
Python Tutorial (list and
function)

Adopted from: https://www.w3schools.com/python/default.asp

Python Collections (Arrays)
There are four collection data types in the Python
programming language:

• List is a collection which is ordered and
changeable. Allows duplicate members.

• Tuple is a collection which is ordered and
unchangeable. Allows duplicate members.

• Set is a collection which is unordered and
unindexed. No duplicate members.

• Dictionary is a collection which is unordered,
changeable and indexed. No duplicate
members.

When choosing a collection type, it is useful to
understand the properties of that type. Choosing the
right type for a particular data set could mean retention
of meaning, and, it could mean an increase in
efficiency or security.

List
A list is a collection which is ordered and changeable.
In Python lists are written with square brackets.

Create a List:

thislist = ["apple", "banana", "cherry"]
print(thislist)

Access Items

You access the list items by referring to the index
number

Print the second item of the list:

thislist = ["apple", "banana", "cherry"]
print(thislist[1])

Negative Indexing

Negative indexing means beginning from the end, -1

refers to the last item, -2 refers to the second last item

etc.

thislist = ["apple", "banana", "cherry"]
print(thislist[-1])

Range of Indexes

You can specify a range of indexes by specifying
where to start and where to end the range.

When specifying a range, the return value will be a
new list with the specified items.

Return the third, fourth, and fifth item:

thislist = ["apple", "banana", "cherry", "orange",
"kiwi", "melon", "mango"]
print(thislist[2:5])

The search will start at index 2 (included) and end at
index 5 (not included).

By leaving out the start value, the range will start at
the first item:

This example returns the items from the beginning to
"orange":

thislist = ["apple", "banana", "cherry", "orange",
"kiwi", "melon", "mango"]
print(thislist[:4])

By leaving out the end value, the range will go on to
the end of the list:

This example returns the items from "cherry" and to
the end:

thislist = ["apple", "banana", "cherry", "orange",
"kiwi", "melon", "mango"]
print(thislist[2:])

https://www.w3schools.com/python/default.asp

Change Item Value
To change the value of a specific item, refer to the
index number:

Change the second item:

thislist = ["apple", "banana", "cherry"]
thislist[1] = "blackcurrant"
print(thislist)

Loop Through a List
You can loop through the list items by using a for

loop:

Print all items in the list, one by one:

thislist = ["apple", "banana", "cherry"]
for x in thislist:
 print(x)

Check if Item Exists
To determine if a specified item is present in a list use
the in keyword:

Check if "apple" is present in the list:
thislist = ["apple", "banana", "cherry"]
if "apple" in thislist:
 print("Yes, 'apple' is in the fruits list")

List Length
To determine how many items a list has, use the
len() function:

Print the number of items in the list:
thislist = ["apple", "banana", "cherry"]
print(len(thislist))

Add Items
To add an item to the end of the list, use the append()
method:

Using the append() method to append an item:

thislist = ["apple", "banana", "cherry"]
thislist.append("orange")
print(thislist)

To add an item at the specified index, use the insert()
method:

Insert an item as the second position:

thislist = ["apple", "banana", "cherry"]
thislist.insert(1, "orange")
print(thislist)

Remove Item
There are several methods to remove items from a list:

The remove() method removes the specified item:

thislist = ["apple", "banana", "cherry"]
thislist.remove("banana")
print(thislist)

The pop() method removes the specified index, (or

the last item if index is not specified):

thislist = ["apple", "banana", "cherry"]
thislist.pop()
print(thislist)

The clear() method empties the list:

thislist = ["apple", "banana", "cherry"]
thislist.clear()
print(thislist)
The del keyword removes the specified index:

thislist = ["apple", "banana", "cherry"]
del thislist[0]
print(thislist)

The del keyword can also delete the list completely:

thislist = ["apple", "banana", "cherry"]
del thislist

Copy a List

You cannot copy a list simply by typing list2 =

list1, because: list2 will only be a reference to

list1, and changes made in list1 will

automatically also be made in list2.

There are ways to make a copy, one way is to use the
built-in List method copy().

