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Abstract

Nearly two decades back nonlinear system identification consisted of several ad-hoc approaches which

were restricted to a very limited class of systems. However,with the advent of the various soft com-

puting methodologies like neural networks, the fuzzy logicand the genetic algorithm combined with

modern structure optimization techniques, a wider class ofsystems can be handled at present. Complex

systems may be of diverse characteristics and nature. Thesesystems may be linear or nonlinear, con-

tinuous or discrete, time varying or time invariant, staticor dynamic, short term or long term, central

or distributed, predictable or unpredictable, ill or well defined. System outputs may be measurable or

unmeasurable. Models of real systems are of fundamental importance in virtually all disciplines and

hence there is a strong demand for advanced modeling, identification and controlling schemes. This is

because models help in system analysis which in turn help to get a better understanding of the system

for predicting or simulating a system’s behavior. Also, system models facilitate application and valida-

tion of advanced techniques for controller design. Development of new processes and analysis of the

existing ones along with their optimization, supervision,fault detection, and component diagnosis are

all based on the models of the systems. As most of the real world systems are nonlinear in nature, an

endeavor is made for modeling a nonlinear system in the present work. A linear system is considered

to be a special case of the nonlinear system. The challenges involved in modeling, identification and

control of a nonlinear system are too many and attempt has been made to tackle them by applying

various soft computing methodologies. In most of the conventional soft computing methods the system

modelling results are dependent on the number of training data used. It has been found that the model-

ing results improve as the number of training data increases. But in many complex systems the number

of available training data are less and the generation of newdata is also not cost effective. In such a

scenario the system has to be modelled with the available data. The proposed modeling scheme has

been devised keeping such a possibility in mind. The resultsobtained by applying this proposed model

are compared with the results obtained by using various statistical and genetic algorithm based fuzzy

models and finally the relative merits and demerits involvedwith the respective models are discussed.

The work embodied in the present thesis is concerned with optimal design of the conventionally ex-

isting soft computing based system models. The statistics based Full factorial design (FFD) and the

V-fold cross validation technique are applied to augment a conventional neuro-fuzzy technique and the

following observations are noted :



• The results obtained by applying the proposed technique arecomparable and in some cases su-

perior to those obtained by using the conventional neuro-fuzzy model.

• Comparable or superior results are obtained with this proposed model even though the number

of data pairs used for system modeling here are less as compared to that used in the conventional

methods.

• It resulted in reduction of the number of computations involved. As the experiments were per-

formed by using reduced number of specifically chosen data, the number of computations re-

quired to be performed also came down.
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Chapter 1

Introduction

Most of the present day systems are large and may be considered to be complex in nature. Electrical

power, chemical, water treatment and similar large-scale industrial plants are all complex in nature.

Complex systems may be linear or nonlinear, continuous or discrete, time varying or time invariant,

static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or

well defined. Also, system outputs may be measurable or unmeasurable. They may consist of many

interconnected systems, sub-processes or components. Theprocesses involved in the complex systems

may possess widely varying properties. In large scale systems, every part performs a desired function

and the overall system works satisfactorily only if all the different parts work in tandem for what they

are designed for. Modeling of complex systems is of fundamental importance in almost all fields. This

is because models facilitate better understanding of the system and so help in system analysis. So pre-

diction and simulation of the system’s behavior are then possible. System model also helps to design

new processes and analyze the existing ones. The design, optimization and supervision of controllers,

fault detection and faulty component diagnosis are all based on the system model. This is because for

the improvement of the system’s performance, it is requiredto model the system correctly so that the

model parameters can be tuned to get the required system response. It is because of this fact that in the

last few decades, modeling of large scale, complex systems has been a special topic of interest among

the researchers of various disciplines worldwide [1]. Mostof the real world systems are ill defined

in nature and hence difficult to model. Generally the performance of the system is dependent on the

accuracy of the model. Therefore it is of utmost importance to build a model which correctly reflects

the behavior of the system under consideration. The functioning of complex large-scale systems also

involves numerous tradeoff problems like cost and accuracy[2]. Hence, there is a strong demand for

developing advanced methods of system modeling and identification techniques. The conventional

1
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methods that have been used for system modeling rely heavilyon the mathematical tools which require

precise knowledge about the involved physical processes. In systems where the mathematical model

is not available, it is not possible to use the conventional methods for its analysis. In such cases, soft

computing based modeling [3] approaches provide a viable alternative for identification of the system

from the available data. The concept of soft computing [4] began to materialize near about the time

when Lotfi Zadeh was working on soft analysis of data and fuzzylogic. This gave birth to the intelligent

systems. Nearly four decades later, the intelligent systembecame a reality. However, initially the tech-

nology needed for building systems that possess Artificial intelligence (AI) was not available. Instead

only predicate logic and symbol manipulation techniques formed the core of the traditional AI. These

techniques could not be used for building machines which could be called intelligent from the point

of view of real world application. But today the requisite hardware, software and sensor technology

are available for building intelligent systems. In addition to these, computational tools are available

now which are far more effective for conception and design ofintelligent systems. These tools are

derived from a collection of methodologies called soft computing. Unlike hard computing the essence

of soft computing is aimed at accommodating the prevalent imprecision of the real world. Therefore

soft computing helps in exploiting the tolerance for imprecision, uncertainty and partial truth so that

tractability, robustness, low solution cost and better rapport with reality can be achieved. Hence the

human mind can be considered to be a role model for soft computing. Rather than a single technique,

soft computing may be considered to be comprising of different methodologies with Neuro-computing

(NC), the Fuzzy logic (FL) and the Genetic algorithm (GA) as the principal partners. Therefore in soft

computing based system identification, instead of a single standard method, a collection of techniques

has been put forward as possible solutions to the identification problem. They can be broadly grouped

as neural network based algorithm, fuzzy logic based algorithm and the genetic algorithm. The neural

network has the inherent advantage of being able to adapt itself and also in its learning capabilities.

Similarly the salient feature that is associated with the fuzzy logic is the distinct ability to take into

account the prevailing uncertainty and imprecision of realsystems with the help of the fuzzy if-then

rules. In order to exploit the advantage of the self adaptability and learning capability of the neural

network and the capability of the fuzzy system to take into account of the prevailing uncertainty and

imprecision of real systems with the help of the fuzzy if-then rules, an integrated forecasting approach

comprising of both the fuzzy logic and the neural network hasbeen considered. This hybrid system is

called the Adaptive network based fuzzy inference system (ANFIS). Here the fuzzy system with its ex-

pert knowledge stands as a front end preprocessor for the neural network input and output layers. Based
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on the historical data, the neural network learning algorithms are used to determine the parameters of

the expert knowledge based fuzzy system. The use of this hybrid system ANFIS helps to complement

the weakness of the respective systems.

1.1 Aim of the research

The main research objective that has been kept in mind while initiating and furthering the present work

is the modeling of a real world system with the help of the softcomputing technique. In the quest

for developing a model for a system based on its available input output data, it has been observed that

in the conventional modeling approach the results depend onthe mathematical model of the system

and its accuracy. In cases where the mathematical model is not available the system analysis becomes

very difficult. It is in this context that the soft computing approach can provide a viable alternative.

The prime inherent advantage associated with the soft computing techniques of not requiring a math-

ematical model has been a motivating factor for consideration in our present work. Motivated by this

advantageous feature of soft computing based system identification, the present work focuses on build-

ing a model for an ill defined real world system based on its available record of input-output data using

ANFIS. An endeavor is made to extract previously unknown information from the available time-series

data so that an accurate model can be built. Once built, the model can be used to predict or forecast fu-

ture values. The present research concentrates on the difficult situation when the available input-output

data for a system are very less and generation of real time data is also prohibitively expensive. In such

cases, it is really a challenging task to build a faithful model for the system using soft computing based

data driven identification technique like ANFIS. This research attempts to find a solution to this prob-

lem of modeling an ill defined real world system faithfully inthe situation when available input-output

data is scanty.

1.2 Contribution of the thesis

The major contributions of this thesis can be outlined as follows:

• Building an ANFIS model for real world systems like gas furnace and thermal power plant

• Proposal of a novel technique for training the neural network in the ANFIS model by optimally
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selecting the available data using the Full factorial design (FFD) and the V-fold cross validation

method

• Proposal of a hybrid method for optimal data selection incorporating both the above techniques

of full factorial design and V-fold cross validation

• Proposal of a GA based fuzzy model

• Design of an ANFIS based controller to study the performanceof the proposed ANFIS model

1.3 Organization of the thesis

The thesis records a detailed account of the use of the soft computing techniques for system identifica-

tion. The organization of the thesis is given below.

Chapter 2: A brief overview of the system identification techniques based on soft computing method-

ology is presented in this chapter. Available literature about model based forecasting techniques

is also reviewed in this chapter.

Chapter 3: In this chapter the objectives and methodology used in the research are discussed.

Chapter 4: In this chapter the ANFIS architecture is discussed in details. This chapter is devoted to

the modeling of systems based on ANFIS.

Chapter 5: In this chapter the use of two new techniques proposed in the present research for optimal

data selection in training the ANFIS model is explained. These two methods are the Full factorial

design (FFD) and the V-fold technique by using which the number of data required for training

the ANFIS was drastically reduced. Also another hybrid model of ANFIS combining these two

techniques has been proposed.

Chapter 6: In this chapter the proposed GA based fuzzy model for system identification is discussed.

This chapter also gives a detailed account of the statistical models namely ARX, ARMAX and

ARIMAX which are applied to the system under consideration. The results obtained from the

proposed soft computing based model are compared with thoseobtained by using these conven-

tional statistical models as well as GA based models.
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Chapter 7: The last chapter presents a brief discussion about the research work and also draws con-

clusions by analyzing the results obtained in this thesis. Also a few areas for further investigation

are suggested in this chapter.



Chapter 2

Soft Computing based Techniques for System

Identification

Contrary to the conventional hard computing techniques, theprime inherent advantage associated with

the soft computing techniques is the non requirement of a mathematical model and hence are becoming

increasingly popular as system identification methodology. Three powerful soft computing techniques

which are very popular are the Neural network, the Fuzzy logic and the Genetic algorithm (GA). A brief

overview of available methods using these techniques for identification and control of linear as well as

nonlinear dynamical systems is presented in this chapter. These soft computing based approaches are

reviewed thoroughly in this chapter since this research focuses on utilizing soft computing as a tool

for system identification for the purpose of modeling an ill defined real world system so as to forecast

future values.

2.1 Neural Network based Algorithms

In addition to being the source of natural intelligence, thehuman brain can process incomplete infor-

mation obtained by perception at a very rapid rate. Inspiredby this biological property of the nervous

systems and the brain, researchers attempted to model the human brain resulting in the evolution of the

neural network. Here the brain has been modeled as a continuous time nonlinear dynamic system with

a connection architecture. In this architecture the neurons or the processing units which are intercon-

nected by weights are expected to mimic the human brain. Thisgives the neural network the capability

for learning and adaptation by adjusting the interconnection between the layers. The most important

6
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characteristics of the neural network are:

• Presence of a large number of simple units

• Presence of a large number of highly parallel units

• Presence of strongly connected units

• Robustness against the failure of single units

• Learning from data

The network of any system will be considered to be an artificial neural network if the same basis

function is used throughout the network. Here the nodes of the system are called the neurons. The

layers of a neural network architecture may be subdivided into three principal groups:

• Depending upon the number of inputs all the input neurons together constitute the input layer

• Similarly all the output neurons together constitute the output layer

• All the neurons in any intermediate layer form the hidden layer. There may be more than one

hidden layer in a neural network

Some of the popular neural network architectures are the Multi-layer perceptron (MLP) network,

Radial basis function network (RBFN) and the neuro-fuzzy network. The pivotal contribution of neural

networks is a methodology for identification, learning and adaptation.

The early works on neural networks include those of McCullochand Pitts [5], Hebb [6], Rosenblatt [7],

Widrow and Hoff [8], Minsky and Papert [9], Hopfield [10], Parker [11], Rumelhart and McClel-

land [12], Carpenter and Grossberg [13] and Kohonen [14]. Narendra and Parthasarathy [15] demon-

strated the use of neural network for the identification and control of nonlinear dynamical systems.

Polycarpo and Ioannou [16] proposed the general formulation for modelling, identification and control

of a nonlinear dynamical system. Another development was the design and analysis based on Lya-

punov stability theory [16, 17]. Pham and Liu [18] proposed the use of recurrent neural networks for

the identification of linear and nonlinear dynamic systems.The interest in the use of neural networks

for modeling and identification of static and dynamical complex system on the basis of the input-output

data pairs was a new development. Kosmatopoulos and Christodoulou [19] proposed an algorithm for

identification of nonlinear systems using Recurrent high order neural network (RHONN) based on the
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extension of Hopfield [20] and Cohen-Grossberg [21] works. Neural networks with Radial basis func-

tion (RBF) are used due to their excellent classification property. Sanner and Slotine [17] presented an

approach with a Gaussian radial-basis function adaptive dynamical system with unknown nonlineari-

ties. Hong and Xinkuo [22] proposed a neural network approach by combining the equivalence between

RBF and the Fuzzy inference system (FIS) for identification of anonlinear system. Ahmad et al. [23]

presented a nonlinear Multi-input-multi-output (MIMO) system identification scheme which is based

on the radial basis function network. Similarly Selmic and Lewis [24] presented a multi model identifi-

cation scheme by using nonlinear system identification technique with the RBF based neural network.

Azam and Valandham [25] presented a RBF based neural network which uses the log-sigmoid as the

basis function for identification purpose. This function eliminates the risk of mathematical instabil-

ities which are found while using Gaussian radial basis function based networks. Robert et al. [26]

proposed a class of additive dynamic connectionist model for the identification of unknown dynamic

systems with the help of two online parameter adaptation algorithms. One of these algorithms is based

on gradient descent [27–29] technique and sensitivity analysis while the other is based on the varia-

tional calculus. To deal with the problem of time variation of disturbance and system parameters, Song

and Soh [30] proposed an adaptive and robust identification algorithm. This method can overcome the

disturbance problem by the selection of a robust adaptive dead zone scheme. The main drawback of the

feed forward Multilayered perceptron (MLP) with Back-propagation (BP) algorithm is the requirement

of intensive computation and the slow rate of error convergence. To remove this drawback, Patra and

Chen [31,32] proposed the Chebyschev functional link artificial neural network (C-FLANN) compris-

ing of the Chebyschev polynomials. This method was found to have superior performance as compared

to the MLP requiring less computation for the task of nonlinear system identification. Ren et al. [33]

proposed an algorithm for the online identification and control of a class of continuous time higher

order nonlinear system using dynamic neural network.

2.2 Fuzzy Logic based Algorithms

The pivotal contribution of fuzzy logic is a methodology forcomputing with words which can deal

with imprecision and granularity. The human brain can interpret and process imprecise and incomplete

sensor information which are received from the perceptive organs. Analogously the fuzzy set theory

can also provide a systematic approach to deal with such information linguistically. It can also perform

numerical computation by using membership function for thestipulated linguistic labels. The Fuzzy
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inference system (FIS) is based on the concepts of fuzzy set theory, fuzzy if-then rules and fuzzy

reasoning. The framing of the fuzzy if-then rules forms the key component in FIS. FIS is a very

popular technique and has been widely applied in different fields like data classification, automatic

control, expert system, decision making, robotics, time series analysis, pattern classification, system

identification etc. The basic structure of a fuzzy inferencesystem consists of three principal components

viz a rule base comprising of the selected fuzzy rules, a database defining the membership functions of

the fuzzy rules, and a reasoning mechanism which performs a fuzzy reasoning inference with respect

to the rules so as to derive a reasonable output or conclusion.

2.2.1 Analysis with Fuzzy Inference System

For the analysis of a fuzzy system whose inputs and outputs are described by linguistic variables, the

following steps have to be carried out:

• Fuzzification :-The linguistic variables of the fuzzy rulesare expressed in the form of fuzzy sets

where these variables are defined in terms of degree of their associated membership functions.

This method of calculating the degree of belongingness of the crisp input in the fuzzy set is

called the fuzzification. The membership functions may be triangular, trapezoidal, gaussian or

bell shaped. As the information about the degree of the membership is used for further process-

ing, considerable amount of information may be lost during the course of fuzzification. This is

because the procedure can be seen as a nonlinear transformation of the inputs. For example in

the case of triangular or trapezoidal membership functionsinformation is lost in the regions of

membership functions where the slope is zero, as at these points the membership functions are

not differentiable. Therefore fuzzy systems having triangular or trapezoidal membership function

can encounter problems of learning from data. Smoother membership functions like gaussian or

bell function may be used to overcome this difficulty.

• Aggregation :-After the degree of each linguistic statement is evaluated, they are combined by

logical operators such as AND and OR. The conjunction of theselinguistic statements is carried

out by logical t-norm and the t-conorm operator to a large number of linguistic statements. Max

and Min operators are used for classification task. For the purpose of approximation and identifi-

cation the product and algebraic product operators are better suited due to their smoothness and

differentiability. Similarly the bounded sum and difference operators offer several advantages to

some neuro-fuzzy learning schemes.
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• Activation :-Here the degree of rule fulfilment is used to calculate the output activations of the

rules.

• Accumulation :-In this step the output activations of all the rules are joined together to give rise

to the fuzzy output of the system.

• Defuzzification :-If a crisp value of the system is required,the final fuzzy output has to be de-

fuzzified. This can be done by different methods like center of gravity, bisector of area, mean

of maximum (mom), smallest (absolute) of maximum (som) and largest (absolute) of maximum

(lom).

2.2.2 Types of Fuzzy System

A fuzzy system may be of three principal types, namely:

• Mamdani fuzzy system :-This type of system is also known as the linguistic fuzzy system.

• Singleton Fuzzy system :-The complexity of defuzzificationof a linguistic fuzzy system can be

simplified by restricting the output to a singleton membership function. Since no integration has

to be carried out numerically, this results in reducing the computational demand for the evaluation

and learning of the fuzzy system. Therefore a singleton fuzzy system is most widely applied in

industry.

• Takagi-Sugeno Fuzzy system :- This system may be consideredto be an extension of the singleton

fuzzy system. Here the functionf is not a fuzzy set. But the premise of a Takagi-Sugeno

fuzzy system [34,35] is linguistically interpretable. Fora dynamic process modelling the Takagi-

Sugeno models possess an excellent interpretation. A singleton fuzzy system can be recovered

from a Takagi-Sugeno fuzzy system if the functionf is chosen to be a constant. As the constant

can be seen as a zeroth order Taylor series expansion of the function f , it is also called the

zeroth order Takagi-Sugeno fuzzy system. However, in most of the applications, the first order

Takagi-Sugeno fuzzy system is more common.

Since the introduction of the fuzzy logic concept by Zadeh [36, 37], research was continuing for ap-

plication of fuzzy system theory for system identification [38–40]. This is because in many complex

and ill-defined systems where precise mathematical models are difficult to build, their fuzzy models

can be obtained easily which reflect the uncertainty of the system in a proper way. There are numerous
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applications of Fuzzy logic controller (FLC) in industrial processes [41–43]. The interpolation of the

fuzzy rule base provided by human experts governs the performance of a FLC. Self-organizing fuzzy

controller (SOFC) was proposed by Mamdani and Procyk [44] where the fuzzy rule base is modified

by evaluating the system performance that is expressed linguistically. Park and Lee [45] proposed an

SOFC where the rules are generated by input-output data. Here the rules get updated by self learning

procedure. Graham and Newell [46] presented another approach where the fuzzy model of the process

is identified online and the control input is calculated based on the identified model of the process and a

heuristically determined performance measure. Here the system is considered to be linear. It has been

observed that a lot of researchers are paying attention to the fuzzy relational model. This is because

the fuzzy relational equations reflect the fuzzy nature of the system effectively. These relations are

universal approximators which can perform nonlinear mappings between input-output variables which

are treated as fuzzy sets. There are two aspects of fuzzy relational equation method. One aspect is

based on the resolution of composite fuzzy relational equation [47, 48] and the other is the linguistic

model identification as proposed by Tong [49]. But as Tong’s model could not be extended to a higher

dimensional system, Li and Liu [50] proposed an adaptive mechanism based on the decision table form

of simple linguistic models. Pedrycz [48] proposed anotherfuzzy compositional rule based system

identification algorithm which uses the concept of referential fuzzy set and Zadeh’s conditional pos-

sibility distribution. Babu and Sachidanand [51] presentedanother method for the identification of a

nonlinear system based on the fuzzy relational model. Here the input is considered to be linear and the

output is considered to be nonlinear in nature. Lee et. al. [52] proposed a combined approach to fuzzy

model identification which combines the linguistic approach and the numerical resolution of fuzzy re-

lational equation. Moore and Harris [53] proposed an indirect adaptive fuzzy control method which

uses a first order fuzzy model for the identification of the plant. Xu [54] showed the application of the

fuzzy system for the identification of a nonlinear system. Uptill now, there are three different kinds

of fuzzy models which have been in use from the fuzzy control viewpoint. In the first class the fuzzy

basis function approximation [55] has been used, which may be considered as a mapping between the

input and the output space. This model suffers from the disadvantage that some important dynami-

cal behavior of the system can not be represented. In the second type of fuzzy model as described

by Takana and Sugeno [56], global function approximation can be achieved from a set of local linear

equations. But this model suffers from the disadvantage thatit cannot be used for controller design.

