllers. From Fig. 6.1 it is clearly observed that

the peak overshoot and settling time both improve significantly in the case of the nonlinear sliding

surface based adaptive SM controller. A detailed comparison of transient performances between these

two types of adaptive SM controllers is presented in Table 6.1.

The convergence of adaptive gains T̂ for different sliding surfaces are confirmed in Fig. 6.2. Notably,

the knowledge of the upper bounds on the uncertainties is not a required prerequisite for designing

the SM controller.
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Figure 6.1: Output response of adaptive SM controller with different sliding surfaces

Table 6.1: Transient response indices for different values of ξ and ts

Type of sliding Peak (%) Settling
surface overshoot time (sec)

Linear sliding surface with ξ = 0.4, ts=3.5 sec 24 3.5
Linear sliding surface with ξ = 0.5, ts=3.0 sec 8 3.0
Linear sliding surface with ξ = 0.7, ts=2.5 sec 5 2.5

Proposed controller with nonlinear sliding surface 0 1.1

6.2.4 Stabilization of an uncertain system

The problem of ship roll stabilization is taken up now and the performance of the proposed con-

troller is compared with that of Fulwani et al. [6]. The state space representation of the ship roll

model is given by Equation (6.3) with [6],

A =

 0 1 0
0 0 1
−2 −2.7 −1.7

 , B =

 0
0
1

 (6.38)

C1 = [ 1 0 0 ] (6.39)

The uncertainty is considered as fm(x, t) = sin(10t).
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The objective is to stabilize the output quickly to the equlibrium. The parameters for designing

the controller are chosen as F = [25 4], κ = 30, k1 = 20 and the initial condition is assumed as

x(0) = [0.1 0 0]T [6]. By solving the Lyapunov equation (6.9), P is obtained as,

P =
[

0.0071 −0.0170
−0.0170 0.1105

]
where R = 0.34

[
1 0
0 1

]
(6.40)

The nonlinear function Υ(r, y) is selected as [6],

Υ(y) = −50e−100y2 (6.41)

The adaptive tuning law is designed as ˙̂
T = 4|σ| with T0 = 0.

Fig. 6.3 shows the system output and the control input using the control law proposed by Fulwani

et al. [6]. From Fig. 6.3 it is observed that the output converges fast to the reference without any

overshoot. However, it is clear that the control input is not smooth and contains excessive chattering.

Moreover, the start-up control input is also very high.
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Figure 6.3: System output and control input using the control law [6]
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Figure 6.4: System output and control input using the proposed controller
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The simulation results obtained by using the proposed adaptive SM controller are plotted in Fig. 6.4.

It is noticed that the system output has no overshoot and reaches the origin in the same time as in the

method of Fulwani et al. [6]. Furthermore, the proposed controller produces a chattering free control

input. Also, the proposed method reduces the start-up control input considerably. Convergence of

the sliding surface, the sliding manifold and the adaptive gain obtained by using the proposed method

are shown in Fig. 6.5.
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Figure 6.5: Adaptive gain, sliding manifold and sliding surface using the proposed controller

Input Performance : Although good transient performance is the primary aim of the controller,

large variation in the control input to achieve the same is undesirable. For rating the controller

performance, an index to measure the total variation (TV) in the control input u has been proposed

in literature [101] as

TV =
n∑
i=1

|ui+1 − ui| (6.42)

which is desired to have a small value. The total variation is a good measure of the smoothness of a

signal. A large value of TV means more input usage or a more complicated controller [101]. Also, input

energy is another important index for the controller and is calculated by using the 2-norm method.

The control energy is expected to be as small as possible. The input performance of the proposed

controller is computed in terms of TV and 2-norm energy for the period from 0 to 5s with a sampling
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time of 0.01s. The input performance of the proposed controller and that of Fulwani et al. [6] are

tabulated in Table 6.2.

Table 6.2: Input performance comparison

Type of Total Control
Controller Variation (TV) Energy

Fulwani et al.’s method [6] 137.31 86.72
Proposed controller 8.35 52.18

It is noted from Table 6.2 that the proposed controller offers comparable output performance

by applying a smoother control input having minimal total variation as compared to the controller

designed by Fulwani et al. [6]. Furthermore, the control effort spent is much lower in the case of the

proposed controller than in [6].

6.2.5 Performance comparison with third order sliding mode controller

The performance of the proposed adaptive sliding mode (SM) controller is now compared with the

third order sliding mode controller developed by Defoort et al. using twisting algorithm [4, 62]. For

the sake of comparison, stabilization of the triple integrator system described in [62] and discussed

earlier in Section 5.3 is reconsidered as given below,

ẋ1 = x2

ẋ2 = x3

ẋ3 = u+ p(x), y = x1 (6.43)

where p(x) = sin(10x1) is the bounded uncertainty, y is the output and the initial condition of the

system is assumed as x(0) = [1 0 −1]T [62]. The system trajectory and the control input obtained by

using Defoort et al.’s method are shown in Fig. 6.6. It is observed from Fig. 6.6 that the third order

sliding mode controller using twisting algorithm is not able to reduce the chattering in the control

input completely.
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Figure 6.6: System output and control input using the control law [4]

