CS594, Python Programming Lab
 (https://www.iitg.ac.in/asahu/cs594/)

Assignment II : Based on Fundamental of list, function call and recursion
 Deadline : 11.55 PM IST, 28th September 2020

You are allowed to use all the features of python list, function and recursion

- Part (a) : Write an efficient Python program to find $\boldsymbol{N}_{\mathrm{th}}$ power of ($1+\mathrm{e}$), where e is vary small (between 0 to 0.1) either positive or negative number. You are not allowed to use inbuilt power/exp function of Python.

Sample input : (a) 2002, 0.0001, (b) 365, $\mathbf{- 0 . 0 1}$ (c) 365, 0.01
Expected Ans : (a) 1.22163483533 , (b) 0.02551796445 , (c) 37.78
Hint : $X^{\wedge} 20=X^{\wedge} 10 * X^{\wedge} 10$

- Part (b) : Write an efficient Python program to find Nth Fibonacci number using recursion.

Sample input : (a) 50 (b) 12, (c) 100, (d) 200
Hint: 1 : Take idea from Part (a)

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}=\left(\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right) \quad \begin{aligned}
& \text { Hint2 }: \mathbf{F}_{\mathbf{n}}=\mathbf{F}_{\mathrm{n}-1}+\mathbf{F}_{\mathrm{n}-2} \\
& \text { Linearization with tail } \\
& \text { recursion }
\end{aligned}
$$

Integers in Python 3 are of unlimited size

- Part (c): Generate N random data with Poisson/Gaussian distribution in the range 0 to 100 and plot the generated data. Poisson distribution have parameter λ. And the Gaussian distribution have parameter μ and σ. You are not supposed to use the inbuilt Poisson/Gaussian function of Python Library. But you are allowed to use exp/power/factorial function of Python.

Sample input : (a) 1000, P, 5 (b) 20000, G, 50, 10 (c) 2000, P, 10 (d) 10000, G, 30, 5
import random
$x=$ random.randint $(0,100)$ \#generate a random number between 0 to 100 , you are allowed to use this function
For plotting, you are allowed to use inbuilt plot function. (see the tutorial). Suppose the generated data contained in a list X . import numpy
import matplotlib.pyplot as plt
plt.hist $(X, 100)$ \#put X in 100 bin histogram
plt.show()

Hint : Probability of a uniform random number x get selected into target list X equals to the $P D F(x)$ of the target dist.

Submission procedure:

- Send your assignments code in compressed folder (tgx/zip/gz) to asahu < at > iitg < dot > ac < dot > in with "CS594: Assignment<II> , < RollNo > " as subject before the deadline
- Please embed comments, how to run and required inputs properly in the code, or a separate readme file.

