
Python Tutorial
Adopted from: https://www.w3schools.com/python/default.asp

Many PCs and Macs will have python already
installed. To check if you have python installed on a
Windows PC, search in the start bar for Python or run
the following on the Command Line (cmd.exe):

in Windows: C:\Users\Your Name>python --version

In Linux : $python --version

Let's write our first Python file, called helloworld.py,
which can be done in any text editor.

print("Hello, World!")

Python is an interpreted programming language, this
means that as a developer you write Python (.py) files
in a text editor and then put those files into the python
interpreter to be executed.

$python helloworld.py

Creating Variables
Variables are containers for storing data values.

Unlike other programming languages, Python has no
command for declaring a variable.

A variable is created the moment you first assign a
value to it.

x = 5 #This is a comment

y = "John"
print(x)
print(y)

Variables do not need to be declared with any
particular type and can even change type after they
have been set.

x = 4 # x is of type int
x = "Sally" # x is now of type str
print(x)

String variables can be declared either by using single
or double quotes:

x = "John"
is the same as
x = 'John'

Rule for Naming Variable
variable can have a short name (like x and y) or a
more descriptive name (age, carname, total_volume).
Rules for Python variables:

• A variable name must start with a letter or the
underscore character

• A variable name cannot start with a number
• A variable name can only contain alpha-

numeric characters and underscores (A-z, 0-9,
and _)

• Variable names are case-sensitive (age, Age
and AGE are three different variables)

#Legal variable names:
myvar = "John"
my_var = "John"
_my_var = "John"
myVar = "John"
MYVAR = "John"
myvar2 = "John"
#Illegal variable names:
2myvar = "John"
my-var = "John"
my var = "John"

Assign Value to Multiple
Variables
Python allows you to assign values to multiple
variables in one line:

x, y, z = "Orange", "Banana", "Cherry"
print(x)
print(y)
print(z)

https://www.w3schools.com/python/default.asp

And you can assign the same value to multiple
variables in one line:

x = y = "Orange"
print(x)
print(y)

Output Variables
The Python print statement is often used to output

variables.

To combine both text and a variable, Python uses the +
character:

x = "awesome"
print("Python is " + x)

You can also use the + character to add a variable to
another variable:

x = "Python is "
y = "awesome"
z = x + y
print(z)

For numbers, the + character works as a mathematical
operator:

x = 5
y = 10
print(x + y)

If you try to combine a string and a number, Python
will give you an error:

x = 5
y = "John"
print(x + y)

Input Value from Keyboard
'input()' is used to take input from the user. We

can also write something inside input() to make

print("Enter your name")
x = input()

Anything given to input is returned as a string. So, if

we give an integer like 5, we will get a string i.e. '5'

(a string) and not 5 (int).

Now, let's learn to take integer input from the user.

x = input("Enter an integer >>>")
y = int(x)
print("You have entered",y)

Python Conditions and If
statements
Python supports the usual logical conditions from
mathematics:

• Equals: a == b Not Equals: a != b
• Less than: a < b Greater than: a > b
• Less than or equal to: a <= b
• Greater than or equal to: a >= b

These conditions can be used in several ways, most
commonly in "if statements" and loops.

An "if statement" is written by using the if keyword.

a , b = 33, 200 #you can assign two variable
if b > a:
 print("b is greater than a")

Indentation
Python relies on indentation (whitespace at the
beginning of a line) to define scope in the code. Other
programming languages often use curly-brackets for
this purpose.

if statement, without indentation (will raise an error):

a = 33
b = 200
if b > a:
print("b is greater than a") # raise an error

Elif

The elif keyword is pythons way of saying "if the
previous conditions were not true, then try this
condition".

a , b = 33, 33
if b > a:
 print("b is greater than a")
elif a == b:
 print("a and b are equal")

Else

The else keyword catches anything which isn't caught
by the preceding conditions.

a , b = 200, 33
if b > a:

print("b is greater than a")
elif a == b:

print("a and b are equal")
else:

print("a is greater than b")

Short Hand If

If you have only one statement to execute, you can put
it on the same line as the if statement.

One line if statement:

if a > b: print("a is greater than b")

Short Hand If ... Else

print("A") if a > b else print("=") if a == b else
print("B")

Boolean Operator

if a > b and c > a:
print("Both conditions are True")

if a > b or a > c:
 print("At least one conditions is True")

Nested If

if x > 10:
print("Above ten,")

if x > 20:
print("and also above 20!")

else:
 print("but not above 20.")

The pass Statement

if statements cannot be empty, but if you for some

reason have an if statement with no content, put in

the pass statement to avoid getting an error.

if b > a:
pass

Python Loops
Python has two primitive loop commands:

• while loops and for loops

While Loops
With the while loop we can execute a set of statements
as long as a condition is true.

i = 1
while i < 6:

print(i)
i += 1

The break Statement

With the break statement we can stop the loop even if
the while condition is true:

i = 1
while i < 6:

print(i)
if i == 3:

break
i += 1

The continue Statement

With the continue statement we can stop the current
iteration, and continue with the next:
i = 0
while i < 6:

i += 1
if i == 3:

continue
print(i)

Python For Loops
A for loop is used for iterating over a sequence (that is
either a list, a tuple, a dictionary, a set, or a string).

This is less like the for keyword in other programming
languages, and works more like an iterator method as
found in other object-orientated programming
languages.

fruits = ["apple", "banana", "cherry"]
for x in fruits:

 print(x)

Loop through the letters in the word "banana":

for x in "banana":
print(x)

The break Statement

With the break statement we can stop the loop before it
has looped through all the items:

Exit the loop when x is "banana":

fruits = ["apple", "banana", "cherry"]
for x in fruits:

print(x)
if x == "banana":

break

The continue Statement

With the continue statement we can stop the current
iteration of the loop, and continue with the next:
Do not print banana:

fruits = ["apple", "banana", "cherry"]
for x in fruits:

if x == "banana":
continue

print(x)

The range() Function

To loop through a set of code a specified number of
times, we can use the range() function,

The range() function returns a sequence of numbers,
starting from 0 by default, and increments by 1 (by
default), and ends at a specified number.

for x in range(6):
 print(x)

Note that range(6) is not the values of 0 to 6, but the
values 0 to 5.

The range() function defaults to 0 as a starting value,
however it is possible to specify the starting value by
adding a parameter: range(2, 6), which means values
from 2 to 6 (but not including 6):

for x in range(2, 6):
print(x)

The range() function defaults to increment the
sequence by 1, however it is possible to specify the
increment value by adding a third parameter: range(2,
30, 3):

Increment the sequence with 3 (default is 1):

for x in range(2, 30, 3):
print(x)

Nested Loops

A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each
iteration of the "outer loop":

Print each adjective for every fruit:

adj = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]
for x in adj:

for y in fruits:
print(x, y)

	Python Tutorial
	Creating Variables
	Rule for Naming Variable
	Assign Value to Multiple Variables
	Output Variables
	Input Value from Keyboard
	Python Conditions and If statements
	Indentation
	Elif
	Else
	Short Hand If
	Short Hand If ... Else
	Boolean Operator
	Nested If
	The pass Statement

	Python Loops
	While Loops
	The break Statement
	The continue Statement

	Python For Loops
	The break Statement
	The continue Statement
	The range() Function
	Nested Loops

