
GNU make

Short Table of Contents

1 Overview of make

2 An Introduction to Makefiles

3 Writing Makefiles

4 Writing Rules

5 Writing Recipes in Rules

6 How to Use Variables

7 Conditional Parts of Makefiles

8 Functions for Transforming Text

9 How to Run make

10 Using Implicit Rules

11 Using make to Update Archive Files

12 Extending GNU make

13 Integrating GNU make

14 Features of GNU make

15 Incompatibilities and Missing Features

16 Makefile Conventions

Appendix A Quick Reference

Appendix B Errors Generated by Make

Appendix C Complex Makefile Example

Index of Concepts

Index of Functions, Variables, & Directives

Table of Contents

1 Overview of make

1.1 How to Read This Manual

1.2 Problems and Bugs

2 An Introduction to Makefiles

GNU make https://www.gnu.org/software/make/manual/ma...

1 of 322 06/08/18, 2:50 PM

2.1 What a Rule Looks Like

2.2 A Simple Makefile

2.3 How make Processes a Makefile

2.4 Variables Make Makefiles Simpler

2.5 Letting make Deduce the Recipes

2.6 Another Style of Makefile

2.7 Rules for Cleaning the Directory

3 Writing Makefiles

3.1 What Makefiles Contain

3.1.1 Splitting Long Lines

3.2 What Name to Give Your Makefile

3.3 Including Other Makefiles

3.4 The Variable MAKEFILES

3.5 How Makefiles Are Remade

3.6 Overriding Part of Another Makefile

3.7 How make Reads a Makefile

3.8 Secondary Expansion

4 Writing Rules

4.1 Rule Example

4.2 Rule Syntax

4.3 Types of Prerequisites

4.4 Using Wildcard Characters in File Names

4.4.1 Wildcard Examples

4.4.2 Pitfalls of Using Wildcards

4.4.3 The Function wildcard

4.5 Searching Directories for Prerequisites

4.5.1 VPATH: Search Path for All Prerequisites

4.5.2 The vpath Directive

4.5.3 How Directory Searches are Performed

4.5.4 Writing Recipes with Directory Search

4.5.5 Directory Search and Implicit Rules

4.5.6 Directory Search for Link Libraries

4.6 Phony Targets

4.7 Rules without Recipes or Prerequisites

4.8 Empty Target Files to Record Events

4.9 Special Built-in Target Names

GNU make https://www.gnu.org/software/make/manual/ma...

2 of 322 06/08/18, 2:50 PM

4.10 Multiple Targets in a Rule

4.11 Multiple Rules for One Target

4.12 Static Pattern Rules

4.12.1 Syntax of Static Pattern Rules

4.12.2 Static Pattern Rules versus Implicit Rules

4.13 Double-Colon Rules

4.14 Generating Prerequisites Automatically

5 Writing Recipes in Rules

5.1 Recipe Syntax

5.1.1 Splitting Recipe Lines

5.1.2 Using Variables in Recipes

5.2 Recipe Echoing

5.3 Recipe Execution

5.3.1 Using One Shell

5.3.2 Choosing the Shell

5.4 Parallel Execution

5.4.1 Output During Parallel Execution

5.4.2 Input During Parallel Execution

5.5 Errors in Recipes

5.6 Interrupting or Killing make

5.7 Recursive Use of make

5.7.1 How the MAKE Variable Works

5.7.2 Communicating Variables to a Sub-make

5.7.3 Communicating Options to a Sub-make

5.7.4 The ‘--print-directory’ Option

5.8 Defining Canned Recipes

5.9 Using Empty Recipes

6 How to Use Variables

6.1 Basics of Variable References

6.2 The Two Flavors of Variables

6.3 Advanced Features for Reference to Variables

6.3.1 Substitution References

6.3.2 Computed Variable Names

6.4 How Variables Get Their Values

6.5 Setting Variables

6.6 Appending More Text to Variables

GNU make https://www.gnu.org/software/make/manual/ma...

3 of 322 06/08/18, 2:50 PM

6.7 The override Directive

6.8 Defining Multi-Line Variables

6.9 Undefining Variables

6.10 Variables from the Environment

6.11 Target-specific Variable Values

6.12 Pattern-specific Variable Values

6.13 Suppressing Inheritance

6.14 Other Special Variables

7 Conditional Parts of Makefiles

7.1 Example of a Conditional

7.2 Syntax of Conditionals

7.3 Conditionals that Test Flags

8 Functions for Transforming Text

8.1 Function Call Syntax

8.2 Functions for String Substitution and Analysis

8.3 Functions for File Names

8.4 Functions for Conditionals

8.5 The foreach Function

8.6 The file Function

8.7 The call Function

8.8 The value Function

8.9 The eval Function

8.10 The origin Function

8.11 The flavor Function

8.12 Functions That Control Make

8.13 The shell Function

8.14 The guile Function

9 How to Run make

9.1 Arguments to Specify the Makefile

9.2 Arguments to Specify the Goals

9.3 Instead of Executing Recipes

9.4 Avoiding Recompilation of Some Files

9.5 Overriding Variables

9.6 Testing the Compilation of a Program

9.7 Summary of Options

10 Using Implicit Rules

GNU make https://www.gnu.org/software/make/manual/ma...

4 of 322 06/08/18, 2:50 PM

10.1 Using Implicit Rules

10.2 Catalogue of Built-In Rules

10.3 Variables Used by Implicit Rules

10.4 Chains of Implicit Rules

10.5 Defining and Redefining Pattern Rules

10.5.1 Introduction to Pattern Rules

10.5.2 Pattern Rule Examples

10.5.3 Automatic Variables

10.5.4 How Patterns Match

10.5.5 Match-Anything Pattern Rules

10.5.6 Canceling Implicit Rules

10.6 Defining Last-Resort Default Rules

10.7 Old-Fashioned Suffix Rules

10.8 Implicit Rule Search Algorithm

11 Using make to Update Archive Files

11.1 Archive Members as Targets

11.2 Implicit Rule for Archive Member Targets

11.2.1 Updating Archive Symbol Directories

11.3 Dangers When Using Archives

11.4 Suffix Rules for Archive Files

12 Extending GNU make

12.1 GNU Guile Integration

12.1.1 Conversion of Guile Types

12.1.2 Interfaces from Guile to make

12.1.3 Example Using Guile in make

12.2 Loading Dynamic Objects

12.2.1 The load Directive

12.2.2 How Loaded Objects Are Remade

12.2.3 Loaded Object Interface

12.2.4 Example Loaded Object

13 Integrating GNU make

13.1 Sharing Job Slots with GNU make

13.1.1 POSIX Jobserver Interaction

13.1.2 Windows Jobserver Interaction

13.2 Synchronized Terminal Output

14 Features of GNU make

GNU make https://www.gnu.org/software/make/manual/ma...