The proposed adaptive SM controller using a nonlinear sliding surface is now applied to the triple

integrator system. The parameters in the control law (6.22) are chosen as κ = 3, k1 = 5 and

the nonlinear function is selected as Υ(y) = −60.07e−10y2 . The adaptive tuning law is designed as
˙̂
T = 0.1|σ| with T0 = 0. The nonlinear sliding surface is designed by choosing the damping ratio

ξ = 0.3 and settling time ts = 5 sec [61, 62]. The positive definite matrix P obtained by solving the

Lyapunov equation (6.9) is given as,

P =
[

0.2674 0.0070
0.0070 0.0356

]
using R =

[
0.1000 0.0000
0.0000 0.1000

]
(6.44)

The system states and the control input for the triple integrator system using the proposed con-

troller are plotted in Fig. 6.7. It is evident from Fig. 6.7 that the proposed adaptive SM controller

produces faster convergence of the system states to equilibrium and smoother chattering free control

input as compared to the method proposed by [4].

Convergence of the adaptive gain, the sliding manifold and the sliding surface by using the proposed

controller is shown in Fig. 6.8.
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Figure 6.7: System states and control input using the proposed controller
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Figure 6.8: Adaptive gain, sliding manifold and sliding surface using the proposed controller

System output obtained by using the proposed adaptive SM controller employing both nonlinear
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6. Nonlinear Sliding Surface based Adaptive Sliding Mode Controller

and linear sliding surfaces is compared with that obtained by using Defoort et al.’s method [4] in Fig.

6.9. From Fig. 6.9 it is clearly observed that the best transient performance is demonstrated by the

proposed controller using nonlinear sliding surface. A detailed comparison of the transient as well

as input performance between the proposed controller and Defoort et al.’s method [4] is tabulated in

Table 6.3. From Table 6.3 it is evident that the proposed controller produces zero overshoot, faster

settling time, lesser input variation and lower control action than those obtained by using the con-

troller proposed by Defoort et al. [4]. The input performance is calculated for the period from 0 to

20s with a sampling time of 0.01s.
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Figure 6.9: System outputs produced by the proposed adaptive SM controller and [4]

Table 6.3: Transient response indices and input performance for the triple integrator system

Type of Over Settling Total Control
Controller -shoot (%) time (sec) variation (TV) energy

Defoort et al.’s method [4] 12 7.5 642.05 41.79
Proposed controller 0 2 35.61 41.07
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6.3 Composite nonlinear feedback based discrete integral sliding mode controller

6.3 Composite nonlinear feedback based discrete integral sliding
mode controller

The use of digital computers and samplers in the control circuitry in the recent years has made

the use of discrete time system representation more justifiable for controller design than continuous

time representation. As such study and research on discrete sliding mode has received wide attention

[57] [110] [111] [112] [113] [114]. To analyze the effect of sampling time, discrete time sliding mode

control (DSMC) is well studied in the literature [7] [115] [116] [117] [118]. In this section, a nonlinear

feedback based discrete integral sliding mode controller is proposed for uncertain systems with matched

uncertainty.

The main idea behind the integral sliding mode (ISM) controller is to design the control law as a

sum of a nominal control and a discontinuous control. Nominal control takes care of the nominal

plant dynamics and the discontinuous ISM control rejects disturbances. Here the composite nonlinear

feedback (CNF) controller, which is based on variable damping ratio, is used as the nominal controller

to achieve good transient performance and the discrete integral sliding mode (ISM) controller is

combined to ensure invariance against disturbances [114].

6.3.1 Discrete ISM controller for linear system with matched uncertainty

Let us consider a continuous time linear uncertain system as given below,

ẋ = Ax+B(u+ fm(x, t))

y = Cx (6.45)

where x ∈ Rn is the state vector, u ∈ Rm is the control input and y ∈ Rp is the output vector. The

matrices A, B, C and dimensions n, m, p are known apriori. Furthermore, fm(x, t) is the matched

uncertainty caused by unmodeled dynamics and external disturbance.

Let the above continuous system be sampled at τ samples per second, assuming that the distur-

bance is slowly varying. The discrete equivalent of the above plant (6.45) is then given by [119],

x(k + 1) = ϕτx(k) + Γτu(k) + d̃(k)

y(k) = Cx(k) (6.46)
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where the matrices ϕτ , Γτ , C are of appropriate dimensions and d̃(k) is the matched uncertainty.

The above matrices are defined as follows [119],

ϕτ = eAτ

Γτ =

τ∫
0

eAtBdt

d̃(k) =

τ∫
0

eAtBfm((k + 1)τ − t)dt (6.47)

For a smooth bounded disturbance fm(t) [7],

d̃(k) =

τ∫
0

eAtBfm((k + 1)τ − t)dt

= Γτfm(k) +
1
2
Γτvm(k)τ +O(τ3)

= Γτd(k) (6.48)

where d(k) = fm(k)+ 1
2vm(k)τ and O(τ3) is the error. Here vm(t) = d

dtfm(t), vm(k) = vm(kτ). To

see the details of the above expressions [7] can be referred to. It should be noted that the disturbance

d(k) is bounded and slowly varying, thus 0 ≤ |d(k)| ≤ dm(k), where dm(k) is the maximum value of

the bounded disturbance [7].

