

CS 344: DATABASE MANAGEMENT

SYSTEMS

Lecture Notes

for

22ND August

Topic:

SQL (Continued)

Submitted by:

Sidharth C. Pardeshi Sanket Purwar

09010162 09010135

Other SQL Features:

1. Order by:

ORDER BY clause can be used to specify a sort order.

Syntax [A]:

SELECT column_name(s)

FROM table_name

ORDER BY column_name(s) ASC|DESC

Explanation:

In the above query, the tuples from “table_name” are obtained in a sorted order

(which can be either ascending or descending).

2. NULL Values:

A null value if a special value used to denote that the value for a field is unavailable

or inapplicable. If one wants to specify that a particular attribute cannot contain

NULL values, then that attribute is declared as follows [B]:

attribute char(10) NOT NULL

3. Unique/ Not Unique:

In SQL we can declare that a subset of the columns of a table constitute a key by

using the UNIQUE constraint.

Syntax [C]:
CREATE TABLE Students (sid CHAR(20),

name CHAR(30),

login CHAR(20),

age INTEGER,

gpa REAL,

UNIQUE (name, age),

CONSTRAINT StudentsKey PRIMARY KEY (sid))

4. With:

The SQL With clause allows one to give a sub-query block a name, which can be

referenced in several places withing the main SQL query.

Syntax [D]:
Insert Into new_table

Select *

From (WITH alias_name AS (

Select a,b,c... From old_table

Select * From alias_name))

5. Views:

A view is a table whose rows are not explicitly stored in the database but are

computed as needed from a view definition.

Syntax [E]:
CREATE VIEW B-Students (name, sid, course)

AS SELECT S.sname, S.sid, E.cid

FROM Students S, Enrolled E

WHERE S.sid = E.sid AND E.grade = `B'

Explanation:

The view B-Students has three fields called name, sid, and course with the same

domains as the fields sname and sid in Students and cid in Enrolled.

Exercise 4.2 [F]

SCHEMA:

 Employee (ename, street, city)

 Works (ename, cname, salary)

 Company (cname, city)

 Manages (ename, mname)

1. Find the name and city of the employees who work for company ‘X’.

Solution:

 Step 1: Take a natural join of Employee and Works (R1= Employee |X| Works)

 Step 2: Select those tuples which have cname=‟X‟ (R2= 𝜎cname=‟X‟ R1)

 Step 3: Project ename, city from R2 (πename,city R2)

 SQL equivalent:

 Select enam, city

 From employee Natural Join Works

 Where cname=‟X‟

2. Find the name and city of the employees who work for company ‘X’ and have a

salary of more than Rs. 10,000.

Solution:

 Step 1: Take a natural join of Employee and Works (R1= Employee |X| Works)

 Step 2: Select those tuples which have cname=‟X‟ and salary>=Rs. 10,000

(R2= 𝜎 (cname=‟X‟)(salary>=10,000) R1)

 Step 3: Project ename, city from R2 (π ename,city R2)

 SQL equivalent:

 Select enam, city

 From employee Natural Join Works

 Where cname=‟X‟ and salary>=10,000

3. Find all employee not working for company ‘X’.

Solution:

 Step 1: Project ename from Employee table. (R1= π ename Employee)

 Step 2: Select those tuples from works where cname=‟X‟. (R2= 𝜎 cname=‟X‟ Works)

 Step 3: Project ename from R2 (R3= π ename,city R2)

 Step 4: Subtract the relation R3 from R1. (R1-R3)

 SQL equivalent1:

 Select ename

 From employee

 MINUS

 Select ename

 From Works

 Where cname=‟X‟

 SQL equivalent2:

 Select ename

 From employee

 Where ename NOT IN

 Select ename

 From Works

 Where cname=‟X‟

4. Find the employees who earn more than any employee of company ‘X’.

Solution:

 Step 1: Find the maximum salary in company „X‟ from Works table. (If max(salary

represents this salary, then R1= 𝜎 (cname=‟X‟)(salary=max(salary)) Works)

Step 2: Project the max(salary) (R2= π salary R1)

 Step 3: Select those tuples from Works which have salary greater than R2.

 SQL equivalent:

 R1= Select MAX(salary)

 From Works

 Where cname=‟X‟

 Select * Select *

 From Works OR From Works

 Where Salary > ALL R1 Where Salary > ANY R1

5. Find the company who has most number of employees.

Solution:

Step 1: First group the tuples in Works by cname. Then select cname and

count(ename) (call it R1)

Step 2: Select cname from R1 where the number of employee (count(ename)) is the

maximum.

SQL equivalent:

R1 = Select cname, count(ename)

 From Works

 Group by cname

Select cname

From R1

Where count(ename)>= ALL

 Select Max(count(ename))

 From R1.

A few definitions:

1. Functional Dependence [G]:

Functional dependence generalises the concept of a key. If R is a relation schema,

then we say that an instance r of R satisfies the functional dependence XY if the

following holds for every pair of tuples t1 and t2 in r:

If t1.X = t2.X then t1.Y = t2.Y

2. Armstrong’s Axioms [H]:

a. Reflexivity: If X  Y, then XY

b. Augmentation: If XY, then XZYZ for any Z.

c. Transitivity: If XY and YZ, then XZ

Reference:

[A] w3schools.com, “SQL Order By keyword”

 http://www.w3schools.com/sql/sql_orderby.asp

[B] Ramakrishnan, Gehrke, Database Management Systems, Page 67

[C] Ramakrishnan, Gehrke, Database Management Systems, “Specifying Key Constraints

in SQL”, Page 67

[D] S. R. Obbayi, “SQL‟s With Clause”

 http://www.brighthub.com/internet/web-development/articles/91893.aspx

[E] Ramakrishnan, Gehrke, Database Management Systems, “Introduction to Views”,

Page 67

[F] Silberschatz, Korth and Sudarshan, Database Systems Concepts, Exercise 4.2, Page

149

[G] Ramakrishnan, Gehrke, Database Management Systems, “Functional Dependencies”,

Page 611

[H] Ramakrishnan, Gehrke, Database Management Systems, “Closure of a set of FDs”,

Page 612

http://www.w3schools.com/sql/sql_orderby.asp
http://www.brighthub.com/members/sobbayi.aspx
http://www.brighthub.com/internet/web-development/articles/91893.aspx

