CE 513: STATISTICAL METHODS IN CIVIL ENGINEERING

Lectures- 10: Parameter Estimation

Dr. Budhaditya Hazra

Of Techn

Room: N-307 Department of Civil Engineering

Parameter Estimation

Probability papers

Let X be a random variable with PDF $P_X(x)$.

Let $\{x_i\}_{i=1}^n$ be a sample of X.

Probability paper is a special plotting device in which y-axis is scaled in such a way that the PDF function appears as a straight line.

Example

 $P_X(x) = 1 - \exp(-\lambda x) \Delta \qquad \mathfrak{A} > \mathcal{O}$ $1 - P_X(x) = G_X(x) = \exp(-\lambda x)$ $\log G_X(x) = -\lambda x$ The complement of the cumulative PDF

appears as a straight line.

PP plot

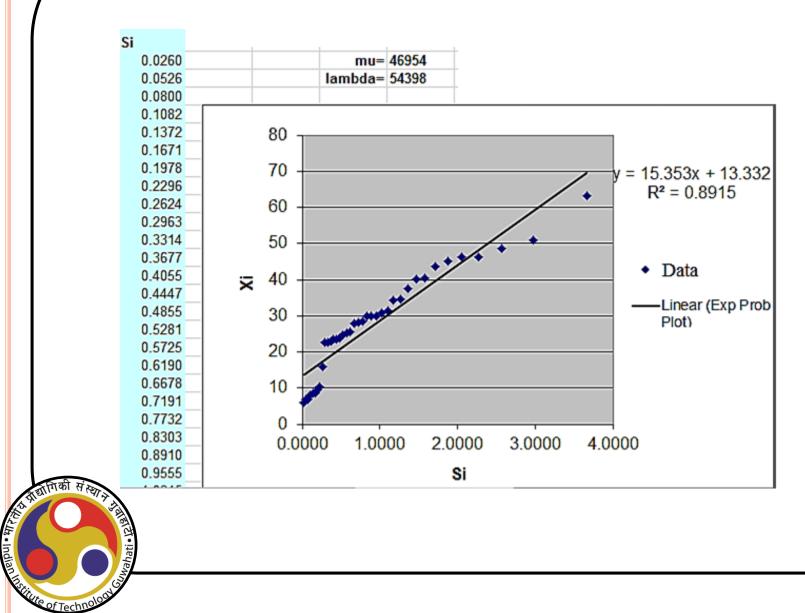
i/(N + 1)

Data (in increasing			
order)	Rank	Pi	
5.96	1	0.03	
6.83	2	0.05	
6.84	3	0.08	
8.17	4	0.10	
8.68	5	0.13	2
8.74	6	0.15	
9.41	7	0.18	
10.36	8	0.21	
15.9	9	0.23	
22.5	10	0.26	
22.7	11	0.28	
23	12	0.31	
23.509	13	0.33	
23.6	14	0.36	
23.7	15	0.38	
24.7	16	0.41	
25.3	17	0.44	
25.407	18	0.46	
28	19	0.49	
28.2	20	0.51	
28.5	21	0.54	
30	22	0.56	
30	23	0.59	
30	24	0.62	
00.00			

A STREET OF Technology

26-08-<mark>201</mark>8

PP plot



PP plot-for practice

5.96	28
6.83	28.2
6.84	28.5
8.17	30
8.68	30
8.74	30
9.41	30.88
10.36	31.38
15.9	34.28
22.5	34.5
22.7	37.407
23	40.03
23.509	40.48
23.6	43.53
23.7	45
24.7	46.31
25.3	46.397
25.407	48.74
_0.101	50.888
	63.319

e of Technol

Verify your estimation results Using Maximum Likelihood.

Deadline: Sept-6 (Thursday)

Submission mode: Soft copies to be emailed to stats.ce513@gmail.com

General Mathematical Statement of Estimation Problem:

For... Measured Data $\mathbf{x} = [x[0] x[1] \dots x[N-1]]$

Unknown Parameter $\theta = [\theta_1 \ \theta_2 \ \dots \ \theta_p]$

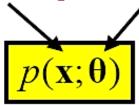
 θ is Not Random

e of Technol

x is an N-dimensional random data vector

Q: What captures all the statistical information needed for an estimation problem ?