5 of 322 06/08/18, 2:50 PM

15 Incompatibilities and Missing Features

16 Makefile Conventions

16.1 General Conventions for Makefiles

16.2 Utilities in Makefiles

16.3 Variables for Specifying Commands

16.4 DESTDIR: Support for Staged Installs

16.5 Variables for Installation Directories

16.6 Standard Targets for Users

16.7 Install Command Categories

Appendix A Quick Reference

Appendix B Errors Generated by Make

Appendix C Complex Makefile Example

C.1 GNU Free Documentation License

Index of Concepts

Index of Functions, Variables, & Directives

Next: Overview, Previous: (dir), Up: (dir) [Contents][Index]

GNU make

This file documents the GNU make utility, which determines
automatically which pieces of a large program need to be
recompiled, and issues the commands to recompile them.

This is Edition 0.74, last updated 21 May 2016, of The GNU Make
Manual, for GNU make version 4.2.

Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006,
2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Free
Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with the Front-
Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License.”

GNU make https://www.gnu.org/software/make/manual/ma...

6 of 322 06/08/18, 2:50 PM

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy
and modify this GNU manual. Buying copies from the FSF
supports it in developing GNU and promoting software freedom.”

• Overview: Overview of make.

• Introduction: An introduction to make.

• Makefiles: Makefiles tell make what to do.

• Rules:

Rules describe when a file must be
remade.

• Recipes: Recipes say how to remake a file.

• Using Variables:

You can use variables to avoid
repetition.

• Conditionals:

Use or ignore parts of the makefile
based on the values of variables.

• Functions:

Many powerful ways to manipulate
text.

• Invoking make:

How to invoke make on the command
line.

• Implicit Rules:

Use implicit rules to treat many files
alike, based on their file names.

• Archives:

How make can update library
archives.

• Extending make: Using extensions to make.

• Integrating make: Integrating make with other tools.

• Features:

Features GNU make has over other
makes.

• Missing:

What GNU make lacks from other
makes.

• Makefile
Conventions:

Conventions for writing makefiles
for GNU programs.

• Quick Reference:

A quick reference for experienced
users.

• Error Messages:

A list of common errors generated
by make.

• Complex Makefile:

A real example of a straightforward,
but nontrivial, makefile.

GNU make https://www.gnu.org/software/make/manual/ma...

7 of 322 06/08/18, 2:50 PM

• GNU Free
Documentation
License:

License for copying this manual.

• Concept Index: Index of Concepts.

• Name Index:

Index of Functions, Variables, &
Directives.

 — The Detailed Node Listing —

Overview of make

• Preparing: Preparing and running make.

• Reading: On reading this text.

• Bugs: Problems and bugs.

An Introduction to Makefiles

• Rule Introduction: What a rule looks like.

• Simple Makefile: A simple makefile.

• How Make Works: How make processes this makefile.

• Variables Simplify: Variables make makefiles simpler.

• make Deduces: Letting make deduce the recipes.

• Combine By
Prerequisite:

Another style of makefile.

• Cleanup: Rules for cleaning the directory.

Writing Makefiles

• Makefile Contents: What makefiles contain.

• Makefile Names: How to name your makefile.

• Include:

How one makefile can use another
makefile.

GNU make https://www.gnu.org/software/make/manual/ma...

8 of 322 06/08/18, 2:50 PM

• MAKEFILES
Variable:

The environment can specify extra
makefiles.

• Remaking Makefiles: How makefiles get remade.

• Overriding Makefiles:

How to override part of one
makefile with another makefile.

• Reading Makefiles: How makefiles are parsed.

• Secondary
Expansion:

How and when secondary expansion
is performed.

What Makefiles Contain

• Splitting Lines: Splitting long lines in makefiles

Writing Rules

• Rule Example: An example explained.

• Rule Syntax: General syntax explained.

• Prerequisite Types:

There are two types of
prerequisites.

• Wildcards:

Using wildcard characters such as
‘*’.

• Directory Search:

Searching other directories for
source files.

• Phony Targets:

Using a target that is not a real file’s
name.

• Force Targets:

You can use a target without a
recipe or prerequisites to mark
other targets as phony.

• Empty Targets:

When only the date matters and the
files are empty.

• Special Targets:

Targets with special built-in
meanings.

• Multiple Targets:

When to make use of several targets
in a rule.

• Multiple Rules:

How to use several rules with the
same target.

GNU make https://www.gnu.org/software/make/manual/ma...

9 of 322 06/08/18, 2:50 PM

• Static Pattern:

Static pattern rules apply to
multiple targets and can vary the
prerequisites according to the
target name.

• Double-Colon:

How to use a special kind of rule to
allow several independent rules for
one target.

• Automatic
Prerequisites:

How to automatically generate rules
giving prerequisites from source
files themselves.

Using Wildcard Characters in File Names

• Wildcard Examples: Several examples.

• Wildcard Pitfall: Problems to avoid.

• Wildcard Function:

How to cause wildcard expansion
where it does not normally take
place.

Searching Directories for Prerequisites

• General Search:

Specifying a search path that
applies to every prerequisite.

• Selective Search:

Specifying a search path for a
specified class of names.

• Search Algorithm:

When and how search paths are
applied.

• Recipes/Search:

How to write recipes that work
together with search paths.

• Implicit/Search:

How search paths affect implicit
rules.

• Libraries/Search: Directory search for link libraries.

Static Pattern Rules

• Static Usage: The syntax of static pattern rules.

GNU make https://www.gnu.org/software/make/manual/ma...

10 of 322 06/08/18, 2:50 PM

• Static versus
Implicit:

When are they better than implicit
rules?

Writing Recipes in Rules

• Recipe Syntax: Recipe syntax features and pitfalls.

• Echoing:

How to control when recipes are
echoed.

• Execution: How recipes are executed.

• Parallel:

How recipes can be executed in
parallel.

• Errors:

What happens after a recipe
execution error.

• Interrupts:

What happens when a recipe is
interrupted.

• Recursion: Invoking make from makefiles.

• Canned Recipes: Defining canned recipes.

• Empty Recipes: Defining useful, do-nothing recipes.

Recipe Syntax

• Splitting Recipe
Lines:

Breaking long recipe lines for
readability.

• Variables in Recipes: Using make variables in recipes.

Recipe Execution

• One Shell: One shell for all lines in a recipe.

• Choosing the Shell:

How make chooses the shell used to
run recipes.

Parallel Execution

GNU make https://www.gnu.org/software/make/manual/ma...

