CS344

Schema Refinement (Continued)

Rajat Khanduja

09010137

Rovin Bhandari 09010144

Schema Refinement (Recap)

• Need for Schema Refinement

- Redundancy is a primary issue in data storage.
- Problems caused by redundancy are as follows :
 - Redundant storage
 - Update anomalies
 - Insertion anomalies
 - Deletion anomalies
- Although decomposition can eliminate redundancy, it causes problems of its own.
- Problems related to decomposition :-
 - Lossless vs. lossy decomposition
 - Dependency preserving vs non dependency preserving decomposition
- Schema refinement aims at addressing these problems by proposing several 'Normal forms'.
- Each normal form has a set of properties and if a schema is in a particular normal form it is possible to predict the problems that would not arise.

• Functional dependencies

- A functional dependency is a constraint between two sets of attributes of a relation in a schema.
- A set of attributes X in a relation R is said to functionally determine another set of attributes Y in R if each X value is associated with one Y value.
- A trivial functional dependency is one in which the right side only contains attributes that also appear on the left side.

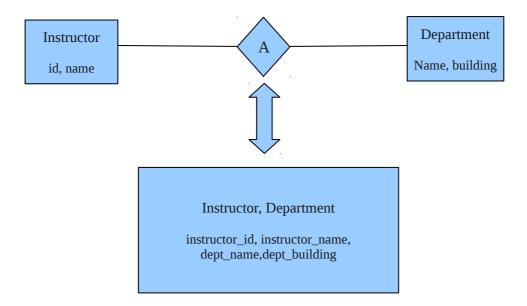
Closure of a set of FDs

- The set of all functional dependencies (FDs) is called the closure of F.
- To compute the closure of a given set of FDs, Armstrong's Axioms may be used repeatedly until no new FD is found.
- Armstrong's Axioms (AAs)
 - Reflexivity : $\alpha \rightarrow \beta$ holds if $\alpha \subseteq \beta$
 - Augmentation : $\gamma \alpha \rightarrow \gamma \beta$ holds if $\alpha \rightarrow \beta \& \gamma \subseteq R$ (for any relation R)
 - *Transitivity* : $\alpha \rightarrow \gamma$ holds if $\alpha \rightarrow \beta \& \beta \rightarrow \gamma$ hold

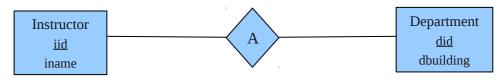
Derived from Armstrong's axioms

• Union : $\alpha \rightarrow \gamma \beta$ holds if $\alpha \rightarrow \beta$ holds & $\alpha \rightarrow \gamma$ holds

(1)
(2)
(3)
(4)


 $\circ \quad \textit{Decomposition}: \ \alpha \to \beta \ \textit{holds} \ \& \ \alpha \to \gamma \ \ \textit{holds} \ \textit{if} \ \ \alpha \to \gamma \ \beta \ \textit{holds}$

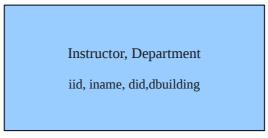
Proof :		
$\gamma \beta \rightarrow \gamma$	[trivial FD]	(1)
$\gamma \beta \rightarrow \beta$	[trivial FD]	(2)
Also,		
$\alpha \rightarrow \gamma \beta$	[Given]	(3)
Therefore,		
$\alpha \rightarrow \beta$	[Using (2), (3) and transitivity]	
$\alpha \ \rightarrow \gamma$	[Using (1), (3) and transitivity]	
<u>Hence proved</u>		


- $\circ \quad \textit{Pseudo-transitivity}: \ \gamma \ \alpha \rightarrow \delta \ \textit{holds if} \ \ \alpha \rightarrow \beta \ \& \ \gamma \ \beta \rightarrow \ \delta \ \textit{hold}$
 - Proof : Augmenting $(\alpha \rightarrow \beta)$ with γ $\gamma \alpha \rightarrow \gamma \beta$ (1) Also, $\gamma \beta \rightarrow \delta$ [Given] (2) By transitivity, $\gamma \alpha \rightarrow \delta$ Hence proved

Schema Normalization

- Normal Form of a schema is an indicator of the quality (and redundancy of data that might be involved) of the schema.
- Order of weakest to strongest normal forms :- 1,2,3, BCNF.
 - Two extremes:
 - One big table: results in data redundancy
 - Many (smaller) tables: little or no redundancy
 - Higher the normal form, less the redundancy, more the number of tables.
 - Keep all entities separate to ensure minimum redundancy.

- These forms have increasingly restrictive requirements. Every relation in a higher normal form is also in all of the lower forms.
- BCNF allows only 2 types of FDs:
 - trivial
 - implied by super keys
- BCNF ensures that no redundancy can be detected using FDs [since, a value can be stored twice only if the key is defined twice]
 Example:

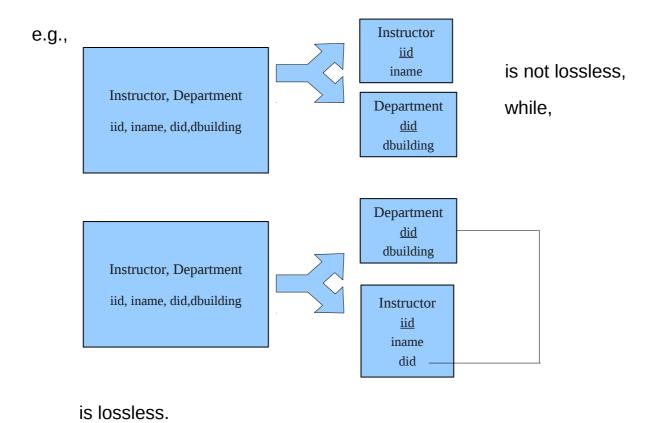

Here,

the FDs are trivial:

iid \rightarrow iname

Therefore, the schema is in BCNF.

But if the two tables are combined to form a single table,


the FDs are no longer derivable from the super key:

only iid cannot identify a unique row of it

(primary could be iid, did)

Therefore, the schema is not in BCNF.

- To have a schema satisfy BCNF, we need to ensure more number of (hence, smaller sized) tables by decomposing the original table (lossless decomposition, that is).
- Decomposition of R into R1 and R2 is lossless iff R1 ∩ R2 is a key for R1 or R2.

