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CHAPTER 3
RENGRMALIZATION AND THE EVOLUTION OF COUPLING COGNSTANTS

In this chapter, we shall derive the one-loop Renormalization-
Group Equations (RGE) for the gauge, Yukawa and quartic scalar
couplings. The gauge coupling RGE derived are valid for any semisimple
Lie group. The Yukawa and quartic scalar coupling RGE on the other
hand, depend on the details of the mode! and the equations derived in
this chapter are valid for models with one Higgs-boson doublet and an
~arbitrary number of fermion generations. (We neglect mixing among
quarks.) Finally, the RGE for quartic scalar couplings in a two-doublet
model discussed in Chapter 2 are also derived.

From our exéerience with Quantum Electrodynamics (QED), we know
that as soon as one tries to evaluate higher order Feynman graphs
involving loops, one faces the problem of divergent integrals; These
divergencies could in principle render the theory mathematically
inconsistent. However, in certain theories, as in QED, these
divergencies appear in a very traceable way, and by a suitable
redefinition of the fields and coupling constants, they disappear order
by order in perturbation expansion! Such theories are said to be
renormalizable and the procedure of removing these unwanted divergencies
is called Renormalization.13

A renormalizable field theory contains two types of parameters -
masées or coupling constants with positive dimensions of mass (i.e. due
to mfy or K¢3 terms in the Lagrangian) and dimensionless coupling
constants (i.e. due to A¢4 and @7#¢A# terms in the Lagrangian).

Coupling constants with negative dimensions of mass give
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cut off, A, and then take the limit A + ®, in which case the
divergencies appear as log A. Note that in either case, an arbitrary
mass parameter has to be introduced which leads to the concept of the
running of coupling constants. These ideas will become transparent as

we derive the one-loop RGE for gauge coupling constants which we proceed
to do now.
3.1. RENORMALIZATICN OF GAUGE COUPLING CONSTANTS

Let us consider the case of a simple gauge group G.
(Generalization to the case of semisimple gauge groups is
straightforward.) The classical Lagrangian density is the same as the
one for QCP, given in Egs.(2.2)-(2.4) of Chapter 2. However, as
mentioned there,”a gauge covariant quantization requires the agdition of
a ‘gauge fixing term’,16 This is necessitated by the familiar probiem

in gauge theories that the gauge invariant Lagrangian does not urniquely

determine the gauge field in terms of a source. In QED, this ambiguity
in the definition of the photon propagator is overcome by imposing the

covariant gauge condition,

s A = 0. - (3.1)
H#
Equivatently, one could add a gauge fixing term,
a 7 2
from which the photon propagator follows:
. v v,, 2 .
"l[gﬁ + (a—-l)p'u'p /(P * 'E)] . (3_3)

(pQ + i€)
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nonrenormalizabie theories (eg. Fermi’s theory of weak interaction). In
this dissertation, we shall be interested in the renormalization of the
dimensionless coupling constants only. The asymptotic behavior of the
theory is the same as in the massless case, since mfy and R¢3 terms do
not contribute to leading order to the asymptotic expansion of the
Green’s functions. However, the massless theory does contain a hidden
mass parameter, 4, which must be introduced to perform the subtraction
necessary to renormalize the theory and render it finite. The
subtraction point, g, is arbitrary. If we change s, the net effect is
to change the value of the coupling constants and the scale of the
fields. This leads to the concept of Renormalization-Group Equations

and running coupling constants.l4

Regularization of divergent amplitudes may be achieved in several
different ways. An elegant and simple prescription is the dimensional
regularization scheme of ’t Hooft and Veltman'® which we shall adopt in
this dissertation. This scheme has the advantage that it is explicitly
gauge invariant and hence several diagrams do not contribute to the
renormalization-group equations. In this scheme, the dimensionality of
space-time is Towered from 4 ton =4 - € (¢ » 0), where the integrals
are well defined. Then by analytic continuation, one goes to four
dimensions, whence the divergencies appear as simple poles in e which
can be easily subtracted. It is worthwhile to note that in n
dimensions, the gauge couplings are not dimensionless, but have
dimensions (4-n)/2 in units of mass. (Remember that the action has to
be dimensionless.} Similarly, quértic scalar couplings have dimensions