11 of 322 06/08/18, 2:50 PM

• Parallel Output:

Handling output during parallel
execution

• Parallel Input:

Handling input during parallel
execution

Recursive Use of make

• MAKE Variable: The special effects of using ‘$(MAKE)’.

• Variables/Recursion:

How to communicate variables to a
sub-make.

• Options/Recursion:

How to communicate options to a
sub-make.

• -w Option:

How the ‘-w’ or ‘--print-directory’
option helps debug use of recursive
make commands.

How to Use Variables

• Reference: How to use the value of a variable.

• Flavors: Variables come in two flavors.

• Advanced:

Advanced features for referencing a
variable.

• Values:

All the ways variables get their
values.

• Setting:

How to set a variable in the
makefile.

• Appending:

How to append more text to the old
value of a variable.

• Override Directive:

How to set a variable in the makefile
even if the user has set it with a
command argument.

• Multi-Line:

An alternate way to set a variable to
a multi-line string.

• Undefine Directive:

How to undefine a variable so that it
appears as if it was never set.

• Environment:

Variable values can come from the
environment.

GNU make https://www.gnu.org/software/make/manual/ma...

12 of 322 06/08/18, 2:50 PM

• Target-specific:

Variable values can be defined on a
per-target basis.

• Pattern-specific:

Target-specific variable values can
be applied to a group of targets that
match a pattern.

• Suppressing
Inheritance:

Suppress inheritance of variables.

• Special Variables:

Variables with special meaning or
behavior.

Advanced Features for Reference to Variables

• Substitution Refs:

Referencing a variable with
substitutions on the value.

• Computed Names:

Computing the name of the variable
to refer to.

Conditional Parts of Makefiles

• Conditional Example: Example of a conditional

• Conditional Syntax: The syntax of conditionals.

• Testing Flags: Conditionals that test flags.

Functions for Transforming Text

• Syntax of Functions: How to write a function call.

• Text Functions:

General-purpose text manipulation
functions.

• File Name Functions:

Functions for manipulating file
names.

• Conditional
Functions:

Functions that implement
conditions.

• Foreach Function:

Repeat some text with controlled
variation.

• File Function: Write text to a file.

GNU make https://www.gnu.org/software/make/manual/ma...

13 of 322 06/08/18, 2:50 PM

• Call Function: Expand a user-defined function.

• Value Function:

Return the un-expanded value of a
variable.

• Eval Function:

Evaluate the arguments as makefile
syntax.

• Origin Function: Find where a variable got its value.

• Flavor Function: Find out the flavor of a variable.

• Make Control
Functions:

Functions that control how make
runs.

• Shell Function:

Substitute the output of a shell
command.

• Guile Function:

Use GNU Guile embedded scripting
language.

How to Run make

• Makefile Arguments:

How to specify which makefile to
use.

• Goals:

How to use goal arguments to
specify which parts of the makefile
to use.

• Instead of Execution:

How to use mode flags to specify
what kind of thing to do with the
recipes in the makefile other than
simply execute them.

• Avoiding
Compilation:

How to avoid recompiling certain
files.

• Overriding:

How to override a variable to
specify an alternate compiler and
other things.

• Testing:

How to proceed past some errors, to
test compilation.

• Options Summary: Summary of Options

Using Implicit Rules

GNU make https://www.gnu.org/software/make/manual/ma...

14 of 322 06/08/18, 2:50 PM

• Using Implicit:

How to use an existing implicit rule
to get the recipes for updating a file.

• Catalogue of Rules: A list of built-in rules.

• Implicit Variables:

How to change what predefined
rules do.

• Chained Rules: How to use a chain of implicit rules.

• Pattern Rules: How to define new implicit rules.

• Last Resort:

How to define a recipe for rules
which cannot find any.

• Suffix Rules:

The old-fashioned style of implicit
rule.

• Implicit Rule Search:

The precise algorithm for applying
implicit rules.

Defining and Redefining Pattern Rules

• Pattern Intro: An introduction to pattern rules.

• Pattern Examples: Examples of pattern rules.

• Automatic Variables:

How to use automatic variables in
the recipe of implicit rules.

• Pattern Match: How patterns match.

• Match-Anything
Rules:

Precautions you should take prior to
defining rules that can match any
target file whatever.

• Canceling Rules:

How to override or cancel built-in
rules.

Using make to Update Archive Files

• Archive Members: Archive members as targets.

• Archive Update:

The implicit rule for archive
member targets.

• Archive Pitfalls:

Dangers to watch out for when
using archives.

• Archive Suffix Rules:

You can write a special kind of suffix
rule for updating archives.

GNU make https://www.gnu.org/software/make/manual/ma...

15 of 322 06/08/18, 2:50 PM

Implicit Rule for Archive Member Targets

• Archive Symbols:

How to update archive symbol
directories.

Extending GNU make

• Guile Integration:

Using Guile as an embedded
scripting language.

• Loading Objects:

Loading dynamic objects as
extensions.

GNU Guile Integration

• Guile Types:

Converting Guile types to make
strings.

• Guile Interface: Invoking make functions from Guile.

• Guile Example: Example using Guile in make.

Loading Dynamic Objects

• load Directive:

Loading dynamic objects as
extensions.

• Remaking Loaded
Objects:

How loaded objects get remade.

• Loaded Object API:

Programmatic interface for loaded
objects.

• Loaded Object
Example:

Example of a loaded object

Integrating GNU make

GNU make https://www.gnu.org/software/make/manual/ma...

16 of 322 06/08/18, 2:50 PM

• Job Slots: Share job slots with GNU make.

• Terminal Output: Control output to terminals.

Sharing Job Slots with GNU make

• POSIX Jobserver:

Using the jobserver on POSIX
systems.

• Windows Jobserver:

Using the jobserver on Windows
systems.

Next: Introduction, Previous: Top, Up: Top [Contents][Index]

1 Overview of make

The make utility automatically determines which pieces of a large
program need to be recompiled, and issues commands to
recompile them. This manual describes GNU make, which was
implemented by Richard Stallman and Roland McGrath.
Development since Version 3.76 has been handled by Paul D.
Smith.

GNU make conforms to section 6.2 of IEEE Standard 1003.2-1992
(POSIX.2).

Our examples show C programs, since they are most common, but
you can use make with any programming language whose compiler
can be run with a shell command. Indeed, make is not limited to
programs. You can use it to describe any task where some files
must be updated automatically from others whenever the others
change.

• Preparing: Preparing and running make.

• Reading: On reading this text.

• Bugs: Problems and bugs.

GNU make https://www.gnu.org/software/make/manual/ma...

17 of 322 06/08/18, 2:50 PM

Next: Reading, Previous: Overview, Up: Overview [Contents][

Index]

Preparing

Preparing and Running Make

To prepare to use make, you must write a file called the makefile that
describes the relationships among files in your program and
provides commands for updating each file. In a program, typically,
the executable file is updated from object files, which are in turn
made by compiling source files.