Using (6.48), (6.46) can be written as,

x(k + 1) = ϕτx(k) + Γτu(k) + Γτd(k)

y(k) = Cx(k) (6.49)

A discrete integral sliding surface σ(k) is defined as follows [119]:

σ(k) = Gx(k) −Gx(0) + h(k) (6.50)

where σ(k) ∈ Rn, h(k) ∈ Rm and x(0) is the initial condition of the system. The value of G ∈ Rm×n

is to be chosen later [20].

Then h(k) is calculated as,

h(k) = h(k − 1) − (GΓτuc(k − 1) +Gϕτx(k − 1)) (6.51)
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where ϕτ ∈ Rn×n, Γτ ∈ Rn×m and uc(k) is the control signal. In the case of discrete ISM controller

uc(k) = Kx(k), where K is the state feedback matrix designed by using pole placement technique.

For discrete CNF-ISM controller, uc(k) will be designed by using CNF method to be explained in

Subsection 6.3.2.

From (6.49), (6.50) and(6.51), the following is obtained,

σ(k + 1) = Gx(k + 1) −Gx(0) + h(k + 1)

= Gϕτx(k) +GΓτ (u(k) + d(k)) −Gx(0) + h(k) −GΓτuc(k) −Gϕτx(k) (6.52)

where u(k) is given by [119,120],

u(k) = uc(k) + ueq(k) (6.53)

Here ueq(k) is the equivalent control [119]. For designing uc(k), the procedure explained in Section

6.3 will be followed. Using the above relation (6.53) in (6.52) yields

σ(k + 1) = GΓτueq(k) +GΓτd(k) + h(k) −Gx(0) (6.54)

The equivalent control ueq(k) is found by solving σ(k + 1) = 0 and is given by,

ueq(k) = (GΓτ )−1(Gx(0) −GΓτd(k) − h(k)) (6.55)

The above control law (6.55) is realizable if and only if GΓτ is a nonsingular square matrix so that

its inverse (GΓτ )−1 exists.

The actual disturbance signal d(k) can be estimated as the previous instant’s disturbance signal

(d̂(k) = d(k−1)) if the disturbance is bounded and slowly varying [7]. Hence the estimated equivalent

control ueq(k) law can be expressed as,

ueq(k) = (GΓτ )−1(Gx(0) −GΓτ d̂(k) − h(k)) (6.56)

Using (6.53) the discrete ISM controller is obtained as,
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u(k) = uc(k) + (GΓτ )−1(Gx(0) −GΓτ d̂(k) − h(k)) (6.57)

Let us consider the sliding dynamics given by (6.52),

σ(k + 1) = Gϕτx(k) +GΓτ (u(k) + d(k)) −Gx(0) + h(k) −GΓτuc(k) −Gϕτx(k) (6.58)

Using u(k) = uc(k) + ueq(k) in equation (6.58) yields

σ(k + 1) = GΓτ (ueq(k) + d(k)) −Gx(0) + h(k) (6.59)

Using (6.56) in (6.59) yields

σ(k + 1) = GΓτd(k) −GΓτ d̂(k) = GΓτ (d(k) − d(k − 1)) = O(τ2) (6.60)

The above equation (6.60) is based on [7,121] which establishes that the sliding surface is bounded

by the rate of change of disturbance. Taking into account the availability of high speed Digital Signal

Processing (DSP) tools and microcontrollers, the sampling time can be chosen to be suitably small

which leads to very small boundary layer thickness [107]. The above equation (6.60) also describes

the stability of the sliding surface as discrete ISM control keeps the sliding surface within the limit of

O(τ2) as mentioned in [7].

6.3.2 Composite nonlinear feedback (CNF) based controller design

Fig. 6.10 shows the block diagram of the proposed composite nonlinear feedback (CNF) based

discrete integral sliding mode controller (ISM). The CNF controller is based upon the method proposed

in [103,104,109,122]. The purpose of using the CNF controller is to track the reference input quickly

without producing large overshoot. This has been made possible by combining a discrete linear

feedback controller with small damping ratio and a nonlinear feedback controller. The nonlinear

feedback law initially has zero gain and the gain increases when the system reaches closer to the

reference input, thereby enhancing the damping of the system. Hence the controller guarantees low

overshoot and faster rise. The overall CNF control law uc(k) can be expressed as,

uc(k) = uL(k) + uN (k) (6.61)
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Figure 6.10: Block diagram of CNF based Discrete ISM controller

where uL(k) symbolizes the linear state feedback control and uN (k) is the nonlinear feedback law.

The followings are the steps involved in the design of the composite controller:

• A linear state feedback control law is given by,

uL(k) = Kx(k) + Lr (6.62)

where r is the reference input and L is a matrix of an appropriate dimension [102]. The value

of K is so chosen such that the overall closed loop system meets the specific design criterion.

The damping ratio ξ and the settling time ts define the specific location of the poles. Pole

placement technique is used to find the state feedback gain matrix K [106,122]. In designing the

CNF based ISM controller, r = 0 is assumed since the output is to be regulated at zero. Hence

uL(k) = Kx(k).