(4-n) in units of mass. An alternate procedure is to employ a momentum
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Since all the observables are independent of the particular choice of
the gauge, the gauge parameter g does not appear in any physical
processes. @ = 1 corresponds to the Feynman gauge and a = 0 to the
lLandau gauge. Feynman gauge is very convenient for the calculation of
RGE for the gauge coupling constants, whereas Landau gauge is wel|
suited for the RGE for Yukawa and scalar couplings. The one-loop
renormalization-group equations are independent of the gauge chosen,
which allows us to work in different gauges for different couplings.

With the gauge fixing term, Eq.(3.2), added to the Lagrangian, the
one~-loop correction to the gauge boson propagator turns out to be
nontranversal (i.e. gauge noninvariant). This is because the gauge
fixing term has iﬁterfered with the gauge invariance of the theory.

This problem is resolved by introducing a set of fictitious scalar
fields belonging to the adjoint representation of the group, known as
Faddeev-Popov ghost fields,lﬁ which appear only in closed l[oops. These
particles are known as ghosts, because although spinless, they obey
Fermi statistics. Thus each closed ghost loop should be multiplied by a
minus sign, like a fermion loop.

The Feynman rules for the effective interactions of gauge bosons
¥ith gauge, ghost, fermion and (complex) scalar fieldsl’ are given in
Fig.1. Wavy lines denote gauge fields, dotted lines are for ghost
fields, solid jnes for fermions and broken {ines for scalar fields.

There is a factor of -1 for each closed fermion and ghost loops. The

 non-Abelian character of the theory shows up in the triple gauge boson
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% The renormalizability of non-Abelian gauge theories was

‘ established by 't Hooft,18 first in the context of massless theories
which he subsequently generalized to the case of spontaneous!y broken
gauge theories. ’t Hooft and VeitmanlS developed the powerful technique
of dimensional regularization for the renormalization of such gauge
theories, which we shall follow here. The essence of renormalizability
is that all infinities appearing in the theory can be removed by
absorbing them in 2 finite number of primitively divergent CGreen’s
functions. However, as it turns out, all these primitively divergent
Green’s functions are not independent, but are related through ‘Ward

identities’. This is the consequence of the requirement that the

renormalized Lagrangian be alsc gauge invariant. These identities

enable us to choose a simple set of primitively divergent graphs for

calculating the renormalization-group equations. For the gauge coupling

evolution, we choose to evaluate the gauge boson self-energy, ghost

self-energy and gauge boson-ghost-ghost vertex correction diagrams.
The gauge boson self-energy diagrams are shown in Figures 2a-2e.

In dimensional regularization scheme, all tadpole diagrams vanish.15

. Hence the contribution from Fig.2b is zero. This is because there is no

. momentum dependence at the vertices, and the diagram could only give a

L.correction to the gauge boson mass. But in a gauge invariant scheme,

 Fhe gauge boson cannot have a mass. If we édopt some other

regularization procedure, Fig.2b will contribute however.

Consider the amplitude for the diagram in Fig.2a. It is

n I (k,p) '
Mas(gauge) - _%_QQfacdfbcd Qﬁk _ﬂ%zﬂ_m_ﬁmm , (3.4)
# @n)" K (kep)
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where 1/2 is the symmetry factor and

Ly Uop)=lke2p) 5g v (i) o9, 5~ (2k+p) 19, 0]

[(k+20)P 2+ (k-p) gl - (2ksp) o*7] . (3.5)

Here, we have written the loop integral in n dimension. We shall choose
n=4-c¢. The loop integral is clearly divergent in 4 dimensions, but
is well defined in n dimensions. When analytically continued to four
dimensions, the divergencies appear as simple poles in €. This pole
part of the integral can be evaluated using the formulae of Appendix B.
First of all, I#U(k,p) can be expanded to give