Once a suitable makefile exists, each time you change some source
files, this simple shell command:

make

suffices to perform all necessary recompilations. The make program
uses the makefile data base and the last-modification times of the
files to decide which of the files need to be updated. For each of
those files, it issues the recipes recorded in the data base.

You can provide command line arguments to make to control which
files should be recompiled, or how. See How to Run make.

Next: Bugs, Previous: Preparing, Up: Overview [Contents][Index]

1.1 How to Read This Manual

If you are new to make, or are looking for a general introduction,
read the first few sections of each chapter, skipping the later
sections. In each chapter, the first few sections contain
introductory or general information and the later sections contain
specialized or technical information. The exception is the second
chapter, An Introduction to Makefiles, all of which is introductory.

If you are familiar with other make programs, see Features of GNU
make, which lists the enhancements GNU make has, and
Incompatibilities and Missing Features, which explains the few
things GNU make lacks that others have.

For a quick summary, see Options Summary, Quick Reference, and

GNU make https://www.gnu.org/software/make/manual/ma...

18 of 322 06/08/18, 2:50 PM

Special Targets.

Previous: Reading, Up: Overview [Contents][Index]

1.2 Problems and Bugs

If you have problems with GNU make or think you’ve found a bug,
please report it to the developers; we cannot promise to do
anything but we might well want to fix it.

Before reporting a bug, make sure you’ve actually found a real
bug. Carefully reread the documentation and see if it really says
you can do what you’re trying to do. If it’s not clear whether you
should be able to do something or not, report that too; it’s a bug in
the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to
the smallest possible makefile that reproduces the problem. Then
send us the makefile and the exact results make gave you, including
any error or warning messages. Please don’t paraphrase these
messages: it’s best to cut and paste them into your report. When
generating this small makefile, be sure to not use any non-free or
unusual tools in your recipes: you can almost always emulate what
such a tool would do with simple shell commands. Finally, be sure
to explain what you expected to occur; this will help us decide
whether the problem was really in the documentation.

Once you have a precise problem you can report it in one of two
ways. Either send electronic mail to:

 bug-make@gnu.org

or use our Web-based project management tool, at:

 http://savannah.gnu.org/projects/make/

In addition to the information above, please be careful to include
the version number of make you are using. You can get this
information with the command ‘make --version’. Be sure also to
include the type of machine and operating system you are using.
One way to obtain this information is by looking at the final lines of
output from the command ‘make --help’.

GNU make https://www.gnu.org/software/make/manual/ma...

19 of 322 06/08/18, 2:50 PM

Next: Makefiles, Previous: Overview, Up: Top [Contents][Index]

2 An Introduction to Makefiles

You need a file called a makefile to tell make what to do. Most often,
the makefile tells make how to compile and link a program.

In this chapter, we will discuss a simple makefile that describes
how to compile and link a text editor which consists of eight C
source files and three header files. The makefile can also tell make
how to run miscellaneous commands when explicitly asked (for
example, to remove certain files as a clean-up operation). To see a
more complex example of a makefile, see Complex Makefile.

When make recompiles the editor, each changed C source file must
be recompiled. If a header file has changed, each C source file that
includes the header file must be recompiled to be safe. Each
compilation produces an object file corresponding to the source
file. Finally, if any source file has been recompiled, all the object
files, whether newly made or saved from previous compilations,
must be linked together to produce the new executable editor.

• Rule Introduction: What a rule looks like.

• Simple Makefile: A simple makefile.

• How Make Works: How make processes this makefile.

• Variables Simplify:

Variables make makefiles
simpler.

• make Deduces: Letting make deduce the recipes.

• Combine By
Prerequisite:

Another style of makefile.

• Cleanup: Rules for cleaning the directory.

Next: Simple Makefile, Previous: Introduction, Up: Introduction [

Contents][Index]

2.1 What a Rule Looks Like

A simple makefile consists of “rules” with the following shape:

target … : prerequisites …

GNU make https://www.gnu.org/software/make/manual/ma...

20 of 322 06/08/18, 2:50 PM

recipe
 …
 …

A target is usually the name of a file that is generated by a
program; examples of targets are executable or object files. A
target can also be the name of an action to carry out, such as ‘clean’
(see Phony Targets).

A prerequisite is a file that is used as input to create the target. A
target often depends on several files.

A recipe is an action that make carries out. A recipe may have more
than one command, either on the same line or each on its own line.
Please note: you need to put a tab character at the beginning of
every recipe line! This is an obscurity that catches the unwary. If
you prefer to prefix your recipes with a character other than tab,
you can set the .RECIPEPREFIX variable to an alternate character (see
Special Variables).

Usually a recipe is in a rule with prerequisites and serves to create
a target file if any of the prerequisites change. However, the rule
that specifies a recipe for the target need not have prerequisites.
For example, the rule containing the delete command associated
with the target ‘clean’ does not have prerequisites.

A rule, then, explains how and when to remake certain files which
are the targets of the particular rule. make carries out the recipe on
the prerequisites to create or update the target. A rule can also
explain how and when to carry out an action. See Writing Rules.

A makefile may contain other text besides rules, but a simple
makefile need only contain rules. Rules may look somewhat more
complicated than shown in this template, but all fit the pattern
more or less.

Next: How Make Works, Previous: Rule Introduction, Up:

Introduction [Contents][Index]

2.2 A Simple Makefile

Here is a straightforward makefile that describes the way an
executable file called edit depends on eight object files which, in
turn, depend on eight C source and three header files.

GNU make https://www.gnu.org/software/make/manual/ma...

21 of 322 06/08/18, 2:50 PM

In this example, all the C files include defs.h, but only those
defining editing commands include command.h, and only low level files
that change the editor buffer include buffer.h.

edit : main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o
 cc -o edit main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

main.o : main.c defs.h
 cc -c main.c
kbd.o : kbd.c defs.h command.h
 cc -c kbd.c
command.o : command.c defs.h command.h
 cc -c command.c
display.o : display.c defs.h buffer.h
 cc -c display.c
insert.o : insert.c defs.h buffer.h
 cc -c insert.c
search.o : search.c defs.h buffer.h
 cc -c search.c
files.o : files.c defs.h buffer.h command.h
 cc -c files.c
utils.o : utils.c defs.h
 cc -c utils.c
clean :
 rm edit main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

We split each long line into two lines using backslash/newline; this
is like using one long line, but is easier to read. See Splitting Long
Lines.

