Syllabus for B.Tech – Energy Engineering

Course Number & Title: EN303 Hydrogen and Fuel Cell Technology
L-T-P-C: 3-0-0-6
Offered in (Odd/ Even / Any): Semester V
Pre-Requisite: Nil
Preamble / Objectives (Optional): This course provides the comprehensive view about various hydrogen
production methods and fuel cell technologies. This course will serve as a guide for hydrogen related
technologies and advancement
Course Content/ Syllabus: Introduction to hydrogen energy, various hydrogen production methods, types
of electrolyzer: proton-exchange membrane, alkaline, solid oxide, alkaline, microbial, efficiency, open
circuit voltage, and losses, type of fuel cells: proton-exchange membrane, alkaline, anion exchange
membrane, solid oxide, microbial, storage, fueling fuel cell, component of fuel cells, fuel cell calculations,
design of integrated hydrogen energy systems, fuel-cell electric vehicle and applications
Books (In case UG compulsory courses, please give it as "Text books" and "Reference books".
Otherwise give it as "References".
Text Books: (Format: Authors, <i>Book Title in Italics font,</i> Volume/Series, Edition Number, Publisher,
Year.)
1. J Larminie, A L Dicks, Fuel Cell Systems Explained, 2 nd Edition, Wiley, 2013.
2. X Li, <i>Principles of Fuel Cells</i> , Taylor and Francis, 2005.
Reference Books: (Format: Authors, Book Title in Italics font, Volume/Series, Edition Number, Publisher,
Year.)
1. I Dincer, C Zamfirescu, Sustainable Hydrogen Production, Elsevier, 2017.
2. I Dincer, H Ishaq, <i>Renewable Hydrogen Production</i> , Elsevier, 2021.
3 G Naterer, I Dincer, C Zamfirescu, Hydrogen Production from Nuclear Energy, Springer, 2015.
4 B Sorensen, G Spazzafumo, Hydrogen and Fuel Cells: Emerging Technologies and Applications,
3 rd Edition, Academic Press, 2018.