I (k,p) = 10k k-2 p +5(p k+kp)+g [(ke2p)%+ (k-p)?]. (3.6)

B p v Tuty v opv By

Next, we introduce the Feynman parametrization given in Appendix B.1,

L 1dx~—»—-——1—— . (3.7)
ab f O [a+(b—a)x]2

n 1 I (k,p)
Mag(gauge) - %ngacdfbcd d k dx 2py . , - (3.8)
# @0"f o KCex(K2k.p)]

Now we shift the momentum variable from k to k+px, without changing the

The amplitude is then

l'imits of k integration (since k goes from -® to +®) and reverse the

order of integration to obtain

4"k I#V(k+px,p)

1 2.acd bcd dx , (3.9)

ab
Mpy(gauge) = 359 L §

21" [k pPx(1-x)]°

where
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2 2 2
Iyy(k+px,p) = 1Okpv— Qp#pv[1+ 5x(l—x)]+gﬁy[2k +p7 (5+x"=2x)] . (3.10)

Here we have dropped the terms odd in k, since when integrated they

yield zéro. The k integration is performed using Cqs. B6-BS of Appendix

B:
d"k 1 i € i 2
- —5— ) = 3 F(ﬁ) = -5 - (3.11)
(27) " [kT+pTx (1-%)] 167 16%
n 2 . .
d kn 5 2k 0 = —l~§2f(—1+g)p2x(1—x) = ~122p2x(1—x)§ (3.12)
@2m) [k+p"x(1-%)] 167 167
k k . .
4"k pv i €, 2 -t 2 2
= F(-1+7)p"x{1-x)g = px(l-x)g = (3.13)
@20 "[Kep*x(1-0]7 1662 2 K ter? pve

The second halves of Eqs.(3.11)-(3.13) are obtained using the ;mail €
expansion of the I' function given in Appendix B.10. We have kept only
the pole part of the expressions, since in a mass independent
renormaiization'scheme, which we choose to work in, the finite part of
the amplitudes can be set to zero. Using these expressions and

performing the elementary integration over x, £q. (3.9) gives

. 2
ab _ —ig” cacdcbed 11 _ 192 2
Mﬂy(gauge) A PG PPy = T3P g#y)e + .0 (314

Note that this expression is not gauge invariant - i.e. not proportional
2
Lo (pypy - p Iyup) -

The amplitude for the ghost contribution to the gauge boson self-

energy (Fig.2c) is

n (p+k) k
Mab(ghost) _ _ngacdfbcd dk 5 i ;
ad )" K (p+k)

) (3.15)
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where the minus sign is due to the closed ghost loop. This integral can
be performed exactly the same way as before - introducing Feynman
parametrization, Eq.(3.7), shifting the momentum variable to k+px and

using Eqgs.(3.11) and (3.13), with the result

. 2
ab - !9 cacd;bed 1
M,u,y(ghOSt) - 1677‘2 e (Sp,upu 12 “uvie

Note that the sum of the gauge and ghost contributions,

ab 5

: 9
ab _ ~-ig 5 2 2
M#D(gauge+ghost) = -—;5 CQ(G)ﬁ 3 (p#py p gpy)e (3.17)

Is gauge invariant. Here we have made use of the group theoretic
identity given Eanq.(A.4) of Appendix A.