To use this makefile to create the executable file called edit, type:

make

To use this makefile to delete the executable file and all the object
files from the directory, type:

make clean

In the example makefile, the targets include the executable file
‘edit’, and the object files ‘main.o’ and ‘kbd.o’. The prerequisites are
files such as ‘main.c’ and ‘defs.h’. In fact, each ‘.o’ file is both a
target and a prerequisite. Recipes include ‘cc -c main.c’ and
‘cc -c kbd.c’.

When a target is a file, it needs to be recompiled or relinked if any

GNU make https://www.gnu.org/software/make/manual/ma...

22 of 322 06/08/18, 2:50 PM

of its prerequisites change. In addition, any prerequisites that are
themselves automatically generated should be updated first. In this
example, edit depends on each of the eight object files; the object
file main.o depends on the source file main.c and on the header file
defs.h.

A recipe may follow each line that contains a target and
prerequisites. These recipes say how to update the target file. A
tab character (or whatever character is specified by the
.RECIPEPREFIX variable; see Special Variables) must come at the
beginning of every line in the recipe to distinguish recipes from
other lines in the makefile. (Bear in mind that make does not know
anything about how the recipes work. It is up to you to supply
recipes that will update the target file properly. All make does is
execute the recipe you have specified when the target file needs to
be updated.)

The target ‘clean’ is not a file, but merely the name of an action.
Since you normally do not want to carry out the actions in this rule,
‘clean’ is not a prerequisite of any other rule. Consequently, make
never does anything with it unless you tell it specifically. Note that
this rule not only is not a prerequisite, it also does not have any
prerequisites, so the only purpose of the rule is to run the specified
recipe. Targets that do not refer to files but are just actions are
called phony targets. See Phony Targets, for information about this
kind of target. See Errors in Recipes, to see how to cause make to
ignore errors from rm or any other command.

Next: Variables Simplify, Previous: Simple Makefile, Up:

Introduction [Contents][Index]

2.3 How make Processes a Makefile

By default, make starts with the first target (not targets whose
names start with ‘.’). This is called the default goal. (Goals are the
targets that make strives ultimately to update. You can override this
behavior using the command line (see Arguments to Specify the
Goals) or with the .DEFAULT_GOAL special variable (see Other Special
Variables).

In the simple example of the previous section, the default goal is to
update the executable program edit; therefore, we put that rule
first.

GNU make https://www.gnu.org/software/make/manual/ma...

23 of 322 06/08/18, 2:50 PM

Thus, when you give the command:

make

make reads the makefile in the current directory and begins by
processing the first rule. In the example, this rule is for relinking
edit; but before make can fully process this rule, it must process the
rules for the files that edit depends on, which in this case are the
object files. Each of these files is processed according to its own
rule. These rules say to update each ‘.o’ file by compiling its source
file. The recompilation must be done if the source file, or any of the
header files named as prerequisites, is more recent than the object
file, or if the object file does not exist.

The other rules are processed because their targets appear as
prerequisites of the goal. If some other rule is not depended on by
the goal (or anything it depends on, etc.), that rule is not
processed, unless you tell make to do so (with a command such as
make clean).

Before recompiling an object file, make considers updating its
prerequisites, the source file and header files. This makefile does
not specify anything to be done for them—the ‘.c’ and ‘.h’ files are
not the targets of any rules—so make does nothing for these files.
But make would update automatically generated C programs, such
as those made by Bison or Yacc, by their own rules at this time.

After recompiling whichever object files need it, make decides
whether to relink edit. This must be done if the file edit does not
exist, or if any of the object files are newer than it. If an object file
was just recompiled, it is now newer than edit, so edit is relinked.

Thus, if we change the file insert.c and run make, make will compile
that file to update insert.o, and then link edit. If we change the file
command.h and run make, make will recompile the object files kbd.o,
command.o and files.o and then link the file edit.

Next: make Deduces, Previous: How Make Works, Up: Introduction

 [Contents][Index]

2.4 Variables Make Makefiles Simpler

In our example, we had to list all the object files twice in the rule

GNU make https://www.gnu.org/software/make/manual/ma...

24 of 322 06/08/18, 2:50 PM

for edit (repeated here):

edit : main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o
 cc -o edit main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

Such duplication is error-prone; if a new object file is added to the
system, we might add it to one list and forget the other. We can
eliminate the risk and simplify the makefile by using a variable.
Variables allow a text string to be defined once and substituted in
multiple places later (see How to Use Variables).

It is standard practice for every makefile to have a variable named
objects, OBJECTS, objs, OBJS, obj, or OBJ which is a list of all object file
names. We would define such a variable objects with a line like this
in the makefile:

objects = main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

Then, each place we want to put a list of the object file names, we
can substitute the variable’s value by writing ‘$(objects)’ (see How
to Use Variables).

Here is how the complete simple makefile looks when you use a
variable for the object files:

objects = main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

edit : $(objects)
 cc -o edit $(objects)
main.o : main.c defs.h
 cc -c main.c
kbd.o : kbd.c defs.h command.h
 cc -c kbd.c
command.o : command.c defs.h command.h
 cc -c command.c
display.o : display.c defs.h buffer.h
 cc -c display.c
insert.o : insert.c defs.h buffer.h
 cc -c insert.c
search.o : search.c defs.h buffer.h
 cc -c search.c
files.o : files.c defs.h buffer.h command.h
 cc -c files.c
utils.o : utils.c defs.h
 cc -c utils.c
clean :

GNU make https://www.gnu.org/software/make/manual/ma...

25 of 322 06/08/18, 2:50 PM

 rm edit $(objects)

Next: Combine By Prerequisite, Previous: Variables Simplify, Up:

Introduction [Contents][Index]

2.5 Letting make Deduce the Recipes

It is not necessary to spell out the recipes for compiling the
individual C source files, because make can figure them out: it has
an implicit rule for updating a ‘.o’ file from a correspondingly
named ‘.c’ file using a ‘cc -c’ command. For example, it will use the
recipe ‘cc -c main.c -o main.o’ to compile main.c into main.o. We can
therefore omit the recipes from the rules for the object files. See
Using Implicit Rules.

When a ‘.c’ file is used automatically in this way, it is also
automatically added to the list of prerequisites. We can therefore
omit the ‘.c’ files from the prerequisites, provided we omit the
recipe.

Here is the entire example, with both of these changes, and a
variable objects as suggested above:

objects = main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

edit : $(objects)
 cc -o edit $(objects)

main.o : defs.h
kbd.o : defs.h command.h
command.o : defs.h command.h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search.o : defs.h buffer.h
files.o : defs.h buffer.h command.h
utils.o : defs.h

.PHONY : clean
clean :
 rm edit $(objects)

This is how we would write the makefile in actual practice. (The
complications associated with ‘clean’ are described elsewhere. See
Phony Targets, and Errors in Recipes.)