• The nonlinear feedback law can be expressed as,

uN (k) = Υ(r, y)ΓTτ P (ϕ+ ΓτK)x(k) (6.63)

where ϕ = ϕτ + Γτ (GΓτ )−1G is obtained from the closed loop behavior of the overall system, to

be explained in Subsection 6.3.3. Here, Υ(r, y) is a locally Lipschitz function in y having values
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from zero to negative. Furthermore, Υ(r, y) is used to change the damping ratio of the closed

loop system as the output approaches the reference input. Then P > 0 is the solution of the

following Lyapunov equation,

P = (ϕ+ ΓτK)TP (ϕ+ ΓτK) +R (6.64)

where R is a positive definite matrix.

• The linear and nonlinear feedback control laws expressed in (6.62) and (6.63) can be combined

to get the overall expression for the CNF controller as

uc(k) = Kx(k) + Υ(r, y)ΓTτ P (ϕ+ ΓτK)x(k) (6.65)

Using (6.53), (6.56) and (6.65), the overall discrete CNF-ISM control law can be expressed as

u(k) = Kx(k) + Υ(r, y)ΓTτ P (ϕ+ ΓτK)x(k) + (GΓτ )−1(Gx(0) −GΓτ d̂(k) − h(k)) (6.66)

6.3.3 Closed loop behavior and stability of the overall system

Using (6.49), the discrete state equation can be written as,

x(k + 1) = ϕτx(k) + Γτu(k) + Γτd(k) (6.67)

where u(k) = uc(k) + ueq(k) is the overall control input.

Using (6.53) and (6.67) yields,

x(k + 1) = ϕτx(k) + Γτ (uc(k) + ueq(k)) + Γτd(k) (6.68)

Using (6.56), (6.68) can be expressed as,

x(k + 1) = ϕτx(k) + Γτuc(k) + Γτ (d(k) − d̂(k))

+Γτ (GΓτ )−1Gx(0) − Γτ (GΓτ )−1h(k) (6.69)
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Using (6.50) and (6.65), (6.69) can be expressed as,

x(k + 1) = ϕτx(k) + Γτ (Kx(k) + Υ(r, y)ΓTτ P (ϕ+ ΓτK)x(k))

+Γτ (d(k) − d̂(k)) − Γτ (GΓτ )−1(σ(k) −Gx(k)) (6.70)

Using (6.60), σ(k) is obtained as,

σ(k) = GΓτ (d(k − 1) − d(k − 2)) (6.71)

Using (6.71), (6.70) can be obtained as,

x(k + 1) = ϕτx(k) + Γτ (Kx(k) + Υ(r, y)ΓTτ P (ϕ+ ΓτK)x(k))

+Γτ (d(k) − 2d(k − 1) + d(k − 2)) + Γτ (GΓτ )−1Gx(k) (6.72)

Remark 6.2. The proposed method uses the bound of the variation/difference of the disturbance,

d(k−1)−d(k−2) where k = 0, 1, 2, , , , . It is clear that disturbance decreases as the sampling frequency

increases. The magnitude of the ultimate bound of the state x(k) can be made very small if the

disturbance d(k) varies slowly or the sampling period is set very short and hence more accurate results

can be obtained.

Remark 6.3. Here Υ(r, y) is a nonlinear function which has values varying from zero to a high

negative value. Initially it is assumed that Υ(r, y) = 0, which later assumes a high negative value.

When Υ(r, y) = 0 is considered, (6.72) becomes,

x(k + 1) = (ϕτ + Γτ (GΓτ )−1G+ ΓτK)x(k) + Γτ [d(k) − 2d(k − 1) + d(k − 2)] (6.73)

Thus the boundary layer thickness is given by [7],

O(τ3) = Γτ [d(k) − 2d(k − 1) + d(k − 2)] (6.74)

From (6.73 - 6.74) it can be observed that x(k) will stay in the neighborhood of the reference

state within a boundary of O(τ3) [7]. It is noteworthy that by using the discrete integral sliding mode

controller, disturbance can be better compensated with smaller steady state boundary and higher

accuracy.

Let us assume that d(k) is bounded as given by −M ≤ Γτ [d(k) − 2d(k − 1) + d(k − 2)] = w(k) ≤ M

127



6. Nonlinear Sliding Surface based Adaptive Sliding Mode Controller

with 0 < M <∞.

Then the closed loop dynamics (6.73) can be expressed as,

x(k + 1) = (ϕτ + Γτ (GΓτ )−1G+ ΓτK)x(k) + w(k) (6.75)

Accordingly

xT (k)[x(k + 1) − x(k)] = xT (k)(ϕτ + Γτ (GΓτ )−1G+ ΓτK − I)x(k) + xT (k)w(k)

≤ ρmaxx
T (k)x(k) + ||xT (k)w(k)||

≤ ρmax||x(k)||2 + ||xT (k)M || (6.76)

where ρmax represents the largest negative eigenvalue of the square matrix (ϕτ + Γτ (GΓτ )−1G +

ΓτK − I). In order to achieve better stability of the closed loop system, larger the M value, more

negative ρmax must be and the condition to be satisfied by M and ρmax is ||M || ≤ ||ρmax|| [119].