The third model is called the fuzzy dynamic model [57] which requires accurate determination of the

upper bound of the local model. Huaguang and Yongbing [58] proposed a fuzzy hyperbolic model for
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a class of complex systems which is difficult to model. Sugenoand Yasukawa [59] presented a general

approach for qualitative modeling based on fuzzy logic. Cipriano and Montoya [60] proposed a fuzzy

model for the identification of nonlinear systems. Similarly Gaweda and Zurada [61] presented a fuzzy

identification system with relational input partition. Saez and Cipriano [62] proposed the application

of fuzzy models for the control of a combined cycle power plant boiler. Elshafei and Karray [63] pro-

posed a fuzzy model for the identification of a class of black-box type nonlinear systems. Similarly

Saez and Cipriano [64] proposed a fuzzy model for the representation of the nonlinearity of a process.

Again Chen and Linkens [65] proposed a method for the fuzzy modeling from numerical data. Flores

et al. [66] applied fuzzy logic for controlling a solar powerplant.

The fuzzy if-then rules contain the structured knowledge representation of the fuzzy inference sys-

tem. But this does not provide the adaptive capability to the fuzzy inference system for dealing with

the changing external environment which is found in a neuralnetwork.

2.3 Genetic Algorithm

Genetic Algorithm was envisaged by John Holland [67] at the university of Michigan, in the1970s.

It is based on the Darwinian evolution theory of survival of the fittest which states that the fitter and

stronger individuals in a population have a higher chance ofcreating offsprings for the next generation

by random mutation and natural selection. It can be implemented as an optimization search procedure

which uses the principles of genetics and natural selectionby modelling possible solutions to a search

problem as strings of zeroes and ones. Each point in a parameter or solution space can be encoded

by Genetic algorithm (GA) in a binary bit string, which is called the chromosome. For example, if a

particular point(8, 5, 7) in a three dimensional space, is to be transformed, it can be represented by a

concatenated binary string of1000, 0101, 0111. Here each coordinate is encoded by a gene which is

represented by four binary bits. Encoding plays a key role indetermining the GA’s performance as

it helps to translate problem specific knowledge directly tothe GA framework. After the creation of

a generation comprising of these points, each of these points is also assigned a fitness value which is

given by the evaluated value of the objective function at that point. Generally positive values of the

objective function are preferred. So if the fitness value is not positive some kind of monotonical scaling

and/or translation can be done [68]. The problem can also be sometimes tackled by calculating the

fitness value in terms of the ranking of the members in a population. A collection of these points is kept
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as a gene pool or population which can be repeatedly evolved towards a better fitness value in the next

successive generations, by upgrading the entire population. After the completion of the encoding and

the fitness evaluation steps, the GA constructs a new population in each successive generation by using

three basic genetic operators. They are:

• Selection:- The selection operation determines the parents which will be participating in mating

to produce offsprings for the next generation. This is analogous to the survival of the fittest in the

natural selection. Starting from a possible solution strings, pairs of individuals from the current

population are allowed to mate to produce offsprings for thenext generation. This selection

procedure is based on the strategy of survival of the fittest.Generally the selection of members

for mating are based on their selection probability which isproportional to their fitness value.

Usually the roulette wheel selection strategy is used wheredepending upon the string’s relative

fitness size a string is assigned a slot in the simulated wheel. The selection strategy results in the

replacement of members with below-average fitness value with members having above-average

fitness value, to take part in the mating process.

• Crossover:-The crossover operation is carried out for the generation of new chromosomes which

will be able to retain the good features from the previous generation. Selected pairs of parents

having a probability equal to a given crossover rate are considered for this operation. In this

operation genetic materials (i.e bit-values) between two parent strings are swapped so that gen-

erated offsprings represented by highly fit strings can havea greater probability to be selected

in the subsequent generation. A single point crossover is the most basic operator. In a single

point crossover along a randomly selected bit position the genetic materials of the two parent

chromosome strings cross over. Similarly for a two-point crossover, the genetic materials be-

tween two randomly selected crossover points in two chromosome strings are interchanged to

generate two children. The effect of crossover is analogousto mating in the evolutionary process

in which the parents pass segments of their own chromosomes to their children. These children

can outperform their parents if they inherit good genes fromthem. This operation is shown in

Fig. 2.1.

• Mutation:- A certain pool of population may not be able to solve a particular problem if it does

not contain all the encoded information. To rectify this problem the mutation operator is used so

that spontaneously generated new chromosomes can be added to the existing pool. This operation

alters a few more selected bit values in randomly selected strings, with a probability equal to a
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point

         
       Crossover    

              (Single−point crossover)

1     0011     110                               1    0110      110

1     0110     010                               1    0011      010

 (Two−point crossover)

Figure 2.1: Crossover operation

very low mutation rate, after the crossover operation. The mutation rate is kept low so that good

chromosomes obtained from crossover operation are not lost. The mutation operator can prevent

any single bit from converging to a value throughout the entire population. In addition to this the

population is prevented from converging or getting stagnant in any local optima. This operation

enhances the ability of the GA to find a solution which is near optimal by searching the entire

solution space for the best solution. This operation is shown in Fig. 2.2.

10011110                                                         10011  0   10

          Mutated bit

Figure 2.2: Mutation operation

The pivotal contribution of genetic algorithm is a methodology for systematized random search and

optimization. Researchers attempt to simulate complex biological evolutionary processes to discover

how evolution can propel living beings towards a higher level of intelligence which has resulted in the

concept of the genetic algorithm. The flow chart for this algorithm which is based on the evolutionary

principle of natural selection has been shown in Fig. 2.3.

Kumon et al. [69] proposed the use of genetic algorithm for nonlinear system identification. Simi-

larly Akramizadeh et al. [70] proposed the use of genetic algorithm for the identification of a nonlinear
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Figure 2.3: GA algorithm flowchart

Hammerstein model. Juang [71] presented an algorithm whichwas based on recurrent neural network

with genetic algorithm for nonlinear system identification. Kim and Lee [72] proposed the application

of multi-objective fuzzy optimization for the parameter identification of a nonlinear system. Vazquez

et. al. [73] used genetic programming for the structure identification of nonlinear dynamic systems.

2.4 Neuro Fuzzy Approach

Fuzzy logic, neural network and genetic algorithm are complementary rather than competitive for sys-

tem identification. Therefore it is advantageous to use these techniques in combination amongst them-

selves rather than exclusively. This gives rise to what is called the hybrid intelligent systems. One of

the popular combinations that has been used extensively is the neuro fuzzy hybrid system. The essen-

tial part of neuro-fuzzy modelling comes from a common framework called adaptive network which

unifies the neural network and the fuzzy model. In this resultant hybrid intelligent system, the neural

network has the ability to recognize patterns and adapt themselves to cope with changing environment.

On the other hand the fuzzy inference system incorporates human knowledge and performs inferencing

and decision making. The modeling by neuro-fuzzy method is concerned with model extraction from
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numerical data which represents the dynamic behavior of thesystem. System modelling based on this

methodology can serve two purposes:

• The behavior of the system under consideration can be predicted from the derived model

• The derived model can be used for the design of a controller

The important steps of the neuro-fuzzy modelling approach are:

• Fuzzification of the input physical variables

• Computation of the degree of satisfaction for the available linguistic terms

• Conjunction of the premise and the fuzzy inferred parameters

• Defuzzification of the output

All the above mentioned steps are realized in sequentially arranged layers of the neural network which

has an architecture to adjust the weights in the form of the parameters of the extracted rules. Using

the neuro-fuzzy modelling as a backbone, the characteristics of soft computing may be classified as

follows :-

• Human expertise:- For solving practical problems, soft computing can be used to utilize the

human expertise in the form of conventional knowledge representation as well as fuzzy if-then

rules.

• Biologically inspired computing models:- Inspired by the biological neurons, the artificial neural

network can be used in soft computing methodology to deal with many practical problems like

pattern recognition, nonlinear regression, perception and classification.

• Innovative approach:- Soft computing methodology appliesinnovative optimization techniques

imbibed from various sources. They are genetic algorithm asmotivated from the evolution and se-

lection process, simulated annealing which is inspired from thermodynamics, the random search

method and the simplex downhill method.

• Numerical computation:- Unlike symbolic artificial intelligence, soft computing mainly relies on

numerical computation.
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• New application domains:- Because of being software based, the soft computing method is in-

creasingly finding applications in new domains like adaptive signal processing, adaptive control,

nonlinear system identification etc.

• Model free learning:- In the absence of system models, the fuzzy inference system and the neural

network have the ability to construct models from the available sampled data.

• Intensive computation:- Neuro-fuzzy and soft computing methods rely heavily on the high speed

number crunching computation to find rules or regularity in data sets, rather than too much back-

ground knowledge on the problem being solved.

• Fault tolerance:- The deletion of a neuron in a neural network or a rule in a fuzzy inference

system does not stop these models to perform because of theirparallel and redundant architecture.

However, the performance degrades gradually.

• Goal driven characteristics:- Soft computing and neuro-fuzzy systems are goal oriented. How-

ever, a little deviation from their assigned goal will not deter them from achieving their goal

finally because of their domain specific knowledge.

• Real world applications:- Because of the complexity and uncertainty involved with the real world

problems, the conventional approaches of problem solving require a mathematical model or a

detailed description of the problem which is being solved. But with the integrated approach

of soft computing, it usually utilizes the specific techniques within the subtasks to constitute a

satisfactory solution to the real world problems.

Jang and Sun [74] discussed the problems of neuro-fuzzy modeling and also the direction for its future

use. Lin and Cunningham III [75] presented a method where the network was viewed as a fuzzy model

which gave insight into the real system and also provided a method to simplify the neural network.

Jang [76] proposed a simple method for the selection of inputs for the neuro-fuzzy model in identifying

a nonlinear system. Similarly Chiu [77] proposed another method for the selection of inputs of the

neuro-fuzzy model built for nonlinear system identification. Denai et al. [78,79] showed the application

of the neuro-fuzzy method for the modeling of nonlinear systems. Ishibuchi et al. [80] proposed a

method where the neural network is trained by utilizing the numerical data and also human expert

knowledge that is represented by the fuzzy if and then rules.Juang and Lin [81] proposed a method

for the identification of a dynamic system with the help of a Takagi-Sugeno-Kang (TSK) type fuzzy
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rule based model which also possesses the learning ability of the neural network. Sanchez et al. [82]

proposed a method for the identification of a nonlinear system using a fast and stable neuro-fuzzy

method having error minimization. Li et al. [83] presented aneuro-fuzzy method for the identification

of a nonlinear system where in the first step the structure identification task is accomplished and in

the next step the parameter identification is carried out. Kawaji and Chen [84] also proposed a soft

computing based approach for the identification of a nonlinear system. Wu et al. [85] proposed an

approach of generating the fuzzy rules using a generalized dynamic fuzzy neural network which is

built on the ellipsoidal basis function. Gao and Joo [86] proposed a robust adaptive fuzzy neural model

for the identification of a certain class of multi input-multi output (MIMO) systems. This model has a

fast online learning capability where the fuzzy rules are generated or deleted automatically. Panella and

Galeo [87] proposed a clustering approach which is applied to a joint input-output space for the neuro-

fuzzy modelling of nonlinear systems. Thangavel et al. [88]proposed the use of an intelligent controller

for reactive power control. Abraham and Nath [89] used the neuro-fuzzy approach for modeling the

electricity demand in Victoria. Kamia et al. [90] discussedthe use of soft computing technique for the

modelling of large scale plants.

2.4.1 Adaptive Network based Fuzzy Inference System

A neuro-fuzzy technique called Adaptive network based fuzzy inference system (ANFIS) [68, 74,

91] has been used as a prime tool in the present work. Adaptivenetwork based fuzzy inference system

(ANFIS) is a neuro fuzzy technique where the fusion is made between the neural network and the fuzzy

inference system. In ANFIS the parameters can be estimated in such a way that both the Sugeno and

Tsukamoto fuzzy models [92] are represented by the ANFIS architecture. Again with minor constraints

the ANFIS model resembles the Radial basis function network (RBFN) functionally [93]. This ANFIS

methodology comprises of a hybrid system of fuzzy logic and neural network technique. The fuzzy

logic takes into account the imprecision and uncertainty ofthe system that is being modeled while the

neural network gives it a sense of adaptability. Using this hybrid method, at first an initial fuzzy model

along with its input variables are derived with the help of the rules extracted from the input output data

of the system that is being modeled. Next the neural network is used to fine tune the rules of the initial

fuzzy model to produce the final ANFIS model of the system. In this proposed work ANFIS is used as

the backbone for the identification of real world systems. Detailed description of ANFIS is presented

in Chapter 4.
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After building a model for the system based on ANFIS, the model can be used for forecasting future

values using a suitable forecasting technique. A brief description of various forecasting methodologies

available is presented below.

2.5 Forecasting Methodologies

Some of the data based time series forecasting methodologies that were carried out in the recent past are

described in this section. Hard computing based methods like linear and nonlinear auto-regression have

been traditionally used for system forecasting. But due to the highly nonlinear relationship between

the determining factors and the demand forecast, it made theunderstanding of the system difficult.

This made the auto regression approach extremely tedious and doubts also rose on the accuracy of the

results.

The self adaptive data driven neural networks [94] scored a major point in the sense that it can approx-

imate any arbitrary continuous function to any given accuracy [95] even with very little knowledge on

the structural relationship between the demand forecast and the determining factors.

Fuzzy logic can be used to approximate any continuous function to a required degree of accuracy [96].

Both the neural network and the fuzzy systems have been found to have outperformed the auto-

regression approach with higher forecasting accuracy [96]. It is because of this fact that these ap-

proaches have been well accepted in many practical utilities, like load forecasting [97,98].

Studies also show that attempts were made to combine multiple neural networks with recursive least

squares (RLS) algorithm to utilize the advantages of both themethods [97,99]. In some utilities the dif-

ferent combination of fuzzy logic, neural networks and hardcomputing based techniques like statistical

methods, fourier transform [100], bayesian curve fitting [101], Box-Jenkins Autoregressive integrated

moving average with exogenous input(ARIMAX) method [102], extrapolation technique [103], wavelet

transform [104], B-spline [105], state space [106] approachwere also tried to checked if any implicit

information that may be embedded in the available data can beextracted for use in the forecasting

model. In certain cases it has been found that these approaches make the forecasting accuracy improve

substantially. Applications were also found where the pastknowledge of experienced forecasters were

utilized to improve the forecasting accuracy [107].

In many cases it has been found that the presence of spurious data has a considerable effect on the

forecasting accuracy [108]. Significant research work continued in the direction of identification, de-

tection and estimation of bad data [109–111]. In order to overcome the drawbacks encountered by
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conventional learning methods like statistics based ones,the use of the evolutionary methods were also

explored [105].

Traditionally, hard computing based methods like linear and nonlinear auto-regression methods have

been applied to build forecasting models [112–114]. However, as the relationships between these de-

mand forecasts and the determining factors are highly nonlinear, they are not properly understood. This

made the auto regression approach extremely tedious and doubts also surfaced on the accuracy of the

results.

On the other hand, even with a very little knowledge on the structural relationship between the demand

forecast and the determining factors, the self adaptive data driven neural networks can approximate any

arbitrary continuous function to any given accuracy [94]. Zhang et al. [115] studied the application of

neural networks for forecasting in the electricity load consumption study.

Similarly the fuzzy logic can also be used to approximate anycontinuous function to a required de-

gree of accuracy [95]. Performancewise both the neural network and the fuzzy systems can be put at

the same level [96, 116, 117]. Both these methods have been found to have outperformed the auto-

regression approach with higher forecasting accuracy [96]and hence have been well accepted in many

practices by utilities for load forecasting [97,98].

In addition to the soft computing methods, different hard computing methods were also found to have

been applied for generating the different time series forecasting models.

Verleysen et al. [118] proposed the method of fractal projection forecasting for engineering applica-

tions. Amjady [107] used an approach in which he utilized thepast knowledge of experienced fore-

casters to improve the forecasting accuracy, where the hardcomputing based Box-Jenkins Autoregres-

sive integrated moving average with exogenous input(ARIMAX) method outperformed the stand alone

neural network approach. Adya et al. [103] proposed the rule-based forecasting approach which is an

expert system that uses features of time series alongwith weight extrapolation techniques. Gao and

Tsoukalas [104] proposed the wavelet based forecasting method and used it for load identification and

forecasting. Wang et al. [119] proposed a nonparametric smoothing technique to build a kernel pro-

jection forecasting model for a given small seasonal time series data. Meade [101] used the logistic

Bayesian curve fitting model to study and investigate the effect of the assumed error structure on the

forecasting accuracy. Saito and Abe [106] used the Kalman filter to derive a state space model for

traffic forecasting. Wang et al. [119] proposed a nonparametric smoothing technique to build a kernel

projection forecasting model for a given small seasonal time series data. Meade [101] used the logistic

Bayesian curve fitting model to study and investigate the effect of the assumed error structure on the
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forecasting accuracy.

Work was also carried out combining different existing methodologies for generating the forecasting

models. In many utilities the forecasting approaches are based on multiple neural networks being

combined with Recursive least squares (RLS) algorithm [97, 99]. This approach helps in extracting

the various load patterns which are implicitly embedded in the training data. Khotanzad et al. [97]

explored such an approach. This multiple forecaster approach is also supported by many hard comput-

ing based forecasting applications and theories. This is because this approach makes the forecasting

accuracy improve substantially [120]. Kim et al. [121] proposed the use of linear combination of a

fuzzy system with a neural network for improving the forecasting accuracy. Abraham and Nath [122]

discussed the use of Evolving fuzzy neural network (EFuNN) and the feed forward Artificial neural

network (ANN) as well as a conventional statistical approach for modeling electricity demand. Mora-

bito and Versaci [123] proposed the use of fuzzy neural networks for identification and forecasting the

experimental urban air pollution data. Makiko and Yoshitsugu [100] proposed a new demand forecast-

ing method using the neural network and Fourier transform.

