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Abstract

Nearly two decades back nonlinear system identificatiorsisted of several ad-hoc approaches which
were restricted to a very limited class of systems. Howewéh the advent of the various soft com-
puting methodologies like neural networks, the fuzzy logicl the genetic algorithm combined with
modern structure optimization techniques, a wider clasystems can be handled at present. Complex
systems may be of diverse characteristics and nature. Bysgams may be linear or nonlinear, con-
tinuous or discrete, time varying or time invariant, statiadynamic, short term or long term, central
or distributed, predictable or unpredictable, ill or welifthed. System outputs may be measurable or
unmeasurable. Models of real systems are of fundamentalrtance in virtually all disciplines and
hence there is a strong demand for advanced modeling, fidatitn and controlling schemes. This is
because models help in system analysis which in turn helptta getter understanding of the system
for predicting or simulating a system’s behavior. Also,teys models facilitate application and valida-
tion of advanced techniques for controller design. Devalept of new processes and analysis of the
existing ones along with their optimization, supervisitaylt detection, and component diagnosis are
all based on the models of the systems. As most of the reatisgdtems are nonlinear in nature, an
endeavor is made for modeling a nonlinear system in the pregak. A linear system is considered
to be a special case of the nonlinear system. The challengelyed in modeling, identification and
control of a nonlinear system are too many and attempt has imeele to tackle them by applying
various soft computing methodologies. In most of the cotiveal soft computing methods the system
modelling results are dependent on the number of trainitg used. It has been found that the model-
ing results improve as the number of training data incred®esin many complex systems the number
of available training data are less and the generation ofdaw is also not cost effective. In such a
scenario the system has to be modelled with the available ddte proposed modeling scheme has
been devised keeping such a possibility in mind. The resblgined by applying this proposed model
are compared with the results obtained by using variousstall and genetic algorithm based fuzzy
models and finally the relative merits and demerits invohugti the respective models are discussed.
The work embodied in the present thesis is concerned witimaptdesign of the conventionally ex-
isting soft computing based system models. The statisasgd Full factorial design (FFD) and the
V-fold cross validation technique are applied to augmerdraventional neuro-fuzzy technique and the

following observations are noted :



e The results obtained by applying the proposed techniquearparable and in some cases su-

perior to those obtained by using the conventional neurayfunodel.

e Comparable or superior results are obtained with this prgbosodel even though the number

of data pairs used for system modeling here are less as cethfzathat used in the conventional

methods.

e It resulted in reduction of the number of computations imedl As the experiments were per-

formed by using reduced number of specifically chosen datapntimber of computations re-

quired to be performed also came down.
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Chapter 1
Introduction

Most of the present day systems are large and may be congittebe complex in nature. Electrical
power, chemical, water treatment and similar large-saadestrial plants are all complex in nature.
Complex systems may be linear or nonlinear, continuous aretis, time varying or time invariant,
static or dynamic, short term or long term, central or distteéd, predictable or unpredictable, ill or
well defined. Also, system outputs may be measurable or usumalale. They may consist of many
interconnected systems, sub-processes or componentprddesses involved in the complex systems
may possess widely varying properties. In large scale systevery part performs a desired function
and the overall system works satisfactorily only if all th#edent parts work in tandem for what they
are designed for. Modeling of complex systems is of fundaaiémportance in almost all fields. This
is because models facilitate better understanding of tesyand so help in system analysis. So pre-
diction and simulation of the system’s behavior are thersipbs. System model also helps to design
new processes and analyze the existing ones. The desigmjzgiton and supervision of controllers,
fault detection and faulty component diagnosis are all hasethe system model. This is because for
the improvement of the system’s performance, it is requicechodel the system correctly so that the
model parameters can be tuned to get the required systeonsest is because of this fact that in the
last few decades, modeling of large scale, complex systambéen a special topic of interest among
the researchers of various disciplines worldwide [1]. Mafsthe real world systems are ill defined
in nature and hence difficult to model. Generally the pertmmoe of the system is dependent on the
accuracy of the model. Therefore it is of utmost importamcbkuild a model which correctly reflects
the behavior of the system under consideration. The funictgpof complex large-scale systems also
involves numerous tradeoff problems like cost and accuf2kyHence, there is a strong demand for

developing advanced methods of system modeling and id=iidh techniques. The conventional

1
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methods that have been used for system modeling rely heavillye mathematical tools which require
precise knowledge about the involved physical processesydtems where the mathematical model
is not available, it is not possible to use the conventionethmds for its analysis. In such cases, soft
computing based modeling [3] approaches provide a viabderaltive for identification of the system
from the available data. The concept of soft computing [4]dreto materialize near about the time
when Lotfi Zadeh was working on soft analysis of data and flagic. This gave birth to the intelligent
systems. Nearly four decades later, the intelligent systecame a reality. However, initially the tech-
nology needed for building systems that possess Atrtifioigligence (Al) was not available. Instead
only predicate logic and symbol manipulation techniquemad the core of the traditional Al. These
techniques could not be used for building machines whichdcba called intelligent from the point
of view of real world application. But today the requisite ¢haare, software and sensor technology
are available for building intelligent systems. In additim these, computational tools are available
now which are far more effective for conception and desigimtdlligent systems. These tools are
derived from a collection of methodologies called soft cotimmy. Unlike hard computing the essence
of soft computing is aimed at accommodating the prevaleptacision of the real world. Therefore
soft computing helps in exploiting the tolerance for impsem, uncertainty and partial truth so that
tractability, robustness, low solution cost and bettepaapwith reality can be achieved. Hence the
human mind can be considered to be a role model for soft cangpuRather than a single technique,
soft computing may be considered to be comprising of diffeneethodologies with Neuro-computing
(NC), the Fuzzy logic (FL) and the Genetic algorithm (GA) as pinincipal partners. Therefore in soft
computing based system identification, instead of a sirgledsird method, a collection of techniques
has been put forward as possible solutions to the identdicaroblem. They can be broadly grouped
as neural network based algorithm, fuzzy logic based dlyarand the genetic algorithm. The neural
network has the inherent advantage of being able to adagit &sd also in its learning capabilities.
Similarly the salient feature that is associated with thezjulogic is the distinct ability to take into
account the prevailing uncertainty and imprecision of meatems with the help of the fuzzy if-then
rules. In order to exploit the advantage of the self adaptylaind learning capability of the neural
network and the capability of the fuzzy system to take intocoanit of the prevailing uncertainty and
imprecision of real systems with the help of the fuzzy ifrthrales, an integrated forecasting approach
comprising of both the fuzzy logic and the neural network Ib@sn considered. This hybrid system is
called the Adaptive network based fuzzy inference systeNHIS). Here the fuzzy system with its ex-

pert knowledge stands as a front end preprocessor for thralmeiwork input and output layers. Based
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on the historical data, the neural network learning algong are used to determine the parameters of
the expert knowledge based fuzzy system. The use of thischgipstem ANFIS helps to complement

the weakness of the respective systems.

1.1 Aim of the research

The main research objective that has been kept in mind wiitiating and furthering the present work
is the modeling of a real world system with the help of the soithputing technique. In the quest
for developing a model for a system based on its availabletioptput data, it has been observed that
in the conventional modeling approach the results depenith@mathematical model of the system
and its accuracy. In cases where the mathematical modet as/atable the system analysis becomes
very difficult. It is in this context that the soft computing@oach can provide a viable alternative.
The prime inherent advantage associated with the soft congptechniques of not requiring a math-
ematical model has been a motivating factor for considamah our present work. Motivated by this
advantageous feature of soft computing based systemfidatitin, the present work focuses on build-
ing a model for an ill defined real world system based on itdavi@ record of input-output data using
ANFIS. An endeavor is made to extract previously unknoworimiation from the available time-series
data so that an accurate model can be built. Once built, titkehoan be used to predict or forecast fu-
ture values. The present research concentrates on theli$iimation when the available input-output
data for a system are very less and generation of real tingeislatso prohibitively expensive. In such
cases, itis really a challenging task to build a faithful middr the system using soft computing based
data driven identification technique like ANFIS. This resdaattempts to find a solution to this prob-
lem of modeling an ill defined real world system faithfullytime situation when available input-output

data is scanty.

1.2 Contribution of the thesis
The major contributions of this thesis can be outlined dsv:

e Building an ANFIS model for real world systems like gas fureand thermal power plant

e Proposal of a novel technique for training the neural netvilmthe ANFIS model by optimally
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selecting the available data using the Full factorial degig-D) and the V-fold cross validation

method

e Proposal of a hybrid method for optimal data selection ipocaiting both the above techniques

of full factorial design and V-fold cross validation
e Proposal of a GA based fuzzy model

e Design of an ANFIS based controller to study the performaridcbe proposed ANFIS model

1.3 Organization of the thesis

The thesis records a detailed account of the use of the sofpeting techniques for system identifica-

tion. The organization of the thesis is given below.

Chapter 2: A brief overview of the system identification techniquesdzhsn soft computing method-

ology is presented in this chapter. Available literaturewtbnodel based forecasting techniques

is also reviewed in this chapter.
Chapter 3: In this chapter the objectives and methodology used in theareh are discussed.

Chapter 4: In this chapter the ANFIS architecture is discussed in tetdihis chapter is devoted to
the modeling of systems based on ANFIS.

Chapter 5: In this chapter the use of two new techniques proposed inrdsept research for optimal
data selection in training the ANFIS model is explained. S&evo methods are the Full factorial
design (FFD) and the V-fold technique by using which the nemds data required for training
the ANFIS was drastically reduced. Also another hybrid nhed@&NFIS combining these two

techniques has been proposed.

Chapter 6: In this chapter the proposed GA based fuzzy model for systemtification is discussed.
This chapter also gives a detailed account of the statisticalels namely ARX, ARMAX and
ARIMAX which are applied to the system under consideratiohe Tesults obtained from the
proposed soft computing based model are compared with titiaéed by using these conven-

tional statistical models as well as GA based models.
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Chapter 7: The last chapter presents a brief discussion about therobseark and also draws con-
clusions by analyzing the results obtained in this thesiso A few areas for further investigation

are suggested in this chapter.



Chapter 2

Soft Computing based Techniques for System
|dentification

Contrary to the conventional hard computing techniquesptime inherent advantage associated with
the soft computing techniques is the non requirement of aemadtical model and hence are becoming
increasingly popular as system identification methodalddyee powerful soft computing techniques
which are very popular are the Neural network, the Fuzzyclagd the Genetic algorithm (GA). A brief
overview of available methods using these techniques #artification and control of linear as well as
nonlinear dynamical systems is presented in this chaptersd soft computing based approaches are
reviewed thoroughly in this chapter since this researclhiges on utilizing soft computing as a tool
for system identification for the purpose of modeling an dfided real world system so as to forecast

future values.

2.1 Neural Network based Algorithms

In addition to being the source of natural intelligence, lnenan brain can process incomplete infor-
mation obtained by perception at a very rapid rate. Insgiethis biological property of the nervous
systems and the brain, researchers attempted to modeliienhorain resulting in the evolution of the
neural network. Here the brain has been modeled as a consiriumoe nonlinear dynamic system with
a connection architecture. In this architecture the nesimrthe processing units which are intercon-
nected by weights are expected to mimic the human brain. gives the neural network the capability

for learning and adaptation by adjusting the interconoeckietween the layers. The most important

6
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characteristics of the neural network are:

e Presence of a large number of simple units

Presence of a large number of highly parallel units

Presence of strongly connected units

Robustness against the failure of single units

Learning from data

The network of any system will be considered to be an artifrgural network if the same basis
function is used throughout the network. Here the nodes @ftistem are called the neurons. The

layers of a neural network architecture may be subdividemithree principal groups:

e Depending upon the number of inputs all the input neuronstteg constitute the input layer
e Similarly all the output neurons together constitute thgpatlayer

¢ All the neurons in any intermediate layer form the hidderetayThere may be more than one

hidden layer in a neural network

Some of the popular neural network architectures are theifldyler perceptron (MLP) network,
Radial basis function network (RBFN) and the neuro-fuzzy nétwdhe pivotal contribution of neural
networks is a methodology for identification, learning addtation.

The early works on neural networks include those of McCullacti Pitts [5], Hebb [6], Rosenblatt [7],
Widrow and Hoff [8], Minsky and Papert [9], Hopfield [10], Rar [11], Rumelhart and McClel-
land [12], Carpenter and Grossberg [13] and Kohonen [14]ehdna and Parthasarathy [15] demon-
strated the use of neural network for the identification amatrol of nonlinear dynamical systems.
Polycarpo and loannou [16] proposed the general formuldaomodelling, identification and control
of a nonlinear dynamical system. Another development wasd#sign and analysis based on Lya-
punov stability theory [16,17]. Pham and Liu [18] proposkd tise of recurrent neural networks for
the identification of linear and nonlinear dynamic systeifise interest in the use of neural networks
for modeling and identification of static and dynamical céemgsystem on the basis of the input-output
data pairs was a new development. Kosmatopoulos and Choidtmd[19] proposed an algorithm for

identification of nonlinear systems using Recurrent higleoreeural network (RHONN) based on the
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extension of Hopfield [20] and Cohen-Grossberg [21] worksurdkenetworks with Radial basis func-
tion (RBF) are used due to their excellent classification ptyp&anner and Slotine [17] presented an
approach with a Gaussian radial-basis function adaptiveuahycal system with unknown nonlineari-
ties. Hong and Xinkuo [22] proposed a neural network apgrégacombining the equivalence between
RBF and the Fuzzy inference system (FIS) for identification nbalinear system. Ahmad et al. [23]
presented a nonlinear Multi-input-multi-output (MIMO)stgm identification scheme which is based
on the radial basis function network. Similarly Selmic arehlis [24] presented a multi model identifi-
cation scheme by using nonlinear system identificationrtiegte with the RBF based neural network.
Azam and Valandham [25] presented a RBF based neural netwack wkes the log-sigmoid as the
basis function for identification purpose. This functiomehates the risk of mathematical instabil-
ities which are found while using Gaussian radial basis tioncbhased networks. Robert et al. [26]
proposed a class of additive dynamic connectionist modehi® identification of unknown dynamic
systems with the help of two online parameter adaptatioordglgns. One of these algorithms is based
on gradient descent [27—-29] technique and sensitivityyamalvhile the other is based on the varia-
tional calculus. To deal with the problem of time variatidrdsturbance and system parameters, Song
and Soh [30] proposed an adaptive and robust identificatgorithm. This method can overcome the
disturbance problem by the selection of a robust adaptiad dene scheme. The main drawback of the
feed forward Multilayered perceptron (MLP) with Back-prgp#ion (BP) algorithm is the requirement
of intensive computation and the slow rate of error convecge To remove this drawback, Patra and
Chen [31, 32] proposed the Chebyschev functional link arificeural network (C-FLANN) compris-
ing of the Chebyschev polynomials. This method was found ve Baperior performance as compared
to the MLP requiring less computation for the task of nordingystem identification. Ren et al. [33]
proposed an algorithm for the online identification and oandf a class of continuous time higher

order nonlinear system using dynamic neural network.

2.2 Fuzzy Logic based Algorithms

The pivotal contribution of fuzzy logic is a methodology foemputing with words which can deal
with imprecision and granularity. The human brain can jmterand process imprecise and incomplete
sensor information which are received from the perceptigaies. Analogously the fuzzy set theory
can also provide a systematic approach to deal with suchiation linguistically. It can also perform

numerical computation by using membership function fordtigulated linguistic labels. The Fuzzy
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inference system (FIS) is based on the concepts of fuzzyhsery, fuzzy if-then rules and fuzzy
reasoning. The framing of the fuzzy if-then rules forms tley komponent in FIS. FIS is a very
popular technique and has been widely applied in differesitidi like data classification, automatic
control, expert system, decision making, robotics, tinmeeseanalysis, pattern classification, system
identification etc. The basic structure of a fuzzy inferesyegiem consists of three principal components
viz a rule base comprising of the selected fuzzy rules, ddadefining the membership functions of
the fuzzy rules, and a reasoning mechanism which performagzy freasoning inference with respect

to the rules so as to derive a reasonable output or conclusion

2.2.1 Analysis with Fuzzy Inference System

For the analysis of a fuzzy system whose inputs and outpatdescribed by linguistic variables, the

following steps have to be carried out:

e Fuzzification :-The linguistic variables of the fuzzy rube®e expressed in the form of fuzzy sets
where these variables are defined in terms of degree of thearcated membership functions.
This method of calculating the degree of belongingness efctisp input in the fuzzy set is
called the fuzzification. The membership functions may ngular, trapezoidal, gaussian or
bell shaped. As the information about the degree of the meshlgeis used for further process-
ing, considerable amount of information may be lost durimg ¢ourse of fuzzification. This is
because the procedure can be seen as a nonlinear transborwiathe inputs. For example in
the case of triangular or trapezoidal membership functioftgmation is lost in the regions of
membership functions where the slope is zero, as at theséspgbe membership functions are
not differentiable. Therefore fuzzy systems having tridagor trapezoidal membership function
can encounter problems of learning from data. Smoother raeship functions like gaussian or

bell function may be used to overcome this difficulty.

e Aggregation :-After the degree of each linguistic statememvaluated, they are combined by
logical operators such as AND and OR. The conjunction of thiegeistic statements is carried
out by logical t-norm and the t-conorm operator to a large Ioemnof linguistic statements. Max
and Min operators are used for classification task. For tipgae of approximation and identifi-
cation the product and algebraic product operators arermitted due to their smoothness and
differentiability. Similarly the bounded sum and diffecenoperators offer several advantages to

some neuro-fuzzy learning schemes.
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e Activation :-Here the degree of rule fulfilment is used toccddte the output activations of the

rules.

e Accumulation :-In this step the output activations of a# tlules are joined together to give rise

to the fuzzy output of the system.

e Defuzzification :-If a crisp value of the system is requirdt final fuzzy output has to be de-
fuzzified. This can be done by different methods like cenfegravity, bisector of area, mean
of maximum (mom), smallest (absolute) of maximum (som) amgdst (absolute) of maximum

(lom).

2.2.2 Types of Fuzzy System

A fuzzy system may be of three principal types, namely:
e Mamdani fuzzy system :-This type of system is also known aditiyuistic fuzzy system.

e Singleton Fuzzy system :-The complexity of defuzzificatidra linguistic fuzzy system can be
simplified by restricting the output to a singleton membagr$anction. Since no integration has
to be carried out numerically, this results in reducing ti@putational demand for the evaluation
and learning of the fuzzy system. Therefore a singletonyfgyatem is most widely applied in

industry.

e Takagi-Sugeno Fuzzy system :- This system may be consitiebedan extension of the singleton
fuzzy system. Here the functiofi is not a fuzzy set. But the premise of a Takagi-Sugeno
fuzzy system [34,35] is linguistically interpretable. Fodynamic process modelling the Takagi-
Sugeno models possess an excellent interpretation. Aesorgfuzzy system can be recovered
from a Takagi-Sugeno fuzzy system if the functipms chosen to be a constant. As the constant
can be seen as a zeroth order Taylor series expansion of tke&diul f, it is also called the
zeroth order Takagi-Sugeno fuzzy system. However, in miofteoapplications, the first order

Takagi-Sugeno fuzzy system is more common.

Since the introduction of the fuzzy logic concept by Zade®, ], research was continuing for ap-
plication of fuzzy system theory for system identificati@8f40]. This is because in many complex
and ill-defined systems where precise mathematical modelditicult to build, their fuzzy models

can be obtained easily which reflect the uncertainty of tis¢esy in a proper way. There are numerous
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applications of Fuzzy logic controller (FLC) in industrialggesses [41-43]. The interpolation of the
fuzzy rule base provided by human experts governs the peaioce of a FLC. Self-organizing fuzzy
controller (SOFC) was proposed by Mamdani and Procyk [44]reviige fuzzy rule base is modified
by evaluating the system performance that is expressedisiticplly. Park and Lee [45] proposed an
SOFC where the rules are generated by input-output datae tHerrules get updated by self learning
procedure. Graham and Newell [46] presented another agipr@lere the fuzzy model of the process
is identified online and the control input is calculated lobse the identified model of the process and a
heuristically determined performance measure. Here thiesyis considered to be linear. It has been
observed that a lot of researchers are paying attentioretéuizzy relational model. This is because
the fuzzy relational equations reflect the fuzzy nature efgiistem effectively. These relations are
universal approximators which can perform nonlinear magpbetween input-output variables which
are treated as fuzzy sets. There are two aspects of fuzayorelaequation method. One aspect is
based on the resolution of composite fuzzy relational eqnd#7, 48] and the other is the linguistic
model identification as proposed by Tong [49]. But as Tong'slehgould not be extended to a higher
dimensional system, Li and Liu [50] proposed an adaptivehaeism based on the decision table form
of simple linguistic models. Pedrycz [48] proposed anoflagey compositional rule based system
identification algorithm which uses the concept of refaedritizzy set and Zadeh’s conditional pos-
sibility distribution. Babu and Sachidanand [51] preserdgadther method for the identification of a
nonlinear system based on the fuzzy relational model. Heréput is considered to be linear and the
output is considered to be nonlinear in nature. Lee et. 8].jfoposed a combined approach to fuzzy
model identification which combines the linguistic appioand the numerical resolution of fuzzy re-
lational equation. Moore and Harris [53] proposed an irdisalaptive fuzzy control method which
uses a first order fuzzy model for the identification of thenpl&Xu [54] showed the application of the
fuzzy system for the identification of a nonlinear system. tilmow, there are three different kinds
of fuzzy models which have been in use from the fuzzy cont®ipoint. In the first class the fuzzy
basis function approximation [55] has been used, which neagansidered as a mapping between the
input and the output space. This model suffers from the daatdge that some important dynami-
cal behavior of the system can not be represented. In thenddgpe of fuzzy model as described
by Takana and Sugeno [56], global function approximatiamlma achieved from a set of local linear
equations. But this model suffers from the disadvantageitltainnot be used for controller design.
The third model is called the fuzzy dynamic model [57] whielquires accurate determination of the

upper bound of the local model. Huaguang and Yongbing [5&psed a fuzzy hyperbolic model for
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a class of complex systems which is difficult to model. Sugemb Yasukawa [59] presented a general
approach for qualitative modeling based on fuzzy logic. @ipy and Montoya [60] proposed a fuzzy
model for the identification of nonlinear systems. Simijf&8laweda and Zurada [61] presented a fuzzy
identification system with relational input partition. aend Cipriano [62] proposed the application
of fuzzy models for the control of a combined cycle power plawiler. Elshafei and Karray [63] pro-
posed a fuzzy model for the identification of a class of blaok-type nonlinear systems. Similarly
Saez and Cipriano [64] proposed a fuzzy model for the reptasen of the nonlinearity of a process.
Again Chen and Linkens [65] proposed a method for the fuzzyetiog from numerical data. Flores

et al. [66] applied fuzzy logic for controlling a solar powaant.

The fuzzy if-then rules contain the structured knowledgaresentation of the fuzzy inference sys-
tem. But this does not provide the adaptive capability to tiezy inference system for dealing with

the changing external environment which is found in a nengélork.

2.3 Genetic Algorithm

Genetic Algorithm was envisaged by John Holland [67] at thiversity of Michigan, in thel970s.

It is based on the Darwinian evolution theory of survival loé ffiittest which states that the fitter and
stronger individuals in a population have a higher chanaexdting offsprings for the next generation
by random mutation and natural selection. It can be impleeteas an optimization search procedure
which uses the principles of genetics and natural seletiyomodelling possible solutions to a search
problem as strings of zeroes and ones. Each point in a paamesolution space can be encoded
by Genetic algorithm (GA) in a binary bit string, which is leal the chromosome. For example, if a
particular point(8,5,7) in a three dimensional space, is to be transformed, it caefresented by a
concatenated binary string ®000,0101,0111. Here each coordinate is encoded by a gene which is
represented by four binary bits. Encoding plays a key roldatermining the GAs performance as
it helps to translate problem specific knowledge directlyi® GA framework. After the creation of
a generation comprising of these points, each of thesep@iraiso assigned a fitness value which is
given by the evaluated value of the objective function at gwnt. Generally positive values of the
objective function are preferred. So if the fithess valuetgpositive some kind of monotonical scaling
and/or translation can be done [68]. The problem can alsmbesmes tackled by calculating the

fithess value in terms of the ranking of the members in a pdipualaA collection of these points is kept
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as a gene pool or population which can be repeatedly evobweartls a better fitness value in the next
successive generations, by upgrading the entire popnlafitier the completion of the encoding and
the fitness evaluation steps, the GA constructs a new papulateach successive generation by using

three basic genetic operators. They are:

e Selection:- The selection operation determines the pswehich will be participating in mating
to produce offsprings for the next generation. This is ag@ls to the survival of the fittest in the
natural selection. Starting from a possible solution gsjrpairs of individuals from the current
population are allowed to mate to produce offsprings forribgt generation. This selection
procedure is based on the strategy of survival of the fit8sherally the selection of members
for mating are based on their selection probability whiclpngportional to their fithess value.
Usually the roulette wheel selection strategy is used whepending upon the string’s relative
fitness size a string is assigned a slot in the simulated whel selection strategy results in the
replacement of members with below-average fitness value mémbers having above-average

fitness value, to take part in the mating process.

e Crossover:-The crossover operation is carried out for tineigegion of new chromosomes which
will be able to retain the good features from the previousegation. Selected pairs of parents
having a probability equal to a given crossover rate areidensd for this operation. In this
operation genetic materials (i.e bit-values) between te@pt strings are swapped so that gen-
erated offsprings represented by highly fit strings can lzageeater probability to be selected
in the subsequent generation. A single point crossovereisrtst basic operator. In a single
point crossover along a randomly selected bit position #@etc materials of the two parent
chromosome strings cross over. Similarly for a two-poimtssover, the genetic materials be-
tween two randomly selected crossover points in two chramesstrings are interchanged to
generate two children. The effect of crossover is analogusating in the evolutionary process
in which the parents pass segments of their own chromosamtbsit children. These children
can outperform their parents if they inherit good genes ftbem. This operation is shown in

Fig. 2.1.

e Mutation:- A certain pool of population may not be able toveoh particular problem if it does
not contain all the encoded information. To rectify thisldesm the mutation operator is used so
that spontaneously generated new chromosomes can be adte@kisting pool. This operation

alters a few more selected bit values in randomly selectaugst with a probability equal to a
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Crossover

point
100 | 11110 100 | 10010
101 | 10010 101 | 11110
(Single—point crossover)
1 0011 110 1| 0110 110
1 0110 | 010 1| 0011 010

(Two—point crossover)

Figure 2.1: Crossover operation

very low mutation rate, after the crossover operation. Théation rate is kept low so that good
chromosomes obtained from crossover operation are nofllastmutation operator can prevent
any single bit from converging to a value throughout therergbpulation. In addition to this the
population is prevented from converging or getting stagimaany local optima. This operation
enhances the ability of the GA to find a solution which is ngatinoal by searching the entire

solution space for the best solution. This operation is shiowFig. 2.2.

