• Today
 — Scheduling: Classification
 Ref: “Scheduling Algorithm” Peter Brayker Book
 — Multiprocessor Scheduling: List PTAS
 Ref: “job scheduling” by uwe schweigelshohn
• Tomorrow
 — Distributed Scheduling
 — Cilk Programming and Work Stealing
 — Scheduling in 2D NOC and 3D NOC

Scheduling Problems
• Find time slots in which activities (or jobs) should be processed under given constraints.
• Constraints
 — Resource constraints
 — Precedence constraints between activities.
• A quite general scheduling problem is
 — Resource Constrained Project Scheduling Problem (RCPSP)

Resource Constraints Project Scheduling Problem
• We have
 — Activities $j = 1, ..., n$ with processing times p_j.
 — Resources $k = 1, ..., r$. A constant amount of R_k units of resource k is available at any time.
 — During processing, every activity j occupies r_k units of resource k for $k = 1, ..., r$.
 — Precedence constraints $i \rightarrow j$ between some activities i, j with the meaning that activity j cannot start before i is finished.

RCPSP
• Objective: Determine starting times S_j for all activities j in such a way that
 — at each time t the total demand for resource k is not greater than the availability R_k for $k = 1, ..., r$.
 — the given precedence constraints are fulfilled, i.e. $S_i + p_i \leq S_j$ if $i \rightarrow j$.

• Some objective function $f(C_1, ..., C_n)$ is minimized where $C_j = S_j + p_j$ is the completion time of activity j.
• The fact that activities j start at time S_j and finish at time $S_j + p_j$ implies that the activities j are not preempted.
• We may relax this condition by allowing preemption (activity splitting).
RCPSP: An Example

- Consider a project with \(n = 4 \) activities, \(r = 2 \)
- resources with capacities \(R_1 = 5 \) and \(R_2 = 7 \), a
- precedence relation \(2 \rightarrow 3 \) and the following data:

\[
\begin{array}{c|cccc}
 i & 1 & 2 & 3 & 4 \\
 \rho_i & 4 & 3 & 5 & 8 \\
r_{ij} & 2 & 1 & 2 & 2 \\
r_{ji} & 3 & 5 & 3 & 4 \\
\end{array}
\]

A corresponding schedule with minimal makespan

Applications of Scheduling

- Production scheduling
- Robotic cell scheduling
- Computer processor scheduling
- Timetabling
- Personnel scheduling
- Railway sc
- Air traffic control, Etc.

Machine Scheduling Problems and their Classification

- Most machine scheduling problems are special cases of the RCPSP.
 - Single machine problems,
 - Online Problem: FCFS, SJF, SRF, RR...
 - Parallel machine problems, and
 - Shop scheduling problems.

Single machine problems

- We have \(n \) jobs \(j = 1, \ldots, n \) to be processed on a single machine. Additionally precedence constraints between the jobs may be given.
- This problem can be modeled by an RCPSP with \(r = 1 \), \(R_1 = 1 \), and \(r_{ji} = 1 \) for all jobs \(j \).

Parallel Machine Problems

- We have jobs \(j \) as before and \(m \) identical machines \(M_1, \ldots, M_m \).
- The processing time for \(j \) is the same on each machine.
- One has to assign the jobs to the machines and to schedule them on the assigned machines.
- This problem corresponds to an RCPSP with \(r = 1 \), \(R_1 = m \), and \(r_{ji} = 1 \) for all jobs \(j \).
Parallel Machine Problems

- For unrelated machines the processing time p_{jk} depends on the machine M_k on which j is processed.
- The machines are called uniform if $p_{jk} = \frac{p_j}{r_k}$.
- In a problem with multi-purpose machines a set of machines μ_j is associated with each job j indicating that j can be processed on one machine in μ_j only.

