CE 607: RANDOM VIBRATIONS

Lecture- 4: Continuous RV

Dr. Budhaditya Hazra

Room: N-307 Department of Civil Engineering

Continuous RVs

- A continuous random variable can assume any value within a given range e.g. Concrete crushing strength
- The probability content of a continuous random variable is described by the probability density function(PDF)

of Techno

Continuous RVs

• The **probability** associated with the random variable in a given **range** is represented by the **area under the PDF**

e of Technol

CDF

The cumulative distribution function (CDF)

$$F_X(x) = P(X \le x) = \int\limits_{-\infty}^* f_X(u) du$$

- The CDF is equal to cumulative probability (ranges between 0 and 1)
- It is apparent from above that the PDF is the first derivative of the CDF

$$\left. f_X(u) = rac{dF_X(x)}{dx}
ight|_{x=u}$$

of Techno

Properties of $f_X(x)$

- 1. $f_X(x) \ge 0$ 2. $\int_{-\infty}^{\infty} f_X(x) dx = 1$
- 3. $f_X(x)$ is piecewise continuous.
- 4. $P(a < X \le b) = \int_{a}^{b} f_{X}(x) dx$
- If X is a continuous r.v., then

$$P(a < X \le b) = P(a \le X \le b) = P(a \le X < b) = P(a < X < b)$$
$$= \int_{a}^{b} f_{X}(x) \, dx = F_{X}(b) - F_{X}(a)$$

CDF & Quantile function

- In some cases, we may be interested in finding out what is the value of the random variable for a given probability
- Probabilistic bounds that are important for design purposes
 - The result is called the percentile or quantile value
 - For example, the value of the random variable associated with 95 % (cumulative) probability is the 95th percentile value

CDF & Quantile function

To estimate the percentile values, we must **invert** the CDF as :

Standard normal distribution

The **Standard Normal** variate is used to transform the original random variable *x* into standard format as

$$s = \frac{x - \mu}{\sigma}$$

of Techn

- The Standard Normal distribution is denoted as N(0,1)and has a mean of zero and standard deviation equal to one
- Because of its wide use, the CDF of the Standard Normal variate is denoted as $\Phi(s)$

Example: A reliability problem

A concrete column is expected to support a stress of 34 MPa.

- Assuming the Normal distribution for concrete strength, what is the probability of failure?
- The sample mean and standard deviation computed from tests are equal to 40 Mpa and 4.56 MPa

Soln: Probability of failure is the area under the Normal PDF

• The probability that the concrete strength is less than or equal to the applied stress (34 MPa) is obtained using the Standard Normal CDF as

$$P(X \le 34) = \Phi\left(\frac{34 - 40}{4.56}\right) = \Phi(-1.316) = 0.094$$

 Therefore, given an estimated average value of 40 Mpa from the 35 laboratory tests with a standard deviation of 4.56 MPa, the probability of failure is 9.4 %

- The logarithmic or Log-Normal distribution is used when the random variable cannot take on a negative value
- A random variable follows the Log-Normal distribution if the logarithm of the random variable is Normally distributed
- In (X) follows the Normal distribution; X =>follows the Lognormal distribution

$$f(x) = \frac{1}{\sqrt{2\pi}x\zeta} e^{-\frac{(\ln x - \lambda)^2}{2\zeta^2}} \quad x \ge 0; \, \zeta > 0$$

Of Techno

 The Log-Normal distribution is related to the Normal distribution, and can be evaluated using the Standard Normal distribution as

$$F_{_X}(x) = \int\limits_{-\infty}^x f_{_X}(x) dx = \Phiiggl(rac{\ln x - \lambda}{\zeta}iggr)$$

 The distribution parameters are related to the Normal distribution parameters as

$$\lambda = \ln(\mu) - \frac{1}{2}\zeta^2$$
$$\zeta = \sqrt{\ln(1 + \delta^2)}$$

Of Techn

 $\delta = \frac{o}{c}$

$$egin{aligned} \lambda &= \ln(ar{x}) - rac{1}{2} \zeta^2 \ \zeta &= \sqrt{\ln\!\left(1 + rac{s^2}{\overline{x}^2}
ight)} \end{aligned}$$

The distribution parameters are :

Of Techno

- Shape parameter λ = Mean of ln(*x*)
- Scale parameter ζ = STDEV of ln(*x*)

Assuming the concrete strength is described by the Log-Normal distribution, what is the probability that the concrete strength is less than or equal to 34 MPa?