In time series forecasting, spurious or Bad data (BD) affect the forecasting performance drastically. So,

identification of bad data is a challenging task here. Milli et al. [108] gave a comparative assessment

of the evaluating techniques for identifying Bad data (BD), i.e. data gathered from grossly erroneous

measurements. These techniques are first classified, then explored and compared. Abur [110] proposed

another algorithm for detecting the bad data using the measurement residuals of the measurements

rejected by the Linear programming (LP) estimator. Then thebad measurements are identified and

eliminated by estimating the measurement errors of the zeroresidual measurements. The residuals ob-

tained from this second estimation step are made use of for this purpose. Long and Ling [111] proposed

a new method of estimating the impulse response of a complex system based on its complex input and

only the real part of its output data values. Zhang and Lo [109] proposed a recursive measurement error

estimation and identification algorithm for identifying multiple interacting bad data in the power set in

power system static state estimation. As an extension for further analysis of bad data, Zhang et al. [124]

proposed an efficient bad data identification method for a state estimator which was implemented in

real-time for a power system control centre in Northeast China. The proposed algorithm, called the Re-

cursive measurement error estimation identification (RMEEI) is powerful and efficient having a high

computational speed. Kandemir and Ramanujam [125] presented an abstraction, called data relation

vectors, to improve the data access characteristics and memory layouts in regular computations, by

defining a relation between the data elements accessed by close-by iterations and using this relation to
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guide a number of optimizations for array-based computations. Ahmed and Cruz [126] proposed the

modified version of this algorithm and proved that it yields aleast squares solution, which is compa-

rable to the Recursive least squares (RLS) method and initialized it for a Data-driven echo canceller

(DDEC). Erdogmus and Principe [127] investigated error-entropy-minimization in adaptive systems

training, by minimization of a Csiszar distance measure between the densities of desired and system

outputs. Didenko and Movchan [128] investigated the evaluation of the uncertainty of A/D conver-

sion with reasonable accuracy by considering the minimum number of parameters of the metrological

model of the Data acquisition system (DAS). Joachims [129] presented an approach to automatically

optimize the retrieval quality of search engines using clickthrough data. Babcock et al. [130] discussed

one adaptive strategy for processing bursty streams of datawhich fluctuate over time without sacrific-

ing the system performance as in many applications, systemsare required to produce rapid or realtime

query responses. Weekes and Forgel [131] proposed using of evolutionary training of Artificial neural

networks (ANNs) to generate predictive models of quantitative structure, based on the data of activity

relationships between a set of molecular descriptors and activity. In order to overcome the drawbacks

encountered by conventional learning methods, Coelho and Krohling [105] proposed the use of an in-

telligence methodology called swarm optimization methodology to provide a stochastic global search

of B-spline networks for nonlinear system identification. Meekhof and Heckendorn [132] explored the

possibility of using string space transformations to reduce the perplexity of the modeling problem and

thereby improve model performance of a Markov-based classifier on the problem of classifying Eng-

lish and Spanish character strings, where training set sizeis arbitrarily limited. Pekar and Stecha [133]

proposed a real time system parameter estimation from the set of input-output data by minimization

of quadratic norm errors of system equations. Lii et al. [134] proposed translation model training in

Statistical machine translation (SMT) using off line data optimization and online model optimization.

2.6 Research gap

In all the data based time series forecasting methods that have been discussed in the previous section, the

availability of a sufficient number of data is a must for achieving a good forecasting model. However,

in many cases it has been observed that the number of available data is not sufficient for modeling

purpose. In such a scenario one alternative solution lies inthe generation of more data so that modeling

of the system under consideration can be carried out with good accuracy. But generation of more data

is not always possible as it may be a very costly affair, particularly in a production environment, like
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a thermal power plant. This is because in order to get the training data, the power plant has to be kept

running for long period of time. In addition, the thermal power plants have the inherent problem of

taking a long time to start before it can be fully loaded to getthe requisite data. So the training of the

ANFIS has to be carried out with the available limited numberof input output data with good modeling

accuracy. This necessitates the development of a proper procedure to choose the data critically and

optimally for training the neural network. With these objectives in mind it has been proposed to utilize

the salient feature of self-adaptability in approximatingan arbitrary function with a good accuracy of

the neural network and the inherent property of the fuzzy logic to take into account the imprecision

and uncertainty of a system which is considered for modeling, with the help of an ANFIS model. A

novel method for optimal choice of the available data for training the ANFIS network is proposed

in the present work. The major objective of the present work is to formulate an efficient method to

choose the available data optimally from the existing data set to build an ANFIS model for the system

under consideration and use the model for faithful prediction of future values. The research focuses

on modeling of real world systems where input output data required for modeling are either scanty or

difficult to generate. The research work then aims to design acontroller based on ANFIS so that the

controller performs satisfactorily even with plant parameter variations and disturbance.

The methodology followed for achieving the above goal is described in the next chapter.



Chapter 3

Research Objectives and Methodology

In the quest for developing a model for a system based on its available input output data, it has been

observed that in the conventional modeling approach the results depend on the mathematical model of

the system and its accuracy. In cases where the mathematicalmodel is not available the system analysis

becomes very difficult. It is in this context that the soft computing approach can provide a viable

alternative for system modeling in cases where the conventional hard computing techniques cannot be

used. In the present work it is proposed to use these soft computing techniques for time series modeling

of a real world system with the help of its input-output data.

3.1 Objectives of the present work

In data driven modeling techniques like ANFIS, the number oftime series data that are available

for system modeling has to be in abundance, as this number hasa direct bearing on the modeling

result. It has been found that more is the number of availableinput-output data the better will be the

modeling result. This is because with more number of training data the neural network of the hybrid

ANFIS system will have a better training session which will result in a good modeling validation and

prediction. But in most of the real time systems the availabledata is generally less, so modeling has

to be carried out with the available small pool of data only. The primary concern of the thesis is for

this type of situations where sufficiently large quantity ofinput-output data is not available or difficult

to generate and the model of the system has to be built for practical applications like forecasting. This

research focuses on these real life systems having scanty input-output data and attempts to identify the

model using the data selected critically such that these optimally selected data can be used to build

the system model faithfully. Hence optimal selection of theavailable minimal data set for training the

24
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ANFIS model is the key objective of this research. The key objectives of the present research can be

highlighted as follows:

• ANFIS based modeling of real world systems

• Building of ANFIS model for real world systems where generation of training data is difficult

and time consuming

• Building of ANFIS model for real world system where generation of data is expensive

• Building of ANFIS model for real world system where availableinput output data are scanty

• Designing of an ANFIS based controller which performs satisfactorily even in the presence of

plant parameter variations and disturbances

The building of an ANFIS model faithfully with available scarce input output data is studied in this

research work and a novel solution is offered so that this research gap can be bridged.

3.2 Methodology of the present work

ANFIS is the backbone for the present work where a small set oftime series data critically selected

from a real time system are used for the modeling of the system. The modeling methodology used in

the present work is briefly mentioned in the following subsections.

3.2.1 ANFIS based methodology for modeling

The Adaptive network based fuzzy inference system (ANFIS) [68,74,91] is a hybrid system comprising

of the neural network and the fuzzy logic. It is a data driven procedure which can be used to provide

the solution of function approximation problems in a neuralnetwork platform. Here at first a fuzzy

inference system comprising of an initial fuzzy model is formed, based on the fuzzy rules extracted

from the input output data set. In the next step the neural network is used to fine tune the rules of the

initial fuzzy model that was built. Using ANFIS methodologythe network is trained. The number of

training data used in the ANFIS is drastically reduced by applying an optimal data selection criterion.

Two novel techniques are attempted for selecting the optimal input-output data pairs. One of these

methods is known as the Full factorial design (FFD) [135, 136] and is based on statistical design

of experiments. The other technique is a cross validation technique known as the V-fold technique
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[137–139]. These two techniques are described briefly in thenext three subsections. This work is

an endeavour to augment the ANFIS as a modeling technique by incorporating the above two novel

techniques for accomplishing the training of the network faithfully when the available data is scarce.

3.2.2 Full factorial design based methodology for optimal data selection

From the statistical point of view, in experiments where a large number of tests is involved, the order

of selection of the test specimens has to be randomized, so that each specimen has an equal chance

of being selected for the test. The training of the neural network can also be replicated to a statistical

experiment involving a large number of tests for optimization. In such an experimental setup the iden-

tification of the important variables that affects the experimental results forms an important aspect. The

experimental variables controlled by the operators on which the system’s response depends are called

the factors. The effect of the response of one factor may or may not depend on the levels of the other

factors. The number of factors and their levels required canbe fixed depending upon the complexity

of the experiment. The statistical technique based Full factorial design (FFD) [135, 136] methodology

identifies the important factors and levels of the experiments conducted to model a real time system.

This FFD methodology is used for selecting the critical dataset for training the ANFIS model of the

real system.

3.2.3 V-fold based methodology for optimal data selection

If a neural network is built using a specific learning data set, it has to be tested with a data set which

is independent of the data set that was used to train the network. It has often been found that obtain-

ing an independent test data set is very difficult. The neuralnetwork can also be trained by another

accurate method called the V-fold technique [137–139]. This method possesses the distinct advantage

of not requiring a separate and independent data set for testing the accuracy of the network. In this

methodology the available data set is subdivided into some subgroups. All but one of the subgroups is

used for training the neural network. Next the remaining subgroup is used for testing. This procedure

is continued by testing the network with a new subgroup everytime. This approach of the V-fold cross

validation technique is used in our research work to select the optimal data set for training the ANFIS

network in the model of the real time system considered in ourstudy.
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3.2.4 Full factorial design combined with V-fold based methodology for optimal

data selection

Both the Full factorial design (FFD) and the V-fold techniqueare combined to select the critical data

set for training the ANFIS model.

3.2.5 Model building with statistical approaches for performance study

The conventional statistical methods of modeling are also studied in the present research and applied

to build the system models to study their performance against the ANFIS model. The three statisti-

cal models namely Autoregressive with exogenous input (ARX)[140], Autoregressive moving average

with exogenous input (ARMAX) [140] and Autoregressive integrated moving average with exogenous

input (ARIMAX) [140] are used for modeling the real world system and the results obtained are com-

pared with those obtained by using the proposed models.

3.2.6 Genetic algorithm based fuzzy methodology

A Genetic algorithm(GA) [67,141,142] based fuzzy model is build for studying its performance against

the ANFIS model. In this methodology the genetic algorithm is used to update the consequent parame-

ters of the fuzzy model of the system under consideration.

3.2.7 Controller with the FFD-V-fold based methodology

This research also studies the utility of the proposed ANFISmodel for designing a controller. A con-

troller based on the proposed FFD-V-fold based ANFIS methodis built and its performance is tested

against disturbance and plant parameter variation. Out of the different ANFIS based models which are

proposed, the model showing the best result is used for the design of a controller.

In the next chapter, the ANFIS based methodology for modeling is discussed in details.



Chapter 4

Adaptive Network based Fuzzy Inference

System

The adaptive network based fuzzy inference system (ANFIS) [68, 74, 91] is a data driven procedure

representing a neural network approach for the solution of function approximation problems. Data

driven procedures for the synthesis of ANFIS networks are typically based on clustering a training set of

numerical samples of the unknown function to be approximated. Since introduction, ANFIS networks

have been successfully applied to classification tasks, rule-based process control, pattern recognition

and similar problems. Here a fuzzy inference system comprises of the fuzzy model [34, 35] proposed

by Takagi, Sugeno and Kang to formalize a systematic approach to generate fuzzy rules from an input

output data set.

4.1 ANFIS structure

For simplicity, it is assumed that the fuzzy inference system under consideration has two inputs and one

output. The rule base contains the fuzzy if-then rules of Takagi and Sugeno’s type [143] as follows:

If x is A and y is B then z is f(x,y)

whereA andB are the fuzzy sets in the antecedents andz = f(x, y) is a crisp function in the

consequent. Usuallyf(x, y) is a polynomial for the input variablesx andy. But it can also be any other

function that can approximately describe the output of the system within the fuzzy region as specified

by the antecedent. When f(x,y) is a constant, a zero order Sugeno fuzzy model is formed which may be

considered to be a special case of Mamdani fuzzy inference system [144] where each rule consequent

is specified by a fuzzy singleton. If f(x,y) is taken to be a first order polynomial a first order Sugeno

28
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fuzzy model is formed. For a first order two rule Sugeno fuzzy inference system, the two rules may be

stated as:

Rule 1: Ifx is A1 andy is B1 thenf1 = p1x + q1y + r1

Rule 2: Ifx is A2 andy is B2 thenf2 = p2x + q2y + r2

Here type-3 fuzzy inference system proposed by Takagi and Sugeno [143] is used. In this inference

system the output of each rule is a linear combination of the input variables added by a constant term.

The final output is the weighted average of each rule’s output. The corresponding equivalent ANFIS

structure is shown in Fig. 4.1.
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Figure 4.1: Type-3 ANFIS Structure

The individual layers of this ANFIS structure are describedbelow :

Layer1: Every nodei in this layer is adaptive with a node function

O1
i = µAi

(x) (4.1.1)

where,x is the input to nodei, Ai is the linguistic variable associated with this node function and

µAi
is the membership function ofAi. UsuallyµAi

(x) is chosen as

µAi
(x) =

1

1 + [(x−ci

ai
)2]bi

(4.1.2)
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Or

µAi
(x) = exp {−(

x − ci

ai

)2} (4.1.3)

wherex is the input and{ai, bi, ci} is the premise parameter set.

Layer2: Each node in this layer is a fixed node which calculates the firing strengthwi of a rule.

The output of each node is the product of all the incoming signals to it and is given by,

O2
i = wi = µAi

(x) × µBi
(y), i = 1, 2 (4.1.4)

Layer 3: Every node in this layer is a fixed node. Eachith node calculates the ratio of theith

rule’s firing strength to the sum of firing strengths of all therules. The output from theith node is the

normalized firing strength given by,

O3
i = wi =

wi

w1 + w2

, i = 1, 2 (4.1.5)

Layer4: Every node in this layer is an adaptive node with a node function given by

O4
i = wifi = wi (pix + qiy + ri), i = 1, 2 (4.1.6)

wherewi is the output of Layer3 and{pi, qi, ri} is the consequent parameter set.

Layer 5: This layer comprises of only one fixed node that calculates the overall output as the

summation of all incoming signals, i.e.

O5
i = overall output =

∑

i

wifi =

∑
i wifi∑
i wi

(4.1.7)

4.2 Learning Algorithm

In the ANFIS structure, it is observed that given the values of premise parameters, the final output can

be expressed as a linear combination of the consequent parameters. The outputf in Fig. 4.1 can be
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written as

f =
w1

w1 + w2

f1 +
w2

w1 + w2

f2

= w1 f1 + w2 f2

= (w1 x)p1 + (w1 y)q1 + (w1)r1 + (w2 x)p2 + (w2 y)q2 + (w2)r2. (4.2.1)

wheref is linear in the consequent parameters(p1, q1, r1, p2, q2, r2).

In the forward pass of the learning algorithm, consequent parameters are identified by the least squares

estimate. In the backward pass, the error signals, which arethe derivatives of the squared error with re-

spect to each node output, propagate backward from the output layer to the input layer. In this backward

pass, the premise parameters are updated by the gradient descent algorithm [27–29].

4.3 Derivation of the Initial Fuzzy Model

As described earlier, in ANFIS based system modeling for a set of rules with fixed premise para-

meters, identification of an optimal fuzzy model with respect to the training data reduces to a linear

least-squares estimation problem. A fast and robust methodfor identification of fuzzy models from

input-output data was proposed by S.L.Chiu [77]. This methodselects the important input variables

when building a fuzzy model from data by combining cluster estimation method with a least squares

estimation algorithm. The method follows in two steps : i) First step involves extraction of an initial

fuzzy model from input output data by using a cluster estimation method incorporating all possible in-

put variables. ii) In the next step the important input variables are identified by testing the significance

of each variable in the initial fuzzy model.

4.3.1 Extracting the initial fuzzy model

In order to start the modeling process, an initial fuzzy model has to be derived. This model is required

to find the number of inputs, number of linguistic variables and hence the number of rules in the final

fuzzy model. The initial model is also required to select theinput variables for the final model and also

the model selection criteria, before the final optimal modelcan be derived. This initial fuzzy model can

be selected based on the fuzzy rules framed by either using the subtractive clustering technique [145]

or the grid partitioning method [74] [68,91].
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Subtractive Clustering Technique

As a first step towards extracting the initial fuzzy model by subtractive clustering, this technique is

applied to the input output data pairs, which are obtained from the system which is to be modeled. The

cluster estimation technique helps in locating the clustercenters of the input output data pairs. This in

turn helps in the determination of the rules which are scattered in input output space, as each cluster

center is an indication of the presence of a rule. In additionto this it also helps to determine the values

of the premise parameters. This is important because an initial value, which is very close to the final

value, will eventually result in the quick convergence of the model towards its final value during the

training session with neural network. In this clustering technique the potentials of all the input output

data points are calculated as functions of their Euclidian distances from all the other data points. The

points having a potential above a certain preset value are considered as cluster centers. After the cluster

centers are ascertained the initial fuzzy model can be subsequently extracted as the centers will also

give an indication of the number of linguistic variables. The cluster estimation method for determining

the number of rules and initial rule parameters [77] is briefly described below.

Let us consider a collection ofn data points{x1, x2, ..., xn} in an M dimensional space. The data

points are assumed to be normalized in each dimension so thatthey are bounded by a unit hypercube.

Each data point is considered to be a potential cluster center. Pi is a measure of the potential of data

pointxi to serve as a cluster center and is defined as

Pi =
n∑

j=1

e−α‖xi−xj‖
2

(4.3.1)

where

α =
4

r2
a

. (4.3.2)

‖.‖ denotes the Euclidean distance andra is a positive constant. Thus measure of the potential for a

data point is a function of its distances to all other data points. Herera is the radius effectively defining

a neighborhood. Data points outside this radius have littleinfluence on the potential. After the potential

of every data point has been computed, the data point with thehighest potential is selected as the first

cluster center. Letx∗
1 be the location of the first cluster center andP ∗

1 be its potential value. Then the

potential of each data pointxi is revised by the formula
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Pi = Pi − P ∗
1 e−β‖xi−x∗

1
‖2

(4.3.3)

where

β =
4

r2
b

(4.3.4)

andrb is a positive constant. Thus an amount of potential is subtracted from each data point as a function

of its distance from the cluster center. The constantrb is effectively the radius defining the neighborhood

which will have measurable reduction in potential. Typically chosen value ofrb = 1.25ra [77].

When the potentials of all data points have been revised according to Eq. 4.3.3, the data point with the

highest remaining potential is selected as the second cluster center. The potential of each data point is

further reduced according to their distance to the second cluster center. In general, after thekth cluster

center has been obtained, the potential of each data point isrevised by the formula

Pi = Pi − P ∗
k e−β‖xi−x∗

k
‖2

(4.3.5)

wherex∗
k is the location of thekth cluster center andP ∗

k is the potential value.

The process of acquiring new cluster center and revising potentials repeats until the stopping criterion

P ∗
k < 0.15P ∗

1 [145] is satisfied. Each cluster center as derived above is inessence a data point that

describes a characteristic input-output behaviour of the system we wish to model. Hence each cluster

center can be used as the basis of a rule that describes the system behaviour.

It is considered that{x∗
1, x

∗
2, ..., x

∗
c} is a set ofc cluster centers in anM dimensional space. It is again

considered that the firstN dimensions correspond to input variables and the lastM − N dimensions

correspond to output variables. Each vectorx∗
i is decomposed into two component vectorsy∗

i andz∗i

wherey∗
i is the location of the cluster center in input space andz∗i is the location of the cluster center

in output space. Thereforex∗
i may be represented as

x∗
i = [y∗

i ; z
∗
i ]

Each cluster centerx∗
i is considered as a fuzzy rule, “if input is neary∗

i then output is nearz∗i ”, to

describe the system behaviour. Given an input vectory, the degree to which rulei is fulfilled is defined

as
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µi = e−α‖y−y∗

i ‖
2

(4.3.6)

whereα is a constant defined by Eq. 4.3.2. Output vectorz is computed as

z =

∑c

i=1 µiz
∗
i∑c

i=1 µi

(4.3.7)

This computational scheme can be viewed in terms of an inference system employing fuzzy if-then

rules. Each rule has the following form :

IF Y1 is Ai1 andY2 is Ai2 and ... THENZ1 is Bi1 andZ2 is Bi2...

whereYj is the jth input variable andZj is the jth output variable;Aij is an exponential member-

ship function in theith rule with thejth input andBij is a singleton in theith rule associated with the

jth output. For theith rule that is represented by cluster centerx∗
i , Aij andBij are given by :

Aij(Yj) = e
−0.5(

Yj−y∗ij

σij
)2

(4.3.8)

Bij = z∗ij (4.3.9)

wherey∗
ij is thejth element ofy∗

i andz∗ij is thejth element ofz∗i andσ2
ij = 1

2α
[77].

