CE 607 HOME-WORK

Question-1)

Evaluate the triple integral: $\int_{t_0}^t \int_{t_0}^{s_1} \int_{t_0}^{s_2} dB(s_3) dB(s_2) dB(s_1)$

where dB(t) signifies incremental Wiener process

<u>Question-2</u>)

Consider the Ito-Taylor expansion for the solution of the diffusion equation $dx(t) = a[x(t)]dt + b[x(t)]dB(t), x(t_0) = x_0;$

$$\begin{aligned} x(t) &= x(t_0) + \int_{t_0}^t \left\{ a[x(t_0)] + \int_{t_0}^{s_1} \mathcal{L}^0 a[x(s_2)] ds_2 + \int_{t_0}^{s_1} \mathcal{L}^1 a[x(s_2)] dB(s_2) \right\} ds_1 \\ &+ \int_{t_0}^t \left\{ b[x(t_0)] + \int_{t_0}^{s_1} \mathcal{L}^0 b[x(s_2)] ds_2 + \int_{t_0}^{s_1} \mathcal{L}^1 b[x(s_2)] dB(s_2) \right\} dB(s_1) \end{aligned}$$

where dB(t) signifies incremental Wiener process. Derive a numerical scheme in terms of **discrete time** & discrete wiener increments that includes two $O\{\int \int \mathcal{L}^1$ remainder terms ?

Question-3)

During a race, a cyclist has average speed **m**. However, his speed varies in time. Sometimes the cyclist exceeds the speed **m**, but he gets tired after a while and slows down. If the cyclist's speed decreases under the mean **m**, then he recuperates the muscle power and is able to speed up again. The cyclist's instantaneous velocity v_t satisfies a mean reverting process described by the equation: $dv_t = a(m - v_t)dt + \sigma dW_t$, where a and σ are constants and dW_t is the Wiener increment.

The solution of this equation: $v_t = m + (v_0 - m)e^{-at} + \sigma e^{-at} \int_0^t e^{as} dW_s$.

Find the mean and the variance of v_t ?

Question-4)

Investigate whether the stochastic process X(t) with autocorrelation function $R_{XX}(t_1, t_2) = \sigma^2 \exp(-\alpha |t_1 - t_2|)$ possesses mean square derivative or not.

<u>Question-5</u>)

Find the covariance of W(s) and $\int_0^t W(r) dW(r)$ for $s \le t$

<u>Question-6</u>)

Let {X(t), $t \ge 0$ } be a random process with stationary independent increments, and assume that X(0) = 0.

Show that $Cov[X(t), X(s)] = K_x(t, s) = \sigma^2 min(t, s)$

Question-7)

Find the autocorrelation function $R_x(t, s)$ and the autocovariance function $K_x(t, s)$ of a Poisson process X(t) with rate A.

Question-8)

Find the variance of $W(1) - \int_0^1 W(s) ds$

Question-9

Brownian Bridge *is defined as* X(t) = B(t) - tB(1); where $B(t) = \sigma W(t)$ and X(0) = X(1) = 0. Find the autocovariance function of a Brownian bridge ?