The fermion contribution, Fig.2d, is

n,  Triy (B+fem)y (Kem)]
WO (fermion) = -gZ12. 10 | dk ot (3.18)
# T en" 6Eawd) [(prk) 2end
The Trace in the numerator of (3.18) gives
Trll = 4f2k ke pkepk-g (K pk-nd)] (3.19)
pv o Tpv Tvip Suy ‘ ' '

Strictly speaking, the 7 matrix algebra js different in 4-¢ dimensiens,
but this difference will show up only in the finite part of the
amplitude, which we are setting to zero. Using the now familiar

techniques, and the group theoretic identity, Eq.(A.5) of Appendix &,

ab 4 2

. 2
ab . _ ig
Mﬂy(fermlon) = —=T(R)S g(P#Py T P9y

)g . (3.20)
167

Finally, the complex scalar contribution to the gauge boson self

fnergy is
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n. (2k+p) (2k+p)
WP scalar) = ig2t® TP | dk —L—t ., (@.21)
- R [ R S I
which leads to
W (scalar) = -8 T(5)6% Lip p - o )2 . (3.22
v scalar) = 15W2 3 p#py D g#y : ce .22)
Hence the total contribution to the gauge boson propagator is
WP (total) = 1193( - p%g V2, (G) - ATR) - 112+ .. (3.23)
% = 2Py T P9, 15N 3 3 e " o\

167

Next consider the ghost self-energy diagram. Only the gauge

bosons contribute to this, (Fig.2f), with an amplitude given bx

n. (p-k) p g
Hab(p) _ g2faCdbed d kn 5 Iz gu (3.24)
(2r)" Kk (p-k)
Using the same techniques as for the gauge boson self-energy, the
amplitude is evaluated to be
. 2 2
ab _ g ab p~ 2
1I (p) = ""'—2 CQ(G)é —é— E T (825)

167

Finaily, the ghost-ghost-vector boson vertex is corrected by the

bwe diagrams shown in Figures 2g and 2h. The amplitude for the first is

abe _ ig3 eda_hce_bdh d"k (Q‘k)#(p—k).q

I (p,q) £ (3.26)
sl @n™ K2 (-l % (g-k)

5 -

The divergent part of this integral is the k#ky term only. It can be
evaluated by introducing the Feynman parametrization, Eq.(B.2) of
Appendix B, shifting the integration variable to k-px-qy and again

dropping the finite part of the integral. The result is



3 q
I (p,q = -9 feodgbdhiche % 2 (3.27)
,ul 2 4 ¢
167
The group theoretical factor can be simplified using Eg. (A.11) of
Appendix A:
abc 3 abc 12
1 {p,q) C (G)f Gt - (3.28)
Y 1677 i

The diagram Fig.2h can be calculated to be

nebe.; 3¢dae bhd ceh [ dk j[(q"’k QP)'ﬁQ + (p+q-2k) 49 s (k+2p-q) gﬁ]
(2?f) K2 (g-k) (p k) (3.29)

42
The divergent part of Eq.(3.29)

2
abc . 3.dea_ bhd ceh | d"k (K q# ) kpkuqu)

(p,q) = LA e , (3.30)
Y2 19 @M" K (k=) % (kep) 2

which evaluates to

3
be abc 32
;2 p,q) = i;_ C,(6)F gt (3.31)

Hence the total correction to the ghost-ghost-vector boson vertex is

3
b b b bec 1 2
L,°(p,q) = T2%p,q) « Lo k) = 25 ¢ (0 55 (3.32)
. k # 167

We are now in a position to perform the renormalization of the
9auge coupling constants. First consider the one-loop corrected gauge

boson propagator. In Feynman gauge, with our result Eq.(3.23), it is

. ab
-ig & . .
LG G 30
P P p
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-ig 4P 2
S R R T TN (3.30)
p2 16#2 372 3 3 €

Here we have considered only the longitudinal part of Eq.(3.23), since
the transverse part contributes to the redefinition of the gauge fixing
term. From Eq.(3.34), it is clear that the infinity associated with the
vector boson propagator can be absorbed into the redefinition of the
wave function. The wave function renormalization constant, 23, is
2 5 4 1 2
Z, = 1+ £§;§ [3,(8) - 3TR) - sT()IE . (3.35)

Similarly, from Eq. (3.25), the ghost wave function renormalization

constant is

2

T g 12
Iy = 1+-9 NOFE (3.36)
167

3
The ghost-vector charge renormalization constant, Zl is the ratio

of the bare to the unrenormalized three-point function, szc(p,q), which
from Eq.(3.32) follows:

’ 2 1 2
2, = 1- I§;§ 50, (6)2 (3.37)

The analogous vector charge renormalization constant, Zl’ can be

obtained without any more work, using the Ward identity,

Z z
3
1 _ ) (3.38)
! 23

which yields,
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2 1.9 2,0 - R - Lrs)2 3.39
1 - *1%2[52()‘?,()"3 € (3.39)

Note that the renormalized charge, scale of the fields and gauge
parameter depend on the renormalization point, x, which is arbitrary.
However, the unrenormalized Lagrangian has no dependence on L. The fact
that the unrenormaiized couplings are independent of # is expressed

through the renormalization-group equation,14
ga) = 0, (3.40)

where I' is the unrenormalized one particie~irreducible Green’s function.

Using the chain rule of differentiation, N

[ %; : ﬁ(g,a)§§ - n1(8,0) + 89,51 M (g,a,0) = 0, (.41

<o

) o)
Plae) = wgp 100 = §oinz,, d@,a) - Bap oo (3.42)

The bare and renormalized gauge couplings are related by

Z
1
3

The 3/2 power is because only the square root of the wave function
renormalization appears in the coupling constant renormalization, and
there are three external vector boson lines in the definition of g.
Remembering that in 4-¢ dimension, gauge couplings have dimensions of

(€/2)p, the A function is found to be
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93 11 4 1

e, = - Soile©@ - R - e (3.44)
167

In general, the fermions and scalars will belong to reducible

representation of the group, in which case, one has to sum over ther

contributions. For semisimple groups, BEq.(3.44) is trivially modified

as Tollows: Consider a semisimple group Gy x G,. Then the beta

function for 9y 1519
93
1 11 4 1

where d(Rz) is the dimensionality of the fermion representation under
G2, etc. We wish to remind the reader that we have assumed the Higgs-
scafars to be complex. For real representation, the factor 1/3 should
be replaced by 1/6 in Eq.(44)-(45). For chiral fermion
representations, (i.e. if the left and right-handed fermions transform
differently), as is the case in the Standard Model, the factor 4/3T(R)
should be replaced by 2/3T(R).

As an example, let us work out the beta functions for the Standard
Model with ng generations of fermions and ny Higgs-boson doublets. For
the SU(B)C coupling, Higgs-bosons do not contribute. Since [eft-handed
and right-handed quarks are triplets under SU(S)C, T(R) = 1/2. Hence

the f function for g3 is

3 3
g g
3 .11 4 1 3 4
f, = - —5[3.3-5.(3).2.n,] = - ——(11- zn,). (3.46)
9, Lol 3 3-\2 e Tor2 3"a

For the SU(Q)L coupling,
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3 3

g

2 .11 2.1 .1 11 2 22 4 1
Fg =~ —50372 - 5(3.-35)n_- 5 50, = - —5(55 - Fa. - iny). (3.47)
9, Jpr2'3 383-9"3)0g7 3 5y Tor23 7 3% T 8™ .

From the hypercharge assignment given in Table 1 of Chapter 2, the

corresponding equation for the U(1) gauge coupling is

3 3
g
1 2.1 1 4 1 1.1 1 .20 1
ﬁgl‘:- ]—-s—ﬁz[ 3(124-14'3—6'23‘*53'*@3) nG+ :'-3(‘&2) nH] = Eﬁ(’g‘n(}f’ gnH) - (348)

The SU(S)C and SU(Z)L couplings decrease with momentum, as long as the
number of generations and Higgs doublets are not too large, (asymptotic
freedom), whereas the U(1) coupling increases with momentum.
3.2. RENORMALIZATION OF YUKAWA AND QUARTIC SCALAR COUPLINGS

Since the fermions and Higgs-bosons will belong to reduc;ble
representations of the group in general, the renormalization of their
couplings depends on the details of the model. In the following, we
shall derive the RGE for Yukawa and quartic scalar couplings in the
Standard Mode! with one or two Higgs-boson doublets and an arbitrary
number of fermion generations.20

It is very convenient to work in the Landau gauge for this
purpose. Several diagrams do not contribute to the beta functions in
this gauge, since they give rise to convergent integrals. The problem
of evaluating the beta function can be reduced to one of mere
combinatorics, if we evaluate the contribution of each model-independent
loop factor to the beta function. In Fig.3, we list these loop factors

in Landau gauge. The ones not |isted give rise to convergent diagrams.

