Solution to Assignment I

Finding Unknown U

- Find the range of U : Low and High, from two consecutive power terms from k^{1}, k^{2}, $\mathrm{k}^{3}, \ldots \mathrm{k}^{\mathrm{n}}$; k can be $2,3, \ldots$ any 10 ; complexity of finding range will be ceil($\left(\log _{\mathrm{k}} \mathrm{U}\right)$; in order notation $\log _{2} \mathrm{U}, \log _{k} \mathrm{U}$ and $\log _{10} \mathrm{U}$ have same order
- After finding rage do a binary search for the number; ceil($\left(\log _{2} \mathrm{U}\right)$ time

Square Root

- Finding root of $X^{2}-N=0$ uisng newton rapson method : $X_{k+1}=X_{k}-f\left(X_{k}\right) / f^{\prime}\left(X_{k}\right)$

$$
=\mathrm{X}_{\mathrm{k}^{-}}\left(\mathrm{X}_{\mathrm{k}}{ }^{2}-\mathrm{N}\right) / 2 \mathrm{X}_{\mathrm{k}}=\left(\mathrm{X}_{\mathrm{k}}+\mathrm{N} / \mathrm{X}_{\mathrm{k}}\right) / 2
$$

- do $X_{k+1}=\left(X_{k}+N / X_{k}\right) / 2$ until abs $\left(X_{k+1}-X_{k}\right)>$ accuracy
- Take initial guess between 0 to $\mathrm{N} / 2$; suppose y ;
- Root will be between 0 to y if $N / y<y$; $y^{\prime}=a n y$ number between 0 to $N / 2$;
- Root will be between y to N if $\mathrm{N} / \mathrm{y}>\mathrm{y}$; Repeat $\{$
- Approximte using Bisection method :
\} untill abs(y-y')<accuracy;
- which turn out to be same as newton rapson method.

Finding your friend

- Searching all the directions one after another sequencially inorder upto limit distance

L=1

- Searching Cirularly : After finishing all the directions
- Incrementing the limit L by $\mathrm{L}=\mathrm{L}+1$;
- Result in worst cover distance which is
$8(1+2+3+. .+D)=8 * D^{*}(D+1) / 2=4\left(D^{2}+D\right)=O\left(D^{2}\right)$
- Incrementing the limit L by $\mathrm{L}=2^{*} \mathrm{~L}$;
- Total cover distance will be $8 *(1+2+4+8+. .+D+2 D)=32 * D=O(D)$;
- Good solution
- Searching Spirally: After finising a direction increment $\mathrm{L}=\mathrm{L} * 2$;
- Distance will be $2(1+2+4+8+\ldots+D+2 D+4 D+8 D)=32 D$;
- Worst case scnario chances is bellow average.

