CS344

Schema Refinement (Continued)

Rajat Khanduja Rovin Bhandari
09010137 09010144

Schema Refinement (Recap)

* Need for Schema Refinement
o Redundancy is a primary issue in data storage.
o Problems caused by redundancy are as follows :
= Redundant storage
= Update anomalies
= |nsertion anomalies
= Deletion anomalies

o Although decomposition can eliminate redundancy, it causes
problems of its own.

o Problems related to decomposition :-
= | ossless vs. lossy decomposition

= Dependency preserving vs non dependency preserving
decomposition

o Schema refinement aims at addressing these problems by proposing
several 'Normal forms'.

o Each normal form has a set of properties and if a schemais in a
particular normal form it is possible to predict the problems that
would not arise.

* Functional dependencies

o Afunctional dependency is a constraint between two sets of
attributes of a relation in a schema.

o A set of attributes X in a relation R is said to functionally determine

another set of attributes Y in R if each X value is associated with one
Y value.

o Atrivial functional dependency is one in which the right side only
contains attributes that also appear on the left side.

Closure of a set of FDs

The set of all functional dependencies (FDs) is called the closure of F.

To compute the closure of a given set of FDs, Armstrong's Axioms may
be used repeatedly until no new FD is found.

Armstrong's Axioms (AAS)

o Reflexivity : a- holdsifa <

o Augmentation :y a -y B holdsif a-[&y € R (for any relation R)
o Transitivity . a -y holds if a -3 & -y hold

Derived from Armstrong's axioms

o Union: a -y B holdsif a-3holds & a -y holds

= Proof :
a-p (1)
a -y (2)
Augmenting (1) with a
aa-af i.e a-apf [oa=qa] (3)
Similarly, augmenting (2) with 3
ap-yp 4)
From (3) and (4)
a-yp [Using transitivity]
Hence proved

o Decomposition : a- B holds & a -y holdsif a -y 3 holds

= Proof :
YB -y [trivial FD] (1)
YyB-B [trivial FD] (2)
Also,
a-yp [Given] (3)
Therefore,
a-f3 [Using (2), (3) and transitivity]
a -y [Using (1), (3) and transitivity]

Hence proved

o Pseudo-transitivity : ya-90 holdsif a-3 & yp- & hold

= Proof :
Augmenting (a - [3) with vy
yoa-yp (1)
Also,
YyB- 0 [Given] (2)
By transitivity,
ya-90
Hence proved

Schema Normalization

* Normal Form of a schema is an indicator of the quality (and redundancy
of data that might be involved) of the schema.

* Order of weakest to strongest normal forms :- 1,2,3, BCNF.
o Two extremes:
= One big table: results in data redundancy
= Many (smaller) tables: little or no redundancy

o Higher the normal form, less the redundancy, more the number of
tables.

o Keep all entities separate to ensure minimum redundancy.

Instructor Department

Name, building

id, name

Instructor, Department

instructor_id, instructor_name,
dept_name,dept_building

« These forms have increasingly restrictive requirements. Every relation
in a higher normal form is also in all of the lower forms.

« BCNF allows only 2 types of FDs:
o trivial
o implied by super keys
« BCNF ensures that no redundancy can be detected using FDs

[since, a value can be stored twice only if the key is defined twice]

Example:
Instructor Department
iid A did
iname dbuilding
Here,

the FDs are trivial:
iid — iname
Therefore, the schema is in BCNF.

But if the two tables are combined to form a single table,

Instructor, Department

iid, iname, did,dbuilding

the FDs are no longer derivable from the super key:
only iid cannot identify a unique row of it
(primary could be iid, did)

Therefore, the schema is not in BCNF.

- To have a schema satisfy BCNF, we need to ensure more number of
(hence, smaller sized) tables by decomposing the original table
(lossless decomposition, that is).

« Decomposition of R into R1 and R2 is lossless iff R1 (| R2 is a key for
R1 or R2.

* is not lossless,

while,

&

is lossless.

