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Abstract

To design a structurally simple controller for robot manipulators is a challenging task because these

are highly coupled multi input multi output nonlinear dynamic systems. Quite often there happens to

be a compromise between the controller structure and its performance. A strict performance require-

ment normally results in a complex controller design. This thesis focuses on designing a controller

that yields satisfactory performance while maintaining its structural simplicity. The basic methodol-

ogy used in the thesis is the backstepping based sliding mode controller. Since robustness against the

mismatched uncertainty cannot be guaranteed by the conventional sliding mode controller (SMC), it

is integrated with backstepping methodology that transforms the system states in such a way that it

can tackle both matched and mismatched uncertainties. Another drawback of the SMC is the presence

of high frequency chattering in the control input which is highly undesirable especially in the case of

mechanical systems like robot manipulators. To find a solution to this problem, an integral backstep-

ping based SMC (IBSMC) that augments an integrator block to the system is proposed so that the

input to the manipulator is obtained as an integrated smooth signal. Although effective, this method

leads to increased structural complexity of the controller due to the requirement of differentiation of

manipulator dynamics causing explosion of terms. This complexity is minimized using a first order low

pass filter instead of direct differentiation resulting in the integral adaptive dynamic surface control

(IADSC). Chattering mitigation is also attempted by using an adaptively tuned controller gain which

uses a lower input energy to produce similar tracking performance for the manipulator. Stability issues

arising due to the presence of filters motivated to propose a proportional integral derivative (PID)

type sliding surface for using in the adaptive backstepping SMC giving rise to the ABSMC-PID. This

ABSMC-PID method is also used for impedance control of a robot manipulator when encountering

highly stiff surfaces during trajectory tracking in the Cartesian space by the end-effector. A model

free controller is developed next using the time delay estimation and the PID sliding surface in the

backstepping SMC is replaced by a fast terminal sliding surface that can provide finite time conver-

gence of the tracking error. This adaptive backstepping based fast terminal SMC (ABFTSMC) can be

used effectively for higher DoF manipulators or in the cases where determining the manipulator model

is not easy. Detailed Lyapunov based stability analysis is conducted for all the proposed controllers.

Simulation studies are carried out to validate the proposed control methodologies against some existing

control methods. Implementation of dynamic control on a position commanded servomotor actuating

the robot manipulator is next attempted in this thesis. Experiments are conducted on a robot arm

to investigate about the possibility of realizing the proposed dynamic control methods in real time

applications.
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1. Introduction

1.1 Robot manipulator

Only a few decades ago robots were an idea in the pages of science friction but now the technological

advancement has made it a reality. In modern times robots are used in a wide variety of fields starting

from industry, laboratory, space and underwater exploration tools to educational and assitive robotics

where they actually interact with human beings. Such colossal advancements in robots, both in terms

of structure and usability have developed robotics into an extensively researched topic for about more

than half a century. A significant branch of robotics is humanoid robotics involving robot manipulators

or robot arms having similar functions as the human arm which can operate as a single mechanism

or part of a larger, more complex system. These humanlike robot manipulators have been extensively

used in factories, laboratories, bio-hazardous areas like nuclear plants, toxic places, military application

such as bomb diffusion and also in high precision tasks like laser cutting, microsurgery. Further, robots

are successfully employed in inaccessible terrains like underground tunnels, underwater and are also

functioning as assistive technology for specially abled persons in the form of replacement limbs.

Robot manipulators can be vastly classified into rigid and soft manipulators. The early robot

manipulators were mainly developed for industrial use due to which their links were made with rigid

body and hence they were called rigid manipulators. A more recent and bio-inspired approach to

developing manipulators involves using soft, flexible and compliant materials to obtain more life like

grasping and movements. The advantage of the rigid manipulators over soft manipulators is the high

precision in trajectory tracking, whereas soft manipulators can provide a more compliant behaviour.

Rigid manipulators can have two types of joints, viz. revolute (R) and prismatic (P). As shown in

Figure 1.1, (a) the prismatic joint produces a linear motion whereas (b) the revolute joint produces

an angular motion with respect to a pivotal point. Other types of joints such as cylindrical, spherical

and planar joints are results of combination of the revolute and the prismatic motions. Depending

upon the kinematic arrangement of joints, manipulators are categorized as follows [10]:

(i) Articulated arm (RRR), also called Revolute or Anthropomorphic arm (due to the resemblance

in structure with the human arm)

(ii) Spherical arm (RRP)

(iii) SCARA (Selective Compliant Articulated Robot for Assembly) arm (RRP)

(iv) Cylindrical arm (RPP)

(v) Cartesian arm (PPP).

Among the above mentioned configurations, the articulated arm (RRR) is the most dextrous one as

it can provide more freedom in a constrained workspace as compared to the other configurations [11]

and it has the best similarity with the human arm.

Robot manipulator control can be broadly classified into two areas – (I) Kinematic control and

(II) Dynamic control [10]. The kinematic control involves solving the inverse kinematics to obtain the

manipulator joint motions that produce the desired motion defined for the end-effector or the tool

frame of the robot arm in the task space (Cartesian space). The dynamic controller calculates the
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1.1 Robot manipulator
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Figure 1.1: Manipulator joint types

commanding torque or force to act on the robot joints to achieve a desired motion defined in either the

task space or the joint space. Although from the position control point of view the kinematic control

is sufficient, however, following disadvantages are faced while implementing the kinematic control

method:

(i) The load dynamics of the manipulator can affect the joint motion that might increase the steady

state error if only kinematic control is implemented.

(ii) In practice, actuators in the manipulator joints have torque or force limits which are not con-

sidered by the kinematics.

(iii) Dynamic disturbances such as frictional force cones, center of pressure positions [11] are also not

considered in the kinematics.

(iv) One very important aspect is the compliance of the manipulator, where, in addition to the manip-

ulator position and orientation, the interaction forces and torques with the external environment

also need to be controlled, which cannot be attained via kinematics.

The above mentioned shortcomings of the kinematic control are overcome in dynamic controllers. The

dynamic controller uses the manipulator and the disturbance dynamics or their estimates to generate

the input signal in terms of actuator torques and forces. The control law can be modified to reject

any unwanted dynamic behaviour and tackle the various constraints mentioned above.
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1.2 Literature review: Robust controllers for robot manipulators

Robot manipulators developed in early years were remotely controlled mechanical arms used in

nuclear plants for handling radioactive material like the MSM-8 (Master Slave Manipulator Mk.8)

developed for the Argonne National Laboratory by the Central Research Laboratories in the US.

Meanwhile, George Devol in 1961 developed the Unimation Puma robot in a General Motors plant.

The Puma robot was inspired by the high performance Computer Numerically Controlled (CNC) tools

developed for accurate milling of aircraft parts. The Puma robot replaced the master manipulator in

the master slave system. However, manually operating the master arm by a human operator was not

always feasible owing to space constraints or the distant location of the remote site producing large

transmission delays [12]. This drawback was addressed using two methods – (i) Direct control of the

manipulator through a computer in a closed loop and (ii) Supervisory control where occasionally the

desired sequence of subgoals was set by an operator. The supervisory control loop was closed through

a human operator whereas the direct control was a fully automated system. The first automatic

manipulator was developed by H.A. Ernst in Massachusetts institute of technology (MIT) [13] in

1968. The idea of automatic manipulation gained much popularity since it did not have to deal with

the communication delays of the master-slave manipulators and could be indefinitely operated for a

preset trajectory. A few mentionable works in the early period for automatic manipulator control

are [14–17]. With the evolution of the automated manipulator, the significance of torque control

was closely noticed. Previously operated manipulators were mainly position commanded where the

position or velocity command was produced based on the manipulator kinematics and the desired

trajectory to be followed. Since in the master-slave manipulators, the force exerted by the arm on the

external objects was controlled by the human operator, the force control or the compliance control was

not an issue. However, with the automated manipulators, controlling the interacting force with the

environment was also necessary which led to the evolution of compliance controllers. The joint torque

control method provided more scope in the interaction force control than the position command and

inspired further research into the inverse dynamics control of the manipulator. A comparative analysis

of the computed torque method and the positional servoing of manipulators can be found in the report

by Markiewicz [18] where he has mentioned that both the methods have their own merits and demerits

and can be selected depending upon the area of application. In the technical report of NASA by A.K.

Bejcky [16], a detailed report on the dynamics and control of robot manipulators is provided. A few

other early works on the dynamic control of manipulators are by Raibert and Horn [19], Yuan [20].

Dynamic controllers for robot manipulators can be broadly classified into (i) Robust controllers and

(ii) Intelligent controllers. Robust controllers [21] rely on the system modeling to construct a proper

control law in order to perform a desired task, whereas intelligent control methods [22] do not rely on

the system model and use the available system behaviour to heuristically construct the controller. A

brief yet comprehensive survey of the robust control methods developed for robot manipulators can

be found in [21] and [23] whereas [22] provides an overview of the main intelligent control methods like

neural networks, fuzzy logic, genetic algorithm and hybrid intelligent controller for humanoid robots.

Although intelligent controllers are appealing because of their model free nature, heuristic design and

lesser design effort, but for complex systems, the computational burden, possibility of over-estimation
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and deviation from normal behaviour may severely affect their performance. Moreover, intelligent

control methods can at best guarantee asymptotic tracking whereas with some advanced robust control

methods, finite time convergence can be achieved [24]. Therefore, if the system model is available,

it is preferable to use a robust control method for achieving reliable performance. Model estimation

methods like time delay estimation (TDE) [25] have made it possible to implement classical robust

control methods even when exact model of the system is not available.

Sage et al. [21] have categorized robust controllers designed for robot manipulators into the fol-

lowing classes:

(i) Linear controllers

(a) Proportional Derivative (PD) and Proportional Integral Derivative (PID) controllers

(b) Linear H∞ Controllers

(ii) Nonlinear controllers

(a) Passivity Based Controllers

(b) Lyapunov Based Controllers

(c) Sliding Mode Controllers (SMCs)

(d) Nonlinear H∞ Controllers

(e) Robust Adaptive Controllers

A brief overview of the above robust control methods is given below:

(i) Linear controllers

(a) Proportional Derivative (PD) and Proportional Integral Derivative (PID) con-

trollers

Simple structure and ease of implementation made PD and PID controllers quite popular.

The PD controller was originally designed for linear systems and in case of robot manip-

ulators the controller was designed for a linearized robot model. Therefore, the global

asymptotic stability could be guaranteed only for point to point motion with high velocity

gain and gravity term compensation [26–28], whereas for trajectory tracking, only local or

semiglobal stability was assured [29]. Despite these limitations, PD and PID controllers are

still widely used in industrial manipulators mainly because of their simple structure. How-

ever, for precise trajectory tracking tasks, these controllers fail to provide global stability

and hence they are often combined with other nonlinear methods giving rise to nonlinear

PID controllers. For example, Tomei [27] proposed an adaptive PD controller where the

gravity terms were compensated through an adaptive law and the controller was imple-

mented for regulation as well as trajectory tracking control. In [30], Vega et al. proposed

a PID controller for a decentralized system. Their method combined a PID controller with

a sliding mode without the reaching phase and terminal attractors to obtain global asymp-

totic stability in manipulator trajectory tracking. Su et al. [31, 32] proposed a nonlinear
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PID controller for trajectory tracking of robot manipulators using nonlinear differentiators

for noisy signals. The PID controller has also been combined with fuzzy control methods

as can be found in Meza et al. [33]. Dumlu and Erenturk [34] proposed a fractional order

PID controller for trajectory tracking of a parallel robot manipulator.

Although the PD and PID controllers are easy choices for application to the linearized and

decentralized model of a robot manipulator, in practical situations PD or PID controllers

alone cannot tackle the possible nonlinear disturbances and guarantee a stable operation.

(b) Linear H∞ controllers

The H∞ control is an attractive robust control methodology due to the following properties

[35]:

• It is a multivariable technique

• The performance and the robustness both can be addressed

• The uncertainty can be directly handled.

Initial attempts of H∞ control of robot manipulator involved linearisation of the manip-

ulator dynamics using a feedback control law [35] and then applying the H∞ control in

the inner loop for the linearized system. Sage et al. [36] derived a controller having an

outer velocity loop controlled by PI/PD controller and the inner linear position control

loop controlled via linear H∞ control.

The H∞ controller was developed either by solving Riccatti equation or linear matrix in-

equality. However, implementation of the controller was not easy due to solvability issue of

the Hamilton Jacobi (HJ) inequality. Moreover, because of using the linearized model, the

unmodeled nonlinearity and gear backlash could not be accounted for, leading to degrada-

tion of performance of the H∞ controller.

(ii) Nonlinear controllers

(a) Passivity based controllers

Robot manipulators are passive systems and the early use of passivity in manipulator con-

trol can be found in [37] by Arimoto and Takegaki where they used a simple PD controller

with gravity compensation in order to obtain global stability for set point regulation. Use

of passivity made it possible to design adaptive controllers without the knowledge of ac-

celeration of the manipulator. As such, various passivity based adaptive controllers can be

found in the literature including Ortega and Spong [38], Leal and De Wit [39], Tang and

Arteaga [40], Villani et al. [41], Hsu et al. [42]. Passivity can also be used to control the

manipulator directly where the natural energy of the robot is reshaped. The controller is

designed based on an energy function of the closed loop system and then damping is added

via velocity feedback for asymptotic stability [43–46].

(b) Lyapunov based controllers

Lyapunov based controllers are designed based on the stability of the system. A positive

definite control Lyapunov function (CLF) representing the generalized energy is defined for
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the controlled system and following Lyapunov’s second theorem, a control law is derived to

bound the system error within an arbitrarily small region. Lyapunov method is more of a

tool for stability analysis of nonlinear systems. The pioneering works by Leitmann [47] and

Corless and Leitmann [48] inspired the design of Lyapunov based controllers. Following the

methodology of [48], these controllers for robot manipulators were developed based on the

knowledge of the uncertainty bound. High gain saturation type functions were used here

to tackle uncertainties [49–51]. Based on the works of Slotine and Li [52], Johansson [53]

developed a Lyapunov based adaptive controller for robot manipulators. Backstepping

[54,55], introduced in 90’s was another Lyapunov based design where a sequence of virtual

subsystems of relative degree one were designed and based on a CLF defined for each

subsystem, a virtual control law was derived. The actual control was obtained in the

final step of the algorithm as a function of the previously derived virtual controllers. The

unknown functions and uncertainties at each step were tuned using an adaptive law. Due

to the systematic design methodology and the ease of stability analysis, backstepping has

been extensively used in manipulator control [56–62]. For the Lyapunov based controller,

existence of the CLF is a necessary and sufficient condition for ensuring stability of the

controlled system. But in this method, only stability is established, whereas performance

cannot be always guaranteed.

(c) Sliding mode controllers (SMCs)

Sliding mode control (SMC) [63,64] is a variable structure control method where a switching

controller is designed based on a predefined sliding surface. The originally proposed SMC

had a first order linear sliding surface that was used as the switching function for the

controller. The controller operates in two stages: reaching phase where the control input

brings the system states to the sliding surface in finite time and the sliding phase when the

system states are on the sliding surface and approaches equilibrium asymptotically. During

the sliding phase the states are no longer affected by the system dynamics but are governed

by the sliding surface dynamics thus making the system robust to disturbances.

Robustness and structural simplicity are two main features of the SMC due to which this

control method has been widely used in controlling nonlinear systems. Some early works on

robot manipulator control using the SMC are reported in [65–69] . Despite the robustness

of the SMC, it suffers from the unwanted chattering phenomenon which can prove harmful

to mechanical joints and actuators. The chattering occurs due to the switching function

present in the control input. The initial efforts to minimize the chattering were to replace

the discontinuous switching law by a continuous function or using a boundary layer ap-

proximation [68,70–73]. But such actions led to compromising in the tracking performance

and the stability margins. Another drawback of the SMC is that its robustness can be

guaranteed only when the system states are on the sliding surface but in the reaching phase

it is not immune to the uncertainty. Utkin and Shi [74] proposed the integral sliding mode

controller where the sliding surface had the same dimension as that of the controlled system

and thus the robustness could be guaranteed during the whole state motion. The dynamical
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SMC proposed in [75,76] was an attempt to mitigate chattering in the control input. Based

on the terminal attractors introduced by Zak [77], the terminal sliding mode control [78,79]

was derived which, in addition to finite reaching time, also provided finite time convergence

of the system states to the equilibrium. Unlike the traditional SMC, controller gain in the

terminal SMC was significantly reduced but it suffered from the singularity problem and

degradation of convergence performance when the error states were far from the equilib-

rium. The non-singular terminal SMC [80] and the fast terminal SMC were [24] developed

as a solution to these problems. Another important class of the SMC are the second and

higher order SMCs proposed by A. Levant [81] that can provide a smooth control law while

maintaining its robustness and performance. Considerable work has been done on designing

higher order SMCs for robot manipulators [82–87].

(d) Nonlinear H∞ controllers

Yim and Park [88] proposed nonlinear H∞ control, where the robot dynamics were trans-

formed to an affine nonlinear system about the state and input and the associated HJ

inequality was derived in the form of nonlinear matrix inequality (NLMI). In [89], Kim et

al. proposed a nonlinear robust internal loop compensator (NRIC) using H∞ optimization,

which had the similar structure as that of model reference adaptive control (MRAC). How-

ever, the H∞ compensation in [89] attenuated the deviations from the nominal behaviour

instead of adjusting the controller/modeling parameters like the MRAC. Rigatos et al. [90]

proposed local linearisation of robot dynamics about the equilibrium in order to apply H∞

control theory. The controller was designed by solving the Riccatti equation. However,

like most of the H∞ control methods [90] also suffers from the drawback of linearisation,

especially when the number of DoFs are high making it difficult to analytically obtain the

linearized model.

(e) Robust adaptive controllers

The early works on the adaptive control of robot manipulators [91–93] were mainly passivity

based adaptive control schemes. Based on the adaptive controller proposed by Slotine and

Li [91], many variants were proposed [94, 95]. The overestimation issue of the adaptive

law was tackled by introducing the leakage term as proposed by Ioannou and Tsakalis

in [96] which ensured that the signals in the adaptive loop were bounded with only a

small residual tracking error. The robust adaptive controller obtained likewise has been

successfully implemented in the dynamic control of robot manipulators [97–102]. One

constraint of the robust adaptive controller was that knowledge about the joint acceleration

was essential. Middletone and Goodwin [103] proposed a linear estimation technique with

computed torque which did not require the acceleration measurement. Hsu [104] proposed a

prediction error based estimation that allowed adaptive control of manipulators without the

joint acceleration measurement. Other control methods like neural and fuzzy controllers and

disturbance observers were also combined with the robust adaptive controller to improve

its performance while eliminating its drawbacks [105–111].
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1.3 Motivation

1.3.1 Controller design

As discussed, researchers have attempted to build control strategies by integrating multiple control

methodologies with an aim to improve system performance without compromising too much on the

system robustness and vice versa. However, other two factors that has to be considered in controller

design is the controller structure and the information demand. Simple structure and a low informa-

tion demand are the major features to be looked into while considering its practical application in

robot manipulators. This is the reason for the PD/PI/PID being the most widely used controller for

commercial robot manipulators till date. Simple structure and ease in implementation are the reasons

for popularity of the PID controller although its performance may not be the best. Moreover, the PID

controller can be implemented even without any detailed knowledge about the system model and the

number of its parameters to be tuned is also small.

The same is not true for the H∞, the passivity and Lyapunov based control or adaptive control

methods. These controllers, although showing superior performance, cannot offer the same simplicity

in design and structure as the PID controller. However, the conventional SMC has a simple structure

that can be easily implemented on linear or nonlinear systems and it has better robustness and perfor-

mance characteristics than the PID controller possesses. But the presence of mismatched uncertainty

in the manipulator and the high frequency chattering imposes a restriction on the use of the conven-

tional SMC in the robot manipulator. The higher order SMC (HOSMC) can eliminate the chattering

phenomenon while retaining robustness of the controller and offering satisfactory transient and steady

state performances. However, the HOSMC requires knowledge of the higher derivatives of the sliding

surface. Due to this increased information demand, simplicity in structure of the conventional SMC

is lost.

Backstepping is a Lyapunov based method that uses smaller subsystems to design synthetic control

laws until the actual control input is realized finally. For a relative degree 2 system like the robot

manipulator, use of backstepping is fairly simple as it will require only two steps to derive the control

law. In terms of the synthetic control laws, backstepping renders each subsystem into having reduced

relative degree and using the SMC in the steps of backstepping can make the SMC immune to mis-

matched uncertainties [112, 113]. This is an elegant and effective solution to the robustness issue of

the SMC involving mismatched uncertainties and additionally, a methodical analysis of the system

stability can be attained through the control Lyapunov function (CLF) designed for backstepping.

However, most of the controllers using the backstepping based sliding mode methodology utilize neu-

ral networks, fuzzy logic, optimal design or disturbance observers for improved performance. Although

such combinations improve the controller performance, they also increase the number of controller pa-

rameters to be tuned. Backstepping sliding mode control (BSMC) techniques not using these methods

incorporate compensation schemes to reduce the effects of uncertainty and chattering [114,115] which,

however, results in increased information demand on the system or rise in parameters to be tuned.

Thus, it can be observed that a host of robust and intelligent control methods have evolved for

robot manipulators to enhance their performance. However, for applying these control schemes in real
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world, the following major criteria need to be considered:

• The first and foremost criterion is always guaranteed robustness of the controller, coupled by

stability and satisfactory system performance.

• The second important criterion is the structural simplicity of the controller and minimal in-

formation demand. A controller having complex structure and high information demand can

loose its portability despite its robustness and acceptable performance. Since most of the con-

trollers implemented in the modern time are digital, having a complex structure of the controller

means requirement of more memory space and faster processors. Increased information demand

requires more sensors and all of these combined ultimately raises the implementation cost.

• The third criterion is the ease of design. Too many controller parameters and optimizing tech-

nique can yield very good performance, but it may not be appealing for a real time application.

Robot manipulators are nonlinear system and tuning parameters for nonlinear systems is a te-

dious task for which standard procedures are difficult to find. Too many parameters to be tuned

can make the controller difficult for realization.

Keeping in mind the above mentioned basic requirements, this thesis aims to design suitable

robust controllers based on the backstepping sliding mode control (BSMC) methodology. The BSMC

is chosen primarily for the reason that it does not require linearisation of the system model and

nonlinearities in the system can be retained without any loss to their inherent characteristics. Effort

of the research work is on achieving a structurally simple control method, without having to resort

to any intelligent methods, optimization process or disturbance observers. Although the controller

simplicity may not match that of the PID controller, the controller design will be focused on reducing

the structural complexity of the controller without having to compromise too much on the stability

and performance. Various BSMC based control schemes proposed in the thesis will attempt to address

issues pertinent to implementation in robot manipulator.

1.3.2 Dynamic torque control of position commanded robot manipulators

Most of the low cost robotic manipulators normally have servo motors as the joint actuators and

these servos have internal microcontrollers for position and speed control. This makes the robots

position commanded, meaning that only the joint position can be sent as the input to the actuators.

The main disadvantages of this arrangement are as follows:

• The controllers inside the servos are designed for single motor operation only. When the servos

are linked and operated as a whole arm, the dynamics of the entire arm affects each servo motor.

Since the servo controllers are proportional integral derivative (PID) or its variants, they are

not very effective when affects of such load dynamics are high during arm motions. As such, the

steady state error tends to increase with increasing load.

• While interacting with the external environment or working with humans, position control of

the arm alone may not be sufficient since the forces and torques also need to be taken care of.
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Therefore, to achieve a compliant motion, relying solely on the internal position controllers will

not be adequate.

• Standard position control does not consider the constraints affecting the humanoid manipulators

like torque limits, frictional force cones, center of pressure positions [11], which is otherwise

possible with inverse dynamics control.

Khatib et al. [116] proposed a torque to position transformer based on the actuator transfer function

which was identified using higher order polynomials without relying on the direct measurement of joint

torques. This strategy has been successfully implemented on the humanoid robot Asimo arm [116].

In [117], a three part torque control law, which required estimation of the joint torques based on the

end-effector torque sensor data and the robot model, was formulated. Both the studies showed that the

position command to the digital servos could be manipulated to obtain the dynamic controller effects.

Inspired by [116], this thesis attempts to devise a transformation method that enables implementation

of a torque controller on a position commanded motor.

1.4 Contributions of the thesis

This thesis is aimed at developing a simple SMC based chattering free control method for appli-

cation to robot manipulators. The primary contributions of the thesis are listed below:

(i) Integral backstepping sliding mode controller (IBSMC)

A simple control method is developed for robot manipulators combining integral backstepping

[54] and the sliding mode control [118]. The controller design is based on the works by Ramirez

and Santiago [119], Boliver et al. [120], Liu and Zinober [121], Quing-xuan et al. [122]. The

proposed controller produces a smooth control law which ensures satisfactory performance in

position control tasks. The proposed IBSMC can also be used for stabilisation of underactuated

systems.

(ii) Integral adaptive dynamic surface controller (IADSC)

The inherent “explosion of terms” encountered in backstepping tends to increase the number

of terms in the controller due to the successive differentiation, thus increasing the structural

complexity. The dynamic surface [123, 124] is used to develop an IADSC that uses simple first

order low pass filters instead of differentiation. In the proposed control method, the filter is used

only in the final step of the integral backstepping controller unlike the DSC [123]. This is done

to avoid differentiating the manipulator dynamics. The controller gain is tuned adaptively and

hence knowledge about the uncertainty bounds is not a prerequisite for designing the controller.

Also, now the controller gain is not unduly high and so chattering is reduced.

(iii) Adaptive backstepping sliding mode controller with PID sliding surface (ABSMC-

PID)

Inclusion of low pass filters in the IADSC somehow limits the bandwidth of the controller appli-

cation as the filter dynamics can affect the controller stability. In case of digital implementation
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of the controller, the varying sampling time and possible delays will require redesigning of the

filter to avoid unstable operations. Therefore, the integrator block in the backstepping method

is replaced by a PID type of sliding surface. This eliminated the requirement of the low pass

filter. The proportional, integral and derivative gains of the sliding surface are derived via back-

stepping. This way, tuning of the PID sliding surface is totally eliminated. Moreover, as the

backstepping is a Lyapunov based design, a stable sliding surface is always guaranteed. The pro-

posed ABSMC-PID method is also used for impedance controller design of robot manipulators.

Unlike the existing impedance control methods, the ABSMC-PID uses backstepping to arrive at

the desired manipulator impedance defined in terms of the sliding surface.

(iv) Adaptive backstepping based fast terminal sliding mode controller (ABFTSM) with

time delay estimation

The structure of the manipulator dynamics becomes more complex as the number of DoF in-

creases. To avoid this problem, a model free controller is designed using the time delay estimation

(TDE) method [25]. The TDE is implemented to estimate the soft nonlinearities of the manip-

ulator dynamics which include the centrifugal and Coriolis force and the gravitational effects.

The inertia matrix of the manipulator is replaced with an estimated constant diagonal matrix.

The proposed controller uses backstepping to derive a fast terminal sliding surface that has finite

time convergence properties. The controller gains are tuned adaptively in order to compensate

for the unknown disturbances and the modeling error encountered due to the TDE.