Shop Scheduling Problems

- A job-shop problem is a general shop scheduling problem with chain precedence constraints of the form $O_{ij} \rightarrow O_{ij} \rightarrow \ldots \rightarrow O_{n(j)i}$.
- A flow-shop problem is a special job-shop problem with $n(j) = m$ operations for $j = 1, \ldots, n$ and $\mu_{ij} = M_i$ for $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

Classification of Scheduling Problems

Classes of scheduling problems can be specified in terms of the three-field classification $\alpha | \beta | \gamma$ where

- α specifies the machine environment,
- β specifies the job characteristics, and
- γ describes the objective function(s).
Machine Environment: α

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single Machine</td>
</tr>
<tr>
<td>P</td>
<td>Parallel Identical Machine</td>
</tr>
<tr>
<td>Q</td>
<td>Uniform Machine</td>
</tr>
<tr>
<td>R</td>
<td>Unrelated Machine</td>
</tr>
<tr>
<td>MPM</td>
<td>Multipurpose Machine</td>
</tr>
<tr>
<td>J</td>
<td>Job Shop</td>
</tr>
<tr>
<td>F</td>
<td>Flow Shop</td>
</tr>
</tbody>
</table>

If the number of machines is fixed to m we write

Pm, Qm, Rm, MPMm, Jm, Fm, Om.

Job Characteristics: β

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmtn</td>
<td>preemption</td>
</tr>
<tr>
<td>rj</td>
<td>release times</td>
</tr>
<tr>
<td>dj</td>
<td>deadlines</td>
</tr>
<tr>
<td>pm</td>
<td>p_j = 1 or p_j = p or p_j \in {1, 2} restricted processing times</td>
</tr>
<tr>
<td>prec</td>
<td>arbitrary precedence constraints</td>
</tr>
<tr>
<td>intree</td>
<td>intree (or outtree) precedences</td>
</tr>
<tr>
<td>intree</td>
<td>intree (or outtree) precedences</td>
</tr>
<tr>
<td>chains</td>
<td>chain precedences</td>
</tr>
<tr>
<td>series-parallel</td>
<td>a series-parallel precedence graph</td>
</tr>
</tbody>
</table>

Objective Functions: γ

Two types of objective functions are most common:

- **bottleneck objective functions**

 \[\max \{ f_j(C_j) \mid j = 1, \ldots, n \} , \text{ and} \]

- **sum objective functions**
 \[\sum f_j(C_j) = f_1(C_1) + f_2(C_2) + \ldots + f_n(C_n) . \]

 \[C_j \text{ is completion time of task } j \]

Objective Functions: γ

- **Σ U_j (number of late jobs) and Σ ω_j U_j (weighted number of late jobs) where U_j = 1 if C_j > d_j and U_j = 0 otherwise.**

- **Σ T_j (sum of tardiness) and Σ ω_j T_j (weighted sum of tardiness/lateness) where the tardiness of job j is given by**

 \[T_j = \max \{ 0, C_j - d_j \} . \]

Examples of Scheduling Problem

- 1 | prec; \(p_j = 1 \) | Σ \(\omega_j C_j \)
- P2 | | \(C_{\text{max}} \)
- P | \(p_j = 1 \); \(r_j \) | Σ \(\omega_j U_j \)
- R2 | | \(C_{\text{max}} \)
- J3 | \(n = 3 \) | \(C_{\text{max}} \)
- F | \(p_j = 1 \); \(\text{outtree} \); \(r_j \) | Σ \(C_j \)
- Om | \(p_j = 1 \) | Σ \(T_j \)
Polynomial algorithms

- A problem is called polynomially solvable if it can be solved by a polynomial algorithm.

Example
1 | | \(\sum \alpha_i C_i \) can be solved by scheduling the jobs in an ordering of non-increasing \(\alpha_i/p_i \) - values. Complexity: \(O(n \log n) \)

Precedence constraints (\(prec \))

Before certain jobs are allowed to start processing, one or more jobs first have to be completed.

Definition
- Successor
- Predecessor
- Immediate successor
- Immediate predecessor
- Transitive Reduction

In-tree (Out-tree)

- In-forest (Out-forest)
- Opposing forest
 - Interval orders
 - Series-parallel orders
 - Level orders
• Processor Environment
 – m identical processors are in the system.