6.3.4 Simulation Results

In this section, two examples are illustrated to show the effectiveness of the proposed discrete CNF-

ISM controller. At first, a linear single input single output (SISO) sytem with matched uncertainty

[119] is considered. Then, a linear multi-input multi-output (MIMO) system with matched uncertainty

is illustrated [7]. Both these examples are simulated on the MATLAB-Simulink platform by using the

fixed step discrete solver.

6.3.4.1 Single input single output (SISO) system

Let us consider a SISO system with matched uncertainty as given in [119],

ẋ = Ax+Bu+Bfm(x, t)

y = Cx (6.77)

where

A =

 10 15 13
−20 −10 17
0 15 15

 , B =

 0
−3
5

 , C =
[

1 0 0
]

(6.78)

The matched uncertainty is considered as fm(x, t) = 0.3sin(2πt) [119]. It is assumed that the
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initial state is x(0) = [−1 1 1]T . The system is sampled with a sampling time τ = 0.01 sec. The

discretized model (6.49) of the above plant can then be expressed as [119],

x(k + 1) = ϕτx(k) + Γτu(k) + Γτd(k)

y(k) = Cx(k) (6.79)

where

ϕτ =

 1.0890 0.1604 0.1606
−0.2002 −0.9022 0.1609
−0.0158 0.1541 1.1748

 ,Γτ =

 0.0014
−0.0244
0.0519

 (6.80)

The discretized disturbance d(k) has the following expression,

d(k) = 0.3sin(0.02πk) + 0.009cos(0.02πk) (6.81)

The objective is to design a discrete CNF-ISM controller for the system (6.79 - 6.80) to stabilize the

system at zero quickly without any overshoot.

The design procedure is described below:

The damping ratio ξ should be so chosen such that the overshoot lies within 20% acceptable norm [106].

For the above example, the value of ξ is chosen as 0.57 and accordingly the settling time ts is obtained

as 0.42 sec as the natural frequency of the system ωn is known apriori as 16.8rad/sec. Correspondingly

the discrete dominant poles of the system are placed at 0.9000−0.1250i, 0.9000+0.1250i and the other

pole exists far from the dominant poles, at 0.1. Using pole placement technique, the value of the state

feedback gain matrix K is obtained as,

K = −[9.9668 11.5170 48.8051] (6.82)

For designing the nonlinear part for the CNF controller, the nonlinear function is chosen as,

Υ(r, y) = −ϱe−ψy2 (6.83)

Here Υ(r, y) is not a function of r because the reference input r is assumed as zero, since the output is

to be regulated at zero. For the above example, ϱ = 20.50 and ψ = 9 are chosen. Lyapunov equation

(6.64) is solved to obtain
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P =

 426.0891 116.4046 93.5674
116.4046 129.6438 90.8654
93.5674 90.8654 79.2154

 using R =

 10.00 0.000 0.000
0.000 10.00 0.000
0.000 0.000 10.00

 (6.84)

So, the composite nonlinear feedback (CNF) controller (6.65) designed for the above system yields

the following control law,

uc(k) = −[9.9668 11.5170 48.8051]x(k) + Υ(r, y)[1.8311 1.0123 0.8646]x(k) (6.85)

For designing the equivalent control of the integral sliding mode controller (i.e.ueq(k)), G is chosen

as [20],

G = (ΓTτ Γτ )−1ΓTτ (6.86)

Using (6.80) and (6.86) yields,

G = [0.4254 − 7.4143 15.7706] (6.87)

Using (6.80) and (6.87), the equivalent control law (6.56) is found as,

ueq(k) = −d̂(k) − h(k) + [0.4254 − 7.4143 15.7706]x(0) (6.88)

The overall control law of the proposed discrete CNF-ISM controller (6.66) can be expressed as,

u(k) = −[9.9668 11.5170 48.8051]x(k) + Υ(r, y)[1.8311 1.0123 0.8646]x(k)

−d̂(k) − h(k) + [0.4254 − 7.4143 15.7706]x(0) (6.89)

Fig. 6.11 shows the state x1 obtained by using the proposed discrete CNF-ISM control scheme for the

SISO system given by (6.79 - 6.80) and is compared with the results obtained by using the discrete ISM

controller (6.57). It is noticed that the proposed discrete CNF-ISM control scheme achieves superior

performance having zero overshoot and lower settling time. However, the rise time is almost the same

in both the cases.

Figs. 6.12 - 6.13 show the states x2 and x3 obtained by using the proposed discrete CNF-ISM controller

as well as the discrete ISM controller (6.57). It is observed that with the proposed discrete CNF-ISM

controller, the closed loop system settles more quickly with no overshoot as compared against the

discrete ISM controller.