Make a copy of a list with the copy() method:

thislist = ["apple", "banana", "cherry"]
mylist = thislist.copy()
print(mylist)

Another way to make a copy is to use the built-in
method list().

Make a copy of a list with the list() method:

thislist = ["apple", "banana", "cherry"]
mylist = list(thislist)
print(mylist)

Join Two Lists
There are several ways to join, or concatenate, two or
more lists in Python.

One of the easiest ways are by using the + operator.

Join two list:

list1 = ["a", "b" , "c"]
list2 = [1, 2, 3]

list3 = list1 + list2
print(list3)

Another way to join two lists are by appending all the items
from list2 into list1, one by one:

Append list2 into list1:

list1 = ["a", "b" , "c"]
list2 = [1, 2, 3]
for x in list2:
 list1.append(x)
print(list1)

Or you can use the extend() method, which purpose is to

add elements from one list to another list:

Use the extend() method to add list2 at the end of

list1:

list1 = ["a", "b" , "c"]
list2 = [1, 2, 3]

list1.extend(list2)
print(list1)

List Methods
Python has a set of built-in methods that you can use
on lists.

Method Description
append() Adds an element at the end of the list
clear() Removes all the elements from the list
copy() Returns a copy of the list

count()
Returns the number of elements with the
specified value

extend()
Add the elements of a list (or any iterable),
to the end of the current list

index()
Returns the index of the first element with
the specified value

insert() Adds an element at the specified position

pop()
Removes the element at the specified
position

remove() Removes the item with the specified value
reverse() Reverses the order of the list
sort() Sorts the list

Python Functions
A function is a block of code which only runs when it
is called.

You can pass data, known as parameters, into a
function.

A function can return data as a result.

https://www.w3schools.com/python/ref_list_sort.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_append.asp

Creating a Function
In Python a function is defined using the def keyword:

def my_function():
 print("Hello from a function")

Calling a Function
To call a function, use the function name followed by
parenthesis:

def my_function():
 print("Hello from a function")
my_function()

Arguments
Information can be passed into functions as arguments.

Arguments are specified after the function name,
inside the parentheses. You can add as many
arguments as you want, just separate them with a
comma.

The following example has a function with one
argument (fname). When the function is called, we
pass along a first name, which is used inside the
function to print the full name:

def my_function(fname):
 print(fname + " Refsnes")

my_function("Emil")
my_function("Tobias")
my_function("Linus")

Arguments are often shortened to args in Python
documentations.

Parameters or Arguments?
The terms parameter and argument can be used for the
same thing: information that are passed into a function.

From a function's perspective:

A parameter is the variable listed inside the
parentheses in the function definition.

An argument is the value that is sent to the function
when it is called.

Number of Arguments
By default, a function must be called with the correct
number of arguments. Meaning that if your function
expects 2 arguments, you have to call the function with
2 arguments, not more, and not less.

This function expects 2 arguments, and gets 2
arguments:

def my_function(fname, lname):
 print(fname + " " + lname)

my_function("Emil", "Refsnes")

If you try to call the function with 1 or 3 arguments,
you will get an error:

This function expects 2 arguments, but gets only 1:

def my_function(fname, lname):
 print(fname + " " + lname)

my_function("Emil")

Arbitrary Arguments, *args
If you do not know how many arguments that will be
passed into your function, add a * before the

parameter name in the function definition.

This way the function will receive a tuple of
arguments, and can access the items accordingly:

If the number of arguments is unknown, add a *

before the parameter name:

def my_function(*kids):
 print("The youngest child is " + kids[2])

my_function("Emil", "Tobias", "Linus")

Arbitrary Arguments are often shortened to *args in
Python documentations.

Keyword Arguments
You can also send arguments with the key = value
syntax.

This way the order of the arguments does not matter.

def my_function(child3, child2, child1):
 print("The youngest child is " + child3)

my_function(child1 = "Emil", child2 = "Tobias",
child3 = "Linus")

The phrase Keyword Arguments are often shortened to
kwargs in Python documentations.

Arbitrary Keyword Arguments,
**kwargs
If you do not know how many keyword arguments that
will be passed into your function, add two asterisk: **

before the parameter name in the function definition.

