Syllabus for B.Tech – Energy Engineering

Course Number 9 Title: ENOOG Light and Mass Transfer
Course Number & Title: EN206 - Heat and Mass Transfer
L-T-P-C: 3-1-0-8
Offered in (Odd/ Even / Any): Semester IV
Pre-Requisite: Nil
Preamble / Objectives (Optional): This course provides the basic principles of heat and mass transfer with a knowledge of real-world problems or examples. Demonstrate a knowledge of the basic technical and operational aspects of heat and mass transfer and applications mainly focusing on energy.
Course Content/ Syllabus: Different modes of heat transfer, Conduction: Fourier's law, heat diffusion
equation, 1-D steady state conduction in extended surfaces, heat generation, lumped capacitance and 1D
transient models; convection: forced and free convection, mass, momentum and energy conservation
equations, thermal boundary layers, heat transfer in external and internal, laminar and turbulent flows, and
use of correlations, boiling and condensation: physical phenomena and correlations, heat exchanger types
and analysis: LMTD and effectiveness-NTU method, Radiation: properties, Laws, view factor, gas radiation. Mass transfer: diffusion and types, concept of mass transfer coefficients, physical and
thermodynamic principles of mass transfer.
Books (In case UG compulsory courses, please give it as "Text books" and "Reference books". Otherwise give it as "References".
Text Books: (Format: Authors, Book Title in Italics font, Volume/Series, Edition Number, Publisher, Year.)
1. F P Incropera, D P Dewitt, Theodore L Bergman and Adrienne S Lavine, <i>Fundamentals</i> of <i>Heat and Mass Transfer</i> , 8 th Edition, John Wiley & Sons, 2018.
2. Y Cengel and A J Ghajar. <i>Heat and Mass Transfer: Fundamentals and Applications</i> , 6 th Edition, McGraw Hill, 2020.
Reference Books: (Format: Authors, Book Title in Italics font, Volume/Series, Edition Number, Publisher,
Year.)
1. J P Holman, <i>Heat Transfer</i> , 10th Edition, McGraw-Hill Education, 2010.
2. J H Lienhard IV, J H Lienhard V, A Heat Transfer Textbook, 5th Edition, Phlogiston Press, 2020.
3. M N Ozisik, Heat Transfer: A Basic Approach, McGraw-Hill, 1985.