130



6.3 Composite nonlinear feedback based discrete integral sliding mode controller

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time (sec)

x
1

 

 

proposed discrete  CNF−ISM controller
discrete ISM controller

Figure 6.11: System state x1 ; solid line with proposed discrete CNF-ISM controller and broken line with
discrete ISM controller
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Figure 6.12: System state x2 ; solid line with proposed discrete CNF-ISM controller and broken line with
discrete ISM Controller

Fig. 6.14 compares the the control inputs obtained for the proposed discrete CNF-ISM controller

against the discrete ISM controller (6.57). The energy norm of the input for the proposed discrete

CNF-ISM controller is 43.65 and that of the discrete ISM controller is 43.44. The proposed discrete

CNF-ISM controller uses 0.5% more energy in comparison to the discrete ISM controller.
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Figure 6.13: System state x3 ; solid line with proposed discrete CNF-ISM controller and broken line with
discrete ISM Controller
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Figure 6.14: Control input for the closed loop system; solid line with proposed discrete CNF-ISM controller
and broken line with discrete ISM controller

6.3.4.2 Comparison of the proposed discrete CNF-ISM controller with different discrete
ISM controllers

The output responses obtained by using the proposed discrete CNF-ISM controller as well as dif-

ferent discrete ISM controllers designed by varying the damping ratio ξ and the settling time ts are

shown in Fig. 6.15. The proposed discrete CNF-ISM controller shows superior performance with zero
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Figure 6.15: System output for the closed loop system for different values of ξ and ts , solid line with proposed
discrete CNF-ISM controller and broken line with discrete ISM controller

overshoot and lower settling time as compared to the discrete ISM controllers. Detailed comparison

of these controllers as regards the transient performance is summarized in Table 6.4. It is noticed

from Table 6.4 that the proposed discrete CNF-ISM controller produces significant reduction in the

peak overshoot and settling time over those in the case of the discrete ISM controllers. As noticed in

Fig.6.14, the control effort in the proposed discrete CNF-ISM controller is slightly higher than that in

the discrete ISM controller. Hence, a trade-off between the level of transient performance and amount

of control effort will have to be chosen in practical design considerations.

Table 6.4: Transient response indices for different values of ξ and ts

Damping Ratio(ξ) and Settling Time (ts(sec)) Peak Overshoot (%) Settling Time (sec)
Discrete ISM controller with ξ = 0.57, ts=0.42 20 0.42
Discrete ISM controller with ξ = 0.60, ts=0.40 17 0.37
Discrete ISM controller with ξ = 0.65, ts=0.37 13 0.34
Proposed discrete CNF-ISM controller 1 0.12

6.3.4.3 Multiple-input multiple-output (MIMO) system

Let us consider a MIMO system with matched uncertainty given in [7] described below,

ẋ = Ax+B(u+ fm(x, t)) (6.90)
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where

A =

 1 −2 3
−4 5 −6
7 −8 9

 , B =

 1 −2
−3 4
5 6

 , fm(x, t) =
[

0.3sin(4πt)
0.3cos(4πt)

]
(6.91)

The initial state is at x(0) = [1 1 − 1]T . The system is sampled at a time interval of τ = 0.001

sec. A suitable nonlinear function Υ(r, y) is used that has a very low value at the initial stage and has

a relatively higher value when the system approaches its final state [109]. Here the chosen nonlinear

function is,

Υ(r, y) = −57.3871e−8y2 (6.92)

For a system, overshoot less than 20% is acceptable [102, 106] and hence the poles are selected by

choosing the damping ratio ξ = 0.7 and accordingly the settling time ts is 0.5 sec. Accordingly, the

dominant poles are found as 0.9510+0.1520i and 0.9510-0.1520i while the other pole is placed far away

at 0.1 [123]. Using pole placement technique, the state feedback gain matrix can be calculated as,

K =
[

769.1649 42.8508 126.9456
129.9735 312.7895 108.7556

]
(6.93)

In order to find the the CNF control law from (6.65), Lyapunov equation (6.64)is solved to obtain

P =

 397.5233 167.4345 20.2155
167.4345 70.7267 8.0097
20.2155 8.0097 4.1436

 using R =

 0.100 0.000 0.000
0.000 0.100 0.000
0.000 0.000 0.100

 (6.94)

The Matrix G is chosen as [7],

G =
[

0.2621 −0.3108 −0.0385
3.4268 2.4432 1.1787

]
(6.95)

Fig.6.16 shows the state x1 obtained by using the proposed discrete CNF-ISM controller and is

compared with that obtained by using the discrete ISM control scheme by Abidi et al. [7]. It shows

clearly that both the rise time and the settling time can be minimized simultaneously by using the

proposed discrete CNF-ISM controller. Transient performance indices evaluated by using both these

controllers are compared in Table 6.5. It is noted from Table 6.5 that the proposed controller shows

superior transient performance by reducing the rise time and settling time by about 63% from those
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Figure 6.16: System state x1 ; solid line with proposed discrete CNF-ISM method and broken line with Abidi
et al.’s method [7]

obtained by using the discrete ISM controller of Abidi et al. [7].