(v) Torque to position conversion

Most of the digital servos used as actuators for the low cost commercially available manipulators

are position commanded and hence implementing dynamic torque control for them is quite

difficult. Motivated by the works of Khatib et al. [116], a simplified torque to position conversion

method is proposed where the servos have only proportional control as their built in internal

control. Through simulation and experimentation, the proposed method is validated and is used

for implementing the control methods proposed in this thesis. The results confirm that inclusion

of an outer dynamic control loop in the position commanded actuators can actually improve the

performance of the controlled system.

1.5 Organization of the thesis

This thesis is divided into six chapters. The organization of the thesis is as follows:

• Chapter 2: In the first part of this chapter the integral backstepping sliding mode controller

(IBSMC) for robot manipulators is derived. A detailed stability analysis and comparison of

simulation results with already existing control methods are provided. Moreover, simulation

results obtained by implementing the controller for stabilizing the underactuated inverted cart

pendulum system is also presented. In the second part of the chapter, the design, stability

analysis and simulation results for the integral adaptive dynamic surface controller (IADSC)

12
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are provided. The proposed IADSC is compared with the IBSMC and some other controllers

existing in literature.

• Chapter 3: The adaptive backstepping sliding mode controller with PID sliding surface (ABSMC-

PID) is designed in this chapter. The first part of the chapter includes the controller design,

stability analysis and simulation results for joint trajectory tracking of the robot manipulator. In

the second part of the chapter, the ABSMC-PID is designed for impedance control of robot ma-

nipulators while interacting with the external environment. The system compliance has showed

improvement during collision with stiff surfaces while performing trajectory tracking tasks.

• Chapter 4: The model free adaptive backstepping based fast terminal sliding mode controller

(ABFTSMC) with time delay estimation is presented in this chapter. The detailed stability

analysis and the simulation results are presented to confirm the controller performance.

• Chapter 5: The description of the experimental setup and a detailed derivation of the torque

to position conversion for position commanded digital servomotor is presented in this chapter

along with simulation and experimental validation. Experimental validation of the proposed

conversion methods as well as the proposed control laws, ABSMC-PID and ABFTSMC, are also

presented in this chapter.

• Chapter 6: Conclusions are drawn and scope for future research are presented in this chapter.

13



2
Integral Backstepping Sliding Mode

Controller

Contents

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 IBSMC design for robot manipulators . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Integral Adaptive Dynamic Surface Controller . . . . . . . . . . . . . . . . . 29

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

14



2.1 Motivation

2.1 Motivation

The characteristic robustness against matched uncertainties and the order reduction in the sliding

mode control (SMC) have rendered it an attractive domain in the field of controller design. In case of

robot manipulators, application of the SMC has been highly researched for joint tracking, task space

tracking as well as compliant control tasks. Guaranteed transient performance and final tracking

accuracy in presence of both parametric uncertainty and unknown nonlinear functions satisfying the

matching conditions have made the SMC a popular choice for controlling nonlinear systems. However,

the strong robustness of the SMC is achieved at the cost of high controller gain which may lead to

actuator saturation and high cost of the controller. Moreover, the inherent high frequency chattering

in the control input of the SMC is undesirable as it may cause damage to the system actuators. Also,

robustness of the SMC is guaranteed against uncertainties satisfying the matching conditions only [64],

whereas in presence of mismatched uncertainties the system stability cannot be assured.

A well known control algorithm providing global stabilization is backstepping [54, 125]. It is

a recursive procedure for designing an adaptive nonlinear feedback control, where a step by step

coordinate transformation occurs with a Lyapunov based synthetic control developed at each stage

and an adaptive tuning function estimating the unknown functions. The actual control is obtained

in the last step. In order to design a backstepping controller the system is initially represented in

parametric pure feedback (PPF), parametric strict feedback (PSF) or semi strict feedback (SSF) form

and then the whole system is divided into small subsystems [54].

The attractive qualities of backstepping method are (i) asymptotic global stability against para-

metric uncertainty, (ii) guaranteed transient performance and methodical analysis ability due to the

control Lyapunov functions and (iii) Retention of system nonlinearities. In order to utilize the benefits

of both backstepping and sliding mode control, these have been combined to develop the backstepping

sliding mode controller [126, 127]. The integral backstepping is a method which is applied for lower

order systems to obtain a strict feedback form [54,128]. The integral backstepping has been modified

and combined with the sliding mode control to achieve a continuous control signal, thus eliminating

chattering from the control input [129].

The IBSMC can combine the main advantages of both the controllers namely, asymptotic stability

against both the matched and mismatched parametric uncertainties offered by backstepping method

and guaranteed transient performance and final tracking accuracy offered by the SMC. Moreover,

due to backstepping, the resultant controller will have a methodically defined Lyapunov function for

stability analysis and more flexibility in terms of design parameters.

The merger of integral backstepping and sliding mode control methods mainly offers the benefits

of both the controllers while at the same time compensating the drawbacks of each other. For systems

like robot manipulators which are extremely prone to both structured and unstructured uncertainties,

it is necessary for the torque controller to have robustness and adaptiveness against both. Most

importantly, such a controller is well suited for the dynamic structure of the robot manipulator to

produce a feedback control law that ultimately linearizes the system.

A few among the pioneering works on integral backstepping sliding mode control are [119–121].

The use of backstepping for robot manipulators was initially somewhat limited owing to its multi
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2. Integral Backstepping Sliding Mode Controller

input multi output (MIMO) nature and high coupling of the input matrix, which was however later

overcome using the semi-strict feedback form of the MIMO system as can be found in [130]. Some

recent literature on controlling robot manipulators using backstepping sliding mode controller are

[112–115, 122, 131, 132], where backstepping sliding mode is combined with other algorithms such as

optimal control, neural networks and time delay control to get satisfactory performance corresponding

to the control objectives.

In this chapter an integral backstepping sliding mode controller (IBSMC) is proposed for the dy-

namic control of nonlinear robot manipulator systems and the block diagram of the proposed IBSMC

is shown in Fig. 2.1. In Fig. 2.1, u(t) is the control input to the system, q, q̇ are the states and y is

the output of the system and yd is the reference signal. Two design approaches, namely integral back-

System IBSMCdy yò
( )u t ( )u t

x

Figure 2.1: Block diagram: Integral Backstepping Sliding Mode Control

stepping sliding mode controller (IBSMC) and integral adaptive dynamic surface controller (IADSC)

are proposed. The IBSMC derives a sliding surface based on the integral backstepping method and

finally produces a discontinuous function as the derivative of the control input. As the control in-

put is obtained at the output of an integrator, it is free from chattering and due to backstepping

the controller can handle both matched and mismatched uncertainties. However, the analysis and

the simulations showed that the IBSMC had certain disadvantages, mainly explosion of terms and

necessity of the knowledge about the uncertainty bounds. In order to eliminate these drawbacks, the

dynamic surface control (DSC) [123] methodology is adopted along with the adaptive tuning of the

sliding mode controller gain [133].

The outline of the chapter is as follows. Section 2.2 includes the design and stability analysis of the

IBSMC. Simulation results obtained by applying the IBSMC for an under-actuated cart-pendulum

system are firstly presented in this chapter. Then, simulation studies of the proposed IBSMC for

stabilizing a robot manipulator are conducted. The design process of the IADSC for a robot manipu-

lator and its stability analysis are discussed in Section 2.3. The effectiveness of the proposed IADSC

method is validated by comparing it with some existing robust control methods. In Section 2.4 a brief

summary of the proposed controllers is presented.
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2.2 IBSMC design for robot manipulators

2.2.1 System Description

In order to derive an IBSMC for a robot manipulator, the following generalized dynamics for a

n-DoF robot manipulator is considered [11]:

M(q)q̈ +C(q, q̇)q̇ +G(q) = τ + f(q, q̇, t) (2.1)

where the n × 1 vectors q, q̇, q̈ ∈ R are respectively the joint angle position, angular velocity and

angular acceleration of the manipulator, M(q) ∈ R
n×n is the inertia matrix, C(q, q̇) ∈ R

n×n is the

centripetal and Coriolis force matrix and G(q) ∈ R
n is the gravitational force vector. The input

torques acting on each of the joints are represented by the vector τ ∈ R
n. The vector f(q, q̇, t) ∈ R

n

represents the frictional torque acting on the joints and is considered as an unknown disturbance

torque. The derivation of the manipulator dynamics is given in Appendix A.1.

Considering revolute joint manipulators, the properties of the manipulator dynamics [11] are as

follows:

Property 1. The inertia matrix M(q) is bounded, symmetric and positive definite which means,

µmin||x||
2 ≤ xTM(q)x ≤ µmax||x||

2 (2.2)

where x ∈ R is any real valued vector with ||x|| as its Euclidian norm and 0 < µmin < µmax represents

the bounds of M(q) .

Property 2. The robotic manipulator is a passive system which means

xT
(

1

2
Ṁ(q)−C(q, q̇)

)

x = 0, ∀x 6= 0. (2.3)

The following assumptions are made for the robot manipulator:

Assumption 1. All the joints of the robotic manipulator are revolute. This assumption makes Prop-

erty 1 valid.

Assumption 2. The reference trajectory, defined as qd(t) ∈ R
n, as well as its time derivatives

q̇d(t), q̈d(t) and
...
q d(t) are continuous and bounded.

Assumption 3. The vector f(q, q̇, t) containing the frictional uncertainties satisfies the following:

|f(q, q̇, t)| ≤ f1 (2.4)

where f1 > 0 is a constant.

Following the integral backstepping algorithm [125], where an integrator block is augmented with
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2. Integral Backstepping Sliding Mode Controller

the main system to increase its relative degree, (2.1) can be rewritten as follows:

q̈ =M(q)−1 (τ −C(q, q̇)q̇ −G(q))

τ̇ =u. (2.5)

The unmodeled forces are not considered in (2.5) for ease of design and will be later treated during

stability analysis of the closed loop system.

2.2.2 Design Process

The controller design process involves arriving at a stable sliding surface using the backstepping

method and finally deriving the switching control law for the converted system (2.5). The augmented

integrator block will then integrate this discontinuous signal to produce a smooth control law for the

actual plant as shown in Fig. 2.1. The design process can be divided into the following steps:

Step I:

The first regulatory variable is defined in this step which is generally the tracking error (in case of

trajectory tracking controller) or the joint locations (in case of stabilizing controller). Here the tracking

error is considered as the first regulatory variable (z1) defined as follows:

z1 = q − qd

ż1 = q̇ − q̇d. (2.6)

The joint velocity q̇ is now considered as the control variable for the subsystem (2.6). A control

Lyapunov function (CLF) is now defined for (2.6) as follows:

V1 =
1

2
zT
1 z1

V̇1 =zT
1 ż1 = zT

1 (q̇ − q̇d). (2.7)

Based on the CLF an artificial control α1 will be formed so that when q̇ = α1, (2.6) will be stabilized.

Following α1 is used that will render V̇1 negative definite,

α1 = −c1z1 + q̇d (2.8)

where c1 = diag(c1i), c1i > 0, i = 1, . . . , n is a user defined constant matrix. This selection of α1 will

convert (2.6) to the following stable form

ż1 = −c1z1. (2.9)

Step II:

The error between the artificial control α1 and the velocity q̇ forms the second regulatory variable z2
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2.2 IBSMC design for robot manipulators

as follows:

z2 =q̇ −α1 = q̇− q̇d + c1z1

ż2 =q̈ − q̈d + c1ż1 = M(q)−1(τ −C(q, q̇)q̇ −G(q))− q̈d + c1ż1. (2.10)

Introduction of z2 along with α1 changes (2.6) to the following form:

ż1 = −c1z1 + z2. (2.11)

With τ as the control variable, following CLF V2 is defined for (2.10), which is positive definite for all

z1, z2 6= 0.

V2 =V1 +
1

2
zT
2 z2

V̇2 =− zT
1 c1z1 + zT

1 z2 + zT
2 (M(q)−1(τ −C(q, q̇)q̇ −G(q))− q̈d + c1ż1). (2.12)

Based on the CLF V2, the following artificial control law α2 is defined.

α2 =C(q, q̇)q̇ +G(q) +M(q)
(

q̈d − c2z2 − c1ż1
)

(2.13)

where c2 = diag(c2i), c2i > 0, i = 1, . . . , n is a user defined constant matrix.

Application of the synthetic control α2 on (2.12) yields the following:

V̇2 =− zT
1 c1z1 − zT

2 c2z2 + zT
1 z2

=−
[

zT1 zT2
]

[

c1 −1
2In

−1
2In c2

][

z1

z2

]

(2.14)

which will be negative definite ∀z1, z2 6= 0, if the symmetric matrix

[

c1 −1
2In

−1
2In c2

]

is positive

definite and this can be ensured if the following condition holds:

c1 >
1

4
c−1
2
. (2.15)

Step III:

The last regulatory variable z3 is now defined as the difference between τ and the artificial control

α2 as follows:

z3 =τ −α2 = τ −C(q, q̇)q̇ −G(q)−M(q)
(

q̈d − c2z2 − c1ż1
)

ż3 =u− η(q, q̇, τ) (2.16)

where

u =τ̇
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2. Integral Backstepping Sliding Mode Controller

η(q, q̇, τ ) =Ċ(q, q̇)q̇ +C(q, q̇)q̈ + Ġ(q) +M(q)(
...
q d − c2ż2 − c1z̈1)

+ Ṁ(q)
(

q̈d − c2z2 − c1ż1
)

. (2.17)

Introduction of the variable z3 will cause the time derivative V̇2 to have the following form,

V̇2 = −zT
1 c1z1 − zT

2 c2z2 + zT
1 z2 + zT

2 z3. (2.18)

The following sliding variable (s) is now defined as the function of the regulatory variables obtained

through backstepping:

s =σ1z1 + σ2z2 + z3 (2.19)

ṡ =σ1ż1 + σ2ż2 + ż3

=σ1ż1 + σ2ż2 + u− η(q, q̇, τ) (2.20)

where, σ1, σ2 are chosen to be positive such that the polynomial s = σ1z1 + σ2z2 + z3 is Hurwitz

stable.

Now, the control law u will be derived in two parts: (i) the equivalent control, ueq obtained by

using ṡ = 0 and (ii) the switching control usw derived based on the reaching law approach [134].

Accordingly, the equivalent control law ueq is found to be

ueq = η(q, q̇, τ)− σ1ż1 − σ2ż2

and the switching control usw is found to be

usw = −k ◦sign(s)−Ws. (2.21)

where k > 0, W > 0 are design parameters and ‘ ◦ ’ represents elementwise multiplication of two

vectors. Thus the net control u is obtained as

u = ueq + usw = η(q, q̇, τ)− σ1ż1 − σ2ż2 − k ◦sign(s)−Ws. (2.22)

With u being the control input to the augmented system (2.5), the input τ to the manipulator is

obtained as follows:

τ =

∫ t

0
u(θ)dθ. (2.23)

Thus any discontinuity in u will be removed in the input torque τ due to the above integral operation,

producing a chattering free, smooth control input for the manipulator system.

2.2.3 Stability Analysis

The sliding surface is already chosen to be Hurwitz stable. Therefore, stability concerns are with

the reaching phase when the system is still vulnerable to the uncertainties. Moreover, analysis of the
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2.2 IBSMC design for robot manipulators

overall stability of the controlled system is also important to establish robustness and applicability of

the proposed IBSMC. Stability of the sliding surface reaching phase as well as the overall system can

be analyzed in the form of the following Lemmas:

Lemma 1. The sliding surface reaching phase will be stable provided the controller gain k satisfies

the following condition:

k ≥ h∗ > 0 (2.24)

where h∗ ≥ |h(q, q̇)| and h(q, q̇) is the vector of uncertainties effecting the system 2.20.

Proof. In order to prove stability of the sliding surface reaching phase in presence of uncertainty,

Lyapunov function Vs is used which is positive definite for all s 6= 0.

Vs =
1

2
sTs

V̇s =sT ṡ = sT (σ1ż1 + σ2ż2 + ż3)

=sT (σ1ż1 + σ2ż2 + u− η(q, q̇, τ ) + h(q, q̇))

=sT (σ1ż1 + σ2ż2 + η(q, q̇, τ )− σ1ż1 − σ2ż2 − k ◦sign(s)−Ws− η(q, q̇, τ ) + h(q, q̇))

=sT (−k ◦sign(s)−Ws+ h(q, q̇))

≤− |s|Tk − sTWs+ |s|T |h(q, q̇)|

≤ − |s|T (k − |h(q, q̇)|) − sTWs. (2.25)

From the control algorithm it is evident that due to the recursive nature of the backstepping method

all the uncertainties in the system are carried to the final subsystem of the process, hence they can

all be accumulated as the single term h(q, q̇). This way sliding mode will be able to reject both

matched and mismatched uncertainties of the system. When the uncertainty bounds are known and

the switching gain k is such that k ≥ h∗ > |h(q, q̇)|, the time derivative V̇s can be written as follows:

V̇s ≤ −sTWs < 0, ∀s 6= 0. (2.26)

Since ∀s 6= 0, sTWs is positive definite and lim
t→∞

sTWs = 0, it can be concluded that the sliding

surface converges to the equilibrium asymptotically.

Remark 2. As can be found in [134], the finite time Tr required by the system error states to reach

from initial condition to the sliding surface can be derived from (2.21) as

Tr =W−1 ln (
W |s(0)| + k

k
). (2.27)

Lemma 3. Provided the reaching phase is stable, the overall controlled system will be stable if the

matrix Q =







c1 −1
2(In − σ1) 0

−1
2(In − σ1) c2 + σ2 −1

2In

0 −1
2In W






is positive definite, where In is an n × n identity

matrix.
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Proof. The lemma can be proved using the following Lyapunov function V :

V =
1

2
(zT

1 z1 + zT
2 z2 + sT s)

V̇ =zT
1 ż1 + zT

2 ż2 + sT ṡ

=− zT
1 c1z1 − zT

2 c2z2 + zT
1 z2 + zT

2 z3 − |s|Tk− sTWs+ sTh(q, q̇)

=− zT
1 c1z1 − zT

2 c2z2 − sTWs+ zT
1 z2 + zT

2 (s− σ1z1 − σ2z2)

− |s|Tk+ sTh(q, q̇) , (from(2.19))

≤−
[

zT
1

zT
2

sT
]







c1 −1
2(In − σ1) 0

−1
2(In − σ1) c2 + σ2 −1

2In

0 −1
2In W













z1

z2

s






− |s|Tk+ |s|T |h(q, q̇)|

≤−
[

zT
1

zT
2

sT
]

Q







z1

z2

s






− |s|Tk+ |s|T |h(q, q̇)| (2.28)

where Q =







c1 −1
2(In − σ1) 0

−1
2(In − σ1) c2 + σ2 −1

2In

0 −1
2In W






. For a positive definite matrix Q and k >

|h(q, q̇)|, V̇ will be negative definite and the system will be asymptotically stable. Using Schur’s

complement for symmetric block matrix [135] (Appendix A.2), the matrix Q will be positive definite

provided c1, c2, σ1, σ2, k and W are positive definite and they satisfy the following condition:

c2 + σ2 >
1

4
W−1 (2.29)

c1 >
1

4
(In − σ1)(c2 + σ2 −

1

4
W−1)−1(In − σ1). (2.30)

2.2.4 Simulation Results

The IBSMC derived above is tested via simulations performed in Matlab/Simulink environment.

The proposed IBSMC is first applied to an underactuated system by properly selecting the backstep-

ping variables. The cart-pendulum, being a benchmark under-actuated system, is controlled through

the proposed IBSMC method and the results are shown in Section 2.2.4.1. The second set of simula-

tions show the controller performance on a 2 DoF robot manipulator.

2.2.4.1 IBSM Control of an Underactuated Cart-Pendulum System

The proposed IBSMC is applied for swing-up and stabilization of an underactuated cart-pendulum

system [1]. Fig. 2.2 shows the cart-pendulum system whose dynamic model is represented as

M(q)q̈ +C(q, q̇)q̇+G(q) = F + Fd (2.31)
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y 

θ 

mpg 

l 
l cos θ 

mc 

f1 

Figure 2.2: Cart-pendulum system

Table 2.1: Parameters of the Cart-Pendulum System

mc mp l J

Unit (kg) (kg) (m) (kg ·m2)

Value 1.12 0.11 0.1407 0.0038

where q, q̇ and q̈ represent the position, velocity and acceleration of the system, M(q) is the inertia

matrix, C(q, q̇) is the centripetal and Coriolis force matrix and G(q) is the gravitational force vector.

Furthermore, F represents the applied force and Fd corresponds to the disturbance force caused

by uncertainties. In Figure 2.2, y and θ are the linear displacement of the cart and the angular

displacement of the pendulum respectively and q = [y, θ]T .

For the cart-pendulum system shown in Figure 2.2, the dynamics (2.31) is described in details in

Appendix A.3. The parameters of the cart-pendulum system are given in Table 2.1.

The derivation of the IBSM controller for the inverted pendulum system is given in detail in

Appendix A.4. The proposed IBSMC method is compared with the coupled SMC method designed

by Park and Chwa [1] which is elaborated in Appendix A.5. A matched disturbance fd1 = 0.1 sin 2t

is applied to the cart-pendulum system and the performances of the two controllers, IBSMC and

SMC [1] are compared. The simulation results are shown in Figure 2.3 and performances of these

controllers are summarized in Table 2.2 and Table 2.3. The performance indices used in the tables

are: rise time (tr), peak overshoot (Mp), peak time (tp), settling time (ts), the steady-state root mean

square error (RMSEss), 2-norm of the control input (||u||) and the total variation (TV) of the control

input (2.32) indicating the amount of chattering content. The total variation (TV ) is computed by

using the following formula (assuming a discrete signal obtained through software implementation or

sampling of the continuous signal) [136]

TV =

p−1
∑

i=1

|ui+1 − ui| (2.32)

where p is the total number of sample points.

In addition to the applied matched disturbance fd1 = 0.1 sin 2t, a change in pendulum mass is
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−15 −10 −5 0 5 10
−10

−5

0

5

10

y (m)

ẏ
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Figure 2.3: Simulation results of IBSMC and SMC [1] for swing-up and stabilization of cart-pendulum
system with matched uncertainty
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(a) Linear Displacement of the cart with SMC [1]
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(b) Linear Displacement of the cart with IBSMC
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(c) Angular Displacement of the pendulum with SMC [1]
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(d) Angular Displacement of the pendulum with IBSMC
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(f) Sliding Surface with IBSMC
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ẏ
(m

/
s)

(g) Phase plot for ẏ vs. y(with IBSMC)
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Figure 2.4: Simulation results of IBSMC and SMC [1] for swing-up and stabilization of cart-pendulum
system with matched and mismatched uncertainties
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Table 2.2: Stabilizing cart-pendulum system with matched uncertainty for linear displacement

Controller tr (s) Mp (m) tp (s) ts (s) RMSEss(m) ||u|| (N) TV (N)

IBSMC 3.5390 6.7969 5.4490 24.7360 0.0776 916.8659 1.242134×103

SMC [1] 8.4030 4.0398 12.2600 34.4358 0.1018 3.3868×103 1.419360×106

Table 2.3: Stabilizing cart-pendulum system with matched uncertainty for angular displacement

Controller tr (s) Mp (rad) tp (s) ts (s) RMSEss(rad)

IBSMC 2.918 -0.3757 4.8450 15.0183 0.0153
SMC [1] 0.9191 0 – 4.3141 0.0218

Table 2.4: Stabilizing cart-pendulum system with matched and mismatched uncertainties using IBSMC

tr (s) Mp tp (s) ts (s) RMSEss ||u|| (N) TV (N)

y 2.429 5.175m 3.788 18.6251 0.0463m 1.54×103 1.24×103

θ 1.912 -0.5354rad 3.3160 11.3685 0.0137rad – –

now considered which will produce a mismatched disturbance in the system. A change of mass from

mp = 0.11kg to mp = 2kg is carried out for examining the effects on both of the controllers. The

simulation results are plotted in Figure 2.4 and summarized in Table 2.4. The performance indices

used in the table are the same as described above for Table 2.2 and 2.3. It is observed from Figure

2.4 that the SMC [1] fails in the presence of mismatched uncertainty in the system. On the other

hand, the IBSMC remains immune to mismatched uncertainty and is able to successfully swing-up

the cart-pendulum system to the equilibrium point and stabilize it.

2.2.4.2 IBSM control of a 2 DoF Robot Manipulator: Stabilization of Joint Positions

The proposed IBSMC method is now applied for stabilizing control of a 2DoF robot manipulator

shown in Figure 2.5. The obtained results are compared with a conventional first order sliding mode

controller (SMC). The parameters used for the proposed IBSMC (2.22) are:

c1 = 20In, c2 = 30In, σ1 = σ2 = 10In,k = [8, 8, 8]T , W = 100In (2.33)

where In is an n× n identity matrix.

The conventional first order SMC is given by

τs =C(q, q̇)q̇+G(q) +M(q)−1
(

q̈d − k ◦sign(s)−Ws) (2.34)

where k = 8In, W = 100In. The sliding variable s is formed as

s = q̇ + Λq (2.35)

where Λ = 10. The rest of the terms in the SMC (2.34) represent the same quantities as described in

the previous sections.
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Figure 2.5: 2DoF manipulator schematics used for simulation

The dynamics of the manipulator model shown in Figure 2.5 is given below:

[

m11 m12

m21 m22

][

q̈1

q̈2

]

+

[

c11 c12

c21 c22

][

q̇1

q̇2

]

+

[

G1

G2

]

=

[

τ1

τ2

]

(2.36)

where m11 = (m1 +m2)l
2
1 +m2l

2
2 + 2m2l1l2 cos(q2) + J1; m12 = m21 = m1l

2
2 +m2l1l2 cos(q2); m22 =

m2l
2
2+J2; c11 = −bq̇1; c12 = −2bq̇1; c21 = 0; c22 = bq̇2; b = m2l1l2 sin(q2); G1 = (m1+m2)l1g cos(q2)+

m2l2 cos(q1 + q2); G2 = gm2l2 cos(q1 + q2). The manipulator parameter values are:

m1 = 0.5kg, m2 = 1.5kg, l1 = 1m, l2 = 0.8m, g = 9.81m/ss.

To induce structured uncertainty, the link masses m1 and m2 are perturbed by 40% and 20%

respectively. Simulation is performed for the regulation task where the controller objective is to bring

and regulate both the joints from initial 0 rad position to the final 1 rad. The position stabilization

for joints 1 and 2 (q1 and q2) are shown in Figure 2.6. The control torques for the joints q1 and q2

are shown in Figure 2.7, which clearly show that a smooth control law can be obtained via IBSMC

as opposed to the SMC input which contains high chattering. But the tracking accuracy of the SMC

is slightly superior than the proposed IBSMC. However, the cost of reduction in accuracy is lower

compared to the smoothness gained in the control input of the IBSMC. Table 2.5 compares important

output performance indices like rise time (tr), peak overshoot (Mp), peak time (tp), settling time (ts),

steady state error (ess) and input performance indices like 2 norm of the control input (||τ ||) indicating

energy spent and the total variation (TV ) [136] showing smoothness.

