
Aditya Kumar 09010103

Rishi raj Borah 09010142

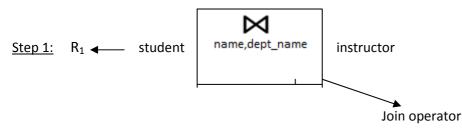
Let us apply relational algebra to the above diagram.

Q. Get the list of all student IDs

 π_{ID} (student) where π is the projection operator

Q. Get the titles of all courses offered by the CSE department.

<u>Step 1</u>: First, we use the selection operator :

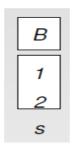

 $R_1 \leftarrow G_{dept_name=CSE}(course)$

Thus R₁ represents the table of courses offered by the CSE department. But we need only the titles of these courses.

<u>Step 2</u>: Now use the projection operator:

 $\pi_{title}(R_1)$ this is the required expression

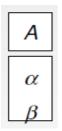
Q. Get the list of all departments which have at least 1 student and instructor with the same name.


This gives the table containing those students/instructors having the same names. But the table also contains columns for salary, ID etc.

<u>Step 2:</u> $\pi_{dept_name}(R_1)$

This is the required expression.

' / ' and ' % ' operators



If some value 'x' present in column A of 'r' is not associated with all values present in B of 's' then x is present in r%s.

Therefore, r%s = π_A ((π_A (r) x s) – r)

r/s= complement of r%s = $\pi_A(r) - (r%s) = \pi_A(r) - \pi_A((\pi_A(r) \times s) - r)$

Therefore, r/s gives:

Conversion of ER to Relational

Strong entity set:

Let E be a strong entity set with attributes $a_1, a_2, ..., a_n$. We represent this entity by a table called E with n distinct columns, each of which corresponds to one of the attributes of E. Each row of the table corresponds to one entity of the entity set E.

Complex attribute:

If there is a complex attribute, we create a separate attribute for each component attribute.

Multi-valued attribute:

If there is a multi valued attribute (say 'A'), then we have two separate tables- in the first table we have columns for all the attributes of E except for the multivalued attribute 'A' and in the second table we have columns representing 1) this attribute 'A', and 2) the primary key of the entity set E.

Weak entity set:

Let A be a weak entity set with attributes $a_1, a_2, ..., a_m$. Let B be the strong entity set on which A depends. Let the primary key of B consist of attributes $b_1, b_2, ..., b_n$. We represent the entity set A by a table with one column for each attribute of the following set:

 $\{a_1,a_2,...,a_m\} \cup \{b_1,b_2,...,b_n\}$

Relationship sets:

Let R be a relationship set, let $a_1, a_2, ..., a_m$ be the set of attributes formed by the union of the primary keys of each of the entity sets participating in R, and let the descriptive attributes (if any) of R be $b_1, b_2, ..., b_n$. We represent this relationship set by a table called R with one column for each attribute of the following set:

 $\{a_1,a_2,...,a_m\} \cup \{b_1,b_2,...,b_n\}$