Soln: The lognormal distribution parameters are :

Of Techn

$$\begin{aligned} \zeta &= \sqrt{\ln\left(1 + \frac{s^2}{\bar{x}^2}\right)} = \sqrt{\ln\left(1 + \frac{(4.56)^2}{(40.0)^2}\right)} = 0.114\\ \lambda &= \ln(\bar{x}) - \frac{1}{2}\zeta^2 = \ln(40.0) - \frac{1}{2}(0.114)^2 = 3.682 \end{aligned}$$

Indi

 The probability that the concrete strength is less than or equal to 34 Mpa is obtained using the Standard Normal CDF as

$$P(X \le 34) = \Phi\left(\frac{\ln(34) - \lambda}{\zeta}\right) = \Phi\left(\frac{\ln(34) - 3.682}{0.114}\right) = 0.085$$

Assuming the concrete strength follows the Log-Normal distribution (i.e., the LOG of the concrete strength follows the Normal distribution), there is a 8.5 % chance that the concrete strength is less than or equal to 34 MPa

Of Techno

Exponential distribution

Exponential distribution

The cumulative distribution function (CDF) of the Exponential distribution is given by:

$$F(x) = 1 - e^{-\lambda x}$$

- The distribution parameters can be estimated using the sample data (i.e. sample statistics)
- The scale parameter λ is equal to or simply the reciprocal of the sample average

of Techn

Exponential distribution

Assuming the concrete strength is described by the exponential distribution, what is the probability that the concrete strength is less than or equal to 34 MPa?

$$\lambda = \frac{1}{\overline{x}} = \frac{1}{40} = 0.025$$
$$P(X \le 34) = F(34) = 1 - e^{-0.025(34)} = 0.573$$

Of Techn

Weibull distribution

- The Weibull probability distribution is a very flexible distribution
 - Due to the shape parameter
- It is used extensively in modeling the time to failure distribution analysis
- The Weibull distribution is derived theoretically as a form of an Extreme Value Distribution
- It is also used to model extreme events like strong winds, hurricanes, typhoons etc

Of Techn

22-01-2020

Weibull distribution

The probability density function (PDF) of the Weibull distribution is

Weibull distribution

 The cumulative distribution function (CDF) of the Weibull distribution is

$$F(x) = 1 - e^{-\left(\frac{x}{\beta}\right)^{a}}$$

Of Techn

- The distribution parameters can be estimated from the sample statistics using the Method of Moments as
 - Sample Average = $\overline{x} = \beta \Gamma \left(1 + \frac{1}{\alpha} \right)$

Sample STDEV =
$$s = \beta \sqrt{\Gamma \left(1 + \frac{2}{\alpha}\right) - \Gamma \left(1 + \frac{1}{\alpha}\right)^2}$$

Reliability problem using Weibull distribution

Assuming the concrete strength is described by the Weibull distribution, what is the probability that the concrete strength is less than or equal to 34 MPa?

Reliability problem using Weibull distribution

Solution:

Of Techno

- From before, the sample mean and standard deviation were equal to 40 MPa and 4.56 MPa, respectively
- The Weibull distribution parameters are obtained from

$$\beta \Gamma \left(1 + \frac{1}{\alpha} \right) = 40$$

$$\beta \sqrt{\Gamma \left(1 + \frac{2}{\alpha}\right) - \Gamma \left(1 + \frac{1}{\alpha}\right)^2} = 4.56$$

 Solving 2 equations and 2 unknowns (using the SOLVER function in Excel) results in α = 10.59 and β = 41.95 Alternate approach: Solve for α and β using nonlinear equation solution techniques

$$1 + s^2 / \bar{x}^2 = \frac{\Gamma(1 + \frac{2}{\alpha})}{\Gamma^2(1 + \frac{1}{\alpha})}$$
 Main equation to be solved