Mutated bit

10011110

Y

10011 0

Figure 2.2: Mutation operation

The pivotal contribution of genetic algorithm is a methampt for systematized random search and
optimization. Researchers attempt to simulate complexgiohl evolutionary processes to discover
how evolution can propel living beings towards a higher lefentelligence which has resulted in the
concept of the genetic algorithm. The flow chart for this alipon which is based on the evolutionary

principle of natural selection has been shown in Fig. 2.3.

Kumon et al. [69] proposed the use of genetic algorithm farlime@ar system identification. Simi-

larly Akramizadeh et al. [70] proposed the use of genetiorilgm for the identification of a nonlinear
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Figure 2.3: GA algorithm flowchart

Hammerstein model. Juang [71] presented an algorithm whigshbased on recurrent neural network
with genetic algorithm for nonlinear system identificatitim and Lee [72] proposed the application
of multi-objective fuzzy optimization for the parameteeidification of a nonlinear system. Vazquez

et. al. [73] used genetic programming for the structuretifieation of nonlinear dynamic systems.

2.4 Neuro Fuzzy Approach

Fuzzy logic, neural network and genetic algorithm are cemantary rather than competitive for sys-
tem identification. Therefore it is advantageous to useeth@shniques in combination amongst them-
selves rather than exclusively. This gives rise to what iieddhe hybrid intelligent systems. One of
the popular combinations that has been used extensiveig isguro fuzzy hybrid system. The essen-
tial part of neuro-fuzzy modelling comes from a common fraumek called adaptive network which
unifies the neural network and the fuzzy model. In this resilhybrid intelligent system, the neural
network has the ability to recognize patterns and adaptskéms to cope with changing environment.
On the other hand the fuzzy inference system incorporateshunowledge and performs inferencing

and decision making. The modeling by neuro-fuzzy metho@imerned with model extraction from
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numerical data which represents the dynamic behavior odyeem. System modelling based on this

methodology can serve two purposes:

e The behavior of the system under consideration can be peediom the derived model

e The derived model can be used for the design of a controller

The important steps of the neuro-fuzzy modelling approaeh a
e Fuzzification of the input physical variables
e Computation of the degree of satisfaction for the availablguistic terms
e Conjunction of the premise and the fuzzy inferred parameters
e Defuzzification of the output

All the above mentioned steps are realized in sequentiaiynged layers of the neural network which
has an architecture to adjust the weights in the form of thharpaters of the extracted rules. Using
the neuro-fuzzy modelling as a backbone, the charactsisfi soft computing may be classified as

follows :-

e Human expertise:- For solving practical problems, soft potimng can be used to utilize the
human expertise in the form of conventional knowledge regméation as well as fuzzy if-then

rules.

¢ Biologically inspired computing models:- Inspired by thelbgical neurons, the artificial neural
network can be used in soft computing methodology to dedl wiany practical problems like

pattern recognition, nonlinear regression, perceptiahcassification.

e Innovative approach:- Soft computing methodology apphe®vative optimization techniques
imbibed from various sources. They are genetic algorithmats/ated from the evolution and se-
lection process, simulated annealing which is inspirethftbermodynamics, the random search

method and the simplex downhill method.

e Numerical computation:- Unlike symbolic artificial intiggence, soft computing mainly relies on

numerical computation.
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e New application domains:- Because of being software basedsdft computing method is in-
creasingly finding applications in new domains like adap$ignal processing, adaptive control,

nonlinear system identification etc.

e Model free learning:- In the absence of system models, theyfinference system and the neural

network have the ability to construct models from the alddasampled data.

¢ Intensive computation:- Neuro-fuzzy and soft computingirads rely heavily on the high speed
number crunching computation to find rules or regularityatedsets, rather than too much back-

ground knowledge on the problem being solved.

e Fault tolerance:- The deletion of a neuron in a neural nétvaora rule in a fuzzy inference
system does not stop these models to perform because gbénellel and redundant architecture.

However, the performance degrades gradually.

e Goal driven characteristics:- Soft computing and neurryusystems are goal oriented. How-
ever, a little deviation from their assigned goal will notetethem from achieving their goal

finally because of their domain specific knowledge.

¢ Real world applications:- Because of the complexity and uag#y involved with the real world
problems, the conventional approaches of problem sologire a mathematical model or a
detailed description of the problem which is being solved.t Biih the integrated approach
of soft computing, it usually utilizes the specific techreguwithin the subtasks to constitute a

satisfactory solution to the real world problems.

Jang and Sun [74] discussed the problems of neuro-fuzzy Imgdend also the direction for its future
use. Lin and Cunningham 11l [75] presented a method whereeh&ark was viewed as a fuzzy model
which gave insight into the real system and also provided thogeto simplify the neural network.
Jang [76] proposed a simple method for the selection of syfautthe neuro-fuzzy model in identifying
a nonlinear system. Similarly Chiu [77] proposed anotherhaetfor the selection of inputs of the
neuro-fuzzy model built for nonlinear system identificati®enai et al. [78,79] showed the application
of the neuro-fuzzy method for the modeling of nonlinear egs. Ishibuchi et al. [80] proposed a
method where the neural network is trained by utilizing tlenerical data and also human expert
knowledge that is represented by the fuzzy if and then rulesng and Lin [81] proposed a method

for the identification of a dynamic system with the help of &d@-Sugeno-Kang (TSK) type fuzzy
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rule based model which also possesses the learning alfiiheaneural network. Sanchez et al. [82]
proposed a method for the identification of a nonlinear systising a fast and stable neuro-fuzzy
method having error minimization. Li et al. [83] presentemkairo-fuzzy method for the identification
of a nonlinear system where in the first step the structuretiiiation task is accomplished and in
the next step the parameter identification is carried outwdfiaand Chen [84] also proposed a soft
computing based approach for the identification of a noalirgystem. Wu et al. [85] proposed an
approach of generating the fuzzy rules using a generaligadrdic fuzzy neural network which is
built on the ellipsoidal basis function. Gao and Joo [86jgm®ed a robust adaptive fuzzy neural model
for the identification of a certain class of multi input-mwutput (MIMO) systems. This model has a
fast online learning capability where the fuzzy rules aneggated or deleted automatically. Panella and
Galeo [87] proposed a clustering approach which is apptiedjbint input-output space for the neuro-
fuzzy modelling of nonlinear systems. Thangavel et al. [B8posed the use of an intelligent controller
for reactive power control. Abraham and Nath [89] used th&owuzzy approach for modeling the
electricity demand in Victoria. Kamia et al. [90] discusdbd use of soft computing technique for the

modelling of large scale plants.

2.4.1 Adaptive Network based Fuzzy Inference System

A neuro-fuzzy technique called Adaptive network basedyunference system (ANFIS) [68, 74,
91] has been used as a prime tool in the present work. Adamtiveork based fuzzy inference system
(ANFIS) is a neuro fuzzy technique where the fusion is madeden the neural network and the fuzzy
inference system. In ANFIS the parameters can be estimatsdch a way that both the Sugeno and
Tsukamoto fuzzy models [92] are represented by the ANFIBit@ature. Again with minor constraints
the ANFIS model resembles the Radial basis function netwRBHN) functionally [93]. This ANFIS
methodology comprises of a hybrid system of fuzzy logic aadral network technique. The fuzzy
logic takes into account the imprecision and uncertaintthefsystem that is being modeled while the
neural network gives it a sense of adaptability. Using tigtsrid method, at first an initial fuzzy model
along with its input variables are derived with the help @& thles extracted from the input output data
of the system that is being modeled. Next the neural netvgused to fine tune the rules of the initial
fuzzy model to produce the final ANFIS model of the systemhls proposed work ANFIS is used as
the backbone for the identification of real world systemstalided description of ANFIS is presented

in Chapter 4.
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After building a model for the system based on ANFIS, the nhadae be used for forecasting future
values using a suitable forecasting technique. A briefrijetson of various forecasting methodologies

available is presented below.

2.5 Forecasting Methodologies

Some of the data based time series forecasting methodslibgiewere carried out in the recent past are
described in this section. Hard computing based methodditikar and nonlinear auto-regression have
been traditionally used for system forecasting. But due éohtighly nonlinear relationship between
the determining factors and the demand forecast, it madernberstanding of the system difficult.
This made the auto regression approach extremely tediald@rbts also rose on the accuracy of the
results.

The self adaptive data driven neural networks [94] scoredjamnpoint in the sense that it can approx-
imate any arbitrary continuous function to any given accyf@5] even with very little knowledge on
the structural relationship between the demand forecastrendetermining factors.

Fuzzy logic can be used to approximate any continuous foimeti a required degree of accuracy [96].
Both the neural network and the fuzzy systems have been fourthte outperformed the auto-
regression approach with higher forecasting accuracy. [96is because of this fact that these ap-
proaches have been well accepted in many practical uiililiilee load forecasting [97, 98].

Studies also show that attempts were made to combine neultgiral networks with recursive least
squares (RLS) algorithm to utilize the advantages of botimté#hods [97,99]. In some utilities the dif-
ferent combination of fuzzy logic, neural networks and r@rthputing based techniques like statistical
methods, fourier transform [100], bayesian curve fittinQ1Jl. Box-Jenkins Autoregressive integrated
moving average with exogenous input(ARIMAX) method [10ZX}rapolation technique [103], wavelet
transform [104], B-spline [105], state space [106] approaehe also tried to checked if any implicit
information that may be embedded in the available data caextracted for use in the forecasting
model. In certain cases it has been found that these ap@meathke the forecasting accuracy improve
substantially. Applications were also found where the gaetvledge of experienced forecasters were
utilized to improve the forecasting accuracy [107].

In many cases it has been found that the presence of spuratashds a considerable effect on the
forecasting accuracy [108]. Significant research work ioort in the direction of identification, de-

tection and estimation of bad data [109-111]. In order tao@wae the drawbacks encountered by



2.5. FORECASTING METHODOLOGIES 20

conventional learning methods like statistics based dhesjse of the evolutionary methods were also
explored [105].

Traditionally, hard computing based methods like lineat aonlinear auto-regression methods have
been applied to build forecasting models [112—-114]. Howea® the relationships between these de-
mand forecasts and the determining factors are highly neati they are not properly understood. This
made the auto regression approach extremely tedious ardsdalso surfaced on the accuracy of the
results.

On the other hand, even with a very little knowledge on thecstiral relationship between the demand
forecast and the determining factors, the self adaptive diaten neural networks can approximate any
arbitrary continuous function to any given accuracy [94)aég et al. [115] studied the application of
neural networks for forecasting in the electricity load s@mption study.

Similarly the fuzzy logic can also be used to approximate @mytinuous function to a required de-
gree of accuracy [95]. Performancewise both the neural orétand the fuzzy systems can be put at
the same level [96, 116, 117]. Both these methods have been fouhave outperformed the auto-
regression approach with higher forecasting accuracygf@]hence have been well accepted in many
practices by utilities for load forecasting [97, 98].

In addition to the soft computing methods, different harthpating methods were also found to have
been applied for generating the different time series fastiog models.

Verleysen et al. [118] proposed the method of fractal ptaecforecasting for engineering applica-
tions. Amjady [107] used an approach in which he utilized ghst knowledge of experienced fore-
casters to improve the forecasting accuracy, where thedwanghuting based Box-Jenkins Autoregres-
sive integrated moving average with exogenous input(ARIMAMthod outperformed the stand alone
neural network approach. Adya et al. [103] proposed thelaked forecasting approach which is an
expert system that uses features of time series alongwitfjhtvextrapolation techniques. Gao and
Tsoukalas [104] proposed the wavelet based forecastinganeind used it for load identification and
forecasting. Wang et al. [119] proposed a nonparametricosimmy technique to build a kernel pro-
jection forecasting model for a given small seasonal timesalata. Meade [101] used the logistic
Bayesian curve fitting model to study and investigate thecefiéthe assumed error structure on the
forecasting accuracy. Saito and Abe [106] used the Kalmger tib derive a state space model for
traffic forecasting. Wang et al. [119] proposed a nonparamstoothing technique to build a kernel
projection forecasting model for a given small seasonag eries data. Meade [101] used the logistic

Bayesian curve fitting model to study and investigate thecefiéthe assumed error structure on the
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forecasting accuracy.

Work was also carried out combining different existing noekblogies for generating the forecasting
models. In many utilities the forecasting approaches aseda@n multiple neural networks being
combined with Recursive least squares (RLS) algorithm [9]7, 3Bis approach helps in extracting
the various load patterns which are implicitly embeddecdhim training data. Khotanzad et al. [97]
explored such an approach. This multiple forecaster apprisaalso supported by many hard comput-
ing based forecasting applications and theories. Thisdaume this approach makes the forecasting
accuracy improve substantially [120]. Kim et al. [121] pospd the use of linear combination of a
fuzzy system with a neural network for improving the for@oagaccuracy. Abraham and Nath [122]
discussed the use of Evolving fuzzy neural network (EFuNMN) the feed forward Artificial neural
network (ANN) as well as a conventional statistical apphofoc modeling electricity demand. Mora-
bito and Versaci [123] proposed the use of fuzzy neural nedsvior identification and forecasting the
experimental urban air pollution data. Makiko and Yoshgts{.00] proposed a new demand forecast-
ing method using the neural network and Fourier transform.

In time series forecasting, spurious or Bad data (BD) affectahecasting performance drastically. So,
identification of bad data is a challenging task here. Millak [108] gave a comparative assessment
of the evaluating techniques for identifying Bad data (BDY, idata gathered from grossly erroneous
measurements. These techniques are first classified, tpewexkand compared. Abur [110] proposed
another algorithm for detecting the bad data using the mnieasnt residuals of the measurements
rejected by the Linear programming (LP) estimator. Thenlthé measurements are identified and
eliminated by estimating the measurement errors of therasidual measurements. The residuals ob-
tained from this second estimation step are made use ofiggptinpose. Long and Ling [111] proposed
a new method of estimating the impulse response of a comp&®ra based on its complex input and
only the real part of its output data values. Zhang and Lo][p@§posed a recursive measurement error
estimation and identification algorithm for identifying ftiple interacting bad data in the power set in
power system static state estimation. As an extension fdrduanalysis of bad data, Zhang et al. [124]
proposed an efficient bad data identification method for & statimator which was implemented in
real-time for a power system control centre in Northeast &hirine proposed algorithm, called the Re-
cursive measurement error estimation identification (RMEEpowerful and efficient having a high
computational speed. Kandemir and Ramanujam [125] pred@mebstraction, called data relation
vectors, to improve the data access characteristics andomgdayouts in regular computations, by

defining a relation between the data elements accessedd®riojoiterations and using this relation to
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guide a number of optimizations for array-based computaticAhmed and Cruz [126] proposed the
modified version of this algorithm and proved that it yieldeast squares solution, which is compa-
rable to the Recursive least squares (RLS) method and inédit for a Data-driven echo canceller
(DDEC). Erdogmus and Principe [127] investigated errorggyt-minimization in adaptive systems
training, by minimization of a Csiszar distance measure betwthe densities of desired and system
outputs. Didenko and Movchan [128] investigated the evaloeaof the uncertainty of A/D conver-
sion with reasonable accuracy by considering the minimumbrar of parameters of the metrological
model of the Data acquisition system (DAS). Joachims [128%@nted an approach to automatically
optimize the retrieval quality of search engines usingktimough data. Babcock et al. [130] discussed
one adaptive strategy for processing bursty streams ofvditzh fluctuate over time without sacrific-
ing the system performance as in many applications, systeen®quired to produce rapid or realtime
guery responses. Weekes and Forgel [131] proposed usinglotienary training of Artificial neural
networks (ANNS) to generate predictive models of quamigastructure, based on the data of activity
relationships between a set of molecular descriptors atidtgcin order to overcome the drawbacks
encountered by conventional learning methods, Coelho antlikg [105] proposed the use of an in-
telligence methodology called swarm optimization methogy to provide a stochastic global search
of B-spline networks for nonlinear system identification.Mkof and Heckendorn [132] explored the
possibility of using string space transformations to redine perplexity of the modeling problem and
thereby improve model performance of a Markov-based dlassin the problem of classifying Eng-
lish and Spanish character strings, where training seisisbitrarily limited. Pekar and Stecha [133]
proposed a real time system parameter estimation from thef §eput-output data by minimization
of quadratic norm errors of system equations. Lii et al. [3posed translation model training in

Statistical machine translation (SMT) using off line dapdiimization and online model optimization.

2.6 Research gap

In all the data based time series forecasting methods thatdeen discussed in the previous section, the
availability of a sufficient number of data is a must for aging a good forecasting model. However,
in many cases it has been observed that the number of aeadalth is not sufficient for modeling
purpose. In such a scenario one alternative solution lidsigeneration of more data so that modeling
of the system under consideration can be carried out witld goouracy. But generation of more data

is not always possible as it may be a very costly affair, paldirly in a production environment, like
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a thermal power plant. This is because in order to get theitrgqidata, the power plant has to be kept
running for long period of time. In addition, the thermal pawplants have the inherent problem of
taking a long time to start before it can be fully loaded tothetrequisite data. So the training of the
ANFIS has to be carried out with the available limited numifenput output data with good modeling
accuracy. This necessitates the development of a propeeguoe to choose the data critically and
optimally for training the neural network. With these oltjees in mind it has been proposed to utilize
the salient feature of self-adaptability in approximatargarbitrary function with a good accuracy of
the neural network and the inherent property of the fuzzyclag take into account the imprecision
and uncertainty of a system which is considered for modelwith the help of an ANFIS model. A
novel method for optimal choice of the available data fomirag the ANFIS network is proposed
in the present work. The major objective of the present wertoiformulate an efficient method to
choose the available data optimally from the existing datasbuild an ANFIS model for the system
under consideration and use the model for faithful preolicof future values. The research focuses
on modeling of real world systems where input output dataired for modeling are either scanty or
difficult to generate. The research work then aims to desigondroller based on ANFIS so that the
controller performs satisfactorily even with plant paraenevariations and disturbance.

The methodology followed for achieving the above goal iscdbed in the next chapter.



Chapter 3
Research Objectives and Methodology

In the quest for developing a model for a system based on d@itaée input output data, it has been
observed that in the conventional modeling approach thdtsedepend on the mathematical model of
the system and its accuracy. In cases where the mathenratdal is not available the system analysis
becomes very difficult. It is in this context that the soft qorting approach can provide a viable
alternative for system modeling in cases where the conwealthard computing techniques cannot be
used. In the present work it is proposed to use these softaimggechniques for time series modeling

of a real world system with the help of its input-output data.

3.1 Objectives of the present work

In data driven modeling techniques like ANFIS, the numbetirok series data that are available
for system modeling has to be in abundance, as this numbea kiagct bearing on the modeling
result. It has been found that more is the number of availaplet-output data the better will be the
modeling result. This is because with more number of trgmata the neural network of the hybrid
ANFIS system will have a better training session which welult in a good modeling validation and
prediction. But in most of the real time systems the availaat& is generally less, so modeling has
to be carried out with the available small pool of data onljae primary concern of the thesis is for
this type of situations where sufficiently large quantityirgfut-output data is not available or difficult
to generate and the model of the system has to be built fotigaaapplications like forecasting. This
research focuses on these real life systems having scqntirautput data and attempts to identify the
model using the data selected critically such that thesenafly selected data can be used to build

the system model faithfully. Hence optimal selection of éailable minimal data set for training the

24
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ANFIS model is the key objective of this research. The keyotdes of the present research can be

highlighted as follows:

e ANFIS based modeling of real world systems

Building of ANFIS model for real world systems where genenatof training data is difficult

and time consuming

Building of ANFIS model for real world system where generataf data is expensive

Building of ANFIS model for real world system where availaliiput output data are scanty

Designing of an ANFIS based controller which performs $ati®rily even in the presence of

plant parameter variations and disturbances

The building of an ANFIS model faithfully with available gca input output data is studied in this

research work and a novel solution is offered so that thisane$h gap can be bridged.

3.2 Methodology of the present work

ANFIS is the backbone for the present work where a small sétredf series data critically selected
from a real time system are used for the modeling of the systém modeling methodology used in

the present work is briefly mentioned in the following subeers.

3.2.1 ANFIS based methodology for modeling

The Adaptive network based fuzzy inference system (ANF88)74,91] is a hybrid system comprising
of the neural network and the fuzzy logic. It is a data driveocedure which can be used to provide
the solution of function approximation problems in a neumawork platform. Here at first a fuzzy
inference system comprising of an initial fuzzy model isnfed, based on the fuzzy rules extracted
from the input output data set. In the next step the neuralorétis used to fine tune the rules of the
initial fuzzy model that was built. Using ANFIS methodolothe network is trained. The number of
training data used in the ANFIS is drastically reduced bylgpp an optimal data selection criterion.
Two novel techniques are attempted for selecting the optinpait-output data pairs. One of these
methods is known as the Full factorial design (FFD) [135,]18&d is based on statistical design

of experiments. The other technique is a cross validatiohrtgue known as the V-fold technique
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[137-139]. These two techniques are described briefly imthe three subsections. This work is
an endeavour to augment the ANFIS as a modeling techniquedoygdorating the above two novel

techniques for accomplishing the training of the networthfally when the available data is scarce.

3.2.2 Full factorial design based methodology for optimal data selection

From the statistical point of view, in experiments wherergéanumber of tests is involved, the order
of selection of the test specimens has to be randomized,as@#ch specimen has an equal chance
of being selected for the test. The training of the neuralvodt can also be replicated to a statistical
experiment involving a large number of tests for optimiaatiln such an experimental setup the iden-
tification of the important variables that affects the expental results forms an important aspect. The
experimental variables controlled by the operators on wthe system’s response depends are called
the factors. The effect of the response of one factor may grmoadepend on the levels of the other
factors. The number of factors and their levels requiredbmfixed depending upon the complexity
of the experiment. The statistical technique based Fulbfaad design (FFD) [135, 136] methodology
identifies the important factors and levels of the experiimeonducted to model a real time system.
This FFD methodology is used for selecting the critical dagafor training the ANFIS model of the

real system.

3.2.3 V-fold based methodology for optimal data selection

If a neural network is built using a specific learning data gdtas to be tested with a data set which
is independent of the data set that was used to train the rletwidchas often been found that obtain-
ing an independent test data set is very difficult. The neneéivork can also be trained by another
accurate method called the V-fold technique [137-139]sThéthod possesses the distinct advantage
of not requiring a separate and independent data set fangete accuracy of the network. In this
methodology the available data set is subdivided into sarbgreups. All but one of the subgroups is
used for training the neural network. Next the remaininggsabp is used for testing. This procedure
is continued by testing the network with a new subgroup etierg. This approach of the V-fold cross
validation technique is used in our research work to selexbptimal data set for training the ANFIS

network in the model of the real time system considered irnstuaty.
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3.2.4 Full factorial design combined with V-fold based methodology for optimal

data selection

Both the Full factorial design (FFD) and the V-fold technicqare combined to select the critical data
set for training the ANFIS model.

3.2.5 Model building with statistical approaches for performance study

The conventional statistical methods of modeling are digdisd in the present research and applied
to build the system models to study their performance ag#amesANFIS model. The three statisti-
cal models namely Autoregressive with exogenous input (ARXAD], Autoregressive moving average
with exogenous input (ARMAX) [140] and Autoregressive intggd moving average with exogenous
input (ARIMAX) [140] are used for modeling the real world sgst and the results obtained are com-

pared with those obtained by using the proposed models.

3.2.6 Genetic algorithm based fuzzy methodology

A Genetic algorithm(GA) [67,141,142] based fuzzy modelugdfor studying its performance against
the ANFIS model. In this methodology the genetic algoritlsmsed to update the consequent parame-

ters of the fuzzy model of the system under consideration.

3.2.7 Controller with the FFD-V-fold based methodology

This research also studies the utility of the proposed ANRtlel for designing a controller. A con-

troller based on the proposed FFD-V-fold based ANFIS methdulilt and its performance is tested
against disturbance and plant parameter variation. Oueoflifferent ANFIS based models which are
proposed, the model showing the best result is used for thigref a controller.

