
Lecture	Notes 
Date: 23rd August 2011 
Topic: Introduction to Normal Forms 
Submitted By: Praveen A and Pratik Sarda 
 
Database Design Comparison: 
 

How do we compare 2 database designs and know which one is better??  

Example 

If a Department has multiple buildings how will you represent it in ER model: 

ER Model 1: Buildings as multi valued attribute in entity set Department. 

ER Model 2: Separate entity set Building with many to many relationships with entity set 
Department. 

Comparisons between the two ER Models are: 

1. In ER Model 1, there can be invalid building names in the Department table, while in ER 
Model 2 the relationship table will only have building names from entity set Building. 
 

2. In ER Model 1, new building in campus which doesn’t have any department as of now, can’t 
be represented, while in ER Model 2, such a building can be entered in the entity set 
building even though no departments are related to it. 
 

3. If the name of a building is changed, multiple changes will have to be made in ER Model 1, 
while in ER Model 2, the change will have to be made only once in the Building entity set, 
and it will reflect in all the relations. 

 

The metric to compare two ER models should consider factors like: 

1. Does it capture all entities 

2. Does it capture all domains 

3. Partial / Full participation of entity sets in relations 

4. Cardinality of Attributes 



Introduction to Schema Normalization: 
 

One of the biggest problems in Database design is redundancy. Redundancy causes problems in 
updation, insertion and deletion of entries in databases. During updation all redundant copies have 
to be updated. During insertion it may not be possible to store certain information until some other 
unrelated information is stored as well. And during deletion it may not be possible to delete some 
information without losing some unrelated information as well. The previous example of building 
and department shows redundancy in first solution. 

We should make sure that if single value changes, then it should change only one cell in the DBMS. 
To achieve this decompositions are performed. A  Decomposition of a relation schema R is 
replacing it with two relation schemas such that each contain a subset of attributes of R and 
together contain all attributes in R. 

Example 1:   Instructor and Department: 

Schema 1:  

 

 

 

In this schema DepartmentID and name is repeated every time an instructor belongs to the same 
department. Any other attribute of department would also be repeated. Any change in department 
name will lead to multiple changes in the table. 

 Schema 2: 

Instructor 
InstructorID 

InstructorName 
DepartmentID 

 

Here Department ID becomes a foreign key in the schema of Instructor referencing Department 
Schema. And only department ID is repeated. Any change in department name will lead to change in 
one place itself. Schema 2 is a decomposition of Schema 1 and is a better option than schema 
1.Schema2 involves multiple table lookups. 

 

 

 

InstructorAndDepartment 

InstructorID 
InstructorName 
DepartmentID 

DepartmentName 

Department 
DepartmentID 

DepartmentName 



Example 2: Bank Customer And Branch 

Schema 1:       Schema 2:   

 

 

 

 

This ensures 

1.  One table for each entity set and one table for each relationship. 
 

2.  Ease in maintaining Consistency. 

The goal of schema normalization is to maintain right balance between reducing redundancy and 
multiple table lookups.  

How do we know how much a schema has to be decomposed?? This is solved by introducing normal 
forms. Normal forms for relations make sure that certain kind of problems cannot arise in the 
schema. There are various kinds of Normal Forms like first normal form, second normal form, BCNF 
etc. 

First Normal Form: 
 

The first normal form is the most basic among the normal forms. It imposes a very basic 
requirement on relations. A domain is atomic if elements of the domain are considered to be 
indivisible units. Examples of non-atomic domains are address (consists of street name, pin code 
etc), roll numbers in our institute (first two digits tell the year of joining).Integers are assumed to 
be atomic as they cannot be divisible. A schema is in First normal form if the domain of every 
attribute is atomic. 

Example 1 

Relation Student= (StudentID, Department, YearOfJoining, SName) is in first normal form as every 
attribute is indivisible. 

However the relation Student= (StudentID, Department, Sname) with student id of the form 07 
012345 or 08 123456 is not in first normal form as student ID is used to find the year of joining. 

Example 2 

Relation Courses= (CourseID, Instructor, Department) 

CustomerAndBranch 

CustomerID 
CustomerName 

BranchID 
BranchName 
BankName 

Customer 
CustomerID 

CustomerName 
BranchID 

BankName 

Branch 
BranchID 

BankName 
BranchName 



Here every attribute is indivisible and hence is in First normal form 

Relation Courses= (CourseID, Instructor) 

Here Course ID is of the form CS344 or CS345 which is used to find the department name and hence 
CourseID is divisible and hence is not in First Normal Form 

Functional Dependencies: 
 

Functional Dependencies are very important in distinguishing good database designs from bad 
database designs. They are constraints on the set of Legal relations. 

A legal instance r(R) of Schema R satisfies Functional Dependency α	→β if 

1. Both α and β are subsets of R 

2. For all pairs of tuples t1 and t2 in the instance if t1[α]=t2[α]  then t1[β]=t2[β] 

In schema Courses=(CourseID, Instructor, Credits) if α=CourseID and β=Credits then  α ->β forms a 
functional dependency. 

Trivial Case: If β is a subset of α then α ->β is a functional dependency. 

Super, Primary and Candidate Keys are types of functional dependencies. That is if any of these keys 
are present in alpha then α ->β holds for any β in the relation. 

A single functional dependency on a relation R will not be very useful but if we have all the 
functional dependencies they are very useful in checking normal forms. Given a set of functional 
dependencies F we can find a larger set of functional dependencies using that set. 

Axioms allow us to reason about functional dependencies with ease. The following 3 axioms known 
as Armstrong’s axioms are used repeatedly: 

α, β and	γ	are	set	of	attributes. 

1. Reflexivity: if β	⊆ α then α	→β	holds  
2. Augmentation: If  α	→β	then γα	→	γβ holds 
3. Transitivity: If α	→β holds and β	→	γ	holds,	then	α	→	γ	holds. 

_________________________________________________________________________________________ 

References:  
1. Database System Concepts: Silberschatz, Sudarshan and Korth 
2. Database Management Systems: Ramakrishnan 