• Job characteristics
 – Precedence constraints are given by a precedence graph;
 – Preemption is not allowed;
 – The release time of all the jobs is 0.

• Objective function
 – C_{max}: the time the last job finishes execution.
 – If c_j denotes the finishing time of J_j in a schedule S,
 $$C_{max} = \max_{1 \leq j \leq n} c_j$$

Classification

Due to the number of processors

• Number of processors is a variable (m)
 $P_m | \text{prec}, p_j = 1 | C_{max}$

• Number of processors is a constant (k)
 $P_k | \text{prec}, p_j = 1 | C_{max}$

Theorem 1

$P_m | \text{prec}, p_j = 1 | C_{max}$ is NP-complete.

1. Ullman (1976)
 3SAT $\leq P_m | \text{prec}, p_j = 1 | C_{max}$

2. Lenstra and Rinnoy Kan (1978)
 k-clique $\leq P_m | \text{prec}, p_j = 1 | C_{max}$

Corollary 1.1

The problem of determining the existence of a schedule with $C_{max} \leq 3$ for the problem $P_m | \text{prec}, p_j = 1 | C_{max}$ is NP-complete.

Theorem 2

$P_m | p_j = 1, \text{SP} | C_{max}$ is NP-complete.

SP: Series - parallel

Theorem 3

$P_m | p_j = 1, \text{OF} | C_{max}$ is NP-complete.

OF: Opposing - forest

PTAS Algorithms: Pk | prec, pj = 1 | C_{max}

• PTAS: Polynomial Time Approximation Scheme
• Approximation List scheduling policies
 – Graham's list algorithm
 – HLF algorithm
 – MSF algorithm
List scheduling policies

- Set up a priority list L of jobs.
- When a processor is idle, assign the first ready job to the processor and remove it from the list L.

$L = (J_3, J_5, J_4, J_2, J_6, J_1, J_0)$

Graham’s list algorithm

- Graham first analyzed the performance of the simplest list scheduling algorithm.
- List scheduling algorithm with an arbitrary job list is called Graham’s list algorithm.
- Approximation ratio for $P_k \mid \text{prec}, p_j = 1 \mid C_{\text{max}}$
 \[\delta = 2 - \frac{1}{k}. \] (Tight bound!)
 - Approximation ratio is δ if for each input instance, the makespan produced by the algorithm is at most δ times of the optimal makespan.

HLF/CP algorithm

- T. C. Hu (1961), Critical Path Algorithm or Hu’s algorithm
- Algorithm
 - Assign a level h to each job.
 - If job has no successors, $h(j)$ equals 1.
 - Otherwise, $h(j)$ equals one plus the maximum level of its immediate successors.
 - Set up a priority list L by nonincreasing order of the jobs’ levels.
 - Execute the list scheduling policy on this level based priority list L.

$L = (J_{15}, J_{13}, J_{11}, J_{10}, J_9, J_8, J_7, J_6, J_5, J_4, J_3, J_2, J_1)$

HLF/CP algorithm

- Time complexity
 $O(|V| + |E|)$ (where $|V|$ is the number of jobs and $|E|$ is the number of edges in the precedence graph)
- Theorem (Hu, 1961)
 The HLF algorithm is optimal for $P_k \mid p_j = 1, \text{in-tree (out-tree)} \mid C_{\text{max}}$.

 Corollary
 The HLF algorithm is optimal for $P_k \mid p_j = 1, \text{in-forest (out-forest)} \mid C_{\text{max}}$.

- N.F. Chen & C.L. Liu (1975)
 The approximation ratio of HLF algorithm for the problem with general precedence constraints:
 \[\delta_{\text{HLF}} \leq 4/3. \] (Tight!)
 If $k = 2$, $\delta_{\text{HLF}} \leq 4/3$.
 If $k \geq 3$, $\delta_{\text{HLF}} \leq 2 - 1/(k-1)$.
Most Successors First Algorithm (MSF)

- **Algorithm:**
 - Set up a priority list L by nonincreasing order of the jobs' successors numbers.
 - (i.e. the job having more successors should have a higher priority in L than the job having fewer successors)
 - Execute the list scheduling policy based on this priority list L.