Table 6.5: Transient performance comparison

Type of Rise Time Peak Settling
Controller (sec) Overshoot (%) Time (sec)
Discrete ISM controller (Abidi et al.) [7] 0.48 0.0 0.80
Proposed discrete CNF-ISM controller 0.23 0.0 0.35

Figs. 6.17 - 6.18 show the control inputs u1, u2 obtained by using the proposed discrete CNF-ISM

controller and those obtained by using the discrete ISM controller proposed by Abidi et al. [7]. The

energy norms of the input for the proposed discrete CNF-ISM controller and Abidi et al.’s discrete

ISM controller are 205.17 and 203.76 respectively. The proposed discrete CNF-ISM controller uses

0.7% more energy in comparison to the controller proposed by Abidi et al. [7]. However, the proposed

discrete CNF-ISM controller driven closed loop system settles at 0.35 sec whereas with Abidi et al.’s

controller, the settling time is 0.8 sec.
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Figure 6.17: Control law u1 ; solid line with proposed discrete CNF-ISM method and broken line with Abidi
et al.’s method [7]
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Figure 6.18: Control law u2 ; solid line with proposed discrete CNF-ISM method and broken line with Abidi
et al.’s method [7]

6.4 Summary

In this chapter, an adaptive chattering free sliding mode (SM) controller based on nonlinear sliding

surface is proposed to enhance the transient performance of uncertain systems. An adaptive tuning

rule is developed to measure the unknown bounded uncertainty. The upper bound of the uncertainty
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is required to be known in most of the sliding mode controllers, whereas the proposed method adap-

tively estimates the uncertainty. The nonlinear sliding surface introduces a variable damping ratio

which adapts its value in accordance with the system response to ensure quicker settling time and

lesser overshoot. A major benefit offered by the proposed controller is the reduction of chattering in

the control input. Simulation results show that the proposed adaptive SM controller provides smooth

control action, can converge fast and has low sensitivity to parameter variations. Next, a compos-

ite nonlinear feedback (CNF) based integral sliding mode (ISM) controller for uncertain systems is

proposed in the discrete domain. The developed controller has the property of integral sliding mode

that has invariance against uncertainty in the whole operating range. The proposed controller uses a

state feedback law which has a low value of damping ratio initially thereby ensuring a fast response.

The nonlinear control law used in the controller enhances the damping ratio as the system response

approaches the reference input. The increased damping ratio guarantees faster settling time and

lesser overshoot while maintaining the stability of the closed loop system. The illustrative examples

demonstrate the effectiveness of the proposed controller for both single input single output (SISO)

and multi-input multi-output (MIMO) uncertain systems.
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7.1 Conclusions

This thesis attempts to design sliding mode controllers for uncertain systems having both matched

and mismatched types of uncertainty. In conventional first order sliding mode controllers, chattering in

the control input is the major disadvantage. Of late, second and higher order sliding mode controllers

have evolved promising better chattering mitigation. This thesis attempts to design chattering free

sliding mode (SM) controllers to overcome the shortcomings of conventional first order sliding mode

controllers. The basic philosophy of the proposed control scheme is that instead of the normal con-

trol input, its time derivative is used for designing the controller. The discontinuous sign function

is contained in the derivative control and the actual control is obtained by integrating the discontin-

uous sign function and hence it is continuous and smooth. This strategy is the core idea which is

followed in this thesis to develop sliding mode controllers of different types. Another limitation of the

conventional sliding mode controllers is the design prerequisite of knowing the upper bound of the

system uncertainty apriori which is practically difficult to realize. The proposed controller attempts

to overcome this difficulty by using an adaptive gain tuning methodology.

An adaptive integral sliding mode controller using chattering free sliding mode technique is proposed

in this thesis. Reaching phase is totally eliminated in the integral sliding mode and hence the system

becomes invariant towards the matching uncertainty right from the beginning. Application of the

proposed controller to both stabilization and tracking problems of single input single output (SISO)

system demonstrates the efficacy of the proposed control strategy.

An adaptive chattering free sliding mode control scheme is proposed for a class of dynamic systems with

matched and mismatched perturbations. The controller is used to stabilize the twin rotor MIMO sys-

tem (TRMS) in significant cross-couplings to reach a desired position and accurately track a specified

trajectory. The TRMS model is divided into a horizontal and a vertical subsystem. The cross-coupling

existing between the two subsystems is considered as the system uncertainty. The major advantage

offered by this adaptive sliding mode controller is that advance knowledge about the upper bound of

the system uncertainty is not a necessary requirement and the control input is smooth. The problem

of controlling of a vertical take-off and landing (VTOL) aircraft system affected by both types of

uncertainties, matched and mismatched, is also addressed by applying the proposed control scheme.

A proportional plus integral sliding surface is used in the proposed control technique. An adaptive

gain tuning mechanism is used to ensure that the switching gain is not overestimated with respect to
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the actual unknown value of the uncertainty.

Experimental studies conducted on the laboratory set-up of 1 degree of freedom VTOL system validate

the efficacy of the proposed controller.

An adaptive terminal sliding mode (TSM) controller is proposed where the nonsingular terminal slid-

ing manifold guarantees fast and finite time convergence. The proposed adaptive TSM controller is

successfully applied for stabilization of a triple integrator system affected by uncertainty. Trajectory

tracking of a two-link robotic manipulator which is a nonlinear system with mismatched uncertainty

is considered which demonstrates the efficiency of the proposed control strategy.