Use bisection method to solve for α

की संस्था र

Of Techni

Task: Solve the above problem in MATLAB and verify using Excel goal-seek solver Submit the assignment solution by Monday aug-14 The probability that the concrete strength is less than or equal to 34 MPa is therefore

$$P(X \le 34) = F(34) = 1 - e^{-\left(\frac{34}{41.95}\right)^{10.59}} = 0.103$$

Using MATLAB command:

```
p = wblcdf (34, 41.95, 10.59) = 0.1024
```


Inverse Weibull distribution

The Fréchet distribution, also known as inverse Weibull distribution, is a special case of the generalized extreme value distribution. It has the cumulative distribution function

$$\Pr(X \leq x) = e^{-x^{-lpha}} ext{ if } x > 0.$$

where $\alpha > 0$ is a shape parameter. It can be generalised to include a location parameter *m* (the minimum) and a scale parameter *s* > 0 with the cumulative distribution function

$$\Pr(X \leq x) = e^{-\left(rac{x-m}{s}
ight)^{-lpha}} ext{ if } x > m.$$

Of Techn

Gamma distribution

- The Gamma distribution is another flexible probability distribution that may offer a good model to some sets of failure data
- The Gamma distribution arises theoretically as the time to first fail distribution for a system with standby Exponentially distributed backups
- The Gamma distribution is commonly used in Bayesian reliability applications e.g. using prior information to update the constant (Exponential) repair rate for a system following a homogeneous Poisson process (HPP) model

of Techn

Gamma distribution

Similar to the Weibull distribution, there are many different variations of writing the Gamma distribution

• The probability density function (PDF) is

$$f(x)=rac{eta^lpha}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}$$

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}} \qquad 0 \le x \le \infty; \ \alpha, \beta > 0$$

 α is the shape parameter; β is the scale parameter

Of Techno

• When $\alpha = 1$ the Gamma distribution reduces to the Exponential distribution with $1/\beta = \lambda$

CDF:
$$F(x) = \frac{\gamma(\alpha,\beta x)}{\Gamma(\alpha)}$$

22-01-2020

Gamma distribution

Gamma distribution

Task: Find out the mean and the variance for the gamma distributed random variable, using the form of f(x) given underneath

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}}$$

 $0 \le x \le \infty; \ \alpha, \beta > 0$

CE 607: RANDOM VIBRATIONS

Lecture- 6: Bivariate RV

Dr. Budhaditya Hazra

ofTechno

Room: N-307 Department of Civil Engineering

Multiple RVs

- Consider 2 RVs X and Y
- If the RVs are discrete, then the joint probability distribution is described by the joint probability mass function(PMF)

•
$$p_{X,Y}(x,y) = P[(X = x) \cap (Y = y)]$$

CDF:

Of Techno

$$F_{X,Y}(x,y) = \sum_{x_i < x} \sum_{y_i < y} p_{X,Y} = P[(X \le x) \cap (Y \le y)]$$

Continuous RVs

Consider 2 continuous RVs X and Y

 $f_{XY}(x,y)dx\,dy \simeq \Pr\left(x < X \le x + dx, y < Y \le y + dy\right),$

$$\Pr\left(a < X \le b, c < Y \le d\right) = \int_{c}^{d} \int_{a}^{b} f_{XY}(x, y) dx \, dy.$$

$$F_{XY}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(u,v) du \, dv$$

$$f_{XY}(x,y) = \frac{\partial^2 F_{XY}(x,y)}{\partial x \, \partial y}.$$

ofTechno

22-01-2020

Moments of continuous RV

$$E[XY] = \iint_{-\infty}^{\infty} xy f_{X,Y}(x,y) dxdy$$

$$\operatorname{Cov} (\mathbf{X}, \mathbf{Y}) = \sigma_{xy} = \mathop{\mathbb{E}}_{\infty} [(X - \mu_x)(Y - \mu_y)]$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_x) (y - \mu_y) f_{X,Y}(x, y) dx dy$$

$$\rho_{xy} = \frac{Cov(X,Y)}{\sigma_x \sigma_y} = \frac{E[(X - \mu_x)(Y - \mu_y)]}{\sigma_x \sigma_y}$$

e of Techno

Properties of moments

- E[aX+b] = a E[X] + b
- $Var[X] = E[X^2] (E[X])^2$
- $Var[aX + b] = a^2 Var(X)$

Of Techno

- $\operatorname{Cov}(X,Y) = E[XY] E[X]E[Y]$
- Var(X+Y)=Var(X)+Var(Y) + 2Cov(X,Y)

Independence

Recall $P(A|B) = \frac{P(A \cap B)}{P(B)}; P(B) \neq 0.$ $A \perp B \Longrightarrow P(A \cap B) = P(A)P(B)$

te of Technoloc

Define
$$A = \{X \le x\}$$
 and $B = \{Y \le y\}$
 $X \perp Y \Rightarrow P(X \le x \cap Y \le y) = P(X \le x)P(Y \le y)$
 $\Rightarrow P_{XY}(x, y) = P_X(x)P_Y(y)$
 $\Rightarrow p_{XY}(x, y) = p_X(x)p_Y(y)$