Grid Partitioning Technique

The second method which can be used for framing the rules of the initial fuzzy model is by grid parti-

tioning [74] [68, 91]. This method is used when the number of inputs and their membership functions

are less. Here the input space are partitioned into a number of fuzzy regions to form the antecedents of

the fuzzy rules. The Grid partitioned fuzzy space for a two input model, with each input having three

membership functions each is shown in Fig. 4.2. The two dimensions represent the abscissa and the

ordinate of the input space. The rules obtained from either of the two methods are then optimized by

using ANFIS methodology developed by Jang [91]. This methodinvolves optimization of the premise

membership functions by gradient descent algorithm combined with optimization of the consequent

equations by linear least squares estimation.
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Figure 4.2: Grid partitioned fuzzy subspaces for a type-3, 2-input ANFIS

4.3.2 Selection of input variables and final fuzzy model

Any good criteria which is used for model selection based on some inputs cannot guarantee that the

model will be producing the optimal result unless the results from all possible combinations of the input

variables in the model are compared. But this is a tedious taskas even for a moderate number of input

variablesN , 2N possible number of combinations of the variables arises. From the modeling viewpoint,

incorporation of only the important variables results in a practical model which is simpler, more reliable

and useful for application. This is because now only a fewer variables will have to be measured. For

achieving this, the importance of each input variable can beascertained from the initial fuzzy model.

In the proposed ANFIS model this has been accomplished by choosing the model showing the least

modeling error from the models obtained using the followingtwo methods:

• First method:-In this method the fuzzy rule framework provides an easy mechanism to test the

importance of each input variable without having to generate new models. The basic idea is to

remove all antecedent clauses associated with a particularinput variable from the rules and then

evaluate the performance of the model by applying the checking error criterion [77]. If this de-

creases the modeling error the process is repeated by eliminating another input variable. If the

modeling error increases, the eliminated variable is retained and another variable is eliminated in

its place. This process is continued until the modeling error can be decreased no further by elim-

inating any more extra input variable. The criterion that isused for selection of the final fuzzy
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model is the Root mean square error (RMSE). The ANFIS structureof the system which is being

modeled is considered as the final model for which the RMSE is the minimum. For example,

suppose the initial model has four inputs, with rules of the form :

IF Y1 is Ai1 andY2 is Ai2 andY3 is Ai3 andY4 is Ai4 THEN Z1 is Bi1

The importance of theY3 variable in the model can be tested by temporarily removing the an-

tecedent clauses that involveY3, thus truncating the rules to the form :

IF Y1 is Ai1 andY2 is Ai2 andY4 is Ai4 THEN Z1 is Bi1

If the resultant model performance does not degrade with respect to the performance measure

which is the RMSE of the output corresponding to an independent set of checking data, thenY3

can be eliminated from the possible important variables. The variable selection process for a four

input initial model is shown in Fig. 4.3.

1 2 3 4

2 3 4 1 3 4 1 2 4 1 2 3

2 2

2

4 4

4

1 1

          

Remove 3 

Remove 1 

Remove 2 

Remove 4 

Model with no input variables

Model with input variables

Figure 4.3: Variable Selection Process for a four input initial model
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• Second method:- For simplicity, the second model assumes that ANFIS consists of only two

inputs. For choosing these inputs a set of10 dynamic modeling inputs [77] is selected which

comprises of6 from the historical inputs of the system and4 from the historical outputs of the

system to be modeled. Out of these10 dynamic modeling candidates, for each of the6 inputs

there can be4 different combinations with the4 different outputs. So there will be a total of

6× 4 = 24 different combinations of input candidate pairs. Each of these different combinations

will lead to the generation of24 different initial fuzzy models as follows:

{x(t − 1), y(t − 1)}, {x(t − 1), y(t − 2)}, {x(t − 1), y(t − 3)}, {x(t − 1), y(t − 4)},

{x(t − 2), y(t − 1)}, {x(t − 2), y(t − 2)}, {x(t − 2), y(t − 3)}, {x(t − 2), y(t − 4)},

{x(t − 3), y(t − 1)}, {x(t − 3), y(t − 2)}, {x(t − 3), y(t − 3)}, {x(t − 3), y(t − 4)},

{x(t − 4), y(t − 1)}, {x(t − 4), y(t − 2)}, {x(t − 4), y(t − 3)}, {x(t − 4), y(t − 4)},

{x(t − 5), y(t − 1)}, {x(t − 5), y(t − 2)}, {x(t − 5), y(t − 3)}, {x(t − 5), y(t − 4)},

{x(t − 6), y(t − 1)}, {x(t − 6), y(t − 2)}, {x(t − 6), y(t − 3)}, {x(t − 6), y(t − 4)};

From the above24 models, the model with the least RMSE is chosen as the initial fuzzy model.

In this method the number of membership functions per input can be determined by applying

either the subtractive clustering or the grid partition based technique.

4.3.3 Optimization of the initial fuzzy model

The ANFIS structure of the system which is being modeled is considered as the final model for which

the RMSE is the minimum. The consequent parameters of the initial fuzzy model are updated by us-

ing the Least squares estimation (LSE) algorithm. Similarly, the rules which are obtained from the

clustering or the grid partition based method are updated byneural network which uses back propaga-

tion learning method with gradient descent algorithm. Thisupdation leads to the optimization of the

premise parameters of the fuzzy membership functions to give the final fuzzy model.

4.4 Experimental Data

The data that has been used for the experimental purpose are taken from two different sets.

In the first set the data are taken from the bench mark problem of Box and Jenkins [102]. It comprises
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of the input-output data that are collected from a gas furnace. In the dataset the input is the gas feed

rate to the furnace in cubic feet per minute (ft3/min)and the output is in the form of percentage of

carbon-dioxide (CO2) concentration in the outlet gas.

The second data set comprises of five different data sets thatare obtained by physically visiting a ther-

mal power plant under North East Electric Power Corporation (NEEPCO) Limited situated at Kathal-

guri, Assam, India. This real time data have been collected from the past records maintained by the

power plant authorities in hard form. In the first four data-sets the input is the gas flow rate in cubic

kilometer per hour(km3/hr) and the output is in the form of generated power in Gigawatt (GW). These

are the numerical records of the daily data that the power plant authority records after every half hour.

These were subdivided into four different sets with the halfhourly data covering a few months at dif-

ferent periods of the year.

The power plant authority also keep a record of data on a monthly basis by aggregating the half hourly

data over the whole month. The fifth subset of the thermal power plant data has been collected from

the records of this monthly data. In this subset the input is the gas feed to the plant in Million metric

standard cubic metre (Mmscum)(106m3) and the output is in the form of generated energy in Million

unit (MU), where1 unit = 1 kWh (kilo-watt-hour).

These numerical data in the same form as collected from the plant’s record are analyzed for determin-

ing the different levels and folds for the Full factorial design (FFD) and the V-fold based experiments

respectively. The different levels of the Full factorial design experiments are determined by noting

the numerical values around the highest, lowest, mid-values and cluster centers of the collected data.

Next, these data are used for training and validation of the proposed model. A sample data set that was

collected from the thermal power plant is presented in the Appendix A.

4.5 Experimental Results and Discussion

The ANFIS based model identification method is applied to thewell known example of Box and Jenk-

ins gas furnace data [102]. Next the modeling of a thermal power plant based on real data is considered.

This real time data set has been obtained from a thermal powerplant under North East Electric Power

Corporation (NEEPCO) Limited situated at Kathalguri, Assam,India. The modeling error is calculated

as the difference between the model output and the real system output and either the Mean square error

(MSE) or the Root mean square error (RMSE) has been used as the comparative index. The details of

these experiments and the results obtained are discussed inthe following subsections.
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4.5.1 ANFIS Model for Gas Furnace

In this experiment 296 input-output data pairs from Box and Jenkins [102] gas furnace data are consid-

ered for modeling with ANFIS. In the dataset the inputx(t) is the gas feed rate in cubic feet per minute

(ft3/min)and the outputy(t) is in the form of percentage of carbon-dioxide (CO2) concentration in the

outlet gas.

In order to extract the dynamic process model for the prediction of y(t), 10 candidates are considered

as input variables following standard method [77]. These10 input variables are :

{x(t − 1), x(t − 2), x(t − 3), x(t − 4), x(t − 5), x(t − 6), y(t − 1), y(t − 2), y(t − 3), y(t − 4)}

After converting the data so that each training data considers

{x(t− 1), x(t− 2), x(t− 3), x(t− 4), x(t− 5), x(t− 6), y(t), y(t− 1), y(t− 2), y(t− 3), y(t− 4)},

the number of effective data points reduces to 290. Using a cluster radius ofra = 0.5 [77], the modeling

was started with these ten prospective input candidates in the initial fuzzy model. Consequently in the

final Takagi-Sugeno type fuzzy model which is derived by using Chiu’s [77] input variable selection

method, the number of input variables reduced to2 and the number of rules narrowed down respec-

tively to 3 and4 for the subtractive clustering and the grid based method. The optimally selected input

variables arex(t − 3) andy(t − 1). The final optimized ANFIS model of the gas furnace process is

obtained after the updation of the consequent parameters byLSE algorithm and updation of the premise

parameters by the back propagation gradient descent algorithm. In order to provide the same basis for

comparison with other published results, the entire dataset of 290 input output pairs is used for training.

Fig. 4.4 and Fig. 4.5 show the rules and parameters of the gridpartition based and subtractive clustering

based ANFIS models for the gas furnace data. In Fig. 4.6 the actual output and the output predicted by

the ANFIS model are plotted vs. sample number. In Fig. 4.7 theprediction error of the ANFIS model

for the training data is plotted vs. sample number. Fig. 4.8 shows the RMSE of the ANFIS model

during training vs epochs. The surface graph correspondingto the output is shown in Fig. 4.9.
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Figure 4.4: Rules for the grid partition based ANFIS model when trained with entire data set for the
gas furnace example
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Figure 4.5: Rules for the subtractive clustering based ANFISmodel when trained with entire data set
for the gas furnace example
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Figure 4.6: Actual and ANFIS model predicted output with Box and Jenkins gas furnace data

In Table 4.1 the 2-input based ANFIS model is compared with other models available in literature.

The first7 rows are excerpted from a table in [77]. The comparison showsthat the modeling result of

the gas furnace data has improved with the proposed two inputs subtractive clustering and grid based

ANFIS models as compared with the other models both in terms of the number of rules required and

the RMSE. The proposed grid based model is also showing betterperformance as compared to Chiu’s

two input model [77] but with the requirement of one more rule.

Another experiment was performed using the first half of the Box and Jenkins gas furnace data for

training the neural network and the second half of the data set for validation of the model. Fig. 4.10

shows the rules and parameters of this model. The modeling result is shown in Fig. 4.11 where the

actual output and the output predicted by ANFIS model are plotted vs. sample number.

4.5.2 ANFIS Model for Thermal Power Plant

In this experiment five different data sets, comprising of input-output data pairs collected from the ther-

mal power plant are considered for modeling with ANFIS. In the first four data-sets the inputx(t) is the

gas flow rate in cubic kilometer per hour(km3/hr) and the outputy(t) is in the form of generated power

in Gigawatt (GW). These data sets are based on the daily data collected from the thermal power plant

at an interval of every half hour. These half hourly data havebeen classified into four different data sets

depending on their collection time which is spread over different periods of the year. In the fifth data
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Table 4.1: Comparison of various models derived for the Box andJenkins gas furnace data. The first 7
rows are excerpted from a table in [76]

Sl. No. Model Input variables
Number Model Error
of Rules (mean square)

1 Tong’s Model [1980] x(t − 4), y(t − 1) 19 0.4690

2 Pedrycz’s Model [1984] x(t − 4), y(t − 1) 81 0.3200

3
Xu’s model

x(t − 4), y(t − 1) 25 0.3280
[Xu and Yong 1987]

Takagi-Sugeno model
x(t − 1), x(t − 2),

4
[Sugeno and Tanaka 1991]

x(t − 3), y(t − 1), 2 0.0680
y(t − 2), y(t − 3)

Sugeno’s position-
5 gradient model x(t − 3), x(t − 4) 6 0.1900

[Sugeno and Yasukawa 1993]
Takagi-Sugeno model x(t − 3)

6 [3-input] y(t − 1) 3 0.0720
[Chiu 1996] y(t − 3)

Takagi-Sugeno model
7 [2-input] x(t − 3), y(t − 1) 3 0.1460

[Chiu 1996]
0.1322

3 (subtractive

Proposed model
clustering based)

8
[2-input]

x(t − 3), y(t − 1)
0.1277

4 (grid partition
based)
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Figure 4.7: ANFIS model prediction error for Box and Jenkins gas furnace data

set the inputx(t) is the gas feed to the plant in Million metric standard cubic metre (Mmscum)(106m3)

and the outputy(t) is in the form of generated energy in Million unit (MU), where1 unit = 1 kWh

(kilo-watt-hour). This fifth data set has been collected from the thermal power plant on the basis of the

monthly data for a certain period of time.

The dynamic process model for the above thermal power plant is extracted as in the previous case for

the gas furnace data. The10 candidates which are considered for the input variables arethe following:

{x(t − 1), x(t − 2), x(t − 3), x(t − 4), x(t − 5), x(t − 6), y(t − 1), y(t − 2), y(t − 3), y(t − 4)}

In all the five data sets, modeling of the thermal power plant was considered with these10 prospective

input candidates in the initial fuzzy model. Both the grid partition method and the subtractive clustering

method were applied with a cluster radius ofra = 0.5. The number of input variables finally reduced to

2 and the number of rules narrowed down to4. After the updation of the consequent parameters by LSE

algorithm and updation of the premise parameters by the backpropagation gradient descent algorithm,

the final optimized ANFIS model of the thermal power plant is obtained. The rules of the different

models of ANFIS and their experimental results are shown in Figs. 4.12 – 4.21 where the predicted

output of the ANFIS models are plotted vs. sample number for the five data sets of the thermal power

plant. In addition, the fuzzy rules and the parameters of themodels for the thermal power plant data

sets are also given.
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Figure 4.9: Output surface of the data for Box and Jenkins gas furnace example
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Figure 4.10: Rules for the ANFIS model when trained with half of the data set for the gas furnace
example

Case 1: Modeling Results for the first set of the thermal power plant data with ANFIS

In this experiment the data set comprises of1405 input-output pairs which finally reduced to1399 ef-

fective data pairs as a result of the dynamic process model under consideration [77]. Here the optimally

selected input variables arex(t− 6) andy(t− 1). The number of rules required finally narrowed down

to 2 and4 respectively for the clustering and the grid based method. Fig. 4.12 shows the rules and

parameters for this model. In this example the first699 data pairs are used for training purpose with the

remaining half being used for validation. The actual outputand the ANFIS model’s predicted output

for this data set is plotted against sample number as shown inFig. 4.13.

Case 2: Modeling Results for the second set of the thermal power plant data with ANFIS

In this experiment the data set comprises of1357 input-output pairs which finally reduced to1351

effective data pairs [77]. The optimally selected input variables arex(t− 3) andy(t− 1). The number

of rules required finally narrowed down to2 and4 respectively for the clustering and the grid partition

based method. Fig. 4.14 shows the rules and parameters for this model. In this example the first675

data pairs are used for training purpose while the other halfis used for testing purpose. The modeling

result for this data-set is shown in Fig. 4.15.
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Figure 4.11: Actual and ANFIS model predicted output with Boxand Jenkins gas furnace data

Case 3: Modeling Results for the third set of the thermal powerplant data with ANFIS

In this experiment the data set comprises of1432 input-output pairs which finally reduced to1426

effective data pairs [77]. Here the optimally selected input variables arex(t − 1) andy(t − 1). The

number of rules required finally narrowed down to3 and4 respectively for the clustering and the grid

based method. Fig. 4.16 shows the rules and parameters for this model. In this example the first half of

the713 data pairs are used for training and the remaining713 data pairs are used for testing purpose.

The modeling result with this data-set is shown in Fig. 4.17.

Case 4: Modeling Results for the fourth set of the thermal power plant data with ANFIS

In this experiment the data set comprises of994 input-output pairs which finally reduced to988 effec-

tive data pairs as a result of the dynamic process model [77].Here the optimally selected input variables

arex(t − 1) andy(t − 1). The number of rules required finally narrowed down to2 and4 respectively

for the clustering and the grid based method. Fig. 4.18 showsthe rules and parameters for this model.

In this example the first494 data pairs are used for training the model and the next494 data pairs are

used for testing purpose. The modeling result for this data-set is shown in Fig. 4.19.
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Figure 4.13: Actual and ANFIS model predicted output with the data set-I for thermal power plant
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Figure 4.14: Rules for the ANFIS model when trained with half of the data set-II for the thermal power
plant example
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Figure 4.15: Actual and ANFIS model predicted output with the data set-II for thermal power plant
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Figure 4.16: Rules for the ANFIS model when trained with half of the data set-III for the thermal power
plant example
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Figure 4.17: Actual and ANFIS model predicted output with the data set-III for thermal power plant
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Figure 4.18: Rules for the ANFIS model when trained with half of the data set-IV for the thermal power
plant example
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Figure 4.19: Actual and ANFIS model predicted output with the data set-IV for thermal power plant
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Figure 4.20: Rules for the ANFIS model when trained with half of the data set-V for the thermal power
plant example

Case 5: Modeling Results for the fifth set of the thermal power plant data with ANFIS

In this experiment the data set comprises of645 input-output pairs which finally reduced to639 effective

data pairs as a result of the dynamic process model [77]. Herethe optimally selected input variables

arex(t − 1) andy(t − 1). The number of rules required finally narrowed down to2 and4 respectively

for the clustering and the grid based method. Fig. 4.20 showsthe rules and parameters for this model.

In this example the first320 data pairs are used for training the model and the next319 data pairs are

used for validation purpose. The validation result for thisdata-set are shown in Fig. 4.21.

For the above experiments, initially, the first half of the data set and then the entire data set is used

for training the model and the remaining half of the data set is used for validation of the model. The

modeling results with our 2-input based ANFIS model using the Box and Jenkins gas furnace and the

thermal power plant data are tabulated in Table 4.2. It is observed that when the number of training

data is more the RMSE of the test data reduces.

4.6 Conclusions

In this chapter, the neuro-fuzzy modeling of systems using ANFIS has been demonstrated using the

input-output data pairs collected from the Box and Jenkins gas furnace example and a thermal power

plant. The modeling results obtained by using the gas furnace data are compared with some of the

existing results in Table 4.1. In order to keep the same platform for comparing the results with some of
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Figure 4.21: Actual and ANFIS model predicted output with the data set-V for thermal power plant

Table 4.2: Modeling results for the Box and Jenkins gas furnace data and the thermal power plant data
using ANFIS

Sl. No. Data
Max

Input variables
No of

RMSE (testing)

No of training
(Grid (Subtractive

rules data
partition clustering
based) based)

1
Box and Jenkins

4 x(t − 3), y(t − 1)
145 0.5382 0.5724

gas furnace 290 0.3574 0.3636

2
Thermal power plant

4 x(t − 6), y(t − 1)
699 0.0114 0.0111

(Data set-I) 1399 0.0108 0.0110

3
Thermal power plant

4 x(t − 3), y(t − 1)
675 0.0118 0.0111

(Data set-II) 1351 0.0085 0.0089

4
Thermal power plant

4 x(t − 1), y(t − 1)
713 0.0081 0.0076

(Data set-III) 1426 0.0072 0.0071

5
Thermal power plant

4 x(t − 1), y(t − 1)
494 0.0037 0.0035

(Data set-IV) 988 0.0033 0.0034

6
Thermal power plant

4 x(t − 1), y(t − 1)
320 0.5591 0.5361

(Data set-V) 639 0.4725 0.5176
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the existing modeling results obtained from the first 7 rows as excerpted from a table in [77], the entire

gas furnace data set is used for training the network. From the modeling results shown in Table 4.1,

it can be observed that the mean square error (MSE) of the model obtained by using the subtractive

clustering based ANFIS is less than the two input Takagi-Sugeno model proposed by Chiu [77]. The

MSE for this model obtained by using the grid partitioning based ANFIS model is also less than that

obtained by using Chiu’s [77] model at the expense of only one more rule. As the addition of one

more rule has a very negligible effect on the computational cost, the model may be considered to be

comparable to the most accurate model. The modeling resultsof the Box and Jenkins gas furnace and

the thermal power plant are shown in Figs. 4.10 - 4.21. These results show that the2-input ANFIS

model has good prediction capability. Table 4.2 representsthe modeling results of the Box and Jenkins

gas furnace and the thermal power plant data using at first theinitial half and then the entire data set

for training. From the results it can be concluded that the RMSE of the ANFIS based model reduces as

the number of training data increases. In the ANFIS model, back propagation learning method is used

for training the neural network for optimization of the fuzzy rules. A sufficient number of data should

be used to guarantee good training. There is still no formulato estimate the number of data required to

train a neural network. This number can vary greatly depending on the complexity of the problem and

the quality of the data, but many neural networks have been trained successfully with smaller number

of data. However, it is not always possible to find the number of training data in abundance. Here the

optimal selection of the data set is a major issue which is still a challenge in the field of neural networks.

