
Lecture Notes 
    Topic: Query Optimization 

   
      Date: 18 Oct 2011        Made By: Naresh Mehra 
           Shyam Sunder Singh       
 

 
 
 

Query Processing: 
                  Query processing refers to activities including translation of 

high level language(HLL) queries into operations at physical file level, 
query optimization transformations, and actual evaluation of queries. 
 

Steps in query processing : 

   

 

 

 

  

                                             

   

 

 

 

 

 

 

  

 

Relational Algebra query 

Execution Plan Query output 

optimizer 

Evaluation 

Engine 

Parse & 
translator 

Data Data 

Stats about 
data 



 Function of query parser is parsing and translation of HLL query into its 

immediate form relational algebraic expression. 
 A parse-tree of the query is constructed and then translated in to 

relational algebra expression. 

example: consider the following SQL query: 
     SELECT S.sname 

     FROM Reserves R,Sailors S 

     WHERE R.sid = S.sid 
           AND R.bid = 100 AND S.rating > 5 

   this query can be expressed in relational algebra as follows: 

 

Query Optimization: 
  Query optimization is the process of selecting an efficient execution 

plan for evaluating the query. 

  After parsing of query, parsed query is passed to query optimizer, 
which generates different execution plans to evaluate parsed query and 

select the plan with least estimated cost. 
   Catalog manager helps optimizer to choose best plan to execute query 

by generating cost of each plan. 
                                 

       



Evaluation plans for different operators involved in parsed 

query(relation algebric expression): 
Let we have F1 with m pages of records and F2 having n pages:Let we 

have a cross product of two data files: 

F1 X F2 
 

Cross  product(X): 

We can have different scenario and based on those scenario we will 
choose different execution plan for query. 

Scenerio1:- when both data files are small. 
Load both F1 and F2 in main memory and then do cross product. 

 Pick up one record at a time from F1 and do cross product with every 

element of F2 and repeat this process for every element of F1. As both 
data files are small so no require of lot memory space. 

 
Scenerio2:  when F1 is very large and F2 is small. 
In this case we cannot load F1 in main memory as it will requires large 

space and it is not an efficient plan. 
 Solution:-  In this case load only F2 in main memory and read records 

from F1 direct from secondary memory and do cross product since we 

don't require to write records into F1 hence we have least amount of I/O 
in this process and also no large space overhead. 

  Amount of I/O = size of F1(no. of pages in F1) + size of   F2(no. of 

pages in F2)  =  m+n 
 Above one is the best execution plan for given scenario as in this we 

have to read at least once from both the files. 

 
Scenerio3: When we have a limited constant space available of main 

memory. 
case1:- Let we have two pages p1 and p2 main memory available to 

perform cross product of F1 and F2. 

 Then we read a page from F1 and load it into p1 and a page from F2 
into p2 and then we don't change p1  and change contents of p2 by 



loading elements of F2 till n and perform cross product every time. After 

this change p1 and thus repeat this process till m times. 
 Amount of I/O = m x n 

 

Case2: find the best way to perform cross product when pages of main 
memory available equals to 4(p1, p2, p3, p4). 

We have two solution for this: 

  Solution1:- read 2 pages from F1 at a time and also 2 pages from F2 
then perform cross product between them and then remove last two 

pages of F2 and read two new pages and repeat this process till n. thus 

we repeat same process n/2 times then we read 2 next pages from F1 and 
repeat process m/2 times. 

Hence Amount of I/O = (m/2)*(n/2) 

 
  Solution2:- read 3 pages from F1 at a time and also 1 page from F2 

then perform cross product between them and then remove last pages of 

F2 and read new page and repeat this process till n. thus we repeat same 
process n times then we read 3 next pages from F1 and repeat process 

m/3 times. 

Hence Amount of I/O = (m/3)*n 
 

Scenerio4: When we have amount of memory not constant i.e. some 
fraction of data files first half pages (p1) from F1 and read half pages 

(p2) from F2 and do cross product then read another half part of F2 (p3) 
and do cross product with same part of F1(p1) and then read another half 

part of F1 (p4) and do cross product with latest read part of F2 (p3) then 

do cross product with first read part of F2 (p2). 
  Amount of I/O = (m/2)+(n/2)+(n/2)+(m/2)+(n/2) 

 

so we conclude that if we have size of main memory available is 
constant then amount of total I/O will be multiplication and if is fraction 

part of data then linear. 

 
On the basis of following two factors we select algorithms for query 

execution: 



  1. Size of dbms. 

  2. Amount of main memory available. 
 

Natural join (|X|): 
 

Scenerio1: if we sort the file in common attribute 

 First take record from F1 then from F2 if matches then store in 

temporary file and repeat this process for all records of F1. 
  Amount of I/O = size of F1 + size of F2 

 

Like cross product we also require different sorting method on the basis 
of different scenario present like size of data files. Best sorting method 

does not require main memory. 

  

Scenario_X: if we have both F1 and F2 very-2 large we should use 

merge sort for this case. 
 

Scenario_Y: if we have very-2 large data files and some memory in 
fraction of data files: 

  Let we have 5% pages main memory available of data file having 100 

pages then we read 5 pages from F1 and sort them and assign one page 
and again next 5 pages and sort them and assign one page thus we have 

different sorted group assigned into one page. Then keep on merging 

between these all sorted groups and get a final sorted file. 
  Amount of I/O = whole scan of file 

                = to create 20 sorted file + cost of merging 
 

Comparison between above types of memory available (constant and 

fraction of data file): 
 

1. In first one we have sufficient memory available but in     second one 

we have some fraction of data file 
2. in scenario_X we sort records in decreasing order i.e. first we have 

more sorted no. of files those reduces to 



one file. but in scenario_Y in starting we have fix no. of files those after 

sorting reduces to one file. 
 

Selection operation( σ ): 
   If given data file is large then instead of load it into main memory we 

take a temporary page in main 

memory and pick records from data files(secondary memory)one by one, 
if any particular record qualify required 

condition then store it. 

 

Projection( П ): 
    In given data files we search table by table as above and if we found 

required attribute in particular table then store that attribute and values. 

 
 

 
 