From Table 2.5, it is observed that the proposed IBSMC method and the conventional SMC have

comparable transient performance in terms of the speed of convergence and overshoot. However, he

proposed IBSMC has greater steady state error compared to the SMC. But chattering in the control

input obtained through IBSMC is significantly lower than in the case of the SMC as clearly visible in

Figure 2.7(a) and Figure 2.7(b). Therefore, except for a slight loss in tracking accuracy, the proposed

IBSMC yields a chattering free smooth control signal with satisfactory transient performance.
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Figure 2.6: Simulation results of joint angular positions for joint angle regulation of 2DoF robot manipulator
using IBSMC and SMC
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(a) Control torque for joint 1
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(b) Control torque for joint 2

Figure 2.7: Simulation results of control torques for joint angle regulation of 2DoF robot manipulator using
IBSMC and SMC

Table 2.5: Performance comparison for stabilizing task of 2 DoF manipulator

Joint Controller tr (s) Mp (rad) tp (s) ts (s) ess(rad) ||τ || (N·m) TV (N·m)

q1
IBSMC 0.6086 1.1780 0.7802 1.0568 5.7365×10−4 9.5963×103 5.174007×102

SMC 0.5907 1.2327 0.7929 1.1137 3.5786×10−6 2.2411×104 1.166980×107

q2
IBSMC 0.4071 1.2018 0.5693 0.7533 3.2526×10−4 8.4625×103 5.359030×102

SMC 0.4399 1.0571 0.5265 0.6171 4.8393×10−6 1.5928×104 8.241659×106
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2.3 Integral Adaptive Dynamic Surface Controller

2.2.5 Discussion

The simulation studies conducted on both the cart-pendulum and 2DoF manipulator show that the

proposed method of combining integral backstepping with the SMC has the advantage of chattering

removal. Moreover, the control law can tackle both matched and mismatched uncertainties as opposed

to only SMC which fails in the presence of mismatched uncertainty as evident in the simulation

example of the cart-pendulum control. However, despite having these two major advantages, the

following demerits are observed in the IBSMC:

(i) The smoothness in the control law is achieved at the cost of tracking accuracy as observed in

the 2DoF manipulator control. Since the switching nature of the SMC is the key feature making

it robust and imparting high accuracy, losing discontinuity in the control signal by making it

continuous will evidently lead to a loss in accuracy.

(ii) The “explosion of terms” problem inherent in conventional backstepping has given rise to a

complex structure of the control law. This problem is the result of taking the time derivative of

the synthetic input at each step of backstepping. In the proposed method the explosion of terms

can be clearly observed in the definition of η(q, q̇, τ) in (2.17) obtained after differentiating the

nonlinear system matrices. Clearly η(q, q̇, τ) has a very complex structure, thereby complicating

the control law structure. Moreover, higher order manipulators will have more nonlinearities

with larger matrices which will result in a more complex structured control law rendering it

impractical for real time uses.

(iii) The switching controller gain k is determined based on the assumption that the uncertainty

bounds are known so that choosing k > |h(q, q̇)| will make the controller robust and stable.

But the knowledge of the uncertainty bound is not always easily available. Moreover, some

uncertainty might also go unnoticed. Although choosing a very high value for k might work, it

is not a practical solution since this will unnecessarily increase the use of input energy.

(iv) Computation of the IBSM control law requires upto third time derivative of the desired trajectory

which puts additional constraint on the controller design process.

2.3 Integral Adaptive Dynamic Surface Controller

2.3.1 Motivation

Efforts have been made to eliminate the explosion of terms occurring in backstepping by using

first and second order filters or command filter to obtain the derivative of the virtual control laws

[123, 124, 137–139]. Here the time derivative of the virtual control was considered as an uncertainty

to be compensated for which sliding mode control [140] and robust second order filter [141] were

utilized. The dynamic surface control (DSC) method proposed by Swaroop et al. [123,124] has gained

considerable popularity as an alternative to the integral backstepping control. The DSC algorithm

uses a first order filter to obtain the time derivatives of the virtual controls and then uses the difference

between the actual and the filtered signal as a sliding surface. The algorithm is easy to implement
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2. Integral Backstepping Sliding Mode Controller

as it uses first order filters and moreover, the filtering error is accounted for due to multiple sliding

surfaces.

Adaptive tuning of the controller gain for the SMC [142–145] has proved to be a good alternative

to the fixed gain for dealing with unknown bounds of uncertainties as well as chattering suppression.

The adaptive law tunes the controller gain based on the sliding surface which is generally a function

of the system errors. Thus occurrence of any unknown uncertainty that results in rise in system error

will cause the tuning law to adjust the controller gain accordingly. Further, on reaching the steady

state when the error tends to zero, the controller gain will be very low, thus lowering chattering and

preventing unnecessary use of the control energy.

The dynamic surface control algorithm is adopted to contain the explosion of terms in backstepping

controller developed in this research work. However, instead of using the filter at every stage of

backstepping, it is introduced only in the final step so that a much simpler structure of the controller

is obtained as compared to the IBSMC. The gain of the switching part of the control law in the last

stage is derived using an adaptive tuning law. A leakage term [146] is added to the adaptive gain

tuning law in order to prevent overestimation or unbounded value of the tuned gain. The resultant

control method is named as integral adaptive dynamic surface control (IADSC).

2.3.2 Controller Design

In this section, the IADSC will be designed for the robot manipulator system augmented with an

integrator block as represented by (2.5).

Step I:

The trajectory tracking error z1 is defined as [147]

z1 = q − qd

ż1 = q̇ − q̇d. (2.37)

A CLF V1 for the system is defined as follows:

V1 =
1

2
zT
1 z1

V̇1 =zT
1 ż1 = −zT

1 c1z1 + zT
1 z2. (2.38)

Now (2.37) is stabilized if V̇2 < 0 and considering q̇ to be the control input, the following can be

derived:

q̇ = −c1z1 + q̇d (2.39)

where c1 = diag(c1i), c1i > 0, i = 1, . . . , n is a design parameter. The value of c1 determines the rate

of convergence of the tracking errors.

Step II:

However, the relation (2.39) is not true yet. Hence considering αq = −c1z1+ q̇d as the virtual control
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2.3 Integral Adaptive Dynamic Surface Controller

input for this stage, the next variable z2 is defined as

z2 =q̇ −αq

⇒ z2 =q̇ + c1z1 − q̇d. (2.40)

Substituting (2.40) in (2.37) yields

ż1 = −c1z1 + z2. (2.41)

A sliding variable s1 is defined as

s1 = z2 = c1z1 + ż1. (2.42)

Now taking time derivative of (2.42) and using (2.5), (2.37) yields

ṡ1 = c1ż1 +M(q)−1 [τ −C(q, q̇)q̇ −G− f(q̇)]− q̈d. (2.43)

The next Lyapunov function V2 is now defined as

V2 =
1

2
sT1 s1

⇒ V̇2 =sT1 ṡ1. (2.44)

A constant plus proportional reaching law [134]

ṡ1 = −k1
◦sign(s1)−W1s1 (2.45)

is used where k1 > 0 is the constant gain and W1 > 0 is the proportional gain so that

V̇2 = −|s1|
Tk1 − sT1 W1s1 (2.46)

is guaranteed. For achieving this objective, a virtual control ατ is defined at this stage as

ατ =C(q, q̇)q̇+G−M(q)(c1ż1 − q̈d + k1
◦sign(s1) +W1s1). (2.47)

Step III:

When τ = ατ , (2.44) takes the following form:

V̇2 = −|s1|
Tk1 − sT1 W1s1 + sT1M(q)−1f(q̇)

≤ −|s1|
Tk1 − sT1 W1s1 + sT1M(q)−1f1

≤ −|s1|
T [k1 −M(q)−1f1]− sT1W1s1. (2.48)
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Since the relative degree of the system is increased by one as given in (2.5), the actual control input

is now u = τ̇ . Now the dynamic surface control method [124] is used where the virtual control ατ is

passed through a first order low pass filter to obtain the filtered signal αf as

ατ =αf + Tf α̇f

⇒ α̇f =
1

Tf
(ατ −αf) (2.49)

where Tf is the time constant of the filter. The filter error is defined as

y =αf −ατ = −Tf α̇f (2.50)

|y| =ȳ (2.51)

where ȳ > 0 is the bound of the error signal y.

The error between τ and αf is defined as the next sliding variable s2 where

s2 =τ −αf (2.52)

⇒ ṡ2 =τ̇ − α̇f = u−
1

Tf
(ατ −αf). (2.53)

From (2.52) the control torque is obtained as

τ =s2 +αf = s2 +ατ − Tf α̇f = s2 +ατ + y. (2.54)

Replacing (2.54) in (2.43) and using (2.52) yields

ṡ1 =− k1
◦sign(s1)−W1s1 +M(q)−1(s2 + y + f(q̇)). (2.55)

Now using (2.55) in (2.44) and applying (2.2), (2.4) and (2.47) yields

V̇2 =− |s1|
Tk1 − sT1W1s1 + sT1 M(q)−1(s2 + y + f(q̇))

⇒ V̇2 ≤− |s1|
T
[

k1 − µ−1

min(ȳ + f1)]− sT1W1s1 + µ−1

mins
T
1 s2. (2.56)

The next control law should be so designed such that the sliding surface s2 converges to zero. The

control input u is designed to achieve the constant plus proportional reaching law

ṡ2 = −k2
◦sign(s2)−W2s2 (2.57)

where k2 > 0 is the constant gain and W2 > 0 is the proportional gain. The system (2.1) may have

time varying uncertainty, so instead of selecting a constant gain k2, an adaptively tuned gain k̂2 is

used [143]. The gain k̂2 is determined by using the following adaptive law:

˙̂
k2 = Γ(|s2| − ǫk̂2) (2.58)
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where Γ > 0 is the adaptive gain matrix and ǫ > 0 is the leakage parameter [146] that will keep k̂2

bounded. Replacing k̂2 in (2.57) and using (2.53), the control signal u is now obtained as

u =
1

Tf

(ατ −αf)− k̂2
◦sign(s2)−W2s2 (2.59)

which is a discontinuous signal. Following (2.5), the actual control input τ is obtained as

τ =

∫ t

0
u(θ)dθ. (2.60)

From (2.47) and (2.60) it can be observed that the expression of u contains α̇τ , which after integration

will leave ατ in the expression of the actual control τ . Since ατ contains a switching function sign(s1),

this will produce chattering in the input; however, elimination of sign(s1) will cause loss in accuracy.

Therefore, as a trade-off measure, sign(s1) is replaced with a boundary layer [118] approximation

( s1
|s1|+D ), where 0 < D < 1 and ατ is obtained as

ατ =C(q, q̇)q̇+G−M(q)(c1ż1 − q̈d + k1
◦

s1

|s1|+D
+W1s1). (2.61)

The IADSC obtained above clearly has a simpler structure as compared to the IBSMCmethod designed

in the previous section. The IADSC does not require differentiation of the system matrices which has

reduced the computational burden on the controller.

2.3.3 Stability Analysis

The overall system stability is now investigated using Lyapunov method. A positive definite

function V is defined in terms of the tracking error and the sliding surfaces obtained in each step of

the design procedure as given below,

V =
1

2
(zT

1 z1 + sT1 s1 + sT2 s2 + k̃T
2 Γ

−1k̃2)

V =
1

2
ZTPZ (2.62)

where

k̃2 = k̂2 − k2d (2.63)

and k2d > 0 is an arbitrary gain value. Further, ZT =
[

zT
1

sT
1

sT
2

k̃T
]

, Z =
[

z1 s1 s2 k̃

]T

and P = diag{In, In, In, Γ−1} ∈ R
4n×4n is a positive definite block diagonal matrix. Taking time

derivative of V and using (2.38), (2.56), (2.57) and (2.58) yields

V̇ =zT
1 ż1 + sT1 ṡ1 + sT2 ṡ2 + k̃T

2 Γ
−1 ˙̂k2

≤− zT
1 c1z1 + zT

1 s1 − |s1|
Tk1 − sT1 W1s1 + µ−1

mins
T
1 (s2 + ȳ + f1)− |s2|

T k̂2

− sT2 W2s2 + k̃T
2 Γ

−1

[

Γ(|s2| − ǫk̂2)
]

33



2. Integral Backstepping Sliding Mode Controller

≤− zT
1 c1z1 − sT1W1s1 − sT2 W2s2 − |s1|

Tk1 + µ−1

min|s1|
T (ȳ + f1)

+ zT
1 s1 + µ

−1

mins
T
1 s2 − |s2|

T (k̂2 − k̃2)− k̃T
2 ǫk̂2. (2.64)

Now from (2.63)

k̃2 = k̂2 − k2d ⇒ ǫk2d = ǫ(k̂2 − k̃2)

kT
2dǫk2d = (k̂2 − k̃2)

T ǫ(k̂2 − k̃2). (2.65)

Lemma 4. For real vectors k̃2, k̂2, k2d > 0 and positive definite diagonal matrix ǫ ∈ R
n×n, if

k̃2 = k̂2 − k2d, then k̃T
2
ǫk̂2 ≥ 1

2(k̃
T
2
ǫk̃2 − kT

2dǫk2d).

Proof. Proof is given in Appendix A.6.

As proved in Appendix A.6 for a diagonal matrix ǫ, the following relation can be obtained:

k̃T
2 ǫk̂2 ≥

1

2
(k̃T

2 ǫk̃2 − kT
2dǫk2d). (2.66)

Using (2.66), V̇ can be rewritten as

V̇ ≤− zT
1 c1z1 − sT1 W1s1 − sT2W2s2 −

1

2
k̃T
2 ǫk̃2 +

1

2
kT
2dǫk2d

− |s1|
T
[

k1 − µ−1

min (f1 + ȳ + |z1|)
]

− |s2|
T
(

k2d − µ−1

min|s1|
)

. (2.67)

To ensure that V̇ is negative definite, k2d > 0 and k1 > 0 should satisfy the following

(

k2d − µ
−1

min|s1|
)

> 0 (2.68)
[

k1 − µ
−1

min (f1 + ȳ)− |z1|
]

> 0. (2.69)

Remark 5. The controller gain k2d is tuned adaptively (see equation (2.58)) and thus can take any

arbitrary positive value. On the other hand the gain k1 is a constant parameter that determines

the controller robustness. Assuming the upper limits of f1 and ȳ are known, k1 can be selected as

k1 > µ−1
min(max(|f1|)+max(ȳ))+max(|q|)+max(|qd|), where max(•) indicates the saturation limit of

the signal. Generally, during the simulations a small positive value of k1 is chosen and then increased

gradually according to the performance requirements. Although higher values of k1 considerably reduces

the bound of the tracking error, it cannot be made arbitrarily large owing to hardware limitations [114],

as high value of k1 leads to increased amount of input energy.

Now, with k2d and k1 satisfying (2.69) and (2.69), V̇ can be rewritten as

V̇ ≤− zT
1 c1z1 − sT1W1s1 − sT2 W2s2 −

1

2
k̃T
2 ǫk̃2 +

1

2
kT
2dǫk2d

V̇ ≤−ZTQZ +
1

2
kT
2dǫk2d

V̇ ≤− 2ψV + ρ (2.70)
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where Q =













c1 0 0 0

0 W1 0 0

0 0 W2 0

0 0 0 1
2ǫ













∈ R
4n×4n is a block diagonal matrix. The scalar ψ represents the

smallest eigenvalue of P−1Q. In order to obtain a stable closed loop system, Q should be a positive

definite matrix. Using the properties of positive definite block matrices (Appendix A.2), the following

conditions can be obtained for the controller parameters:

1

2
Γǫ > 0 (2.71)

c1,W1,W2 > 0 (2.72)

(2.73)

From (2.70), the following is derived:

V (t) ≤

(

V (0) −
ρ

2ψ

)

e−2ψt +
ρ

2ψ
. (2.74)

Therefore, for V (0) > ρ
2ψ and ρ

2ψ < 1, V (t) will be a decreasing function indicating the convergence

of the system errors to the equilibrium. From (2.62) and (2.74), the following can be obtained:

1

2
zT
1 z1 ≤ V (t) ≤

(

V (0)−
ρ

2ψ

)

e−2ψt +
ρ

2ψ
. (2.75)

Hence from (2.75), it can be concluded that as t → ∞, the tracking error z1 is bounded by the

following condition,

|z1| ≤

√

ρ

ψ
. (2.76)

Therefore, by proper selection of the design parameters, the tracking error can be made sufficiently

small.

2.3.4 Simulation Results

The proposed IADSC method is applied for joint torque control of the 2 DoF manipulator shown

in Figure 2.5 whose dynamics are given by (2.36). Next the proposed IADSC method is tested for

joint torque control of a 3DoF coordinated links (COOL) robot arm described in Appendix A.9. The

results obtained by using the proposed IADSC for the 2 DoF manipulator are compared with the

results obtained by using the SMC (2.34) and the proposed IBSMC (2.22- 2.23).

2.3.4.1 Simulation results for stabilization of a 2DoF manipulator

The manipulator model and parameters are the same as described in (2.36). The design parameters

used for the IBSMC (2.22 - 2.23) are c1 = 20In, c2 = 30In, σ1 = σ2 = 10In, k = [8, 8, 8]T , W =

100In. The design parameters for the SMC (2.34) are k = 8In, W = 100In, Λ = 10. The design
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2. Integral Backstepping Sliding Mode Controller

parameters chosen for the proposed IADSC controller are as follows:

c1 = 5I2, ǫ = 0.1I2, Γ = 100I2, k1 = [30, 30]T ,

W1 = 10I2, W2 = 100I2, D = 0.001, Tf = 0.029.

The controller objective is to bring both the joint positions from their initial position at 0 rad to

1 rad. The system is induced with modeling error by perturbing the link masses m1 and m2 by 40%

and 20% respectively.
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Figure 2.8: Simulation results for joint angle regulation of a 2DoF manipulator: Joint angular positions
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(b) Control torque for joint 2

Figure 2.9: Simulation results for joint angle regulation of a 2DoF manipulator: Control torques

The regulations of the joint positions q1 and q2 are shown in Figure 2.8 and the input torques are

shown in Figure 2.9. The performances of the controllers in terms of the rise time (tr), peak overshoot

(Mp), peak time (tp), settling time (ts), steady state error (ess), 2-norm of the control input (||u||) and

the total variation (TV) [136] of the control input (2.32) are compared in Table 2.6. The simulation

results show that the IADSC produces transient and steady state performances better or at par with

the other two controllers but at the cost of much lower control energy.
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2.3 Integral Adaptive Dynamic Surface Controller

Table 2.6: Performance comparison for stabilizing task of 2 DoF manipulator

Joint Controller tr (s) Mp (rad) tp (s) ts (s) ess(rad) ||u|| (N·m) TV (N·m)

q1

IADSC 0.5221 0 – 1.0520 -1.3996×10−6 2.4630×103 1.3976×103

IBSMC 0.6086 1.1780 0.7802 1.0568 5.7365×10−4 9.5963×103 5.174007×102

SMC 0.5907 1.2327 0.7929 1.1137 3.5786×10−6 2.2411×104 1.16698×107

q2

IADSC 0.4790 0 – 0.9231 -1.1046×10−6 1.8371×103 1.2885×103

IBSMC 0.4071 1.2018 0.5693 0.7533 3.2526×10−4 8.4625×103 5.359030×102

SMC 0.4399 1.0571 0.5265 0.6171 4.8393×10−6 1.5928×104 8.241659×106

2.3.4.2 Simulation results for trajectory tracking of a 2DoF manipulator

In this section the proposed IADSC will be tested through simulation for trajectory tracking in

presence of uncertainties. The controller performance is compared with Yang et al. ’s [2] decentralized

adaptive robust control method using disturbance observers whose description is given in Appendix

A.8. The same manipulator model used in [2] is used in this simulation study for ensuring fair

comparison. The manipulator model and the added uncertainties are described in Appendix A.7. The

tracking performance of the controller will be investigated using the following time varying reference

trajectories:

qd1(t) = 0.2 + 2 sin(2t) rad

qd2(t) = −1.7 + 1.8 cos(2t) rad (2.77)

with the initial conditions for the tracking errors as

z1(0) = [0.2, −0.2] rad, ż1(0) = [−0.25, 0.2] rad/s.

Simulations are performed using a step size of 0.0005s in the Matlab Simulink environment. The

design parameters chosen for the proposed IADSC given by (2.59 - 2.61) are as follows:

c1 = 25I2×2, k1 = [10, 10]T , W1 = 200I2×2,W2 = 500I2×2,

ǫ = 0.1I2×2, Γ = 100I2×2,D = 0.001, Tf = 0.001. (2.78)

The tracking errors for both the joints are shown in Figure 2.10 which clearly shows that the proposed

controller has faster transient response as well as lower steady state error as compared to [2]. The

control torques are plotted in Figure 2.11 which show that the proposed IADSC uses much lesser

control energy than the controller proposed by Yang et al. [2]. The simulation results are summarized

in Table 2.7 for better comparison listing the performance indices like rise time (tr), settling time (ts),

root mean square error (RMSE), the 2-norm of the control input (||u||) and the total variation (TV)

of the control input (2.32).

The controller proposed by Yang et al. [2] uses a disturbance observer that compensates for any

unmodeled and unknown uncertainties entering the system and utilizes an adaptively tuned controller.

However, the proposed IADSC relies simply on the adaptively tuned gain and the robustness of the
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2. Integral Backstepping Sliding Mode Controller

backstepping sliding mode control. From Table 2.7 it can be clearly observed that the proposed

IADSC yields superior transient and steady-state performances using lower amount of input energy

as compared to the controller proposed by Yang et al. [2]. Moreover, the control input produced by

the proposed IADSC is smoother than that of [2]. It should be noted that both the controllers are

operated under the same conditions using the same amount of output information from the plant.
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Figure 2.10: Simulation results: Comparison of tracking errors for the 2DoF manipulator
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Figure 2.11: Simulation results: Comparison of control torques for the 2DoF manipulator

Table 2.7: Performance comparison for joint tracking control of the 2DoF manipulator

Joint Controller tr (s) ts (s) RMSE (rad) ||u|| (N·m) TV (N·m)

q1
IADSC 0.0935 0.1755 0.0073 6.4766×103 1.0255×106

Yang et al. [2] 0.1620 0.4811 0.0081 1.5881×104 5.9904×106

q2
IADSC 0.0938 0.1863 0.0074 3.0180×103 5.3422×105

Yang et al. [2] 0.2687 0.4805 0.0084 1.2605×104 4.6765×106

38



2.3 Integral Adaptive Dynamic Surface Controller

2.3.4.3 Simulation results for trajectory tracking of a 3DoF manipulator

The proposed IADSC is now applied for a Coordinated Links (COOL) dual robot arm system as

in Figure 2.12. The mass, inertia and link lengths of the COOL robot arm are given in Table 2.8. The

center of mass for each link is considered to be its middle point. In Figure 2.12 and Table 2.8, L and

R represent the left and right arms of the robot.
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5R 

 

6L 
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5L 

4L 

3L 
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1L 

Figure 2.12: The Coordinated Links (COOL) robot
arm

Table 2.8: Parameters of the COOL Robot Arm

Joint No. Link Mass (kg) Link Length (m)

1L/1R 0.6 0.025
2L/2R 0.32 0.110
3L/3R 0.23 0.060
4L/4R 0.23 0.080
5L/5R 0.13 0.070
6L/6R 0.13 0.082
7L/7R 0.18 0.081

For simulation purpose, only 3 joints of the right arm, i.e., joint number 1R, 4R and 7R are

considered and the other joints are kept locked in the positions of 0rad. The mathematical model

of the resulting 3 DoF robot arm is given in Appendix A.9. The control task is to bring each joint

from the initial position of -0.1 rad to final 1 rad position. A uniform random noise having limits

±0.0001rad is added to the measurements of positions. Speeds of the joints are obtained through

pseudodifferentiation of the joint positions using a
0.001a+1 [2], where a is the complex number frequency

parameter for representation of the differentiator in the Laplace domain. An additional load of 0.5

kg is added to the end-effector to induce uncertainty. The proposed controller performance is studied

when the robotic arm is affected by these uncertainties. The following reference trajectory is used for

each of the joints to examine the controller performance:

qd = 2 sin(2t)rad (2.79)

with the initial conditions for the position and velocity of all the joints at q(0)=-0.1 rad and q̇(0)=0

rad/s. Simulation results of the proposed IADSC are compared with those of a conventional sliding
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Figure 2.13: Simulation results: Comparison of tracking errors for 3DoF manipulator

mode controller (SMC) having the following structure:

τ = C(q, q̇) +G(q) +M(q)(q̈d − k ◦sign(s)−Ws) (2.80)

where s = ė+φe, e = q− qd, ė = q̇ − q̇d and φ = 50, k = 200, W = 100 are constant parameters.

The design parameters used in the proposed IADSC are:

c1 = 25I3×3, ǫ = 0.1I3×3, Γ = 100I3×3, k1 = [30, 30, 30]T ,

W1 = 1000I3×3, W2 = 200I3×3,D = 0.001, Tf = 0.001.

The trajectory tracking results for each joint are shown in Figure 2.13 and the input torques are

plotted in Figure 2.14. From Figure 2.13, it can be observed that SMC has no overshoot and IADSC

shows small overshoot in the tracking of the joints 2 and 3, whereas the undershoot with IADSC is

much lower than that of SMC. Inspection of the input torques in Figure 2.14 clearly shows that the

IADSC produces a smoother control signal as opposed to the highly oscillatory input generated by

the SMC. For a clearer comparison, the performances of both the controllers are listed in Table 2.9.

The performance indices compared in Table 2.9 are rise time (tr), peak undershoot (Mu), peak time
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Figure 2.14: Simulation results: Comparison of input torques for 3DoF manipulator

Table 2.9: Performance comparison for joint trajectory tracking of 3DoF manipulator

Joint Controller tr (s) Mu (rad) tp (s) ts (s) RMSE (rad) ||u|| (N·m) TV (N·m)

q1
IADSC 0.1058 -0.007 0.006 0.1878 2.1865×10−4 68.7318 244.9105
SMC 0.0406 -0.01 0.014 0.0852 1.8168×10−4 264.3090 4.8334×104

q2
IADSC 0.0375 -0.006 0.006 0.082 0.0017 133.4563 366.5995
SMC 0.0305 -0.009 0.012 0.0554 6.8450×10−4 184.3059 5.2317×103

q3
IADSC 0.0079 -0.021 0.012 0.052 0.0029 41.1756 167.8220
SMC 0.0305 -0.045 0.028 0.159 0.0025 44.3870 1.4347×103

(tp), settling time (ts), root mean square error (RMSE), the 2-norm of control input (||u||) and the

total variation (TV) (2.32).

2.3.5 Discussion

The proposed IADSC method utilizes the dynamic surface control methodology to simplify the

backstepping controller structure by eliminating the differentiation of the synthetic control. Thus

the proposed IADSC avoids the explosion of terms encountered in regular backstepping method.

Simulation results show the suitability of the proposed IADSC in trajectory tracking tasks of robot
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2. Integral Backstepping Sliding Mode Controller

manipulators. The controller is free from chattering and has the capability to tackle uncertainties

without having to resort to observers. The adaptively tuned controller gain helps in maintaining

the controller robustness against unknown and varying uncertainties and also aids in reducing the

unnecessary use of input energy during the steady state. Despite the advantages of the proposed

IADSC method, it has certain drawbacks. Following are the difficulties that may arise while designing

the controller:

(i) The design of the controller gain is an issue since it is generally done heuristically, normally

selecting a very high gain value. Moreover, the filter time constant and the gain values are

related and there is no analytical method to select the design constants except trial and error

through numerical simulation.