In the next chapter, the ANFIS based methodology for mode$irdiscussed in details.



Chapter 4

Adaptive Network based Fuzzy Inference
System

The adaptive network based fuzzy inference system (ANF38)74, 91] is a data driven procedure
representing a neural network approach for the solutiorun€tion approximation problems. Data
driven procedures for the synthesis of ANFIS networks gueglly based on clustering a training set of
numerical samples of the unknown function to be approxichance introduction, ANFIS networks
have been successfully applied to classification taske;lvated process control, pattern recognition
and similar problems. Here a fuzzy inference system compieé the fuzzy model [34, 35] proposed
by Takagi, Sugeno and Kang to formalize a systematic apprtwagenerate fuzzy rules from an input

output data set.

4.1 ANFIS structure

For simplicity, it is assumed that the fuzzy inference systmder consideration has two inputs and one
output. The rule base contains the fuzzy if-then rules otiaknd Sugeno’s type [143] as follows:

If xis Aand y is B then z is f(x,y)

where A and B are the fuzzy sets in the antecedents and f(x,y) is a crisp function in the
consequent. Usually(x, y) is a polynomial for the input variablesandy. But it can also be any other
function that can approximately describe the output of gfetesn within the fuzzy region as specified
by the antecedent. When f(x,y) is a constant, a zero ordenfaugezy model is formed which may be
considered to be a special case of Mamdani fuzzy infererstersy{144] where each rule consequent

is specified by a fuzzy singleton. If f(x,y) is taken to be atfosder polynomial a first order Sugeno

28
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fuzzy model is formed. For a first order two rule Sugeno fuzdgrience system, the two rules may be
stated as:

Rule 1: Ifz is A; andy is By thenf; = p1x + quy + 71

Rule 2: Ifz is A, andy is By then fy = pax + qoy + 72

Here type-3 fuzzy inference system proposed by Takagi agdi®8u[143] is used. In this inference
system the output of each rule is a linear combination ofipet variables added by a constant term.
The final output is the weighted average of each rule’s outpbe corresponding equivalent ANFIS

structure is shown in Fig. 4.1.
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Figure 4.1: Type-3 ANFIS Structure

The individual layers of this ANFIS structure are describetbw :

Layer1: Every node in this layer is adaptive with a node function

O} = pa,(z) (4.1.1)

1

where,z is the input to node, A; is the linguistic variable associated with this node fumctand

4, 1S the membership function of;. Usually 4, (x) is chosen as

1, () = — (4.1.2)
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Or

r — C;

pua; () = exp {—( )*} (4.1.3)

a;

wherez is the input and a;, b;, ¢; } is the premise parameter set.

Layer2: Each node in this layer is a fixed node which calculates timgfstrengthw; of a rule.

The output of each node is the product of all the incominga®gto it and is given by,

Oz2 = Wi = :uAi<x) X :UBz‘(y)v i=1,2 (4.1.4)

Layer 3: Every node in this layer is a fixed node. Eathnode calculates the ratio of thé
rule’s firing strength to the sum of firing strengths of all tikes. The output from thé”" node is the

normalized firing strength given by,

i=1,2 (4.1.5)

Layer4: Every node in this layer is an adaptive node with a node fandiven by

Of = wifs =w; (piz + @iy +13), i=1,2 (4.1.6)

wherew; is the output of LayeB and{p;, ¢;, ;} is the consequent parameter set.

Layer 5: This layer comprises of only one fixed node that calculalesdverall output as the

summation of all incoming signals, i.e.

O? = overall output = mez — Ziw;fl (4.1.7)

4.2 Learning Algorithm

In the ANFIS structure, it is observed that given the valugremise parameters, the final output can

be expressed as a linear combination of the consequent gtmamn The outpuf in Fig. 4.1 can be
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written as

wq Wa

[ = Ji+ fa

w1 + Wo w1 + Wo
= w; fL +ws fo

= (w1 x)p1 + (W1 y)@ + (W) + (W7 )p2 + (W2 y) g2 + (W2)r2. (4.2.1)

wheref is linear in the consequent paramet@rs q., r1, p2, g2, 72)-

In the forward pass of the learning algorithm, consequerdrmaters are identified by the least squares
estimate. In the backward pass, the error signals, whictharderivatives of the squared error with re-
spect to each node output, propagate backward from thetdatur to the input layer. In this backward

pass, the premise parameters are updated by the gradieentaiyorithm [27-29].

4.3 Derivation of the Initial Fuzzy Model

As described earlier, in ANFIS based system modeling fortaobeules with fixed premise para-
meters, identification of an optimal fuzzy model with redpecthe training data reduces to a linear
least-squares estimation problem. A fast and robust méthodentification of fuzzy models from
input-output data was proposed by S.L.Chiu [77]. This metbeldcts the important input variables
when building a fuzzy model from data by combining clustdimeation method with a least squares
estimation algorithm. The method follows in two steps : isEstep involves extraction of an initial
fuzzy model from input output data by using a cluster estiomatnethod incorporating all possible in-
put variables. ii) In the next step the important input Vviales are identified by testing the significance

of each variable in the initial fuzzy model.

4.3.1 Extracting the initial fuzzy model

In order to start the modeling process, an initial fuzzy niéde to be derived. This model is required
to find the number of inputs, number of linguistic variablesl dence the number of rules in the final
fuzzy model. The initial model is also required to selectitiput variables for the final model and also
the model selection criteria, before the final optimal madel be derived. This initial fuzzy model can
be selected based on the fuzzy rules framed by either usenguibtractive clustering technique [145]

or the grid partitioning method [74] [68, 91].



4.3. DERIVATION OF THE INITIAL FUZZY MODEL 32

Subtractive Clustering Technique

As a first step towards extracting the initial fuzzy model ljptsactive clustering, this technique is
applied to the input output data pairs, which are obtainechfthe system which is to be modeled. The
cluster estimation technique helps in locating the clusterters of the input output data pairs. This in
turn helps in the determination of the rules which are spadtén input output space, as each cluster
center is an indication of the presence of a rule. In additathis it also helps to determine the values
of the premise parameters. This is important because aal watiue, which is very close to the final
value, will eventually result in the quick convergence & thodel towards its final value during the
training session with neural network. In this clusteringht@que the potentials of all the input output
data points are calculated as functions of their Euclidistadces from all the other data points. The
points having a potential above a certain preset value argidered as cluster centers. After the cluster
centers are ascertained the initial fuzzy model can be gulestly extracted as the centers will also
give an indication of the number of linguistic variables e€ldluster estimation method for determining

the number of rules and initial rule parameters [77] is byid#scribed below.

Let us consider a collection of data points{z, xs, ..., z,,} in an M dimensional space. The data
points are assumed to be normalized in each dimension sthéhaare bounded by a unit hypercube.
Each data point is considered to be a potential cluster ceRtes a measure of the potential of data

point z; to serve as a cluster center and is defined as

P, = Z e—allzi—a;|? (4.3.1)
j:l
where
4
o= > (4.3.2)

|.]| denotes the Euclidean distance apds a positive constant. Thus measure of the potential for a
data point is a function of its distances to all other datafsoiHerer, is the radius effectively defining

a neighborhood. Data points outside this radius haveiiitfleence on the potential. After the potential
of every data point has been computed, the data point withititeest potential is selected as the first
cluster center. Let] be the location of the first cluster center afg be its potential value. Then the

potential of each data point is revised by the formula
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P, = P, — prefllesil? (4.3.3)
where
4
B=— (4.3.4)
T

andr, is a positive constant. Thus an amount of potential is satedsdfrom each data point as a function
of its distance from the cluster center. The constaig effectively the radius defining the neighborhood
which will have measurable reduction in potential. Typigahosen value of, = 1.25r, [77].

When the potentials of all data points have been revised dicgpto Eq. 4.3.3, the data point with the

highest remaining potential is selected as the secondecloshter. The potential of each data point is
further reduced according to their distance to the secamsten center. In general, after thé cluster

center has been obtained, the potential of each data pomtiged by the formula

P, = P, — Pre flwieil’ (4.3.5)

wherez; is the location of the&'" cluster center ané; is the potential value.
The process of acquiring new cluster center and revisingntiatls repeats until the stopping criterion
Py < 0.15P] [145] is satisfied. Each cluster center as derived above éssence a data point that
describes a characteristic input-output behaviour of yistesn we wish to model. Hence each cluster
center can be used as the basis of a rule that describes thendyshaviour.
It is considered thafz}, x5, ..., 2%} is a set ofc cluster centers in an/ dimensional space. It is again
considered that the firs¥ dimensions correspond to input variables and thelast N dimensions
correspond to output variables. Each vecipis decomposed into two component vectgrsand z;
wherey; is the location of the cluster center in input space aht the location of the cluster center

in output space. Thereforg may be represented as

vy = [y %]

Each cluster centet; is considered as a fuzzy rule, “if input is negr then output is neat;”, to

describe the system behaviour. Given an input vegttite degree to which rules fulfilled is defined

as
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11 = e~ olly=v; 1 (4.3.6)
wherec« is a constant defined by Eq. 4.3.2. Output veet@ computed as
5 = M (4.3.7)

25:1 Mg

This computational scheme can be viewed in terms of an inéereystem employing fuzzy if-then

rules. Each rule has the following form :
IFY; is Ail andY2 is AZ'Q and ... THENZ; is B andZQ is Bijs...

whereY; is the jth input variable andZ; is the jth output variable;4;; is an exponential member-
ship function in theth rule with thejth input andB;; is a singleton in théth rule associated with the

jth output. For théth rule that is represented by cluster centgrA;; andB;; are given by :

Y —y¥,
_0.5(%)2

Aij(Y) = e (4.3.8)

(]

(4.3.9)

. . * % . * 2 1
wherey;; is thejth element ofy; andz}; is thejth element ok} ando;; = 5 [77].

Grid Partitioning Technique

The second method which can be used for framing the ruleseahttial fuzzy model is by grid parti-
tioning [74] [68, 91]. This method is used when the numbemngiits and their membership functions
are less. Here the input space are partitioned into a nuniliezzy regions to form the antecedents of
the fuzzy rules. The Grid partitioned fuzzy space for a twmutnrmodel, with each input having three
membership functions each is shown in Fig. 4.2. The two dsioas represent the abscissa and the
ordinate of the input space. The rules obtained from eith#énetwo methods are then optimized by
using ANFIS methodology developed by Jang [91]. This meihwdlves optimization of the premise
membership functions by gradient descent algorithm coetbinith optimization of the consequent

equations by linear least squares estimation.
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Figure 4.2: Grid partitioned fuzzy subspaces for a type-Bp2it ANFIS

4.3.2 Selection of input variables and final fuzzy model

Any good criteria which is used for model selection basedanesinputs cannot guarantee that the
model will be producing the optimal result unless the ressiutim all possible combinations of the input
variables in the model are compared. But this is a tediousaagven for a moderate number of input
variablesV, 2V possible number of combinations of the variables arisesmfhe modeling viewpoint,
incorporation of only the important variables results iragbical model which is simpler, more reliable
and useful for application. This is because now only a feveeiables will have to be measured. For
achieving this, the importance of each input variable caadzertained from the initial fuzzy model.
In the proposed ANFIS model this has been accomplished bgsihg the model showing the least

modeling error from the models obtained using the followtiwg methods:

e First method:-In this method the fuzzy rule framework pd®s an easy mechanism to test the
importance of each input variable without having to gereeregw models. The basic idea is to
remove all antecedent clauses associated with a partioplar variable from the rules and then
evaluate the performance of the model by applying the cheocgiror criterion [77]. If this de-
creases the modeling error the process is repeated by atingnanother input variable. If the
modeling error increases, the eliminated variable ismethand another variable is eliminated in
its place. This process is continued until the modelingrasam be decreased no further by elim-

inating any more extra input variable. The criterion thatised for selection of the final fuzzy
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model is the Root mean square error (RMSE). The ANFIS structittee system which is being
modeled is considered as the final model for which the RMSEdstmimum. For example,

suppose the initial model has four inputs, with rules of thra :
IFY; is Ail and}/Q is Aig andYg, is Aig andY4 is Ai4 THEN Z; is B

The importance of th&; variable in the model can be tested by temporarily remowvegan-

tecedent clauses that invol¥g, thus truncating the rules to the form :
IFY;is A;; andY; is A;» andYy is A;; THEN Z; is B;j;

If the resultant model performance does not degrade withego the performance measure
which is the RMSE of the output corresponding to an indepetnsietiof checking data, thery
can be eliminated from the possible important variable® Vidriable selection process for a four

input initial model is shown in Fig. 4.3.
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Figure 4.3: Variable Selection Process for a four inputahinodel
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e Second method:- For simplicity, the second model assunasANFIS consists of only two
inputs. For choosing these inputs a setl0fdynamic modeling inputs [77] is selected which
comprises ofi from the historical inputs of the system aadrom the historical outputs of the
system to be modeled. Out of thededynamic modeling candidates, for each of thmputs
there can bel different combinations with the different outputs. So there will be a total of
6 x 4 = 24 different combinations of input candidate pairs. Each ekthdifferent combinations

will lead to the generation af4 different initial fuzzy models as follows:

{o(t = 1),y(t = D}, {a(t — D), y(t — 2)}, {elt — 1), y(t - 3)}, falt — 1), y(t - 4)},
{elt = 2),y(t = D}, {a(t — 2),y(t — 2)}, {lt - 2),y(t - )}, falt — 2),y(t — 4)},
{et = 3),y(t = D}, {a(t — 3),y(t — 2)}, {alt - 3),y(t - 3)}, {alt — 3),y(t — 4)},
fo(t —4),y(t — D}, {a(t — 4),y(t — 2)}, {elt — 4),y(t - 3)}, {alt - 4),y(t - 4)},
{e(t = 5),y(t = D}, {a(t = 5),y(t — 2)}, {alt — 5),y(t - 3)}, {alt — 5),y(t — 4)},
{e(t - 6),y(t — D}, {a(t — 6),y(t — 2)}, {a(t - 6),y(t - )}, {alt — 6),y(t — 4)};

From the abov@4 models, the model with the least RMSE is chosen as the initiadyf model.
In this method the number of membership functions per input lze determined by applying

either the subtractive clustering or the grid partitiondzshgechnique.

4.3.3 Optimization of the initial fuzzy model

The ANFIS structure of the system which is being modeled rsictered as the final model for which
the RMSE is the minimum. The consequent parameters of thalifuzzy model are updated by us-
ing the Least squares estimation (LSE) algorithm. Sinyiatie rules which are obtained from the
clustering or the grid partition based method are updateaeyal network which uses back propaga-
tion learning method with gradient descent algorithm. Tupsdation leads to the optimization of the

premise parameters of the fuzzy membership functions @t final fuzzy model.

4.4 Experimental Data

The data that has been used for the experimental purposakareftrom two different sets.

In the first set the data are taken from the bench mark probfdBoxand Jenkins [102]. It comprises
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of the input-output data that are collected from a gas fugndie the dataset the input is the gas feed
rate to the furnace in cubic feet per minute’ (fhin)and the output is in the form of percentage of
carbon-dioxide (C@) concentration in the outlet gas.

The second data set comprises of five different data setatbatbtained by physically visiting a ther-
mal power plant under North East Electric Power CorporatiBEPCO) Limited situated at Kathal-
guri, Assam, India. This real time data have been colleatexh the past records maintained by the
power plant authorities in hard form. In the first four dagdssthe input is the gas flow rate in cubic
kilometer per houtkm?®/hr) and the output is in the form of generated power in Gigawat/jGrhese
are the numerical records of the daily data that the powent glathority records after every half hour.
These were subdivided into four different sets with the halfirly data covering a few months at dif-
ferent periods of the year.

The power plant authority also keep a record of data on a nob#sis by aggregating the half hourly
data over the whole month. The fifth subset of the thermal pg@at data has been collected from
the records of this monthly data. In this subset the inputésgas feed to the plant in Million metric
standard cubic metre (Mmscum){b@®) and the output is in the form of generated energy in Million
unit (MU), wherel unit =1 kWh (kilo-watt-hour).

These numerical data in the same form as collected from #r@'plrecord are analyzed for determin-
ing the different levels and folds for the Full factorial ags(FFD) and the V-fold based experiments
respectively. The different levels of the Full factorialsdgn experiments are determined by noting
the numerical values around the highest, lowest, mid-gaéual cluster centers of the collected data.
Next, these data are used for training and validation of tbpgsed model. A sample data set that was

collected from the thermal power plant is presented in thpehplix A.

4.5 Experimental Results and Discussion

The ANFIS based model identification method is applied tonk# known example of Box and Jenk-
ins gas furnace data [102]. Next the modeling of a thermalgs@lant based on real data is considered.
This real time data set has been obtained from a thermal polaet under North East Electric Power
Corporation (NEEPCO) Limited situated at Kathalguri, Asshrdia. The modeling error is calculated
as the difference between the model output and the realnsymigut and either the Mean square error
(MSE) or the Root mean square error (RMSE) has been used asniparaiive index. The details of

these experiments and the results obtained are discustezlfmilowing subsections.
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45.1 ANFIS Model for Gas Furnace

In this experiment 296 input-output data pairs from Box antkiies [102] gas furnace data are consid-
ered for modeling with ANFIS. In the dataset the inp(t) is the gas feed rate in cubic feet per minute
(ft*/min)and the outpuy(t) is in the form of percentage of carbon-dioxide (§©oncentration in the
outlet gas.

In order to extract the dynamic process model for the prixtiaif y(¢), 10 candidates are considered

as input variables following standard method [77]. ThES@put variables are :

{z(t —1),2(t —2),z(t — 3),z(t —4),z(t = 5),x(t — 6),y(t — 1), y(t — 2),y(t — 3),y(t —4)}

After converting the data so that each training data conside

{w(t=1),2(t =2),2(t =3), x(t = 4),2(t =5),2(t = 6),y(¢), y(t = 1), y(t = 2), y(t = 3), y(t = 4)},

the number of effective data points reduces to 290. Usingsiel radius of, = 0.5 [77], the modeling
was started with these ten prospective input candidatdgeimtitial fuzzy model. Consequently in the
final Takagi-Sugeno type fuzzy model which is derived by g<thiu’s [77] input variable selection
method, the number of input variables reduce@ &nd the number of rules narrowed down respec-
tively to 3 and4 for the subtractive clustering and the grid based method.dfitimally selected input
variables arer(t — 3) andy(t — 1). The final optimized ANFIS model of the gas furnace process is
obtained after the updation of the consequent parametarSBylgorithm and updation of the premise
parameters by the back propagation gradient descenttgorin order to provide the same basis for
comparison with other published results, the entire datfs¥®0 input output pairs is used for training.
Fig. 4.4 and Fig. 4.5 show the rules and parameters of thepgrittion based and subtractive clustering
based ANFIS models for the gas furnace data. In Fig. 4.6 ttumboutput and the output predicted by
the ANFIS model are plotted vs. sample number. In Fig. 4.7teeiction error of the ANFIS model
for the training data is plotted vs. sample number. Fig. 48,s the RMSE of the ANFIS model

during training vs epochs. The surface graph corresportditige output is shown in Fig. 4.9.
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If x(t-3) is and y(t=1)is then y(t) is
1
¥(0)=-0.3601x(t-3)
+1.142y(t-1)
Rule 1 —8.268
0 2.834
-2.716 45.6 60.5
1 y()=—1354x(1-3)
+0.3158y(t—1)
Rule 2 +39.43
0 2.834
-2716 456 60.5
1
Y(0)=—1.925x(t-3)
+0.5233y(t-1)
Rule 3 +27.34
0 2834
. -2.716 45.6 60.5
y(0)= 1.469x(t=3)
Rule 4 +1.597y(t-1)
-35.48
0 2834 60.5
-2.716 45.6
Gbell MF parameters:— [1.577, 3.02, —=1.516]; [3.68, 2.07, 1.932]; [7.338, 4.732, 46.69]; [8.223, 0.9815, 60.01;]

Figure 4.4: Rules for the grid partition based ANFIS model whained with entire data set for the
gas furnace example

If x(t=3) is and y(t=1) is then y(b) is

1
Y(0)=—2.275x(t-3)
—=5.151y(t-1)
Rule 1 +305.6

0 2.834
-2716 456 60.5

y(t)=2.995x(t-3)
—0.2808y(t-1)
Rule 2 +104.8

2.834
—2716 456 60.5

Y(O=-0.04683x(t-3)
+0.5213y(t-1)

Rule 3 +20.95

0 2.834
-2716 456 60.5

Gauss MF parameters:— [1.518, —0.1355]; [1.595, =0.3007]; [2.131, 0.1226,]; [3.255, 54.24]; [3.057, 56.2]; [2.601, 49.82];

Figure 4.5: Rules for the subtractive clustering based ANRslel when trained with entire data set
for the gas furnace example
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Figure 4.6: Actual and ANFIS model predicted output with Boxldenkins gas furnace data

In Table 4.1 the 2-input based ANFIS model is compared witteotnodels available in literature.
The first7 rows are excerpted from a table in [77]. The comparison shbatsthe modeling result of
the gas furnace data has improved with the proposed twosrguittractive clustering and grid based
ANFIS models as compared with the other models both in terfniseonumber of rules required and
the RMSE. The proposed grid based model is also showing lpstesrmance as compared to Chiu’s
two input model [77] but with the requirement of one more rule

Another experiment was performed using the first half of th& Bod Jenkins gas furnace data for
training the neural network and the second half of the datéosevalidation of the model. Fig. 4.10
shows the rules and parameters of this model. The modelswdtns shown in Fig. 4.11 where the

actual output and the output predicted by ANFIS model arégddoss. sample number.

4.5.2 ANFIS Model for Thermal Power Plant

In this experiment five different data sets, comprising plitioutput data pairs collected from the ther-
mal power plant are considered for modeling with ANFIS. la tinst four data-sets the inputt) is the
gas flow rate in cubic kilometer per ho(km®/hr) and the outpug(t) is in the form of generated power
in Gigawatt (GW). These data sets are based on the daily déeatea from the thermal power plant
at an interval of every half hour. These half hourly data Haeen classified into four different data sets

depending on their collection time which is spread overedéht periods of the year. In the fifth data
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Table 4.1: Comparison of various models derived for the BoxJamkins gas furnace data. The first 7
rows are excerpted from a table iF6]

Sl. No. Model Input variables glfuglj k;s; (:\nﬂggﬁlsirlzg:e)
1 Tong’s Model [1980] x(t—4),yt—1) 19 0.4690
2 Pedrycz's Model [1984] | z(t —4), y(t —1) 81 0.3200
Xu’s model
3 [Xu and Yong 1987] x(t—4),y(t —1) 25 0.3280
. x(t—1), x(t —2),
T I oo I R
y(t —2),y(t —3)
Sugeno’s position-
5 gradient model x(t—3), x(t —4) 6 0.1900
[Sugeno and Yasukawa 1993]
Takagi-Sugeno model z(t — 3)
6 [3-input] y(t—1) 3 0.0720
[Chiu 1996] y(t —3)
Takagi-Sugeno model
7 [2-input] z(t—3),y(t —1) 3 0.1460
[Chiu 1996]
0.1322
3 (subtractive
Proposed model clustering based
8 . x(t—3),yt—1)
[2-inpu 0.1277
4 (grid partition
based)
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Figure 4.7: ANFIS model prediction error for Box and Jenkias furnace data

set the inputz(t) is the gas feed to the plant in Million metric standard cubgtma (Mmscum)(10m?)
and the outpuy(t) is in the form of generated energy in Million unit (MU), whetaunit = 1 kWh
(kilo-watt-hour). This fifth data set has been collecteadfritie thermal power plant on the basis of the
monthly data for a certain period of time.

The dynamic process model for the above thermal power pdattracted as in the previous case for

the gas furnace data. The candidates which are considered for the input variabletharéllowing:

{z(t—1),2(t —2),z(t —3),z(t —4),2(t = 5),z(t —6),y(t — 1), y(t —2),y(t —3),y(t —4)}
In all the five data sets, modeling of the thermal power plaas wonsidered with thed® prospective
input candidates in the initial fuzzy model. Both the gridtjgieom method and the subtractive clustering
method were applied with a cluster radius-pt= 0.5. The number of input variables finally reduced to
2 and the number of rules narrowed downtt@After the updation of the consequent parameters by LSE
algorithm and updation of the premise parameters by the papagation gradient descent algorithm,
the final optimized ANFIS model of the thermal power plant igaoned. The rules of the different
models of ANFIS and their experimental results are shownigs.F.12 — 4.21 where the predicted
output of the ANFIS models are plotted vs. sample numberfeffive data sets of the thermal power
plant. In addition, the fuzzy rules and the parameters ohtbeels for the thermal power plant data

sets are also given.
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Figure 4.8: RMSE of the ANFIS model during training for Box arakins gas furnace data
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Figure 4.9: Output surface of the data for Box and Jenkinsyasi€e example



4.5. EXPERIMENTAL RESULTS AND DISCUSSION 45

If x(t-3) is and y(t=1) is then y(t) is
1
Y(©=-0.3797x(1-3)
+1.009y(t-1)
Rule 1 +0.759
0 2.834
-2.716 456 60.5
1 Y(t)=—1.222x(1-3)
+0.7175y(t-1)
Rule 2 +14.45
0 2.834
-2.716 456 60.5
1
y(O)=—1.424x(1-3)
+0.6379y(t-1)
Rule 3 +21.57
0 2834
| 22716 456 60.5
y(O=0.7164x(t-3)
Rule 4 +2.165y(t-1)
~67.22
0 2834 60.5
-2.716 456
Gbell MF parameters:— [2.705, 1.845, ~2.911]; [2.269, 1.994, 3.31]; [7.78, 2.992. 46.39]; [7.28. 1.301, 60.35]:

Figure 4.10: Rules for the ANFIS model when trained with hdlthe data set for the gas furnace
example

Case 1: Modeling Results for the first set of the thermal power [ant data with ANFIS

In this experiment the data set comprised 45 input-output pairs which finally reduced 1899 ef-
fective data pairs as a result of the dynamic process moderwaonsideration [77]. Here the optimally
selected input variables af¢t — 6) andy(t — 1). The number of rules required finally narrowed down
to 2 and 4 respectively for the clustering and the grid based methad. 412 shows the rules and
parameters for this model. In this example the fifgt data pairs are used for training purpose with the
remaining half being used for validation. The actual ougmd the ANFIS model’s predicted output

for this data set is plotted against sample number as showigir.13.

