Lecture Slot - 17th Oct

Parag Agrawal 09010130

Anurag Anshu 09010110

Query Evaluation

Steps in query processing.

Operations considered

 σ , π , Join , \times

Let we have two tables R and S with number of pages M and N, respectively.

Selection operator

Unary Operator

Given: a relation R

- No index and data not sorted
 Scan the entire table to get qualifying tuples
 Cost = O(M)
- No index and data sorted

Binary search for retrieving the first qualifying tuple and then scan sequentially.

 $Cost = O(log_2M)$

• B⁺ tree index

Same as equality search

 $Cost = log_F(1.5M) + no. of matching pages$

(if clustered index)

Cost = $log_F(0.15M)$ + no. of matching records

(if unclustered index)

• Hash index

Same as equality search

Cost = constant I/O's

Projection operator

Unary Operator

Given: a relation R

- Projection based on Sorting
 - Scan R and produce tuples having only the specified attributes (in the projection query).
 - Sort this set of tuples using all the above attributes as the key.
 - Scan these sorted tuples eliminating the duplicates.

Cost = O(M logM)

• Projection based on Hashing

Two phases

- 1. Partitioning
- 2. Duplicate Elimination

Cost = O(M)

Join operator

Binary Operator

Given: two relations R and S

No Memory Utilized

For each page of R we scan each page of S and get the qualifying tuples.

Cost = O(M + M.N)

Memory utilized

- 1. We have enough memory to hold one of the relations say R
 - Move R into the memory.
 - For each tuple of S scan R and get the matching tuples.

Cost = O(M + N)

2. Not enough memory to store any of the relations

- Break R into blocks that can fit in the available memory pages.
- Scan all of S for each block of R.

Let B = Number of available memory pages

Cost = M + GIF(M/B)*N

where GIF stands for Greatest integer Function

Two sub cases

a) Number of Memory Pages Constant

Cost = O(M.N) (in above formula of 'Cost' set B = constant)

b) Number of Memory Pages Fraction of M (or N)

Cost = O(M + N) (in above formula of 'Cost' set B = fraction of M)

3. Sort-Merge Join

- Sort both the relations on the join attributes
- Merge the two sorted relations to get the matching tuples

(Note: Enumerating the cross product is avoided here)

Two sub cases

a) Number of Memory Pages Constant

Cost = O(MIogM) + O(NIogN) + O(M + N) (for sorting) (for merging)

b) Number of Memory Pages Fraction of M (or N) Here sorting is done in just two passes for each of R and S Cost = O(M + N)

Cross product

Binary operator

 $R \times S = R$ Join S (with no Join condition)

Analysis similar to the analysis of Join