This way the function will receive a dictionary of
arguments, and can access the items accordingly:

If the number of keyword arguments is unknown, add
a double ** before the parameter name:

def my_function(**kid):
 print("His last name is " + kid["lname"])

my_function(fname = "Tobias", lname = "Refsnes")

Arbitrary Kword Arguments are often shortened to
**kwargs in Python documentations.

Default Parameter Value
The following example shows how to use a default
parameter value.

If we call the function without argument, it uses the
default value:

def my_function(country = "Norway"):
 print("I am from " + country)

my_function("Sweden")
my_function("India")
my_function()
my_function("Brazil")

Passing a List as an Argument
You can send any data types of argument to a function
(string, number, list, dictionary etc.), and it will be
treated as the same data type inside the function.

E.g. if you send a List as an argument, it will still be a
List when it reaches the function:

def my_function(food):
 for x in food:
 print(x)

fruits = ["apple", "banana", "cherry"]
my_function(fruits)

Return Values
To let a function return a value, use the return

statement:

def my_function(x):
 return 5 * x

print(my_function(3))
print(my_function(5))
print(my_function(9))

The pass Statement
function definitions cannot be empty, but if you for

some reason have a function definition with no

content, put in the pass statement to avoid getting an

error.

def myfunction():
 pass

Recursion
Python also accepts function recursion, which means a
defined function can call itself.

Recursion is a common mathematical and
programming concept. It means that a function calls
itself. This has the benefit of meaning that you can
loop through data to reach a result.

The developer should be very careful with recursion as
it can be quite easy to slip into writing a function
which never terminates, or one that uses excess
amounts of memory or processor power. However,
when written correctly recursion can be a very efficient
and mathematically-elegant approach to programming.

In this example, tri_recursion() is a function that we
have defined to call itself ("recurse"). We use the k
variable as the data, which decrements (-1) every time
we recurse. The recursion ends when the condition is
not greater than 0 (i.e. when it is 0).

To a new developer it can take some time to work out
how exactly this works, best way to find out is by
testing and modifying it.

Recursion Example

def tri_recursion(k):
 if(k > 0):
 result = k + tri_recursion(k - 1)
 print(result)
 else:
 result = 0
 return result

print("\n\nRecursion Example Results")
tri_recursion(6)

Scope of Variables
All variables in a program may not be accessible at all
locations in that program. This depends on where you
have declared a variable.

The scope of a variable determines the portion of the
program where you can access a particular identifier.
There are two basic scopes of variables in Python −

• Global variables
• Local variables

Global vs. Local variables
Variables that are defined inside a function body have
a local scope, and those defined outside have a global
scope.

This means that local variables can be accessed only
inside the function in which they are declared, whereas
global variables can be accessed throughout the
program body by all functions. When you call a
function, the variables declared inside it are brought
into scope. Following is a simple example −

total = 0; # This is global variable.
Function definition is here
def sum(arg1, arg2):
 # Add both the parameters and return
them."
 total = arg1 + arg2; # total is local
 print "Inside function L total : ", total
 return total;

Now you can call sum function
sum(10, 20);
print "Outside function G total : ", total

The Anonymous Lambda
Functions
Lambda forms can take any number of arguments but
return just one value in the form of an expressionThe
syntax of lambda functions contains only a single
statement, Function definition is here

sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function
print "Value of total : ", sum(10, 20)
print "Value of total : ", sum(20, 20)

	Python Tutorial (list and function)
	Python Collections (Arrays)
	List
	Access Items
	Negative Indexing
	Range of Indexes

	Change Item Value
	Loop Through a List
	Check if Item Exists
	List Length
	Add Items
	Remove Item
	Copy a List
	Join Two Lists
	List Methods
	Python Functions
	Creating a Function
	Calling a Function
	Arguments
	Parameters or Arguments?
	Number of Arguments
	Arbitrary Arguments, *args
	Keyword Arguments
	Arbitrary Keyword Arguments, **kwargs
	Default Parameter Value
	Passing a List as an Argument
	Return Values
	The pass Statement
	Recursion
	Scope of Variables
	Global vs. Local variables
	The Anonymous Lambda Functions