Case 2: Modeling Results for the second set of the thermal powplant data with ANFIS

In this experiment the data set comprisesl®$7 input-output pairs which finally reduced 351
effective data pairs [77]. The optimally selected inpuiafles are:(¢ — 3) andy(t — 1). The number
of rules required finally narrowed down 2oand4 respectively for the clustering and the grid partition
based method. Fig. 4.14 shows the rules and parameteragonditel. In this example the fir6t'5
data pairs are used for training purpose while the otheridai$ed for testing purpose. The modeling

result for this data-set is shown in Fig. 4.15.
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Figure 4.11: Actual and ANFIS model predicted output with Baoxi Jenkins gas furnace data

Case 3: Modeling Results for the third set of the thermal poweplant data with ANFIS

In this experiment the data set comprisesl#32 input-output pairs which finally reduced t@l26
effective data pairs [77]. Here the optimally selected inyariables arec(t — 1) andy(t — 1). The
number of rules required finally narrowed down3tand4 respectively for the clustering and the grid
based method. Fig. 4.16 shows the rules and parametersdondldel. In this example the first half of
the 713 data pairs are used for training and the remaining data pairs are used for testing purpose.

The modeling result with this data-set is shown in Fig. 4.17.

Case 4: Modeling Results for the fourth set of the thermal poweplant data with ANFIS

In this experiment the data set comprise9®f input-output pairs which finally reduced 88 effec-
tive data pairs as a result of the dynamic process model Héte the optimally selected input variables
arex(t — 1) andy(t — 1). The number of rules required finally narrowed dowr2 tand4 respectively
for the clustering and the grid based method. Fig. 4.18 shbesules and parameters for this model.
In this example the first94 data pairs are used for training the model and the #w@xidata pairs are

used for testing purpose. The modeling result for this datds shown in Fig. 4.19.
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If x(t=6) is and y(t=1) is then y(t) is
1
y(©)=0.001565(t-6)
+0.6354y(t-1)
Rule 1 ~0.005981
0 58.6
2334 0015 0219
1 (1)=-0.0006048x(t-6)
+0.9293y(t-1)
Rule 2 +0.04373
0 58.6
2334 0015 0219

Gauss MF parameters:— [6.252, 51.12]; [6.215, 50.21]; [0.01955, 0.2571]; [0.01185, 0.1784];

Figure 4.12: Rules for the ANFIS model when trained with hélihe data set-I for the thermal power
plant example
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Figure 4.13: Actual and ANFIS model predicted output with tfata set-1 for thermal power plant
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If x(t=3) is and y(t=1) is then y(t) is

y(t)=—0.0008299x(t-3)
+1.263y(t-1)
Rule 1 —0.008002

0 57.95
3311 0.096 0216

(= 0.001169x(t-3)
+0.3943y(1-1)
Rule 2 +0.05423

57.95
3311 0.096 0216

Gauss MF parameters:— [4.391, 51.58]; [4.391, 46.85]; [0.02647, 0.1773]; [0.03495, 0.164];

Figure 4.14: Rules for the ANFIS model when trained with héthe data set-II for the thermal power
plant example
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Figure 4.15: Actual and ANFIS model predicted output with tata set-11 for thermal power plant
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If x(t=1) is and y(t=1) is then y(t) is

y(H)=0.0008325x(t—1)

+1.227y(t-1)
Rule 1 ~0.1408
0 63.52
5.02 0.03 0323
1 y(t)= 0.0008978x(t—1)
+0.1598y(t-1)
Rule 2 +0.1508
0 63.52
502 0.03 0323

()= 0.00135x(t—1)
+0.7551y(t—1)
Rule 3 +0.02299

0 63.52
5.02 0.03 0.323
Gauss MF parameters:— [10.34, 47.04]; [10.34, 53.44]; [10.34, 41.09]; [0.0518, 0.181]; [0.0518, 0.214]; [0.0518, 0.157];

Figure 4.16: Rules for the ANFIS model when trained with h&athe data set-Ill for the thermal power
plant example
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Figure 4.17: Actual and ANFIS model predicted output with tlata set-111 for thermal power plant
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If x(t=1) is and y(t=1) is then y(t) is
1
Y= 0.001457x(t-1)
+4.0574y(t-1)
Rule 1 -0.5178
0 62.92
3459 0.117 0256
1 y(t)= 0.0004708x(t—1)
+0.8967y(t-1)
Rule 2 ~0.003516
0 62.92
3459 0.117 0256

Gauss MF parameters:— [5.008, 47.93]; [5.009, 54.66]; [0.00276, 0.1448]; [0.01059 0.2078];

Figure 4.18: Rules for the ANFIS model when trained with h&the data set-1V for the thermal power
plant example
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Figure 4.19: Actual and ANFIS model predicted output with thata set-1V for thermal power plant
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If x(t-1) is and y(t=1) is then y(t) is

()= 0.05748x(t-1)
+0.5502y(t—1)
Rule 1 42432

0 1.744
0.1338 05415 6.088

y(t)=3.54x(t-1)
—0.08726y(t-1)
Rule 2 -0.26

0 1744
0.1338 05415 6.088

Gauss MF parameters:— [0.3197, 1.44]; [0.2219, 1.159]; [0.9935, 5.289]; [0.9848, 3.647];

Figure 4.20: Rules for the ANFIS model when trained with hathe data set-V for the thermal power
plant example

Case 5: Modeling Results for the fifth set of the thermal power fant data with ANFIS

In this experiment the data set comprise64f input-output pairs which finally reduced a9 effective
data pairs as a result of the dynamic process model [77]. thereptimally selected input variables
arex(t — 1) andy(t — 1). The number of rules required finally narrowed dowr2 tand4 respectively
for the clustering and the grid based method. Fig. 4.20 shiesules and parameters for this model.
In this example the first20 data pairs are used for training the model and the B&xidata pairs are
used for validation purpose. The validation result for thasa-set are shown in Fig. 4.21.

For the above experiments, initially, the first half of theadset and then the entire data set is used
for training the model and the remaining half of the data setsed for validation of the model. The
modeling results with our 2-input based ANFIS model usirggBlox and Jenkins gas furnace and the
thermal power plant data are tabulated in Table 4.2. It i€okesl that when the number of training

data is more the RMSE of the test data reduces.

4.6 Conclusions

In this chapter, the neuro-fuzzy modeling of systems usilNFK has been demonstrated using the
input-output data pairs collected from the Box and Jenkirssfgeace example and a thermal power
plant. The modeling results obtained by using the gas fwrmkata are compared with some of the

existing results in Table 4.1. In order to keep the sameguaifor comparing the results with some of
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Figure 4.21: Actual and ANFIS model predicted output with thata set-V for thermal power plant

Table 4.2: Modeling results for the Box and Jenkins gas fuertata and the thermal power plant data
using ANFIS

RMSE (testing)

Max No of . .
Sl. No. Data No of | Input variables | training (G.”.d (Subtragtlve
rules data partition | clustering
based) based)
1 Box and Jenkins A 2t —3), y(t— 1) 145 0.5382 0.5724

290 0.3574 0.3636
699 0.0114 0.0111

gas furnace
Thermal power plant

2 (Data set-I) 4 1at=0.yt =11 399 | 00108 | 00110
e | | o |
e e | [ O
e | S| b s
6 Thermal power plant 4 2t — 1)yt — 1) 320 0.5591 0.5361

(Data set-V) 639 0.4725 0.5176
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the existing modeling results obtained from the first 7 rowsxcerpted from a table in [77], the entire
gas furnace data set is used for training the network. Fr@mtbdeling results shown in Table 4.1,
it can be observed that the mean square error (MSE) of the Inobtieined by using the subtractive
clustering based ANFIS is less than the two input TakagieBognodel proposed by Chiu [77]. The
MSE for this model obtained by using the grid partitioning®d ANFIS model is also less than that
obtained by using Chiu’s [77] model at the expense of only oweenmule. As the addition of one
more rule has a very negligible effect on the computationat,che model may be considered to be
comparable to the most accurate model. The modeling result® Box and Jenkins gas furnace and
the thermal power plant are shown in Figs. 4.10 - 4.21. Theselts show that the-input ANFIS
model has good prediction capability. Table 4.2 repredtetsnodeling results of the Box and Jenkins
gas furnace and the thermal power plant data using at firshitie half and then the entire data set
for training. From the results it can be concluded that the EM&the ANFIS based model reduces as
the number of training data increases. In the ANFIS modelk Ipropagation learning method is used
for training the neural network for optimization of the fyzailes. A sufficient number of data should
be used to guarantee good training. There is still no forrraéstimate the number of data required to
train a neural network. This number can vary greatly dependn the complexity of the problem and
the quality of the data, but many neural networks have begned successfully with smaller number
of data. However, it is not always possible to find the numliéraining data in abundance. Here the
optimal selection of the data set is a major issue whichlisasthallenge in the field of neural networks.
In the present work, an effort is made in that direction kegpn mind the need for the choice of an
optimal training data set for the purpose of modeling. Inphevious section, the modeling results
of the conventional ANFIS model are shown where the trainiata set comprises of either the entire
portion or half of the available data set. The proposed ANft&lel with the optimal choice of the

modeling data for training the ANFIS model is the topic ofadission in the next chapter.



Chapter 5

Optimal Data based ANFIS Modeling

In Chapter 4 it has been observed that the performance of tHed&\Nased model improves as the
number of training data increases. But in many large scalemsgsthe number of available training
data is less and the generation of new data is a costly affaguch a scenario the system has to be
modeled with the available limited data only. This chapterposes three different types of ANFIS
based system modeling schemes where the number of dat@pgdlsyed for training is minimized by
application of the Full factorial design (FFD) techniqusg ¥/-fold technique and the combined FFD-
V-fold technique in conjunction with ANFIS. Optimal choiocédataset for training is the key step here,
subsequent to which the modeling procedure is the the santabesf the ANFIS. These techniques
help in selection of the data pairs for training the ANFISwaak optimally. The above techniques for

optimization of the training data set are described in thEseqguent sections.

5.1 Full Factorial Design Based ANFIS Modeling

The statisticians and engineers can make a combined effi@ap the maximum benefit from statistical
analysis. For achieving this objective the experimentsl@mamplanned in advance to ensure that the
proper choice of experimental data can be made in a way tHapmvide the most unbiased and
precise results commensurate with the desired expendifumme and money. But in many complex
systems the number of available training data for modebrgss. In that case, the available data have
to be optimally used for training. In this section a systendalimg scheme is presented where out
of the available data set, a small number of data is criticgiosen based on a statistically designed
experiment. This statistical design method is called thi faatorial design (FFD) [135, 136]. The

full factorial design method is used to select data optiynfaim the available data set for training the

54
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ANFIS.
There are manifold advantages of statistically designpemments. Some of the important advantages

are as follows:

e As compared to unplanned experimentation more informaterexperiment can be extracted

The collection and analysis of information can be done in aensoganized manner

The conclusion from statistically designed experimentgeily often evident without extensive

statistical analysis

Credibility is awarded to the conclusions of an experimeaallysis when the variability and the

sources of experimental error are based on statisticaysinal

These experiments can discover the interaction betweesriexpntal variables

For an experimental program involving a large number oktdabe order of selecting the specimens for
testing has to be randomized so that each specimen has drckgnee for being selected for testing.
The next step is to reduce the large number of possible Jas&o as to restrict the variables to a few
most important ones. The training of the neural network camibualized as an experiment involving
a large number of tests for optimization. An important pdrplanning an experimental programme
is to identify the important variables that affect the resgwand deciding how to exploit them in the
experiment. The experimental variables that are conttdile the investigator are called the factors.
The important factors that affect the response have to batifebel to use them in the experiment.
These factors may be independent i.e the level of one fackyrlme independent of the levels of the
other factors. But the effect on the response of one varialalg afso depend upon the levels of the
other variables due to the interaction of two or more factors

Factorial designs are experiments in which all levels ohdactor in an experiment are combined with
all levels of every other factor. In a factorial experimeeneral factors can be controlled to investigate
their effect at each of two or more levels. The experimengaigh consists of making an observation
at each of all possible combinations which can be formedHerdifferent levels of the factors. Every
different combination is called a treatment combination.

The simplest and most common type of factorial design is bae use< levels, n factors, i.e. 2"
factorial design. If we consideralevel,n factor system, training data have to be selected so that they

lie at each of the corners ofra-dimensional space. So ir2a factorial design the training data should
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Figure 5.1: Selection of training data irkafactorial design

be selected such that they lie at each corner &tanensional hypercube as illustrated in Fig. 5.1. A
2" factorial design is the simplest type of factorial desigiit ases two levels and thereby reduces the
number of experimental conditions. But the disadvantageish@ssociated with a two level factorial
design is its inability to distinguish between linear anghtar order effects. So the number of levels in
a factorial design experiment has to be judiciously chosen.

In addition to the number of levels, the Effect of a factor as a significant bearing on the
modelling outcome. Effect of a factor may be defined as a ahangesponse produced by a change in
the level of a factor and is given by,

> _responses at high; — ) responses at low;

EOF (x;) = . - 5.1.1
(z:) Half the number of runs in experiment ( )

wherez; is a factor. The values of the factors corresponding to thel lare called its responses. If
m is the number of levels and is the number of factors, then there will b€ number of runs in the
experiment.

In the present experiments only two factors have been cereidvhere the input and the output are
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the two factors. The different levels that have been cons@len the experiments argz 2, 3 and 4.
When3 level experiment is considered then there &re= 9 number of runs of the experiment. Once
the runs for the factors are decided, the correspondingnsgs are divided into two equal groups in
descending order of their values. The differences betweesum of the responses of each individual
group determines the numerator of the EOF. This value, whededl by half the number of runs fixes
the value of the EOF.

So a parameter having a higher EOF should have a greateisespagion on the training data set.
This is done by increasing the number of data related to th@peter in the training data set. As the
modeling of all the ANFIS based models has been carried aint twio inputs, the FFD experiments
are performed with two factors only with different expermted levels. The FFD based ANFIS model
chosen for modeling the complex system is the one with the leawing the least RMSE for its model-
ing result. The different experimental levels that havenbeged in the modeling schemes for building

the test ANFIS network are as follows:

e 2-level full factorial design

At first only two levels viz the minimum and the maximum of thmput-output data pairs are
considered. Therefore with full factorial design at firstyo?? = 4 data pairs are selected. These
4 data pairs are taken around the minimum and the maximunt-owygput pairs with equal

representation (2 pairs around minimum and 2 pairs aroundnoan).

e 3-level(1) full factorial design
Now one more level in the form of the mid-value of the data esgadded to the former two
levels. So now the 3 levels are the minimum, the maximum aedriddle values of the data
range. It leads to factorial design &t = 9 data pairs for the first run.

e 3-level(2) full factorial design
For another 3-level combination the cluster center is adidgt@ad of the mid-value of the data
range in the previous experiment. It again leads to fadtddsign of3? = 9 data pairs initially.

e 4-level full factorial design

Another experiment is performed by taking all the 4 différiewels of the dataset viz the max-

imum and the minimum values, the middle value of the dataeanyl the cluster center. This
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leads to factorial design d@f = 16 data pairs for the first run.

5.2 V-Fold Technigue Based ANFIS Modelling

This section presents another ANFIS based complex systetielfimy method where the number of
data pairs employed for training the ANFIS network can besehdoy application of a technique called
the V-fold technique [137-139]. This method can be used whemumber of available training data
are less.

V-fold cross validation technique is a highly accurate rodtfor training a neural network and it has
the advantage of not requiring a separate, independergaddita assessing the accuracy of the neural
network. If a network is built using a specific learning datag is necessary to have test data samples
independent of the learning dataset that was used to traimeétwork. However, it is difficult or
expensive to obtain independent test data frequently anéawer it is undesirable to hold back data
from the learning dataset to use for a separate test bedaasedakens the learning dataset. V-fold
cross validation is a technique for performing independests without requiring separate test datasets
and without reducing the data used to build the network.

The general idea of this method is to divide the overall sanmib a number of folds, say V. The same
type of analysis is then successively applied to the obensbelonging to all the V-1 folds (training
samples), and the results of the analysis are applied t@stieg sample, which is the't¥/sample (the
sample or fold that was not used). This is repeated until \doam samples are drawn from the data
for the analysis. The results for the V replications are agated (averaged) to yield a single measure
of the stability of the respective model, i.e. the validifyttoee model for predicting new observations.
Thus, this technique allows the analyst to evaluate theativaccuracy of the respective prediction
model or method in repeatedly drawn random samples. Hereaimeng and validation process using
the V-fold technique for building an ANFIS model processaceomplished as follows :

The learning dataset is partitioned into a number of groaflea “folds”. The partitioning is done using
stratification methods so that the distribution of categ®of the target variable are approximately the
same in the partitioned groups. In “V-fold cross classifarat V is the number of groups that the
dataset is partitioned into. Research has establishediGipairtitions are optimum and using more than
10 partitions does not yield any significant improvement irutess{137-139]. As suchO partitions are
formed in the experiment. Out of thes@ partitions,9 are grouped into a new pseudo-learning dataset.

An ANFIS model is built using this pseudo-learning data$ée quality of the network built with this
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new pseudo-learning data set will in general, be a littleriok to the model obtained by fitting the full
learning dataset, because oAl of the data is used to build it. Siné8% (1 out of 10 partitions) of
the data is held back from being used by the network, it carskd as an independent test sample for
the ANFIS. Thel(0% of the data that was held back when the test ANFIS was builtwsrun through
the test network and the classification error for that dat@mputed.

A different set of9 partitions is now collected into a new pseudo-learning skftaThe partition that
was held back previously is selected this time so that itfferdint from the partition held back for the
first test ANFIS. A second ANFIS is built and its classificatierror is computed using the data that
was held back when it was built. This process is repeafetmes, buildingl0 separate networks. In
each case)0% of the data is used to build the network artds is held back for independent testing.
A different 10% is held back for each test network. The V-fold based ANFISiehshowing the least

modeling error is considered as the final model for the system

5.3 FFD-V-fold Based ANFIS Modeling

In this proposed modeling scheme the full factorial desigphthe V-fold methods have been combined
together to generate the optimal data set for training thé&l&SNmodel. This model is basically a
V-fold based ANFIS model where the full factorial design huet is used to determine the data for
the different folds. The use of the full factorial design huat also ensures that similar kind of data
are selected to the same folds of the V-fold based ANFIS modtleis combined method presents a
systematic way of choosing and grouping the data for forntiegdifferent folds for the V-fold based
ANFIS model. The flow chart for this method is drawn in Fig..5.2

5.4 Experimental Results and Discussion

In the experiment the same data sets which were used in th@psechapter have been used for
modeling. These data are the Box and Jenkins gas furnacerdhtbteaNEEPCO thermal power plant
data. From these available data sets the data for trainengubtractive clustering and the grid partition
based ANFIS models are chosen optimally by applying the faatbrial design and the V-fold based
techniques. While using the subtractive clustering methddster radius 0.5 was selected to extract

the initial fuzzy model. The results and observations haantpresented in the subsequent subsections.
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Figure 5.2: Flow Chart for the FFD-V-fold Technique

5.4.1 Modeling results with Full factorial design based ANFIS model

The optimally selected data obtained by applying the fudtdaal design technique have been used in
these experiments to train the ANFIS model. While trainirgg ANFIS model, the effect of selecting
an input variabler; corresponding to different levels in the range of operabbithe input variable

is investigated. Considering the input-output pdirs y;) and2, 3 and4 levels of operation, the ob-
tained factorially designed data afe3? and4? respectively for use in training. These experiments are

described below:

Case 1:- Modeling with Box and Jenkins gas furnace data

The Box and Jenkins gas furnace data [102] are used in thisigygyd. Optimal choice of dataset for
training is the key step here subsequent to which the modegiliocedure is the same as that of ANFIS.
In this casex(t — 3) andy(t — 1) were found to be the optimal input variables by using the RMSE
criterion. So these two inputs are used in the ANFIS modeé ffiethod for choosing the number of

modeling data for the different levels of the FFD based moteéxplained below.
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e 2-level full factorial design

Considering only the minimum and the maximum values of thetiqutput data pairs, at first
only 22 = 4 data pairs are selected. Thesdata pairs are taken around the minimum and the
maximum valued input-output pairs with equal represeoal pairs around the minimum and

2 pairs around the maximum). Now EOF for bathandy; (from Eq. 5.1.1) are calculated and
found to bel for both the cases. Sb(1 each around the minimum and the maximum values of
bothz; andy; ) additional data pairs are now needed and these are takemdattoe minimum and
the maximum valued input-output data pairs. Again EOF isudated and is found to be So4
additional data pairs are now selected around the minimudhtrEmaximum input-output pairs
with equal representatior? (pairs around the minimum artipairs around the maximum) for
making a balanced representation of data around the miniamghthe maximum values. EOF is
again calculated and is found to beThereforet more input-output data pairs are taken around
the minimum and the maximum of the input-output pairs. FjnaH- 4 + 4 + 4 = 16 data pairs

are selected for training.

e 3(1)-level full factorial design

Now one more level in the form of the mid-value of the data eisgadded to the former two
extreme levels. So now the 3 levels are the minimum, the maxirand the middle value of
the data range. It leads to factorial desigrsbf= 9 data pairs. Proceeding in a similar manner
as in the 2-level case, EOF valuesXfl and1 are obtained fory;, =; and both ofz; andy;
respectively, in 3 successive evaluations. So 6 (2 eacmdrgof the minimum, the maximum
and the centroid), 3 (1 each aroundof the minimum, the maximum and the centroid) and 6 (1
each around; andy; of the minimum, the maximum, and the centroid) additionahgairs are

required. Therefore for this experimeht- 6 + 3 + 6 = 24 data pairs are used for training.

e 3(2)-level full factorial design

For another 3-level combination the cluster centers arecdddstead of the mid-value of the data
range which was the case in the previous experiment. AfteetBuccessive evaluations of the
3?2 = 9 data pairs, EOF values of 1, 1 and 1 are obtainedrforTherefore in this factorially

designed experiment additional data pairs of 4, 4 and 4 lalse tonsidered, thereby requiring

a total of9 + 4 + 4 + 4 = 21 data pairs for training.
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e 4-level full factorial design

Another experiment is performed by taking all the 4 différenels of the data set viz the mini-
mum, the maximum, the middle value of the data range theasrlgsinter. After three successive
evaluations on thé* = 16 data pairs, EOF values of 1, 1 and 1 are obtained.far; and(z;, v;)

of the different levels. Therefore withdata pair each around the minimum, the maximum, the
centroid and each of the two cluster centersjfor; and(z;, y;), a value ob, 5 and10 additional

data pairs are taken making a total numbet®#- 5 + 5 + 10 = 36 training data pairs.

Case 2:- Modeling with thermal power plant data

(i) Data set-I
The first set of the NEEPCO'’s thermal power plant data is us#dsrexperiment. In this case(t —6)
andy(t — 1) are used in the ANFIS model as they were found to be the optitpat variables by using

the RMSE criterion. The procedure for choosing the optimahiber of training data is given below.

e 2-level full factorial design

Considering only the minimum and the maximum valued inpupotidata pairs, onlp? = 4
data pairs are selected initially. After three successwguations, EOF values of 1, 1 and 1
were obtained for the two successive , y;) values and lastly fog;. Therefore with 4, 4 and 2

additional data pairs, a total df+ 4 + 4 4+ 2 = 14 input-output pairs are used for training.

e 3(1)-level full factorial design

Now with the addition of one more level in the form of the midhwe of the data range to the
former two levels, a factorial design 8t = 9 data pairs, comprising of the minimum, the maxi-
mum and the middle value of the data range is obtained. Ad&ntao successive evaluations
for y;, the values of EOF obtained are 2 and 3 respectively. So Wwéhrtclusion of 6 and 9
additional data pairs, a total 8+ 6 + 9 = 24 input-output pairs are used in this experiment for

training.

e 3(2)-level full factorial design

For another 3-level combination the cluster center is adastegad of the mid-value of the data

range. After three successive evaluations ofthe- 9 data pairs, EOF values of 1,1 and 2 are
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obtained fory;. Therefore in this factorially designed experiment; 4 +4+8 = 25 input-output

data pairs are used for training.

e 4-level full factorial design

Another experiment is performed by taking all the 4 différenels of the dataset, viz the max-
imum and the minimum values, the middle value of the datagangl the cluster center. After
two successive evaluations on tife= 16 data pairs, EOF values of 1 and 2 were obtained for
(x;, y;). So with10 and20 additional data pairs,6 + 10 + 20 = 46 input-output data pairs are

used for training.

