Lecture Outline

- Why study λ-calculus?
- Lambda calculus
 - Syntax
 - Evaluation
 - Relationship to programming languages
- Church-Rosser theorem
- Completeness of Lambda Calculus: Turing Complete

λ-calculus

- A framework developed in 1930s by Alonzo Church to study computations with functions
- Church wanted a minimal notation
 - to expose only what is essential
 - Similar to BNF, Normal form in Rel Database
- Two operations with functions are essential:
 - function creation
 - function application

What Is Calculus?

- In School:
 \[\frac{d}{dx} x^n = nx^{n-1} \] [Power Rule]
 \[\frac{d}{dx} (f + g) = \frac{d}{dx} f + \frac{d}{dx} g \] [Sum Rule]

Calculus is a branch of mathematics that deals with limits and the differentiation and integration of functions of one or more variables...

Why Study λ-calculus?

- Basic syntactic notions
 - Free and bound variables
 - Functions, and Declarations
- λ-Calculation rule
 - Symbolic evaluation useful for discussing programs
 - Used in optimization (inlining), macro expansion
 - Correct macro processing requires variable renaming
 - Illustrates some ideas about scope of binding

Why Study λ-calculus?

- Tremendous influence on design and analysis of programming languages
- Realistic languages are too large and complex to study from scratch as a whole
 - Typical approach is to modularize the study into one feature at a time
 - E.g., recursion, looping, exceptions, objects, etc.
 - Then we assemble the features together
Why Study λ-calculus?
- λ-calculus is the standard testbed for studying programming language features
 - Because of its minimality
 - Despite its syntactic simplicity the λ-calculus can easily encode:
 - numbers, recursive data types, modules, imperative features, exceptions, etc.
- Certain language features necessitate more substantial extensions to λ-calculus:
 - Distributed & parallel languages: π-calculus
 - Object oriented languages: σ-calculus

“Whatever the next 700 languages turn out to be, they will surely be variants of λ-calculus.”
(Landin 1966)

Backus’ Turing Award
- John Backus: 1977 Turing Award
 - Designer of Fortran, BNF, etc.
- Turing Award lecture
 - Functional programming better than imperative programming
 - Easier to reason about functional programs
 - More efficient due to parallelism
 - Algebraic laws
 - Reason about programs
 - Optimizing compilers

Reasoning About Programs
- To prove a program correct, must consider everything a program depends on
- In functional programs, dependence on any data structure is explicit
 - fully and clearly expressed
- Therefore, it’s easier to reason about functional programs

Function Application
- The only thing that we can do with a function is to apply it to an argument
- Church used the notation \(\lambda x. E \)
 to denote a function with formal argument \(x \) and with body \(E \)
- Functions do not have names
 - names are not essential for the computation
- Functions have a single argument
 - Once we understand how functions with one argument work we can generalize to multiple args.

Function Creation
- Church introduced the notation \(\lambda x. E \)
 to denote a function with formal argument \(x \) and with body \(E \)
Syntax of Lambda Calculus

- Only three kinds of expressions

 \[E ::= x \quad \text{variables} \]

 \[| E_1, E_2 \quad \text{function application} \]

 \[| \lambda x. E \quad \text{function creation} \]

- The form \(\lambda x. E \) is also called lambda abstraction, or simply abstraction

- E are called \(\lambda \)-terms or \(\lambda \)-expressions

Scope of Variables

- As in all languages with variables, it is important to discuss the notion of scope

 - Recall: the scope of an identifier is the portion of a program where the identifier is accessible

- An abstraction \(\lambda x. E \) binds variable \(x \) in \(E \)

 - \(x \) is the newly introduced variable

 - \(E \) is the scope of \(x \)

 - We say \(x \) is bound in \(\lambda x. E \)

- Just like formal function arguments are bound in the function body

Free and Bound Variables

- Bound variable is a “placeholder”

 - Variable \(x \) is bound in \(\lambda x. (x+y) \)

 - Function \(\lambda x. (x+y) \) is same function as \(\lambda z. (z+y) \)

