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Schema Refinement (Recap)

 Need for Schema Refinement

◦ Redundancy is a primary issue in data storage. 

◦ Problems caused by redundancy are as follows : 

▪ Redundant storage

▪ Update anomalies 

▪ Insertion anomalies

▪ Deletion anomalies

◦ Although decomposition can eliminate redundancy, it causes 
problems of its own. 

◦ Problems related to decomposition :-

▪ Lossless vs. lossy decomposition

▪ Dependency preserving vs non dependency preserving 
decomposition

◦ Schema refinement aims at addressing these problems by proposing 
several 'Normal forms'. 

◦ Each normal form has a set of properties and if a schema is in a 
particular normal form it is possible to predict the problems that 
would not arise. 

 Functional dependencies

◦ A functional dependency is a constraint between two sets of 
attributes of a relation in a schema.

◦ A set of attributes X in a relation R is said to functionally determine 
another set of attributes Y in R if each X value is associated with one 
Y value.

◦ A trivial functional dependency is one in which the right side only 
contains attributes that also appear on the left side.



Closure of a set of FDs

 The set of all functional dependencies (FDs) is called the closure of F.

 To compute the closure of a given set of  FDs, Armstrong's Axioms may 
be used repeatedly until no new FD is found.

 Armstrong's Axioms (AAs)  

◦ Reflexivity : α→β holds if α   β⊆

◦ Augmentation : γ α →γ β holds if  α→β  & γ  R (for any relation R)⊆

◦ Transitivity : α →γ holds if  α →β  &  β→γ hold

 Derived from Armstrong's axioms  

◦ Union :  α →γ β holds if  α→β holds &  α →γ holds

▪ Proof : 
α→β (1)
α →γ (2)
Augmenting (1) with  α
α α→α β   i.e  α→α β [ α α = α ]           (3)
Similarly, augmenting (2) with  β
α β→γ β (4)
From (3) and (4) 
α →γ β [ Using transitivity ]
Hence proved

◦ Decomposition :  α→β holds &  α →γ  holds if  α →γ β holds

▪ Proof :
γ β → γ [ trivial FD ] (1) 
γ β → β [ trivial FD ] (2)
Also, 
α →γ β [ Given] (3)
Therefore, 
α→β [ Using (2), (3) and transitivity ]
α →γ [ Using (1), (3) and transitivity ]
Hence proved



◦ Pseudo-transitivity :  γ α→δ holds if  α→β  &  γ β→ δ hold

▪ Proof :
Augmenting (α→β)  with  γ
γ α→γ β (1)
Also, 
γ β→ δ [ Given ] (2)
By transitivity, 
γ α→δ
Hence proved

Schema Normalization

 Normal Form of a schema is an indicator of the quality (and redundancy 
of data that might be involved) of the schema.

 Order of weakest to strongest normal forms :- 1,2,3, BCNF.

◦ Two extremes:

▪ One big table: results in data redundancy

▪ Many (smaller) tables: little or no redundancy

◦ Higher the normal form, less the redundancy, more the number of 
tables.

◦ Keep all entities separate to ensure minimum redundancy.

Instructor

id, name

Department
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  A

Instructor, Department

instructor_id, instructor_name, 
dept_name,dept_building



 These forms have increasingly restrictive requirements. Every relation 
in a higher normal form is also in all of the lower forms.

 BCNF allows only 2 types of FDs:

◦ trivial

◦ implied by super keys

 BCNF ensures that no redundancy can be detected using FDs

[since, a value can be stored twice only if the key is defined twice]

Example:

Here,

the FDs are trivial:

iid →iname

Therefore, the schema is in BCNF.

But if the two tables are combined to form a single table,

the FDs are no longer derivable from the super key: 

only iid cannot identify a unique row of it

(primary could be iid, did)

Therefore, the schema is not in BCNF.

 To have a schema satisfy BCNF, we need to ensure more number of 
(hence, smaller sized) tables by decomposing the original table 
(lossless decomposition, that is).

 Decomposition of R into R1 and R2 is lossless iff R1 ⋂ R2 is a key for 
R1 or R2.
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Instructor, Department

iid, iname, did,dbuilding



e.g., 

is not lossless,

while,

is lossless.
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