(ii) Data set-II
The second set of the thermal power plant data was used iexperiment. In this caset — 3) and
y(t—1) were found to be the optimal input variables. So these twotsare used in the ANFIS model.

The number of data pairs required for the different levelthefexperiment are explained below.

e 2-level full factorial design

Here at firs2? = 4 data pairs are selected considering the minimum and thenmuaxivalues of
the input-output data pairs. With three successive evialusbf EOF, the values obtained are 1, 1

and 1 respectively fofz;, y;). So the total number of data used for trainingé#el +4+4 = 16.

e 3(1)-level full factorial design

Starting with3? = 9 data pairs initially for the three levels of the maximum, th&imum and
the mid-values of the data pairs, the values of EOF obtained al and 1 after three successive
evaluations for(x;, y;). So a total o + 6 + 6 + 6 = 27 data pairs are used for training in the

ANFIS model.

e 3(2)-level full factorial design

With 32 = 9 data pairs used initially for the minimum, the maximum, ahd tluster center
levels, after three successive evaluations the values &ffeGnd are 1, 1 and 1 for;, (x;, y;)

andy;. This results in a total number 6f+ 4 4 8 4+ 4 = 25 training data pairs.

e 4-level full factorial design
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Starting initially with4? = 16 data pairs and evaluating the EOF after two successive tas,
values of 2 and 1 are obtained fgrand(z;, y;) respectively. Therefore the total number of data

pairs used for training i$6 + 10 + 10 = 36.

(i) Data set-lll
In the third set of the thermal power plant daté; — 1) andy(t — 1) were found to be the optimal

inputs. The number of training data chosen for the differeatiels are shown below.

e 2-level full factorial design
With 22 = 4 data pairs chosen initially and EOF values of 1, 1 and 14@ry;) respectively, the

training for this model was carried out with+ 4 + 4 + 4 = 16 data pairs.

e 3(1)-level full factorial design
Starting with3? = 9 data pairs and EOF values of 1, 1 and 1(for, 4;), a total of9+6+6-+6 = 27

training data are used for training the ANFIS model.

e 3(2)-level full factorial design
In this experiment, witt3? = 9 data taken initially, the values of EOF are obtained as 1,dl1an

respectively for(x;, y;). So the total number of data pairs usefl is 8 + 8 + 8 = 33.

e 4-level full factorial design
With 42 = 16 data pairs selected initially, the evaluated values of E@Flal and 1 for input-
output pair(x;, y;). So the total number of data pairs used in trainintgis- 10 + 10 + 10 = 46.

(iv) Data Set-1V
In the fourth set of the thermal power plant daté, — 1) andy(¢ — 1) were found to be optimal inputs.

The number of modeling data chosen for the different modelsa follows.

e 2-level full factorial design
With 22 = 4 data pairs selected initially and computed EOF values of dnd 2 for two suc-
cessive evaluations @f;, y;) andy;, the total number of data pairs used in training the ANFIS

model is4 + 4 +4 + 4 = 16.
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e 3(1)-level full factorial design
Starting with3? = 9 pairs of initial data and corresponding EOF values of 1, 1&fat (z;, v;),
the total number of data pairs needed for training4s6 + 6 + 6 = 27.

e 3(2)-level full factorial design
For this experiment, EOF values of 1, 1 and 1 were obtained*et 9 initial data fory; and
then for two successive input-output pairs, y;). Hence the number of data pairs required for

training is9 + 4 + 8 + 8 = 29.

e 4-level full factorial design
For this case, the values of EOF far, (z;, ;) andy; are 1, 1 and 1 fot? = 16 input-output data
pairs. Therefore the ANFIS model requires+ 5 + 10 4+ 5 = 36 data pairs.

(V) Data set-V
In the fifth set of the thermal power plant datd/ — 1) andy(¢ — 1) were found to be optimal and

hence are used in our model.

e 2-level full factorial design
Using2? = 4 number of data initially, the EOF values obtained are 1, 1Bfat (z;, y;). This

resulted in the requirement d¢f+ 4 + 4 4+ 4 = 16 data pairs for training.

e 3(1)-level full factorial design
The calculated values of EOF obtained f8r= 9 data pairs for two successiye and (z;, ;)

are 2, 2 and 1 respectively . Sot- 6 + 6 + 6 = 27 data pairs are needed for training.

e 3(2)-level full factorial design
With 32 = 9 initial data pairs, the values of EOF obtained are 1, 1 and 1afg ;). For these
values of EOF, the total number of data pairs required fanitng is9 + 8 + 8 + 8 = 33.

e 4-level full factorial design
Here4? = 16 input-output data pairs are chosen initially. Correspogdiaues of EOF are 1, 1

and 1 for(z;, y;). Therefore the number of data pairs needed for training4s10+ 10410 = 46.

The modeling results so obtained with the FFD based ANFISatfodthe Box and Jenkins gas furnace
and the thermal power plant data are tabulated in Table Sete the ANFIS model used is of 2-input
4-rule type with the FFD based optimally selected data fmning. The second half of the data set is

used for validation of the model.
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Table 5.1: Modeling results for the Box and Jenkins gas fugmata and the thermal power plant data

using FFD based ANFIS

RMSE (testing)
No of (Grid | (Subtractive
Sl. No. Data Input variables | Noof | Model | training . :
rules FED data partition | clustering
based) based)
Box and 2-level 16 0.6473 0.6437
Jenkins 3(1)-level 24 0.7254 0.6875
1 gas | "3 w014 aovievell 21 | 05607 | 0.6229
furnace 4-level 36 0.5589 0.5972
Thermal 2-level 14 0.0264 0.0275
power plant _ _ 3(1)-level 24 0.0152 0.0205
2 Data | “EOWE=D 14 Taovievell 25 | 00216 | 00117
set-I) 4-level 46 0.0151 0.0125
Thermal 2-level 16 0.0175 0.0200
power plant _ _ 3(1)-level 27 0.0125 0.0095
3 Data | T3 VE=D T4 T aovievel| 25 | 00140 | 0.0119
set-Il) 4-level 36 0.0097 0.0090
Thermal 2-level 16 0.0107 0.0175
power plant _ _ 3(1)-level 27 0.0109 0.0106
4 Data | PE- D yE=D 14 T ievell 33 | 00090 | 0.0083
set-ll) 4-level 46 0.0099 0.0095
Thermal 2-level 16 0.0038 0.0036
power plant _ _ 3(1)-level 27 0.0041 0.0036
g Data | “E- D yE=D 14 Taorievell 20 | 00036 | 0.0035
set-1V) 4-level 36 0.0061 0.0053
Thermal 2-level 16 0.5890 0.9613
power plant _ _ 3(1)-level 27 0.6956 0.5714
6 Data | "D VE=D 1A Faoyevell 33 | 10259 | 0.5347
set-V) 4-level 46 0.8392 0.9149
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5.4.2 V-fold technique based ANFIS model

In the following experiment the V-fold method is used to cbedhe data set for training the ANFIS
model. After the selection of the data for the different &larhich is around one-eighth of the training

data used in the conventional model, the results so obtareegresented below.

Case 1:- Modeling with Box and Jenkins gas furnace data

The data set for the Box and Jenkins gas furnace example s agad for modeling the V-fold based
ANFIS. The optimal inputs so chosen arg — 3) andy(t — 1) along with a cluster center 6f5. The
different folds for applying the V-fold technique were ctifiged with 18 data pairs which is around

one-eighth of th@ 45 input-output pairs used for training the conventional ANhodel.

Case 2:- Modeling with thermal power plant data

(i) Data set-I
With z(t — 6) andy(t — 1) as the optimal inputs and a cluster cented.6ffor the subtractive clustering
method, the modeling is carried out wilh data pairs, which is around one-ninth of %% data pairs
required in the conventional ANFIS model.

(ii) Data set-ll
Here modeling is carried out witf2 data pairs which is around one-ninth of $i#& input-output data
pairs . The optimal inputs atgt — 3) andy(t — 1).

(i) Data set-IlI
The optimal inputs for this model argt — 1) andy(t — 1). For this data set the V-fold based ANFIS
model is built with about one-tenth of thé3 input-output data pairs i.22 data pairs.

(iv) Data set-1V
For this data sety(t — 1) andy(t — 1) are found to be the optimal inputs. The V-fold based ANFIS
model is built with72 data pairs which is around one-seventh®f data pairs.

(v) Data set-V
Here the optimal inputs are(t — 1) andy(t — 1). For the purpose of modeling, around one-ninth of
320 i.e 36 input-output data pairs are chosen.
The modeling results obtained by using the V-fold techniQased ANFIS model are tabulated in
Table 5.2.
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Table 5.2: Modeling results for the Box and Jenkins gas fugmata and the thermal power plant data
using V-fold based ANFIS model

No of Number RMSE (testing)
Sl. No. Data training | Input variables (Grid partition (Subtractive
of rules :
data based) clustering based
Box and
1 Jenkins 18 z(t—3),y(t—1) 4 0.5943 0.5556
gas furnace
Thermal
2 power plant| 81 z(t —6),y(t —1) 4 0.0110 0.0115
(Data set-1)
Thermal
3 power plant 72 z(t —3),y(t—1) 4 0.0092 0.0104
(Data set-Il)
Thermal
4 power plant 72 z(t—1),y(t—1) 4 0.0078 0.0082
(Data set-111)
Thermal
5 power plant 72 z(t—1),y(t—1) 4 0.0034 0.0036
(Data set-1V)
Thermal
6 power plant 36 z(t—1),y(t—1) 4 0.6508 0.6097
(Data set-V)

5.4.3 Modeling results with FFD-V-fold technique based ANFIS model

The V-fold technique is now combined with the FFD based ANHIBe following experiments are

carried out with this combined model.

Case 1:- Modeling results for Box and Jenkins gas furnace data

The optimally selected data set obtained from the Box andidemjas furnace data set is used for
modeling at various levels like 2-level, 3(1)-level, 3(yel and 4-level. The modeling is carried out
by using both the grid partition based method and subtmctivstering technique by choosing a cluster
radius of0.5. The best modeling result is observed in the case of the&-fdvD-V-fold based ANFIS
model both for the grid and the subtractive clustering basedels by using:(t — 3) andy(t — 1) as

the two optimal inputs.

Case 2:- Modeling results for the thermal power plant data

(i) Data set-I

Here the modeling is carried out by usin@ — 6) andy(¢ — 1) as the two optimal inputs. For this data
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set the best result was obtained for the 2-level FFD-V-falsdal ANFIS model.

(ii) Data set-ll
The two optimal inputs used here arg — 3) andy(t — 1). The 3(1)-level FFD-V-fold based ANFIS
model produced the best result.

(iii) Data set-llI
The optimal inputs used here for modeling a¢ — 1) andy(¢ — 1). The FFD-V-fold based ANFIS
model with the 3(2) level showed the least MSE.

(iv) Data set-1V
Herex(t — 1) andy(t — 1) are the optimal inputs used for modeling and the least MSEobtained
for the 2-level FFD-V-fold based ANFIS model.

(vi) Data set-V
Here the modeling is carried out by using the optimal inpt(ts— 1) andy(t — 1). The 3(1)-level
FFD-V-fold based ANFIS model shows the least MSE.

The results obtained by using the combined FFD-V-fold teplmbased ANFIS model are tabulated in
Table 5.3. In Table 5.4, the results obtained by using tHeraint models viz conventional ANFIS, FFD
based ANFIS, V-fold based ANFIS and FFD-V-fold based ANFit& eompared with respect to their
RMSE. From Table 5.4, it is observed that the best modelingjtseare obtained with the FFD-V-fold
based ANFIS model as the RMSE (testing) is the least in this frasall the different types of data.
The modeling results for the different data sets as obtanyadsing different modeling methodologies
are shown in Figs. 5.3 - 5.8. In Fig. 5.3 the actual output adtet vs the predicted output for the
FFD-V-fold based ANFIS model using the Box and Jenkins gasaite data. Fig. 5.4 shows the actual
and the predicted output for the FFD-V-fold based ANFIS niadéng the data set-I for the thermal
power plant. Fig. 5.5 shows the actual and the predictedufpthe FFD-V-fold based ANFIS model
using the data set-Il for the thermal power plant. Fig. 5@hthe actual and the predicted output for
the FFD-V-fold based ANFIS model using the data set-1ll for thermal power plant. Fig. 5.7 shows
the actual and the predicted output for the FFD-V-fold basBiéFIS model using the data set-IV for
the thermal power plant. Fig. 5.8 shows the actual and thdiqiesl output for the FFD-V-fold based

ANFIS model using the data set-V of the thermal power plant.
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Table 5.3: Modeling results for the Box and Jenkins gas fugmata and the thermal power plant data
using FFD-V-fold based ANFIS

No of Model No of R.MSE (testing) .
Sl. No. Data Input variables | rules | FFD-V-fold | training (G.”.d (Subtra(_:twe
data partition | clustering
based) based)
Box and 2-level 18 0.5378 0.5332
Jenkins 3(1)-level 18 0.5705 0.6017
! gas | “E=3wlE=D 4l aovievel | 18 | 06153 | 05373
furnace 4-level 18 0.5627 0.5684
Thermal 2-level 81 0.0110 0.0108
power plant B B 3(1)-level 81 0.0116 0.0109
2 Data | *E O WE-D 14T a0 ievel | 81 0.0109 | 0.0112
set-) 4-level 81 0.0112 0.0114
Thermal 2-level 72 0.0092 0.0092
power plant _ _ 3(2)-level 72 0.0086 0.0089
3 Data | *E 3 yE=D 1Al a0y ievel | 72 | 00091 | 0.0093
set-1l) 4-level 72 0.0088 0.0091
Thermal 2-level 72 0.0084 0.0079
power plant _ B 3(2)-level 72 0.0082 0.0080
4 Data |- DvE=D 14 a0y evel | 72 | 00076 | 00075
set-Ill) 4-level 72 0.0083 0.0082
Thermal 2-level 72 0.0033 0.0034
power plant B B 3(1)-level 72 0.0036 0.0035
g Data | *E-DWE=D 14l a0y ievel | 72 | 00035 | 0.0035
set-1V) 4-level 72 0.0035 0.0036
Thermal 2-level 36 0.5740 0.5293
power plant _ _ 3(2)-level 36 0.5687 0.5118
0 Data | “E- D vE=D 14 a0y evel | 36 | 06651 | 05900
set-V) 4-level 36 0.5174 0.5312
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Table 5.4: Comparison of modeling results for the Box and Jengas furnace data and the thermal

power plant data using various ANFIS models

RMSE (testing)
No of (Grid | (Subtractive
Sl. No. Data Input variables | No of Model training " )
rules data partition | clustering
based) based)
Box and ANFIS 145 0.5382 0.5724
Jenkins FFD 18 0.5589 0.5972
! gas | *¢—3)ylt-1 | 4 V-Fold 18 | 05943 |  0.5556
furnace FFD-V-fold 18 0.5378 0.5332
Thermal ANFIS 699 0.0114 0.0111
power plant B B FFD 46,25 | 0.0151 0.0117
2 (Data | =6 yE—1) 1 4 V-Fold 81 | 0.0110 | 00115
set-I) FFD-V-fold 81 0.0109 0.0108
Thermal ANFIS 675 0.0118 0.0111
power plant B _ FFD 36 0.0097 0.0090
3 (Data | “ =311 4 V-Fold 72 | 0.0092 | 0.0104
set-11) FFD-V-fold 72 0.0086 0.0089
Thermal ANFIS 713 0.0081 0.0076
power plant B B FFD 27 0.0090 0.0083
4 Data | U014 by ey 72 | 00078 | 0.0082
set-111) FFD-V-fold 72 0.0076 0.0075
Thermal ANFIS 494 0.0037 0.0035
power plant B B FFD 29 0.0036 0.0035
g (Data | =11 4 V-Fold 72 | 0.0034 | 0.0036
set-1V) FFD-V-fold 72 0.0033 0.0034
Thermal ANFIS 319 0.5591 0.5361
power plant B B FFD 16,27 | 0.5890 0.5347
0 Data | “ - =11 4 V-Fold 36 | 0.6508 | 0.6097
set-V) FFD-V-fold 36 0.5174 0.5118
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Figure 5.3: Actual and FFD-V-fold based ANFIS model preglicbutput with the Box and Jenkins gas
furnace data
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Figure 5.4: Actual and FFD-V-fold based ANFIS model preglicbutput with data set-I of thermal
power plant
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Figure 5.5: Actual and FFD-V-fold based ANFIS model preglicbutput with data set-1l of thermal
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Figure 5.6: Actual and FFD-V-fold based ANFIS model preglitbutput with data set-11l of thermal
power plant
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Figure 5.7: Actual and FFD-V-fold based ANFIS model preelicoutput with data set-1V of thermal
power plant
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Figure 5.8: Actual and FFD-V-fold based ANFIS model preglicbutput with data set-V of thermal
power plant
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5.5 Conclusion

From Table 5.4 it is observed that the FFD-V-fold based ANFI&el shows the best performance
even though only around one-eighth of the dataset used indheentional ANFIS model has been
selected for training. The FFD-V-fold based ANFIS model Wwast on the basis of optimally chosen
data for modeling. This shows that the ANFIS model based errtining data set selected by using
the FFD-V-fold technique shows the best prediction cajigbilo further test the performance of the
proposed FFD-V-fold based ANFIS model, the modeling resoftthis chapter are compared with
standard statistical models as well as another soft comgpbtised model in the next chapter. The two
types of models that are chosen for the comparative anaysithe statistical model and the GA based

fuzzy model.



Chapter 6

Statistical Models and Genetic Algorithm
Based Fuzzy Model

From the preceding chapters it is observed that by using imalty selected training data set, the
performance of the conventional ANFIS model can be enhandee proposed FFD-V-fold technique
augments the conventional ANFIS model and it even outpe$dhe conventional ANFIS model with
lesser RMSE but utilizing far fewer training data. In orded&termine the efficacy of this proposed
FFD-V-fold based ANFIS model, it is compared with convengbstatistical models like ARX, AR-
MAX and ARIMAX in this chapter. The proposed model is also camgul with the genetic algorithm
(GA) based fuzzy model which is a new technique in the emgraiea of artificial intelligence. Lastly
a controller is designed using the proposed FFD-V-fold 8a8HFIS model and its performance is

studied.

6.1 Statistical Models

Engineers and scientists have been using probability ati$tats as a working tool in many areas of
engineering practices. Most often, during engineeringgtiesnany problems crop up due to poorly
defined situation or having to use data with low precisionisTimoblem can be solved by using sta-
tistical models [140, 146] by proper application of statest analysis. The statistical models help in
making important decisions in engineering. Here the olexbsamples are used to estimate the statis-
tical population whose properties provide the basis foigi@e making. The results from the analysis
of experimental data can be unequivocally described byogpate statistical parameters. Many of the

techniques used for data analysis are based on univaridt@altivariate statistics.

76
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In this chapter some of the existing statistical models diredfinto the systems under study and they
are compared with the models proposed in the previous asa@eme of the statistical models which
are used for comparison with the soft computing based magaelsosed in the previous chapter are
described in the successive subsections. The statistimdéls that have been used for modeling are
the Auto regressive with exogenous input (ARX) model, Augressive moving average with exoge-
nous input (ARMAX) model and Auto regressive integrated mgvaverage with exogenous input

(ARIMAX) model.

6.1.1 Auto Regressive with Exogenous Input (ARX) Model

The Auto regressive (AR) [140] is a very common model with tleéplof which one can shape the
frequency characteristics of the model with a few lineaapseters. AR is a very powerful tool for
analysis of weakly damped oscillatory systems which mayitddem under a high noise level. The
Auto regressive with exogenous input (ARX) [140] model is thest widely applied linear dynamic
model because of its easily computable parameters. Thelmselinear least square technique as the

prediction error is linear in the parameters.

6.1.2 Auto Regressive Moving Average with Exogenous Input (ARMAX) Model

The Moving average (MA) [140] model has lesser significamceractical engineering applications
than the AR model because it cannot be used to model osmilkawith a few parameters. In addition
to this, the MA model is nonlinear in its parameters when tlegligtion error approach is considered. In
the Auto regressive moving average (ARMA) [140] model, the &t the AR models are combined
together so that the flexibility of the AR model can be enhdncafter the ARX model, the Auto
regressive moving average with exogenous input (ARMAX) Jl4@del is the next most popular

model as it possesses an extended noise model and therelgdsemore flexible.

6.1.3 Auto Regressive Integrated Moving Average with Exogenous Input (AR
MAX) Model

In many time series data set, the homogeneity property isctefi even though the series behaves as
though they have no fixed mean. Apart from local level or a doation of local level and trend, one
part of such series is found to be like any other part. Suchdg@meous non stationary behavior of

the data can be described by a model with the assumptiondiva suitable difference (sa§*) of the
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process is stationary. The autoregressive moving averaigemogenous input model for which tié
difference is stationary, is called the Autoregressivegmited moving average with exogenous input
(ARIMAX) [102] model.

6.2 Genetic Algorithm Based Fuzzy Model

Applications requiring the optimization of a multi-dimemsal function can be successfully solved by
using evolutionary algorithms. These algorithms are bagethe evolution of a population towards
the solution of the application problem. The population ofgible solutions which evolves in one
generation is progressively taken to the next successiverggons until it converges at a satisfactory
solution of the problem. The genetic algorithm (GA) [1412]l& one such evolutionary algorithm.
This algorithm was envisaged by Holland [67] in th&70s. It is based on the Darwinian theory of
survival of the fittest, which states that the fitter and ggerindividuals in a population have a higher
chance of creating offsprings for the next generation. htloa implemented as an optimization search
procedure which uses the principles of genetics and nagatattion by modeling possible solutions to
a search problem as strings of zeroes and ones. This algocitmprises of basic genetic operators.
They are selection, crossover and mutation. The flow chathfe method is presented in Fig. 6.1.

A genetic algorithm based fuzzy model is studied in this teiapHere the genetic algorithm is
fused with fuzzy logic to model a system. In this GA based natie process of deriving the initial
fuzzy model is the same as that of the ANFIS model. After thiainfuzzy model is formed, the
genetic algorithm is used to update the consequent paresradtéhe generated fuzzy rules, so as to

produce a final GA based fuzzy model of the system.

6.3 Experimental Results and Discussion

The statistical and the GA based fuzzy model for the Box anétidsrgas furnace and the thermal
power plant data are presented in the following two subsestiln each of these cases, the first half of
the data set is used for training and the next half is useddiatation purpose. For the Box and Jenkins
gas furnace data, the input x(t) is the gas feed rate in cagicfer minute {¢3>/min) and the output
y(t) is in the form of percentage of carbon-dioxide(®,) concentration in the outlet gas. Similarly for
the first four sets of thermal power plant data, the inguj is the gas flow rate in cubic kilometer per

hour (km?/hr) and the outpuy(t) is in the form of generated power in Gigawatt (GW). In the fifgh s
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Figure 6.1: Flow Chart for the GA based Fuzzy model

of the thermal power plant data, the input x(t) is the gas feddillion metric standard cubic metre
(Mmscum) and the output y(t) is in the form of generated eperdillion unit (MU), where 1 unit =
1kWh (kilo-watt-hour).

6.3.1 Statistical models

For the model identification purpose, three different statal models have been used. These are the
ARX, ARMAX and the ARIMAX model. The modeling results obtainedrm these three statistical
models are arranged in a tabular form in Table 6.1.

From Table 6.1 it is observed that the performance of the ARXM»#Aodel is the best having the least
RMSE as compared to the ARX and the ARMAX model. Hence, the ARIMAXdel is selected to
compare with the proposed model. The ARIMAX model is built bmth the Box and Jenkins gas

furnace and the thermal power plant data using the optinsallgcted inputs.
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Table 6.1: Results obtained for Statistical models usingtixeand Jenkins gas furnace and the thermal
power plant data

No of RMSE
Sl. No. Data training| Model with

data testing data

Box and ARX 1.5796

1 Jenkins 145 ARMAX 1.5353

gas furnace ARIMAX 1.2305

Thermal ARX 0.0676

2 power plant | 699 ARMAX 0.0533

(Data set-I) ARIMAX 0.0110

Thermal ARX 0.0980

3 power plant| 675 ARMAX 0.0219

(Data set-1) ARIMAX 0.0163

Thermal ARX 0.1302

4 power plant| 713 ARMAX 0.0839

(Data set-Ill) ARIMAX 0.0113

Thermal ARX 0.0947

5 power plant| 494 ARMAX 0.0106

(Data set-1V) ARIMAX 0.0096

Thermal ARX 0.5871

6 power plant | 320 ARMAX 0.5834

(Data set-V) ARIMAX 0.5451

Case 1:- Box and Jenkins gas furnace data

Here, thel45 Box and Jenkins gas furnace data pairs are used for buildengRIMAX model with
z(t — 3) andy(t — 1) as the two optimal inputs. Fig. 6.2 shows the actual outpdttha ARIMAX

model predicted output which are plotted versus sample eumb

Case 2:- Thermal power plant data

(i) Data set-I
The first set of the thermal power plant data compriseg6fdata pairs. The optimal inputs used are
x(t — 6) andy(t — 1). Fig. 6.3 shows the ARIMAX model’s predicted output alongharctual output
versus sample number.

(ii) Data set-ll
For this data set the ARIMAX model is built with(t — 3) andy(t — 1) as the optimal inputs and by
using675 input output data pairs. The actual and the ARIMAX model presdl output for this data set
are shown in Fig. 6.4.

