CS344: Class Notes

Topic:-Review Session (Continued)

Date: - Sep 13 2011

Prepared by:-

Raman Anurag Ravi Sethia

09010139 09010140

Table operations:

(Learn syntax from previous lectures)

Create table – each table must have one primary key.

Delete, drop, select, average, min, max etc. are some other queries.

Group by – when any aggregate function is used then those attributes should be present in group by.

Nested SQL queries

Normal forms:

Need of normal form -

- Remove redundancy
- Multiple searches
- Evaluating quality of ER model
- Updating data
- Deletion of anomalies

1 NF – atomic domain

2 NF – if $\alpha \rightarrow \beta$ (α derives β) then no proper subset of α should be part of a candidate key.

BCNF – if $\alpha \rightarrow \beta$ then either it is trivial that is β is a subset of α or α is the primary key of the table.

3 NF - if $\alpha \rightarrow \beta$ then either it is trivial that is $\beta \subseteq \alpha$ or α is the primary key or $\beta - \alpha$ should part of a candidate key.

Advantages of Normal forms:

- 1. Guarantees functional dependencies
- 2. If we change one value then no need to change multiple rows
- 3. Smaller tables
- 4. Entities properly separated
- 5. Dependencies only from keys

Note: In BCNF dependency may not be preserved.

If we brake a table R into R1 and R2 such that R1 \cup R2 = R

If R, R1 and R2 have functional dependencies F, F1 and F2 respectively, then dependency is preserved if $F+=(F1\ U\ F2)+$

Revise Armstrong's rules.

Decomposition:

Convert functional dependencies (F) to minimal cover (M).

If
$$\alpha \rightarrow \beta$$
 and $|\beta| = 1$ then $F + = M +$.

Algorithm for converting into normal forms:

R
R1 R2 R1
$$\cap$$
 R2 = α
 $(R-\beta)$ $(\alpha-\beta)$

 α is the primary key for R2 so it is lossless decomposition. R2 is in 2-NF. Similarly prove R1 is in 2 - NF, if it is not, decompose further.

Prove termination: As no of attributes after decomposition reducing.

Same algorithm for BCNF and 3 - NF, just change termination condition.

More notes:

- 1. By decomposition in BCNF we may lose dependency
- 2. In 3 NF dependencies are preserved
- 3. All BCNF are also 3 NF
- Structured data ER, Relational
- Semi Structured XML (for portability across machines)
- Unstructured text

Since this was a review session most things have already been covered in previous notes refer to them for details .We have highlighted the important points discussed and overview of topics covered

Revise inter-conversions and tree structure.