
Lecture-XXVI

Time-Independent Schrodinger Equation



Time Independent Schrodinger Equation:

The time-dependent Schrodinger equation: 

Assume that V is independent of time t. In that case the Schrodinger equation can be 

solved by the method of separation of variables: 

Then dividing  through by ψf: 

Now the left side is a function of t alone, and the right side is a function of x alone. The

only way this can possibly be true is if both sides are constant (say E, the exact

meaning will be clear later). Then

The second is called the time-independent Schrodinger equation; it requires the

knowledge of the potential V. Before solving the time-independent Schrodinger

equation for certain potentials, let us understand the property of the solution.

Then dividing  through by ψf: 

or



I. Stationary states: Although the wave function itself, 

does obviously depend on t, the probability density 

does not--the time dependence cancels out. That is why they are called stationary

states.

The same thing happens in calculating the expectation value of any dynamical variable 

reduces to reduces to 

Every expectation value is constant in time. In particular, <x> is constant, and hence

<p> = 0. Nothing ever happens in a stationary state.

Note: To become the expectation values real, finite, well-behaved physical quantities,

the ψ(x) and dψ(x)/dx then must be finite, single valued and continuous.



II. States of definite total energy:

In classical mechanics, the total energy (kinetic plus potential) is called the

Hamiltonian:

Thus the time-independent Schrodinger equation can be written as 

and the expectation value of the total energy is 

and hence 

The corresponding Hamiltonian operator is :

and hence 

So the standard deviation in H is given by 

But remember, if  σ=0, then every member of the sample must share the same value. 

Conclusion: A separable solution has the property that every measurement of the total 

energy is certain to return the value E. 

If the stationary state ψ is eigenfunction of any QM operator A,  then there will be no 

uncertainty on the measured value a by operating A on ψ.



III. Discrete energy levels:

How a differential equation involving continuous functions and continuous variables

give rise to discrete energy levels? Consider an electron confined in a region of space

by some kind of a potential well. Now the electron must have well defined discrete

energy levels.
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a physically acceptable solution only for a

particular value of E.



It does not mean that there is only one energy for a particle bound in a potential well. 

Other energies are possible but not energies

arbitrarily close to Ec (or E).

Note that the solution we have plotted in the

last slide, crosses the x-axis 4 times within the

region x1<x<x2.

If there exists a solution corresponding to an

energy less than E, then the solution must cross

the x-axis only 3 times, only 2 times, only once

Ground state

ψ(x)

the x-axis only 3 times, only 2 times, only once

or not at all within the region x1<x<x2.

There may also be other solutions

corresponding to values of the energy higher

than once shown.

Conclusion is that if a particle is bound in a

potential well, its energy can take only the

certain special values in a discrete energy

spectrum.

1st  Excited state

2nd  Excited state

3rd  Excited state

4th  Excited state



IV. E0 must be greater than Vmin

if E < Vmin, then ψ” and ψ always have the same sign: If ψ is positive (negative), then

ψ” is also positive (negative). This means that ψ always curves away from the axis.

However, it has got to go to zero as x→±∞ (else it would not be normalizable). At

some point it’s got to depart from zero (if it doesn’t, it’s going to be identically zero

everywhere), in (say) the positive direction. At this point its slope is positive, and

increasing, so ψ gets bigger and bigger as x increases. It can’t ever “turn over” and

head back toward the axis, because that would require a negative second derivative—

it always has to bend away from the axis. By the same token, if it starts out heading

negative, it just runs more and more negative. In neither case is there any way for it tonegative, it just runs more and more negative. In neither case is there any way for it to

come back to zero, as it must (at x→∞) in order to be normalizable.