(i) Data set-llI
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Figure 6.2: Actual and ARIMAX model predicted output with Baxdalenkins gas furnace data
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Figure 6.3: Actual and ARIMAX model predicted output with datket-1 of thermal power plant
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Figure 6.4: Actual and ARIMAX model predicted output with daet-11 of thermal power plant

In this data set (¢ — 1) andy(t — 1) are used as the optimal inputs and the ARIMAX model is builhwit
713 input-output data pairs. The actual and the ARIMAX modelsdicted output plotted vs sample
number are shown in Fig. 6.5.
(iv) Data set-1V
With z(¢t —1) andy(t — 1) as the optimal inputs, the ARIMAX model is built witt94 input-output data
pairs. Fig. 6.6 shows the actual and the ARIMAX model predictetput plotted vs sample number.
(v) Data set-V
The ARIMAX model for this data set is built with(t — 1) andy(¢ — 1) as the optimal inputs and using
320 data pairs. The output predicted by the ARIMAX model alonghwite actual output plotted vs

sample number is shown in Fig. 6.7.

6.3.2 GA based fuzzy model

In GA based fuzzy model, the initial fuzzy model is built ireteame line as that of the ANFIS model.
After the initial fuzzy model is developed based on both thietiactive clustering and the grid based
partitioning, the updation of the consequent parametefis¢otune the fuzzy model is carried out by
using genetic algorithm. The genetic algorithm searche®tttire solution space for the best fit of the
consequent parameters for the fuzzy model. The GA baseg fupzlel is built for both the Box and

Jenkins gas furnace and the thermal power plant data.
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Figure 6.7: Actual and ARIMAX model predicted output with daet-V of thermal power plant

The different parameters that have been used in all GA baszg imodels are as follows:-

The number of generations are restricted to a maximurtDof, with a crossover fraction di.8, a
migration fraction of).2, migration interval of20, stall generation limit of 00, a stall time limit of50
seconds, migration interval @b and a penalty factor of00. The fitness function in this methodology
scales the raw scores based on the rank of each individua.rartk of an individual is its position
in the sorted scores. The rank of the fittest individual isgges] a value ofl, the next most fittest is

assigned a value @f and so on. Rank fitness scaling removes the effect of thedpfdéhe raw scores.

Case 1:- Box and Jenkins gas furnace data

This GA based fuzzy model is built using thé5 gas furnace data pairs, wherg — 3) andy(t — 1)
are the two optimal inputs. The actual output and the outpedipted by the GA based fuzzy model

are shown in Fig. 6.8.

Case 2:- Thermal power plant data

(i) Data set-I
The first data set of the thermal power plant comprising99fdata pairs is used here. The two optimal
inputs arer(t — 6) andy(t — 1). The actual and the GA based fuzzy model’s predicted outiottieol

vs sample number are shown in Fig. 6.9.
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Figure 6.9: Actual and GA based fuzzy model predicted outpiht data set-1 of thermal power plant
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Figure 6.10: Actual and GA based fuzzy model predicted dwyith data set-II of thermal power plant

(ii) Data set-ll
The second data set comprise$ o5 input output data pairs. Herdt — 3) andy(t — 1) are the optimal
inputs. Fig. 6.10 shows the actual output and the GA basexy foodel’s predicted output plotted vs
sample number.

(iii) Data set-llI
In this experiment13 input-output data pairs are used. The optimal inputscéte- 1) andy(t — 1).
The output predicted by the GA based fuzzy model and the batiiput are plotted vs sample number
in Fig. 6.11.

(iv) Data set-1V
Here494 input-output data pairs are used witft — 1) andy(¢ — 1) as the optimal inputs. The actual
and the GA based fuzzy model predicted output are shown ir6Fig.

(v) Data set-V
In this experimen820 data pairs are used witk(¢t — 1) andy(t — 1) as the optimal inputs.The actual

and the GA based fuzzy model’s predicted output vs sampléruim shown in Fig. 6.13.

The results obtained with the GA based fuzzy model for the Buk &enkins gas furnace and the
thermal power plant data are tabulated in Table 6.2. The tstbws that for the Box and Jenkins gas

furnace data set, the grid partition based method produigbslg better result whereas for the thermal
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Figure 6.13: Actual and GA based fuzzy model predicted dwijitlh data set-V of thermal power plant

power plant data the subtractive clustering based mod&ishetter performance.

The proposed FFD-V-fold based ANFIS model is now compardti e GA based fuzzy model
as well as the statistical model. The performance of theqeeg model is studied along with the GA
based fuzzy model and the ARIMAX model. The ARIMAX model is ceiwsimong the three different
statistical models as it turns out to be the best among tleethfhe results obtained for these three
models are now arranged in a tabular form in Table 6.3. Framdble it can be observed that the
proposed FFD-V-fold based ANFIS model outperforms the Ggeldaduzzy model as well as the ARI-
MAX model having the least RMSE even though the training datdby this proposed model is only

about one-eighth of that used by the other two models.

6.4 Controller Using FFD-V-fold based ANFIS Model

In this section a controller based on the proposed FFD-¥@ised ANFIS model is designed. Here
the ANFIS based inverse model controller is used with an dpep strategy in which the controller
is the inverse of the ANFIS based plant [79]. The inverse rhofithe plant [79] is obtained from the
input-output data that has been used to obtain the ANFISdbaselel for the system. This controller

uses the inverse learning or general learning in two diffeséages.
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Table 6.2: Results obtained for the GA based fuzzy model usieg@ox and Jenkins gas furnace and
the thermal power plant data

No of RMSE (testing)
Sl. No. Data training | (Grid partition (Subtractive
data based) clustering based
Box and
1 Jenkins 145 0.5830 0.5998
gas furnace
Thermal
2 power plant | 699 0.0430 0.0360
(Data set-I)
Thermal
3 power plant | 675 0.0964 0.0644
(Data set-1)
Thermal
4 power plant | 713 0.1509 0.0173
(Data set-lll)
Thermal
5 power plant | 494 0.3879 0.0174
(Data set-1V)
Thermal
6 power plant | 320 0.5562 0.5399
(Data set-V)

Table 6.3: Comparison of the FFD-V-fold based ANFIS, GA bdsedy and the statistical ARIMAX
model obtained for the Box and Jenkins gas furnace and thexéth@ower plant data

No of RMSE (testing)
Sl. No. Data Model training | (Grid partition| (Subtractive
data based) clustering based
Box and FFD-V-fold 18 0.5378 0.5332
1 Jenkins ARIMAX 145 1.2305 1.2305
gas furnace | GA based fuzzy 145 0.5830 0.5998
Thermal FFD-V-fold 81 0.0109 0.0108
2 power plant ARIMAX 699 0.0110 0.0110
(Data set-1) | GA based fuzzy 699 0.0430 0.0360
Thermal FFD-V-fold 72 0.0086 0.0089
3 power plant ARIMA 675 0.0163 0.0163
(Data set-1l) | GA based fuzzy 675 0.0964 0.0644
Thermal FFD-V-fold 72 0.0076 0.0075
4 power plant ARIMAX 713 0.0113 0.0113
(Data set-lll)| GA based fuzzy 713 0.1509 0.0173
Thermal FFD-V-fold 72 0.0033 0.0034
5 power plant ARIMAX 494 0.0096 0.0096
(Data set-1V)| GA based fuzzy 494 0.3879 0.0174
Thermal FFD-V-fold 36 0.5174 0.5118
6 power plant ARIMAX 320 0.5451 0.5451
(Data set-V) | GA based fuzzy 320 0.5562 0.5399
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¢ In the learning phase the inverse model of the ANFIS baset dabtained with the available
input-output data. This is called the training phase of tivelise controller. Fig. 6.14 illustrates

this training phase.

¢ Inthe next phase the inverse model of the ANFIS based plaised to initiate the control action.

This is called the application phase of the ANFIS based otiatrand it is illustrated in Fig. 6.15.

PLANT

u(k)

Kk

ANFIS MODEL y(k)
+ eu
-1
INVERSE 7
ANFIS MODEL
Figure 6.14: Training phase of the inverse controller
k
k) ———————= CONTROLLER ulk) PLANT

ANFIS MODEL y(k)

ANFIS MODEL

Figure 6.15: Application phase of the inverse controller

6.4.1 Controller Design

The controller designed using the general or the off-liméntng method does not take into consid-

eration the aspect of minimizing the output error to ensaference tracking. This results in a large
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Controller

r(k) Inverse Y (k)

ANFIS  model

ANFIS based plant y(k)

Fuzzy

Integrator

Figure 6.16: Inverse controller with fuzzy integrator kioc

steady state error. To reduce the sustained steady stateéthe plant a fuzzy integrator block is in-
corporated along with the ANFIS based controller to formttial controller block. The integral action
increases the control signal if there is a small positiverei®imilarly for a negative error the integral
action decreases. The prediction error is used as an inplg ttzzy integrator which is illustrated in
Fig. 6.16. This is done to generate the integrating congtardo that the final steady state error can
be brought nearly to zero. The fuzzy rules for the integrhtock are framed heuristically to tune the
value of K;, as there is no systematic method for framing the fuzzy faebuilding the controller. In
the present work these rules have have been framed based ogstlits of the simulations that were

conducted with different values of the controller inputs.

The rules for the integrator block are of the following form:

Control ruleb:
IF ey (k) is M? andey (k) is Mé and .. ey (k) is M% THEN
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uy(k) = K; Z?;l e; T,

b=12..qgandn=12 .. N

where

M? is the fuzzy sefn = 1,2,...N), T, is the sampling time and erref = r(k) — y(k),

r(k) being the reference input andk) is the system’s output.
For the above rule, the fuzzy integral controller system b@jynferred as follows:

Given a combination ofK;, e;, T;), the final output of fuzzy integrator system may given as fol-

lows:
us(k) = Zq:,ub(e(k))Kizk:est, (6.4.1)
b=1,2,...q o ” (6.4.2)
where
pe(k)) = wb(e(k))/(ilwb(e(k))
and 7

wp(e(k)) =[] Ma(e(k)).

M?(e(k)) is the degree of the membership «if) in M°. Herew,(k) > 0, forb = 1,2,...,q and
i wy(k) > 0for all k. Thereforeu,(e(k)) > 0forb =1,2,...,qandd ] | u(e(k)) = 1. The
output values of the available input-output data set rang® 0.0150 — 0.219. So the fuzzy rules for
the ANFIS based controller is framed to suit this range. Tierence input which is a step signal is

also chosen to suit the available data set.

6.4.2 Experimental Results and Discussion

The performance of the controller is illustrated in Figd - 6.24. In Fig. 6.17 the system output is
shown against the reference step input and the overshoetidiéwund to be 1.6%. Fig. 6.18 shows
the prediction error of the controller. This error is thefeliénce between the desired output and the

actual output of the plant. In Fig. 6.19 the control signalthe output of the controller is shown. In
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Figure 6.17: Desired output and the actual output of thetplath the controller

order to check the performance of the controller in presefcksturbance, two separate noises (step
inputs) were injected at around the0"* and1000** sample. The result in Fig. 6.20 demonstrates the

fast recovery of the controlled system to its final steadiesaéter being disturbed with noise.

In order to check the performance of the controller underalde plant dynamics, a random varia-
tion of the plant parameters Y% is allowed. The results under the changing plant dynanmes a
illustrated in Figs. 6.21 - 6.24. The controller's performa under variable plant dynamics along with

disturbance is plotted in Fig. 6.24.

6.5 Conclusion

It is observed that the FFD-Vfold based ANFIS controller ¢eatk the reference step input quite

faithfully even under plant parameter variation alongwdisturbance.
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Figure 6.19: Output of the controller
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Figure 6.20: Desired and actual output of the plant with cal&r in presence of disturbance
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Figure 6.21: Desired and actual output of the plant with cilgr having plant parameter variations
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Figure 6.22: Prediction error of the controller with plaargmeter variations
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Chapter 7
Conclusions and Future Work

In this concluding chapter the salient contributions of tiikesis are summarized. Also a few aspects

which may be explored for further research are outlined.here

7.1 Summary of the thesis

The major contribution in this thesis is towards newer dgpelent in the ANFIS methodology. The
main emphasis is to build an ANFIS model based on an optinsellgcted data set. The advantage of
the proposed method has been demonstrated in terms of isgprogdeling results as compared to the
conventional ANFIS model as well as conventional statiticodels. The proposed method is used to
design a controller and study its performance.

In Chapter 1 the aim of the present research work is discus®apter2 presents a brief overview of
different system identification techniques based on softmding method. Here some important fore-
casting techniques are also discussed briefly. Chaptertlines the research objectives and method-
ology followed in the present work. In Chaptethe ANFIS model which forms the backbone of the
proposed method for system identification is explained taitle Chaptep describes the two differ-
ent techniques namely the Full factorial design and thel¥4fimethod which are used to augment the
ANFIS model for optimal selection of the training data. In @tea 6 the results obtained by using
the proposed model are compared with the GA based fuzzy naoakstatistical models. Chapter
concludes the thesis with a discussion on the importantfgsiof the research work.

The major contributions of the thesis are summarized below:

e The statistical Full factorial design technique is usedhioase an optimal data set for training

the neural network in the conventional ANFIS model. The lakdé¢ data is selected optimally
98



7.2. DISCUSSION 99

for training the subtractive clustering and grid partitteshnique based ANFIS models.

e The V-fold technique which is used for cross validation magis applied for selecting the opti-
mal data for training. By using this technique, it has beemsidesto build an ANFIS model using
a training data set which is around one-eighth of the size@fiata set used in the conventional
ANFIS model.

e The full factorial design technique and the V-fold methoel@mbined for optimal data selection
in training the ANFIS model. The obtained results show tleafgrmance of the combined FFD-
V-fold based ANFIS model is better than the individual FFBéd and V-fold based ANFIS

models.

e A controller is designed using the proposed FFD-V-fold lda88&IFIS model which performs

faithfully even with plant parameter variations and dibauce.

7.2 Discussion

The prime advantage of the soft computing tools which haemhesed in the present work is that the
requirement of a mathematical model is not a prerequisitee Model of the system under consider-
ation can be built around the available input-output datthefsystem. The inspiring features of the
neural network in its ability to learn and adapt and the cdipabf a fuzzy system to take into account
the imprecision and prevailing uncertainty are vouchededhe prime tools in the present research
work. To exploit the advantages that are associated withetsigective methods, the Adaptive network
based fuzzy inference system (ANFIS) model comprising @h libe neural network and the fuzzy
logic has been used in the present work. ANFIS model regairsficient pool of input-output data
for training. As the absence of sufficient number of inputpoti data in many a real world systems
poses a major hurdle in modeling, an endeavor is made to esavtilable data, to its best possible
ability such that a small critical data set can be selectaohnaly and used for training the ANFIS
model. For this purpose, two novel techniques namely Fatbfgal design and V-fold cross validation
technique are proposed for optimal data selection to therAINFIS.

The experimental results obtained by applying the propasettiod are encouraging enough. The pro-
posed model shows reliable prediction performance so fanesctual values of the available data
are concerned. The performance of the proposed model wasoalsd to be at par with conventional

statistical models used in forecasting. The comparabldteesere achieved even though a very small
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critically selected training data set was used in trainimg ANFIS. The strength of the input output
data used is only around one-eighth of the total number ohvadable data set.

The results obtained from the proposed model can be veryueagimg to industries associated with
the real time systems, like a thermal power plant that has bessidered in the present work. These
results are expected to give a boost to the economic fronteasgus fossil fuel whose reserves are
depleting day by day can be saved as the power plant need mahlder long hours to generate the
modeling data for future load prediction. Besides this theetrequired for starting the thermal power
plant before it can be fully loaded can be saved as it takestéypgong time to start real world systems
like the thermal power plant. Therefore in terms of humaoueses management also the results can
prove to be a boon as a great many number of man hours can lzk aavbe plant does not have to be

run for long periods of time just to generate the modelingdat

So far as the implementation of the present findings are coadgit is not expected to be too dif-
ficult a proposition, as the soft computing model can be cotaakin parallel to the hard computing
and manual control system that is already there in placen Evéhe remote possible case of the pro-
posed model failing, the hard computing based tools or theuadacontroller will always be there to

act as a backup protection system.

The results with the proposed model are, however boundédoertain limitations. This is because
the modeling results are fairly accurate with respect tactiwce of the critical training data set. In the
FFD based ANFIS model, the levels selected in the availabieihg data set are crucial. The proper
selection of the FFD levels are important as the ANFIS maléécided based upon the optimal choice
of these levels. Rigorous experiments need to be performeetérmine the best FFD levels to fit into
the optimal ANFIS model. Hence it requires time and the madeinot be predetermined. Another
limitation of the model is the possible presence of outlard noise in the data set that is used for the
system modeling. The cross checking for a possible modeatiwikia hybrid between an evolutionary

methodology and the proposed model also could have produoeate better result.

7.3 Conclusion

System identification is the primary step in modeling of a&ysas its model should correctly repre-

sent the system for further analysis and control. A prattioportant utility of modeling is prediction
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of future values. This aspect of forecasting is even moneifstgint in real world systems like thermal
power plants. The research work carried out in this thesidistl modeling of a real world system
like gas furnace and thermal power plant based on actual oydput data for which a soft computing
methodology ANFIS is used. This methodology has been cersitko make the best use of the inher-
ent salient features of the neural network of self adaptglahd that of the fuzzy logic in its ability
to take into account the imprecision and uncertainty ofesypstwhich are considered for modeling. It
has been a traditionally accepted fact that for successfiming of ANFIS, the number of data used
should be sufficiently large. However, it may be difficult &t @ large number of data in those systems
like thermal power plant where generation of input outputida quite expensive as precious fuel is
involved. Hence, this research work attempted to build aehfm such a system using the existing
small pool of input output data. For this purpose, the emighaas on optimal selection and use of
the available resource of data. It has been observed froeriexgntal results that it is also possible
to build a successful model for those types of systems wherevailable data set is scanty. This
thesis proposed two novel techniques for optimal seleaifatata and applied the same in the model-
ing methodology. Performance of the model built using thiteseproposed techniques was tested for
prediction and the results were compared with traditiotetistical models commonly used in litera-
ture. The results obtained are promising and encouragioggindeserving further investigation by the
concerned industry. The experimental results obtaineifiyvitne competence of the proposed model-
ing technique. Hence conclusions can be drawn that the pegpANFIS based system identification
technique augmented by optimal data selection strategydiming is comparable with other existing

conventional techniques of modeling.

There is a scope for further exploring the possibility ofteeng the present modeling results by
taking into account the possible presence of outliers imtbdel’s training data. The scope of strength-
ening the proposed ANFIS model by creating its hybrid witbther evolutionary technique is another

direction which might be worth looking into.

7.4 Future Work

Following are the potential directions which can be expldig future research:

e Developing a proper methodology for framing and deterngrire number of fuzzy rules for the

proposed ANFIS model



7.4. FUTURE WORK 102

e Preprocessing the data before modelling is carried out smr@snove the outliers

e Exploring the possibility of developing the ANFIS modelesigthened by other evolutionary

algorithms

e Developing a formal methodology to decide an optimal date fr the V-folds so that modeling

can be carried out with the least possible minimum numbeatd d



Appendix A

Sample Power Plant Data

One sample data set that was collected from the thermal polaet under North East Electric Power
Corporation (NEEPCO) Limited, located in Kathalguri, Ass&mdlja has been presented here. This set
of the input output data consists of an input to the thermalgrglant in the form of the gas feed to the
plant in Million metric standard cubic metre (Mmscum){@®). Similarly the output from the thermal
power plant is in the form of generated energy in Million uihvtU), wherel unit =1 kWh (kilo-watt-
hour). The thermal power plant data set comprising of thatmpnd the outputs are collected from the
hard copy of the records maintained by the power plant aititb®r This data set has been shown in

tabular form in Table A.1 which spreads over the next six easive pages.

103
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Table A.1: Thermal power plant data

