
File Organization and Indexes:

A file organization is a way of arranging the records in a file when the file is stored on

disk. A file record is likely to be accessed and modified in a variety of ways, and different

ways of arranging the records enable different operations over the file to be carried out

efficiently. Different ways in which the files can be organized are :-

• Heap files

• Sorted files

• Clustered tree index

• Unclustered tree index

• Unclustered hash index

Cost of various operation of DBMS on different types of files

File Type Scan Equality

Search

Range Search Insert Delete

Heap PD 0.5PD PD 2D Search

+ D

Sorted PD Dlog2(P) Dlog2(P) + matching

pages

Search + PD Search

+ PD

Clustered Tree

Index

1.5PD DlogF(1.5P) DlogF(1.5P) +

matching pages

Search + D Search

+ D

Unclustered

Tree Index

PDR +

Read

index

D +

DlogF(0.15P)

DlogF(index size) +

D*matching records

3D +

DlogF(index

size)

Search

+ 2D

Unclustered

Hash Index

PDR +

Read

index

2D PD 4D Search

+ 2D

Where P�no. of pages in the file.

 D�amount of time required to read or write in page.

 R�no. of records in a particular page.

Heap Files

Scan: Cost is PD since we have to retrieve each of P pages with each page taking D time.

Equality Search: If exactly one record matches the desired equality search then on average we must scan

half of the file, assuming record exists in only that part of file. Hence cost is 0.5PD.

Range Search: In this entire file must be scanned for matching records. So cost is PD.

Insert: If records are inserted at the end of page the time taken is fetching the page and writing back the

page. So cost is 2D.

Delete: Here time taken is searching for relevant record and writing back the page after deleting record

from it. So cost is Search + D.

Sorted Files

Scan: Cost is PD since we have to retrieve each of P pages with each page taking D time.

Equality Search: If we assume that the equality search is specified on the field by which the file is sorted,

then we can search for the record by the help of binary search. Hence cost is Dlog2(P).

Range Search: It is equality search for all matching records. So cost is Dlog2(P) + matching pages.

Insert: To insert the record while preserving the sorted order, first we have to search for the correct

position in the file, add record and then fetch and rewrite all subsequent pages. So cost is Search + PD.

Delete: Here we search for record, remove the record from the page, and rewrite the subsequent pages to

fill the space created by the record which is deleted. Hence cost is Search + PD.

Clustered Tree Index

Scan: Here effective number of pages is 1.5 times more than pages in heap files since page occupancy is

67%. So, Cost is 1.5PD since we have to retrieve all the pages with each page taking D time.

Equality Search: If data records are ordered as data entries in some index, then we do F-ary search. So cost

in DlogF(1.5P).

Range Search: It is equality search for all matching records. So cost is DlogF(1.5P) + matching pages.

Insert: Here time required is for searching correct position for record in the page and writing back the

page. So cost is Search + D.

Delete: Similar to insert, first search for page, delete record from it and write back the page. Cost is Search

+ D.

Unclustered Tree Index

Scan: Here each record takes D time to read from a single page. So reading R record from a page takes DR

time. Hence total cost for P pages is PDR + Read index.

Equality Search: If we assume that data index size is one-tenth of data record, then no. leaf pages are

0.15P. So cost incurred is D + DlogF(0.15P).

Range Search: It includes equality search and matching pages. So cost is DlogF(index size) + D*matching

records.

Insert: Time required is for searching the page, fetching it, adding records and writing back the page. So

cost is 3D + DlogF(index size).

Delete: First we search for the page where record to be deleted is located, then fetch the page, remove

record and write back the page. So cost is Search + 2D.

Unclustered Hash Index

Scan: Here each record takes D time to read from a single page. So reading R record from a page takes DR

time. Hence total cost for P pages is PDR + Read index.

Equality Search: If search is on the search key of hashed file, then total cost is of only getting the relevant

page of data entry and record, so cost is 2D.

Range Search: This search can be as worst as scanning the whole file. Hence cost incurred in this is of

retrieving all the pages. So cost is PD.

Insert: Here by using search key, we can read the relevant pages, add record to it and then write back the

page. So cost involved with it is 4D.

Delete: Cost involved with it is searching for the record, reading the page, deleting the record and writing

back the page. So cost is Search + 2D.

Comparison of I/O Costs

• A heap file has good storage efficiency and supports fast scanning and insertion of records.

However, it is slow for searches and deletions.

• A sorted file also offers good storage efficiency, but insertion and deletion of records is slow.

Searches are faster than in heap files.

• A clustered file offers all the advantages of a sorted file and supports inserts and deletes efficiently.

Searches are even faster than in sorted files, although a sorted file can be faster when a large

number of records are retrieved sequentially, because of blocked I/O efficiencies.

• Unclustered tree and hash indexes offer fast searches, insertion, and deletion, but scans and range

searches with many matches are slow. Hash indexes are a little faster on equality searches, but they

do not support range searches.

Primary and Secondary Indexes

An index on a set of fields that includes the super key is called a primary index.

An index that is not primary index is called a secondary index.