V. Eigenvalues are real:

Since the Hamiltonian is a Harmitian operator, then
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VI. Eigenstates of different eigenvalues are orthogonal:
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VII. Linear combination of separable solutions:

The general solution is a linear combination of separable solutions. As the time-

independent Schrodinger equation yields an infinite collection of solutions ψ1(x),

ψ2(x), ψ3(x), .... , each with its associated value of energy eigenvalues E1, E2, E3 .... ; thus

there is a different wave function for each allowed energy:

Now the (time-dependent) Schrodinger equation has the property that any linear

combinations of solutions is itself a solution. Once we have found the separablecombinations of solutions is itself a solution. Once we have found the separable

solutions, then, we can immediately construct a much more general solution, of the

form

It so happens that every solution to the (time-dependent) Schrodinger equation can

be written in this form--it is simply a matter of finding the right constants (c1, c2, ...) so

as to fit the initial conditions for the problem at hand.



VIII. Physical Interpretation of Expansion Coefficients:

Now the orthonormality relation can be used to find cn

The general solution can be written as a linear combinations of eigenfunctions as
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cn tells us how much ψn is contained in ψ(x,t), and a measurement has to return one of 

the eigenvalues of an operator Q.
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cn
2 is the probability to find a particle in an eigenstate ψn in a generalized

wavefunction ψ(x,t).

the eigenvalues of an operator Q.
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This is a manifestation of conservation of energy in quantum mechanics.



Analogy to Vector Analysis

QM Vector

The wave functions ψ(x) form a vector space, called the Hilbert space, the energy

eigenfunctions un(x) form a basis.



The Infinite Square Well Potential 

For instance, take the potential for a conduction

electron in a block of metal to be a finite square well.

Infinite square well potentials can be used to discuss

the quantum mechanical properties particles which are

strictly confined within certain region of space.

The infinite square well potential is written as 

The above equation is the (classical) simple harmonic  oscillator equation; the general 

solution is

where A and B are arbitrary constants. Typically, these constants are fixed by the

boundary conditions of the problem.

In the region within the well V=0, hence the Schrodinger equation is given by

with E > 0. or



Both Ψ and dΨ/dx are continuous. But where the potential goes to infinity only the

first of these applies.

At  x = a

Therefore

At x = 0 so and hence 

if A = 0, in which case we're left with the trivial 

nonnormalizable solution ψ(x) = 0.

then, which means that 

But k = 0 is no good. Again, that would imply ψ(x) = 0. The negative solutions give

nothing new, since sin(-θ) = - sin(θ) and the minus sign can be absorbed into A. So the

distinct solutions are

Through normalization, A can be fixed. 

distinct solutions are
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Inside the well, then, the 

solutions are 



Position and momentum expectations for the nth stationary state

Note: it is true for stationary states of any potential.



In sharp contrast to the classical case, a quantum particle in the infinite square well

can only have certain specific values. The total energy of the particle in the well is

quantized.

Since

odd

even

One node

Two nodes

Energy quantization:

The first energy eigenvalue for the infinite square well it is

This is called the zero-point energy. It is the lowest possible total energy the particle

can have if it is bound by the infinite square well potential to the region 0<x<a. The

particle cannot have zero total energy. The phenomenon is basically a result of the

uncertainty principle.

evenZero node

0 a 0 a

Helium will not solidify even at the lowest attainable temperature ( 0.001°K), unless a

very high pressure is applied.



Eigenstates are mutually orthogonal:

since

Eigenstates form a complete set:

The stationary states are then 

The general solution to the (time-dependent) Schrodinger equation is a linear

combination of stationary states:

The initial wave function then can be written as

Now the orthonormality condition determines the actual coefficients: 

Therefore given the initial wave function, ψ(x,0), compute the expansion coefficients

cn, and then one could obtain ψ(x,t). Having the wave function, one can compute any

dynamical quantities of interest.
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Example: Consider the particle in the infinite square well has its initial wave function

an even mixture of the first two stationary states:

Find ψ(x, t), Compute <x>, <p> and <H>.  

First, normalize the wave function:

Then ψ(x, t) is given by 

=

Position expectation:

where



Momentum expectation:

Energy expectation:

You could get either or

with equal probability

So it’s the average of E1 and E2.