Because implicit rules are so convenient, they are important. You

GNU make https://www.gnu.org/software/make/manual/ma...

26 of 322 06/08/18, 2:50 PM

will see them used frequently.

Next: Cleanup, Previous: make Deduces, Up: Introduction [

Contents][Index]

2.6 Another Style of Makefile

When the objects of a makefile are created only by implicit rules,
an alternative style of makefile is possible. In this style of makefile,
you group entries by their prerequisites instead of by their targets.
Here is what one looks like:

objects = main.o kbd.o command.o display.o \
 insert.o search.o files.o utils.o

edit : $(objects)
 cc -o edit $(objects)

$(objects) : defs.h
kbd.o command.o files.o : command.h
display.o insert.o search.o files.o : buffer.h

Here defs.h is given as a prerequisite of all the object files; command.h
and buffer.h are prerequisites of the specific object files listed for
them.

Whether this is better is a matter of taste: it is more compact, but
some people dislike it because they find it clearer to put all the
information about each target in one place.

Previous: Combine By Prerequisite, Up: Introduction [Contents][

Index]

2.7 Rules for Cleaning the Directory

Compiling a program is not the only thing you might want to write
rules for. Makefiles commonly tell how to do a few other things
besides compiling a program: for example, how to delete all the
object files and executables so that the directory is ‘clean’.

Here is how we could write a make rule for cleaning our example
editor:

GNU make https://www.gnu.org/software/make/manual/ma...

27 of 322 06/08/18, 2:50 PM

clean:
 rm edit $(objects)

In practice, we might want to write the rule in a somewhat more
complicated manner to handle unanticipated situations. We would
do this:

.PHONY : clean
clean :
 -rm edit $(objects)

This prevents make from getting confused by an actual file called
clean and causes it to continue in spite of errors from rm. (See Phony
Targets, and Errors in Recipes.)

A rule such as this should not be placed at the beginning of the
makefile, because we do not want it to run by default! Thus, in the
example makefile, we want the rule for edit, which recompiles the
editor, to remain the default goal.

Since clean is not a prerequisite of edit, this rule will not run at all if
we give the command ‘make’ with no arguments. In order to make
the rule run, we have to type ‘make clean’. See How to Run make.

Next: Rules, Previous: Introduction, Up: Top [Contents][Index]

3 Writing Makefiles

The information that tells make how to recompile a system comes
from reading a data base called the makefile.

• Makefile
Contents:

What makefiles contain.

• Makefile Names: How to name your makefile.

• Include:

How one makefile can use another
makefile.

• MAKEFILES
Variable:

The environment can specify extra
makefiles.

• Remaking
Makefiles:

How makefiles get remade.

GNU make https://www.gnu.org/software/make/manual/ma...

28 of 322 06/08/18, 2:50 PM

• Overriding
Makefiles:

How to override part of one makefile
with another makefile.

• Reading
Makefiles:

How makefiles are parsed.

• Secondary
Expansion:

How and when secondary expansion is
performed.

Next: Makefile Names, Previous: Makefiles, Up: Makefiles [

Contents][Index]

3.1 What Makefiles Contain

Makefiles contain five kinds of things: explicit rules, implicit rules,
variable definitions, directives, and comments. Rules, variables,
and directives are described at length in later chapters.

An explicit rule says when and how to remake one or more
files, called the rule’s targets. It lists the other files that the
targets depend on, called the prerequisites of the target, and
may also give a recipe to use to create or update the targets.
See Writing Rules.

An implicit rule says when and how to remake a class of files
based on their names. It describes how a target may depend
on a file with a name similar to the target and gives a recipe
to create or update such a target. See Using Implicit Rules.

A variable definition is a line that specifies a text string value
for a variable that can be substituted into the text later. The
simple makefile example shows a variable definition for
objects as a list of all object files (see Variables Make
Makefiles Simpler).

A directive is an instruction for make to do something special
while reading the makefile. These include:

Reading another makefile (see Including Other
Makefiles).

Deciding (based on the values of variables) whether to
use or ignore a part of the makefile (see Conditional
Parts of Makefiles).

Defining a variable from a verbatim string containing
multiple lines (see Defining Multi-Line Variables).

‘#’ in a line of a makefile starts a comment. It and the rest of

GNU make https://www.gnu.org/software/make/manual/ma...

29 of 322 06/08/18, 2:50 PM

the line are ignored, except that a trailing backslash not
escaped by another backslash will continue the comment
across multiple lines. A line containing just a comment (with
perhaps spaces before it) is effectively blank, and is ignored.
If you want a literal #, escape it with a backslash (e.g., \#).
Comments may appear on any line in the makefile, although
they are treated specially in certain situations.

You cannot use comments within variable references or
function calls: any instance of # will be treated literally
(rather than as the start of a comment) inside a variable
reference or function call.

Comments within a recipe are passed to the shell, just as
with any other recipe text. The shell decides how to interpret
it: whether or not this is a comment is up to the shell.

Within a define directive, comments are not ignored during
the definition of the variable, but rather kept intact in the
value of the variable. When the variable is expanded they will
either be treated as make comments or as recipe text,
depending on the context in which the variable is evaluated.

• Splitting Lines: Splitting long lines in makefiles

Previous: Makefile Contents, Up: Makefile Contents [Contents][

Index]

3.1.1 Splitting Long Lines

Makefiles use a “line-based” syntax in which the newline character
is special and marks the end of a statement. GNU make has no limit
on the length of a statement line, up to the amount of memory in
your computer.

However, it is difficult to read lines which are too long to display
without wrapping or scrolling. So, you can format your makefiles
for readability by adding newlines into the middle of a statement:
you do this by escaping the internal newlines with a backslash (\)
character. Where we need to make a distinction we will refer to
“physical lines” as a single line ending with a newline (regardless
of whether it is escaped) and a “logical line” being a complete
statement including all escaped newlines up to the first non-
escaped newline.

The way in which backslash/newline combinations are handled

GNU make https://www.gnu.org/software/make/manual/ma...

30 of 322 06/08/18, 2:50 PM

depends on whether the statement is a recipe line or a non-recipe
line. Handling of backslash/newline in a recipe line is discussed
later (see Splitting Recipe Lines).

Outside of recipe lines, backslash/newlines are converted into a
single space character. Once that is done, all whitespace around
the backslash/newline is condensed into a single space: this
includes all whitespace preceding the backslash, all whitespace at
the beginning of the line after the backslash/newline, and any
consecutive backslash/newline combinations.

If the .POSIX special target is defined then backslash/newline
handling is modified slightly to conform to POSIX.2: first,
whitespace preceding a backslash is not removed and second,
consecutive backslash/newlines are not condensed.

