Interconnection Network: BUS

Dr. A. Sahu
CSE, IIT Guwahati

Bus

- Bus (Common Connection)
- Shared medium
- Same protocol/arbitration as CSMA/CD in MAC layer
- Analysis is bit different but similar

Bus interconnection

Taxonomy of multiple-access protocols

Pure ALOHA Protocol

While there is a new frame A to send DO
1. Send frame A and wait for ACK
2. If after "some" time ACK is not received (timer times out), wait a random amount of time and go to 1.
End
Frames in a pure ALOHA network

- Station 1 sends Frame 1.1.
- Station 2 sends Frame 2.1.
- Station 3 sends Frame 3.1.
- Station 4 sends Frame 4.1.

Analysis of Pure ALOHA

- Collides with the start of the shaded frame at t_0.
- Collides with the end of the shaded frame at $t_0 + 3t$.
- Vulnerable period for the shaded frame is t_0 to $t_0 + 3t$.

Slotted ALOHA

- Channel is organized into uniform slots whose size equals the frame transmission time.
- Transmission is permitted only to begin at a slot boundary.

Here is the procedure:

1. Send frame A at a slot boundary and wait for ACK.
2. If after “some” time ACK is not received, wait a random amount of time and go to 1.

End
Medium Access Control

- Medium Access Control (MAC):
 - How to share a common medium among the users?
- MAC layer is very important in LANs, nearly all of which use a multiaccess channel as the basis of their communication.

Assumptions

- Infinite population of users
- New frames are generated according to a Poisson distribution with mean \(S \) packets per packet time.
 - Probability that \(k \) packets are generated during a given packet time:
 \[
 \Pr[k] = \frac{S^k e^{-S}}{k!}
 \]

Observation on \(S \)

- If \(S > 1 \), packets are generated at a higher rate than the channel can handle.
- Therefore, we expect \(0 < S < 1 \)
- If the channel can handle all the packets, then \(S \) is the throughput.

Packet Retransmission

- In addition to the new packets, the stations also generate retransmissions of packets that previously suffered collisions.
- Assume that the packet (new + retransmitted) generated is also Poisson with mean \(G \) per packet time.
 \[
 \Pr[k] = \frac{G^k e^{-G}}{k!}
 \]

Relation between \(G \) and \(S \)

- Clearly, \(G \geq S \)
- At low load, few collisions: \(G \approx S \)
- At high load, many collisions: \(G > S \)
- Under all loads, \(S = GP_0 \)
 where \(P_0 \) is the probability that a packet does not suffer a collision.

Vulnerable Period: Pure Aloha

- Under what conditions will the shaded packet arrive undamaged?
Throughput

- Vulnerable period: from \(t_0 \) to \(t_0 + 2t \)
- Probability of no other packet generated during the vulnerable period is:
 \[P_0 = e^{-2G} \]
- Using \(S = GP_0 \), we get
 \[S = Ge^{-2G} \]

Relation between \(G \) and \(S \)

Max throughput occurs at \(G = 0.5 \), with \(S = 1/(2e) = 0.184 \).

Hence, max. channel utilization is 18.4%.

Carrier Sense Multiple Access (CSMA)

- Additional assumption:
 - Each station is capable of sensing the medium to determine if another transmission is underway.

Non-persistent CSMA

While there is a new frame A to send do
1. Check the medium
2. If the medium is busy, **wait some time**, and go to 1.
3. (medium idle) Send frame A and wait for ACK
4. If after some time ACK is not received (timer times out), wait a random amount of time and go to 1.
End.

1-persistent CSMA

While there is a new frame A to send do
1. Check the medium
2. If the medium is busy, go to 1.
3. (medium idle) Send frame A and wait for ACK
4. If after some time ACK is not received (timer times out), wait a random amount of time and go to 1.
End.

p-persistent CSMA

While there is a new frame A to send do
1. Check the medium
2. If the medium is busy, go to 1.
3. (medium idle) With probability \(p \) send frame A and the go to 4, and probability (1- \(p \)) delay one time slot and go to 1.
4. If after some time ACK is not received (timer times out), wait a random amount of time and go to 1.
End.
Comparison of throughput versus load for various random access protocols.

- **Persistent and Non-persistent CSMA**
 - CSMA/CD
 - CSMA/CA
 - CSMA/AC

BUS Protocol: Queue Based

- **BUS Arbiter**
 - Grand based on Policy/Priority to one S/D of Queue

- **S (Source) and D (Destination)**
 - may be Processor/memory

Achieved BW on a relative scale

\[
\frac{1 - (1 - \rho)^n}{n}
\]

Required BW

\[n \cdot \rho \]

Available BW

\[1 \]

Achieve BW Per Processor

\[
\frac{1 - (1 - \rho)^n}{n}
\]

Effect of re-submitted requests

- Two State: Accepted or Waiting, Request are accepted with probability \(P_A \)
- Once in accepted state
 - Remain their by another request and having it accepted \(\rho P_A \) or by not making a request \(1 - \rho \)
 - If requested but rejected with \(\rho (1 - P_A) \)
- A Processor in W state
 - Always resubmit a request and remain in W if it is rejected \(1 - P_A \)

\[
\begin{align*}
\text{Accept} & : \text{prob} = q_A \\
\text{Wait} & : \text{prob} = q_W
\end{align*}
\]

\[
\begin{align*}
1 - \rho + \rho P_A & = \rho (1 - P_A) \\
1 - P_A & = 1 - \rho (1 - P_A)
\end{align*}
\]
Effect of re-submitted requests

- Available BW is \(n\rho_A \)
- Probability of having request accepted \(P_A = \frac{\rho_A}{\rho} \)

\[
\text{BW}=n\rho_A = 1-(1-a)^n
\]

\[
P_A = \frac{\rho_A}{\rho} \Rightarrow a = \frac{\rho}{\rho + \frac{\rho_A}{\rho}(1-\rho)}
\]

- Both the above equation are interdependent
 - So solve iteratively to get Actual offered

Waiting time

Waiting time = \(i \times T_{\text{bus}} \)

if request is rejected \(i \) times and accepted on \((i+1)^{th} \) attempt

probability of this = \((1-P_A)^i \times P_A \)

Expected value of waiting time = \(T_p = \sum_{i=1}^{\infty} i \times T_{\text{bus}} \times (1-P_A)^i \times P_A \)

\[
= T_{\text{bus}} \times P_A \times \sum_{i=1}^{\infty} i \times (1-P_A)^i = T_{\text{bus}} \times P_A \times \frac{1-P_A}{(1-(1-P_A))}
\]

\[
= \frac{1-P_A}{P_A} T_{\text{bus}} = \frac{\rho - \rho_A}{\rho_A} T_{\text{bus}}
\]

Shared BUS: BW per Processor

Shared BUS: Utilization

Verdict: Share BUS

- Utilization saturates with number of requests
- Saturate more quickly as processor increases

- So it is not scalable with number of processor
- If number of processor > (8 or 10), Bus interconnection is Bad