(ii) The most challenging part of the IADSC design process is the filter time constant Tf . Generally

the value of Tf is chosen as small as possible. But this is only possible in case of numerical

simulations. When hardware application is concerned, this value cannot be made arbitrarily

small owing to the hardware performance limitations such as the sampling frequency in real

time and communication delay. Any change in the sampling time requires a modification in the

filter time constant and in such cases stability cannot always be guaranteed. In [123], Swaroop

et al. demonstrated that the DSC was very sensitive to the filter constant perturbations and

became unstable for higher values of Tf .

(iii) The sliding surface gains cannot be made arbitrarily large since they may result in input satu-

ration even to relatively small surface errors caused by uncertainties and disturbances.

2.4 Summary

In this chapter a robot manipulator controller is designed using integral backstepping based sliding

mode control (IBSMC) methodology with the primary focus being chattering mitigation and efficient

trajectory tracking in presence of uncertainties and external disturbances. The simulation studies for

regulation of a 2DoF manipulator show that the proposed IBSMC is robust towards both matched and

mismatched uncertainties and it can produce a smooth control input with satisfactory performance

as compared to the conventional sliding mode controller. The proposed IBSMC is also applied to

an underactuated cart-pendulum system and the simulation results are compared with the SMC

proposed by Park et al. [1]. The simulations show that the proposed IBSMC can provide faster

transient response and better steady state tracking while delivering a chattering free smooth control

law. Although the IBSMC provided smoother control and robustness against both matched and

mismatched uncertainties, yet it has a few disadvantages mainly, (i) the controller accuracy is somewhat

compromised for obtaining a smooth control law, (ii) the “explosion of terms” inherent in backstepping

is encountered that causes a very complex structure of the controller and (iii) designing the controller

gain k becomes difficult if the uncertainty bounds are not known apriori. In the second part of the

chapter the integral adaptive dynamic surface controller (IADSC) is proposed to overcome the above

mentioned shortcomings of the IBSMC. The IADSC uses the dynamic surface control methodology
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in the final step of the controller design process to obtain the filtered derivative of the last synthetic

control of backstepping. Thereby it prevents the explosion of terms and a controller with a simpler

structure than IBSMC is obtained. Moreover, the controller gain is now adaptively tuned to handle the

uncertainties with unknown bounds. The proposed IADSC is simulated for joint angle regulation of a

2DoF manipulator and the results are compared with both the IBSMC and the SMC. The comparison

shows that the IADSC provides a chattering free smooth input signal with better tracking performance

than the IBSMC. The IADSC uses much lower control energy compared to the SMC and has a simpler

structure than the IBSMC. The IADSC is also compared with the disturbance observer based robust

controller proposed by Yang et al. [2] for trajectory tracking of a 2DoF manipulator. The proposed

IADSC is able to utilize lower control energy while providing good tracking performance. Results are

verified by applying the proposed IADSC on a 3DoF robot manipulator also.
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3.1 Motivation

3.1 Motivation

Higher order sliding mode controllers first introduced by Levant [81] and especially the second

order sliding mode control have been extensively used for controlling robot manipulator systems [82–

87]. However, apart from the super twisting algorithm [148–150] all other higher order sliding mode

methods require information regarding the derivative of the sliding surface, thus demanding more

information and increasing the structural complexity of the control law. The primary goal of this

chapter is to obtain a smooth control law without adding an integrator block or using higher order

sliding mode control so that a computationally simple, easily comprehensible and applicable control

law can be obtained. The flexibility offered by the SMC to modify the dynamics of the system

allows the use of any form of stable sliding surface with suitable parameters. A proportional-integral-

derivative (PID) type sliding surface [151–153] has faster response with lesser steady state error as

compared to PD surfaces [154]. In this chapter a first order sliding controller will be designed with an

adaptively tuned controller gain. Unlike the existing methods of SMC design with a predefined PID

surface, here backstepping is used, which helps in obtaining a step by step analysis of the controller

structure and thus provides a more flexible way of choosing the controller and the sliding surface

parameters. The proposed adaptive backstepping sliding mode controller with the PID sliding surface

(ABSMC-PID) will be used for designing impedance control of robot manipulators. This is a new

approach for designing an impedance controller as well as hybrid impedance and hybrid force/position

controller and is another highlight of this chapter.

The notable benefit of deriving a hybrid impedance controller (HIC) using the proposed method is

the design flexibility and methodical analysis offered by the backstepping method and the robustness

induced due to the sliding mode controller. As the main aim of the impedance control method

is to maintain a compliant behavior during interaction of the robot manipulator with the external

environment, it tries to maintain a predefined virtual impedance between the robot arm tool and the

environment. In the proposed ABSMC-PID control method, the PID sliding surface will be imparted

the dynamics of the desired impedance and the system will be maintained on the sliding surface

equilibrium through the proposed ABSMC controller. Simply introducing the desired interaction force

to the ABSMC-PID task space controller converts it to an impedance controller and the introduction

of the task space selection matrix to the ABSMC-PID impedance controller can convert it to a hybrid

force/position controller. Simplicity, portability, flexibility in design as well as robustness against noise

and structural uncertainty are the main advantages of the proposed ABSMC-PID.

The organization of the chapter is as follows. The design procedure for the proposed ABSMC-PID

controller and its stability analysis are presented in Section 3.2 which also includes simulation studies

on robot manipulators. The proposed ABSMC-PID is then used for impedance control of a robot

manipulator in Section 3.3 where detailed stability analysis and simulation results are presented. A

brief summary of the chapter is provided in Section 3.4.
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3.2 Adaptive Backstepping Sliding Mode Controller with PID Slid-

ing Surface

In this section the detailed design procedure and stability analysis of the adaptive backstepping

sliding mode controller with a PID sliding surface (ABSMC-PID) are presented. Prior to controller

design, the manipulator described in (2.1) is remodeled by adding the joint actuator dynamics and

this combined manipulator-motor dynamics will be considered throughout the chapter.

3.2.1 System Description

An n-DoF robot manipulator is represented by the following generalized dynamics:

M(q)q̈ +C(q, q̇)q̇ +G(q) = τ + f(q, q̇, t) (3.1)

whose detailed description is already presented in Section 2.2 of Chapter 2. For real time implemen-

tation of the control algorithm on manipulators, the actuator dynamics need to be included in the

manipulator dynamics [155]. When the joints of the manipulator are driven by DC servo motors, the

following motor dynamics are to be considered:

Jq̈m +Bq̇m = τm − rτ (3.2)

where qm ∈ R
n, q̇m ∈ R

n and q̈m ∈ R
n respectively represent the angular position, the angular

velocity and the angular acceleration of the motor shaft, J = diag{J1, J2, . . . Jn} is the moment of

inertia matrix of the motor combined with the gearbox inertia, B = diag{B1, B2, . . . , Bn} represents

the viscous friction matrix of the motor shaft, r = q
qm

is the gear reduction ratio and τm ∈ R
n is the

motor torque. Using (3.1) in (3.2) yields

Mhq̈+Chq̇ +Gh + F (q, q̇, q̈, t) = τm (3.3)

where Mh = rM(q) + r−1J , Ch = rC(q, q̇) + r−1B and Gh = rG(q). The uncertainties and

the disturbances in the system are included in the vector F (q, q̇, q̈, t) ∈ R
n.

The combined manipulator-motor dynamics have the same properties as the manipulator dynamics

[156] mentioned below:

Property 3. The inertia matrix Mh is bounded, symmetric and positive definite which means,

mmin||x||
2 ≤ xTMhx ≤ mmax||x||

2 (3.4)

where x ∈ R is a real valued vector and ||x|| is its Euclidian norm.

Property 4. The robotic manipulator is a passive system which means

xT (
1

2
Ṁh −Ch)x = 0, ∀x 6= 0. (3.5)
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The assumptions made while designing the controller are the following:

Assumption 4. All the joints of the robotic manipulator are revolute.

Assumption 5. The desired trajectory for each joint qd ∈ R
n is smooth and continuous, meaning

that the time derivatives q̇d and q̈d exist for all time and are continuous and bounded.

Assumption 6. The vector F (q, q̇, q̈, t) representing the uncertainties and disturbances occurring in

the system is bounded and its partial derivatives are continuous and locally uniformly bounded meaning

|F (q, q̇, q̈, t)| ≤ F̄ <∞ (3.6)

where, 0 ≤ F̄ <∞ is the unknown upper bound of the system uncertainties.

The objective is to design a stable controller so that for a given desired trajectory qd, the tracking

error qe = q − qd converges to zero.

3.2.2 Controller Design

Unlike the existing design methods of sliding mode controller with a PID sliding surface [157], the

proposed controller defines a PID sliding surface systematically using backstepping. The Lyapunov

based backstepping process is used to arrive at a stable PID sliding surface and thereafter the control

law is derived using the sliding mode with an adaptively tuned controller gain. A step by step illus-

tration of the controller design process is presented below:

Step I:

The first step involves defining a regulatory variable z1 following the backstepping method [54]. The

integral of the error is considered as the first variable and is given as

z1 =

∫

qedt =

∫

(q − qd)dt (3.7)

ż1 =q − qd. (3.8)

The control Lyapunov function (CLF) for the above system is considered as

V1 =
1

2
zT
1 z1 (3.9)

V̇1 = zT
1 ż1 = zT

1 (q − qd) . (3.10)

The angular position q is considered as the controller for the subsystem (3.8) and the following

synthetic control law α1 is used for stabilizing (3.8):

α1 = −c1z1 + qd (3.11)
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where c1 = diag(c1i), i = 1 . . . n, is a user defined diagonal matrix with c1i > 0, i = 1 . . . n, and when

q = α1, V̇1 will be negative definite, meaning that

V̇1 = −zT
1 c1z1 ≤ 0. (3.12)

Step II:

However, as the actual control law is yet to be defined, the next regulatory variable is defined as

z2 =q −α1 = q + c1z1 − qd (3.13)

ż2 =q̇ − q̇d + c1ż1. (3.14)

With the introduction of z2, derivative of V1 becomes

V̇1 = −zT
1 c1z1 + zT

1 z2. (3.15)

The CLF for the subsystem (3.14) is now defined as

V2 =V1 +
1

2
zT
2 z2 (3.16)

V̇2 =− zT
1 c1z1 + zT

1 z2 + zT
2 ż2

=− zT
1 c1z1 + zT

1 z2 + zT
2 (q̇ − q̇d + c1ż1). (3.17)

Taking q̇ as the controlling term for (3.14), the synthetic control α2 will now be defined so that q̇ = α2

makes V̇2 negative semidefinite, making (3.14) stable.

α2 = −c2z2 − c1ż1 + q̇d (3.18)

where c2 = diag(c2i), c2i > 0, i = 1 . . . n, is a user defined diagonal matrix.

Replacing (3.18) in (3.17), the derivative of the CLF V̇2 is re-evaluated as follows:

V̇2 =− zT
1 c1z1 + z1T z2 + zT

2 (−c2z2)

=− zT
1 c1z1 − zT

2 c2z2 + zT
1 z2

=−
[

zT1 zT2
]

[

c1 −1
2In

−1
2In c2

][

z1

z2

]

(3.19)

If in (3.19) the matrix

[

c1 −1
2In

−1
2In c2

]

is positive definite, then V̇2 will be negative definite.

Step III:

After obtaining α2, the sliding variable s is now defined as the difference between q̇ and α2 as follows:

s =q̇ −α2

=q̇ − (−c2z2 − c1ż1 + q̇d)
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=(q̇− q̇d) + (c1 + c2)qe + c1c2

∫∫∫

qedt

=q̇e + (c1 + c2) qe + c1c2

∫∫∫

qedt. (3.20)

As can be observed from (3.20), s has a PID structure.

Now, s = 0 is the sliding surface for the system and introduction of the sliding variable s changes

(3.19) into the following:

V̇2 =− zT
1 c1z1 − zT

2 c2z2 + zT
1 z2 + zT

2 s. (3.21)

The time derivative of the sliding variable s is now derived as

ṡ = q̈ − q̈d + (c1 + c2) q̇e + c1c2qe. (3.22)

Deriving q̈ from (3.3) and replacing in (3.22) yields

ṡ =M
−1

h (τm −Chq̇ −Gh)− q̈d + (c1 + c2)q̇e + c1c2qe. (3.23)

The Lyapunov function for this stage is defined as

V3 = V2 +
1

2
sT s. (3.24)

The time derivative of V3 is further expanded using (3.21) and (3.23) resulting in the following relation:

V̇3 =− zT
1 c1z1 − zT

2 c2z2 + zT
1 z2 + zT

2 s+ sT (M−1

h (τm −Chq̇ −Gh)− q̈d

+ (c1 + c2)q̇e + c1c2qe). (3.25)

Step IV:

In order to find a control law with reduced chattering, the reaching law approach [158] is followed. A

constant plus proportional reaching law is used and an adaptive switching gain, which is a function of

the sliding variable s, is introduced. The purpose is to retain the controller robustness with a shorter

reaching time, a good tracking performance and reduced chattering. The reaching law is given by

ṡ = −k̂ ◦sign(s)−Ws (3.26)

where W = diag(wi), wi > 0, i = 1 . . . n, is a designer defined diagonal matrix of constant elements

and k̂ == [k̂i]n×1, i = 1 . . . n, is the adaptively tuned parameter vector given by

˙̂
k = Γ(|s| − ǫk̂). (3.27)

Here Γ = diag(γi), γi > 0, i = 1 . . . n, is the adaptive gain matrix that will determine the rate at which

k̂ will converge to its final value k = [ki]n×1, i = 1 . . . n,. Further, ǫ = diag(ǫi), ǫi > 0, i = 1 . . . n, is the

leakage parameter matrix [146] that will keep (3.27) from overestimating k̂, thus keeping it bounded.
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3. Adaptive Backstepping Sliding Mode Controller with PID Sliding Surface

The control law is now derived in two parts, (a) the equivalent control ueq and (b) the switching

control usw. The equivalent control τeq is obtained from (3.23) and (3.25) as follows:

τeq =Chq̇ +Gh +Mh (q̈d − (c1 + c2) q̇e − c1c2qe) . (3.28)

The switching control τsw is derived from (3.26) as follows:

τsw = −Mh(k̂ ◦sign(s) +Ws). (3.29)

The control law u to be applied to the manipulator is now obtained by combining (3.28) and (3.29)

resulting in

τ = τeq + τsw. (3.30)

3.2.3 Stability Analysis

(i) Stability of the adaptive law

First of all the stability of the adaptive law will be examined using the following Lyapunov func-

tion:

Vk =
1

2
(sT s+ k̃TΓ−1k̃)

⇒ V̇k =sT ṡ+ k̃TΓ−1 ˙̂k (3.31)

where k̃ = k̂− k and k is a vector of positive arbitrary scalar values. Now, considering the presence

of the system uncertainties F (q, q̇, q̈, t) and using (3.27) and (3.30), the time derivative V̇k can be

rewritten as follows:

V̇k =sT
(

−k̂ ◦sign(s) −Ws+M−1
h F (q, q̇, q̈, t)

)

+ k̃T (|s| − ǫk̂)

≤− |s|T
(

k− |M−1
h F (q, q̇, q̈, t)|

)

− sTWs− k̃Tǫk̂. (3.32)

From Lemma 4 for the positive diagonal matrix ǫ and positive vector k, the following relation is

obtained:

k̃Tǫk̂ ≥
1

2
(k̃Tǫk̃ − kT ǫk). (3.33)

Using (3.33) and the assumption (3.6), V̇k can be rewritten as follows:

V̇k ≤− |s|T (k − |M−1
h |F̄ )− sTWs−

1

2
k̃Tǫk̃ +

1

2
kT ǫk (3.34)

Since k is an arbitrary positive gain, the condition k > mminF̄ can always be satisfied. Therefore, V̇k
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can now be written as

V̇k ≤− sTWs−
1

2
k̃Tǫk̃ +

1

2
kT ǫk (3.35)

Now choosing κ1 = λmindiag{
1
2ǫΓ,W } as the minimum of the eigenvalue of the block diagonal

matrix diag{ǫΓ, 2W }, the following can be written:

V̇k ≤− 2κ1Vk + ρ

Vk ≤

(

Vk(0) −
ρ1
2κ1

)

e−2κ1t +
ρ1
2κ1

. (3.36)

where, ρ = 1
2k

T ǫk. Therefore, from (3.36), for Vk(0) >
ρ

2κ1
, V̇k ≤ 0 and the system errors will converge

to a very small region bounded by a radius r around the origin, such that Vk(r) <
ρ1
2κ1

, asymptotically

as t→ ∞

(ii) Stability of the overall system

The previously defined Lyapunov functions V2 and Vk encompass all the variables defined throughout

the design process and accordingly the following Lyapunov function can be used to inspect the stability

of the overall system:

V =(V2 + Vk) =
1

2
(zT

1 z1 + zT
2 z2 + sT s+ k̃TΓ−1k̃)

V =
1

2
ZTPZ (3.37)

⇒ V̇ =V̇2 + V̇k (3.38)

where ZT = [zT
1

zT
2

sT k̃T ], Z = [z1 z2 s k̃]T and P = diag{In, In, In, Γ−1} ∈ R
4n×4n is a

positive definite block diagonal matrix. Using (3.21) and (3.34), V̇ in (3.38) can be written as:

V̇ ≤− zT
1 c1z1 − zT

2 c2z2 + zT
1 z2 + zT

2 s− |s|T (k− |M−1

h |F̄ )

− sTWs−
1

2
k̃T ǫk̃+

1

2
kT ǫk. (3.39)

As mentioned earlier, the arbitrary constant vector k can satisfy k > |M−1

h |F̄ which leads to the

following form of V̇ :

V̇ ≤− zT
1 c1z1 + zT

1 z2 − zT
2 c2z2 + zT

2 s− sTWs−
1

2
k̃T ǫk̃+

1

2
kT ǫk

≤−ZTQZ + ρ (3.40)

where

Q =













c1 −1
2In 0 0

−1
2In c2 −1

2In 0

0 −1
2In W 0

0 0 0 1
2ǫ













4n×4n

and ρ =
1

2
kT ǫk
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When the design parameters are chosen such that Q ∈ R
4n×4n is positive definite, V̇ can be written

as follows:

V̇ ≤− 2κ2V (t) + ρ2

V (t) ≤

(

V (0)−
ρ

2κ2

)

e−2κ2t +
ρ

2κ2
(3.41)

where κ2 = λmin(P
−1Q) > 0 (λmin(•) is the minimum eigenvalue). Therefore, for V (0) > ρ

2κ2

and ρ
2κ2

< 1, V (t) will be a decreasing function indicating the convergence of the system errors to

equilibrium.

3.2.4 Simulation Results: Joint Space Trajectory Tracking of a 2DoF Manipulator

The performance of the proposed adaptive backstepping sliding mode control with the PID slid-

ing surface (ABSMC-PID) is compared with the disturbance observer based decentralized adaptive

robust control proposed by Yang et al. [2] and the IADSC (2.59-2.60) proposed in Chapter 2 through

simulation in Matlab/Simulink environment. The dynamics of the 2DoF manipulator from Yang et

al. [2] is used in the simulation and the mathematical model along with the structural uncertainty

added as disturbance is described in Appendix A.7. The details of the controller proposed by Yang et

al. [2] are described in Appendix A.8.

The parameters used in the ABSMC-PID are as follows:

c1 = 20In, c2 = 0.1In, W = 60In,Γ = 10In, ǫ = 0.001I2,D = 0.001 (3.42)

where In is a n× n identity matrix.

In the simulations it is assumed that only the joint position information is available with an added

uniform noise with bounds ±0.0001rad. The joint velocity is derived through pseudo-differentiation

using a
0.01a+1 (a is the complex number frequency parameter for representation of the differentiator

in the Laplace domain). The selection of the pseudo-differentiator is different from the one used

in the previous section (i.e., a
0.001a+1 ), since increasing the time constant offered some filtering of the

measurement noise. At t = 10s the link massesm1 andm2 are perturbed by 40% and 20% respectively.

The following reference trajectories are defined for each of the joints:

qd1 =0.2 + 2 sin(2t) rad

qd2 =− 1.7 + 1.8 cos(2t) rad. (3.43)

The simulation results for tracking (3.43) are shown in Figure 3.1 and the control torques in the

joints are shown in Figure 3.2. The transient and steady state behaviors along with the overall tracking

error for each joint are shown in Figure 3.1. From Figure 3.1 it can be observed that the proposed

ABSMC-PID has faster convergence than the disturbance observer based controller by Yang et al. [2]

and in terms of the settling time and overshoot in the error, the response with the ABSMC-PID is

better than the previously proposed IADSC. However, the improved performance of ABSMC-PID is
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(a) Tracking error of joint 1

0 5 10 15 20
−0.4

−0.2

0

q e2
 (

ra
d)

 

 

0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.2

0

T
ra

ns
ie

nt
 (

ra
d)

 

 

0 5 10 15 20
−0.01

0

0.01

Time (s)

S
te

ad
y 

S
ta

te
 (

ra
d)

 

 

Yang et al.[2] IADSC ABSMC−PID

(b) Tracking error of joint 2

Figure 3.1: Simulation results: Tracking errors for 2DoF manipulator with Yang et al. ’s controller [2],
IADSC and the proposed ABSMC-PID in presence of measurement noise

achieved with the compromise of using slightly higher amount of input torque as compared to the

disturbance observer based controller by Yang et al. [2] as can be observed in Figure 3.2.

For clarity of analysis the simulation results are tabulated in terms of the following output and input

performance indices: rise time (tr), settling time (ts), peak overshoot (Mp), peak undershoot (Mu),

peak overshoot time (tp), peak undershoot time (tu), the mean absolute steady state error (MASSE),

2-norm of the control input (||u||) and its total variation (TV) (2.32). The tracking performance

indices are listed in Table 3.1 and the input torques are compared in Table 3.2. Due to the oscillatory

nature of the tracking error in steady state, the MASSE is computed and listed in Table 3.1. The

simulation results demonstrate that the proposed ABSMC-PID produces better transient and steady

state responses than both Yang et al. ’s [2] controller and the previously proposed IADSC at the

expense of comparable control energy.

Table 3.1: Performance comparison for trajectory tracking of the 2DoF manipulator

Joint Controller tr(s) ts(s) Overshoot Undershoot MASSE(rad)
Mp(rad) tp(s) Mu(rad) tu(s)

Joint 1
Yang et al. [2] 0.162 0.481 - - - - 0.0062

IADSC 0.093 0.175 -0.024 0.099 - - 0.0029
ABSMC-PID 0.071 0.153 -0.015 0.084 - - 0.0032

Joint 2
Yang et al. [2] 0.268 0.6 - - - - 0.0051

IADSC 0.089 0.4 0.033 0.107 -0.338 0.043 0.0044
ABSMC-PID 0.074 0.18 - - -0.277 0.032 0.0036
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Figure 3.2: Simulation results: The input torques for 2DoF manipulator with Yang et al. ’s controller [2],
IADSC and the proposed ABSMC-PID in presence of measurement noise

Table 3.2: Performance comparison for input torques of the 2DoF manipulator

Joint Controller ||u||(N·m) TV (N·m)

Joint 1
Yang et al. [2] 5× 103 2.9× 105

IADSC 5× 103 0.47 × 105

ABSMC-PID 4.6× 103 4.04 × 105

Joint 2
Yang et al. [2] 2.7× 103 1.59 × 105

IADSC 2.1× 103 0.25 × 105

ABSMC-PID 3.04× 103 1.9× 105

3.3 ABSMC-PID for hybrid impedance control of robot manipula-

tors

For real time implementation of a robotic manipulator, defining the desired trajectory in the task

space instead of the joint space is more relevant. While designing a controller for tracking task space

trajectories, the following two approaches can be followed:

• The task space trajectories can be converted to the joint space coordinates using inverse kinemat-

ics and then the obtained discrete joint coordinates are converted to time dependent trajectories

via interpolation. This process is offline and the joint trajectories are then fed to the controller

as the reference signal.

• The second approach is online, where the controller is designed for the task space only with the

Cartesian force and torque coordinates as the controlling inputs. Then using the manipulator

Jacobian the Cartesian inputs are converted to joint torques to be sent to the manipulator joint

actuators.

Between the above two approaches, the online method of designing manipulator controller in

the task space is more practical since it offers the freedom of changing the reference even during
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the operation. The offline method offers a reliable and stable operation since prior to feeding in

the trajectories the singularity can be avoided. However, this method is twofold and a change in

reference trajectory means having to again calculate the inverse kinematics to obtain the desired joint

trajectories and then changing the reference to the main controller.

While maintaining the motion of a robot manipulator in the task space, it is also vital to monitor

and control the manipulator interaction with the environment it is contained in. For tasks which do not

involve direct contact between manipulator end-effector and the external environment like in welding

and spray painting, only position control is sufficient for satisfactory operation. However, for tasks

involving interaction with the external environment such as polishing, writing, holding various objects

as well as interacting with humans, it is very important to control the applied force and torques along

with the position to achieve the desired goal and also to avoid any unwanted accidents. Therefore

the force/position [159,160] control and impedance control [161–163] of manipulators are extensively

studied fields.

The manipulator dynamics during contact motion gets highly affected by the dynamics of the envi-

ronment which can cause performance degradation and instability in impedance control. Considering

a variable impedance that changes according to the manipulator interaction can help in achieving a

better compliance. Early works in variable impedance control involved defining two different desired

impedance behaviors depending upon the velocity of the operation where mostly the damping was

adjusted [164]. Ikeura et al. [165] proposed a damping factor which varied optimally in accordance

with a minimized cost function. In [166], Dubey et al. proposed damping and stiffness as continu-

ously varying functions of the sensed force and velocity. Tsumugiwa et al. [167] proposed a variable

stiffness for the human-robot cooperative task that was based on the estimated stiffness of the tip

of the human arm. The human arm behavior was used in [168, 169] for interaction tasks. Buchli et

al. [170] proposed a reinforcement learning PI2 (Policy Improvement with Path Integrals) for gain

scheduling of the variable impedance control. Learning based variable impedance control is reported

in [168, 169, 171]. Variation of both the damping and stiffness of the impedance characteristics was

suggested by Bae et al. [172]. Ficuciello et al. [163] proposed varying impedance control by changing

the equivalent inertia during contact using the feedback of the exchanged force. The detailed stability

issue and a generalized Lyapunov function for stability analysis of the variable impedance control

(variable damping and stiffness) are discussed in [173].

Most of the existing impedance controller design using the variable structure method involves

defining a dynamic compensator based on which the switching function is designed. Although these

methods provide robustness and good tracking results, the number of design parameters are high due

to the introduction of the dynamic compensator. In this section the proposed adaptive backstepping

sliding mode controller with a PID sliding surface (ABSMC-PID) will be used for impedance control

of robot manipulators. Unlike the existing methods of robust impedance control using sliding mode

[174–176], in the proposed method the parameters of the backstepping are designed according to the

desired impedance and finally the variables obtained via backstepping are used to define a PID sliding

surface. When the equilibrium is reached, sliding mode will induce the desired impedance behavior

to the system. In the proposed ABSMC-PID the backstepping is used to provide a varying design
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parameter as a function of the system error. This varying parameter will ultimately induce variable

damping and stiffness to the defined impedance so that the transition between no contact and contact

with the external environment is obtained smoothly. The controller design along with the simulation

results are given in detail in the following sections.