- Compare to Calculus

 \[\int x+y \, dx = \int z+y \, dz \quad \forall x \quad P(x) = \forall z \quad P(z) \]

Expressions and Functions

- Expressions

 \[x + y \quad x + 2*y + z \]

- Functions

 \[\lambda x. (x+y) \quad \lambda z. (x + 2*y + z) \]

- Application

 \[(\lambda x. (x+y)) \, 3 \quad = \quad 3 + y \]

 \[(\lambda z. (x + 2*y + z)) \, 5 \quad = \quad x + 2*y + 5 \]

- Parsing: \(\lambda x. f (x) = \lambda x. (f (f (x))) \)

Free and Bound Variables (Cont.)

- Just like in any language with static nested scoping, we have to worry about variable shadowing

 - An occurrence of a variable might refer to different things in different context

- E.g., in CoolFun: let \(x \leftarrow E \) in \(x + (\text{let } x \leftarrow E' \text{ in } x) + x \)

- In \(\lambda \)-calculus: \(\lambda x. (\lambda x. x) \times \)

- Renaming \(\lambda x. x \times (\lambda z. z) \times \)

- Name of free (i.e., unbound) variable matters!

 - Variable \(y \) is free in \(\lambda x. (x+y) \)

 - Function \(\lambda x. (x+y) \) is not same as \(\lambda x. (x+z) \)

- Occurrences

 - \(y \) is free and bound in \(\lambda x. ((\lambda x. y+z) \times) + y \)
Renaming Bound Variables

- Two \(\lambda \)-terms that can be obtained from each other by a renaming of the bound variables are considered identical
 \[\lambda x. x \text{ is identical to } \lambda y. y \text{ and to } \lambda z. z \]
- Intuition:
 - by changing the name of a formal argument and of all its occurrences in the function body, the behavior of the function does not change
- \[\text{fun } (x)=x^*x = \text{fun } (y)=y^*y = \text{fun } (z)=z^*z \]
- in \(\lambda \)-calculus such functions are considered identical

Examples of Lambda Expressions

- The identity function:
 \[I \text{ def } \lambda x. x \]
- A function that given an argument \(y \) discards it and computes the identity function:
 \[\lambda y. (\lambda x. x) \]
- A function that given a function \(f \) invokes it on the identity function:
 \[\lambda f. f (\lambda x. x) \]

Syntactic Sugar

- Syntactic sugar is syntax within a programming language that is designed to make things easier to read or to express.
- It makes the language "sweeter" for human use:
- things can be expressed more clearly, more concisely, or in an alternative style that some may prefer.

```java
context.checking(
    new Expectations(){
      //Better one
      oneOf(alarm).getAttackAlarm(null);
    });

Expectations exp = new Expectations();
exp.oneOf(alarm).getAttackAlarm(null);
context.checking(exp);
```

Notational Conventions

- Application associates to the left
 \[x \ y \ z \text{ parses as } (x \ y) \ z \]
- Abstraction extends to the right as far as possible
 \[\lambda x. \lambda y. x \ y \ z \text{ parses as } \lambda x. (\lambda y. ((x \ y) \ z)) \]
- And yields the the parse tree:

Declarations as "Syntactic Sugar"

```java
function f(x) {
  return x+2;
}
f(5);
(l.f f(5)) (\lambda x. x+2)
```

Same as \(\lambda x. x+2 \)

Note:

"Syntactic sugar is syntax within a programming language that is designed to make things easier to read or to express. It makes the language "sweeter" for human use: things can be expressed more clearly, more concisely, or in an alternative style that some may prefer."
Substitution

- The substitution of E’ for x in E (written \([E'/x]E\))
 - Step 1. Rename bound variables in E and E’ so they are unique
 - Step 2. Perform the textual substitution of E’ for x in E
- Example: \([y (\lambda x. x) / x] \lambda y. (\lambda x. x) y x\)
 - After renaming: \([y (\lambda v. v)/x] \lambda z. (\lambda u. u) z x\)
 - After substitution: \(\lambda z. (\lambda u. u) z (y (\lambda v. v))\)

\[\text{Example: } [y (\lambda x. x) / x] \lambda y. (\lambda x. x) y x\]
\[\text{Example: } \lambda x. M N \rightarrow M [x \mapsto N]\]