Bivariate Gaussian distribution Alternate Form

X and Y are said to be jointly Gaussian if

$$p_{XY}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{\left(1-r_{XY}^2\right)}} \exp\left[-\frac{1}{2\left(1-r_{XY}^2\right)} \left\{ \left(\frac{x-\eta_X}{\sigma_X}\right)^2 + \left(\frac{y-\eta_Y}{\sigma_Y}\right)^2 - \frac{2r_{XY}(x-\eta_X)(y-\eta_Y)}{\sigma_X\sigma_Y} \right\} \right]$$

$$-\infty < x < \infty; -\infty < y < \infty$$

e of Technolo

Notes:
$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{bmatrix} \eta_X \\ \eta_Y \end{pmatrix} \begin{pmatrix} \sigma_X^2 & r_{XY} \sigma_X \sigma_Y \\ r_{XY} \sigma_X \sigma_Y & \sigma_Y^2 \end{bmatrix}$$

$$\begin{pmatrix} \sigma_X^2 & r_{XY}\sigma_X\sigma_Y \\ r_{XY}\sigma_X\sigma_Y & \sigma_Y^2 \end{pmatrix}$$
 is known as the covariance matrix

Example-1

The joint pdf of a bivariate r.v. (X, Y) is given by

$$f_{XY}(x, y) = \begin{cases} kxy & 0 < x < 1, 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

where k is a constant.

- (a) Find the value of k.
- (b) Are X and Y independent?
- (c) Find P(X + Y < 1).

Solution

How will you find k?

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \, dx \, dy = k \, \int_{0}^{1} \int_{0}^{1} xy \, dx \, dy = k \, \int_{0}^{1} \left. y \left(\frac{x^2}{2} \right|_{0}^{1} \right) dy$$
$$= k \, \int_{0}^{1} \frac{y}{2} \, dy = \frac{k}{4} = 1$$

Solution

How will you find marginal pdfs

$$f_X(x) = \begin{cases} \int_0^1 4xy \, dy = 2x & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

$$f_{Y}(y) = \begin{cases} 2y & 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

$$Is f_{XY}(x, y) = f_{X}(x)f_{Y}(y) ?$$

र्श्व महानिको। संव

the of Technology

Solution

 $f_{XY}(x, y) = \begin{cases} 4xy & 0 < x < 1, \ 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$ $f_X(x) = 2x & 0 < x < 1 \\ f_Y(y) = 2y & 0 < y < 1 \end{cases}$

Conditional densities

e of Technol

$$f_{Y|X}(y|x) = \frac{4xy}{2x} = 2y \qquad 0 < y < 1, 0 < x < 1$$
$$f_{X|Y}(x|y) = \frac{4xy}{2y} = 2x \qquad 0 < x < 1, 0 < y < 1$$

Example-2 new

Suppose we select one point at random from within the circle with radius R. If we let the center of the circle denote the origin and define X and Y to be the coordinates of the point chosen (Fig), then (X, Y) is a uniform bivariate r.v. with joint pdf given by

 $f_{XY}(x,y) = \begin{cases} k & x^2 + y^2 \le R^2 \\ 0 & x^2 + y^2 > R^2 \end{cases}$

22-01-2020

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \, dx \, dy = k \iint_{x^2 + y^2 \le R^2} dx \, dy = k(\pi R^2) = 1$$

Thus, $k = 1/\pi R^2$.

(a)

भाषिकी सं स्कृ

the of Technology

the marginal pdf of X is b)

$$f_{X}(x) = \frac{1}{\pi R^{2}} \int_{-\sqrt{(R^{2} - x^{2})}}^{\sqrt{(R^{2} - x^{2})}} dy = \frac{2}{\pi R^{2}} \sqrt{R^{2} - x^{2}} \qquad x^{2} \le R^{2}$$

Ience,
$$f_{X}(x) = \begin{cases} \frac{2}{\pi R^{2}} \sqrt{R^{2} - x^{2}} & |x| \le R\\ 0 & |x| > R \end{cases}$$

H

By symmetry, the marginal pdf of Y is

$$f_Y(y) = \begin{cases} \frac{2}{\pi R^2} \sqrt{R^2 - y^2} & |y| \le R \\ 0 & |y| > R \end{cases}$$

22-01-2020

Example-3 new

Let (X, Y) be a bivariate r.v. with the joint pdf

$$f_{XY}(x, y) = \frac{x^2 + y^2}{4\pi} e^{-(x^2 + y^2)/2} \qquad -\infty < x < \infty, -\infty < y < \infty$$

Show that X and Y are not independent but are uncorrelated.

