

CS 344: DATABASE MANAGEMENT SYSTEMS

LECTURE NOTES: 28
TH

 SEP, 2011

STORAGE STRUCTURE AND INTRODUCTION TO INDEXING

METHODS

Submitted by:

Akshay Madrosiya(0910106)

Akhikesh Shah(0910147)

Comparisons of Pointers and Indexing Methods in Storage Structure and Querying:

1. Fixed Length Records Files:

• Pointers enable to maintain separate chains of empty and non-empty slots.

Insertion becomes easier but modification and deletion still remain linear time

operations since for these operations scanning the whole chain is required.

• Indexing of slots is done. No performance gain is observed in modification and

deletion operations since they still require searching through the index table for the

particular record.

 Empty Slot

 Non-empty slot

2. Variable Length Record Files:

• Pointers are again used to maintain chains. Hence insertion is performed in constant

amount of time.

• Indexing: the table consists of id, size and starting point of the slot, a flag to indicate

whether the slot empty, and the pointer to that slot. Insertion involves searching for

the empty slot which has sufficient size to hold the record. Modification and

deletion are faster since no. Of computations are reduced in this case.

 Empty Slot Non-empty slot

Hashing Techniques:

Simple/Static Hashing:

The pages containing the data can be viewed as a collection of

possibly additional pages linked in a chain

determined by applying a special function called hash function to the search key. A fi

buckets 0 through N − 1, with one primary page per bucket initially. Buckets contain

data entries.

Extendible Hashing:

In case no. of records in any particular bucket increases, no. of bits used to determine the bucket

storing the record can be increased. An addition of one bit doubles the no. of buckets

bucket into two subsequent bucket

Assume that the hash function h

used as indices to figure out where they will go in the "directory" (hash table). Additionally, i is the

smallest number such that the first i bits of all keys are different.

Keys to be used:

h(k1) = 100100

h(k2) = 010110

h(k3) = 110110

Let's assume that for this particular example, the bucket size is 1. The first two keys to be inserted, k

and k2, can be distinguished by the most significant bit, and would be inserted into the table as

follows:

Now, if k3 were to be hashed to the table, it wouldn't be enough to distinguish all three keys by one

bit (because k3 and k1 have 1 as their leftmost bit. Also, because the bucket size is one, the table

would overflow. Because comparing the first two most significan

location, the directory size is doubled as follows:

And so now k1 and k3 have a unique location, being distinguished by the first two leftmost bits.

Because k2 is in the top half of the table, both 00 and 01 point to i

compare to that begins with a 0.

data can be viewed as a collection of buckets, with one

pages linked in a chain. The bucket to which the record belongs can be

determined by applying a special function called hash function to the search key. A fi

with one primary page per bucket initially. Buckets contain

In case no. of records in any particular bucket increases, no. of bits used to determine the bucket

storing the record can be increased. An addition of one bit doubles the no. of buckets

bucket into two subsequent buckets.

h(k) returns a binary number. The first i bits of each string will be

used as indices to figure out where they will go in the "directory" (hash table). Additionally, i is the

smallest number such that the first i bits of all keys are different.

Let's assume that for this particular example, the bucket size is 1. The first two keys to be inserted, k

, can be distinguished by the most significant bit, and would be inserted into the table as

were to be hashed to the table, it wouldn't be enough to distinguish all three keys by one

have 1 as their leftmost bit. Also, because the bucket size is one, the table

would overflow. Because comparing the first two most significant bits would give each key a unique

location, the directory size is doubled as follows:

have a unique location, being distinguished by the first two leftmost bits.

is in the top half of the table, both 00 and 01 point to it because there is no other key to

compare to that begins with a 0.

, with one primary page and

the record belongs can be

determined by applying a special function called hash function to the search key. A file consists of

with one primary page per bucket initially. Buckets contain pointers to the

In case no. of records in any particular bucket increases, no. of bits used to determine the bucket

storing the record can be increased. An addition of one bit doubles the no. of buckets i.e. splits a

. The first i bits of each string will be

used as indices to figure out where they will go in the "directory" (hash table). Additionally, i is the

Let's assume that for this particular example, the bucket size is 1. The first two keys to be inserted, k1

, can be distinguished by the most significant bit, and would be inserted into the table as

were to be hashed to the table, it wouldn't be enough to distinguish all three keys by one

have 1 as their leftmost bit. Also, because the bucket size is one, the table

t bits would give each key a unique

have a unique location, being distinguished by the first two leftmost bits.

t because there is no other key to

Re-Hashing:

This is an alternate to extendible hashing. This technique uses two subsequent hash function to

solve hash collisions. Insertions can trigger bucket splits, but buckets are split in sequential fashion

which is the main difference when compared with extendible hashing.

*Limitation of Hashing Techniques- similarities between records cannot be determined.

Tree Based Indexing:

Tree-based indexing organizes the records into a single tree. Each path into the tree represents

common properties of the indexed records, similar to decision trees or classification trees. The top

root depicts the information in the most condensed manner and the bottom most level of the tree in

the most elaborate manner.