A nonlinear sliding surface based chattering free adaptive sliding mode controller is proposed to im-

prove the transient performance of an uncertain system. The basic philosophy of the proposed scheme

is that using a nonlinear sliding surface, the damping ratio of a system can be changed from its initial

low value to a final high value. The initial low value of damping ratio results in a quick response

and the later high damping avoids overshoot. To improve the transient performance in discrete time

uncertain systems, an integral sliding mode is used with composite nonlinear feedback (CNF).

The control strategies developed in this thesis using the chattering free adaptive sliding mode show

robust performance even in presence of matched and mismatched uncertainties. The controllers de-

veloped ensure high transient performance while preserving the robustness property of conventional

sliding mode controllers but successfully overcoming their inherent chattering disadvantage. As such,

the proposed control strategies promise high application potential in many important fields like elec-

tric drives, robotics, power electronics, servo applications and aerospace where performance needs to

be guaranteed consistently despite being challenged by an uncertain environment.

7.2 Scope for future work

Future possible directions of research based on the design methods developed in this thesis are

outlined below:

• A natural extension of this work may be to design discrete sliding mode algorithms with adap-

tive techniques which will enhance the flexibility in implementation. Now-a-days, a large class

of continuous systems are controlled by digital signal processors (DSPs) and high end micro

controllers. Hence discrete SM controller will be easier and effective from implementation point

of view.
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• Another possible extension of this work may be the incorporation of an optimal sliding mode

controller to optimize the control effort.

• Nonlinear sliding surface based adaptive sliding mode controller may be extended to improve

the transient performance of general references, such as sinusoidal and other periodic signals.

• The proposed design method may be extended by using intelligent controllers based on fuzzy

logic and neural network to incorporate flexibility and intelligence.

• The extension of these techniques with constraints on system states is also an avenue worth

exploring.

• The high performance requirement of many practical applications like electric drives, electro-

pneumatics, power system stabilizers and robotics may be addressed by using the proposed

techniques.
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A.1 Modeling of 1 DOF VTOL Aircraft System

The free body diagram of a 1-DOF VTOL aircraft system that pivots about the pitch axis is shown

in Fig. A.1.
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Figure A.1: Free body diagram of 1 DOF VTOL aircraft system

where,

m1 = propeller mass,
m2 = counterweight mass,
mh = VTOL body mass,
l1 = length from pivot to propeller center,
l2 = length from pivot to center of counterweight mass,
Lh = total length of VTOL body.
θ = pitch angle

Torque (τ) equation for the VTOL rigid body is given by,

τ +m2g cos(θ(t))l2 −m1g cos(θ(t))l1 −
1
2
mhg cos(θ(t))Lh = 0 (A.1.1)

Current-torque relationship is given by,

τ = ktim (A.1.2)

where kt is the current-torque constant. So with respect to current, the torque equation can be

written as,

ktim +m2g cos(θ(t))l2 −m1g cos(θ(t))l1 −
1
2
mhg cos(θ(t))Lh = 0 (A.1.3)
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In equilibrium condition i.e. when θ = 0, im becomes ieq and torque equation becomes,

ktieq +m2gl2 −m1gl1 −
1
2
mhgLh = 0 (A.1.4)

Angular (pitch) motion with respect to thrust torque τ is given by,

jθ̈(t) + bv θ̇(t) + kθ(t) = τ = ktim (A.1.5)

Here bv is the viscous damping, k is the stiffness and j is the equivalent moment of inertia acting

about the pitch axis, which is given by,

j =
n∑
i=1

mir
2
i (A.1.6)

where for object i, mi is its mass and ri is the perpendicular distance between the axis of rotation

and the object. So the transfer function for the VTOL system can be obtained as,

G(s) =
θ(s)
Im(s)

=
kt
j

s2 + bvs
j + k

j

(A.1.7)

By comparing the denominator of (A.1.7) with the characteristic equation of a second order system,

s2 + 2ζωns+ ω2
n (A.1.8)

the damping ratio ζ and natural frequency ωn can be easily found out.

Voltage-current equation for the VTOL motor is given by,

vm(t) = Rmim(t) + Lmi̇m(t) (A.1.9)

where Rm is the motor resistance and Lm is the motor inductance. So the transfer function of the

VTOL motor is obtained as,

Im(s)
Vm(s)

=
1

Rm + Lms
(A.1.10)

The output-input relationship of the VTOL needs to be obtained as position-voltage relationship
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which is given by,

θ(s)
Vm(s)

=
Im(s)
Vm(s)

× θ(s)
Im(s)

=
1

Rm + Lms
×

kt
j

s2 + bvs
j + k

j

=
1

Lm × (Rm/Lm + s)
×

kt
j

s2 + bvs
j + k

j

(A.1.11)

The value of the VTOL motor inductance (Lm) is very small practically, so the pole contributed

by (Rm/Lm + s) is located far away from the dominant poles of the system and can be neglected.

Therefore the overall transfer function (A.1.11) can be approximated by,

θ(s)
Vm(s)

=
1
Lm

×
kt
j

s2 + bvs
j + k

j

(A.1.12)

The state space model of the above system is described by, ẋ1

ẋ2

 =

 0 1

−k
j − bv

j


 x1

x2

+

 0

kt
jLm

u (A.1.13)

y =
[

1 0

] x1

x2

 (A.1.14)

where x1 is the pitch angle and x2 is the angular velocity.
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