For example, the W boson exchange diagrams‘for the fermion Yukawa
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couplings do not contribute to the beta functions in Landau gauge. The
factors listed in Fig.3 have an overal| 1/(8%2) and a factor 1/2 for
each identicat internal lines. These factors are obtained in a manner
analogous to the gauge coupling renormalization - by identifying the
coefficient of the pole term of the amplitude. These pole termé are
simply related to the coefficients of the beta function. Gauge boson
correction to the scalar propagator should be divided by 2 since it is
the square root of the wave function renormalization that appears in the
beta function. In Fig.3, such factors are already inciuded. As an
itlustrative example, we calculate the loop factor for the gauge boson
correction to the Yukawa couplings.

For this diagram, no spurious singularities arise if we skt the
external momenta of the quarks and Higgs-boson to zero. Similariy, all
the masses can be set to zero, since we are not interested in the
renormalization of masses. Then the model tndependent part of the

amplitude for the gauge boson correction diagram to the Yukawa coupling

- d k L B (=i1) (-1) . Uy (=i gy
u e (-.[ )--—- et (--| ) -——-—( - )U (349)
L amn U B U 29 2R
A L OTCE (3.50)
(Qﬁ)n k4 R
- 31 .. € 3 1 -
ULUR[;g;ﬁjlr(ﬁ) = - 5;5 c Y - (3.51)

Hence the corresponding factor is -3, as shown in Fig.3.

Consider first one generation of fermions in the Standard Model
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Fig.3. Loop factors for the evaluation of g functions for Yukawa and
quartic scalar couplings in the Landau gauge. There is an
overall multiplicative factor 1/87r2 and a fator 1/2 for

identical internal lines.

37
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There is an overal!l factor 1/8?2.
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that couplies to a single Higgs-boson doublet. The Yukawa coupling is

-0 4 - ~ o+ o 0
l_Y = hu[uLuR¢ - dLuR¢ 1 + hd[uLdR¢ + deR¢ )

- + = Y
+ he[ULeR¢ + eLeR¢ ] « H.C. (3.52)

The associated Feynman rules are shown in Fig.4 and the one loop
diagrams correcting the h, vertex are worked out in Fig.5. Again each
diagram has an overall 1/(8%2) multiplying it. The loop factors given
in Fig.3 are made use of in evaluating the factors of Fig.5. As is

clear from here, the problem of evaluating the beta function reduces to

one of combinatorics. For the group theoretical factors, we use the

results of Appendix A. Summing over all the diagrams of Fig.5, we have

b

2dh?

2:.92 32 2 172 92 2
8ry = hylghy hg* Mo 7991 39" 8931 - (3.53)

Here we have defined t=log(s). The evoiution of hg and h_ can be easily

obtained without any more work. For hd' all one-loop diagrams are the

same as for h,, except for the U(1) gauge boson correction, since the d
~and u quarks differ in their hypercharge. The factor for this diagram
j_Should be replaced by +1/6, instead of -1/3. Similarly, for hg, this
Z“factor should be -3/2. Moreover, the gluon correction diagram is absent

J.-for he’ Consequently,

2.9 2992 32 2 5 2 92 9
Sﬁ'ghd = hylzhgr shor hi- 2507 Jg2-893] (3.54)
t
erldhe h2[2hZe 3n%e 3h2- 1552 9.2 (3.55)
dg® T Nelahgt 90y d” 47917 3921 - '



41
Clearly, Egs.(3.53)-(3.55) are valid for an arbitrary number of fermion

generations coupled to a single Higgs-boson doublet (assuming negligible

quark mixings).