3.3.1 Control Objective

Considering no interaction with the environment, the robot dynamics in the task space can be

written as

MT (q)ẍ+CT (q, q̇)ẋ+GT (q) + Fe = Fc + F̃ (3.44)

where

MT (q) =J−T (q)M(q)J−1(q)

CT (q, q̇) =J−T (q)C(q, q̇)J−1(q)− J−T (q)M(q)J−1(q)J̇(q)J−1(q)

GT (q) =J−TG, F̃ (q, q̇) = J−T (q)f(q, q̇), Fc = J−T (q)τ

J−1(q) =J(q)T (J(q)J(q)T + λI)−1, J−T (q) = (J−1)T

and x ∈ R
p is the position of the end-effector in the cartesian task space having dimension p,

J(q) = δx
δq

is the corresponding Jacobian matrix and Fe represents the interaction forces/moment

exerted by the manipulator on the environment.

The properties of the manipulator in the joint space [156] also hold in the task space after the

transformation and are mentioned below for the system (3.44):

Property 5. The inertia matrix MT is symmetric and positive definite meaning that MT = MT
T

and MT > 0 and it is upper and lower bounded, which implies,

µ̄minIp×p ≤ MT ≤ µ̄maxIp×p (3.45)

where 0 < µ̄min < µ̄max and Ip×p is a p× p identity matrix.

Property 6. The robot manipulator (3.44) is a passive system, which implies that

xT

[

1

2
ṀT −CT

]

x = 0 ∀x 6= 0. (3.46)

The assumptions made for deriving a task space controller for the combined manipulator and

actuator dynamics are given below:

Assumption 7. All the joints of the robotic manipulator are revolute.

Assumption 8. The reference trajectory defined as pd(t) ∈ R
n and its time derivatives ṗd(t) and

p̈d(t) are continuous and bounded.
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Assumption 9. The unknown force vector F̃ (q, q̇, t) satisfies

|F̃ (q, q̇, t)| ≤ F̄ (3.47)

where F̄ > 0 is the unknown upper bound of the uncertainty.

The aim of the control scheme is to employ impedance control for a manipulator subjected to

constraint motion due to interaction with the external environment. The manipulator motion can be

divided as (i) the free motion control, where only position control is required as there is no contact

with the external environment and (ii) the impedance control, which will be active as soon as the

robot arm end-effector comes in contact with the environment. The impedance controller design will

be aimed towards avoiding large forces during contact as well as matching the manipulator impedance

with the dynamics of the environment.

The desired impedance characteristics for the manipulator end-effector can be defined as follows:

Md(ẍ− ẍd) +Bd(ẋ− ẋd) +Kd(x− dd) = −Fe (3.48)

where positive definite diagonal matrices Md, Bd, Kd denote the desired inertia, damping and

stiffness constants respectively, Fe is the interaction force and xd is the desired motion trajectory in

the task space of the manipulator. From (3.48), a Cartesian target acceleration (CTA) trajectory ẍt

is defined as:

ẍt = ẍd −M
−1

d (Bd(ẋ− ẋd)−Kd(x− xd)− Fe) (3.49)

such that when ẍ = ẍt, the manipulator motion will follow the desired impedance characteristics

defined in (3.48). Also, from (3.49), a Cartesian target velocity (CTV) profile ẋt is generated as

follows:

ẋt = ẋd −M
−1

d

(

Bd(x− xd)−Kd

∫∫∫ t

0

(x− xd)dθ −

∫∫∫ t

0

Fedθ

)

. (3.50)

Based on the desired impedance and the CTA profile developed, the design of the control law Fc

should be such that

ẍ = ẍt (3.51)

so that the manipulator will follow the desired impedance dynamics.

3.3.2 Controller Design and Stability Analysis

3.3.2.1 Controller Design

In this subsection the controller design process is described. The backstepping method is used to

design a sliding surface (s = 0) in terms of the tracking errors. A salient feature of the SMC is that

on the sliding surface the system states follow the surface dynamics. Using this property, the sliding
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surface will be designed in such a way that s = 0 will resemble the Cartesian target velocity, and at

the equilibrium, where s = ṡ = 0, the impedance dynamics will be achieved.

Step I:

In order to design a hybrid impedance control method using backstepping sliding mode methodology,

the error ex is defined in the task space as

ex = x− xd.

The integral of this error is defined as the first regulatory variable z1 as

z1 =

∫∫∫

exdt (3.52)

ż1 = x− xd. (3.53)

The control Lyapunov function (CLF) V1 is defined for this subsystem as

V1 =
1

2
zT
1 z1

V̇1 = zT
1 ż1 = zT

1 (x− xd). (3.54)

Considering x to be the controlling quantity in this subsystem, a virtual control α1 is defined such

that when x = α1 (3.53) is stable and is given by

α1 = −c1z1 + xd (3.55)

where c1 = diag(c1i), i = 1 . . . p, c1i > 0, is a user defined constant.

Substituting (3.55) into (3.54) yields

V̇1 = −zT
1 c1z1 ≤ 0.

Step II:

The next regulatory variable z2 will now represent the error between x and α1 as

z2 = x−α1 = x− xd + c1z1 (3.56)

ż2 = ẋ− ẋd + c1ż1. (3.57)

Substituting x from (3.56) into (3.54) yields

V̇1 = −zT
1 c1z1 + zT

1 z2. (3.58)
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3.3 ABSMC-PID for hybrid impedance control of robot manipulators

The CLF for the subsystem (3.57) defined by V2 is given as

V2 =V1 +
1

2
zT
2 z2 (3.59)

V̇2 =V̇1 + zT
2 ż2

=V̇1 + zT
2 (ẋ− ẋd + c1ż1)

≤− zT
1 c1z1 + zT

1 z2 + zT
2 (ẋ− ẋd + c1ż1)

≤− zT
1 c1z1 + zT

2 (ẋ− ẋd + c1ż1). (3.60)

Based on V̇2 (3.60), the virtual control input α2 to stabilize the subsystem (3.57) is derived as

α2 = −c2z2 − c1ż1 + ẋd (3.61)

where c2 = diag(c2i), i = 1 . . . p, c2i > 0, is a user defined constant. This leads to the following dynamic

subsystem:

ż2 =− c2z2

⇒ ėx =− (c1 + c2)ex − c1c2

∫∫∫ t

0

exdθ. (3.62)

Replacing ẋ = α2 in (3.60), the time derivative of the CLF V2 is obtained as follows:

V̇2 ≤ −zT
1 c1z1 − zT

2 c2z2 + zT
1 z2. (3.63)

Step III:

In this step the sliding variable s is defined by adding the term kf

∫∫∫

efdt to the next backstepping

error (ẋ − α2), so that at the equilibrium ṡ = 0, the closed loop system dynamics resembles the

desired impedance dynamics. For the impedance control ef = Fe and kf = 1. The sliding variable s

is defined as follows:

s =ẋ−α2 + kf

∫∫∫

efdt

⇒ s =ẋ− ẋd + c2z2 + c1ż1 + kf

∫∫∫

efdt

=ėx + (c1 + c2)ex + c1c2

∫∫∫

exdt+ kf

∫∫∫

efdt

⇒ ṡ =ẍ− ẍd + (c1 + c2)(ẋ− ẋd) + c1c2(x− xd) + kfef . (3.64)

Comparing (3.49) with the sliding surface equilibrium ṡ = 0 (ṡ given by 3.64), the desired

impedance parameters are obtained in terms of the controller parameters as follows

M
−1

d Bd(t) = c1 + c2, M
−1

d Kd(t) = c1c2. (3.65)
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3. Adaptive Backstepping Sliding Mode Controller with PID Sliding Surface

Now, comparing (3.49) and (3.50) with (3.64), the following can be written for the sliding surface

s = ẋ− ẋt (3.66)

s̈ = ẍ− ẍt (3.67)

where the CTA and CTV in terms of the backstepping variables can be written as

ẍt = ẍd − c1z̈1 − c2ż2 − kfef (3.68)

ẋt = ẋd − c1ż1 − c2z2 − kf

∫∫∫

efdt (3.69)

Step IV:

The control law will be defined in such a way that the system states reach the sliding surface s = 0

in finite time and then they converge to the equilibrium ṡ = 0 asymptotically. In order to derive the

control law the following Lyapunov function is defined

Vs =
1

2
sTMT s

V̇s =sTMT ṡ+
1

2
sT ṀT s (3.70)

Now, using Property 6 in (3.70) and then applying (3.66), (3.67) as well as the nominal system

dynamics (3.44), V̇s can be rewritten as

V̇s =sTMT ṡ+ sTCs

=sT (MT (ẍ− ẍt) +CT (ẋ− ẋt))

=sT (Fc −GT − Fe −MT ẍt −CT ẋt) (3.71)

Therefore, from (3.71), the equivalent part of the controller is derived as

(Fc)eq = MT ẍt +CT ẋt +GT + Fe. (3.72)

The reaching law approach is used to design the switching part of the controller where a constant

plus proportional reaching law [158] is used as follows,

ṡ = −k̂ ◦sign(s)−Ws (3.73)

where Wp×p > 0 is a user defined constant diagonal matrix with positive elements and k̂ > 0 is an

adaptively tuned gain given by the adaptive law [146]

˙̂
k = Γ(|s| − ǫk̂) (3.74)

where Γp×p = diag(Γi), i = 1 . . . p is the adaptive gain matrix with user defined gain parameters Γi >

0 and ǫp×p = diag(ǫi), i = 1 . . . p, ǫi > 0 is the leakage parameter [146] that prevents overestimation
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3.3 ABSMC-PID for hybrid impedance control of robot manipulators

by the adaptive law and ensures that k̂ converges to an arbitrary finite value k. Thus, the switching

part of the control derived based on (3.73) and (3.71) is

(Fc)sw = −k̂ ◦sign(s)−Ws. (3.75)

The total control law Fc is defined as

Fc =CT ẋt +GT + Fe +MT (ẍd − c2ż2 − c1z̈1 − kfef )− k̂ ◦sign(s)−Ws. (3.76)

The above control law ensures that through sliding mode, the manipulator acceleration follows the

CTA trajectory, i.e., ẍ = ẍt, which will make the manipulator track the desired dynamics faithfully.

In order to achieve variable damping and stiffness values, the design parameter c2 is changed to

the following variable function

c2 = diag{c2i − (1− Σi)(c2iexp(−ηz
2
2i))}, i = 1, . . . , n (3.77)

where Σi is the diagonal element of an n × n diagonal selection matrix Σ having entries 0 and 1

for contact and free motion respectively and η is a positive scalar. The selection of c2 as shown in

(3.77) ensures that whenever the manipulator encounters contact in any direction, the element of c2

along that direction will change accordingly so that the stiffness of the desired impedance along that

direction reduces during impact and thereby minimizing the possible high impact force especially in

case of stiff environments.

3.3.2.2 Stability Analysis

Stability of the Sliding Surface and Adaptive Law

The following Lyapunov function Vk is chosen for the stability analysis of the sliding surface and the

adaptive law,

Vk =
1

2
sTMT s+ k̃TΓ−1k̃ (3.78)

where k̃ = k̂ − k with k being an arbitrary positive gain vector. Taking the time derivative of Vk

yields

V̇k = sTMT ṡ+
1

2
sT ṀT s+ k̃TΓ−1 ˙̂k.

Therefore, using (3.71) and including the disturbance forces, V̇k can be rewritten as

V̇k = sT (Fc −GT + Fe + F̃ −MT ẍt −CT ẋt) + k̃TΓ−1 ˙̂k. (3.79)

Substituting the control law (3.76) into (3.79) and using (3.74), the following can be obtained,

V̇k =sT (−k̂ ◦sign(s)−Ws+ F̃ ) + k̃
T
|s| − k̃

T
ǫk̂
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3. Adaptive Backstepping Sliding Mode Controller with PID Sliding Surface

≤− |s|Tk+ |s|T F̃ − sTWs− k̃
T
ǫk̂. (3.80)

From Lemma 4, for k̃ = k̂−k and a positive definite diagonal matrix ǫ, the following can be written:

k̃
T
ǫk̂ ≤

1

2
(k̃

T
ǫk̃− kT ǫk). (3.81)

From (3.80) and (3.81), the following inequality can be derived:

V̇k ≤ −|s|T (k− F̃ )− sTWs−
1

2
k̃
ǫ
k̃+

1

2
kT ǫk. (3.82)

For the arbitrary positive parameter k satisfying k ≥ F̃ , V̇k can be written as

V̇k ≤− sTWs−
1

2
k̃
ǫ
k̃+

1

2
kT ǫk

≤− 2κVk + ρ. (3.83)

where κ = λmin
(

diag{W , 12Γǫ}
)

and ρ = 1
2k

T ǫk. Therefore, when Vk(0) ≥
ρ
2κ and ρ

2κ < 1, V̇k < 0

indicating the asymptotic stability of the sliding surface and the adaptive law .

(ii) Stability of the Desired Impedance

Following the stability analysis method provided in [173] the following Lyapunov function is chosen

for the desired impedance characteristics:

V =
1

2
żT
2 Mdż2 +

1

2
eTxβ(t)ex (3.84)

where β(t) is a function of the variable damping and stiffness coefficients of the desired impedance

and is a symmetric, positive definite and continuously differentiable diagonal matrix. The stability of

the desired impedance characteristics can be examined using the following theorem.

Theorem 6. If Md is a constant, symmetric, positive definite diagonal matrix and Bd(t) and Kd(t)

are symmetric, positive definite, continuously differentiable, varying damping and stiffness matrices,

then with zero external force in (3.48), i.e., Fe = 0 and a positive definite c1, the impedance charac-

teristics will be asymptotically stable for ∀t if the following conditions are satisfied:

(i) Bd(t)− c1Md is a positive definite matrix,

(ii) c1Kd(t)−
1

2
K̇d(t)−

1

2
c1Ḃd(t) is positive definite.

Proof. The proof can be found in Appendix A.10.

From (3.65)b and (3.77), the damping and the stiffness parameters are obtained in the proposed

controller as follows:

Bd(t) =Md(c1 + c2) = Md

(

c1 + diag{c2i}+ (I −Σ)diag{−c2iexp(−ηz2i
2)}
)

(3.85)

Kd(t) =Mdc1c2 = Mdc1
(

diag{c2i}+ (I −Σ)diag{−c2iexp(−ηz2i
2)}
)

. (3.86)
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3.3 ABSMC-PID for hybrid impedance control of robot manipulators

Since the matrices Bd(t) and Kd(t) are diagonal, the following scalar equations can represent each

entry of the respective matrices:

bd =md

[

c1 + c2
(

1− exp(−ηz22)
)]

(3.87)

kd =mdc1c2
[

1− exp(−ηz22)
]

(3.88)

where md, bd, kd represent the diagonal elements of the matrices Md, Bd, Kd respectively. Further,

c1, c2 represent the diagonal elements of the matrices c1, c2 respectively and z2 represents the elements

of the vector z2. Using the first condition of Theorem 6 and (3.87-3.88), the following can be derived:

c2
(

1− exp(−ηz22)
)

> 0 (3.89)

which is true since already by design c2 > 0 and
(

1− exp(−ηz22)
)

is a positive semi-definite function.

Using (3.87-3.88) and the second condition of Theorem 6, the following relation is obtained:

c1
(

1− exp(−ηz22)
)

> 2ηz2ż2exp(−ηz
2
2). (3.90)

Now, the desired impedance is obtained at the equilibrium of the sliding surface i.e., when s = ṡ = 0.

Since the derived control law decentralizes and stabilizes all the subsystems defined in backstepping,

the following conditions hold when the sliding surface is reached:



















ż1 = −c1z1

ż2 = −c2z2

ẋ = −c2z2 − c1ż1 + ẋd.

(3.91)

With the controlled system, the following Lyapunov function is considered and (3.91) is used in its

time derivative.

Vz2 =
1

2
zT
2 z2

V̇z2 =zT
2 (ż2). (3.92)

From (3.91) and (3.92), the following can be obtained:

V̇z2 =− zT
2 c2z2 < 0, ∀z2 6= 0. (3.93)

Therefore, on the sliding surface zT
2
ż2 ≤ 0 and hence the inequality (3.90) will be satisfied for all

nonzero z2 values. This shows that the impedance defined with the variable damping and stiffness

through the backstepping design parameters is stable.
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3. Adaptive Backstepping Sliding Mode Controller with PID Sliding Surface

3.3.3 Simulation Results

The impedance controller designed using the proposed ABSMC-PID method is simulated for 3DoF

operation of the 14DoF Coordinated Links (COOL) robot arm shown in Figure 2.12 of Chapter 2. The

joints 1R, 4R and 7R are used for the simulation and the details of the 3DoF manipulator dynamics are

given in Appendix A.9. It is assumed that only the position and the interaction force measurements

are available and hence, the manipulator joint velocities are derived through pseudodifferentiation of

the joint positions as mentioned in [2]. As a structural uncertainty, a load of 0.5kg is added to the

manipulator end-effector and a position measurement noise bounded between ±0.0001 rad is added

as the unstructured uncertainty.

In the simulations the task space impedance control is considered. The following desired trajectory

is defined for the x, y and z coordinates:

xd = [0.1 cos (t) + 0.2, 0.1 cos (t) + 0.2, 0.3]Tm. (3.94)

with all the joints of the arm initially at 0 rad, thus making the initial location of the end-effector

x0 = [0, 0, 0.56]T m. In order to examine the interaction dynamics a solid horizontal wall is located

at pze = 0.33m and a vertical wall is located at pxe = 0.15m that will work as constraints for the

end-effector motion. The contact model is considered as a high stiffness spring system [177] as follows

Fe= Ke(x− xe) (3.95)

where xe = [pxe, pye, pze] = [0.15, 0, 0.33]m and Ke = diag{Kx,Ky,Kz} is the stiffness parameter

of the environment. For x-direction Kx = 2000N/m and for z-direction Kz = 10, 000N/m. There is

no interaction along y-direction and hence Ky = 0. The interaction force will be zero when there is

no contact of the end-effector with the external environment.

The parameters of the desired impedance used in the controller are as follows:

Md =







0.2 0 0

0 0.2 0

0 0 0.2






, Bd =







10 0 0

0 16 0

0 0 8






, Kd =







120 0 0

0 320 0

0 0 80






.

The corresponding parameters c1, c2 of the ABSMC-PID are:

c1 =







30 0 0

0 40 0

0 0 20






, c2 =







20 0 0

0 40 0

0 0 20






.

In order to induce variable damping and stiffness along the directions where the manipulator end-

effector comes in contact with the external environment (i.e. x and z-directions), c2 is replaced with

the following:

c2 = (diag{20, 40, 20}) − (diag{20, 40, 20}) (I −Σ)
(

diag{exp(−ηiz
2
2i)}

)

, i = 1, 2, 3 (3.96)
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Figure 3.3: Tracking results with varying and constant impedance

where for the selection matrix Σi = 1 for free motion and Σi = 0 for contact motion and ηi ∈ η =

diag{100, 1, 1}. For the example under consideration, c2 has the following form:

c2 =







20
[

1− exp
(

−100z221
)]

0 0

0 40 0

0 0 20
[

1− exp
(

−z223
)]






.

The parameters in the adaptive law are:

Γ = 100I, ǫ = 0.1I. (3.97)

The proportional constant of the sliding mode controller is W = 10I. The inertia matrix MT of the

manipulator is replaced with the estimated diagonal matrix M̄b = diag{2.5, 2.5, 10}. In order to test

the influence of c2, the performances of the controller with both variable and constant values of c2

are compared.

The simulations results for trajectory tracking along the x and y axes are shown in Figure 3.3 and

the interaction forces when the external obstacle is encountered are shown in Figure 3.4 with both

the variable and constant values of controller gain c2. The torques produced by the controller for the

three actuated joints are shown in Figure 3.5. The motion of the end-effector in the three dimensional

Cartesian space is shown in Figure 3.6 along with the motion as observed in the x-y and y-z planes.

As can be observed from Figure 3.3, in terms of tracking results during free motion both the constant

and variable values of c2 offer almost the same performance. Notable improvement with the variable

c2 is observed in the case of interaction force along the z-axis shown in Figure 3.4. As soon as the

end-effector comes in contact with the wall, the maximum impact force with the variable c2 is 26 N,

whereas with the constant c2 it is almost double, reaching up to 52 N. The input torques generated in

both the cases are almost the same as can be observed in Figure 3.5. The motion of the end-effector

in the x-y plane and the y-z plane are shown in Figure 3.6 for both varying and constant c2 values.
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Figure 3.4: Interaction forces with varying and constant impedance
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Figure 3.5: Input torques for the manipulator joints with varying and constant impedance
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Figure 3.6: Motion of the end-effector in the Cartesian space

The norms of the input torques (||u||) for each joint and their total variations (TV) are listed in Table

3.3 and it is observed that these are comparable for both varying and constant c2 values.

Table 3.3: Performance indices for the input torques

x-axis y-axis z-axis

||uv || (N·m) 316.59 341.32 230.78
||uc|| (N·m) 322.63 407.32 233.77

TVv (N·m) 6.47× 103 4.01× 103 1.62 × 103

TVc (N·m) 5.46× 103 4.56× 103 1.31 × 103

||uv ||, ||TVv||- Input norm and TV with varying c2
||uc||, ||TVc||- Input norm and TV with constant c2

3.4 Summary

The ABSMC-PID method proposed in this chapter provides a much simpler design strategy as

well as simpler controller structure as compared to the IBSMC and the IADSC methods with minimal

compromise in terms of the controller performance. The PID type sliding surface aids in achieving a

faster transient response and yields a low steady state error. Use of the adaptive law to estimate the

sliding mode controller gain and the constant plus proportional reaching law help in mitigating the

chattering in the input. The comparison with other control methods based on disturbance observers

showed that the proposed ABSMC-PID could improve the performance. The backstepping method

used in the proposed controller enabled methodical building of an asymptotically stable control law.

The same controller design algorithm was used for impedance control of the manipulator. The non-

linear damping and stiffness induced by the variable parameter of the backstepping method helped in
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3. Adaptive Backstepping Sliding Mode Controller with PID Sliding Surface

lowering the impact force when the end-effector encounterd any surface with high stiffness.

However, the above controller design is based on the dynamical model of the manipulator. With

increased DoF, the structural complexity of the manipulator dynamics increases. This complexity issue

becomes severe especially if the manipulator wrist is not spherical. Using such complex manipulator

model in the control law will unnecessarily complicate the controller structure and additionally require

more memory space and compilation time for software implementation. As a solution, a time delay

based estimation of the manipulator model is proposed in the next chapter that will lead to a model

free controller design.
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4. Adaptive Backstepping based Fast Terminal Sliding Mode Controller

4.1 Introduction

The backstepping sliding mode controllers proposed so far rely on the system model to form the

control law. As mentioned in the previous chapter, for a highly coupled and nonlinear system like the

robot manipulator, relying on a model based controller may lead to a structurally complex control law

which is undesirable. Moreover, the manipulator model may not be available and often the derived

dynamic model is prone to errors. Therefore, instead of relying on the exact manipulator model it

may be estimated which will highly simplify the inverse dynamic control.

The time delay control (TDC) was first proposed by Youcef-Toumi and Ito [25] for systems having

unknown or highly varying parameters. The method involves estimating the unknown system model

based on the input and state values of the previous sampling instant assuming that the inputs and

states are smooth. The method has proved effective not only in case of unknown system parameters

but also in case of the systems with highly complex nonlinear model. The estimation of nonlinearities

used in the TDC method is called time delay estimation (TDE) that can be useful in designing model

free control laws for the robot manipulators. Some examples of applications of TDC in robotics are

found in [178–181]. The most attractive quality of the TDE is that it does not require any prior

knowledge of system parameters and involves no parameter that might need tuning. For applying

TDE to robot manipulators the only additional information required is the joint acceleration data

which can be easily derived from the available joint position information using robust differentiation

method [182].

In [178] Jin et al. proposed the time delay controller (TDC) [25,183] producing a terminal sliding

surface of error dynamics for the manipulator control. The terminal sliding surface was introduced for

enhancing the system performance which was degraded due to the time delay estimation error. The

terminal attractors initially proposed by Zak [77] have been used as sliding surface to design a terminal

sliding mode (TSM) control [79]. But the main disadvantages of the TSM are the singularity problem

and the degradation of convergence performance when the error states are far from the equilibrium.

To avoid the singularity problem, the non-singular terminal sliding mode was proposed in [80] and

for consistent convergence performance, the fast terminal sliding mode (FTSM) control was suggested

in [24]. Combination of these two have resulted in non-singular fast terminal sliding mode control,

which has been effectively used for various nonlinear systems [184–186].

In this chapter TDE is used to compensate for the soft nonlinearities like the Coriolis, centrifugal,

viscous and Coulomb friction, gravitational torques and thereby simplifying the system model. The

model free controller uses the backstepping sliding mode method [129] with a non-singular fast terminal

sliding surface. The resulting controller structure has reduced complexity and is suitable for practical

implementation.

The organization of the chapter is as follows. The controller design methodology is explained

in Section 4.2. Simulation results are presented in Section 4.3. A brief summary of the chapter is

provided in Section 4.4.
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4.2 Controller Design

The controller will be designed for the combined manipulator-actuator dynamics for an n-DoF

manipulator as described in Section 3.2.1 of Chapter 3 and represented by the following differential

equation:

Mhq̈ +Chq̇ +Gh + τf = τm. (4.1)

In (4.1), Mh ∈ R
n×n denotes the inertia matrix, Ch ∈ R

n×n is the Coriolis matrix, Gh ∈ R
n represents

the gravitational terms and τm ∈ R
n is the actuator torque vector for the manipulator joints. The

vector τf ∈ R
n includes all the structured and unstructured uncertainties present in the system.

Assuming τf to be unknown and bounded, at first the controller will be designed for the following

nominal system:

Mhq̈ +Chq̇ +Gh = τm. (4.2)

Initially backstepping is used in the controller to derive a suitable nonsingular terminal sliding sur-

face [24] based on the error variables. In the final step of backstepping, the final control law is derived

using the time delay estimation (TDE) [25] to estimate the soft nonlinearities of the system model.

The controller design process can be divided into three steps described as follows.

Step I:

For the backstepping method, tracking error is chosen as the first regulatory variable defined as:

z1 =q − qd

ż1 =q̇ − q̇d. (4.3)

A control Lyapunov function (CLF) V1 is defined as

V1 =
1

2
zT
1 z1

V̇1 =zT
1 ż1 = zT

1 (q̇ − q̇d). (4.4)

Assuming q̇ to be the controlling term in (4.3), a synthetic control α1 is chosen such that q̇ = α1 to

stabilize the subsystem. Using the CLF, α1 is derived as

α1 = −c1z1 + q̇d (4.5)

where c1 = diag(c1i), i = 1 . . . n and c1i > 0, is a user defined constant diagonal matrix.

Step II:

The next regulatory variable z2 is defined as the difference between α1 and q̇ since the actual control
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4. Adaptive Backstepping based Fast Terminal Sliding Mode Controller

is not applied yet and hence these two terms will not be equal. So, z2 is given by

z2 =q̇ −α1 = q̇ + c1z1 − q̇d

ż2 =q̈ − q̈d + c1ż1. (4.6)

A nonsingular fast terminal sliding (NFTS) surface [184] is now chosen as

s =z1 + βzδ2 = 0 (4.7)

where |z2|
δ ,

[

|z21|
δ, |z22|

δ, . . . , |z2n|
δ
]T

and β > 0, 1 < δ < 2 are user defined design parameters.