In the present work, an effort is made in that direction keeping in mind the need for the choice of an

optimal training data set for the purpose of modeling. In theprevious section, the modeling results

of the conventional ANFIS model are shown where the trainingdata set comprises of either the entire

portion or half of the available data set. The proposed ANFISmodel with the optimal choice of the

modeling data for training the ANFIS model is the topic of discussion in the next chapter.



Chapter 5

Optimal Data based ANFIS Modeling

In Chapter 4 it has been observed that the performance of the ANFIS based model improves as the

number of training data increases. But in many large scale systems the number of available training

data is less and the generation of new data is a costly affair.In such a scenario the system has to be

modeled with the available limited data only. This chapter proposes three different types of ANFIS

based system modeling schemes where the number of data pairsemployed for training is minimized by

application of the Full factorial design (FFD) technique, the V-fold technique and the combined FFD-

V-fold technique in conjunction with ANFIS. Optimal choiceof dataset for training is the key step here,

subsequent to which the modeling procedure is the the same asthat of the ANFIS. These techniques

help in selection of the data pairs for training the ANFIS network optimally. The above techniques for

optimization of the training data set are described in the subsequent sections.

5.1 Full Factorial Design Based ANFIS Modeling

The statisticians and engineers can make a combined effort to reap the maximum benefit from statistical

analysis. For achieving this objective the experiments canbe planned in advance to ensure that the

proper choice of experimental data can be made in a way that will provide the most unbiased and

precise results commensurate with the desired expenditureof time and money. But in many complex

systems the number of available training data for modeling is less. In that case, the available data have

to be optimally used for training. In this section a system modeling scheme is presented where out

of the available data set, a small number of data is critically chosen based on a statistically designed

experiment. This statistical design method is called the Full factorial design (FFD) [135, 136]. The

full factorial design method is used to select data optimally from the available data set for training the

54
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ANFIS.

There are manifold advantages of statistically designed experiments. Some of the important advantages

are as follows:

• As compared to unplanned experimentation more informationper experiment can be extracted

• The collection and analysis of information can be done in a more organized manner

• The conclusion from statistically designed experiments isvery often evident without extensive

statistical analysis

• Credibility is awarded to the conclusions of an experimentalanalysis when the variability and the

sources of experimental error are based on statistical analysis

• These experiments can discover the interaction between experimental variables

For an experimental program involving a large number of tests, the order of selecting the specimens for

testing has to be randomized so that each specimen has an equal chance for being selected for testing.

The next step is to reduce the large number of possible variables so as to restrict the variables to a few

most important ones. The training of the neural network can be visualized as an experiment involving

a large number of tests for optimization. An important part of planning an experimental programme

is to identify the important variables that affect the response and deciding how to exploit them in the

experiment. The experimental variables that are controlled by the investigator are called the factors.

The important factors that affect the response have to be identified to use them in the experiment.

These factors may be independent i.e the level of one factor may be independent of the levels of the

other factors. But the effect on the response of one variable may also depend upon the levels of the

other variables due to the interaction of two or more factors.

Factorial designs are experiments in which all levels of each factor in an experiment are combined with

all levels of every other factor. In a factorial experiment several factors can be controlled to investigate

their effect at each of two or more levels. The experimental design consists of making an observation

at each of all possible combinations which can be formed for the different levels of the factors. Every

different combination is called a treatment combination.

The simplest and most common type of factorial design is one that uses2 levels,n factors, i.e. 2n

factorial design. If we consider a2 level,n factor system, training data have to be selected so that they

lie at each of the corners of an -dimensional space. So in a23 factorial design the training data should
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Figure 5.1: Selection of training data in a23 factorial design

be selected such that they lie at each corner of a3-dimensional hypercube as illustrated in Fig. 5.1. A

2n factorial design is the simplest type of factorial design asit uses two levels and thereby reduces the

number of experimental conditions. But the disadvantage that is associated with a two level factorial

design is its inability to distinguish between linear and higher order effects. So the number of levels in

a factorial design experiment has to be judiciously chosen.

In addition to the number of levels, the Effect of a factor (EOF) has a significant bearing on the

modelling outcome. Effect of a factor may be defined as a change in response produced by a change in

the level of a factor and is given by,

EOF (xi) =

∑
responses at highxi −

∑
responses at lowxi

Half the number of runs in experiment
(5.1.1)

wherexi is a factor. The values of the factors corresponding to the level are called its responses. If

m is the number of levels andn is the number of factors, then there will bemn number of runs in the

experiment.

In the present experiments only two factors have been considered where the input and the output are
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the two factors. The different levels that have been considered in the experiments areviz 2, 3 and 4.

When3 level experiment is considered then there are32 = 9 number of runs of the experiment. Once

the runs for the factors are decided, the corresponding responses are divided into two equal groups in

descending order of their values. The differences between the sum of the responses of each individual

group determines the numerator of the EOF. This value, when divided by half the number of runs fixes

the value of the EOF.

So a parameter having a higher EOF should have a greater representation on the training data set.

This is done by increasing the number of data related to that parameter in the training data set. As the

modeling of all the ANFIS based models has been carried out with two inputs, the FFD experiments

are performed with two factors only with different experimental levels. The FFD based ANFIS model

chosen for modeling the complex system is the one with the level having the least RMSE for its model-

ing result. The different experimental levels that have been used in the modeling schemes for building

the test ANFIS network are as follows:

• 2-level full factorial design

At first only two levels viz the minimum and the maximum of the input-output data pairs are

considered. Therefore with full factorial design at first only 22 = 4 data pairs are selected. These

4 data pairs are taken around the minimum and the maximum input-output pairs with equal

representation (2 pairs around minimum and 2 pairs around maximum).

• 3-level(1) full factorial design

Now one more level in the form of the mid-value of the data range is added to the former two

levels. So now the 3 levels are the minimum, the maximum and the middle values of the data

range. It leads to factorial design of32 = 9 data pairs for the first run.

• 3-level(2) full factorial design

For another 3-level combination the cluster center is addedinstead of the mid-value of the data

range in the previous experiment. It again leads to factorial design of32 = 9 data pairs initially.

• 4-level full factorial design

Another experiment is performed by taking all the 4 different levels of the dataset viz the max-

imum and the minimum values, the middle value of the data range and the cluster center. This
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leads to factorial design of42 = 16 data pairs for the first run.

5.2 V-Fold Technique Based ANFIS Modelling

This section presents another ANFIS based complex system modelling method where the number of

data pairs employed for training the ANFIS network can be chosen by application of a technique called

the V-fold technique [137–139]. This method can be used whenthe number of available training data

are less.

V-fold cross validation technique is a highly accurate method for training a neural network and it has

the advantage of not requiring a separate, independent dataset for assessing the accuracy of the neural

network. If a network is built using a specific learning dataset, it is necessary to have test data samples

independent of the learning dataset that was used to train the network. However, it is difficult or

expensive to obtain independent test data frequently and moreover it is undesirable to hold back data

from the learning dataset to use for a separate test because that weakens the learning dataset. V-fold

cross validation is a technique for performing independenttests without requiring separate test datasets

and without reducing the data used to build the network.

The general idea of this method is to divide the overall sample into a number of folds, say V. The same

type of analysis is then successively applied to the observations belonging to all the V-1 folds (training

samples), and the results of the analysis are applied to the testing sample, which is the Vth sample (the

sample or fold that was not used). This is repeated until V random samples are drawn from the data

for the analysis. The results for the V replications are aggregated (averaged) to yield a single measure

of the stability of the respective model, i.e. the validity of the model for predicting new observations.

Thus, this technique allows the analyst to evaluate the overall accuracy of the respective prediction

model or method in repeatedly drawn random samples. Here thetraining and validation process using

the V-fold technique for building an ANFIS model process areaccomplished as follows :

The learning dataset is partitioned into a number of groups called “folds”. The partitioning is done using

stratification methods so that the distribution of categories of the target variable are approximately the

same in the partitioned groups. In “V-fold cross classification” V is the number of groups that the

dataset is partitioned into. Research has established that10 partitions are optimum and using more than

10 partitions does not yield any significant improvement in results [137–139]. As such10 partitions are

formed in the experiment. Out of these10 partitions,9 are grouped into a new pseudo-learning dataset.

An ANFIS model is built using this pseudo-learning dataset.The quality of the network built with this
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new pseudo-learning data set will in general, be a little inferior to the model obtained by fitting the full

learning dataset, because only90% of the data is used to build it. Since10% (1 out of10 partitions) of

the data is held back from being used by the network, it can be used as an independent test sample for

the ANFIS. The10% of the data that was held back when the test ANFIS was built isnow run through

the test network and the classification error for that data iscomputed.

A different set of9 partitions is now collected into a new pseudo-learning dataset. The partition that

was held back previously is selected this time so that it is different from the partition held back for the

first test ANFIS. A second ANFIS is built and its classification error is computed using the data that

was held back when it was built. This process is repeated10 times, building10 separate networks. In

each case,90% of the data is used to build the network and10% is held back for independent testing.

A different 10% is held back for each test network. The V-fold based ANFIS model showing the least

modeling error is considered as the final model for the system.

5.3 FFD-V-fold Based ANFIS Modeling

In this proposed modeling scheme the full factorial design and the V-fold methods have been combined

together to generate the optimal data set for training the ANFIS model. This model is basically a

V-fold based ANFIS model where the full factorial design method is used to determine the data for

the different folds. The use of the full factorial design method also ensures that similar kind of data

are selected to the same folds of the V-fold based ANFIS model. This combined method presents a

systematic way of choosing and grouping the data for formingthe different folds for the V-fold based

ANFIS model. The flow chart for this method is drawn in Fig. 5.2.

5.4 Experimental Results and Discussion

In the experiment the same data sets which were used in the previous chapter have been used for

modeling. These data are the Box and Jenkins gas furnace data and the NEEPCO thermal power plant

data. From these available data sets the data for training the subtractive clustering and the grid partition

based ANFIS models are chosen optimally by applying the Fullfactorial design and the V-fold based

techniques. While using the subtractive clustering method acluster radius of0.5 was selected to extract

the initial fuzzy model. The results and observations have been presented in the subsequent subsections.
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Figure 5.2: Flow Chart for the FFD-V-fold Technique

5.4.1 Modeling results with Full factorial design based ANFIS model

The optimally selected data obtained by applying the full factorial design technique have been used in

these experiments to train the ANFIS model. While training the ANFIS model, the effect of selecting

an input variablexi corresponding to different levels in the range of operationof the input variable

is investigated. Considering the input-output pairs(xi, yi) and2, 3 and4 levels of operation, the ob-

tained factorially designed data are22, 32 and42 respectively for use in training. These experiments are

described below:

Case 1:- Modeling with Box and Jenkins gas furnace data

The Box and Jenkins gas furnace data [102] are used in this experiment. Optimal choice of dataset for

training is the key step here subsequent to which the modelling procedure is the same as that of ANFIS.

In this case,x(t − 3) andy(t − 1) were found to be the optimal input variables by using the RMSE

criterion. So these two inputs are used in the ANFIS model. The method for choosing the number of

modeling data for the different levels of the FFD based models is explained below.
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• 2-level full factorial design

Considering only the minimum and the maximum values of the input-output data pairs, at first

only 22 = 4 data pairs are selected. These4 data pairs are taken around the minimum and the

maximum valued input-output pairs with equal representation (2 pairs around the minimum and

2 pairs around the maximum). Now EOF for bothxi andyi (from Eq. 5.1.1) are calculated and

found to be1 for both the cases. So4 (1 each around the minimum and the maximum values of

bothxi andyi ) additional data pairs are now needed and these are taken around the minimum and

the maximum valued input-output data pairs. Again EOF is calculated and is found to be1. So4

additional data pairs are now selected around the minimum and the maximum input-output pairs

with equal representation (2 pairs around the minimum and2 pairs around the maximum) for

making a balanced representation of data around the minimumand the maximum values. EOF is

again calculated and is found to be1. Therefore4 more input-output data pairs are taken around

the minimum and the maximum of the input-output pairs. Finally 4 + 4 + 4 + 4 = 16 data pairs

are selected for training.

• 3(1)-level full factorial design

Now one more level in the form of the mid-value of the data range is added to the former two

extreme levels. So now the 3 levels are the minimum, the maximum and the middle value of

the data range. It leads to factorial design of32 = 9 data pairs. Proceeding in a similar manner

as in the 2-level case, EOF values of2, 1 and1 are obtained foryi, xi and both ofxi andyi

respectively, in 3 successive evaluations. So 6 (2 each around yi of the minimum, the maximum

and the centroid), 3 (1 each aroundxi of the minimum, the maximum and the centroid) and 6 (1

each aroundxi andyi of the minimum, the maximum, and the centroid) additional data pairs are

required. Therefore for this experiment9 + 6 + 3 + 6 = 24 data pairs are used for training.

• 3(2)-level full factorial design

For another 3-level combination the cluster centers are added instead of the mid-value of the data

range which was the case in the previous experiment. After three successive evaluations of the

32 = 9 data pairs, EOF values of 1, 1 and 1 are obtained forxi. Therefore in this factorially

designed experiment additional data pairs of 4, 4 and 4 have to be considered, thereby requiring

a total of9 + 4 + 4 + 4 = 21 data pairs for training.
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• 4-level full factorial design

Another experiment is performed by taking all the 4 different levels of the data set viz the mini-

mum, the maximum, the middle value of the data range the cluster center. After three successive

evaluations on the42 = 16 data pairs, EOF values of 1, 1 and 1 are obtained foryi, xi and(xi, yi)

of the different levels. Therefore with1 data pair each around the minimum, the maximum, the

centroid and each of the two cluster centers foryi, xi and(xi, yi), a value of5, 5 and10 additional

data pairs are taken making a total number of16 + 5 + 5 + 10 = 36 training data pairs.

Case 2:- Modeling with thermal power plant data

(i) Data set-I

The first set of the NEEPCO’s thermal power plant data is used inthis experiment. In this case,x(t−6)

andy(t−1) are used in the ANFIS model as they were found to be the optimalinput variables by using

the RMSE criterion. The procedure for choosing the optimal number of training data is given below.

• 2-level full factorial design

Considering only the minimum and the maximum valued input-output data pairs, only22 = 4

data pairs are selected initially. After three successive evaluations, EOF values of 1, 1 and 1

were obtained for the two successive(xi , yi) values and lastly foryi. Therefore with 4, 4 and 2

additional data pairs, a total of4 + 4 + 4 + 2 = 14 input-output pairs are used for training.

• 3(1)-level full factorial design

Now with the addition of one more level in the form of the mid-value of the data range to the

former two levels, a factorial design of32 = 9 data pairs, comprising of the minimum, the maxi-

mum and the middle value of the data range is obtained. Again after two successive evaluations

for yi, the values of EOF obtained are 2 and 3 respectively. So with the inclusion of 6 and 9

additional data pairs, a total of9 + 6 + 9 = 24 input-output pairs are used in this experiment for

training.

• 3(2)-level full factorial design

For another 3-level combination the cluster center is addedinstead of the mid-value of the data

range. After three successive evaluations of the32 = 9 data pairs, EOF values of 1,1 and 2 are



5.4. EXPERIMENTAL RESULTS AND DISCUSSION 63

obtained foryi. Therefore in this factorially designed experiment,9+4+4+8 = 25 input-output

data pairs are used for training.

• 4-level full factorial design

Another experiment is performed by taking all the 4 different levels of the dataset, viz the max-

imum and the minimum values, the middle value of the data range and the cluster center. After

two successive evaluations on the42 = 16 data pairs, EOF values of 1 and 2 were obtained for

(xi, yi). So with10 and20 additional data pairs,16 + 10 + 20 = 46 input-output data pairs are

used for training.

(ii) Data set-II

The second set of the thermal power plant data was used in thisexperiment. In this case,x(t − 3) and

y(t−1) were found to be the optimal input variables. So these two inputs are used in the ANFIS model.

The number of data pairs required for the different levels ofthe experiment are explained below.

• 2-level full factorial design

Here at first22 = 4 data pairs are selected considering the minimum and the maximum values of

the input-output data pairs. With three successive evaluations of EOF, the values obtained are 1, 1

and 1 respectively for(xi, yi). So the total number of data used for training are4+4+4+4 = 16.

• 3(1)-level full factorial design

Starting with32 = 9 data pairs initially for the three levels of the maximum, theminimum and

the mid-values of the data pairs, the values of EOF obtained are 1, 1 and 1 after three successive

evaluations for(xi, yi). So a total of9 + 6 + 6 + 6 = 27 data pairs are used for training in the

ANFIS model.

• 3(2)-level full factorial design

With 32 = 9 data pairs used initially for the minimum, the maximum, and the cluster center

levels, after three successive evaluations the values of EOF found are 1, 1 and 1 forxi, (xi, yi)

andyi. This results in a total number of9 + 4 + 8 + 4 = 25 training data pairs.

• 4-level full factorial design
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Starting initially with42 = 16 data pairs and evaluating the EOF after two successive runs,the

values of 2 and 1 are obtained foryi and(xi, yi) respectively. Therefore the total number of data

pairs used for training is16 + 10 + 10 = 36.

(iii) Data set-III

In the third set of the thermal power plant data,x(t − 1) andy(t − 1) were found to be the optimal

inputs. The number of training data chosen for the differentmodels are shown below.

• 2-level full factorial design

With 22 = 4 data pairs chosen initially and EOF values of 1, 1 and 1 for(xi, yi) respectively, the

training for this model was carried out with4 + 4 + 4 + 4 = 16 data pairs.

• 3(1)-level full factorial design

Starting with32 = 9 data pairs and EOF values of 1, 1 and 1 for(xi, yi), a total of9+6+6+6 = 27

training data are used for training the ANFIS model.

• 3(2)-level full factorial design

In this experiment, with32 = 9 data taken initially, the values of EOF are obtained as 1, 1 and 1

respectively for(xi, yi). So the total number of data pairs used is9 + 8 + 8 + 8 = 33.

• 4-level full factorial design

With 42 = 16 data pairs selected initially, the evaluated values of EOF are 1, 1 and 1 for input-

output pair(xi, yi). So the total number of data pairs used in training is16 + 10 + 10 + 10 = 46.

(iv) Data Set-IV

In the fourth set of the thermal power plant data,x(t− 1) andy(t− 1) were found to be optimal inputs.

The number of modeling data chosen for the different models are as follows.

• 2-level full factorial design

With 22 = 4 data pairs selected initially and computed EOF values of 1, 1and 2 for two suc-

cessive evaluations of(xi, yi) andyi, the total number of data pairs used in training the ANFIS

model is4 + 4 + 4 + 4 = 16.
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• 3(1)-level full factorial design

Starting with32 = 9 pairs of initial data and corresponding EOF values of 1, 1 and1 for (xi, yi),

the total number of data pairs needed for training is9 + 6 + 6 + 6 = 27.

• 3(2)-level full factorial design

For this experiment, EOF values of 1, 1 and 1 were obtained for32 = 9 initial data foryi and

then for two successive input-output pairs(xi, yi). Hence the number of data pairs required for

training is9 + 4 + 8 + 8 = 29.

• 4-level full factorial design

For this case, the values of EOF forxi, (xi, yi) andyi are 1, 1 and 1 for42 = 16 input-output data

pairs. Therefore the ANFIS model requires16 + 5 + 10 + 5 = 36 data pairs.

(V) Data set-V

In the fifth set of the thermal power plant data,x(t − 1) andy(t − 1) were found to be optimal and

hence are used in our model.

• 2-level full factorial design

Using22 = 4 number of data initially, the EOF values obtained are 1, 1 and1 for (xi, yi). This

resulted in the requirement of4 + 4 + 4 + 4 = 16 data pairs for training.

• 3(1)-level full factorial design

The calculated values of EOF obtained for32 = 9 data pairs for two successiveyi and(xi, yi)

are 2, 2 and 1 respectively . So9 + 6 + 6 + 6 = 27 data pairs are needed for training.

• 3(2)-level full factorial design

With 32 = 9 initial data pairs, the values of EOF obtained are 1, 1 and 1 for (xi, yi). For these

values of EOF, the total number of data pairs required for training is9 + 8 + 8 + 8 = 33.

