BT 510 Analytical Biotechnology Lab

Estimation of carbohydrate by the Anthrone method

Theory/Principle: Carbohydrates are dehydrated by conc.H₂SO₄ to form furfural. Active form of the reagent is anthranol, the enol tautomer of anthrone, which reacts by condensing with the carbohydrate furfural derivative to give a green colour in dilute and a blue colour in concentrated solutions, which is determined colorimetrically. The blue - green solution shows absorption maximum at 620 nm.

Reaction:

(i)	Hydro	lysis	to	monosacc	harides
-----	-------	-------	----	----------	---------

Disaccharide — Monosaccharide

(ii) **Dehydration---**product is a furfural

Monosaccharide → Furfural

(iii) **Reaction** of furfural with anthrone

Furfural + Anthrone reagent → Blue green complex

Methodology:

(a) Materials required:

- (i) Equipments:
- UV Spectrophotometer
- Vortex mixer
- Mantle heater/Water Bath.
- (ii) Chemicals/Reagents:
 - Anthrone Reagent
 - Glucose
 - Other carbohydrates if desired
- (iii) Glass wares and others:
 - Test tube, Test tube stand, Pipettes, Beaker, Ice Test tube caps, Tissue paper, Wash bottle.

(b) <u>Reagents</u>:

- (i) **Anthrone reagent:** Dissolve 2g of Anthrone in 1 litre of concentrated H₂SO₄. Use freshly prepared reagent for the assay
- (ii) Glucose stock solution: 200µg glucose per mL distilled water.

Note: Can include other carbohydrates of the same concentration if desired.

(c) Procedure:

- 1. Pipette out into a series of test tubes different volumes of glucose solution (follow up **Table 1**) from the supplied stock solution(200μg /ml) and make up the volume to 1 mL with distilled water.
- 2. Consider tube 1 as blank and tubes 2 through 9 for construction of a standard curve. Tubes 10-15 are for the unknown samples.
- 3. To each tube add 5 mL of the anthrone reagent (supplied) and mix well by vortexing.
- 4. Cool the tubes.
- 5. Cover the tubes with marbles/ Caps on top and incubate at 90° C for 17 minutes or boiling water bath for 10 minutes.
- 6. Cool to room temperature and measure the optical density at 620 nm against a blank.
- 7. Prepare a standard curve of absorbance vs. μg glucose.

Table 1:

S1.	Glucose		DH ₂ O Anthrone		A ₆₂₀	
No.	(µL)	(μg)	(µL)	reagent (mL)		
1.	-	-	1000	5	nins	
2.	50	10	950	5	r 10n	
3.	100	20	900	5	C fo	
4.	200	40	800	5	OR 100°C for 10mins	
5.	300	60	700	5		
6.	400	80	600	5	mim	
7.	500	100	500	5	or 17	
8.	750	150	250	5	90°C for 17mins	
9.	1000	200		5		
10.	Unknown	??		5	Incubate at	
11.	Unknown	??		5	Incu	
12.	Unknown	??		5		
13.	Unknown	??		5		

(iv) Calculation: Determine the amount of glucose in the unknown sample by plotting a standard curve of A_{620} on Y-axis and μg of Glucose on X-axis.

References:

- 1. E.E.Layne, (1975) Methods in Enzymology, 3:447
- 2. David T. Plummer (1990) An Introduction to Practical Biochemistry, 179 Third Edition