Using (4.3) and (4.6) in (4.7) the following can be derived:

qe + β(q̇e + c1qe)
δ = 0 (4.8)

where qe = q− qd is the tracking error. The surface proposed in (4.8) has the same structure as the

NFTS surface proposed in [184].

From (4.8), it is observed that when the error is far away from the equilibrium, a fast convergence

rate is achieved; whereas closer to 0, the terminal attractor becomes the dominating dynamics driving

the states to zero in finite time.

In order to avoid the complex value problem, the sliding surface is modified as [187]

s = z1 + β|z2|
δ
◦sign(z2) = 0. (4.9)

Remark 7. The sliding variable s is a continuous and differentiable function and its derivative ṡ is

also continuous as shown in Appendix A.11.

Remark 8. The time Tre required to reach from qe = qe0 (initial value of the error when the sliding

surface is reached) to qe = 0 using the fast terminal sliding surface as shown in [184] is given by:

Tre =
c−1
1

(1− a)

[

ln (b+ c1|qe0|
1−a)− ln (b)

]

. (4.10)

where b = ( 1
β
)d, d = 1

δ
.

The subsystem (4.6) is rewritten as follows:

ż2 = M
−1

h (τm −Chq̇ −Gh)− q̈d + c1ż1. (4.11)

The control law τm will now be derived in two parts as

τm = τtde + τsm (4.12)

where τtde denotes the control action designed using the time delay estimation of the system nonlin-

earities and uncertainties and τsm is the control input derived from the sliding mode.
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Step III:

In this step the control law is derived based on the sliding mode methodology and time delay con-

trol. In order to design τsm, the reaching law approach [158] is followed. A power rate reaching law

combined with the proportional reaching term is used for obtaining a fast convergence rate for the

reaching phase as

ṡ = −k ◦ |s|ρ ◦sign(s) −Ws (4.13)

where 0 < ρ < 1, k = [k1, k2, . . . kn]
T > 0; i = 1, . . . , n and W = diag(Wi), Wi > 0; i = 1, . . . , n are

the user defined controller parameters with |s|ρ ,
[

|s1|
ρ, |s2|

ρ, . . . , |sn|
ρ
]T

.

The controller gain k determines the system robustness against uncertainties. In case of known

bounds of the uncertainty, the value of k > 0 is set higher than the uncertainty bound; however, it is

always not possible to know the upper bound of the uncertainty affecting the system. In such cases

k is adaptively tuned based on the system error. Moreover, the amount of control energy used and

chattering in the control input are proportional to the value of k. Since adaptive tuning will vary k

according to system error, its value will be low when error is nearer to zero which leads to reduced

control energy and chattering. The tuning law used here is given by

˙̂
k = Γ(|s|ρ+1 − ǫk̂) (4.14)

where Γ = diag(Γi), Γi > 0; i = 1, . . . , n is the adaptive gain that determines the speed of adaptation

and ǫ = diag(ǫi), ǫi > 0; i = 1, . . . , n is the leakage parameter [188]. The leakage term −Γǫk̂ prevents

over-adaptation of k̂.

Remark 9. As can be found in [24] the combination of the power rate and exponential reaching law

yields a reaching time Tr as

Tr =
W−1

(1− ρ)

[

ln (k̂ +W |s0|
1−ρ)− ln(k̂)

]

(4.15)

where s0 is the initial value of s.

Using (4.9) and (4.11) gives

ṡ =ż1 + βδ|z2|
δ−1

◦ ż2

=ż1 + βδ|z2|
δ−1

◦

(

M−1
h (τm −Chq̇ −Gh)− q̈d + c1ż1

)

. (4.16)

Detailed derivation of ṡ is shown in Appendix A.12.

From (4.13) and (4.16), τsm is derived as follows:

τsm =Chq̇ +Gh +Mh(q̈d − c1ż1)−
1

δβ
|z2|

1−δ
◦Mh

(

ż1 + k̂ ◦ |s|ρ ◦sign(s) +Ws
)

. (4.17)

The model of the robot manipulator contains the soft nonlinearities (centripetal, centrifugal and

gravitational terms i.e., Ch(q, q̇)q̇+Gh(q) and any other frictional and external torques) which are
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4. Adaptive Backstepping based Fast Terminal Sliding Mode Controller

estimated through the time delay estimation (TDE) method [178]. From the dynamics of the robot

manipulator (4.1), the following can be found:

Chq̇ +Gh + τf = τm −Mhq̈ (4.18)

which can be equivalently expressed as

H = τm −Mhq̈ (4.19)

where H = Chq̇ +Gh + τf is the term containing the nonlinearities of the system associated with

the frictional and the gravitational torques of the manipulator. The estimate of H, denoted by Ĥ is

considered as the TDE input to the system as

τtde , Ĥ . (4.20)

At time instant t, H is obtained as

H(t) = τm(t)−Mh(t)q̈(t) (4.21)

where •(t) indicates the values of the respective terms at time instant t. Considering a very small

time delay L (for example, in case of software application L will be the sampling time) and assuming

H(t) to be a smooth continuous function, the delayed term H(t− L) is used as an estimate of H(t),

meaning

Ĥ(t) , H(t− L). (4.22)

Therefore, assuming the joint acceleration is measurable, the TDE input to the system is derived as

τtde = Ĥ = τm(t− L)−Mh(t− L)q̈(t− L). (4.23)

Using (4.23) in (4.17), the TDE based sliding mode control law for the robot manipulator is obtained

as

τm =Ĥ +Mh(q̈d − c1ż1)− (δβ)−1|z2|
1−δ

◦Mh

(

ż1 + k̂ ◦ |s|ρ ◦sign(s) +Ws
)

. (4.24)

Considering the actuator saturation, the designed control law is modified as τm mod given by

τm mod = sat|τL|(τm) (4.25)

where

sat|τL|(τm) =







|τL|sign(τm), |τm| > |τL|

τm, |τm| ≤ |τL|
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4.2 Controller Design

with τL denoting the limit of the allowable torque.

4.2.1 Stability Analysis

The Lyapunov based stability of the controlled system and the adaptive law are analyzed in

this section. In order to prove the controlled system’s stability, the boundedness of the time delay

estimation error is ascertained at first. The TDE error can be represented as

∆H =Ĥ −H

=
[

Ch(t− L)q̇(t− L)−Ch(t)q̇(t)
]

+
[

Gh(t−L)−Gh(t)
]

+
[

τf(t− L)− τf(t)
]

. (4.26)

Now, being a part of manipulator dynamics, both the functionsCh(•) andGh(•) are smooth and hence

for a sufficiently small time delay, the differences Ch(t−L)q̇(t−L)−Ch(t)q̇(t) and Gh(t−L)−Gh(t)

will be bounded. Moreover, τf includes the gear backlash, frictional force and other such unaccounted

disturbances which are always bounded for the robot manipulator. Thus the TDE error will be

bounded.

Replacing the control law (4.24) in (4.16), the time derivative of the sliding variable is obtained as

follows:

ṡ =− k̂ ◦ |s|ρ ◦sign(s) −Ws+ βδ|z2|
δ−1

◦M−1
h (Ĥ −H)

=− k̂ ◦ |s|ρ ◦sign(s) −Ws+ βδ|z2|
δ−1

◦M−1
h ∆H. (4.27)

4.2.1.1 Stability of the Adaptive Law

The stability of the adaptive law is analyzed using the following Lyapunov function,

Vk =
1

2
(sT s+ k̃TΓ−1k̃) (4.28)

where

k̃ = k̂− k (4.29)

is the difference between the adapted value k̂ and the arbitrary value k > 0 to which k̂ converges.

Using (4.14), the time derivative of Vk is obtained as

V̇k =sT ṡ+ k̃T (|s|ρ+1 − ǫk̂). (4.30)

From (4.29), the following can be derived using Lemma 4,

k̃T ǫk̂ ≥
1

2
(k̃T ǫk̃− kT ǫk). (4.31)
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4. Adaptive Backstepping based Fast Terminal Sliding Mode Controller

Using (4.27) and (4.31) in (4.30) yields

V̇k ≤− kT |s|ρ+1 − sTWs+ βδsT |z2|
δ−1

◦M
−1

h ∆H −
1

2
k̃T ǫk̃+

1

2
kT ǫk

≤− sTWs−
1

2
k̃T ǫk̃ −

[

k − βδ|s|−ρ ◦ |z2|
δ−1

◦ |M−1

h ||∆H|
]T

|s|ρ+1 +
1

2
kT ǫk. (4.32)

The TDE error ∆H has been considered to be bounded for small sampling time. Moreover, using

Property 3, the inertia matrix Mh of the manipulator has been found to be bounded. Since k is an

arbitrary value, it may be made to satisfy the condition

k > βδ|s|−ρ ◦ |z2|
δ−1

◦ |M−1

h ||∆H|. (4.33)

Hence it follows that

V̇k ≤− sTWs−
1

2
k̃T ǫk̃ +

1

2
kT ǫk

≤− 2ψVk + ρ (4.34)

where, ψ = λminQ, Q = (diag{W , 0.5Γǫ}) and ρ = 1
2k

T ǫk. Thus, for Vk(0) >
ρ
2ψ and ρ

2ψ < 1, (4.34)

will be negative definite and Vk(t) will converge to a ball of very small radius given by ρ
2ψ .

4.2.1.2 Stability of the Sliding Surface

Lemma 10. The sliding surface will be finite time stable provided the adaptive law is stable and (4.33)

is satisfied.

Proof. For the sliding surface s = 0, Lyapunov function Vs is chosen as follows,

Vs =
1

2
sTs. (4.35)

Using (4.16), the time derivative of Vs is derived as

V̇s =sT ṡ = sT
[

ż1 + βδ|z2|
δ−1

◦

(

M−1
h (τ −Chq̇ −Gh)− q̈d + c1ż1

)

]

(4.36)

Using (4.24) yields

V̇s =− k̂T |s|ρ+1 − sTWs+ βδsT |z2|
δ−1

◦M−1
h ∆H

≤− k̂T |s|ρ+1 − sTWs+ βδsT |z2|
δ−1

◦M−1
h |∆H|

≤− (k̃ + k)T |s|ρ+1 − sTWs+ βδsT |z2|
δ−1

◦M−1
h |∆H|

≤− k̃T |s|ρ+1 − sTWs− kT |s|ρ+1 + βδsT |z2|
δ−1

◦M−1
h |∆H|

≤− (|s|
ρ+1

2 )T K̃|s|
ρ+1

2 − sTWs−
(

k− βδ|s|−ρ ◦ |z2|
δ−1

◦M−1
h |∆H|

)T

|s|ρ+1 (4.37)

where K̃ = diag(k̃i) and K = diag(ki) are the diagonal matrices with entries from k̃ and k vectors.
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4.3 Simulation Results

Since the elements of k are arbitrary constant values, it may be made to satisfy the following:

k ≥ βδ|s|−ρ| ◦z2|
δ−1

◦M−1
h |∆H|. (4.38)

Therefore, (4.37) can be rewritten as follows:

V̇s ≤− sTWs− (|s|
ρ+1

2 )T K̃|s|
ρ+1

2

≤− η1Vs − η2V
ρ+1

2
s . (4.39)

As shown in Lemma 1 in [189], for η1 > 0, η2 > 0 and 0 < ρ < 1, with initial time t0, Vs will converge

to zero in a finite time ts where

ts ≤t0 +
2

η1(1− ρ)
ln
η1V

1−ρ

2
s (t0) + η2

η2
. (4.40)

The above indicates that the sliding surface also converges to the equilibrium (s = 0, ṡ = 0) in a

finite time and hence s = 0 is a stable surface.

4.3 Simulation Results

The proposed adaptive backstepping based fast terminal sliding mode controller (ABFTSMC) is

applied to a 2 DoF robotic manipulator used in [3] through MATLAB Simulink simulations with a

sampling time of L = 1ms. The performance of the proposed controller is compared with the robust

finite time stability control (RFTSC) proposed by Zhao et al. [3]. The details of the mathematical

model of the manipulator are given in Appendix A.13.

The parameters of the manipulator are considered as: m1 = 0.5kg,m2 = 1.5kg, l1 = 1m, l2 = 0.8m,

J1 = 5kgm2 and J2 = 5kgm2. In the controller, the manipulator link masses m1 andm2 are considered

with 20% error as m̂1 = 0.4 kg and m̂2 = 1.2 kg respectively.

The parameters of the proposed controller (4.24) are: β = 1.5, δ = 5/7, c1 = diag{3, 3}, W =

diag{1, 1}, Γ = diag{10, 10}, ǫ = diag{0.1, 0.1} and ρ = 0.3. The limits for the actuator torques

are taken as ±70 Nm and in the control law, the manipulator inertia matrix Mh is replaced with a

constant diagonal matrix Mho = [0.5 0; 0 0.1] in order to further simplify the controller structure.

The details of the RFTSC based controller and the parameter values proposed by Zhao et al. [3]

are given in Appendix A.14.

4.3.1 Case 1

The RFTSC proposed in [3] is used on the robot manipulator described in Appendix A.13 with a

high frequency disturbance of 10 sin(100t) in the joint measurement occurring between 3.5 s ≤ t < 5 s.

In order to observe the coupling effects, qd1 = 1 rad was commanded at t = 0 and then at t = 1 s

qd2 = 1 rad was commanded.
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(a) Tracking Response of joint 1
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Figure 4.1: Tracking response with the proposed controller and RFTSC proposed by Zhao et al. [3] for Case 1
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(a) Input torque of joint 1
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(b) Input torque of joint 2

Figure 4.2: Input torques with the proposed controller and RFTSC proposed by Zhao et al. [3] for Case 1
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4.3 Simulation Results

Simulation results for position tracking are shown in Figure 4.1 and the control torques are shown

in Figure 4.2. As it is clearly observed in Figure 4.1, the proposed control method yields a faster

response than the RFTSC controller by Zhao et al. [3]. Moreover, the control input produced by the

proposed method has much lower chattering than the RFTSC by Zhao et al. [3], as is evident in Figure

4.2.

4.3.2 Case 2

The performance of the proposed controller is next investigated for a continuous time trajectory

and the results are compared with the RFTSC controller by Zhao et al. [3]. All the parameters for

both the controllers are kept the same. The following reference trajectories are considered for the

simulation study:







qd1 = 1.25− 7
5e

−t + 7
20e

−4t rad

qd2 = 1.25 + e−t − 1
4e

−4t rad.
(4.41)

The initial conditions for the joint angles in (4.41) are considered as q10 = 1 rad and q20 = 1.5 rad.

The disturbance and the manipulator nominal parameters are kept the same as in Case 1.

The simulation results obtained for tracking (4.41) are shown in Figure 4.3 and Figure 4.4. From

Figure 4.3(a) and Figure 4.3(b) it can be observed that with the proposed backstepping based adaptive

FTSMC, both overshoot and undershoot in the system response are lesser than the controller of Zhao

et al. [3]. The inset figures show that the error settles to the final value within a finite time in case

of the proposed controller. The proposed controller uses almost the same amount of control energy

as the controller by Zhao et al. [3], as observed from Figure 4.4(a) and Figure 4.4(b). However, the

control input in the case of RFTSC contains excessive chattering, whereas the proposed controller

produces smoother control signals.
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(a) Tracking error for joint 1
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Figure 4.3: Tracking error by the proposed controller and RFTSC proposed by Zhao et al. [3] for Case 2
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(a) Control input for joint 1
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(b) Control input for joint 2

Figure 4.4: Input torques with the proposed controller and RFTSC proposed by Zhao et al. [3] for Case 2

Table 4.1: Simulation results of the proposed controller with the RFTSC proposed by Zhao et al. [3]

Case 1 Case 2

Proposed Zhao et al. [3] Proposed Zhao et al. [3]

||u1||2(N·m) 1.7039×103 1.4342×103 1.5658×103 1.2889×103

||u2||2(N·m) 1.2573×103 0.87×103 1.8224×103 1.3475×103

TVu1
(N·m) 1.8234×103 3.4391×103 2.0039×103 3.2811×103

TVu2
(N·m) 0.916×103 2.0747×103 948.6482 951.4276

tre1(s) 0.8349 1.1028 0.3932 0.8431

tre2(s) 0.5913 0.9228 0.6802 0.8979

trs1(s) 1.0812 1.6900 1.1287 3.0067

trs2(s) 1.0874 1.4439 1.2298 2.3018

Mp1 (rad) 0 0 0.0002 0

Mp2 (rad) 1.001 0 0 0.072

tp1 (s) – – 5.162 –

tp2 (s) 5.362 – – 1.796

Mu1 (rad) 0 0 -0.24 -0.43

Mu2 (rad) -0.03 0 0 0

tu1 (s) – – 0.351 0.932

tu2 (s) 0.395 – – –

ess1(rad) 6.3701×10−5 -21.812×10−5 8.1092×10−5 13.527×10−5

ess2(rad) 1.2964×10−4 120×10−4 0.6802 0.8979

||ui||2: 2 norm and TVui: Total variation of control input, trei: rise time and tsei: settling time, Mpi: Peak overshoot, tpi: peak

overshoot time, Mui: peak undershoot, tui: undershoot time ,essi: steady state error for i = 1, 2

For better clarity, the simulation results are summarized in Table 4.1 where input and output

performances of the controllers under study are compared. Input performance of the controller is

evaluated by computing the control energy in terms of its 2nd norm and the total variation (TV)

(2.32). Output performance of the controller is indicated by rise time, settling time and steady state

error of the tracking response.

Table 4.1 shows that for two different types of trajectories the proposed backstepping based adap-
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tive FTSMC attains consistent satisfactory robustness properties despite using time delay estimation

of the nonlinearities and a non-varying estimate of the manipulator inertia matrix as opposed to the

controller by Zhao et al. [3], where except for the difference in link masses, the exact nominal model

of the manipulator is used. The proposed controller uses a little more energy than Zhao et al. ’s

controller [3]. However, the total variation (TV) measures of both the controllers in Table 4.1 show

that the proposed ABSMC has lower chattering than that of the RFTSC.

The tracking results in Table 4.1 clearly show that the proposed controller is able to maintain a good

tracking performance whereas Zhao et al. ’s RFTSC [3] has higher overshoot and undershoot, higher

steady state error, slower response and higher settling time meaning deterioration of performance with

structural uncertainty caused by the change in link mass. The fast terminal sliding mode combined

with backstepping and adaptively tuned controller gain imparts robustness to the controlled system

despite probable modeling estimation error due to TDE. Therefore, this partially model free controller

can be explored further for application in high DoF manipulators having structurally complex model.

4.4 Summary

In this chapter a backstepping based adaptive fast terminal SMC is proposed. A fast terminal

sliding mode is combined with the backstepping method and an adaptive gain tuning law is used for

the controller. The proposed controller has a simple structure as it does not depend on the exact

manipulator model. Using only the joint acceleration information all the soft-nonlinearities of the

manipulator are estimated using time delay estimation (TDE). The proposed controller is robust and

chattering free. Simulation results on a robotic manipulator show that the proposed controller is able

to produce superior tracking performance than some existing controller.
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5.1 Introduction

5.1 Introduction

Industrial robots are constructed with an aim to having a high value of stiffness to enable precise

position tracking. Hence, affect of collision is very serious in position tracking. This is why in

industries, the robot arm and human hardly interact since collision with the heavy rigid manipulator

might prove very dangerous, even fatal. However, with the evolution and progress of advanced robotics

technology, safe merging of human and robot workspace is increasingly attempted, like in medical

robots [190, 191] and assistive technology [192, 193], which demand simultaneous control of motion

and force. The inverse dynamics control [117] provides integration of motion and force controlled

frameworks which is not possible in the case where position and kinematic controls are used.

Robot manipulators with direct torque controlled joints are generally expensive as this requires

very low friction and no backlash in the gear box. As a result, most of the industrial manipulators

and the commercially available modular manipulators are equipped with servos in the joints that

have individual built-in position controllers. The modular robots have low price and low weight and

can be reconfigured according to the desired task and additionally, any defective module can easily

be replaced. Such arms are generally fitted with smart servos that have built-in position controllers

whose input and feedback quantities are positions and because of these servos, such manipulators can

be operated via position command only. These manipulators can be termed as position controlled

manipulators. Such robot arms are rendered suitable only for the kinematic control. Since a lot

of commercially available arms are inherently position controlled, changing their servos for torque

controlled motors will not be very cost effective. Therefore, attempts have been made to incorporate

dynamical control in such manipulators [116,117,194].

As can be found in [116, 117, 194, 195] and the references therein, as the position controller is

present only in the individual motors in the joints, it imposes limitations on the performance and the

precision of the overall system. The physical attributes of the manipulator joints like the acceleration

limit, the torque limit along with the effects due to the load and the coupling forces are overlooked

while performing only kinematic control using the joint position control. Neglecting the acceleration

and torque limits can cause failure of actuators and may result in impractical motion. As the position

controlled manipulators are easily available and hence are widely used, it is important to devise control

plans beyond the kinematic control, that will enable the robot manipulator to perform well within

acceptable limits, notwithstanding due considerations being given to the physical limitations and the

additional forces and torques acting on it. In [196] Flacco and De Luca presented a velocity controller

while considering the acceleration and the torque limits of the manipulator joints. On the other hand

in [195], Shao et al. used a decentralized model of the manipulator where dynamics of each joint was

controlled by using the information of the built-in position controller of the servo and then using the

commanded position as the control input to obtain the torque for controlling the robot arm. Khatib

et al. [116] and Prete et al. [117] proposed different methods of transforming the calculated torque

command to the position command using the motor, joint and the built-in controller dynamics to

facilitate implementation of the torque controller on the position commanded manipulator.

Keeping in view the necessity of implementation of dynamic control and the lack of cheap ma-

nipulators having direct torque control, the focus on the position controlled robot manipulator is
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growing. This research work endeavors to realize robust control algorithms on a position controlled

robot manipulator. For experimental studies, a coordinated links (COOL) dual arm manipulator

having Dynamixel smart servos as the joint actuators is used. These servos have built-in position

controllers and hence the manipulator becomes position controlled.

Motivated by the methods of Khatib [116] and Shao et al. [195], a simple torque to position con-

version is proposed in this chapter. Khatib [116] proposed a transformation based on the information

of the servo controller and the closed loop frequency response of the joint. Shao et al. [195] proposed

a joint level controller for a decentralized manipulator system that contained Dynamixel AX series

servo and designed the controller considering proportional (P) action in the internal control of the

servo. Based on these works, a simplified torque to position conversion method is developed in this

chapter using the ideal motor parameters. Adopting a simplification strategy and use of only nominal

motor parameters, however, cannot mitigate structured and unstructured uncertainties present in the

system and affecting the motor dynamics. Inaccuracies in system parameters and payload variation

are the main sources of structured uncertainties. Unstructured uncertainties are caused by external

disturbances, friction and saturation nonlinearities. All such uncertainties that are not dealt with by

the internal controller in the servo motors will be tackled by the dynamic controllers proposed in the

previous chapters, mainly the ABSMC-PID and the ABFTSMC.

The chapter is organized as follows: in Section 5.2 the coordinated links (COOL) robot arm and

its parameters are described. The joint actuators and their technical specifications are presented in

Section 5.3. The torque to position conversion method is derived in Section 5.4. Experimental results

by using the ABSMC-PID and the ABFTSMC proposed in the thesis are prsented in Section 5.5 and

Section 5.6 to validate the proposed torque to position converter as well as to study the effects of

including the dynamics controller in the loop for a position commanded robot manipulator. A brief

summary of the chapter is given in Section 5.7.

5.2 Position controlled manipulator: The Coordinated Links (COOL)

robot arm

The hardware used as the experimental test-bed is a Coordinated Links (COOL) 14 degrees of

freedom (DoF) dual robot arm, with each arm having 7 joints as shown in Fig. 2.12. All the joints

in the manipulator are revolute joints and are serially connected to form an open chain manipulator.

The details of the link mass and lengths are provided in Table 2.8.

In Fig. 2.12 and Table 2.8, the terms ‘L’ and ‘R’ are used to indicate the left and the right arm.

All the manipulator joints can be operated together or in different combinations by keeping the non

operating joints locked at one position. This allows each of the arms to be operated with any number

of DoFs between 1 to 7 and also allows the arm to have different configurations depending upon the

values of the angles the joints are fixed at.

The joints of the robot arm are equipped with Dynamixel RX-28 and Rx-64 series servos as shown

in Fig. 5.1. The motors are connected serially via daisy chaining and each motor is given a unique ID

and can be controlled using Packet communication.
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The laboratory set-up used for conducting experiments on the COOL robot arm is shown in

Fig. 5.2. The robot arm motion is programmed using an Intel(R) Core 2 Quad CPU Q6700 2.66

GHz processor desktop PC with 4GB RAM on Windows 7 platform. Communication between the

PC and the robot arm is performed via the communication device called the USB2Dynamixel [197]

which is connected to the USB port of the PC. Further, 3P and 4P connectors are installed in the

USB2Dynamixel to connect the Dynamixel motors. The control algorithm and the communication

between the PC and the arm are executed using Python.

5.3 Joint actuators

Each of the Dynamixel RX-28 and the RX-64 type servos has the following components:

• A brushed D.C. motor

• Gearbox

• Processing unit

• Sensor elements

• A communication interface

• Servo motor driver

• Signal light

The RX-28 type servo uses the RE-max 17 214897 maxon motor and the RX-64 type servo uses

the RE-max 21 250003 maxon motor. The parameters of the RX-28 and RX-64 servos are listed in

Table 5.1 and Table 5.2 respectively and the technical details of the maxon motors RE-max 17 214897

and RE-max 21 250003 are given in Table 5.3 and Table 5.4 respectively. Each servo is equipped with

an AVR Atmega 8 microcontroller that comes with an installed command-line bootloader that can

(a) Dynamixel RX-28 (b) Dynamixel RX-64

Figure 5.1: Dynamixel servos RX-28 and RX-64 [4]
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Intel(R)  Core 2 Quad CPU Q6700 2.66 GHz processor desktop computer 

with 4GB RAM on Windows 7 platform 

Robot arm 

USB2Dynamixel 

Figure 5.2: The experimental set-up for the robot arm

be used to change the firmware of the actuator. A linear potentiometer mechanically linked to the

output shaft of the gearbox serves as the position sensor. The position data is used for the motor

control and in addition, a voltage and a temperature sensor are also present in the servo for overload

protection. An asynchronous half-duplex serial interface based on the EIA-485 bus standard is used

as the communication interface. The magnitude and the polarity of the motor armature voltage

control the angular speed and direction of the servo. Both the servo actuators are equipped with

a full bridge motor driver with four double-diffused metaloxide semiconductor field-effect transistors

(DMOSFET) and integrated protective diodes for powering the servo motor. The signal light indicates

the operational status of the servo. A more detailed description of the Dynamixel RX-28 and RX-64

type servo can be found in [5].