Example-3 new

$$f_{\chi}(x) = \frac{1}{4\pi} \int_{-\infty}^{\infty} (x^2 + y^2) e^{-(x^2 + y^2)/2} dy$$
$$= \frac{e^{-x^2/2}}{2\sqrt{2\pi}} \left(x^2 \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} y^2 e^{-y^2/2} dy \right)$$

Noting that the integrand of the first integral in the above expression is the pdf of N(0; 1) and the second integral in the above expression is the variance of N(0; 1), we have

$$f_X(x) = \frac{1}{2\sqrt{2\pi}} (x^2 + 1) e^{-x^2/2} \qquad -\infty < x < \infty$$

Since $f_{xy}(x, y)$ is symmetric in x and y, we have

$$f_Y(y) = \frac{1}{2\sqrt{2\pi}} (y^2 + 1) e^{-y^2/2} \qquad -\infty < y < \infty$$

Now $f_{XY}(x, y) \neq f_X(x) f_Y(y)$, and hence X and Y are not independent.

Check Uncorrelated-ness

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) \, dx = 0$$
$$E(Y) = \int_{-\infty}^{\infty} y f_Y(y) \, dy = 0$$

since for each integral the integrand is an odd function.

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x, y) \, dx \, dy = 0$$

The integral vanishes because the contributions of the second and the fourth quadrants cancel those of the first and the third. Thus, E(XY) = E(X)E(Y), and so X and Y are uncorrelated.

CE 513: STATISTICAL METHODS IN CIVIL ENGINEERING

Lecture- 7: Functions of RV

Dr. Budhaditya Hazra

Of Techn

Room: N-307 Department of Civil Engineering

Function of random variables

Given $f_X(x)$ and g(X), where Y = g(X), there is an interest in finding $f_Y(y)$.

Function of random variables

$$\begin{aligned} \{y < Y \leq y + dy\} &= \{x_1 < X \leq x_1 + dx_1\} + \{x_2 + dx_2 < X \leq x_2\} \\ &+ \{x_3 < X \leq x_3 + dx_3\}, \end{aligned}$$

 $Pr(y < Y \le y + dy) = Pr(x_1 < X \le x_1 + dx_1) + Pr(x_2 + dx_2 < X \le x_2)$ $+ Pr(x_3 < X \le x_3 + dx_3),$

$$g'(X) \equiv \frac{dg}{dX} \equiv \frac{dy}{dX},$$

$$g'(x_i)\,dX|_{X=x_i}=dy,$$

$$f_Y(y) = \sum_{i=1}^n \frac{f_X(x_i)}{|g'(x_i)|}.$$

Of Techno

Example

X normally distributed,
$$f_X(x) = \frac{1}{\sigma_X \sqrt{2\pi}} \exp\left\{-\frac{(x-\mu_X)^2}{2\sigma_X^2}\right\}, \quad -\infty < x < \infty,$$

$$Y = aX^2, \ a > 0$$

What is pdf of y?

Solution:

e of Technol

Since only the real roots are needed, and there are no real solutions if Y < 0, then $f_Y(y) = 0$ for this domain

If $Y \ge 0$, there are two solutions,

$$x_1 = +\sqrt{\frac{y}{a}}$$
 $x_2 = -\sqrt{\frac{y}{a}}$

Example

The functional relation is $g(X) = aX^2$, with its derivative

 $g'(X) = 2aX = 2a\sqrt{Y/a} = 2\sqrt{aY}$

$$f_Y(y) = \sum_{i=1}^2 \frac{f_X(x_i)}{|g'(x_i)|} = \frac{1}{2\sqrt{ay}} \left\{ f_X\left(\sqrt{\frac{y}{a}}\right) + f_X\left(-\sqrt{\frac{y}{a}}\right) \right\}, \qquad y \ge 0.$$

$$f_Y(y) = \frac{1}{\sigma_X \sqrt{2\pi a y}} \exp\left\{-\frac{\left(\sqrt{y/a} - \mu_X\right)^2}{2a\sigma_X^2}\right\}, \qquad y > 0.$$

Exercise

Solve the following problem ?

