
CS344

Schema Refinement (Continued)

Rajat Khanduja Rovin Bhandari

09010137 09010144

Schema Refinement (Recap)

 Need for Schema Refinement

◦ Redundancy is a primary issue in data storage.

◦ Problems caused by redundancy are as follows :

▪ Redundant storage

▪ Update anomalies

▪ Insertion anomalies

▪ Deletion anomalies

◦ Although decomposition can eliminate redundancy, it causes
problems of its own.

◦ Problems related to decomposition :-

▪ Lossless vs. lossy decomposition

▪ Dependency preserving vs non dependency preserving
decomposition

◦ Schema refinement aims at addressing these problems by proposing
several 'Normal forms'.

◦ Each normal form has a set of properties and if a schema is in a
particular normal form it is possible to predict the problems that
would not arise.

 Functional dependencies

◦ A functional dependency is a constraint between two sets of
attributes of a relation in a schema.

◦ A set of attributes X in a relation R is said to functionally determine
another set of attributes Y in R if each X value is associated with one
Y value.

◦ A trivial functional dependency is one in which the right side only
contains attributes that also appear on the left side.

Closure of a set of FDs

 The set of all functional dependencies (FDs) is called the closure of F.

 To compute the closure of a given set of FDs, Armstrong's Axioms may
be used repeatedly until no new FD is found.

 Armstrong's Axioms (AAs)

◦ Reflexivity : α→β holds if α β⊆

◦ Augmentation : γ α →γ β holds if α→β & γ R (for any relation R)⊆

◦ Transitivity : α →γ holds if α →β & β→γ hold

 Derived from Armstrong's axioms

◦ Union : α →γ β holds if α→β holds & α →γ holds

▪ Proof :
α→β (1)
α →γ (2)
Augmenting (1) with α
α α→α β i.e α→α β [α α = α] (3)
Similarly, augmenting (2) with β
α β→γ β (4)
From (3) and (4)
α →γ β [Using transitivity]
Hence proved

◦ Decomposition : α→β holds & α →γ holds if α →γ β holds

▪ Proof :
γ β → γ [trivial FD] (1)
γ β → β [trivial FD] (2)
Also,
α →γ β [Given] (3)
Therefore,
α→β [Using (2), (3) and transitivity]
α →γ [Using (1), (3) and transitivity]
Hence proved

◦ Pseudo-transitivity : γ α→δ holds if α→β & γ β→ δ hold

▪ Proof :
Augmenting (α→β) with γ
γ α→γ β (1)
Also,
γ β→ δ [Given] (2)
By transitivity,
γ α→δ
Hence proved

Schema Normalization

 Normal Form of a schema is an indicator of the quality (and redundancy
of data that might be involved) of the schema.

 Order of weakest to strongest normal forms :- 1,2,3, BCNF.

◦ Two extremes:

▪ One big table: results in data redundancy

▪ Many (smaller) tables: little or no redundancy

◦ Higher the normal form, less the redundancy, more the number of
tables.

◦ Keep all entities separate to ensure minimum redundancy.

Instructor

id, name

Department

Name, building
 A

Instructor, Department

instructor_id, instructor_name,
dept_name,dept_building

 These forms have increasingly restrictive requirements. Every relation
in a higher normal form is also in all of the lower forms.

 BCNF allows only 2 types of FDs:

◦ trivial

◦ implied by super keys

 BCNF ensures that no redundancy can be detected using FDs

[since, a value can be stored twice only if the key is defined twice]

Example:

Here,

the FDs are trivial:

iid →iname

Therefore, the schema is in BCNF.

But if the two tables are combined to form a single table,

the FDs are no longer derivable from the super key:

only iid cannot identify a unique row of it

(primary could be iid, did)

Therefore, the schema is not in BCNF.

 To have a schema satisfy BCNF, we need to ensure more number of
(hence, smaller sized) tables by decomposing the original table
(lossless decomposition, that is).

 Decomposition of R into R1 and R2 is lossless iff R1 ⋂ R2 is a key for
R1 or R2.

Instructor
iid

iname

Department
did

dbuilding

 A

Instructor, Department

iid, iname, did,dbuilding

e.g.,

is not lossless,

while,

is lossless.

Instructor
iid

iname

Department
did

dbuilding

Instructor, Department

iid, iname, did,dbuilding

Instructor, Department

iid, iname, did,dbuilding

Department
did

dbuilding

Instructor
iid

iname

did