Table 5.1: Parameters of the RX-28 servo [6]

Supply voltage range 12.0 V-18.5 V
Angular position range ± 2.6 rad
Angular speed limit 6.24 rad/s

Torque limit 3.6 N·m
Armature current limit 1.9 A

Gearbox ratio ( 1

kg

) 193

Gearbox Inertia (Jg) 79.6×10−6 kg·m2

Table 5.2: Parameters of the RX-64 servo [7]

Supply voltage range 12.0 V-18.5 V
Angular position range ± 2.6 rad
Angular speed limit 6.24 rad/s

Torque limit 5.1 N·m
Armature current limit 2.6 A

Gearbox ratio ( 1

kg

) 200

Gearbox Inertia (Jg) 154.9×10−6 kg·m2
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Table 5.3: Technical specifications of RE-max
17 214897 [8]

Rated armature voltage 12.0 V
Motor speed constant 100.7 rad/Vs
Motor torque constant 10.7×10−3 N·m/A
Terminal resistance 8.3 Ω
Terminal inductance 0.206 mH

Mechanical time constant (Tm) 6.25 ms
Motor inertia (Jm) 86.4×10−9 kg·m2

Table 5.4: Technical specifications of RE-max
21 250003 [9]

Rated armature voltage 15.0 V
Motor speed constant 74.9 rad/Vs
Motor torque constant 13.4×10−3 N·m/A
Terminal resistance 6.3 Ω
Terminal inductance 0.206 mH

Mechanical time constant (Tm) 6.72ms
Motor inertia (Jm) 217.0×10−9 kg·m2

Figure 5.3: Set-up of the Dynamixel RX-28/64 servo [5]
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The block diagram representation of the Dynamixel RX-28 and RX-64 servos [5] is shown in Figure

5.3. In Figure 5.3, vm, im are the motor’s armature voltage and current, qm, q̇m are the angular

position and velocity of the motor shaft and q, q̇ are the angular position and velocity obtained at the

output of the gearbox shaft indicating the joint position and the velocity. The position input received

via the transceiver is denoted by qcmd.

Based on the position feedback, the microcontroller in the servo derives the control using the

PID controller programmed into it to move the servo to the desired joint position sensed by the

transceiver [5]. The sensor data can be transmitted to the PC through the transceiver. As the block

diagram indicates, the actuating command that the user can send to the servos is only the desired

position value. Therefore, manipulators having such actuators in their joints can be termed as position

controlled manipulators since direct torque or voltage commanding of the joints is not possible without

resorting to suitable hardware modifications.

5.4 Torque to position converter

The basic principle of a servo motion system is to use feedback gain to obtain the desired output

at the motor shaft. The proportional (P)-integral-(I)-derivative(D) controller is the most commonly

used controller in the servo system owing to its simplicity in design. In [5] it was validated that in

RX-28 and the RX-64, the proportional (P) control played the dominant part and that was followed

in this work. For facilitating a simplified implementation of the torque to position conversion, the

I and D gains in Dynamixel RX-28 and RX-64 were made zero, operating the motors only with P

control. The output of this lower level controller is generally obtained as the motor torque required

to produce the desired movement. The electrical time constant of the DC motor in RX-28 is 0.025ms

and that of RX-64 is 0.032ms which is much lower than their mechanical time constants 6.25ms and

6.72ms respectively. Hence for both the motors, the mechanical dynamics are the prominent part that

can be expressed as

J

kg
q̈ +

B

kg
q̇ = τ − τl (5.1)

where q, q̇, q̈ are respectively the angular position, speed and acceleration of the gear shaft, τ is

the motor torque, τl is the disturbance torque and kg is the motor gear ratio. Further, J, B are the

motor’s effective inertia and damping coefficients respectively. The block diagram of the motor control

is shown in Figure 5.4, where ωm is the motor shaft speed and ω is the speed output of the gear-box.

The tracking error is denoted as e = qcmd − q where qcmd is the commanded motor position and kp

is the proportional (P) gain of the controller. The servo motors in the arm have bounded positions

and velocities and so the joint accelerations must also be bounded. The output of the lower level P

controller can be written as

τ = kp(qcmd − q) = kp e

⇒ e = k−1
p τ (5.2)
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Figure 5.4: Simplified servo motor block diagram

The torque to position converter will produce a position command qcmd as shown in Figure 5.5

based on the derived torque τ of the dynamic controller obtained as per the desired joint angular

position qd, desired joint angular velocity q̇d and desired joint angular acceleration q̈d. This law is

similar to the control law suggested in [117]. The derived torque and the torque produced by the low

level P-controller in the servo should be equivalent, which indicates the following relation:

τ = kp(qcmd − q)

qcmd = k−1
p τ + q. (5.3)

Since the implementation of the controller is software based, assuming a sampling time of Ts, (5.3) at

the k − th instant can be written as

qcmd[k + 1] = k−1
p τ [k] + q[k] (5.4)

which shows that the position command to be sent to the motor in the (k+1)− th instant is based on

the torque derived and the actual motor position at the k − th instant. This conversion can be used

to implement an external dynamic control loop to the robot arm as shown in Figure 5.5.

5.5 Experimental results with ABSMC-PID

The proposed ABSMC-PID given by (3.28), (3.29) and (3.30) is experimentally investigated for

joint trajectory tracking the Coordinated Links (COOL) robot arm shown in Figure 2.12 using the

laboratory set-up shown in Fig. 5.2. The robot is operated as a 3DoF manipulator by taking the

joints 1, 4 and 7 as the first, second and the third joint respectively, while the rest of the joints are

fixed in the zero positions. The description of the robot arm parameters can be found in Table 2.8

and the details of the 3DoF manipulator model are elaborated in Appendix A.9. The robot arm has

Dynamixel servos as the joint actuators which can be controlled by position command only. In order to

facilitate dynamic control in the position commanded joint actuators, the torque to position conversion

(5.4) proposed in Chapter 5 is used. The controller is implemented using Python programming in an

Intel(R) Core 2 Quad CPU Q6700 2.66 GHz processor desktop computer with 4GB RAM on Windows
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Joint actuating 
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converter 

Figure 5.5: Block diagram of proposed dynamical control

7 platform. The sampling time is determined based on the communication delay between the servo

and the PC, which is found to be 0.048s. The parameters of the controller used for the experiment

are as follows:

c1 = 15I2, c2 = 20I2, W = 10I2, Γ = 100I2, ǫ = 1I2.

During experimentation it was found that replacing c1 with a tracking error dependent varying func-

tion c1(z1) = diag{15 (1− exp(−100|z1i|))} induced a varying damping ratio which improved the

controller performance and this controller variant was named as ABSMC-NPID (ABSMC with non-

linear PID surface).

The aim of the experiment is to make the joints follow the following reference trajectories:

qd1 =1 + 0.2 sin (0.5πt) rad (5.5)

qd2 =1− 0.2 cos (0.5πt) rad (5.6)

qd3 =1 + 0.2 sin (0.25πt) rad (5.7)

where t is the time in seconds. The performance of the dynamic controller is compared against the

case when position command in terms of the reference trajectory is directly applied to each servo

which is controlled by a built-in P-type controller as explained earlier in Chapter 5. This study is

conducted to test the reliability of the proposed ABSMC against the built-in P controller. A mass of

100g is attached to the manipulator gripper to introduce a structural uncertainty in the system. The

trajectory tracking performances with the direct position command, ABSMC-PID and the ABSMC-

NPID are compared in Figure 5.6 and the tracking performances of the all three methods are compared

in Table 5.5.

It can be concluded from the experiments that the proposed conversion method is reliable as

the position command reconstructed from the generated torque and sent to the actuator can drive
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(e) Trajectory of joint 3
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(f) Tracking error of joint 3

Figure 5.6: Experimental results with direct position command, proposed ABMSC-PID and ABSMC-NPID
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the system to follow the reference trajectory correctly. Secondly, it is to be noted from the error

responses in Figure 5.6 that in case of coupled motions with load, the performance of the built-in P-

type controller is not consistent (observed from the tracking results of joint 2), whereas the dynamic

controller maintains a consistent performance in all the three joints. The inclusion of the nonlinear

PID sliding surface is able to further improve the proposed ABSMC’s performance by reducing the

peak overshoot as can be observed in Figure 5.6 and Table 5.5.

Table 5.5: Performance comparison for trajectory tracking of 3DoF manipulator

Joint Controller tr(s) ts(s) Mp(rad) tp(s) MASSE

Joint 1
Built-in P control 0.42 0.85 - - 0.04

ABSMC-PID 0.32 0.90 0.52 0.46 0.01
ABSMC-NPID 0.54 0.95 0.12 0.76 0.02

Joint 2
Built-in P control 0.32 0.70 - - 0.07

ABSMC-PID 0.27 0.66 0.24 0.421 0.02
ABSMC-NPID 0.76 0.71 - - 0.03

Joint 3
Built-in P control 0.47 0.80 - - 0.008

ABSMC-PID 0.27 1.28 0.37 0.46 0.005
ABSMC-NPID 0.61 1.09 0.10 0.81 0.013

tr = rise time, ts = settling time, Mp = peak overshoot,
tp = peak time, MASSE= mean absolute steady state error

5.6 Experimental results with ABFTSMC

The proposed adaptive backstepping based FTSMC given by (4.24) and (4.25) is applied to the

position commanded 14DoF Coordinated Links (COOL) robot arm as shown in Figure 5.2. In the

experiment only the joints 1, 4 and 7 of the robot arm are used as the first, second and third joints

respectively, keeping the other joints locked in the zero position. The selected joints have RX-28 servo

as the actuator.

In the experiment, the nominal model of the manipulator is used. The results obtained with the

proposed ABFTSMC and the proposed ABSMC-NPID are compared with the the built-in P controller

of the servo, where the desired position is sent directly sent. The torque is derived using (4.24) and

implemented using (5.4). The parameters used for the controller (4.24) in the experiment are the

following: c1 = 15I3, δ = 1.1, W = 2I3, β = 1.6, Γ = 20I3, ǫ = 1I3, where I3 is a 3 × 3 identity

matrix. The sampling time L is chosen as 0.048sec which is decided by considering the communication

delay between the joint servos and the PC. The reference trajectories for the three joints are considered

as

qd1 = 1 + 0.2 sin(0.5πt) rad

qd2 = 1− 0.2 cos(0.5πt) rad

qd3 = 1 + 0.2 sin(0.25πt) rad. (5.8)
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(d) Magnified view (Joint 2)
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Figure 5.7: Results with direct position command, proposed ABMSC-NPID and ABFTSMC
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(b) Tracking error of joint 2
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(c) Tracking error of joint 3

Figure 5.8: Results with direct position command, proposed ABMSC-NPID and ABFTSMC

Experimental results obtained by using the proposed backstepping based adaptive FTSMC for all

the three joints are shown in Figure 5.7, Figure 5.8 . From Figure 5.7 and Figure 5.8, it is obvious

that in the case of position commanded robots, instead of directly applying the desired trajectory as

the command input to the system, if the dynamic controller is used first, better tracking results are

achieved. The dynamic controller takes into account all the coupled torques, additional loads to the

motors in the manipulator based on which a suitable torque profile for each motor is developed. This

torque profile is then converted to an equivalent motion profile using (5.4).

The experimental results are summarized in Table 5.6, which shows that although the proposed

torque control method yields a slower convergence, yet the steady state error is much lower than both

the built-in P controller and the ABSMC-NPID controller. Moreover with the proposed ABFTSMC,

the overshoot is also lower than with the ABSMC-NPID.
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Table 5.6: Performance comparison for trajectory tracking of 3DoF manipulator

Joint Controller tr(s) ts(s) Mp(rad) tp(s) MASSE

Joint 1
Built-in P control 0.42 0.85 - - 0.04
ABSMC-NPID 0.54 0.95 0.12 0.76 0.02
ABFTSMC 1.10 1.77 0.18 1.39 0.013

Joint 2
Built-in P control 0.32 0.70 - - 0.07
ABSMC-NPID 0.76 0.71 - - 0.03
ABFTSMC 1.20 1.32 - - 0.006

Joint 3
Built-in P control 0.47 0.80 - - 0.008
ABSMC-NPID 0.61 1.09 0.10 0.81 0.013
ABFTSMC 1.05 1.63 0.08 1.20 0.006

tr = rise time, ts = settling time, Mp = peak overshoot,
tp = peak time, MASSE= mean absolute steady state error

5.7 Summary

A simple torque to position conversion method is proposed in this chapter for use in position

commanded servo actuators present in robot manipulators. The torque to position conversion is

based on the low level controller of the servomotor. Although being highly simplified as compared to

the existing methods, such simplified conversions can be successfully used for implementing the torque

control methodology in the position commanded servos with proper selection of the inverse dynamics

algorithm. As such, this method can be adopted for torque control of the position commanded

robotic manipulators without having to perform any hardware modifications. The experimental results

presented in the chapter, which have implemented the ABSMC-PID and the ABFTSMC controller

proposed previously in the thesis, show that such a conversion method can be utilized to implement

a dynamical controller in a position commanded manipulator. Therefore such a method can be useful

when a position commanded manipulator is to be operated to obtain compliance behaviour using

impedance control methods.

Although the proposed method develops a much simpler torque to position conversion law, it still

has some drawbacks as mentioned below:

• The method relies on the knowledge of the internal controller of the servo and without this

information it cannot be guaranteed that such a conversion will work.

• Communication delay between the motor and the PC can produce constraints in the implemen-

tation of the torque controller, especially for high speed operations. The motors being connected

through daisy chaining in the experimental set-up, this delay increases with each added motor.

However, such a conversion approach is important to implement force or impedance control on robot

manipulators in order to achieve compliant behavior while interacting with the environment. There-

fore, further study can be dedicated into achieving such a conversion method while at the same time

tackling its above mentioned drawbacks.
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6.1 Conclusions

6.1 Conclusions

In practical applications such as industries and low cost commercial manipulators, the Proportional

Integral Derivative (PID) controllers are still dominant owing to their simple structure, despite the

availability of other robust control methods showing better performance than the PID. Keeping in focus

the utility and portability of the controller offering an acceptable performance, the study presented

in this thesis attempts to devise a sliding mode controller free of its inherent drawbacks while at the

same time maintaining its original simple structure that can be possibly used as universally as the

PID control method. The primary goal of this thesis is to design a simple structured robust dynamic

controller based on the backstepping sliding mode control methodology and four variants of dynamic

controllers are proposed for robust control of robot manipulators.

The first control method proposed is the integral backstepping sliding mode controller (IBSMC)

which used an extra integrator block augmented with the actual system. This allowed to obtain

the control input to the system as an output of the integrator block, thus providing a chattering

free smooth control law. The proposed IBSMC was also used for underactuated systems by proper

selection of the backstepping regulatory variables. Simulations for both the robot manipulator and

the underactuated cart-pendulum system were presented showing the efficacy of the proposed IBSMC

controller.

The inherent explosion of terms due to backstepping led to increased structural complexity in the

IBSMC, which was eliminated using integral adaptive dynamic surface control (IADSC). In IADSC

filtered signals were used to replace the differentiation of the nonlinear model of the manipulator. The

versatility of the controller was improved by adaptively tuning the controller gain so that it could be

implemented without the knowledge of the bounds of the uncertainty affecting the system.

Considering practical implementation, especially for digital realization, the IADSC was not very

suitable as the filter constant required to be redesigned in case of change in sampling interval or the

presence of small delays. The IADSC faced stability issues which could be attributed to the presence

of the filter. Therefore the integrator block was entirely eliminated and instead a PID sliding surface

was introduced to form the adaptive backstepping sliding mode controller with PID sliding surface

(ABSMC-PID) that did not require the filter. The PID type sliding surface helped in improving

the steady state behavior. The simulation results demonstrated applicability and the efficacy of

the proposed ABSMC-PID. The ABSMC-PID was also implemented for impedance control of robot

manipulators which was an important issue while interacting with the external environment.

The dynamics of a high DoF manipulator tends to have high structural complexity which ultimately

affects the model based dynamic controller. Therefore a model free controller is a major need and was

realized using time delay estimation of the soft nonlinearities of the manipulator model. Consequently,

an adaptive backstepping based fast terminal sliding mode controller (ABFTSMC) was developed.

The fast terminal sliding mode obtained using backstepping provided a finite time convergence for

the closed loop system. The comparison of the simulation results with some existing robust control

method showed that despite being a model free controller without having any observer, the proposed

controller was able to offer good trajectory tracking performance. Moreover, the control input obtained

was chattering free owing to the fast terminal sliding surface.
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6. Conclusions and Scope for Future Work

The thesis attempted to implement the proposed dynamic control methods in position commanded

digital servo systems. A torque to position command conversion method was used to convert the

generated torque profile to position command for actuating servo motors in a robot manipulator.

Experimental studies demonstrated promising potential for practical applicability of the proposed

method on position commanded robots.

6.2 Scope for Future Work

The thesis explores simple yet effective robust backstepping sliding mode control method for joint

control of robot manipulators. This research can be further extended in the following directions:

• The adaptive backstepping sliding mode method proposed for impedance controller can be ex-

perimented for better compliance behavior for interaction tasks. The variable damping and

stiffness induced using the nonlinear backstepping design parameter can be further explored to

obtain improved results for the manipulator in its interaction with the external environment.

The backstepping offers a much flexible design and also provides a better approach for the pa-

rameter design as any desired control parameter can be inserted in the intermediate stages of

backstepping. Hence this control method can be further explored for impedance control tasks.

• Although the proposed torque to position conversion method was successfully used for the servos,

the conversion relies on the availability of the information of the motor and the internal controller

of the servo. A better solution to this can be explored.

• Another area where the scope of the control method proposed in the thesis can be extended is the

dual arm manipulation. The proposed impedance control via ABSMC with variable backstepping

parameter and time delay estimation based fast terminal sliding mode control shows promising

results and can be combined for an effective controller for the dual arm manipulation tasks. The

time delay estimation offers a model free robust controller design. This can be very useful for the

complicated dynamics of the dual arm operation while achieving compliant motion. Moreover,

the stability offered by backstepping can be utilised to design a robust impedance controller

producing a better compliance along with a guaranteed stability.
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A. Appendix

A.1 Dynamic modeling of rigid manipulators

The dynamics of an open chain rigid link manipulator can be derived using the Lagrangian of the

manipulator [11]. The kinetic energy for each link of the manipulator (Ti(q, q̇)) can be defined as

Ti(q, q̇) =
1

2
q̇iJ

T
i (q)MiJi(q)q̇i (A.1)

where q, q̇ ∈ R
n are the position and velocity of the manipulator joints, Mi is the generalized inertia

matrix and Ji(q) is the Jacobian of the i− th link of the manipulator. The total kinetic energy of the

manipulator is obtained as

T (q, q̇) =
n
∑

i=1

Ti(q, q̇) =
1

2
q̇TM(q)q̇ (A.2)

where M(q) is the manipulator inertia matrix.

The potential energy for the i− th link of the manipulator is given as

Ui(q) = mighi(q) (A.3)

where mi is the mass and hi(q) is the height of the center of mass for the i − th link and g is the

gravitational constant. The total potential energy of the manipulator is found as:

U(q) =
n
∑

i=1

Ui(q) =
n
∑

i=1

mighi(q). (A.4)

The manipulator Lagrangian is defined as

L(q, q̇) =

n
∑

i=1

(Ti(q, q̇)− Ui(q)) =
1

2
q̇TM(q)q̇ − U(q)

=
1

2

n
∑

i=1

mij(q)qiqj − U(q). (A.5)

The Lagrange’s equation for the manipulator can be written as follows:

d

dt

∂L

∂q̇i
−
∂L

∂qi
= Υi (A.6)

where Υi represents the actuator torque and other non-conservative generalized forces acting on the

manipulator joint. Now, using (A.5), the following can be derived:

d

dt

∂L

∂q̇i
=

d

dt





n
∑

j=1

Mij q̇j



 =

n
∑

j=1

(

Mij q̈j + Ṁij q̇j

)

(A.7)

∂L

∂qi
=

1

2

n
∑

j,k=1

∂Mkj

∂qi
q̇k q̇j −

∂U

∂qi
. (A.8)
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A.2 Characteristics of symmetric positive definite block matrix using Schur’s complement

Replacing (A.7) and (A.8) in (A.6) yields

n
∑

j=1

Mij(q)q̈j +

n
∑

j,k=1

(

∂Mij

∂qk
q̇j q̇kl −

1

2

∂Mkj

∂qi
q̇ − kq̇j

)

+
∂U(q)

∂qi
= υi, i = 1 . . . n

n
∑

j=1

Mij(q)q̈j +

n
∑

j,k=1

Γijkq̇j q̇k +
∂U(q)

∂qi
= Υi, i = 1 . . . n (A.9)

where

Γijk =
1

2

(

∂mij(q)

∂qk
+
∂Mij(q)

∂qj
−
∂Mkj(q)

∂qi

)

are called the Christoffel symbols where the terms containing qiqj, i 6= j represent the Coriolis forces

and the terms containing q2i are the centrifugal forces on the i−th joint. Now the matrix C(q, q̇) ∈ R
n×n

called the Coriolis matrix is defined as follows:

Cij(q, q̇) =
n
∑

k=1

Γijkq̇k

=
1

2

n
∑

k=1

(

∂Mij

∂qk
+
∂Mik

∂qj
−
∂Mkj

∂qi

)

q̇k. (A.10)

The manipulator dynamics in the vector form can now be defined as

M(q)q̈ +C(q, q̇)q̇+G(q) = τ − τd (A.11)

where G(q) =
∑n

i=1
∂U(q)
∂qi

is the force due to gravity, τ is the vector representing the joint actuating

torques and τd is the vector denoting disturbance torques and any unmodeled torques acting on the

manipulator joints.

A.2 Characteristics of symmetric positive definite block matrix us-

ing Schur’s complement

As described in [135], for an n× n symmetric block matrix M of the form

M =

(

A B

BT C

)

(A.12)

where A ∈ R
p×p and C ∈ R

q×q are symmetric matrices and B ∈ R
p×q, the positive definiteness of M

can be guaranteed iff C > 0 and A−BC−1BT > 0.
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A. Appendix

A.3 Dynamics of the cart-pendulum system used in (A.13)

The cart-pendulum system is represented by the following differential equation:

M(q)q̈ +C(q, q̇)q̇+G(q) = F + Fd (A.13)

where q, q̇ and q̈ represent the position, velocity and acceleration of the system, M(q) is the iner-

tia matrix, C(q, q̇) is the centripetal and Coriolis force matrix and G(q) is the gravitational force

vector. Furthermore, F represents the applied force and Fd denotes the disturbance force caused by

uncertainties. It is to be noted that

q =

[

q1

q2

]

=

[

y

θ

]

; q̇ =

[

q̇1

q̇2

]

=

[

ẏ

θ̇

]

; q̈ =

[

q̈1

q̈2

]

=

[

ÿ

θ̈

]

;

M(q) =

[

lmc +mp mpl cos q2

mpl cos q2 J +mpl
2

]

;

C(q, q̇) =

[

0 mplq̇2 sin q2

0 0

]

;

G(q) =

[

0

−mpgl sin q2

]

;

F =

[

f1

0

]

; Fd =

[

fd1
fd2

]

wheremc is the mass of the cart, mp is the mass of the pendulum, l is the length of the pendulum and J

is the moment of inertia of the pendulum. The cart-pendulum system has two equilibrium points, one

being the stable vertically downward position where θ = π and the other being the unstable vertically

upward position where θ = 0. Furthermore, f1 is the control force applied to the cart and fd1 , fd2
are the disturbance forces due to matched and mismatched uncertainties present in the system whose

upper bounds are considered to be known. As observed from the above mathematical model, the

cart-pendulum is an underactuated system and the objective is to apply a control force f1 to the cart

in such a way that the pendulum will swing up to the vertically upward position, where q1 = 0, q2 =

0, q̇1 = 0, q̇2 = 0 from the initial vertically downward position where q1 = y, q2 = π, q̇1 = 0, q̇2 = 0.

The system parameters are: mc = 1.12kg. mp = 0.11kg, l = 0.1407m, J = 0.0038kg −m2.

From (A.13), the dynamics of the pendulum can be written as

[

m11 m12

m12 m22

][

q̈1

q̈2

]

+

[

C11 C12

C21 C22

][

q̇1

q̇2

]

+

[

g11

g21

]

=

[

f1

0

]

+

[

fd1
fd2

]

(A.14)

where

m11 = mc +mp,

m12 = mpl cos q2,

m22 = J +mpl
2,

C11 = C21 = C22 = 0,
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A.4 Derivation of IBSMC for cart-pendulum system

C12 = mplq̇2 sin q2,

g11 = 0,

g21 = −mpgl sin q2.

From (A.14), the following are derived,

q̈1 =
1

d
[m22f1 −m22C12q̇2 +m12g21 +m22fd1 −m12fd2 ]

q̈2 =
1

d
[−m12f1 +m12C12q̇2 −m11g21 −m12fd1 −m11fd2 ] (A.15)

where d = m11m22 −m2
12.

A.4 Derivation of IBSMC for cart-pendulum system

As suggested in literature, an underactuated system can be partially linearized for reducing design

complexity of the controller as complete linearization may generally fail. Such a partial linearization

may be collocated, meaning linearization of the actuated joint variables or noncollocated, meaning

linearization of the unactuated joint variables [198]. After such linearization, the underactuated system

is controlled using the dynamic coupling between the system variables. In order to perform such

linearization, Man and Lin’s approach [199] is followed where a new control input v is chosen in terms

of the cart acceleration. To achieve this, the applied control input f1 is chosen as follows,

f1 =β(v)

=
d

m22
v + q̇2C12 −

m12g21
m22

. (A.16)

The above control law (A.16) transforms (A.15) into the following form:

q̈1 = v + h1 (A.17a)

q̈2 =
m2

12g21
dm22

−
m12

m22
v −

m11g21
d

+ h2

(A.17b)

where h1 =
m22

d
fd1 + ϕ1,

ϕ1 = −m12

d
fd2 ,

h2 = −m12

d
fd1 + ϕ2,

ϕ2 = −m11

d
fd2 .

Now an integral backstepping sliding mode controller will be designed for the system (A.17). The

aim is to design a sliding surface using which the system can be stabilized at the vertically upward

position and develop a controller to bring the system states from the vertical downward position to

this sliding surface and keep them there.
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A. Appendix

A.4.1 The Backstepping Algorithm design for cart-pendulum system

Step 1:

(i) As defined in [200], the cart-pendulum is a Class-III type of unactuated system which has a

nontriangular structure and backstepping cannot be directly applied to it. Also, this system has

the underactuated coordinate q2 as the shape variable (the variable present in the inertia matrix

M(q)) and it possesses kinetic symmetry with respect to the external variable q1 (the variable

not present in the inertia matrix M(q)) which establishes the following identity,

∂K(q, q̇)

∂q̇1
= 0 (A.18)

where K(q, q̇) = 1
2 q̇

TM(q)q̇ is the kinetic energy of the system.

Now the generalized momentum ps [200] is defined as

ps =
∂L(q, q̇)

∂q̇2

or ps =2(m12q̇1 +m22q̇2). (A.19)

Here L(q, q̇) is the Lagrangian of the system and L(q, q̇) = 1
2 q̇

TM(q)q̇ − U , where U =

mpglcos(q2) is the potential energy of the system.

The normalized momentum of the system πs is defined as

πs =m
−1
12

∂L(q, q̇)

∂q̇2

⇒ πs =q̇1 +
m22

m12
q̇2. (A.20)

By the definition of Class-III type of underactuated system given in [200], the normalized mo-

mentum is integrable and hence ψs =
∫

πsdt = q1 + kq2 (considering m22

m12
= k to be almost

constant near the equilibrium point). Now, the term m12

m22
=

mpl cos q2
J+mpl2

is an integrable term and

hence the product of the two integrable terms πs and m12

m22
, which will also be integrable, is

defined as follows,

ψ =

∫

m12

m22
πsdt

=

∫

(q̇2 +
m12

m22
q̇1)dt

= q2 + k′q1

where k′ = 1/k.