Sample Input Output | Sample Input Output | Sample Input Output
No (Mmscum)| (MU) No (Mmscum)| (MU) No (Mmscum)| (MU)
1 1.324 | 4.9452 41 0.574 1.3966 81 1.32 5.6243
2 1.322 | 4.6551 42 0.618 1.3997 82 1.4534 | 5.6538
3 1.313 | 4.8245 43 0.673 1.5822 83 1.4387 | 5.6143
4 1.191 | 4.5939 44 0.73 1.7254 84 1.4749 | 5.6229
5 1.188 | 4.2019 45 0.598 1.4773 85 1.4641 | 5.6235
6 1.241 | 4.5838 46 0.455 1.023 86 1.3119 | 5.3734
7 1.28 4.8133 47 0.497 1.1173 87 1.3136 | 5.325
8 1.25 4973 48 0.529 1.2861 88 1.319 5.6387
9 1.153 3.9096 49 0.447 0.986 89 1.3993 | 5.2355
10 1.232 3.9021 50 0.374 | 0.9672 90 1.4414 | 5.3554
11 1.129 3.9072 51 0.437 0.8112 91 1.4045 | 5.5192
12 1.159 3.9627 52 0.412 0.8423 92 1.3778 | 5.4554
13 1.169 3.8762 53 0.421 0.838 93 1.4796 | 5.6182
14 1.157 3.9246 54 0.325 0.7497 94 1.4598 | 5.5868
15 1.083 3.9547 55 0.283 0.7372 95 1.4679 | 5.4311
16 1.025 3.0296 56 0.372 0.7779 96 1.4582 | 5.6565
17 0.922 2.4153 57 0.379 0.8284 97 1.4408 | 5.4803
18 0.819 2.7417 58 0.382 0.7776 98 1.3682 | 5.5866
19 0.77 2.2473 59 0.378 0.8381 99 1.3574 | 5.4574
20 0.678 1.9082 60 0.257 0.6241|| 100 1.3831 | 5.4638
21 0.804 | 24771 61 0.262 0.6413| 101 1.3372 | 5.4873
22 0.724 | 2.4917 62 1.402 5.5288| 102 1.3671 | 5.2863
23 0.674 | 2.4805 63 1.4491 | 5.3996| 103 1.4481 | 5.4758
24 0.598 2.0008 64 1.4677 | 5.5825| 104 1.4554 | 5.3959
25 0.439 1.1264 65 1.4577 | 5.582 105 1.3766 | 5.5891
26 0.556 1.9277 66 1.4161 | 5.468 106 1.3897 | 5.5449
27 0.485 1.4958 67 1.3967 | 5.6255| 107 1.433 5.5731
28 0.493 1.4993 68 1.4723 | 4.9201| 108 1.3962 | 5.5036
29 0.515 1.461 69 1.4039 | 5.2882| 109 1.2972 | 4.436
30 0.627 2.2222 70 1.4499 | 5.5317| 110 1.3581 | 5.466
31 0.66 2.3257 71 1.3176 |5.5103| 111 1.4581 | 5.6001
32 0.521 1.9292 72 1.4471 | 5.6107| 112 1.3911 | 5.4636
33 0.663 2.1237 73 1.4267 | 5.591 113 1.3568 | 5.2911
34 0.461 1.4513 74 1.4003 | 5.5735| 114 1.4164 | 5.3258
35 0.401 0.7558 75 1.4198 | 5.3997|| 115 1.4649 | 5.5799
36 0.422 0.9432 76 1.2299 | 5.6397|| 116 1.4609 | 5.6018
37 0.404 | 0.7583 77 1.2666 | 5.6239| 117 1.391 5.6248
38 0.54 1.2023 78 1.2331 | 5.4488| 118 1.3226 | 4.9621
39 0.494 1.181 79 1.0844 | 4.5987| 119 1.4091 | 5.7229
40 0.559 1.3888 80 1.3462 5.65 120 1.4565 | 5.6937
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Sample| Input | Output| Sample| Input | Output| Sample| Input | Output
No Mmscum| MU No Mmscum| MU No Mmscum| MU
121 1.4046 | 5.6481| 161 1.4514 | 5.6148| 201 1.0818 | 3.7636
122 1.4227 | 5.7434| 162 1.4216 | 5.6523| 202 0.9669 | 2.885
123 1.4581 | 5.7434| 163 1.4487 | 5.5285| 203 0.794 | 2.3875
124 1.4078 | 5.7161|| 164 1.3801 | 5.5787|| 204 0.638 | 2.0173
125 1.4615 | 5.643 165 1.3978 | 5.6097| 205 0.7455 | 2.3181
126 1.5922 | 5.6752| 166 1.371 | 5.5655| 206 0.6064 | 1.624
127 1.4414 | 5.6831| 167 1.4916 | 5.5533| 207 0.5539 | 1.6297
128 1.5922 | 5.7081| 168 1.4093 | 5.4241|| 208 0.5714 | 1.3992
129 1.4079 | 5.5961| 169 1.4812 | 5.3844| 209 0.8361 | 1.9668
130 1.4641 | 5.6839| 170 1.4714 | 5.3092| 210 0.9027 | 3.2116
131 1.4744 | 55765\ 171 1.4681 | 5.6352| 211 0.9078 | 2.4865
132 1.4162 | 5.6774| 172 1.4598 | 5.6986| 212 0.8212 | 2.5966
133 1.3626 | 5.0974| 173 1.491 | 5.835 213 0.9907 | 3.4888
134 1.3944 | 5.1586| 174 1.4121 | 5.47 214 1.0112 | 3.0417
135 1.4749 | 5.4782| 175 1.3523 | 5.5049| 215 1.1095 | 3.2544
136 1.3827 | 4.7539| 176 1.4041 | 5.1959| 216 0.8682 | 2.7095
137 1.4534 | 5.5895| 177 1.4264 | 5.4507| 217 0.801 | 2.4917
138 1.4126 | 5.4194| 178 1.5057 | 5.7048| 218 0.787 | 2.2152
139 1.4518 | 5.5629| 179 1.4833 | 6.0147| 219 0.7407 | 2.3094
140 1.4009 | 5.3345| 180 1.576 | 6.0291| 220 0.7879 | 2.0827
141 1.4354 | 5.1913| 181 1.4829 | 5.8037| 221 0.7294 | 1.9713
142 1.4416 | 5.5908| 182 1.4271 | 5.4411| 222 0.9181 | 2.4715
143 1.4146 | 5.6031| 183 1.3938 | 4.941 223 0.9833 | 2.9014
144 1.4078 | 5.7035|| 184 1.3375 | 4.4442| 224 1.027 3.15
145 1.3782 | 5.5866| 185 1.3653 | 4.8132|| 225 0.8044 | 2.922
146 1.4371 | 5.5992| 186 1.3583 | 4.9125| 226 0.7579 | 2.0179
147 1.4322 | 4.9094| 187 1.5534 | 4.8933| 227 0.7683 | 1.7303
148 1.4076 | 5.4534| 188 1.4916 | 5.0371| 228 0.7597 | 1.9127
149 1.3406 | 5.5334| 189 1.1866 | 3.8338| 229 0.7235 | 1.7416
150 1.3542 | 5.4973|| 190 1.3944 | 5.0443| 230 0.8203 | 2.1081
151 1.4172 | 5.6085| 191 1.4521 | 5.1634| 231 0.7821 | 2.3469
152 1.3743 | 5.4574| 192 1.2189 | 4.7144| 232 0.7907 | 2.103
153 1.4078 | 5.6656| 193 1.1288 | 3.3662| 233 0.6632 | 1.553
154 1.4045 | 5.603 194 1.2875 | 3.6034| 234 0.7855 | 1.7264
155 1.3844 | 5.3959| 195 1.4923 | 5.1222|| 235 0.925 | 2.2885
156 1.3961 | 5.6544| 196 1.3559 | 4.9382| 236 1.0508 | 2.808
157 1.4146 | 5.685 197 1.1572 | 4.0445| 237 1.2034 | 3.5663
158 1.4075 | 5.7383| 198 1.2138 | 3.9089| 238 1.2067 | 4.0265
159 1.3173 | 4.9094| 199 1.2549 | 3.8814| 239 1.0577 | 2.6875
160 1.4598 | 5.641 200 1.3406 | 4.8714| 240 0.8854 | 2.2007
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Sample Input Output | Sample Input Output | Sample Input Output
No (Mmscum)| (MU) No (Mmscum)| (MU) No (Mmscum)| (MU)
241 1.0559 | 2.8302|| 281 1.3064 | 45745 321 1.5001 | 5.3927
242 0.9588 | 2.6181| 282 1.3609 | 5.0043|| 322 1.4315 | 5.6101
243 0.8492 | 2.2116| 283 1.4632 | 5.4324|| 323 1.5087 | 5.5803
244 1.4039 | 3.7935| 284 1.4497 | 5.4443| 324 1.5447 | 5.3973
245 1.3961 4.664 285 1.4179 | 5.1507| 325 1.6115 | 5.6272
246 1.335 | 4.7778| 286 1.4229 | 5.3323| 326 1.5841 | 5.6337
247 1.3264 | 4.5189| 287 1.3609 |5.1421|| 327 1.5978 | 5.7309
248 1.1766 | 4.2765|| 288 1.4607 | 4.7898| 328 1.5532 5.59
249 1.2671 | 4.0429|| 289 1.3852 | 5.1154| 329 1.5687 | 5.6709
250 1.1706 | 4.2399| 290 1.2498 | 4.9163| 330 1.5978 | 5.4148
251 1.1662 | 3.7326| 291 0.9913 | 5.0368| 331 1.6269 | 5.5838
252 1.1438 | 3.5132|| 292 1.324 | 3.2511| 332 1.5532 | 5.7224
253 1.1524 | 3.5352|| 293 1.4281 | 5.4863|| 333 1.492 5.625
254 1.1126 | 2.985 294 1.4347 | 5.2931| 334 1.5346 | 5.7142
255 1.3166 | 4.4993|| 295 1.4495 | 5.3268|| 335 1.5322 | 5.6245
256 1.2018 | 4.547 296 1.4675 | 5.1976|| 336 1.4889 | 5.5269
257 1.1092 | 3.513 297 1.4658 | 5.3189|| 337 1519 |5.6984
258 1.0252 | 3.0348| 298 1.4624 | 5.3774|| 338 1.4577 | 5.609
259 1.2858 | 4.2664| 299 1.4864 | 5.4225|| 339 1.5104 | 5.6215
260 1.2138 | 3.6258| 300 1.4607 | 5.4206|| 340 1.3603 | 5.6538
261 1.2084 | 3.6389| 301 1.4281 | 5.3925| 341 1.4884 | 5.6918
262 1.2926 4.229 302 0.1338 | 5.0432| 342 1.5427 | 5.6148
263 1.371 | 4.0629| 303 1.4401 | 5.0623|| 343 1.5233 | 5.512
264 1.3475 | 4.6036| 304 1.5134 | 5.433 344 1.5389 | 5.5724
265 1.3458 | 4.8307|| 305 1.3869 | 5.3003|| 345 1.4951 | 5.5488
266 1.13 3.6346| 306 1.5961 | 5.4927|| 346 1.5261 | 5.5808
267 1.3928 | 4.9537| 307 1.4665 | 5.6163| 347 1.6153 | 5.5724
268 1.1761 | 4.6311|| 308 1.4534 | 5.7034| 348 1.5516 | 5.6513
269 1.0525 | 2.8417|| 309 1.4845 | 5.5608| 349 1.6195 | 5.5318
270 1.2419 | 3.9535|| 310 1.5369 | 5.7098| 350 1.5313 | 5.6522
271 1.3408 | 4.6652| 311 1.5789 | 6.0245|| 351 1.5009 | 5.606
272 1.4916 | 5.0152| 312 1.563 |5.8668| 352 1.476 | 5.6187
273 1.4833 | 5.1074|| 313 1.46 5.2192|| 353 1.5786 | 5.6733
274 1.381 | 4.7367| 314 1.4142 | 5.3613| 354 1.4831 | 5.5214
275 1.3207 | 4.7058|| 315 1.3733 | 5.4151|| 355 1.5199 | 5.5845
276 1.3425 | 4.5717| 316 1.5344 5.739 356 1.5922 | 5.4624
277 1.49 4.9783| 317 1.5447 | 5.7368|| 357 1.5887 | 5.6533
278 1.4665 | 5.3421| 318 1.6269 | 5.9413|| 358 1.4968 | 5.6832
279 1.4146 |5.2614| 319 1.5978 | 5.8773|| 359 1.6589 | 5.5447
280 1.4028 |5.1238|| 320 1.5838 | 5.8336|| 360 1.6763 | 5.4693
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Sample| Input | Output| Sample| Input | Output| Sample| Input | Output
No Mmscum| MU No Mmscum| MU No Mmscum| MU
361 1.5254 | 5.9156| 401 1.5102 | 5.6807| 441 1.5214 | 5.2991
362 1.5685 | 5.8613| 402 1.5461 | 5.6802| 442 1.516 | 5.2847
363 1.593 | 5.6776| 403 1.5919 | 5.6983| 443 1.561 | 5.3937
364 1.57 5.6831| 404 1.4594 | 5.4908| 444 1.4002 | 4.3372
365 1.6136 | 5.5962| 405 1.4795 | 5.5897| 445 1.4143 | 5.1852
366 1.6965 | 5.7247| 406 1.381 | 5.6056| 446 1.5418 | 4.9834
367 1.7126 | 5.7391|| 407 1.4862 | 5.6184| 447 1.4326 | 5.0081
368 1.6633 | 5.761 408 1.509 | 5.6667| 448 1.4615 | 4.8435
369 1.6589 | 5.8093| 409 1.5133 | 5.7054| 449 1.5218 | 5.0014
370 1.5945 | 5.8111| 410 1.5168 | 5.7218| 450 1.4862 | 5.2092
371 1.5198 | 5.8198| 411 1.4689 | 5.7706| 451 1.5232 | 5.2754
372 1.6374 | 5.8631| 412 1.1808 | 3.9978| 452 1.5003 | 5.3092
373 15735 | 5.7124| 413 0.916 | 4.0574| 453 1.437 | 5.198
374 1.5655 | 5.31 414 1.4765 | 5.3341|| 454 1.5179 | 5.5755
375 1.4845 | 5.4675| 415 1.4656 | 5.3112| 455 1.2531 | 4.8364
376 1.4816 | 5.6235| 416 1.4932 | 5.5365| 456 1.418 | 5.2137
377 1.5458 | 5.6525| 417 1.4135 | 5.5452| 457 1.426 | 5.4378
378 1.5226 | 5.7043| 418 1.4613 | 5.5509| 458 14 5.2222
379 1.5473 | 5.6844| 419 1.46 5.5727| 459 1.3889 | 4.9787
380 1.4173 | 5.6001| 420 1.4659 | 5.5711| 460 1.4028 | 4.6367
381 1.5267 | 5.6298| 421 1.4925 | 5.5565| 461 1.3546 | 4.6151
382 1.5938 | 5.6656| 422 1.4943 | 5.5805| 462 1.4103 | 4.1426
383 1.7443 | 5.8414| 423 1.4781 | 5.4996| 463 1.4563 | 4.7997
384 1.5018 | 5.7291|| 424 1513 | 5.6461| 464 1.4252 | 4.737
385 1.5968 | 5.7892| 425 1.7171 | 5.6773| 465 1.4413 | 4.7756
386 1.5377 | 5.4932| 426 1.5543 | 5.7158| 466 1.4349 | 4.9599
387 1.4734 | 5.7086| 427 1.5696 | 5.7249| 467 1.1952 | 4.1722
388 1.5027 | 5.6201| 428 1.5681 | 5.6764| 468 1.2605 | 3.94
389 1.5688 | 5.4349| 429 1.5774 | 5.6057| 469 1.4092 | 4.8165
390 1.5029 | 5.3902|| 430 1.5659 | 5.6933| 470 1.4017 | 4.4719
391 1.5298 | 5.7404| 431 1.5867 | 5.6658| 471 1.3182 | 4.0426
392 1.4183 | 5.668 432 1.5178 | 5.612 472 0.9063 | 2.8749
393 1.4655 | 5.5867| 433 1565 | 5.4375| 473 1.1171 | 3.4271
394 1.4751 | 5.5357|| 434 1.5505 | 5.3128| 474 1.1321 | 2.2888
395 1.4581 | 5.5635|| 435 1.5014 | 5.1009| 475 1.0871 | 3.2424
396 1.4222 | 5.4617| 436 1.542 |5.3041|| 476 1.1246 | 2.8123
397 1.4619 | 5.5473| 437 1.659 |5.6067| 477 1.3792 | 4.1522
398 1.5727 | 5.5732| 438 1.5997 | 5.6964| 478 1.4178 | 4.3501
399 1.5699 | 5.619 439 1.5175 | 5.5347| 479 1.3942 | 4.246
400 1.4833 | 5.6923| 440 1.4492 | 5.2899| 480 1.3717 | 4.2139
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Sample| Input | Output| Sample| Input | Output| Sample| Input | Output
No Mmscum| MU No Mmscum| MU No Mmscum| MU
481 1.4081 | 4.2123| 521 1.2348 | 4.424 561 1.2947 | 4.8076
482 1.3921 | 4.245 522 1.284 | 4.7181| 562 1.1984 | 4.2725
483 1.5194 | 4.4006| 523 1.2145 | 4.3307|| 563 1.2808 | 4.7571
484 1.5964 | 4.7967| 524 1.3225 | 4.899 564 1.2851 | 4.621
485 1.6157 | 5.1056| 525 1.3717 | 5.2216| 565 1.2829 | 4.6642
486 1.6264 | 5.0966| 526 1.1717 | 4.8175| 566 1.1513 | 3.7889
487 1.636 | 5.2014| 527 1.0005 | 2.6721|| 567 1.3332 | 4.718
488 1.2776 | 4.5022| 528 1.1503 | 4.0102|| 568 1.314 | 4.7808
489 1.3075 | 4.3023|| 529 1.0465 | 3.0405| 569 1.3215 | 4.8193
490 1.5868 | 5.4289| 530 1.1428 | 4.3035| 570 1.3471 | 5.0174
491 1.5376 | 5.5534| 531 1.1866 | 3.9606| 571 1.2305 | 4.2833
492 1.4691 | 5.2084| 532 1.1588 | 3.6403| 572 1.3225 | 4.7482
493 1.636 | 5.8577| 533 1.1995 | 3.9429|| 573 1.2348 | 4.3296
494 1.2904 | 4.5422|| 534 1.3364 | 4.8332|| 574 1.3215 | 4.8044
495 1.6382 | 4.6743| 535 1.3621 | 5.0755| 575 1.2177 | 4.1353
496 1.6478 | 5.4469| 536 1.284 | 4.9141|| 576 1.3075 | 4.8193
497 1.498 | 4.9146| 537 1.1781 | 3.8019| 577 1.3086 | 4.8132
498 1.6489 | 5.9131|| 538 1.2016 | 3.9578|| 578 1.3182 | 4.9313
499 1.6521 | 5.9033|| 539 1.208 | 4.1534| 579 1.2872 | 4.7966
500 1.6724 | 5.7017| 540 1.2284 | 4.2113| 580 1.3097 | 4.7426
501 1.6628 | 5.6355| 541 1.284 | 4.5927| 581 1.3182 | 4.8939
502 1.6296 | 5.4745| 542 1.3215 | 4.7669| 582 1.3161 | 4.8427
503 1.6553 | 5.54 543 1.3429 | 4.9341|| 583 1.2284 | 4.368
504 1.6488 | 5.6014| 544 1.3204 | 4.8847|| 584 1.2626 | 4.4404
505 1.6628 | 5.5977|| 545 1.3536 | 5.1006| 585 1.2808 | 4.5692
506 1.6703 | 6.0881| 546 1.3022 | 4.921 586 1.3033 | 4.5241
507 1.6125 | 5.8677| 547 1.3493 | 4.868 587 1.3022 | 4.5065
508 1.4413 | 4.6036| 548 1.3696 | 5.0596| 588 1.2337 | 4.3886
509 1.4413 | 5.3241|| 549 1.3482 | 5.0562| 589 1.3033 | 4.6095
510 1.376 | 4.4069| 550 1.3493 | 5.0899| 590 1.3193 | 4.8156
511 1.452 | 4.6676| 551 1.2915 | 4.8116| 591 1.2551 | 4.4135
512 1.3354 | 5.8898| 552 1.2647 | 4.6472| 592 1.2819 | 4.1596
513 1.3664 | 3.526 553 1.2808 | 4.7844| 593 1.3707 | 4.8925
514 1.5494 | 5.7493|| 554 0.7008 | 3.4926| 594 1.2391 | 4.4775
515 1.4028 | 4.8649| 555 0.5339 | 0.5415| 595 1.2273 | 4.2588
516 1.3418 | 4.608 556 1.2861 | 4.7351| 596 1.2883 | 3.8693
517 1.3546 | 4.5833| 557 1.2669 | 4.3244| 597 1.36 4.9252
518 1.2787 | 4.257 558 1.2883 | 4.534 598 1.3311 | 4.608
519 1.3503 | 4.9746|| 559 1.2487 | 4.417 599 1.314 | 4.7617
520 1.3193 | 4.9995|| 560 1.3065 | 4.8166| 600 1.3161 | 4.7271
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Sample Input Output | Sample Input Output | Sample Input Output
No (Mmscum)| (MU) No (Mmscum)| (MU) No (Mmscum)| (MU)
601 1.3097 | 4.5577| 617 1.3022 | 4.8304| 633 1.2979 | 4.8111
602 1.3621 | 5.0799| 618 1.3643 | 5.1449| 634 1.1909 | 4.4569
603 1.3108 | 4.7921|| 619 1.3568 | 5.0312| 635 1.1952 | 4.291
604 1.2851 | 4.5264| 620 1.3974 | 5.2211| 636 1.1609 | 4.2125
605 1.2337 | 4.3612| 621 1.4049 | 5.2859| 637 1.1214 | 4.2567
606 1.3536 | 4.9453| 622 1.3075 | 4.777 638 1.1224 | 4.2445
607 1.3728 | 5.0658| 623 1.2594 | 4.5762| 639 1.1695 | 4.2372
608 1.3652 | 4.2713| 624 1.2829 | 4.413 640 1.3461 | 4.9516
609 1.3803 | 4.602 625 1.4017 | 5.3109|| 641 1.3461 | 5.1956
610 1.3964 | 5.4194| 626 1.2637 | 4.4816| 642 1.391 5.3655
611 1.2198 | 4.2685| 627 1.1224 | 4.3469| 643 1.4049 | 5.4376
612 1.33 4.697 628 1.2155 | 4.2982| 644 1.4606 | 5.5094
613 1.3525 | 5.0446| 629 1.193 | 4.2245|| 645 1.4017 | 5.4505
614 1.2005 | 4.2995|| 630 1.0903 | 4.0368| 646 1.3386 | 5.4017
615 1.3311 | 4.8712| 631 1.0411 | 3.8126
616 1.3225 | 4.8863| 632 1.1984 | 4.0609




Bibliography

[1]

M. Jamshidi,Large-Scale Systems : Modelling, Control and Fuzzy Logirentice Hall PTR,
1997.

[2] A. Kamiya, S. J. Ovaska, and R. Roy, “Fusion of soft compgiamd hard computing for large-

scale plants : a general model,”Applied Soft Computingol. 5, pp. 265-279, 2005.

[3] V. CherkasskyFuzzy Inference Systems : A Critical Review, Computatiorialligence: Soft

Computing and Fuzzy-Neuro Integration with Applicatio®s Kayak and L. A. Zadeh, Eds.
Springer, Berlin, 1998.

[4] Y. Dote and S. J. Ovaska, “Industrial applications oftsaimputing : a review,” irProc. of the

IEEE, 2001, pp. 1243-1265.

[5] W. S. McCulloch and W. Pitts, “A logical calculus of the @eimminent in nervous activity,”

[6]
[7]

[8]

[9]

Bull. of Math. Biophys.vol. 5, pp. 115-133, 1943.
D. O. Hebb,The Organization of Behaviours John Wiley & Sons, New York, 1949.

F. RosenblattPrinciples of Neuro-Dynamics: Perceptrons and the theorgrain Mechanisms

New York: Spartan, 1962.

B. Widrow and M. E. Hoff, “Adaptive switching circuits[JRE WESTCON Convention Recprd
vol. 4, pp. 96-104, 1960.

M. L. Minsky and S. PaperRerceptrons Cambridge, MA:M.I.T. Press, 1969.

[10] J. J. Hopfield, “Neural networks and physical systemthwimergent collective computational

abilities,” in Proc. Nat. Acad. Sci., USAol. 79, pp. 2554-2558, 1982.

[11] D.B. Parker, “Learning logic,” Massachusetts Insttof Technology, Centre for Computational

Research in Economics and Management Sci., Cambridge, Méh, Rep. TR-47, 1985.
110



BIBLIOGRAPHY 111

[12] D. E. Rumelhart and J. L. McClellan@arallel Distributed Processing: Exploration in the Mi-

crostructure of Cognition Foundations MIT Press, Cambridge MA, 1986, vol. 1.

[13] G. A. Carpenter and S. Grossberg, “Art2 self organisatibstable category recognition codes

for analog input patternsApplied Opticsvol. 26, pp. 4919-4930, 1987.

[14] T. Kohonen Self Organisation and Associative Memo8yd ed. Springer Verlag, Heidelberg,
1989.

[15] K. S. Narendra and K. Parthasarathy, “Identificatiod eontrol of dynamic system using neural

networks,”IEEE Trans. on Neural Netywol. 1, no. 1, pp. 4-27, March 1990.

[16] M. M. Polycarpou and P. A. loannou, “Identification anointrol of nonlinear systems using
neural network models: Design and stability analysis,u@rsity of Southern Cal. Los Angeles,

Tech. Rep. 91-09-01, September 1991.

[17] R. M. Sanner and J. J. E. Slotine, “Gaussian networks ii@ctl adaptive control,” inProc.

American Control Conf., ACC91991, pp. 2153-2159.

[18] D. T. Pham and X. Liu, “Identification of linear and naméiar dynamic systems using recurrent

neural networks,Artificial Intell. in Engineering vol. 8, pp. 6775, 1993.

[19] E. B. Kosmatopoulos, P. loannou, and M. A. Christodoutddentification of nonlinear sys-
tems using dynammic neural network structuresProc. 31st. Conf. on Decision and Control,

Tucson, ArizongDecember 1992, pp. 20-25.

[20] J.J. Hopfield, “Neurons with graded response have cilie computational properties like those

of two state neurons,” iRroc. Nat. Acad. Scivol. 81, 1984, pp. 3088—3092.

[21] M. A. Cohen and S. Grosberg, “Absolute stability of glbpattern formation and parallel mem-
ory storage by competitive neural network&EE Trans. Syst., Man, Cyberwol. SMC 13, pp.
815-826, 1983.

[22] B. Hong, X. Yun, and C. Xinkuo, “Generalized fuzzy RBF netk®and nonlinear system iden-
tifications,” inProc. of the 4th World Congress on Intelligent Control and Awdtion, Shanghai,
China June 10-14 2002, pp. 2508-2512.



BIBLIOGRAPHY 112

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

S. M. Ahmad, M. H. Shaheed, A. J. Chipperfield, and M. O.HipkNonlinear modelling of a
twin rotor mimo system using radial basis function netw.Piroc. of the IEEE Nat. Aerospace
and Electronics Conf. (NAECON3000, pp. 313-320.

R. R. Selmic and F. L. Lewis, “Multi model neural networldentification and failure detec-
tion of nonlinear systems,” iRroc. of the 40th IEEE Conf. on Decision and Control, Orlando,

Florida USA Dec 2001, pp. 3128-3133.

F. Azam and H. F. Vanlandingham, “An alternate radiaib&unction neural network model,” in

Proc. of the IEEE Int. Conf. on Syst., Man and CybeP000, pp. 2679-2684.

R. Grino, G. Cembrano, and C. Torras, “Nonlinear systemtifleation using additive dynamic
neural networks- two on-line approache&EE Trans. Circuits and Syst.-Part 1. Fundamental

Theory and App].vol. 47, no. 2, pp. 150-165, February 2000.

S. Haykin,Neural Networks - A Comprehensive Foundatiétih ed. Pearson Education (Sin-
gapore) Pvt. Ltd., Indian Branch, 2003.

J. M. Zuradantroduction to Artificial Neural Systems Jaico Publishing House 121, Mumbai,
1999.

M. T. Hagan, H. B. Demuth, and M. H. BeaMeural Network Desigr2nd ed. PWS Publishing,
Boston, MA, USA, 1996.

Q. Song, L. Yin, and Y. C. Soh, “Robust adaptive identifimatof nonlinear system using neural

network,” inProc. IEEE Signal Processing Society Worksh2@00, pp. 95-104.

J. C. Patra, A. C. Kot, and Y. Q. Chen, “Chebyschev functitin&lartificial neural networks for
nonlinear dynamic system identification,” Hroc. IEEE Conf. on Syst., Man and Cyber@ct
2000, pp. 2655—-2660.

J. C. Patraand A. C. Kot, “Nonlinear dynamic system ide@tion using Chebyshev functional
link artificial neural networks,JEEE Trans. Syst., Man and Cyberol. 32, no. 4, pp. 505-511,
Aug. 2002.

X. M. Ren, A. B. Rad, P. T. Chan, and W. L. Lo, “Identificationdacontrol of continuous-time
nonlinear systems via dynamic neural networKSEE Trans. Industrial Electronvol. 50, no. 3,

pp. 478-486, June 2003.



BIBLIOGRAPHY 113

[34] M. Sugeno and G. T. Kang, “Structure identification ozZy model,” Fuzzy Sets and Syst.
vol. 28, pp. 15-33, 1988.

[35] T. Takagi and M. Sugeno, “Fuzzy identification of sysseamd its applications to modeling and
control,” IEEE Trans. Syst., Man and Cyberwol. 15, pp. 116-132, 1985.

[36] L. A. Zadeh, “Fuzzy setsnform. and Contralvol. 8, pp. 338-353, 1965.

[37] ——, “Outline of a new approach to the analysis of compégstems and decision process,”
IEEE Trans. Syst., Man and Cyberwol. 3, pp. 28-44, 1973.

[38] R. M. Tong, “Analysis and control of fuzzy systems usingté discrete relationsfht. J. Con-
trol, vol. 27, pp. 431-440, 1978.

[39] E. Czogala and W. Pedrycz, “On identification in fuzzytsyss and its applications in control
problems,’Fuzzy Sets Systiol. 6, pp. 73-83, 1981.

[40] W. Pedrycz, “An identification algorithm in fuzzy reiahal systems,’Fuzzy Sets and Syst.
vol. 13, pp. 153-167, 1984.

[41] E. H. Mamdani, “Applications of fuzzy algorithms for sol of simple dynamic plantsProc.
IEE., vol. 121, pp. 1585-1588, 1974.

[42] T.T.Lie, G. B. Shrestha, and A. Ghosh, “Design and apidn of a fuzzy logic control scheme
for transient stability enhancement in power systerigsgctric Power Syst. Researchol. 33,
pp. 17-23, 1995.