• 4-level full factorial design

Here42 = 16 input-output data pairs are chosen initially. Corresponding values of EOF are 1, 1

and 1 for(xi, yi). Therefore the number of data pairs needed for training is16+10+10+10 = 46.

The modeling results so obtained with the FFD based ANFIS model for the Box and Jenkins gas furnace

and the thermal power plant data are tabulated in Table 5.1. Here the ANFIS model used is of 2-input

4-rule type with the FFD based optimally selected data for training. The second half of the data set is

used for validation of the model.
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Table 5.1: Modeling results for the Box and Jenkins gas furnace data and the thermal power plant data
using FFD based ANFIS

Sl. No. Data Input variables
No of

RMSE (testing)

No of Model training
(Grid (Subtractive

rules FFD data
partition clustering
based) based)

1

Box and

x(t − 3), y(t − 1) 4

2-level 16 0.6473 0.6437
Jenkins 3(1)-level 24 0.7254 0.6875

gas 3(2)-level 21 0.5607 0.6229
furnace 4-level 36 0.5589 0.5972

2

Thermal

x(t − 6), y(t − 1) 4

2-level 14 0.0264 0.0275
power plant 3(1)-level 24 0.0152 0.0205

(Data 3(2)-level 25 0.0216 0.0117
set-I) 4-level 46 0.0151 0.0125

3

Thermal

x(t − 3), y(t − 1) 4

2-level 16 0.0175 0.0200
power plant 3(1)-level 27 0.0125 0.0095

(Data 3(2)-level 25 0.0140 0.0119
set-II) 4-level 36 0.0097 0.0090

4

Thermal

x(t − 1), y(t − 1) 4

2-level 16 0.0107 0.0175
power plant 3(1)-level 27 0.0109 0.0106

(Data 3(2)-level 33 0.0090 0.0083
set-III) 4-level 46 0.0099 0.0095

5

Thermal

x(t − 1), y(t − 1) 4

2-level 16 0.0038 0.0036
power plant 3(1)-level 27 0.0041 0.0036

(Data 3(2)-level 29 0.0036 0.0035
set-IV) 4-level 36 0.0061 0.0053

6

Thermal

x(t − 1), y(t − 1) 4

2-level 16 0.5890 0.9613
power plant 3(1)-level 27 0.6956 0.5714

(Data 3(2)-level 33 1.0259 0.5347
set-V) 4-level 46 0.8392 0.9149
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5.4.2 V-fold technique based ANFIS model

In the following experiment the V-fold method is used to choose the data set for training the ANFIS

model. After the selection of the data for the different folds, which is around one-eighth of the training

data used in the conventional model, the results so obtainedare presented below.

Case 1:- Modeling with Box and Jenkins gas furnace data

The data set for the Box and Jenkins gas furnace example is again used for modeling the V-fold based

ANFIS. The optimal inputs so chosen arex(t − 3) andy(t − 1) along with a cluster center of0.5. The

different folds for applying the V-fold technique were constituted with18 data pairs which is around

one-eighth of the145 input-output pairs used for training the conventional ANFIS model.

Case 2:- Modeling with thermal power plant data

(i) Data set-I

With x(t−6) andy(t−1) as the optimal inputs and a cluster center of0.5 for the subtractive clustering

method, the modeling is carried out with81 data pairs, which is around one-ninth of the699 data pairs

required in the conventional ANFIS model.

(ii) Data set-II

Here modeling is carried out with72 data pairs which is around one-ninth of the675 input-output data

pairs . The optimal inputs arex(t − 3) andy(t − 1).

(iii) Data set-III

The optimal inputs for this model arex(t − 1) andy(t − 1). For this data set the V-fold based ANFIS

model is built with about one-tenth of the713 input-output data pairs i.e72 data pairs.

(iv) Data set-IV

For this data set,x(t − 1) andy(t − 1) are found to be the optimal inputs. The V-fold based ANFIS

model is built with72 data pairs which is around one-seventh of494 data pairs.

(v) Data set-V

Here the optimal inputs arex(t − 1) andy(t − 1). For the purpose of modeling, around one-ninth of

320 i.e 36 input-output data pairs are chosen.

The modeling results obtained by using the V-fold techniquebased ANFIS model are tabulated in

Table 5.2.
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Table 5.2: Modeling results for the Box and Jenkins gas furnace data and the thermal power plant data
using V-fold based ANFIS model

No of
Number

RMSE (testing)
Sl. No. Data training Input variables

of rules
(Grid partition (Subtractive

data based) clustering based)

1
Box and
Jenkins 18 x(t − 3), y(t − 1) 4 0.5943 0.5556

gas furnace
Thermal

2 power plant 81 x(t − 6), y(t − 1) 4 0.0110 0.0115
(Data set-I)

Thermal
3 power plant 72 x(t − 3), y(t − 1) 4 0.0092 0.0104

(Data set-II)
Thermal

4 power plant 72 x(t − 1), y(t − 1) 4 0.0078 0.0082
(Data set-III)

Thermal
5 power plant 72 x(t − 1), y(t − 1) 4 0.0034 0.0036

(Data set-IV)
Thermal

6 power plant 36 x(t − 1), y(t − 1) 4 0.6508 0.6097
(Data set-V)

5.4.3 Modeling results with FFD-V-fold technique based ANFIS model

The V-fold technique is now combined with the FFD based ANFIS. The following experiments are

carried out with this combined model.

Case 1:- Modeling results for Box and Jenkins gas furnace data

The optimally selected data set obtained from the Box and Jenkins gas furnace data set is used for

modeling at various levels like 2-level, 3(1)-level, 3(2)-level and 4-level. The modeling is carried out

by using both the grid partition based method and subtractive clustering technique by choosing a cluster

radius of0.5. The best modeling result is observed in the case of the 2-level FFD-V-fold based ANFIS

model both for the grid and the subtractive clustering basedmodels by usingx(t − 3) andy(t − 1) as

the two optimal inputs.

Case 2:- Modeling results for the thermal power plant data

(i) Data set-I

Here the modeling is carried out by usingx(t− 6) andy(t− 1) as the two optimal inputs. For this data



5.4. EXPERIMENTAL RESULTS AND DISCUSSION 69

set the best result was obtained for the 2-level FFD-V-fold based ANFIS model.

(ii) Data set-II

The two optimal inputs used here arex(t − 3) andy(t − 1). The 3(1)-level FFD-V-fold based ANFIS

model produced the best result.

(iii) Data set-III

The optimal inputs used here for modeling arex(t − 1) andy(t − 1). The FFD-V-fold based ANFIS

model with the 3(2) level showed the least MSE.

(iv) Data set-IV

Herex(t − 1) andy(t − 1) are the optimal inputs used for modeling and the least MSE wasobtained

for the 2-level FFD-V-fold based ANFIS model.

(vi) Data set-V

Here the modeling is carried out by using the optimal inputsx(t − 1) andy(t − 1). The 3(1)-level

FFD-V-fold based ANFIS model shows the least MSE.

The results obtained by using the combined FFD-V-fold technique based ANFIS model are tabulated in

Table 5.3. In Table 5.4, the results obtained by using the different models viz conventional ANFIS, FFD

based ANFIS, V-fold based ANFIS and FFD-V-fold based ANFIS are compared with respect to their

RMSE. From Table 5.4, it is observed that the best modeling results are obtained with the FFD-V-fold

based ANFIS model as the RMSE (testing) is the least in this case for all the different types of data.

The modeling results for the different data sets as obtainedby using different modeling methodologies

are shown in Figs. 5.3 - 5.8. In Fig. 5.3 the actual output is plotted vs the predicted output for the

FFD-V-fold based ANFIS model using the Box and Jenkins gas furnace data. Fig. 5.4 shows the actual

and the predicted output for the FFD-V-fold based ANFIS model using the data set-I for the thermal

power plant. Fig. 5.5 shows the actual and the predicted output for the FFD-V-fold based ANFIS model

using the data set-II for the thermal power plant. Fig. 5.6 shows the actual and the predicted output for

the FFD-V-fold based ANFIS model using the data set-III for the thermal power plant. Fig. 5.7 shows

the actual and the predicted output for the FFD-V-fold basedANFIS model using the data set-IV for

the thermal power plant. Fig. 5.8 shows the actual and the predicted output for the FFD-V-fold based

ANFIS model using the data set-V of the thermal power plant.
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Table 5.3: Modeling results for the Box and Jenkins gas furnace data and the thermal power plant data
using FFD-V-fold based ANFIS

Sl. No. Data Input variables
No of Model No of

RMSE (testing)

rules FFD-V-fold training
(Grid (Subtractive

data
partition clustering
based) based)

1

Box and

x(t − 3), y(t − 1) 4

2-level 18 0.5378 0.5332
Jenkins 3(1)-level 18 0.5705 0.6017

gas 3(2)-level 18 0.6153 0.5373
furnace 4-level 18 0.5627 0.5684

2

Thermal

x(t − 6), y(t − 1) 4

2-level 81 0.0110 0.0108
power plant 3(1)-level 81 0.0116 0.0109

(Data 3(2)-level 81 0.0109 0.0112
set-I) 4-level 81 0.0112 0.0114

3

Thermal

x(t − 3), y(t − 1) 4

2-level 72 0.0092 0.0092
power plant 3(1)-level 72 0.0086 0.0089

(Data 3(2)-level 72 0.0091 0.0093
set-II) 4-level 72 0.0088 0.0091

4

Thermal

x(t − 1), y(t − 1) 4

2-level 72 0.0084 0.0079
power plant 3(1)-level 72 0.0082 0.0080

(Data 3(2)-level 72 0.0076 0.0075
set-III) 4-level 72 0.0083 0.0082

5

Thermal

x(t − 1), y(t − 1) 4

2-level 72 0.0033 0.0034
power plant 3(1)-level 72 0.0036 0.0035

(Data 3(2)-level 72 0.0035 0.0035
set-IV) 4-level 72 0.0035 0.0036

6

Thermal

x(t − 1), y(t − 1) 4

2-level 36 0.5740 0.5293
power plant 3(1)-level 36 0.5687 0.5118

(Data 3(2)-level 36 0.6651 0.5900
set-V) 4-level 36 0.5174 0.5312
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Table 5.4: Comparison of modeling results for the Box and Jenkins gas furnace data and the thermal
power plant data using various ANFIS models

Sl. No. Data Input variables
No of

RMSE (testing)

No of Model training
(Grid (Subtractive

rules data
partition clustering
based) based)

1

Box and

x(t − 3), y(t − 1) 4

ANFIS 145 0.5382 0.5724
Jenkins FFD 18 0.5589 0.5972

gas V-Fold 18 0.5943 0.5556
furnace FFD-V-fold 18 0.5378 0.5332

2

Thermal

x(t − 6), y(t − 1) 4

ANFIS 699 0.0114 0.0111
power plant FFD 46, 25 0.0151 0.0117

(Data V-Fold 81 0.0110 0.0115
set-I) FFD-V-fold 81 0.0109 0.0108

3

Thermal

x(t − 3), y(t − 1) 4

ANFIS 675 0.0118 0.0111
power plant FFD 36 0.0097 0.0090

(Data V-Fold 72 0.0092 0.0104
set-II) FFD-V-fold 72 0.0086 0.0089

4

Thermal

x(t − 1), y(t − 1) 4

ANFIS 713 0.0081 0.0076
power plant FFD 27 0.0090 0.0083

(Data V-Fold 72 0.0078 0.0082
set-III) FFD-V-fold 72 0.0076 0.0075

5

Thermal

x(t − 1), y(t − 1) 4

ANFIS 494 0.0037 0.0035
power plant FFD 29 0.0036 0.0035

(Data V-Fold 72 0.0034 0.0036
set-IV) FFD-V-fold 72 0.0033 0.0034

6

Thermal

x(t − 1), y(t − 1) 4

ANFIS 319 0.5591 0.5361
power plant FFD 16, 27 0.5890 0.5347

(Data V-Fold 36 0.6508 0.6097
set-V) FFD-V-fold 36 0.5174 0.5118
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Figure 5.3: Actual and FFD-V-fold based ANFIS model predicted output with the Box and Jenkins gas
furnace data
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Figure 5.4: Actual and FFD-V-fold based ANFIS model predicted output with data set-I of thermal
power plant
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Figure 5.5: Actual and FFD-V-fold based ANFIS model predicted output with data set-II of thermal
power plant
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Figure 5.6: Actual and FFD-V-fold based ANFIS model predicted output with data set-III of thermal
power plant
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Figure 5.7: Actual and FFD-V-fold based ANFIS model predicted output with data set-IV of thermal
power plant
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Figure 5.8: Actual and FFD-V-fold based ANFIS model predicted output with data set-V of thermal
power plant
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5.5 Conclusion

From Table 5.4 it is observed that the FFD-V-fold based ANFISmodel shows the best performance

even though only around one-eighth of the dataset used in theconventional ANFIS model has been

selected for training. The FFD-V-fold based ANFIS model wasbuilt on the basis of optimally chosen

data for modeling. This shows that the ANFIS model based on the training data set selected by using

the FFD-V-fold technique shows the best prediction capability. To further test the performance of the

proposed FFD-V-fold based ANFIS model, the modeling results of this chapter are compared with

standard statistical models as well as another soft computing based model in the next chapter. The two

types of models that are chosen for the comparative analysisare the statistical model and the GA based

fuzzy model.



Chapter 6

Statistical Models and Genetic Algorithm

Based Fuzzy Model

From the preceding chapters it is observed that by using an optimally selected training data set, the

performance of the conventional ANFIS model can be enhanced. The proposed FFD-V-fold technique

augments the conventional ANFIS model and it even outperforms the conventional ANFIS model with

lesser RMSE but utilizing far fewer training data. In order todetermine the efficacy of this proposed

FFD-V-fold based ANFIS model, it is compared with conventional statistical models like ARX, AR-

MAX and ARIMAX in this chapter. The proposed model is also compared with the genetic algorithm

(GA) based fuzzy model which is a new technique in the emerging area of artificial intelligence. Lastly

a controller is designed using the proposed FFD-V-fold based ANFIS model and its performance is

studied.

6.1 Statistical Models

Engineers and scientists have been using probability and statistics as a working tool in many areas of

engineering practices. Most often, during engineering design, many problems crop up due to poorly

defined situation or having to use data with low precision. This problem can be solved by using sta-

tistical models [140, 146] by proper application of statistical analysis. The statistical models help in

making important decisions in engineering. Here the observed samples are used to estimate the statis-

tical population whose properties provide the basis for decision making. The results from the analysis

of experimental data can be unequivocally described by appropriate statistical parameters. Many of the

techniques used for data analysis are based on univariate and multivariate statistics.

76
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In this chapter some of the existing statistical models are fitted into the systems under study and they

are compared with the models proposed in the previous chapters. Some of the statistical models which

are used for comparison with the soft computing based modelsproposed in the previous chapter are

described in the successive subsections. The statistical models that have been used for modeling are

the Auto regressive with exogenous input (ARX) model, Auto regressive moving average with exoge-

nous input (ARMAX) model and Auto regressive integrated moving average with exogenous input

(ARIMAX) model.

6.1.1 Auto Regressive with Exogenous Input (ARX) Model

The Auto regressive (AR) [140] is a very common model with the help of which one can shape the

frequency characteristics of the model with a few linear parameters. AR is a very powerful tool for

analysis of weakly damped oscillatory systems which may be hidden under a high noise level. The

Auto regressive with exogenous input (ARX) [140] model is themost widely applied linear dynamic

model because of its easily computable parameters. The model uses linear least square technique as the

prediction error is linear in the parameters.

6.1.2 Auto Regressive Moving Average with Exogenous Input (ARMAX) Model

The Moving average (MA) [140] model has lesser significance in practical engineering applications

than the AR model because it cannot be used to model oscillations with a few parameters. In addition

to this, the MA model is nonlinear in its parameters when the prediction error approach is considered. In

the Auto regressive moving average (ARMA) [140] model, the MAand the AR models are combined

together so that the flexibility of the AR model can be enhanced. After the ARX model, the Auto

regressive moving average with exogenous input (ARMAX) [140] model is the next most popular

model as it possesses an extended noise model and thereby becomes more flexible.

6.1.3 Auto Regressive Integrated Moving Average with Exogenous Input (ARI-

MAX) Model

In many time series data set, the homogeneity property is reflected even though the series behaves as

though they have no fixed mean. Apart from local level or a combination of local level and trend, one

part of such series is found to be like any other part. Such homogeneous non stationary behavior of

the data can be described by a model with the assumption that some suitable difference (saydth) of the
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process is stationary. The autoregressive moving average with exogenous input model for which thedth

difference is stationary, is called the Autoregressive integrated moving average with exogenous input

(ARIMAX) [102] model.

6.2 Genetic Algorithm Based Fuzzy Model

Applications requiring the optimization of a multi-dimensional function can be successfully solved by

using evolutionary algorithms. These algorithms are basedon the evolution of a population towards

the solution of the application problem. The population of possible solutions which evolves in one

generation is progressively taken to the next successive generations until it converges at a satisfactory

solution of the problem. The genetic algorithm (GA) [141,142] is one such evolutionary algorithm.

This algorithm was envisaged by Holland [67] in the1970s. It is based on the Darwinian theory of

survival of the fittest, which states that the fitter and stronger individuals in a population have a higher

chance of creating offsprings for the next generation. It can be implemented as an optimization search

procedure which uses the principles of genetics and naturalselection by modeling possible solutions to

a search problem as strings of zeroes and ones. This algorithm comprises of basic genetic operators.

They are selection, crossover and mutation. The flow chart for this method is presented in Fig. 6.1.

A genetic algorithm based fuzzy model is studied in this chapter. Here the genetic algorithm is

fused with fuzzy logic to model a system. In this GA based model, the process of deriving the initial

fuzzy model is the same as that of the ANFIS model. After the initial fuzzy model is formed, the

genetic algorithm is used to update the consequent parameters of the generated fuzzy rules, so as to

produce a final GA based fuzzy model of the system.

6.3 Experimental Results and Discussion

The statistical and the GA based fuzzy model for the Box and Jenkins gas furnace and the thermal

power plant data are presented in the following two subsections. In each of these cases, the first half of

the data set is used for training and the next half is used for validation purpose. For the Box and Jenkins

gas furnace data, the input x(t) is the gas feed rate in cubic feet per minute (ft3/min) and the output

y(t) is in the form of percentage of carbon-dioxide (CO2) concentration in the outlet gas. Similarly for

the first four sets of thermal power plant data, the inputx(t) is the gas flow rate in cubic kilometer per

hour(km3/hr) and the outputy(t) is in the form of generated power in Gigawatt (GW). In the fifth set
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Figure 6.1: Flow Chart for the GA based Fuzzy model

of the thermal power plant data, the input x(t) is the gas feedin Million metric standard cubic metre

(Mmscum) and the output y(t) is in the form of generated energy in Million unit (MU), where 1 unit =

1kWh (kilo-watt-hour).

6.3.1 Statistical models

For the model identification purpose, three different statistical models have been used. These are the

ARX, ARMAX and the ARIMAX model. The modeling results obtained from these three statistical

models are arranged in a tabular form in Table 6.1.

From Table 6.1 it is observed that the performance of the ARIMAX model is the best having the least

RMSE as compared to the ARX and the ARMAX model. Hence, the ARIMAX model is selected to

compare with the proposed model. The ARIMAX model is built forboth the Box and Jenkins gas

furnace and the thermal power plant data using the optimallyselected inputs.
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Table 6.1: Results obtained for Statistical models using theBox and Jenkins gas furnace and the thermal
power plant data

No of RMSE
Sl. No. Data training Model with

data testing data
Box and ARX 1.5796

1 Jenkins 145 ARMAX 1.5353
gas furnace ARIMAX 1.2305

Thermal ARX 0.0676
2 power plant 699 ARMAX 0.0533

(Data set-I) ARIMAX 0.0110
Thermal ARX 0.0980

3 power plant 675 ARMAX 0.0219
(Data set-II) ARIMAX 0.0163

Thermal ARX 0.1302
4 power plant 713 ARMAX 0.0839

(Data set-III) ARIMAX 0.0113
Thermal ARX 0.0947

5 power plant 494 ARMAX 0.0106
(Data set-IV) ARIMAX 0.0096

Thermal ARX 0.5871
6 power plant 320 ARMAX 0.5834

(Data set-V) ARIMAX 0.5451

Case 1:- Box and Jenkins gas furnace data

Here, the145 Box and Jenkins gas furnace data pairs are used for building the ARIMAX model with

x(t − 3) andy(t − 1) as the two optimal inputs. Fig. 6.2 shows the actual output and the ARIMAX

model predicted output which are plotted versus sample number.