A: Need the <u>N-dimensional PDF of the data</u>, parameterized by θ



We'll use $p(\mathbf{x}; \boldsymbol{\theta})$ to find $\hat{\boldsymbol{\theta}} = g(\mathbf{x})$

Let $f(x; \theta)$ be the density function of population X

 θ is the only parameter to be estimated

from a set of sample values x_1, x_2, \ldots, x_n

Joint density function of the sample

 $f(x_1, x_2, \dots, \dots, x_n; \theta)$

This is in general difficult to work with

- Simplify it by making independence assumption
- Each sample is sampled independently of the others
- Each sample belongs to the same parent distribution

<u>Joint density simplifies to</u> $f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta)$

A better and somewhat well behaved function: Likelihood

We define the *likelihood function* L of a set of n sample values from the population by

$$L(x_1, x_2, \ldots, x_n; \theta) = f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta).$$

In the case when X is discrete, we write

of Technol

$$L(x_1, x_2, \ldots, x_n; \theta) = p(x_1; \theta) p(x_2; \theta) \cdots p(x_n; \theta).$$

- Likelihood function L is a function of a single variable θ
- <u>Method of maximum likelihood</u>: Comprises of choosing, as an estimate of θ , the particular value of that maximizes L

The maximum of $L(\theta)$ occurs at the value of θ where $dL(\theta)/d\theta$ is zero. Hence, in a large number of cases, the maximum likelihood estimate (MLE) $\hat{\theta}$ of θ based on sample values x_1, x_2, \ldots , and x_n can be determined from

$$\frac{\mathrm{d}L(x_1,x_2,\ldots,x_n;\hat{\theta})}{\mathrm{d}\hat{\theta}}=0.$$

Gaussian with known sigma

the log-likelihood is:

ofTechno

$$\sum_{j=1}^{n} \ln p(\mathbf{x}_{j}|\theta) = \sum_{j=1}^{n} -\frac{1}{2} (\mathbf{x}_{j} - \mu)^{t} \Sigma^{-1} (\mathbf{x}_{j} - \mu) - \frac{1}{2} \ln (2\pi)^{d} |\Sigma|$$

• The gradient wrt to the mean is:

$$\nabla \mu \sum_{j=1}^{n} \ln p(\mathbf{x}_{j}|\theta) = \sum_{j=1}^{n} \Sigma^{-1}(\mathbf{x}_{j} - \mu)$$

 $\boldsymbol{\mu}^* = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$

Setting the gradient to zero gives:

$$\sum_{j=1}^{n} \Sigma^{-1}(\mathbf{x}_{j} - \boldsymbol{\mu}^{*}) = \mathbf{0} \qquad \Rightarrow \qquad$$

Gaussian with unknown mean & sigma

the log-likelihood is:

$$\mathcal{L} = \sum_{j=1}^{n} -\frac{1}{2\sigma^2} (x_j - \mu)^2 - \frac{1}{2} \ln 2\pi \sigma^2$$

The gradient is:

e of Technol

$$\nabla_{\mu,\sigma^2} \mathcal{L} = \begin{bmatrix} \sum_{j=1}^n \frac{1}{\sigma^2} (X_j - \mu) \\ \sum_{j=1}^n -\frac{1}{2\sigma^2} + \frac{(X_j - \mu)^2}{2\sigma^4} \end{bmatrix} = 0$$

$$\mu^* = \frac{1}{n} \sum_{j=1}^n x_j \quad \sigma^2 = \frac{1}{n} \sum_{j=1}^n (x_j - \mu^*)^2$$

Question: Work out the case where sigma is known and varies at each point

Poisson with parameter Λ

Likelihood function
$$L(\lambda) = f(x_1, ..., x_n; \lambda) = \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} = \frac{e^{-n\lambda} \lambda^{\sum_{i=1}^n x_i}}{x_1! \cdots x_n!}$$

Thus,

e of Technol

and $\frac{d}{d\lambda} \ln L(\lambda) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} x_i$

 $\ln L(\lambda) = -n\lambda + \ln \lambda \sum_{i=1}^{n} x_i - \ln c \quad \text{where} \quad c = \prod_{i=1}^{n} (x_i!)$

Setting $d[\ln L(\lambda)]/d\lambda = 0$, the maximum-likelihood estimate $\hat{\lambda}_{ML}$ of λ is

$$\hat{\lambda}_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Hence, the maximum-likelihood estimator of λ is given by

$$\Lambda_{ML} = s(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}$$