CE 513: STATISTICAL METHODS IN CIVIL ENGINEERING

Lectures- 10: Parameter Estimation

Dr. Budhaditya Hazra

Of Techn

Room: N-307 Department of Civil Engineering

Probability Paper Plot

Let X be a random variable with PDF $P_X(x)$.

Let $\{x_i\}_{i=1}^n$ be a sample of X.

Probability paper is a special plotting device in which y-axis is scaled in such a way that the PDF function appears as a straight line.

Example

The complement of the cumulative PDF appears as a straight line.

Probability Paper Plot

त्तकी संस्थाः

Strute of Technology

Reducture Indian Int

PP plot Si mu= 46954 0.0260 0.0526 lambda= 54398 0.0800 0.1082 0.1372 80 0.1671 0.1978 70 = 15.353x + 13.332 0.2296 $R^2 = 0.8915$ 0.2624 60 0.2963 0.3314 50 0.3677 Data 0.4055 40 × 0.4447 -Linear (Exp Prob 0.4855 30 Plot) 0.5281 0.5725 20 0.6190 0.6678 10 0.7191 0.7732 0 The full of Technology 0.8303 1.0000 0.0000 2.0000 3.0000 4.0000 0.8910 0.9555 Si Wahati•

PP plot-for practice

5 96	28
6.83	28.2
6.84	28.5
8.17	30
8.68	30
874	30
0.74	30.88
10.26	31.38
15.0	34.28
10.9	34.5
	37.407
22.1	40.03
<u>2</u> 3	40.48
23.509	43 53
23.6	45
23.7	46 31
24.7	46 397
25.3	18.74
25.407	50 888
	63 319

General Mathematical Statement of Estimation Problem:

For... Measured Data $\mathbf{x} = [x[0] x[1] \dots x[N-1]]$

Unknown Parameter $\theta = [\theta_1 \ \theta_2 \ \dots \ \theta_p]$

 θ is Not Random

^e of Technol

x is an *N*-dimensional random data vector

Q: What captures all the statistical information needed for an estimation problem ?

A: Need the <u>N-dimensional PDF of the data</u>, parameterized by θ

We'll use $p(\mathbf{x}; \boldsymbol{\theta})$ to find $\hat{\boldsymbol{\theta}} = g(\mathbf{x})$

Let $f(x; \theta)$ be the density function of population X

 θ is the only parameter to be estimated

from a set of sample values x_1, x_2, \ldots, x_n

Joint density function of the sample

 $f(x_1, x_2, \dots \dots, x_n; \theta)$

This is in general difficult to work with

- Simplify it by making independence assumption
- Each sample is sampled independently of the others
- Each sample belongs to the same parent distribution

A better and somewhat well behaved function: Likelihood

We define the *likelihood function* L of a set of n sample values from the population by

$$L(x_1, x_2, \ldots, x_n; \theta) = f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta).$$

In the case when X is discrete, we write

ofTechno

$$L(x_1, x_2, \ldots, x_n; \theta) = p(x_1; \theta) p(x_2; \theta) \cdots p(x_n; \theta).$$

- Likelihood function L is a function of a single variable θ
- <u>Method of maximum likelihood</u>: Comprises of choosing, as an estimate of θ, the particular value of that maximizes L

The maximum of $L(\theta)$ occurs at the value of θ where $dL(\theta)/d\theta$ is zero. Hence, in a large number of cases, the maximum likelihood estimate (MLE) $\hat{\theta}$ of θ based on sample values x_1, x_2, \ldots , and x_n can be determined from

$$\frac{\mathrm{d}L(x_1,x_2,\ldots,x_n;\hat{\theta})}{\mathrm{d}\hat{\theta}}=0.$$

Gaussian with known sigma

the log-likelihood is:

of Techno

$$\sum_{j=1}^{n} \ln p(\mathbf{x}_{j}|\theta) = \sum_{j=1}^{n} -\frac{1}{2} (\mathbf{x}_{j} - \mu)^{t} \Sigma^{-1} (\mathbf{x}_{j} - \mu) - \frac{1}{2} \ln (2\pi)^{d} |\Sigma|^{2}$$

• The gradient wrt to the mean is:

$$\nabla \mu \sum_{j=1}^{n} \ln p(\mathbf{x}_{j}|\theta) = \sum_{j=1}^{n} \Sigma^{-1}(\mathbf{x}_{j} - \mu)$$

 \Rightarrow

 $\mu^* = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$

Setting the gradient to zero gives:

$$\sum_{j=1}^n \Sigma^{-1}(\mathbf{x}_j - \boldsymbol{\mu}^*) = \mathbf{0}$$

Gaussian with unknown mean & sigma

the log-likelihood is:

$$\mathcal{L} = \sum_{j=1}^{n} -\frac{1}{2\sigma^2} (x_j - \mu)^2 - \frac{1}{2} \ln 2\pi \sigma^2$$

The gradient is:

^e of Technol

$$\nabla_{\mu,\sigma^2} \mathcal{L} = \begin{bmatrix} \sum_{j=1}^n \frac{1}{\sigma^2} (X_j - \mu) \\ \sum_{j=1}^n -\frac{1}{2\sigma^2} + \frac{(X_j - \mu)^2}{2\sigma^4} \end{bmatrix} = 0$$

$$\mu^* = \frac{1}{n} \sum_{j=1}^n x_j \quad \sigma^2 = \frac{1}{n} \sum_{j=1}^n (x_j - \mu^*)^2$$

Question: Work out the case where sigma is known and varies at each point