Case 2:- Thermal power plant data

(i) Data set-I

The first set of the thermal power plant data comprises of699 data pairs. The optimal inputs used are

x(t − 6) andy(t − 1). Fig. 6.3 shows the ARIMAX model’s predicted output along with actual output

versus sample number.

(ii) Data set-II

For this data set the ARIMAX model is built withx(t − 3) andy(t − 1) as the optimal inputs and by

using675 input output data pairs. The actual and the ARIMAX model predicted output for this data set

are shown in Fig. 6.4.

(iii) Data set-III
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Figure 6.2: Actual and ARIMAX model predicted output with Box and Jenkins gas furnace data

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

sample number

po
w

er
 o

ut
pu

t (
G

W
)

 

 
actual output
predicted output

Figure 6.3: Actual and ARIMAX model predicted output with data set-I of thermal power plant
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Figure 6.4: Actual and ARIMAX model predicted output with data set-II of thermal power plant

In this data setx(t−1) andy(t−1) are used as the optimal inputs and the ARIMAX model is built with

713 input-output data pairs. The actual and the ARIMAX model’s predicted output plotted vs sample

number are shown in Fig. 6.5.

(iv) Data set-IV

With x(t−1) andy(t−1) as the optimal inputs, the ARIMAX model is built with494 input-output data

pairs. Fig. 6.6 shows the actual and the ARIMAX model predicted output plotted vs sample number.

(v) Data set-V

The ARIMAX model for this data set is built withx(t− 1) andy(t− 1) as the optimal inputs and using

320 data pairs. The output predicted by the ARIMAX model along with the actual output plotted vs

sample number is shown in Fig. 6.7.

6.3.2 GA based fuzzy model

In GA based fuzzy model, the initial fuzzy model is built in the same line as that of the ANFIS model.

After the initial fuzzy model is developed based on both the subtractive clustering and the grid based

partitioning, the updation of the consequent parameters tofine tune the fuzzy model is carried out by

using genetic algorithm. The genetic algorithm searches the entire solution space for the best fit of the

consequent parameters for the fuzzy model. The GA based fuzzy model is built for both the Box and

Jenkins gas furnace and the thermal power plant data.
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Figure 6.5: Actual and ARIMAX model predicted output with data set-III of thermal power plant
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Figure 6.6: Actual and ARIMAX model predicted output with data set-IV of thermal power plant
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Figure 6.7: Actual and ARIMAX model predicted output with data set-V of thermal power plant

The different parameters that have been used in all GA based fuzzy models are as follows:-

The number of generations are restricted to a maximum of1000, with a crossover fraction of0.8, a

migration fraction of0.2, migration interval of20, stall generation limit of100, a stall time limit of50

seconds, migration interval of20 and a penalty factor of100. The fitness function in this methodology

scales the raw scores based on the rank of each individual. The rank of an individual is its position

in the sorted scores. The rank of the fittest individual is assigned a value of1, the next most fittest is

assigned a value of2, and so on. Rank fitness scaling removes the effect of the spread of the raw scores.

Case 1:- Box and Jenkins gas furnace data

This GA based fuzzy model is built using the145 gas furnace data pairs, wherex(t − 3) andy(t − 1)

are the two optimal inputs. The actual output and the output predicted by the GA based fuzzy model

are shown in Fig. 6.8.

Case 2:- Thermal power plant data

(i) Data set-I

The first data set of the thermal power plant comprising of699 data pairs is used here. The two optimal

inputs arex(t − 6) andy(t − 1). The actual and the GA based fuzzy model’s predicted output plotted

vs sample number are shown in Fig. 6.9.
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Figure 6.8: Actual and GA based fuzzy model predicted outputwith Box and Jenkins gas furnace data
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Figure 6.9: Actual and GA based fuzzy model predicted outputwith data set-I of thermal power plant
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Figure 6.10: Actual and GA based fuzzy model predicted output with data set-II of thermal power plant

(ii) Data set-II

The second data set comprises of675 input output data pairs. Herex(t−3) andy(t−1) are the optimal

inputs. Fig. 6.10 shows the actual output and the GA based fuzzy model’s predicted output plotted vs

sample number.

(iii) Data set-III

In this experiment713 input-output data pairs are used. The optimal inputs arex(t − 1) andy(t − 1).

The output predicted by the GA based fuzzy model and the actual output are plotted vs sample number

in Fig. 6.11.

(iv) Data set-IV

Here494 input-output data pairs are used withx(t − 1) andy(t − 1) as the optimal inputs. The actual

and the GA based fuzzy model predicted output are shown in Fig. 6.12.

(v) Data set-V

In this experiment320 data pairs are used withx(t − 1) andy(t − 1) as the optimal inputs.The actual

and the GA based fuzzy model’s predicted output vs sample number is shown in Fig. 6.13.

The results obtained with the GA based fuzzy model for the Box and Jenkins gas furnace and the

thermal power plant data are tabulated in Table 6.2. The table shows that for the Box and Jenkins gas

furnace data set, the grid partition based method produces slightly better result whereas for the thermal
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Figure 6.11: Actual and GA based fuzzy model predicted output with data set-III of thermal power
plant
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Figure 6.12: Actual and GA based fuzzy model predicted output with data set-IV of thermal power
plant
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Figure 6.13: Actual and GA based fuzzy model predicted output with data set-V of thermal power plant

power plant data the subtractive clustering based model shows better performance.

The proposed FFD-V-fold based ANFIS model is now compared with the GA based fuzzy model

as well as the statistical model. The performance of the proposed model is studied along with the GA

based fuzzy model and the ARIMAX model. The ARIMAX model is chosen among the three different

statistical models as it turns out to be the best among the three. The results obtained for these three

models are now arranged in a tabular form in Table 6.3. From the table it can be observed that the

proposed FFD-V-fold based ANFIS model outperforms the GA based fuzzy model as well as the ARI-

MAX model having the least RMSE even though the training data used by this proposed model is only

about one-eighth of that used by the other two models.

6.4 Controller Using FFD-V-fold based ANFIS Model

In this section a controller based on the proposed FFD-V-fold based ANFIS model is designed. Here

the ANFIS based inverse model controller is used with an openloop strategy in which the controller

is the inverse of the ANFIS based plant [79]. The inverse model of the plant [79] is obtained from the

input-output data that has been used to obtain the ANFIS based model for the system. This controller

uses the inverse learning or general learning in two different stages.
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Table 6.2: Results obtained for the GA based fuzzy model usingthe Box and Jenkins gas furnace and
the thermal power plant data

No of RMSE (testing)
Sl. No. Data training (Grid partition (Subtractive

data based) clustering based)
Box and

1 Jenkins 145 0.5830 0.5998
gas furnace

Thermal
2 power plant 699 0.0430 0.0360

(Data set-I)
Thermal

3 power plant 675 0.0964 0.0644
(Data set-II)

Thermal
4 power plant 713 0.1509 0.0173

(Data set-III)
Thermal

5 power plant 494 0.3879 0.0174
(Data set-IV)

Thermal
6 power plant 320 0.5562 0.5399

(Data set-V)

Table 6.3: Comparison of the FFD-V-fold based ANFIS, GA basedfuzzy and the statistical ARIMAX
model obtained for the Box and Jenkins gas furnace and the thermal power plant data

No of RMSE (testing)
Sl. No. Data Model training (Grid partition (Subtractive

data based) clustering based)
Box and FFD-V-fold 18 0.5378 0.5332

1 Jenkins ARIMAX 145 1.2305 1.2305
gas furnace GA based fuzzy 145 0.5830 0.5998

Thermal FFD-V-fold 81 0.0109 0.0108
2 power plant ARIMAX 699 0.0110 0.0110

(Data set-I) GA based fuzzy 699 0.0430 0.0360
Thermal FFD-V-fold 72 0.0086 0.0089

3 power plant ARIMA 675 0.0163 0.0163
(Data set-II) GA based fuzzy 675 0.0964 0.0644

Thermal FFD-V-fold 72 0.0076 0.0075
4 power plant ARIMAX 713 0.0113 0.0113

(Data set-III) GA based fuzzy 713 0.1509 0.0173
Thermal FFD-V-fold 72 0.0033 0.0034

5 power plant ARIMAX 494 0.0096 0.0096
(Data set-IV) GA based fuzzy 494 0.3879 0.0174

Thermal FFD-V-fold 36 0.5174 0.5118
6 power plant ARIMAX 320 0.5451 0.5451

(Data set-V) GA based fuzzy 320 0.5562 0.5399
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• In the learning phase the inverse model of the ANFIS based plant is obtained with the available

input-output data. This is called the training phase of the inverse controller. Fig. 6.14 illustrates

this training phase.

• In the next phase the inverse model of the ANFIS based plant isused to initiate the control action.

This is called the application phase of the ANFIS based controller and it is illustrated in Fig. 6.15.

ANFIS   MODEL

ANFIS     MODEL

u(k)
y(k)

+

−

Z
−1

PLANT

INVERSE

eu

Figure 6.14: Training phase of the inverse controller

CONTROLLER

ANFIS        MODEL

PLANT

ANFIS     MODEL

r(k)
u(k)

y(k)

Z

−1

Figure 6.15: Application phase of the inverse controller

6.4.1 Controller Design

The controller designed using the general or the off-line training method does not take into consid-

eration the aspect of minimizing the output error to ensure reference tracking. This results in a large
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Figure 6.16: Inverse controller with fuzzy integrator block

steady state error. To reduce the sustained steady state error of the plant a fuzzy integrator block is in-

corporated along with the ANFIS based controller to form thetotal controller block. The integral action

increases the control signal if there is a small positive error. Similarly for a negative error the integral

action decreases. The prediction error is used as an input tothe fuzzy integrator which is illustrated in

Fig. 6.16. This is done to generate the integrating constantKi so that the final steady state error can

be brought nearly to zero. The fuzzy rules for the integratorblock are framed heuristically to tune the

value ofKi, as there is no systematic method for framing the fuzzy rulesfor building the controller. In

the present work these rules have have been framed based on the results of the simulations that were

conducted with different values of the controller inputs.

The rules for the integrator block are of the following form:

Control ruleb:

IF e1(k) is M b
1 ande2(k) is M b

2 and . . .eN(k) is M b
N THEN
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u2(k) = Ki

∑k

j=1 ejTs ,

b = 1, 2, ...q andn = 1, 2, ..., N

where

M b
n is the fuzzy set(n = 1, 2, ...N), Ts is the sampling time and errorej = r(k) − y(k),

r(k) being the reference input andy(k) is the system’s output.

For the above rule, the fuzzy integral controller system maybe inferred as follows:

Given a combination of(Ki, ej, Ts), the final output of fuzzy integrator system may given as fol-

lows:

u2(k) =

q∑

b=1

µb(e(k))Ki

k∑

j=1

ejTs, (6.4.1)

b = 1, 2, ..., q (6.4.2)

where

µb(e(k)) = wb(e(k))/

q∑

b=1

wb(e(k))

and

wb(e(k)) =
N∏

n=1

M b
n(e(k)).

M b
n(e(k)) is the degree of the membership ofe(k) in M b

n. Herewb(k) ≥ 0, for b = 1, 2, ..., q and
∑q

b=1 wb(k) > 0 for all k. Therefore,µb(e(k)) ≥ 0 for b = 1, 2, ..., q and
∑q

b=1 µb(e(k)) = 1. The

output values of the available input-output data set range from 0.0150 − 0.219. So the fuzzy rules for

the ANFIS based controller is framed to suit this range. The reference input which is a step signal is

also chosen to suit the available data set.

6.4.2 Experimental Results and Discussion

The performance of the controller is illustrated in Figs. 6.17 - 6.24. In Fig. 6.17 the system output is

shown against the reference step input and the overshoot here is found to be 1.6%. Fig. 6.18 shows

the prediction error of the controller. This error is the difference between the desired output and the

actual output of the plant. In Fig. 6.19 the control signal i.e the output of the controller is shown. In
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Figure 6.17: Desired output and the actual output of the plant with the controller

order to check the performance of the controller in presenceof disturbance, two separate noises (step

inputs) were injected at around the400th and1000th sample. The result in Fig. 6.20 demonstrates the

fast recovery of the controlled system to its final steady state after being disturbed with noise.

In order to check the performance of the controller under variable plant dynamics, a random varia-

tion of the plant parameters by10% is allowed. The results under the changing plant dynamics are

illustrated in Figs. 6.21 - 6.24. The controller’s performance under variable plant dynamics along with

disturbance is plotted in Fig. 6.24.

6.5 Conclusion

It is observed that the FFD-Vfold based ANFIS controller cantrack the reference step input quite

faithfully even under plant parameter variation alongwithdisturbance.



6.5. CONCLUSION 94

0 500 1000 1500
−0.02

0

0.02

0.04

0.06

0.08

0.1

Samples

P
re

di
ct

io
n 

E
rr

or

Figure 6.18: Prediction error of the controller
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Figure 6.19: Output of the controller
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Figure 6.20: Desired and actual output of the plant with controller in presence of disturbance
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Figure 6.21: Desired and actual output of the plant with controller having plant parameter variations
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Figure 6.22: Prediction error of the controller with plant parameter variations
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Figure 6.23: Output of the controller with plant parameter variations
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Figure 6.24: Desired and actual output of the controller based plant with plant parameter variations
along with disturbance



Chapter 7

Conclusions and Future Work

In this concluding chapter the salient contributions of thethesis are summarized. Also a few aspects

which may be explored for further research are outlined here.

7.1 Summary of the thesis

The major contribution in this thesis is towards newer development in the ANFIS methodology. The

main emphasis is to build an ANFIS model based on an optimallyselected data set. The advantage of

the proposed method has been demonstrated in terms of improved modeling results as compared to the

conventional ANFIS model as well as conventional statistical models. The proposed method is used to

design a controller and study its performance.

In Chapter 1 the aim of the present research work is discussed.Chapter2 presents a brief overview of

different system identification techniques based on soft computing method. Here some important fore-

casting techniques are also discussed briefly. Chapter3 outlines the research objectives and method-

ology followed in the present work. In Chapter4 the ANFIS model which forms the backbone of the

proposed method for system identification is explained in details. Chapter5 describes the two differ-

ent techniques namely the Full factorial design and the V-fold method which are used to augment the

ANFIS model for optimal selection of the training data. In Chapter 6 the results obtained by using

the proposed model are compared with the GA based fuzzy modeland statistical models. Chapter7

concludes the thesis with a discussion on the important findings of the research work.

The major contributions of the thesis are summarized below:

• The statistical Full factorial design technique is used to choose an optimal data set for training

the neural network in the conventional ANFIS model. The available data is selected optimally

98
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for training the subtractive clustering and grid partitiontechnique based ANFIS models.

• The V-fold technique which is used for cross validation purpose is applied for selecting the opti-

mal data for training. By using this technique, it has been possible to build an ANFIS model using

a training data set which is around one-eighth of the size of the data set used in the conventional

ANFIS model.

• The full factorial design technique and the V-fold method are combined for optimal data selection

in training the ANFIS model. The obtained results show that performance of the combined FFD-

V-fold based ANFIS model is better than the individual FFD based and V-fold based ANFIS

models.

• A controller is designed using the proposed FFD-V-fold based ANFIS model which performs

faithfully even with plant parameter variations and disturbance.

7.2 Discussion

The prime advantage of the soft computing tools which have been used in the present work is that the

requirement of a mathematical model is not a prerequisite. The model of the system under consider-

ation can be built around the available input-output data ofthe system. The inspiring features of the

neural network in its ability to learn and adapt and the capability of a fuzzy system to take into account

the imprecision and prevailing uncertainty are vouched to be the prime tools in the present research

work. To exploit the advantages that are associated with therespective methods, the Adaptive network

based fuzzy inference system (ANFIS) model comprising of both the neural network and the fuzzy

logic has been used in the present work. ANFIS model requiresa sufficient pool of input-output data

for training. As the absence of sufficient number of input-output data in many a real world systems

poses a major hurdle in modeling, an endeavor is made to use the available data, to its best possible

ability such that a small critical data set can be selected optimally and used for training the ANFIS

model. For this purpose, two novel techniques namely Full factorial design and V-fold cross validation

technique are proposed for optimal data selection to train the ANFIS.

The experimental results obtained by applying the proposedmethod are encouraging enough. The pro-

posed model shows reliable prediction performance so far asthe actual values of the available data

are concerned. The performance of the proposed model was also found to be at par with conventional

statistical models used in forecasting. The comparable results were achieved even though a very small
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critically selected training data set was used in training the ANFIS. The strength of the input output

data used is only around one-eighth of the total number of theavailable data set.

The results obtained from the proposed model can be very encouraging to industries associated with

the real time systems, like a thermal power plant that has been considered in the present work. These

results are expected to give a boost to the economic front as precious fossil fuel whose reserves are

depleting day by day can be saved as the power plant need not berun for long hours to generate the

modeling data for future load prediction. Besides this the time required for starting the thermal power

plant before it can be fully loaded can be saved as it takes a pretty long time to start real world systems

like the thermal power plant. Therefore in terms of human resources management also the results can

prove to be a boon as a great many number of man hours can be saved, as the plant does not have to be

run for long periods of time just to generate the modeling data.

So far as the implementation of the present findings are concerned, it is not expected to be too dif-

ficult a proposition, as the soft computing model can be connected in parallel to the hard computing

and manual control system that is already there in place. Even in the remote possible case of the pro-

posed model failing, the hard computing based tools or the manual controller will always be there to

act as a backup protection system.

The results with the proposed model are, however bounded with certain limitations. This is because

the modeling results are fairly accurate with respect to thechoice of the critical training data set. In the

FFD based ANFIS model, the levels selected in the available training data set are crucial. The proper

selection of the FFD levels are important as the ANFIS model is decided based upon the optimal choice

of these levels. Rigorous experiments need to be performed todetermine the best FFD levels to fit into

the optimal ANFIS model. Hence it requires time and the modelcannot be predetermined. Another

limitation of the model is the possible presence of outliersand noise in the data set that is used for the

system modeling. The cross checking for a possible model which is a hybrid between an evolutionary

methodology and the proposed model also could have produceda more better result.

7.3 Conclusion

System identification is the primary step in modeling of a system as its model should correctly repre-

sent the system for further analysis and control. A practical important utility of modeling is prediction
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of future values. This aspect of forecasting is even more significant in real world systems like thermal

power plants. The research work carried out in this thesis studied modeling of a real world system

like gas furnace and thermal power plant based on actual input output data for which a soft computing

methodology ANFIS is used. This methodology has been considered to make the best use of the inher-

ent salient features of the neural network of self adaptability and that of the fuzzy logic in its ability

to take into account the imprecision and uncertainty of systems which are considered for modeling. It

has been a traditionally accepted fact that for successful training of ANFIS, the number of data used

should be sufficiently large. However, it may be difficult to get a large number of data in those systems

like thermal power plant where generation of input output data is quite expensive as precious fuel is

involved. Hence, this research work attempted to build a model for such a system using the existing

small pool of input output data. For this purpose, the emphasis was on optimal selection and use of

the available resource of data. It has been observed from experimental results that it is also possible

to build a successful model for those types of systems where the available data set is scanty. This

thesis proposed two novel techniques for optimal selectionof data and applied the same in the model-

ing methodology. Performance of the model built using thesetwo proposed techniques was tested for

prediction and the results were compared with traditional statistical models commonly used in litera-

ture. The results obtained are promising and encouraging enough deserving further investigation by the

concerned industry. The experimental results obtained verify the competence of the proposed model-

ing technique. Hence conclusions can be drawn that the proposed ANFIS based system identification

technique augmented by optimal data selection strategy fortraining is comparable with other existing

conventional techniques of modeling.

There is a scope for further exploring the possibility of bettering the present modeling results by

taking into account the possible presence of outliers in themodel’s training data. The scope of strength-

ening the proposed ANFIS model by creating its hybrid with another evolutionary technique is another

direction which might be worth looking into.