Next: Include, Previous: Makefile Contents, Up: Makefiles [

Contents][Index]

3.2 What Name to Give Your Makefile

By default, when make looks for the makefile, it tries the following
names, in order: GNUmakefile, makefile and Makefile.

Normally you should call your makefile either makefile or Makefile.
(We recommend Makefile because it appears prominently near the
beginning of a directory listing, right near other important files
such as README.) The first name checked, GNUmakefile, is not
recommended for most makefiles. You should use this name if you
have a makefile that is specific to GNU make, and will not be
understood by other versions of make. Other make programs look for
makefile and Makefile, but not GNUmakefile.

If make finds none of these names, it does not use any makefile.
Then you must specify a goal with a command argument, and make
will attempt to figure out how to remake it using only its built-in
implicit rules. See Using Implicit Rules.

If you want to use a nonstandard name for your makefile, you can
specify the makefile name with the ‘-f’ or ‘--file’ option. The
arguments ‘-f name’ or ‘--file=name’ tell make to read the file name as
the makefile. If you use more than one ‘-f’ or ‘--file’ option, you
can specify several makefiles. All the makefiles are effectively
concatenated in the order specified. The default makefile names

GNU make https://www.gnu.org/software/make/manual/ma...

31 of 322 06/08/18, 2:50 PM

GNUmakefile, makefile and Makefile are not checked automatically if you
specify ‘-f’ or ‘--file’.

Next: MAKEFILES Variable, Previous: Makefile Names, Up:

Makefiles [Contents][Index]

3.3 Including Other Makefiles

The include directive tells make to suspend reading the current
makefile and read one or more other makefiles before continuing.
The directive is a line in the makefile that looks like this:

include filenames…

filenames can contain shell file name patterns. If filenames is
empty, nothing is included and no error is printed.

Extra spaces are allowed and ignored at the beginning of the line,
but the first character must not be a tab (or the value of
.RECIPEPREFIX)—if the line begins with a tab, it will be considered a
recipe line. Whitespace is required between include and the file
names, and between file names; extra whitespace is ignored there
and at the end of the directive. A comment starting with ‘#’ is
allowed at the end of the line. If the file names contain any variable
or function references, they are expanded. See How to Use
Variables.

For example, if you have three .mk files, a.mk, b.mk, and c.mk, and
$(bar) expands to bish bash, then the following expression

include foo *.mk $(bar)

is equivalent to

include foo a.mk b.mk c.mk bish bash

When make processes an include directive, it suspends reading of the
containing makefile and reads from each listed file in turn. When
that is finished, make resumes reading the makefile in which the
directive appears.

One occasion for using include directives is when several programs,

GNU make https://www.gnu.org/software/make/manual/ma...

32 of 322 06/08/18, 2:50 PM

handled by individual makefiles in various directories, need to use
a common set of variable definitions (see Setting Variables) or
pattern rules (see Defining and Redefining Pattern Rules).

Another such occasion is when you want to generate prerequisites
from source files automatically; the prerequisites can be put in a
file that is included by the main makefile. This practice is generally
cleaner than that of somehow appending the prerequisites to the
end of the main makefile as has been traditionally done with other
versions of make. See Automatic Prerequisites.

If the specified name does not start with a slash, and the file is not
found in the current directory, several other directories are
searched. First, any directories you have specified with the ‘-I’ or
‘--include-dir’ option are searched (see Summary of Options). Then
the following directories (if they exist) are searched, in this order:
prefix/include (normally /usr/local/include 1) /usr/gnu/include, /usr/local
/include, /usr/include.

If an included makefile cannot be found in any of these directories,
a warning message is generated, but it is not an immediately fatal
error; processing of the makefile containing the include continues.
Once it has finished reading makefiles, make will try to remake any
that are out of date or don’t exist. See How Makefiles Are Remade.
Only after it has tried to find a way to remake a makefile and
failed, will make diagnose the missing makefile as a fatal error.

If you want make to simply ignore a makefile which does not exist or
cannot be remade, with no error message, use the -include directive
instead of include, like this:

-include filenames…

This acts like include in every way except that there is no error (not
even a warning) if any of the filenames (or any prerequisites of any
of the filenames) do not exist or cannot be remade.

For compatibility with some other make implementations, sinclude is
another name for -include.

Next: Remaking Makefiles, Previous: Include, Up: Makefiles [

Contents][Index]

GNU make https://www.gnu.org/software/make/manual/ma...

33 of 322 06/08/18, 2:50 PM

3.4 The Variable MAKEFILES

If the environment variable MAKEFILES is defined, make considers its
value as a list of names (separated by whitespace) of additional
makefiles to be read before the others. This works much like the
include directive: various directories are searched for those files
(see Including Other Makefiles). In addition, the default goal is
never taken from one of these makefiles (or any makefile included
by them) and it is not an error if the files listed in MAKEFILES are not
found.

The main use of MAKEFILES is in communication between recursive
invocations of make (see Recursive Use of make). It usually is not
desirable to set the environment variable before a top-level
invocation of make, because it is usually better not to mess with a
makefile from outside. However, if you are running make without a
specific makefile, a makefile in MAKEFILES can do useful things to help
the built-in implicit rules work better, such as defining search
paths (see Directory Search).

Some users are tempted to set MAKEFILES in the environment
automatically on login, and program makefiles to expect this to be
done. This is a very bad idea, because such makefiles will fail to
work if run by anyone else. It is much better to write explicit include
directives in the makefiles. See Including Other Makefiles.

Next: Overriding Makefiles, Previous: MAKEFILES Variable, Up:

Makefiles [Contents][Index]

3.5 How Makefiles Are Remade

Sometimes makefiles can be remade from other files, such as RCS
or SCCS files. If a makefile can be remade from other files, you
probably want make to get an up-to-date version of the makefile to
read in.

To this end, after reading in all makefiles, make will consider each as
a goal target and attempt to update it. If a makefile has a rule
which says how to update it (found either in that very makefile or
in another one) or if an implicit rule applies to it (see Using
Implicit Rules), it will be updated if necessary. After all makefiles
have been checked, if any have actually been changed, make starts
with a clean slate and reads all the makefiles over again. (It will
also attempt to update each of them over again, but normally this

GNU make https://www.gnu.org/software/make/manual/ma...

34 of 322 06/08/18, 2:50 PM

will not change them again, since they are already up to date.)

If you know that one or more of your makefiles cannot be remade
and you want to keep make from performing an implicit rule search
on them, perhaps for efficiency reasons, you can use any normal
method of preventing implicit rule look-up to do so. For example,
you can write an explicit rule with the makefile as the target, and
an empty recipe (see Using Empty Recipes).