Combining the generalized momentum and ψ as obtained above, the first regulatory variable z1

for the backstepping algorithm is defined as follows:

z1 = q2 + k1q1 + k2(m12q̇1 +m22q̇2) (A.21)
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A.4 Derivation of IBSMC for cart-pendulum system

where k1, k2 are design constants derived based on the momentum equations.

The Lyapunov function is now defined in terms of the regulatory variable z1 as

V1 =
1

2
z21 (A.22)

which is positive definite by definition.

(ii) The time derivative of z1 is obtained as,

ż1 = q̇2 + k1q̇1 + k2(m12q̈1 +m22q̈2) + k2ṁ12q̇1.

From (A.14) and (A.15) ż1 can be found as

ż1 =(1− k2mplq̇1 sin q2)q̇2 + k1q̇1 + k2mpgl sin q2 + h3

=ζ(q, q̇)q̇2 + k1q̇1 + k2mpgl sin q2 + h3 (A.23)

where ζ(q, q̇) = (1−k2mplq̇1 sin q2) and h3 includes the uncertainty terms with the known upper

bound |h3m |.

The derivative of V1 is found as

V̇1 = z1ż1

= z1[ζ(q, q̇)q̇2 + k1q̇1 + k2mpgl sin q2 + h3]. (A.24)

The term ζ(q, q̇)q̇2 is now considered as a virtual control input which will be used to bring the

system (A.23) to the equilibrium point zero. Hence a stabilizing function α1 is now used which

is assumed to be equal to the virtual control input ζ(q, q̇)q̇2 and will linearize as well as stabilize

(A.23) at zero. This stabilizing function is defined as

α1 = −k1q̇1 − k2mpgl sin q2 − c1z1 − z1h̄3 (A.25)

where c1 > 0 is a design constant. Considering the uncertainty to be known, the upper bound

of h3 can be calculated. Let this upper bound be h3m and then the term h̄3 is so chosen that

h̄3 > |h3m|.

(iii) It is only an assumption that the virtual control law, when equal to the stabilizing function, will

stabilize the z1 subsystem and this is not yet true. Hence the error between the chosen virtual

control input ζ(q, q̇)q̇2 and the derived stabilizing function α1 is defined as the new regulatory

variable z2 to be used in the next step:

z2 = ζ(q, q̇)q̇2 − α1 (A.26)
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A. Appendix

or,

ζ(q, q̇)q̇2 = z2 + α1. (A.27)

Equations (A.23), (A.25) and (A.27) yield

ż1 = −c1z1 + z2 − (z1h̄3 − h3) (A.28)

which is an almost linear form. From (A.24) and (A.28) the derivative of V1 is obtained as

V̇1 = −c1z
2
1 + z1z2 − (z21 h̄3 − z1h3). (A.29)

It can be observed from above that solution z1 will still not be driven to the equilibrium point

i.e., the origin. Hence succeeding steps are now followed.

Step 2:

(i) The time derivative of the new regulatory variable z2 is now derived as given below:

ż2 = ζ̇(q, q̇)q̇2 + ζ(q, q̇)q̈2 + k1q̈1 + k2mpglq̇2 cos q2 + c1ż1 + ż1h̄3

Replacing the expressions for q̈1 and q̈2 from (A.17) and simplifying the above expression, ż2 can

be written as

ż2 = η1(q, q̇) + η2(q, q̇)v + c1ż1 + ż1h̄3 + h4 (A.30)

where

η1(q, q̇) = −k2mplq̇1q̇
2
2 cos q2 + k2mpglq̇2 cos q2 + ζ(q, q̇)

m2
12g21
dm22

− ζ(q, q̇)
m11g21
d

η2(q, q̇) = −ζ(q, q̇)
m12

m22
− k2mplq̇2 sin q2 + k1

and h4 includes the uncertainty.

A new Lyapunov function is now defined in terms of the two regulatory variables z1 and z2 as

V2 = V1 +
1

2
z22 (A.31)

and the derivative of V2 is found as

V̇2 = z1ż1 + z2ż2

= −c1z
2
1 + z1z2 − (z21 h̄3 − z1h3) + z2[η1 + η2v + c1ż1 + ż1h̄3 + h4]. (A.32)

A new virtual control input for the system (A.30) is chosen as η2v. Using nonlinear feedback,
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A.4 Derivation of IBSMC for cart-pendulum system

the stabilizing function αv is obtained from (A.30) as

αv = −[η1 + c1ż1 + ż1h̄3 + c2z2 + z2h̄4] (A.33)

where c2 is the design constant. As the upper bound of the uncertainty is assumed to be known,

the upper bound of h4 i.e., h4m can be calculated and the value of h̄4 is set so that h̄4 > |h4m|.

(ii) When the virtual control input will be equal to the stabilizing function αv, this error variable

z2 will be brought to zero and stabilized.

(iii) Similar to the previous step (Step 1(iii)), the error between the virtual control η2v and the

stabilizing function αv is defined as the next regulatory variable z3,

z3 = η2v − αv

= η2v + η1 + c1ż1 + ż1h̄3 + c2z2 + z2h̄4. (A.34)

The virtual control law η2v can now be written as

η2v = z3 + αv. (A.35)

Using (A.35) and (A.33) in (A.30), the following linear like form is obtained,

ż2 = −c2z2 + z3 − (z2h̄4 − h4). (A.36)

The derivative of the Lyapunov function V2 will have the following expression with η2v as the

control input,

V̇2 = −c1z
2
1 − c2z

2
2 + z1z2 + z2z3 − (z21 h̄3 − z1h3)− (z22 h̄4 − z2h4). (A.37)

Taking derivative of the latest regulatory variable z3 in (A.34), an equation containing v̇ = ξ is

obtained as follows:

ż3 = η̇2v + η2v̇ − α̇v

= η̇2v + η2ξ + η̇1 + c1z̈1 + z̈3h̄3 + c2ż2 + ż2h̄4 + h5 (A.38)

where h5 includes the uncertainty term whose upper bound is |h5m |.

A.4.2 Sliding Mode Algorithm design for cart-pendulum system

In order to design the sliding surface, the system equations obtained in terms of the transformed

coordinates given by (A.28), (A.36) and (A.38) are considered again. If the uncertainty terms are not
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considered, the nominal system described by (A.28), (A.36) and (A.38) will take the following form:

ż1 =− c1z1 + z2 (A.39a)

ż2 =− c2z2 + z3 (A.39b)

ż3 =η̇2v + η2ξ + η̇1 + c1z̈1 + c2ż2. (A.39c)

The above representation has the structure of a regular form with (A.39a) and (A.39b) being the null

space dynamics and (A.39c) being the range space dynamics having ξ as the control input. Now,

following the conventional linear sliding surface design method the surface is defined as

s = σz = 0 (A.40)

where σ = [σ1 σ2 1] and z = [z1 z2 z3]
T . The terms σ1 and σ2 are the sliding surface parameters

and should be so chosen that the sliding surface is Hurwitz stable. Now, the sliding variable s can be

described as,

s = σ1z1 + σ2z2 + z3. (A.41)

The time derivative of s is obtained as

ṡ = σ1ż1 + σ2ż2 + ż3

= σ1ż1 + σ2ż2 + η̇2v + η2ξ + η̇1 + c1z̈1 + z̈3h̄3 + c2ż2 + ż2h̄4 + h5 (A.42)

where ż1, ż2 are given by (A.28) and (A.36) respectively.

The Lyapunov function defined in (A.31) is redefined by augmenting a term containing the sliding

variable to it and the new Lyapunov function V3 is obtained as follows:

V3 =
1

2
(z21 + z22 + s2) (A.43)

which too is a positive definite function by definition. The derivative of V3 is given by

V̇3 =z1ż1 + z2ż2 + sṡ

=− c1z
2
1 − c2z

2
2 + z1z2 + z2z3 − (z21 h̄3 − z1h3)− (z22 h̄4 − z2h4) + s[σ1ż1 + σ2ż2

+ η̇2v + η2ξ + η̇1 + c1z̈1 + z̈3h̄3 + c2ż2 + ż2h̄4 + h5] (A.44)

The system dynamics in terms of the regulatory variables has the following form:

ż1 =− c1z1 + z2 − (z1h̄3 − h3)

ż2 =− c2z2 + z3 − (z2h̄4 − h4)

ż3 =η̇2v + η2ξ + η̇1 + c1z̈1 + z̈3h̄3 + c2ż2 + ż2h̄4 + h5. (A.45)

As can be observed from the above equation, the whole nonlinear cart-pendulum system dynamics has
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now been reduced to an almost linear form which can be further linearized and eventually stabilized

by using a nonlinear feedback control law ξ.

Following the conventional sliding mode controller design technique, the equivalent control law

(ξeq) is obtained by making ṡ = 0 as,

ξeq = −
1

η2
[σ1ż1 + σ2ż2 + η̇2v + η̇1 + c1z̈1 + z̈3h̄3 + c2ż2 + ż2h̄4] (A.46)

and the switching part of the control law is given as

ξsw = −
1

η2
(Wsign(s) + κs) (A.47)

where κ and W are positive design constants.

Now, combining both the controls ξeq and ξsw, the control ξ is defined as

ξ = ξeq + ξsw

= −
1

η2
[σ1ż1 + σ2ż2 + η̇2v + η̇1 + c1z̈1 + z̈3h̄3 + c2ż2 + ż2h̄4 +Wsign(s) + κs]. (A.48)

To avoid any kind of singularity occurring in the expression of ξ, the value of η2 is replaced by η̄2 by

defining a very small constant ǫ such that,

η̄2 =



















ǫ, 0 ≤ η2(q, q̇) ≤ ǫ

−ǫ, −ǫ ≤ η2(q, q̇) < 0

η2, otherwise

A.4.3 Addition of the Integral Block

The discontinuous signal ξ is now obtained, which will act as the control law for the system (A.45).

However, for the cart-pendulum system (A.17), the control input is v. In order to obtain v, an integral

block is added to the controller so that ξ will pass through the integrator block to yield v as

v =

∫ t

0
ξ(λ)dλ (A.49)

A.4.4 Derivation of the Force Control Law for cart-pendulum system

Now following equation (A.16), the actual control force applied to the cart-pendulum is obtained

as

f1 =
d

m22
v + q̇2C12 −

m12g21
m22

. (A.50)

From (A.17), the zero dynamics of the cart-pendulum system can be written as

q̈2 +
m12

m22
v +

g21
m22

= 0
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or, q̈2 +
mpl cos q2
J +mpl2

v + g tan q2 = 0

⇒ v = (J +mpl
2)(

q̈2 − g tan q2
mpl cos q2

). (A.51)

From the above equation it can be observed that on the horizontal plane i.e., when q2 =
π
2 , the system

has a singularity in its zero dynamics. So, when the pendulum crosses the horizontal plane, it may lead

to unbounded control input. To overcome such a situation, a saturation function [1] is incorporated

to the actuator control which will prevent the control law from becoming unbounded. However, while

doing so, it should also be noted that the control law is able to pump enough energy to the system so

that it can cross the horizontal plane.

Therefore, the control force f1 is further modified to f1new by adding a saturation function to

obtain a bounded value of the control input [1] as given below:

f1new = f̄1 sat
(

f1/f̄1

)

(A.52)

where the saturation function sat(.) is defined as

b sat(
a

b
) =



















b, when a > b

−b, when a < b

a, otherwise

and f̄1 is the least amount of force required by the pendulum to cross the horizontal plane.

A.5 Coupled SMC proposed by Park and Chwa [1] for stabilization

control of cart-pendulum system

The coupled sliding mode controller [1] is of the following form,

uc =ueq + usw (A.53)

ueq =(λugxu
eq
x + gθu

eq
θ )/(λugx + gθ)

usw =− (k sign(ssmc))/(λugx + gθ) (A.54)

where

gx = m22/(m11m22 −m2
12)

gθ = −m12/(m11m22 −m2
12)

ueqx = g−1
x (−fx − cxq̇1)

ueqθ = g−1
θ (−fθ − cθ q̇2)

fx = −(C12m22q̇2 −m12g21)/(m11m22 −m2
12)

fθ = −(−C12m12q̇2 +m11g21)/(m11m22 −m2
12)

ssmc = λsa + su
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sa = q̇1 + cxq1

su = q̇2 + cθq2

cx = 0.3, , cθ = 3.1077, λ = 0.1, k = 20.

A.6 Proof of Lemma 4

From the relation k̃ = k̂−kd, where k̂, kd are n×1 vectors, for an n×n positive definite diagonal

matrix ǫ, the following can be written:

k̃ =k̂− kd ⇒ ǫkd = ǫ(k̂− k̃)

kT
d ǫkd =(k̂− k̃)T ǫ(k̂− k̃)

n
∑

i=1

kdiǫikdi =

n
∑

i=1

(k̂i − k̃i)ǫi(k̂i − k̃i)

⇒

n
∑

i=1

k2diǫi =

n
∑

i=1

(k̂2i + k̃2i − 2k̂ik̃i)ǫi

⇒
n
∑

i=1

2k̂ik̃iǫi =
n
∑

i=1

(k̂21 + k̃2i − k2di)ǫi

⇒
n
∑

i=1

2k̂ik̃iǫi ≥
n
∑

i=1

(k̃2i − k2di)ǫi

⇒

n
∑

i=1

2k̃iǫik̂i ≥

n
∑

i=1

(k̃iǫik̃i)−

n
∑

i=1

(kdiǫikdi)

⇒k̃T ǫk̂ ≥
1

2
(k̃T ǫk̃− kT

d ǫkd). (A.55)

A.7 Model of 2DoF manipulator used in Yang et al. [2]

The mathematical model of the 2DoF robot manipulator (Fig. A.1) used by Yang et al. [2] is given

by

[

m11(q) m12(q)

m21(q) m22(q)

][

q̈1

q̈2

]

+

[

h1(q, q̇)

h2(q, q̇)

]

+

[

g1(q)

g2(q)

]

+

[

f1

f2

]

=

[

u1

u2

]

(A.56)

where

m11(q) =m1l
2
c1 +m2(l

2
1 + l2c1) + J1 + J2 + 2m2l1lc2 cos(q2),

m12(q) =m2l
2
c2 + J2 +m2l1lc2 cos(q2),

m21 =m12, m22 = m1l
2
c2 + J2,

h1(q, q̇) =−m2l1lc2(2q̇1q̇2 + q̇22) sin(q2), h2(q, q̇) = m2l1lc2q̇
2
1 sin(q2),
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y 

x 

1l

2l

1cl

2cl

1q

2q

Figure A.1: 2DoF manipulator schematics used for simulation

g1(q) =g(m1lc1 +m2l1) cos(q1) +m2glc2 cos(q1 + q2), g2(q) = m2glc2 cos(q1 + q2),

f1 =5.0q1 + 3.0sign(q̇1), f2 = 4.0q1 + 2.0sign(q2).

The physical parameters of the manipulator (A.56) are given in Table (A.1).

Table A.1: Physical parameters of the robot manipulator (A.56)

Joint No. i Link mass mi (kg) Link length li (m) Center of Mass lci (m) Inertia Ji (kg·m2)

1 4.0 0.50 0.25 1.0

2 2.0 0.25 0.15 0.8

In the simulations it is assumed that only the position feedback is available and it has an added

uniform noise with the bounds ±0.00001 rad. The angular velocity is derived from the position

feedback using pseudo-differentiation [2] with a
0.001a+1 . The input torque amplitude is limited in [-

200,200]Nm. A 150% increment in manipulator parameters is also added after t=40s in order to

induce structural uncertainty to the systems. Accordingly, in Table A.1 m1 changes from 4kg to 6 kg,

m2 changes from 2kg to 3kg, J1 changes from 1kg·m2 to 1.5kg·m2 and J2 changes from 0.8kg·m2 to

1.2kg·m2.

A.8 Disturbance observer based adaptive robust controller proposed

by Yang et al. [2]

Yang et al. proposed a controller using the local information available for each joint subsystem in

order to ensure the boundedness of the control system and to achieve a satisfactory performance. For
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the i− th joint of the manipulator they proposed the following controller:

ui = −kiri − ρir
3
i − σi|ŵi|ri − ŵi −

η2it
η̂it|ri|+ δi

ri (A.57)

where ki, ρi, σi, δi > 0 are the controller gains and η̂it is the adaptive gain of the sliding mode controller

tuned using the following law

˙̂ηit = γi(|ri| − ǫiη̂it) (A.58)

where γi ≥ 0 is the adaptive gain and ǫi ≥ 0 is the leakage parameter that prevents η̂it from growing

unbounded. For each local system ŵi is the compensation term used by the disturbance observer for

the disturbance terms wi, where

ŵi =



















¯̂wi, for Qi(s)wi ≥ ¯̂wi

Qi(s)(moisri − ui), for|Qi(s)(moisri − ui)| < ¯̂wi

− ¯̂wi, forQi(s)wi ≤ − ¯̂wi

(A.59)

where Qi(s) = ( 1
1+λis

)2, λi > 0, is a second order filter, ¯̂wi > 0 is a selected upperbound for |wi|, s is

the complex number frequency parameter of Laplace transform and moi is the element of the positive

definite diagonal inertia matrix estimated for the manipulator. Also, ri ∈ r = ė+ φe where e = q− qd

is the position tracking error and φ = diag{φ1, . . . φn} > 0 is a constant matrix.

The parameters used by Yang et al. [2] are given as follows:

φ1 = φ2 = 10, k1 = k2 = 20, ρ1 = ρ2 = 5, λ1 = λ2 = 0.02

σ1 = σ2 = 5, δ1 = δ2 = 0.05, γ1 = γ2 = 50, ǫ1 = ǫ2 = 0.001, mo1 = mo2 = 1.

A.9 Dynamics of the 3DoF manipulator simulated in the Coordi-

nated Links (COOL) robot arm

Dynamics of the 3DoF manipulator in the Coordinated Links (COOL) robot arm is given by







m11 m12 m13

m21 m22 m23

m31 m32 m33







[

q̈1

q̈2

]

+







h1

h2

h3







[

q̇1

q̇2

]

+

[

g1

g2

]

+

[

f1

f2

]

=

[

τ1

τ2

]

(A.60)

where

m11 =Iz1 +m3 [r2 cos(q2 + q3) + l1 cos(q2)]
2 + Iz3 cos(q2 + q3)

2 + Iy3 sin(q2 + q3)
2 + Iz2 cos(q2)

2

+ Iy2 sin(q2)
2 +m2r

2
1 cos(q2)

2

m12 =m21 = m13 = m31 = 0
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m22 =Ix2 + Ix3 +m2r
2
1 +m3 [r2 + l1 cos(q3)]

2 + l21m3 sin(q3)
2

m23 =m32 = Ix3 +m3r2 [r2 + l1 cos(q3)]

m33 =m3r
2
2 + Ix3

h1 =− q̇1
[

Iz2q̇2 sin(2q2)− Iy2q̇2 sin(2q2)− Iy3q̇2 sin(2q2 + 2q3)− Iy3q̇3 sin(2q2 + 2q3)

+ Iz3q̇2 sin(2q2 + 2q3) + Iz3q̇3 sin(2q2 + 2q3) + l21m3q̇2 sin(2q2) +m2r
2
1 q̇2 sin(2q2)

+m3r
2
2 q̇2 sin(2q2 + 2q3) +m3r

2
2 q̇3 sin(2q2 + 2q3) + l1m3r2q̇3 sin(q3)

+ 2l1m3r2q̇2 sin(2q2 + q3) + l1m3r2q̇3 sin(2q2 + q3)
]

h2 =
[

Iz2q̇
2
1 sin(2q2)− Iy2q̇

2
1 sin(2q2)− Iy3q̇

2
1 sin(2q2 + 2q3) + Iz3q̇

2
1 sin(2q2 + 2q3) + l21m3q̇

2
1 sin(2q2)

+m2r
2
1 q̇

2
1 sin(2q2) +m3r

2
2 q̇

2
1 sin(2q2 + 2q3)

]

/2− l1m3r2q̇
2
3 sin(q3) + l1m3r2q̇

2
1 sin(2q2 + q3)

− 2l1m3r2q̇2q̇3 sin(q3)

h3 =sin(q2 + q3)
[

m3 cos(q2 + q3)r
2
2 + l1m3 cos(q2)r2 − Iy3 cos(q2 + q3) + Iz3 cos(q2 + q3)

]

q̇21

+ l1m3r2 sin(q3)q̇
2
2

G1 =0, G2 = −gm3 [r2 cos(q2 + q3) + l1 cos(q2)]− gm2r1 cos(q2)

G3 =− gm3r2 cos(q2 + q3), f = [f1, f2]
T = 0.04q̇ + 0.007sign(q̇).

A.10 Proof of Theorem 6

Considering the Lyapunov function

V =
1

2
żT
2 Mdż2 +

1

2
eTx ζ(t)ex (A.61)

where ζ(t) is a function of the variable damping and the stiffness coefficients of the desired impedance

and is a symmetric, positive definite matrix with continuously differentiable elements. Differentiating

V and using (3.56) and (3.57), the following is obtained:

V̇ =żT
2 Mdz̈2 + eTx ζ(t)ėx +

1

2
eTx ζ̇(t)ex

V̇ =(ėx + c1ex)
TMd(ëx + c1ėx) + eTx ζ(t)ėx +

1

2
eTx ζ̇(t)ex (A.62)

Now, from (3.48), considering Fe = 0 the following can be derived

Mdëx = −Bd(t)ėx −Kd(t)ex (A.63)

Using (A.63) in (A.62), V̇ can be derived as follows

V̇ =(ėx + c1ex)
T (−Bd(t)ėx −Kd(t)ex +Mdc1ėx) + eTxζ(t)ėx +

1

2
eTx ζ̇(t)ex

=− eTx

(

c1kd(t)−
1

2
ζ̇(t)

)

ex − ėTx (Bd(t)−Mdc1) ėx

− ėTx (Kd(t) + c1Bd(t)− c1Mdc1 − ζ(t))ex (A.64)
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In order to ascertain negative definiteness of V̇ , the variable matrix ζ(t) is chosen as

ζ(t) =Kd(t) + c1Bd(t)− c1Mdc1 (A.65)

⇒ ζ̇(t) =K̇d(t) + c1Ḃd(t). (A.66)

Now, replacing ζ(t) and ζ̇(t) in (A.64), the following is obtained

V̇ = −eTx

(

c1Kd(t)−
1

2
K̇d(t)−

1

2
c1Ḃd(t)

)

− ėTx (Bd(t)− c1Md) ėx. (A.67)

Therefore, to ensure stability of the chosen impedance characteristics, the following conditions should

be satisfied:

(i) Bd(t)− c1Md should be a positive definite matrix,

(ii) c1Kd(t)−
1

2
K̇d(t)−

1

2
c1Ḃd(t) must be positive definite.

A.11 Time derivative of the sliding manifold used in Chapter 4

The fast terminal sliding manifold (4.9) can be rewritten as

s =



















z1 + βzλ2 , z2 > 0

z1, z2 = 0

z1 − β(−z2)
λ, z2 < 0

(A.68)

The sliding variable is continuous for both z2 > 0, z2 < 0 and also at z2 = 0 as shown in the following:

s(z1, 0) = lim
z2→0+

s(z1, z2) = lim
z2→0−

s(z1, z2) = z1. (A.69)

Since the partial derivatives of s at right and left hand sides of z2 exist as shown below, hence

s(z1, z2) is differentiable at z2 = 0.

∂s(z1, z2)

∂z2

∣

∣

∣

∣

z2=0−

= lim
h→0−

β(−z2)
λ

−h
= lim

h→0−
β(−h)λ−1 = 0 (A.70)

and

∂s(z1, z2)

∂z2

∣

∣

∣

∣

z2=0+

= lim
h→0+

β(z2)
λ

h
= lim

h→0+
β(h)λ−1 = 0. (A.71)

Therefore

∂s(z1, z2)

∂z2
=



















βλzλ−1
2 , z2 > 0

0, z2 = 0

βλ(−z2)
λ−1, z2 < 0
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which can be equivalently written as

∂s(z1, z2)

∂z2
= βλ|z2|

λ−1.

Hence, the time derivative of the sliding variable will be,

ṡ(z1, z2) =
∂s(z1, z2)

∂z1
ż1 +

∂s(z1, z2)

∂z2
ż2

=ż1 + βλ|z2|
λ−1ż2. (A.72)

A.12 Derivation of ṡ in (4.16)

From (4.9) and (4.11), the time derivative of s for z2 > 0, z2 = 0 and z2 < 0 can be obtained as

ṡ =



















ż1 + βδ|z2|
δ−2

◦z2 ◦ ż2, z2 > 0

ż1, z2 = 0

ż1 − βδ|z2|
δ−2

◦z2 ◦ ż2, z2 < 0

(A.73)

Now, (A.73) can be written as the following generalized form giving the derivative ṡ

ṡ =ż1 + βδ|z2|
δ−2

◦z2 ◦sign(z2) ◦ ż2

=ż1 + βδ|z2|
δ−2

◦ |z2| ◦ ż2

=ż1 + βδ|z2|
δ−1

◦ ż2

=ż1 + βδ|z2|
δ−1

◦

(

M−1
h (τm −Chq̇ −Gh)− q̈d + c1ż1

)

. (A.74)

A.13 2 DoF manipulator model used in Simulation 4.3

The model of the 2 DoF robot arm is given by

[

m11(q2) m12(q2)

m12(q2) m22

][

q̈1

q̈2

]

+

[

−c12(q2)q̇
2
1 − 2c12(q2)q̇1q̇2

c12q̇
2
2

]

+

[

G1(q1, q2)

G2(q1, q2)

]

=

[

τ1

τ2

]

+

[

τd1

τd2

]

(A.75)

where

m11(q2) =(m1 +m2)l
2
1 +m2l

2
2 + 2m2l1l2 cos(q2) + J1

m12(q) =m1l
2
2 +m2l1l2 cos(q2)

m22 =m2l
2
2 + J2

c12(q2) =m2l1l2 sin(q2)

G1(q1, q2) =(m1 +m2)l1g cos(q2) +m2l2g cos(q1 + q2)

G2(q1, q2) =m2l2g cos(q1 + q2)
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and g = 9.81m/s2 is the acceleration due to gravity.

A.14 RFTSM controller by Zhao et al. [3] used in Chapter 4

The RFTSC based controller proposed in [3] has the following structure:

τZ =τ0 + τ1

τ0 =C0(x1 + qd, x2)x2 +G0(x1 + qd)

+M0(x+ qd)(φ̇(x1)− x1 − k2z)

τ1 =



















−(zTM−1

0
(x1+qd))

T

||zT
0
M−1

0
(x1+qd)||

(

b0 + b1||x1 + qd||

+b2||x2||
2
)

, ||z|| 6= 0

0, ||z|| = 0

(A.76)

where

φ(x1) = −k1sig(x1)
p

z = x2 − φ(x1)

x1 = q − qd; x2 = q̇ − q̇d

and τZ is the applied control law obtained using Zhao et al. ’s algorithm [3]. The terms M0, C0

and G0 are the manipulator parameter matrices under nominal conditions. The parameters used for

the controller τZ are k1 = k2 = diag(1.8, 1.8), p = 3/5, b0 = 0.9, b1 = 0.1, b2 = 0.1. The notation

sig(x1)
p, x1 ∈ R

n, 0 < p < 1 defines the following:

sig(x1)
p =

[

|x11|
psign(x11), . . . , |x1n|

psign(x1n)
]T

.
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