The strain energy in a linearly elastic bar subjected to an axial force S is given by the equation

$$U = \frac{L}{2AE}S^2$$

where:

L = length of the bar

A = cross-sectional area of the bar

E = modulus of elasticity of the material

Using c = L/2AE, we can rewrite

Now, if S is a lognormal variate with parameters λ and ζ , What is the pdf of U?

Function of two RVs

For a general function of two RVS Z = g(X, Y), one can write

$$F_Z(z) = \Pr(Z \le z)$$

= $\Pr(g(X, Y) \le z)$
= $\iint_{g(x, y) \le z} f_{XY}(x, y) \, dx \, dy.$

Consider the simple case of: g(x, y) = ax + by

22-01-2020

$$F_{Z}(z) = \Pr(Z \le z)$$

= $\Pr(g(X, Y) \le z)$
= $\iint_{g(x, y) \le z} f_{XY}(x, y) dx dy$.

For g(x, y) = ax + by

e of Technolog

$$F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{(z-b\tilde{y})/a} f_{XY}(\tilde{x},\tilde{y}) \, d\tilde{x} \, d\tilde{y},$$

The goal is to derive an expression for $f_Z(z)$

Therefore, replace $d\tilde{x}$ by its equivalent in (\tilde{y}, \tilde{z}) . The dummy variables are also related by $\tilde{x} = (\tilde{z} - b\tilde{y})/a$. Therefore,

$$egin{aligned} d ilde{x} &= rac{\partial ilde{x}}{\partial ilde{z}} d ilde{z} \ &= rac{\partial}{\partial ilde{z}} \left(rac{ ilde{z} - b ilde{y}}{a}
ight) d ilde{z} \ &= rac{1}{a} d ilde{z}, \end{aligned}$$

The limits of integration on \tilde{x} are transformed to

$$\int_0^{(z-b\,\tilde{y})/a} d\tilde{x} \to \int_0^z d\tilde{z}.$$

Then,

$$F_{Z}(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z} \frac{1}{|a|} f_{XY}\left(\frac{z - b\tilde{y}}{a}, \tilde{y}\right) d\tilde{z} d\tilde{y},$$
and

$$f_{Z}(z) = \frac{dF_{Z}(z)}{dz}$$

$$= \int_{-\infty}^{\infty} \frac{1}{|a|} f_{XY}\left(\frac{z - by}{a}, y\right) dy.$$

र्वागिकी संस्थाः

Red Like Indian Int

Function of two RVs

In general terms, following the above procedure, the relation is $x = h_1\left(y,z\right)$, and

$$F_{Z}(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{x=h_{1}(y,z)} f_{XY}(x,y) dx dy,$$

with

e of Technol

$$dx = rac{\partial h_1\left(y,z
ight)}{\partial z} dz.$$

The density function is then found to be

$$egin{aligned} f_{Z}\left(z
ight) &= rac{dF_{Z}\left(z
ight)}{dz} \ &= \int_{-\infty}^{\infty} f_{XY}\left[h_{1}\left(y,z
ight),y
ight] \left|rac{\partial h_{1}\left(y,z
ight)}{\partial z}
ight| dy. \end{aligned}$$

Example: Kinetic energy Density

A particle of mass m moving in the xy plane has a kinetic energy $T = mZ^2/2$ where Z is the resultant velocity that is related to the component velocities (speed) in each coordinate direction by $Z = \sqrt{\dot{X}^2 + \dot{Y}^2}$. Suppose that \dot{X} and \dot{Y} are statistically independent (for convenience) and each is distributed as a standard normal random variable, that is, zero mean and unitary standard deviation. Derive the density of the kinetic energy.

$$T = \frac{1}{2}mZ^{2} = \frac{1}{2}m\left(\dot{X}^{2} + \dot{Y}^{2}\right) = U + V.$$

^e of Technol

Apply parabolic transformation example for a single variable resulting in

$$f_U(u) = \frac{1}{\sqrt{\pi m u}} \exp\left(-\frac{u}{m}\right), \qquad u \ge 0,$$

$$f_V(v) = \frac{1}{\sqrt{\pi m v}} \exp\left(-\frac{v}{m}\right), \qquad v \ge 0.$$

$$egin{aligned} f_T\left(t
ight) &= \int_0^t f_U\left(u
ight) f_V\left(t-u
ight) du \ &= \int_0^t rac{1}{\sqrt{\pi m u}} \exp\left(-rac{u}{m}
ight) rac{1}{\sqrt{\pi m \left(t-u
ight)}} \exp\left(-rac{t-u}{m}
ight) du \ &= rac{1}{m} \exp\left(-t/m
ight), \end{aligned}$$

which was integrated directly using MAPLE, or could be integrated by transforming according to r = u/t and du = tdr, resulting in a beta function.

e of Technolog

Moments of functions of RVs

 $Y = a_1 X_1 + a_2 X_2$

Of Techn

 $Var(Y) = a_1^2 Var(X_1) + a_2^2 Var(X_2) + 2a_1 a_2 \rho_{X_1 X_2} \sigma_{X_1} \sigma_{X_2}$

Moments of functions of RVs

In many cases derived probability distributions may be very difficult to evaluate for general nonlinear functions.