7.4 Future Work

Following are the potential directions which can be explored for future research:

• Developing a proper methodology for framing and determining the number of fuzzy rules for the

proposed ANFIS model
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• Preprocessing the data before modelling is carried out so asto remove the outliers

• Exploring the possibility of developing the ANFIS model strengthened by other evolutionary

algorithms

• Developing a formal methodology to decide an optimal data size for the V-folds so that modeling

can be carried out with the least possible minimum number of data



Appendix A

Sample Power Plant Data

One sample data set that was collected from the thermal powerplant under North East Electric Power

Corporation (NEEPCO) Limited, located in Kathalguri, Assam,India has been presented here. This set

of the input output data consists of an input to the thermal power plant in the form of the gas feed to the

plant in Million metric standard cubic metre (Mmscum)(106m3). Similarly the output from the thermal

power plant is in the form of generated energy in Million unit(MU), where1 unit = 1 kWh (kilo-watt-

hour). The thermal power plant data set comprising of the inputs and the outputs are collected from the

hard copy of the records maintained by the power plant authorities. This data set has been shown in

tabular form in Table A.1 which spreads over the next six successive pages.
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Table A.1: Thermal power plant data

Sample Input Output Sample Input Output Sample Input Output
No (Mmscum) (MU) No (Mmscum) (MU) No (Mmscum) (MU)
1 1.324 4.9452 41 0.574 1.3966 81 1.32 5.6243
2 1.322 4.6551 42 0.618 1.3997 82 1.4534 5.6538
3 1.313 4.8245 43 0.673 1.5822 83 1.4387 5.6143
4 1.191 4.5939 44 0.73 1.7254 84 1.4749 5.6229
5 1.188 4.2019 45 0.598 1.4773 85 1.4641 5.6235
6 1.241 4.5838 46 0.455 1.023 86 1.3119 5.3734
7 1.28 4.8133 47 0.497 1.1173 87 1.3136 5.325
8 1.25 4.973 48 0.529 1.2861 88 1.319 5.6387
9 1.153 3.9096 49 0.447 0.986 89 1.3993 5.2355
10 1.232 3.9021 50 0.374 0.9672 90 1.4414 5.3554
11 1.129 3.9072 51 0.437 0.8112 91 1.4045 5.5192
12 1.159 3.9627 52 0.412 0.8423 92 1.3778 5.4554
13 1.169 3.8762 53 0.421 0.838 93 1.4796 5.6182
14 1.157 3.9246 54 0.325 0.7497 94 1.4598 5.5868
15 1.083 3.9547 55 0.283 0.7372 95 1.4679 5.4311
16 1.025 3.0296 56 0.372 0.7779 96 1.4582 5.6565
17 0.922 2.4153 57 0.379 0.8284 97 1.4408 5.4803
18 0.819 2.7417 58 0.382 0.7776 98 1.3682 5.5866
19 0.77 2.2473 59 0.378 0.8381 99 1.3574 5.4574
20 0.678 1.9082 60 0.257 0.6241 100 1.3831 5.4638
21 0.804 2.4771 61 0.262 0.6413 101 1.3372 5.4873
22 0.724 2.4917 62 1.402 5.5288 102 1.3671 5.2863
23 0.674 2.4805 63 1.4491 5.3996 103 1.4481 5.4758
24 0.598 2.0008 64 1.4677 5.5825 104 1.4554 5.3959
25 0.439 1.1264 65 1.4577 5.582 105 1.3766 5.5891
26 0.556 1.9277 66 1.4161 5.468 106 1.3897 5.5449
27 0.485 1.4958 67 1.3967 5.6255 107 1.433 5.5731
28 0.493 1.4993 68 1.4723 4.9201 108 1.3962 5.5036
29 0.515 1.461 69 1.4039 5.2882 109 1.2972 4.436
30 0.627 2.2222 70 1.4499 5.5317 110 1.3581 5.466
31 0.66 2.3257 71 1.3176 5.5103 111 1.4581 5.6001
32 0.521 1.9292 72 1.4471 5.6107 112 1.3911 5.4636
33 0.663 2.1237 73 1.4267 5.591 113 1.3568 5.2911
34 0.461 1.4513 74 1.4003 5.5735 114 1.4164 5.3258
35 0.401 0.7558 75 1.4198 5.3997 115 1.4649 5.5799
36 0.422 0.9432 76 1.2299 5.6397 116 1.4609 5.6018
37 0.404 0.7583 77 1.2666 5.6239 117 1.391 5.6248
38 0.54 1.2023 78 1.2331 5.4488 118 1.3226 4.9621
39 0.494 1.181 79 1.0844 4.5987 119 1.4091 5.7229
40 0.559 1.3888 80 1.3462 5.65 120 1.4565 5.6937
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Sample Input Output Sample Input Output Sample Input Output
No Mmscum MU No Mmscum MU No Mmscum MU
121 1.4046 5.6481 161 1.4514 5.6148 201 1.0818 3.7636
122 1.4227 5.7434 162 1.4216 5.6523 202 0.9669 2.885
123 1.4581 5.7434 163 1.4487 5.5285 203 0.794 2.3875
124 1.4078 5.7161 164 1.3801 5.5787 204 0.638 2.0173
125 1.4615 5.643 165 1.3978 5.6097 205 0.7455 2.3181
126 1.5922 5.6752 166 1.371 5.5655 206 0.6064 1.624
127 1.4414 5.6831 167 1.4916 5.5533 207 0.5539 1.6297
128 1.5922 5.7081 168 1.4093 5.4241 208 0.5714 1.3992
129 1.4079 5.5961 169 1.4812 5.3844 209 0.8361 1.9668
130 1.4641 5.6839 170 1.4714 5.3092 210 0.9027 3.2116
131 1.4744 5.5765 171 1.4681 5.6352 211 0.9078 2.4865
132 1.4162 5.6774 172 1.4598 5.6986 212 0.8212 2.5966
133 1.3626 5.0974 173 1.491 5.835 213 0.9907 3.4888
134 1.3944 5.1586 174 1.4121 5.47 214 1.0112 3.0417
135 1.4749 5.4782 175 1.3523 5.5049 215 1.1095 3.2544
136 1.3827 4.7539 176 1.4041 5.1959 216 0.8682 2.7095
137 1.4534 5.5895 177 1.4264 5.4507 217 0.801 2.4917
138 1.4126 5.4194 178 1.5057 5.7048 218 0.787 2.2152
139 1.4518 5.5629 179 1.4833 6.0147 219 0.7407 2.3094
140 1.4009 5.3345 180 1.576 6.0291 220 0.7879 2.0827
141 1.4354 5.1913 181 1.4829 5.8037 221 0.7294 1.9713
142 1.4416 5.5908 182 1.4271 5.4411 222 0.9181 2.4715
143 1.4146 5.6031 183 1.3938 4.941 223 0.9833 2.9014
144 1.4078 5.7035 184 1.3375 4.4442 224 1.027 3.15
145 1.3782 5.5866 185 1.3653 4.8132 225 0.8044 2.922
146 1.4371 5.5992 186 1.3583 4.9125 226 0.7579 2.0179
147 1.4322 4.9094 187 1.5534 4.8933 227 0.7683 1.7303
148 1.4076 5.4534 188 1.4916 5.0371 228 0.7597 1.9127
149 1.3406 5.5334 189 1.1866 3.8338 229 0.7235 1.7416
150 1.3542 5.4973 190 1.3944 5.0443 230 0.8203 2.1081
151 1.4172 5.6085 191 1.4521 5.1634 231 0.7821 2.3469
152 1.3743 5.4574 192 1.2189 4.7144 232 0.7907 2.103
153 1.4078 5.6656 193 1.1288 3.3662 233 0.6632 1.553
154 1.4045 5.603 194 1.2875 3.6034 234 0.7855 1.7264
155 1.3844 5.3959 195 1.4923 5.1222 235 0.925 2.2885
156 1.3961 5.6544 196 1.3559 4.9382 236 1.0508 2.808
157 1.4146 5.685 197 1.1572 4.0445 237 1.2034 3.5663
158 1.4075 5.7383 198 1.2138 3.9089 238 1.2067 4.0265
159 1.3173 4.9094 199 1.2549 3.8814 239 1.0577 2.6875
160 1.4598 5.641 200 1.3406 4.8714 240 0.8854 2.2007
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Sample Input Output Sample Input Output Sample Input Output
No (Mmscum) (MU) No (Mmscum) (MU) No (Mmscum) (MU)
241 1.0559 2.8302 281 1.3064 4.5745 321 1.5001 5.3927
242 0.9588 2.6181 282 1.3609 5.0043 322 1.4315 5.6101
243 0.8492 2.2116 283 1.4632 5.4324 323 1.5087 5.5803
244 1.4039 3.7935 284 1.4497 5.4443 324 1.5447 5.3973
245 1.3961 4.664 285 1.4179 5.1507 325 1.6115 5.6272
246 1.335 4.7778 286 1.4229 5.3323 326 1.5841 5.6337
247 1.3264 4.5189 287 1.3609 5.1421 327 1.5978 5.7309
248 1.1766 4.2765 288 1.4607 4.7898 328 1.5532 5.59
249 1.2671 4.0429 289 1.3852 5.1154 329 1.5687 5.6709
250 1.1706 4.2399 290 1.2498 4.9163 330 1.5978 5.4148
251 1.1662 3.7326 291 0.9913 5.0368 331 1.6269 5.5838
252 1.1438 3.5132 292 1.324 3.2511 332 1.5532 5.7224
253 1.1524 3.5352 293 1.4281 5.4863 333 1.492 5.625
254 1.1126 2.985 294 1.4347 5.2931 334 1.5346 5.7142
255 1.3166 4.4993 295 1.4495 5.3268 335 1.5322 5.6245
256 1.2018 4.547 296 1.4675 5.1976 336 1.4889 5.5269
257 1.1092 3.513 297 1.4658 5.3189 337 1.519 5.6984
258 1.0252 3.0348 298 1.4624 5.3774 338 1.4577 5.609
259 1.2858 4.2664 299 1.4864 5.4225 339 1.5104 5.6215
260 1.2138 3.6258 300 1.4607 5.4206 340 1.3603 5.6538
261 1.2084 3.6389 301 1.4281 5.3925 341 1.4884 5.6918
262 1.2926 4.229 302 0.1338 5.0432 342 1.5427 5.6148
263 1.371 4.0629 303 1.4401 5.0623 343 1.5233 5.512
264 1.3475 4.6036 304 1.5134 5.433 344 1.5389 5.5724
265 1.3458 4.8307 305 1.3869 5.3003 345 1.4951 5.5488
266 1.13 3.6346 306 1.5961 5.4927 346 1.5261 5.5808
267 1.3928 4.9537 307 1.4665 5.6163 347 1.6153 5.5724
268 1.1761 4.6311 308 1.4534 5.7034 348 1.5516 5.6513
269 1.0525 2.8417 309 1.4845 5.5608 349 1.6195 5.5318
270 1.2419 3.9535 310 1.5369 5.7098 350 1.5313 5.6522
271 1.3408 4.6652 311 1.5789 6.0245 351 1.5009 5.606
272 1.4916 5.0152 312 1.563 5.8668 352 1.476 5.6187
273 1.4833 5.1074 313 1.46 5.2192 353 1.5786 5.6733
274 1.381 4.7367 314 1.4142 5.3613 354 1.4831 5.5214
275 1.3207 4.7058 315 1.3733 5.4151 355 1.5199 5.5845
276 1.3425 4.5717 316 1.5344 5.739 356 1.5922 5.4624
277 1.49 4.9783 317 1.5447 5.7368 357 1.5887 5.6533
278 1.4665 5.3421 318 1.6269 5.9413 358 1.4968 5.6832
279 1.4146 5.2614 319 1.5978 5.8773 359 1.6589 5.5447
280 1.4028 5.1238 320 1.5838 5.8336 360 1.6763 5.4693
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Sample Input Output Sample Input Output Sample Input Output
No Mmscum MU No Mmscum MU No Mmscum MU
361 1.5254 5.9156 401 1.5102 5.6807 441 1.5214 5.2991
362 1.5685 5.8613 402 1.5461 5.6802 442 1.516 5.2847
363 1.593 5.6776 403 1.5919 5.6983 443 1.561 5.3937
364 1.57 5.6831 404 1.4594 5.4908 444 1.4002 4.3372
365 1.6136 5.5962 405 1.4795 5.5897 445 1.4143 5.1852
366 1.6965 5.7247 406 1.381 5.6056 446 1.5418 4.9834
367 1.7126 5.7391 407 1.4862 5.6184 447 1.4326 5.0081
368 1.6633 5.761 408 1.509 5.6667 448 1.4615 4.8435
369 1.6589 5.8093 409 1.5133 5.7054 449 1.5218 5.0014
370 1.5945 5.8111 410 1.5168 5.7218 450 1.4862 5.2092
371 1.5198 5.8198 411 1.4689 5.7706 451 1.5232 5.2754
372 1.6374 5.8631 412 1.1808 3.9978 452 1.5003 5.3092
373 1.5735 5.7124 413 0.916 4.0574 453 1.437 5.198
374 1.5655 5.31 414 1.4765 5.3341 454 1.5179 5.5755
375 1.4845 5.4675 415 1.4656 5.3112 455 1.2531 4.8364
376 1.4816 5.6235 416 1.4932 5.5365 456 1.418 5.2137
377 1.5458 5.6525 417 1.4135 5.5452 457 1.426 5.4378
378 1.5226 5.7043 418 1.4613 5.5509 458 1.4 5.2222
379 1.5473 5.6844 419 1.46 5.5727 459 1.3889 4.9787
380 1.4173 5.6001 420 1.4659 5.5711 460 1.4028 4.6367
381 1.5267 5.6298 421 1.4925 5.5565 461 1.3546 4.6151
382 1.5938 5.6656 422 1.4943 5.5805 462 1.4103 4.1426
383 1.7443 5.8414 423 1.4781 5.4996 463 1.4563 4.7997
384 1.5018 5.7291 424 1.513 5.6461 464 1.4252 4.737
385 1.5968 5.7892 425 1.7171 5.6773 465 1.4413 4.7756
386 1.5377 5.4932 426 1.5543 5.7158 466 1.4349 4.9599
387 1.4734 5.7086 427 1.5696 5.7249 467 1.1952 4.1722
388 1.5027 5.6201 428 1.5681 5.6764 468 1.2605 3.94
389 1.5688 5.4349 429 1.5774 5.6057 469 1.4092 4.8165
390 1.5029 5.3902 430 1.5659 5.6933 470 1.4017 4.4719
391 1.5298 5.7404 431 1.5867 5.6658 471 1.3182 4.0426
392 1.4183 5.668 432 1.5178 5.612 472 0.9063 2.8749
393 1.4655 5.5867 433 1.565 5.4375 473 1.1171 3.4271
394 1.4751 5.5357 434 1.5505 5.3128 474 1.1321 2.2888
395 1.4581 5.5635 435 1.5014 5.1009 475 1.0871 3.2424
396 1.4222 5.4617 436 1.542 5.3041 476 1.1246 2.8123
397 1.4619 5.5473 437 1.659 5.6067 477 1.3792 4.1522
398 1.5727 5.5732 438 1.5997 5.6964 478 1.4178 4.3501
399 1.5699 5.619 439 1.5175 5.5347 479 1.3942 4.246
400 1.4833 5.6923 440 1.4492 5.2899 480 1.3717 4.2139
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Sample Input Output Sample Input Output Sample Input Output
No Mmscum MU No Mmscum MU No Mmscum MU
481 1.4081 4.2123 521 1.2348 4.424 561 1.2947 4.8076
482 1.3921 4.245 522 1.284 4.7181 562 1.1984 4.2725
483 1.5194 4.4006 523 1.2145 4.3307 563 1.2808 4.7571
484 1.5964 4.7967 524 1.3225 4.899 564 1.2851 4.621
485 1.6157 5.1056 525 1.3717 5.2216 565 1.2829 4.6642
486 1.6264 5.0966 526 1.1717 4.8175 566 1.1513 3.7889
487 1.636 5.2014 527 1.0005 2.6721 567 1.3332 4.718
488 1.2776 4.5022 528 1.1503 4.0102 568 1.314 4.7808
489 1.3075 4.3023 529 1.0465 3.0405 569 1.3215 4.8193
490 1.5868 5.4289 530 1.1428 4.3035 570 1.3471 5.0174
491 1.5376 5.5534 531 1.1866 3.9606 571 1.2305 4.2833
492 1.4691 5.2084 532 1.1588 3.6403 572 1.3225 4.7482
493 1.636 5.8577 533 1.1995 3.9429 573 1.2348 4.3296
494 1.2904 4.5422 534 1.3364 4.8332 574 1.3215 4.8044
495 1.6382 4.6743 535 1.3621 5.0755 575 1.2177 4.1353
496 1.6478 5.4469 536 1.284 4.9141 576 1.3075 4.8193
497 1.498 4.9146 537 1.1781 3.8019 577 1.3086 4.8132
498 1.6489 5.9131 538 1.2016 3.9578 578 1.3182 4.9313
499 1.6521 5.9033 539 1.208 4.1534 579 1.2872 4.7966
500 1.6724 5.7017 540 1.2284 4.2113 580 1.3097 4.7426
501 1.6628 5.6355 541 1.284 4.5927 581 1.3182 4.8939
502 1.6296 5.4745 542 1.3215 4.7669 582 1.3161 4.8427
503 1.6553 5.54 543 1.3429 4.9341 583 1.2284 4.368
504 1.6488 5.6014 544 1.3204 4.8847 584 1.2626 4.4404
505 1.6628 5.5977 545 1.3536 5.1006 585 1.2808 4.5692
506 1.6703 6.0881 546 1.3022 4.921 586 1.3033 4.5241
507 1.6125 5.8677 547 1.3493 4.868 587 1.3022 4.5065
508 1.4413 4.6036 548 1.3696 5.0596 588 1.2337 4.3886
509 1.4413 5.3241 549 1.3482 5.0562 589 1.3033 4.6095
510 1.376 4.4069 550 1.3493 5.0899 590 1.3193 4.8156
511 1.452 4.6676 551 1.2915 4.8116 591 1.2551 4.4135
512 1.3354 5.8898 552 1.2647 4.6472 592 1.2819 4.1596
513 1.3664 3.526 553 1.2808 4.7844 593 1.3707 4.8925
514 1.5494 5.7493 554 0.7008 3.4926 594 1.2391 4.4775
515 1.4028 4.8649 555 0.5339 0.5415 595 1.2273 4.2588
516 1.3418 4.608 556 1.2861 4.7351 596 1.2883 3.8693
517 1.3546 4.5833 557 1.2669 4.3244 597 1.36 4.9252
518 1.2787 4.257 558 1.2883 4.534 598 1.3311 4.608
519 1.3503 4.9746 559 1.2487 4.417 599 1.314 4.7617
520 1.3193 4.9995 560 1.3065 4.8166 600 1.3161 4.7271
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Sample Input Output Sample Input Output Sample Input Output
No (Mmscum) (MU) No (Mmscum) (MU) No (Mmscum) (MU)
601 1.3097 4.5577 617 1.3022 4.8304 633 1.2979 4.8111
602 1.3621 5.0799 618 1.3643 5.1449 634 1.1909 4.4569
603 1.3108 4.7921 619 1.3568 5.0312 635 1.1952 4.291
604 1.2851 4.5264 620 1.3974 5.2211 636 1.1609 4.2125
605 1.2337 4.3612 621 1.4049 5.2859 637 1.1214 4.2567
606 1.3536 4.9453 622 1.3075 4.777 638 1.1224 4.2445
607 1.3728 5.0658 623 1.2594 4.5762 639 1.1695 4.2372
608 1.3652 4.2713 624 1.2829 4.413 640 1.3461 4.9516
609 1.3803 4.602 625 1.4017 5.3109 641 1.3461 5.1956
610 1.3964 5.4194 626 1.2637 4.4816 642 1.391 5.3655
611 1.2198 4.2685 627 1.1224 4.3469 643 1.4049 5.4376
612 1.33 4.697 628 1.2155 4.2982 644 1.4606 5.5094
613 1.3525 5.0446 629 1.193 4.2245 645 1.4017 5.4505
614 1.2005 4.2995 630 1.0903 4.0368 646 1.3386 5.4017
615 1.3311 4.8712 631 1.0411 3.8126
616 1.3225 4.8863 632 1.1984 4.0609
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