\(\beta\)-Reduction

(the source of all computation)

\[\lambda x. M N \rightarrow M [x \mapsto N]\]

Replace all \(x\)’s in \(M\) with \(N\)

Evaluation and the Static Scope

- The definition of substitution guarantees that evaluation respects static scoping:
 \((\lambda x. (\lambda y. y) x) \rightarrow \lambda z. z (y (\lambda u. v))\)
 \((y\text{ remains free, i.e., defined externally})\)

Evaluating Lambda Expressions

- \textit{redex}: Term of the form \((\lambda x. M)N\)
 - Something that can be \(\beta\)-reduced
 - An expression is in \textit{normal form} if it contains no redexes (redices).
 - To evaluate a lambda expression, keep doing reductions until you get to \textit{normal form}.

\(\alpha\)-reduction (or renaming)

\[\lambda y. M \Rightarrow_{\alpha} \lambda y. (M[y \mapsto v])\]

where \(v\) does not occur in \(M\).

Example: \([y (\lambda x. x) / x] \lambda y. (\lambda x. x) y x\)

\[= [y (\lambda v. v)/x] \lambda z. (\lambda u. u) z x\]

\(\beta\)-reduction (or substitution)

\[\lambda x. M N \Rightarrow_{\beta} M [x \mapsto N]\]

Note the syntax is different from Scheme:

\[\lambda x. M N \rightarrow ((\lambda x. M) N)\]

Examples of Evaluation

- The identity function:
 \((\lambda x. x) E \rightarrow [E / x] x = E\)
 - Another example with the identity:
 \((\lambda f. f (\lambda x. x)) (\lambda x. x) \rightarrow [\lambda x. x f f (\lambda x. x)] = (\lambda x. x) (\lambda y. y) \rightarrow \lambda y. y\)

- A non-terminating evaluation:
 \((\lambda x. xx)(\lambda x. xx) \rightarrow [\lambda x. xx / x] xx = [\lambda y. yy / x] xx = (\lambda y. yy)(\lambda y. yy) \rightarrow \ldots\)
The Order of Evaluation

- In a λ-term, there could be more than one instance of \((\lambda x. E)^f \)
 \[(\lambda y. (\lambda x. y) y) E \]
 - could reduce the inner or the outer lambda
 - which one should we pick?
 \[(\lambda y. (\lambda x. x) y) E \]

Church-Rosser theorem: Order of Evaluation

- The Church-Rosser theorem says that any order will compute the same result
 - A result is a λ-term that cannot be reduced further
- But we might want to fix the order of evaluation when we model a certain language

Higher-Order Functions

- Given function f, return function \(f \circ f \)
 \[\lambda f. \lambda x. f (f x) \]
- How does this work?
 \[(\lambda f. \lambda x. f (f x)) \ (\lambda y. y + 1) \]
 \[= \lambda x. (\lambda y. y + 1) (\lambda y. y + 1) \ x]
 \[= \lambda x. (\lambda y. y + 1) \ x + 1]
 \[= \lambda x. \ (x + 1) + 1]

Same Procedure (ML)

- Given function f, return function \(f \circ f \)
 \[fn f \Rightarrow fn x \Rightarrow f(f(x)) \]
- How does this work?
 \[fn f \Rightarrow fn x \Rightarrow f(f(x)) \]
 \[= fn x \Rightarrow ((fn y \Rightarrow y + 1) ((fn y \Rightarrow y + 1) x)) \]
 \[= fn x \Rightarrow ((fn y \Rightarrow y + 1) \ x + 1) \]
 \[= fn x \Rightarrow ((x + 1) + 1) \]

Lambda Calculus and Programming Languages

- Pure lambda calculus has only functions
- What if we want to compute with Booleans, numbers, lists, etc.?
 - All these can be encoded in pure λ-calculus
 - The trick: do not encode what a value is but what we can do with it!
- For each data type, we have to describe how it can be used, as a function
 - then we write that function in λ-calculus