Now consider the evolution of the quartic scalar coupling, X, in a

one Higgs doublet (minimal) Standard Model. The classical Higgs

petential is
Ve = e s JeTe? (3.56)

and the gauge boson kinetic energy term is

. R a,a

1g.B ig.7 A 2

1g 2 ¢

9 - 5 )¢| ; (3-57)

' P
CONCORE |(a#

as defined in Chapter 2. The associated Feynman rules are given in

Fig.6. Note the presence of symmetry factors. Thus the four point
charged Higgs vertex has a factor 2 for identical ¢+, and another factor
2 for identical ¢n. From these Feynman rules, one arrives at the one-
loop diagrams for the (2)\) vertex in Fig.7. These diagrams can be

'igi thought of as two processes:

+

§707 ¢, (3.58)

¢ o4 . (3.59)

For the first process, Eq(3.58), if we interchange .the momenta of ¢+ in
fthe initial and final states, we obtain a topologically inequivalent
=_-d:_Iagram, which is denoted by + crossed in Fig.7. (Any more interchange
'QEVGS bopologically equivalent diagrams). For identical internal lines,

‘a Symmetry factor 1/2 has been put in. Again only one generation of
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'9.6. Feynman rules for the Higgs-boson interactions in the Standard
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Fig.7. One-loop corrections te the vertex (2\) in Landau gauge.

diagram should be multiplied by a factor 1/8W2-
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fermions has been considered, which can be easily generalized to an
arbitrary number of generations. Keeping in mind the case of a heavy
top quark, we keep only those terms proportional to hu' Summing over

the diagrams given in Fig.7, we arrive at

2dX\ 2 32 92 34 94 322 2 4
87 I = A"~ (igl+ 592)k * g9 * g9 * 7919, * 6huk - 6hu . (3.80)

Finally, we consider the evolution of quartic scalar coupiings in
a two-doublet model discussed in Chapter 2. The classical potential is
.given in Eq.(2.41) of Chapter 2, from which the Feynman rules listed in
Figures 8-9 follow. The interaction of Higgs-bosons with gauge bosons
Is the same as in the one doublet model, but now with both doublets. In
Figures 10-11, the Higgs-boson contributions to the five quartic scalar
couplings are evaluated (a-b are for 2%1, c-d for 2hg, e-g for XS, b-j
for A4 and k-1| for QXS). Fig.12 summarizes the gauge contributions to
the evolution of these couplings and finally Fig.13 the heavy up quark
(which couples only to $1) contribution. Summing over these graphs, one

arrives at the full renormalization-group equations for Xl—RE:

2d) 2 2 2 b 32 ¢2 34 322
81 ggl = OA» Dgr Dgh,e Mg M- A (Geg* 595) *+ 59;+ 39795
9 4 2 4
+ 59y * lehu— Shu ; (3.61)
2dx 2 2 2 2 32 92 3 4
87 HEQ = 6%2+ 2X2+ 2l3k4+ k4+ k5_ k2(591+ 592) * 89

e

22 94

3
3 9 3.62
T 3919 * 395 ( )
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2 .2 2 32 92 3 4
8‘1?25%3 = O\l+ )\2) (3)\34-}\4) - 2)\3+ }\4+ )\5— )\S(égld- 592) + 39
322 9 4 2
39192 * g9 * 3hgh, (3.63)
2 32 92 322
awgg%z; = Ogohdhgs D @2hgeh) + g - N (Gay v 5ay) + 5919,
2
+ 3A4hu s (3.64)
32 92 2
8?r2§l\5 XS[)\1+}\2+ 4)\3+ 6)\4-— 5917 595* 3hu] . (3.65)
t
The structure of these renormalization-group equations will be fully

exploited to find functional relationships among various couplings and

to bound these couplings in Chapter 7.
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