[43] P. S. Babu, A. Ghosh, and Sachchidanand, “An optimalyfulRkcontroller for a permanent
magnet dc motor,Proc. Int. Conf. Automation IC-AUTO’9%0l. 121, pp. 713716, 1995.

[44] T. J. Procyk, “A linguistic self organizing process ¢atler,” Automatica vol. 15, pp. 15-30,
1979.

[45] Y. M. Park, U. C. Moon, and K. Y. Lee, “A self organising fozlogic controller for dynamic
systems using a fuzzy auto regressive moving average o8& Trans. Fuzzy Systwol. 3,
pp. 75-82, 1995.

[46] B. P. Graham and R. P. Newell, “Fuzzy identification andtadrof liquid level rig,” Fuzzy Sets
and Syst.vol. 26, pp. 253-273, 1983.



BIBLIOGRAPHY 114

[47] E. Sanchez, “Resolution of composite relation equatiomf. and Contro] vol. 30, pp. 38-48,
1976.

[48] W. Pedrycz, “Numerical and applicational aspects akzfurelational equationsPuzzy Sets and
Syst, vol. 11, pp. 1-18, 1983.

[49] R. M. Tong, “Synthesis of fuzzy models for industrial pesses,Int. J. Gen. Systvol. 4, pp.
143-162, 1978.

[50] B. S. Li and Z. J. Liu, “Identification of fuzzy models ugifuzzy theory,”Inf. and Contro)
vol. 9, no. 3, 1980.

[51] P. S. Babu, A. Ghosh, and Sachchidanand, “Fuzzy ideatiidic and control of a class of nonlin-
ear systems,” ifProc. European Control Conf. (EC(yo. 8217, 1997.

[52] Y. C. Lee, C. Hwang, and Y. P. Shih, “A combined approachuzzy model identification,J.
Fuzzy Sets and Systol. 24, no. 5, pp. 736—744, 1994.

[53] C. G. Moore and C. J. Harris, “Indirect adaptive fuzzy eoht Int. J. Control vol. 56, pp.
441-468, 1992.

[54] C. W. Xu, “Fuzzy system identification,” iRroc. IEE, vol. 136, July 1989, pp. 146-150.

[55] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, wrsal approximation and orthogonal

least squares learnindEEE Trans. Neural Netwvol. 3, no. 5, pp. 807-814, 1992.

[56] K. Takana and M. Sugeno, “Stability analysis and desifjfuzzy control systemsFuzzy Sets
and Syst.vol. 45, no. 2, pp. 135-156, 1992.

[57] S. G. Cao, N. W. Rees, and G. Feng, “Analysis and designdtass of complex control systems-
part Il: Fuzzy controller designAutomaticavol. 33, pp. 1029-1039, 1997.

[58] Z. Huaguang and Q. Yongbing, “Modelling, identificatiand control of a class of nonlinear

systems,1IEEE Trans. Fuzzy Systol. 9, no. 2, pp. 349-354, 2001.

[59] M. Sugeno and Y. Yasukawa, “A fuzzy-logic-based apploto qualitative modeling,IEEE
Trans. Fuzzy Syswol. 1, no. 1, pp. 7-31, February 1993.



BIBLIOGRAPHY 115

[60] A. Cipriano, M. Ramos, and F. Montoya, “A new method for Zyanodel identification,” in
Proc. IEEE 21st Int. Conf. Indus. Electron., Control and lastrentation (IECON)vol. 2, 1995,
pp. 1514-1519.

[61] A. E. Gaweda and Z. M. Zurada, “Data-driven design ofzfjusystem with relational input
partition,” in Proc. 10th IEEE Int. Conf. Fuzzy Systol. 2, no. 3, 2001.

[62] D. Saez and A. Cipriano, “Fuzzy models based economidigiiee control for a combined
cycle power plant boiler,” ifProc. IEEE Int. Symp. on Intell. Control/Intell. Syst. andriatics
Cambridge, MA, September 1999, pp. 417-422.

[63] A. L. Elshafei and F. Karray, “Fuzzy based sliding maids for identification of a class of

nonlinear systems,” iRroc. 9th IEEE Int. Conf. Fuzzy Systol. 2, 2000, pp. 841-846.

[64] D. Saez and A. Cipriano, “Design of a supervisory pradgectontroller based on fuzzy models,”

in Proc. IEEE Int. Conf. Fuzzy Sys2001, pp. 1004-1007.

[65] M. Y. Chen and D. A. Linkens, “A systematic method for fyznodeling from numerical data,”

in Proc. IEEE Int. Conf. Syst., Man and Cyber2001, pp. 28-33.

[66] A.Flores, D. Saez, J. Araya, M. Berenguel, and A. Cipri&dRazzy predictive control of a solar

power plant,”IEEE Trans. Fuzzy Systol. 13, no. 1, pp. 58-68, February 2005.
[67] J. H. Holland Adaptation in Natural and Artificial SystemsMIT Press, Cambridge MA, 1975.

[68] J. S. R. Jang, C. T. Sun, and E. Mizutadguro-Fuzzy and Soft Computing: A Computational

Approach to Learning and Machine IntelligencePrentice Hall Inc., 1997.

[69] T. Kumon, M. lwasaki, T. Suzuki, T. Hashiyama, N. Matsamd S. Okuma, “Nonlinear system
identification using genetic algorithm,” iaroc. 6th IEEE Conf. Indus. Electron. Societyl. 4,
2000, pp. 2485-2491.

[70] A. Akramizadeh, A. A. Farjami, and H. Khaloozadeh, “Nioear hammerstein model identifi-
cation using genetic algorithm,” iAroc. IEEE Int. Conf. Artificial Intell. Syst. (ICAIS’022002,
pp. 351-356.

[71] J. G. Juang, “Application of genetic algorithm and neeuat network to nonlinear system identi-

fication,” in Proc. IEEE Conf. Control Applvol. 1, 2003, pp. 129-134.



BIBLIOGRAPHY 116

[72] D. H. Kim and H. Lee, “Intelligent control of nonlineaower plant using immune algorithm
based multiobjective optimization,” iRroc. IEEE Int. Conf. Networking, Sensing & Control
March 2004, pp. 1388-1393.

[73] K.R.Vazquez, C. M. Fonseca, and P. J. Fleming, “Idemttjthe structure of nonlinear dynamic
systems using multiobjective genetic programmingEE Trans. Syst., Man and Cybern.-Part

A: Syst. and Humansol. 34, no. 4, pp. 531-545, July 2004.

[74] J. S. R. Jang and C. T. Sun, “Neuro-fuzzy modeling and oghtroc. IEEE vol. 83, no. 3, pp.
378-406, March 1995.

[75] Y. Lin and G. A. Cunningham-Ill, “A new approach to fuzmgural system modelling/EEE
Trans. on Fuzzy Systol. 3, no. 2, pp. 190-198, May 1995.

[76] J. S. R. Jang, “Input selection for ANFIS learning,”’Rnoc. IEEE Int. Conf. Fuzzy Systol. 2,
1996, pp. 1493-1499.

[77] S. Chiu, “Selecting input variables for fuzzy model,Intell. and Fuzzy Syswol. 4, no. 4, pp.
243-256, 1996.

[78] M. A. Denai, F. Palis, and A. Zeghbib, “ANFIS based mdigl and control of nonlinear sys-
tems: A tutorial,” inProc. of the IEEE Int. Conf. on Syst., Man and Cybewol. 4, 2004, pp.
3433-3438.

[79] ——, “Modelling and control of nonlinear systems usimgftscomputing techniquesApplied

Soft Computingvol. 7, pp. 728-738, 2007.

[80] H. Ishibuchi, R. Fujioka, and H. Tanaka, “Neural netwstkat learn from fuzzy if-then rules,”

IEEE Trans. on Fuzzy Systol. 1, no. 2, pp. 85-97, May 1993.

[81] C. F. Juang and C. T. Lin, “An on-line self constructing redduzzy inference network and its

application,”IEEE Trans. on Fuzzy Sysvol. 6, no. 1, pp. 12-32, Feb 1998.

[82] E. G. Sanchez, J. M. C. Izquierdo, M. J. A. Bravo, Y. A. Dinatis, and J. L. Coronado,
“Adaptive IMC using fuzzy neural networks for the control nanlinear systems,” iResearch
Paper ESPRIT Project No. 22416 "MONNET”", Leon, Spain.



BIBLIOGRAPHY 117

[83] Y. Li, X. Zhao, and L. Jiao, “A nonlinear system identditon approach based on neurofuzzy
networks,” inProc. of the ICSR.vol. 3, 2000, pp. 1594-1597.

[84] S. Kawaji and Y. Chen, “Soft computing approach to nosdinsystem identification,” iroc.
IEEE Conf. on Indus. Electron. Societyl. 3, 2000, pp. 1803-1808.

[85] S. Wu, M. Joo, and Y. Gao, “A fast approach for automagaeyation of fuzzy rules by gener-
alized dynamic fuzzy neural network$EEE Trans. on Fuzzy Sysvol. 9, no. 4, pp. 578-594,
Aug 2001.

[86] Y. Gao and M. Joo, “Nonlinear identification and contusing a generalized fuzzy neural net-
work,” in Proc. 41st IEEE Conf. on Decision and Control, Las Vegas, Nel#sl4 vol. 2, Dec
2002, pp. 1363-1368.

[87] M. Panella and A. S. Gallo, “An input-output clusteriagproach to the synthesis of ANFIS
networks,”IEEE Trans. on Fuzzy Systol. 13, no. 1, pp. 69-81, Feb 2005.

[88] S. Thangavel, V. Palanisamy, K. Duraiswamy, and S. CdRam “Fuzzy identification and
modeling of an intelligent controller for adaptive contadlreactive power in a utility system
using anfis, The J. CPRI.vol. 3, no. 1, pp. 29-35, September 2006.

[89] A. Abraham and B. Nath, “A neuro-fuzzy approach for mdidglelectricity demand in victoria,”

J. Applied Soft Computingol. 1, pp. 127-138, 2001.

[90] A. Kamia, S. J. Ovaska, R. Roy, and S. Kobayashi, “Fusiosaff computing and hard com-
puting for large scale plants: A general modél,Applied Soft Computingol. 5, pp. 265279,
2005.

[91] J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzenmehce systemslEEE Trans. on Syst.,
Man and Cybern.vol. 23, no. 3, pp. 665-684, May/June 1993.

[92] Y. Tsukamoto, M. M. Gupta, R. K. Ragade, and R. R. Yager, “Aprapch to fuzzy reasoning
method,” inAdvances in Fuzzy Set Theory and Applicatigh M. Gupta, R. K. Ragade, and
R. R. Yager, Eds., North-Holland, Amsterdam, 1979, pp. 13%9-14

[93] J. S. R. Jang and C. T. Sun, “Functional equivalence betwadial basis function networks
and fuzzy inference systems$EEE Trans. on Neural Netywol. 4, no. 1, pp. 156-159, January
1993.



BIBLIOGRAPHY 118

[94] A. Pinkus, “Approximation theory of the MLP in neuralmeorks,” ACTA Numericavol. 8, pp.
143-196, 1999.

[95] H. Ying, Y. Ding, and S. L. S. Shao, “Comparison of necegsanditions for typical Takagi-
Sugeno and Mamdani fuzzy systems as universal approxigjatBEE Trans. Syst. Man Cy-

bern. Part A vol. 29, pp. 508-514, 1999.

[96] K. Liu, S. Subbarayan, R. R. Shoults, M. T. Manry, C. Kwan].R.ewis, and J. Naccarino,
“Comparison of very short term load forecasting techniquesE Trans. Power Systvol. 11,
pp. 877-882, 1996.

[97] A. Khotanzad, R. A. Rohani, and D. Maratukulam, “ANNST¥tificial neural network short
term load forecaster-generatiofZEE Trans. Power Systvol. 13, pp. 1413-1422, 1998.

[98] H. S. Hipert, C. E. Pedreira, and R. C. Souza, “Neural neis/éor short term load forecasting:
a review and evaluation|EEE Trans. Power Systol. 16, pp. 41-55, 2001.

[99] K. S. Swarup and B. Satish, “Integrated ANN approach tedast load,IEEE, Comput. Appl.
Power, vol. 15, pp. 46-51, 2002.

[100] S. Makiko and K. Yoshitsugu, “Demand forecasting bg treural network with fourier trans-
form,” in Proc. IEEE Int. Joint Conf. on Neural Netwol. 4, 2004, pp. 2759-2763.

[101] N. Meade, “Forecasting with growth curves: The effeicerror structure,’d. Forecast. vol. 7,
no. 4, pp. 235-244, 2006.

[102] G.E.P.Box, G. M. Jenkins, and G. C. Reins€iine Series Analysis : Forecasting and Control
3rd ed. Prentice-Hall Englewood, 1994.

[103] M. Adya, F. Callopy, J. S. Armstrong, and M. Kennedy, tBmnatic identification of time series
features for rule based forecastinfnt. J. of Forecast.vol. 17, no. 10, pp. 143-157, 2001.

[104] R. Gao and L. Tsoukalas, “Neural-wavelet methodologylbad forecasting,J. Intell. and
Robotic Systwvol. 31, no. 1, 2001.

[105] L. D. S. Coelho and R. A. Krohling, “Nonlinear system itiéoation based on B-spline neural
network and modified particle swarm optimization,”limt. Joint Conf. on Neural NetwJuly
2006, pp. 3748-3753.



BIBLIOGRAPHY 119

[106] H. Saito and T. Abe, “A traffic forecasting method takinto account of outliers Electron. and

Communications in Japan (part l:.Communicationg)l. 69, no. 10, pp. 85-92, March 2007.

[107] N. Amjady, “Short term hourly load forecasting usimgé series modeling with peak load esti-
mation capability,IEEE Trans. Power Syswol. 16, pp. 789-805, 2001.

[108] L. Mili, T. V. Cutsem, and M. R. Pavella, “Bad data ident#imn methods in power system state
estimation: A comparative studEEE Trans. on Power Apparatus and Sysbl. PAS-104,
no. 11, pp. 3037-3049, November 1985.

[109] B. M. Zhang and K. L. Lo, “A recursive measurement errstiraation identification method for
bad data analysis in power system state estimati®EE Trans. on Power Syswol. 6, no. 1,
pp. 191-198, February 1991.

[110] A. Abur, “A bad data identification method for linearggramming state estimation|EEE
Trans. on Power Systol. 5, no. 3, pp. 894-901, August 1990.

[111] G. Long and F. Ling, “A new complex system identificatimethod and its application to echo
canceller fast initialization,” inEEE Int. Conf. on Acoustics, Speech and Signal Processing,
ICASSP-90vol. 3, April 1990, pp. 1671-1674.

[112] A. PankratzForecasting with Univariate Box-Jenkins Models: Conceptd eaases Wiley,
1983.

[113] A. D. Papalexopoulos and T. C. Hesterberg, “A regresbimsed approach to short term system

load forecasting,JEEE Trans. Power Systol. 5, pp. 1535-1547, 1990.

[114] J. G. D. Gooijer and K. Kumar, “Some recent developmméminonlinear time series modeling,

testing and forecastinglit. J. Forecast.vol. 8, pp. 135-156, 1992.

[115] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting wittifi@fal neural networks: the state of

the art,”Int. J. Forecast.vol. 14, pp. 35-62, 1998.

[116] P. A. Mastorocostas, J. B. Theocharis, and A. G. Bakirt&uzzy modeling for short term load
forecasting using the orthogonal least squares methB&E Trans. Power Systvol. 14, pp.
29-36, 1999.



BIBLIOGRAPHY 120

[117] M.R.Khan, A. Abraham, and C. Ondrusek, “Short term lazré€asting models in Czec. Repub-
lic using soft computing techniquedyit. J. Knowledge-Based Intell. Engineering Sysbl. 7,
no. 4, pp. 172-179, 2003.

[118] M. Verleysen, E. D. Bodt, and A. Lendas&agineering applications of Bio-inspired Atrtificial
Neural Networks Springer Berlin / Heidelberg, 1999, vol. 1607.

[119] Z. J. Wang, Y. Zhao, C. J. Wu, and Y. T. Li, “Application kérnel smoothing to time series
data,”ACTA Mathematicae Applicatae sinjosl. 22, no. 2, pp. 219-226, April 2006.

[120] R. T. Clemen, “Combining forecasts: a review and anndtaibliography,”’Int. J. Forecast.
vol. 5, pp. 559-583, 1989.

[121] K. H. Kim, H. S. Youn, and Y. C. Kang, “Short term load foesting for special days in anom-
alous load condition using neural networks and fuzzy infeeemethod,TEEE Trans. Power
Syst, vol. 15, pp. 559-565, 2000.

[122] A. Abraham and B. Nath, “A neural-fuzzy approach for rallidg electricity demand in Victo-
ria,” Applied Soft Computingol. 1, pp. 127-138, 2001.

[123] F. C. Morabito and M. Versaci, “Fuzzy neural identifioatand forecasting techniques to process

experimental urban air pollution datdyeural Netw, vol. 16, no. 3—4, pp. 493-506, 2003.

[124] B. M. Zhang, S. Y. Wang, and N. D. Xiang, “A linear recwesibad data identification method
with real time application to power system state estimatidrans. on Power Systol. 7, no. 3,
pp. 1378-1385, August 1992.

[125] M. Kandemir and J. Ramanujam, “Data relation vectorsiedv abstraction for data optimiza-

tions,” IEEE Trans. on Computersol. 50, no. 8, pp. 798-810, August 2001.

[126] S. A. Ahmed and J. R. Cruz, “Complex system identificatiathnods for fast echo canceller ini-
tialization,” in IEEE Int. Conf. on Acoustics, Speech and Signal ProcesSB®SEP-92March
1992, pp. 525-528.

[127] D. Erdogmus and J. C. Principe, “An error entropy mirzation for supervised training of non-

linear systems,JEEE Trans. on Signal Processingpl. 50, no. 7, pp. 1780-1786, July 2002.



BIBLIOGRAPHY 121

[128] V. |. Dedenko and A. L. Movchan, “Minimization of numbef metrological parameters for
data acquisition systemdEEE Trans. on Instrumentation and Measurement. 51, no. 1, pp.
88-91, February 2002.

[129] T. Joachims, “Optimizing search engines using choitigh data,” inProc. of the ACM,
SIGKDD 02 2002.

[130] B. Babcock, S. Babu, M. Datar, and R. Motwani, “Chain: Opmracheduling for memory
minimization in data stream systems,”Rmoc. of ACM, SIGMOD 2003June 2003.

[131] D. Weekes and G. B. Fogel, “Evolutionary optimizatibackpropagation and data preparation
issues in QSAR modeling of HIV inhibition by HEPT derivats/eBio. Sys.vol. 72, pp. 149—
158, 2003.

[132] T. Meekhof and R. B. Heckendorn, “Using evolutionaryimytation to improve markov based

classifcation with limited training data,” iRroc. of ACM GECCO’052005, pp. 2211-2212.

[133] J. Pekar and J. Stecha, “Identification and prediatiwetrol by p-norm minimization,’Acta

Polytechnicavol. 46, no. 1, pp. 33-39, 2006.

[134] Y. Lii, J. Huang, and Q. Liu, “Improving statistical rolaine translation performance by training
data selection and optimization,” Rroc. Joint Conf. on Empirical Methods in Natural Language

Processing and Comput. Natural Language Learnihghe 2007, pp. 343—-350.

[135] G. E. Dieter,Engineering Design: A Material and Processing ApproachMcGraw-Hill Inc,
1991.

[136] A. Kohli and U. S. Dixit, “A neural-network-based meitifology for the prediction of surface
roughness in a turning procesghe Int. J. Advanced Manufact. Technolpggl. 25, no. 1-2,
pp. 118-129, January 2005.

[137] M. Stone, “Cross validation choice and assessmenatisstal predictions,J. Royal Statistical

Societyvol. 36 (B), pp. 111-147, 1974.

[138] C. L. Sabharwal, “An implementation of hybrid approachndexing image data bases,’Tine
ACM Symp. on Applied CompuEeb 28—Mar 2 1999, pp. 421-426.



BIBLIOGRAPHY 122

[139] P. Zhang, “Model selection via multifold cross valida,” Annals of Statisticsvol. 21 (1), pp.
299-313, 1993.

[140] O. NellesNonlinear System IdentificationSpringer-Verlag, Berlin Heidelberg, Germany, 2000.

[141] D. E. GoldbergGenetic Algorithms in Search, Optimization and Machinerhew, 3rd ed.
Addison Wesley Longman, Inc., 2000.

[142] L. C. Jain and N. M. MartinFusion of Neural Networks, Fuzzy Sets and Genetic Algorithm:

Industrial ApplicationsInt. Series on Computational Intelligence ed. CRC Press,.1999

[143] T. Takagi and M. Sugeno, “Derivation of fuzzy controles from human operator’s control
action,” inProc. IFAC Symp. Fuzzy Inform., Knowledge RepresentatiorDeruision Analysis
July 1983, pp. 55-60.

[144] E. H. Mamdani and S. Assilian, “An experiment in lingtic synthesis with a fuzzy logic con-

troller,” Int. J. Man-Machine Studiesol. 7, no. 1, pp. 1-13, 1975.

[145] S. L. Chiu, “A cluster estimation method with extenstorfuzzy model identification,” ifProc.
3rd IEEE Conf. on Fuzzy Syst., World Congress in Comput. Ifwell. 2, June 1994, pp. 1240—-
1245.

[146] M. H. Hayes Statistical Digital Signal processing and Modelling New York: John Wiley &
Sons Inc., 1996.



Related Publications by the Author

Journal Publication:

1. M. Buragohain and C. Mahanta, “ A Novel Approach for ANFIS Mbdg based on Full Facto-
rial Design,” Applied Soft Computingol. 8, Issue 1, Jan 2008, pp. 609-625.

2. M. Buragohain and C. Mahanta, “V-fold Technique based ANMI&lel for Complex Large
Scale Systems/Jhternational Journal of Artificial Intelligencespecial issue on Theory and Ap-

plication of Soft Computing, vol. 1, Issue A08, Autumn 2008, 84-55.

3. M. Buragohain and C. Mahanta, “Data Optimization based Mogl@f Complex Large Scale
Systems: A Comparative Analysis with Soft Computing and Stiaél Techniques,Journal of

Systems Science and Engineerivigl. 17, No. 1, June 2008.
Communicated to Journals:

1. M. Buragohain and C. Mahanta, “ANFIS based Modelling of TindrPower Plant Using Full

Factorial Design,” ta&engineering Application of Artificial Intelligence

Conference Publications:

1. M. Buragohain and C. Mahanta, “ Data Optimization based Moglef Complex Systems:
A Comparative Analysis with Soft Computing and StatisticatAmiques,” inProceedings of

National Systems Conferendéanipal, Dec, 2007.

2. M. Buragohain and C. Mahanta, “ Grid Partition based Newmzlf Technique and Statistical
Modeling of Complex Systems,” iRecent Trends in IT and Soft Computing(ITI®)T Nagpur,
February 2007, pp. 47-58.

3. M. Buragohain and C. Mahanta, “ Complex Systems Modeling Witld Partitioning based
Soft Computing Technique,” iRecent Trends in IT and Soft Computing(ITSI®)T Nagpur,
February 2007, pp. 89-97.

4. M. Buragohain and C. Mahanta, “ ANFIS Modeling of Nonlinegst®m based on V-fold Tech-
nique,” in Proceedings of IEEE International Conference on Industiiathnology Mumbai,

15-17 Dec. 2006, pp. 2178-2183.



10.

11.

. M. Buragohain and C. Mahanta, “ ANFIS Modeling of Nonlinegst®ms based on Combined
FFD-V-fold Technique,” inProceedings of IEEE International Conference on Industfieth-
nology, Mumbai, 15-17 Dec. 2006, pp. 2462-2467.

M. Buragohain and C. Mahanta, “ Full Factorial Design basBiéFis Model for Complex Sys-
tems,” inProceedings of IEEE Annual India Conferendiew Delhi, Sept. 2006.

M. Buragohain and C. Mahanta, “ ANFIS Modeling of Nonlinegst®ms based on Subtractive
Clustering and V-fold Technique,” iRroceedings of IEEE Annual India Conferendéew Delhi,
Sept 2006.

M. Buragohain and C. Mahanta, “ ANFIS Modeling of Nonlinegstems based on Subtrac-
tive Clustering and Combined FFD-V-fold Technique,”Pnoceedings of IEEE Annual India
Conference New Delhi, Sept. 2006.

M. Buragohain and C. Mahanta, “ Modeling of Complex Systenth 8oft Computing Tech-

niques,” inProceedings of National Systems ConferenGea, Nov 2006.

M. Buragohain and C. Mahanta, “ Statistical and Neuro-fFuzzrhnique based Modeling of
Complex Systems ,” ilProceedings of National Systems ConferenGea, Nov 2006.

M. Buragohain and C. Mahanta, “ Modeling of Thermal Powank Using Full Factorial Design
based ANFIS )" irProceedings of IEEE International conference on Cyberseditd Intelligent

SystemsBangkok, June 2006.



Bio-data of the Author

Mr. M. Buragohain received the Bachelor of Engineering degne€lectrical Engineering. in 1992
from Guwabhati University, Guwahati. He obtained the MasteEngineering in High Voltage En-
gineering from Jadavpur University in 2000. He next joined PhD program in Electronics and
Communication Engg. in IT Guwahati in 2003. His researchkn@sts lie in nonlinear system identifi-
cation and soft computing. He is currently working as a Selmézturer in the Department of Electrical

Engineering, Jorhat Engineering College, Assam.