Expressiveness of Lambda Calculus

- The λ-calculus can express
 - data types (integers, Booleans, lists, trees, etc.)
 - branching (using Booleans)
 - recursion
- This is enough to encode Turing machines
- Encodings are fun
- But programming in pure λ-calculus is painful
 - we will add constants (0, 1, 2, ..., true, false, if-then-else, etc.)
 - and we will add types
Encoding Booleans in Lambda Calculus

- What can we do with a Boolean?
 - we can make a binary choice
- A Boolean is a function that given two choices selects one of them
 - true = \(\lambda x. \lambda y. x \)
 - false = \(\lambda x. \lambda y. y \)
 - if \(E_1 \) then \(E_2 \) else \(E_3 \) = \(\text{def} E_1 E_2 E_3 \)
- Example: if true then \(u \) else \(v \) is
 \[(\lambda x. \lambda y. x) u v \rightarrow_{\beta} (\lambda y. u) v \rightarrow_{\beta} u \]

Encoding Pairs in Lambda Calculus

- What can we do with a pair?
 - we can select one of its elements
- A pair is a function that given a boolean returns the left or the right element
 \[\text{mkpair} \ x \ y = \text{def} \ \lambda b. \ x \ y \]
 \[\text{fst} \ p = \text{def} \ p \ \text{true} \]
 \[\text{snd} \ p = \text{def} \ p \ \text{false} \]
- Example:
 \[\text{fst} \ (\text{mkpair} \ x \ y) \rightarrow (\text{mkpair} \ x) \ y \rightarrow \text{true} \rightarrow x \ y \rightarrow x \]

Encoding Natural Numbers in Lambda Calculus

- What can we do with a natural number?
 - we can iterate a number of times
- A natural number is a function that given an operation \(f \) and a starting value \(s \), applies \(f \) a number of times to \(s \):
 \[0 = \text{def} \ \lambda f. \ \lambda s. \ s \]
 \[1 = \text{def} \ \lambda f. \ \lambda s. \ f \ s \]
 \[2 = \text{def} \ \lambda f. \ \lambda s. \ f \ (f \ s) \]
 and so on

Computing with Natural Numbers

- The successor function
 \[\text{succ} \ n = \text{def} \ \lambda f. \ \lambda s. \ f \ (n \ f \ s) \]
- Addition
 \[\text{add} \ n_1 \ n_2 = \text{def} \ n_1 \ \text{succ} \ n_2 \]
- Multiplication
 \[\text{mult} \ n_1 \ n_2 = \text{def} \ n_1 \ (\text{add} \ n_2) \ 0 \]
- Testing equality with 0
 \[\text{iszero} \ n = \text{def} \ n \ (\lambda b. \ \text{false}) \ \text{true} \]

Computing with Natural Numbers. Example

\[
\begin{align*}
\text{mult} \ 2 \ 2 & \rightarrow \\
2 \ (\text{add} \ 2) \ 0 & \rightarrow \\
(\text{add} \ 2) \ ((\text{add} \ 2) \ 0) & \rightarrow \\
2 \ \text{succ} \ (\text{add} \ 2) \ 0 & \rightarrow \\
2 \ \text{succ} \ (2 \ \text{succ} \ 0) & \rightarrow \\
\text{succ} \ (\text{succ} \ (\text{succ} \ (\text{succ} \ 0))) & \rightarrow \\
\text{succ} \ (\text{succ} \ (\text{succ} \ ((\lambda f. \ \lambda s. \ f \ (0 \ f \ s)))) & \rightarrow \\
\text{succ} \ (\text{succ} \ ((\lambda f. \ \lambda s. \ f \ s))) & \rightarrow \\
\text{succ} \ ((\lambda g. \ \lambda \ y. \ g \ ((\lambda f. \ \lambda s. \ f \ s) \ g \ y))) & \rightarrow \\
\text{succ} \ ((\lambda g. \ \lambda \ y. \ g \ (g \ y))) & \rightarrow 4
\end{align*}
\]