Either use Monte Carlo simulation to find the derived density

Or,

Estimate mean and variance using an approximate analysis which in Most of the practical applications is sufficient, although the Pdf may still be undermined.

Moments of general function of a single RV

For a general function of a single random variable X,

$$Y = g(X)$$

$$E(Y) = \int_{-\infty}^{\infty} g(X) f_X(x) dx$$
$$Var(Y) = \int_{-\infty}^{\infty} [g(x) - \mu_X]^2 f_X(x) dx$$

e of Technol

To find the approximate expressions of mean and variance, we use Taylor's series to expand a function about its mean μ_X

$$g(X) = g(\mu_X) + (X - \mu_X)\frac{dg}{dX} + \frac{1}{2}(X - \mu_X)^2\frac{d^2g}{dX^2} + \cdots$$

Moments of general function of a single RV

First order approximation

$$g(X) \simeq g(\mu_X) + (X - \mu_X) \frac{dg}{dX}$$

$$E(Y) \simeq g(\mu_X)$$

$$\operatorname{Var}(Y) \simeq \operatorname{Var}(X - \mu_X) \left(\frac{dg}{dX}\right)^2 = \operatorname{Var}(X) \left(\frac{dg}{dX}\right)^2$$

Second order approx. $E(Y) \simeq g(\mu_X) + \frac{1}{2} \operatorname{Var}(X) \frac{d^2g}{dX^2}$ Var(Y) = Do it yourself ?

 $\mathbf{70}$

Example

The maximum impact pressure (in psf) of ocean waves on coastal structures may be determined by

$$p_m = 2.7 \frac{\rho K U^2}{D}$$

where U is the random horizontal velocity of the advancing wave, with a mean of 4.5 fps and a c.o.v. of 20%. The other parameters are all constants as follows:

- $\rho = 1.96$ slugs/cu ft, the density of sea water
- K =length of hypothetical piston
- D = thickness of air cushion

Assume a ratio of K/D = 35

Example

The first-order mean and standard deviation of p_m , are

$$E(p_m) \simeq 2.7(1.96)(35)(4.5)^2 = 3750.7 \text{ psf} = 26.05 \text{ psi}; \text{ and}$$

 $\operatorname{Var}(p_m) \simeq \operatorname{Var}(U) \left(2.7\rho \frac{K}{D}\right)^2 (2\mu_U)^2 = (0.20 \times 4.5)^2 (2.7 \times 1.96 \times 35)^2 (2 \times 4.5)^2$

Therefore, the standard deviation of p_m is

e of Technolo

 $\sigma_{p_m} \simeq (0.20 \times 4.5)(2.7 \times 1.96 \times 35)(2 \times 4.5) = 1500.3 \, \text{psf} = 10.42 \, \text{psi}$

For an improved mean value, we evaluate the second-order mean with Eq. 4.48 as follows:

$$E(Y) \simeq 3750.7 + \frac{1}{2}(0.20 \times 4.5)^2 \left(2.7\rho \frac{K}{D}\right)(2)$$

= 3750.7 + $\frac{1}{2}(0.20 \times 4.5)^2 (2.7 \times 1.96 \times 35 \times 2)$

= 3750.7 + 150.0 = 3900.7 psf = 27.09 psi

This shows that for this case the first-order mean is about 4% less than the $\pi_{\overline{a}}$ second-order mean
Moments of general function of a multiple RVs

If Y is a function of several random variables,

$$Y = g(X_1, X_2, \ldots, X_n)$$

To find the approximate expressions of mean and variance, we use Taylor's series to expand a function about its mean μ_{X_i}

Expand the function $g(X_1, X_2, ..., X_n)$ in a Taylor series about the mean values $(\mu_{X_1}, \mu_{X_2}, ..., \mu_{X_n})$, yielding

$$Y = g(\mu_{X_1}, \mu_{X_2}, \dots, \mu_{X_n}) + \sum_{i=1}^n (X_i - \mu_{X_i}) \frac{\partial g}{\partial X_i} + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n (X_i - \mu_{X_i}) (X_j - \mu_{X_j}) \frac{\partial^2 g}{\partial X_i \partial X_j} + \cdots$$

where the derivatives are all evaluated at $\mu_{X_1}, \mu_{X_2}, \ldots, \mu_{X_n}$.