Time complexity $O(V+E)$

Theorem (Papadimitriou and Yannakakis, 1979)
The MSF algorithm is optimal for $P_k | p_j = 1$, interval $| C_{\text{max}}$.

Theorem (Moukrim, 1999)
The MSF algorithm is optimal for $P_k | p_j = 1$, quasi-interval $| C_{\text{max}}$.

Prove out of Syllabus

Linear Programming Solution to Scheduling Problem

- $L = \{ j \}$ whether job j is scheduled in machine i
- p_i, \ldots, p_j for each job j
- p_i, \ldots, p_j for each machine i
- $\sum_i p_i$ for each machine i
- $\sum_j p_i$ for each job j, machine i

- Each job is scheduled in one machine.
- Each machine can finish its jobs by time T.

Minimum makespan scheduling: Arbitrary List

- **Algorithm**
 - 1. Order the jobs arbitrarily.
 - 2. Schedule jobs on machines in this order, scheduling the next job on the machine that has been assigned the least amount of work so far.

- Above algorithm achieves an approximation guarantee of 2 for the minimum makespan problem.
Load Balancing: List Scheduling

- **Machine 1**
 - A
 - F
 - H

- **Machine 2**
 - B
 - C
 - I

- **Machine 3**
 - D
 - E
 - J

Load Balancing: List Scheduling

- **Machine 1**
 - B
 - G
 - J

- **Machine 2**
 - C

- **Machine 3**
 - D
 - E

Load Balancing: List Scheduling

- **Machine 1**
 - A

- **Machine 2**
 - B
 - C

- **Machine 3**
 - D
 - E

Load Balancing: List Scheduling

- **Machine 1**
 - A

- **Machine 2**
 - B
 - C

- **Machine 3**
 - D
 - E

Load Balancing: List Scheduling

- **Machine 1**
 - A
 - E

- **Machine 2**
 - B
 - D

- **Machine 3**
 - C
List Scheduling is "2-approximation" (Graham, 1966)

Algorithm: List scheduling

Basic idea: In a list of jobs, schedule the next one as soon as a machine is free

- a: machine 1
- b: machine 2
- c: machine 3
- d: machine 4

Good or bad?

LS achieves a perf. ratio 2-1/m.

So all machines are busy from time 0 through $A(I)-t_k$

Consequently,

$$T_t z m A(I)-t_j \rightarrow T_t z m A(I)-m t_k$$

$$T_z m A(I) \rightarrow T_t z m A(I)$$

$$A(I) \leq T_t z m A(I)-t_k$$

S A job f finishes last, at time A

LS achieves a perf. ratio 2-1/m.

- **Proof:**
 - Let $T = \sum_t, i=1,2...n$, the sum of all processing times to be accommodated.
 - We know that the total processing time available in an optimal schedule on the machines is $m.OPT(I)$. So, $OPT(I) \leq T/m$.
 - Moreover, $OPT(I) \geq T_k$ for every k.

- Let $A(I)$ be the makespan of the schedule produced by LS.
 - By definition there must be a job k, with processing time t_k that ends at the makespan time.
 - No machine can end its operation before $A(I)-t_k$, because then job k would have been scheduled on that machine, thus reducing the makespan.

Example: Worst Case

- m x m
- m x 1
- makespan: 2m
- m x 1
- makespan: m+1
List with LPT

- List scheduling can do badly if long jobs at the end of the list spoil an even division of processing times.
- We now assume that the jobs are all given ahead of time, i.e. the LPT rule works only in the off-line situation. Consider the “Largest Processing Time first” or LPT rule that works as follows.

LPT(I)
1 sort the jobs in order of decreasing processing times: \(t_1 \geq t_2 \geq \ldots \geq t_n \)
2 execute list scheduling on the sorted list
3 return the schedule so obtained.

- The LPT rule achieves a performance ratio 4/3-1/(3m). **Prove out of Syllabus**