^e of Technol

Moments of general function of a multiple RVs

First order approx.

of Technol

$$\operatorname{Var}(Y) \simeq \sum_{i=1}^{n} \sigma_{X_i} \left(\frac{\partial g}{\partial X_i}\right)^2 + \sum_{i,j=1}^{n} \sum_{i\neq j}^{n} \rho_{ij} \sigma_{X_i} \sigma_{X_j} \frac{\partial g}{\partial X_i} \frac{g\partial}{\partial X_j}$$

Second order approx.

$$E(Y) \simeq g(\mu_{X_1}, \mu_{X_2}, \dots, \mu_{X_n}) + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \rho_{ij} \sigma_{X_i} \sigma_{X_j} \left(\frac{\partial^2 g}{\partial X_i \partial X_j} \right)$$

Example

According to the Manning equation, the velocity of uniform flow, in fps, in an open channel is

$$V = \frac{1.49}{n} R^{2/3} S^{1/2}$$

where:

- S = slope of the energy line, in %
- R = the hydraulic radius, in ft
- n = the roughness coefficient of the channel

For a rectangular open channel with concrete surface, assume the following mean values and corresponding c.o.v.s:

Variable	Mean Value	с.о.у.
S	1%	0.10
R	2 ft	0.05
n	0.013	0.30

22-01-2020

Example

Assuming that the above random variables are statistically independent, the first-order mean and variance of the velocity V are, respectively,

$$\mu_V \simeq \frac{1.49}{0.013} (2)^{2/3} (1)^{1/2} = 182 \, \text{fps};$$
 and

$$\sigma_V^2 \simeq \sigma_S^2 \left(\frac{1.49}{2\mu_n} \mu_R^{2/3} \mu_S^{-1/2}\right)^2 + \sigma_R^2 \left(\frac{2 \times 1.49}{3\mu_n} \mu_S^{1/2} \mu_R^{-1/3}\right)^2 + \sigma_n^2 \left(-1.49 \mu_R^{2/3} \mu_S^{1/2} \mu_n^{-2}\right)^2$$
$$= (0.40 \times 1)^2 \left(\frac{1.49}{2 \times 0.013} (2)^{2/3} (1)^{-1/2}\right)^2 + (0.05 \times 2)^2 \left(\frac{2 \times 1.49}{3 \times 0.013} (1)^{1/2} (2)^{-1/3}\right)^2$$

 $+ (0.30 \times 0.013)^{2} (-1.49(2)^{2/3}(1)^{1/2}(0.013)^{-2})^{2} = 82.79 + 36.80 + 0.21 = 119.80$

yielding the standard deviation

 $\sigma_V = 10.94 \, \text{fps}$

The corresponding second-order mean velocity would be, according to Eq.

$$\begin{split} \mu_V &\simeq 182 + \frac{1}{2} \left[\sigma_s^2 \left(-\frac{1.49}{4\mu_n} \mu_R^{2/3} \mu_S^{-3/2} \right) + \sigma_R^2 \left(-\frac{2 \times 1.49}{9\mu_n} \mu_S^{1/2} \mu_R^{-4/3} \right) + \sigma_n^2 \left(\frac{2 \times 1.49}{\mu_n^3} \mu_R^{2/3} \mu_S^{1/2} \right) \right] \\ &= 182 + \frac{1}{2} \left[-(0.1)^2 \left(\frac{1.49}{4 \times 0.013} (2)^{2/3} (1)^{-3/2} \right) - (0.05 \times 2)^2 \left(\frac{2 \times 1.49}{9 \times 0.013} \right) (1)^{1/2} (2)^{-4/3} \right] \\ &+ (0.30 \times 0.013)^2 \left(\frac{2 \times 1.49}{(0.013)^3} (2)^{2/3} (1)^{1/2} \right) \\ &= 182 + \frac{1}{2} \left(-0.46 - 0.10 + 32.76 \right) = 198.10 \, \text{fps} \end{split}$$

The first-order approximate mean velocity is about 8% lower than the corresponding second-order mean velocity.