If the makefiles specify a double-colon rule to remake a file with a
recipe but no prerequisites, that file will always be remade (see
Double-Colon). In the case of makefiles, a makefile that has a
double-colon rule with a recipe but no prerequisites will be remade
every time make is run, and then again after make starts over and
reads the makefiles in again. This would cause an infinite loop: make
would constantly remake the makefile, and never do anything else.
So, to avoid this, make will not attempt to remake makefiles which
are specified as targets of a double-colon rule with a recipe but no
prerequisites.

If you do not specify any makefiles to be read with ‘-f’ or ‘--file’
options, make will try the default makefile names; see What Name to
Give Your Makefile. Unlike makefiles explicitly requested with ‘-f’
or ‘--file’ options, make is not certain that these makefiles should
exist. However, if a default makefile does not exist but can be
created by running make rules, you probably want the rules to be
run so that the makefile can be used.

Therefore, if none of the default makefiles exists, make will try to
make each of them in the same order in which they are searched
for (see What Name to Give Your Makefile) until it succeeds in
making one, or it runs out of names to try. Note that it is not an
error if make cannot find or make any makefile; a makefile is not
always necessary.

When you use the ‘-t’ or ‘--touch’ option (see Instead of Executing
Recipes), you would not want to use an out-of-date makefile to
decide which targets to touch. So the ‘-t’ option has no effect on
updating makefiles; they are really updated even if ‘-t’ is specified.
Likewise, ‘-q’ (or ‘--question’) and ‘-n’ (or ‘--just-print’) do not
prevent updating of makefiles, because an out-of-date makefile
would result in the wrong output for other targets. Thus, ‘make -f
mfile -n foo’ will update mfile, read it in, and then print the recipe to
update foo and its prerequisites without running it. The recipe
printed for foo will be the one specified in the updated contents of

GNU make https://www.gnu.org/software/make/manual/ma...

35 of 322 06/08/18, 2:50 PM

mfile.

However, on occasion you might actually wish to prevent updating
of even the makefiles. You can do this by specifying the makefiles
as goals in the command line as well as specifying them as
makefiles. When the makefile name is specified explicitly as a goal,
the options ‘-t’ and so on do apply to them.

Thus, ‘make -f mfile -n mfile foo’ would read the makefile mfile, print
the recipe needed to update it without actually running it, and then
print the recipe needed to update foo without running that. The
recipe for foo will be the one specified by the existing contents of
mfile.

Next: Reading Makefiles, Previous: Remaking Makefiles, Up:

Makefiles [Contents][Index]

3.6 Overriding Part of Another Makefile

Sometimes it is useful to have a makefile that is mostly just like
another makefile. You can often use the ‘include’ directive to include
one in the other, and add more targets or variable definitions.
However, it is invalid for two makefiles to give different recipes for
the same target. But there is another way.

In the containing makefile (the one that wants to include the
other), you can use a match-anything pattern rule to say that to
remake any target that cannot be made from the information in the
containing makefile, make should look in another makefile. See
Pattern Rules, for more information on pattern rules.

For example, if you have a makefile called Makefile that says how to
make the target ‘foo’ (and other targets), you can write a makefile
called GNUmakefile that contains:

foo:
 frobnicate > foo

%: force
 @$(MAKE) -f Makefile $@
force: ;

If you say ‘make foo’, make will find GNUmakefile, read it, and see that to
make foo, it needs to run the recipe ‘frobnicate > foo’. If you say ‘make

GNU make https://www.gnu.org/software/make/manual/ma...

36 of 322 06/08/18, 2:50 PM

bar’, make will find no way to make bar in GNUmakefile, so it will use the
recipe from the pattern rule: ‘make -f Makefile bar’. If Makefile
provides a rule for updating bar, make will apply the rule. And
likewise for any other target that GNUmakefile does not say how to
make.

The way this works is that the pattern rule has a pattern of just ‘%’,
so it matches any target whatever. The rule specifies a prerequisite
force, to guarantee that the recipe will be run even if the target file
already exists. We give the force target an empty recipe to prevent
make from searching for an implicit rule to build it—otherwise it
would apply the same match-anything rule to force itself and create
a prerequisite loop!

Next: Secondary Expansion, Previous: Overriding Makefiles, Up:

Makefiles [Contents][Index]

3.7 How make Reads a Makefile

GNU make does its work in two distinct phases. During the first
phase it reads all the makefiles, included makefiles, etc. and
internalizes all the variables and their values, implicit and explicit
rules, and constructs a dependency graph of all the targets and
their prerequisites. During the second phase, make uses these
internal structures to determine what targets will need to be
rebuilt and to invoke the rules necessary to do so.

It’s important to understand this two-phase approach because it
has a direct impact on how variable and function expansion
happens; this is often a source of some confusion when writing
makefiles. Here we will present a summary of the phases in which
expansion happens for different constructs within the makefile. We
say that expansion is immediate if it happens during the first
phase: in this case make will expand any variables or functions in
that section of a construct as the makefile is parsed. We say that
expansion is deferred if expansion is not performed immediately.
Expansion of a deferred construct is not performed until either the
construct appears later in an immediate context, or until the
second phase.

You may not be familiar with some of these constructs yet. You can
reference this section as you become familiar with them, in later
chapters.

GNU make https://www.gnu.org/software/make/manual/ma...

37 of 322 06/08/18, 2:50 PM

Variable Assignment

Variable definitions are parsed as follows:

immediate = deferred
immediate ?= deferred
immediate := immediate
immediate ::= immediate
immediate += deferred or immediate
immediate != immediate

define immediate
deferred

endef

define immediate =
deferred

endef

define immediate ?=
deferred

endef

define immediate :=
immediate

endef

define immediate ::=
immediate

endef

define immediate +=
deferred or immediate

endef

define immediate !=
immediate

endef

For the append operator, ‘+=’, the right-hand side is considered
immediate if the variable was previously set as a simple variable
(‘:=’ or ‘::=’), and deferred otherwise.

For the shell assignment operator, ‘!=’, the right-hand side is
evaluated immediately and handed to the shell. The result is stored
in the variable named on the left, and that variable becomes a
simple variable (and will thus be re-evaluated on each reference).

Conditional Directives

Conditional directives are parsed immediately. This means, for
example, that automatic variables cannot be used in conditional
directives, as automatic variables are not set until the recipe for

GNU make https://www.gnu.org/software/make/manual/ma...

38 of 322 06/08/18, 2:50 PM

that rule is invoked. If you need to use automatic variables in a
conditional directive you must move the condition into the recipe
and use shell conditional syntax instead.

Rule Definition

A rule is always expanded the same way, regardless of the form:

immediate : immediate ; deferred
deferred

That is, the target and prerequisite sections are expanded
immediately, and the recipe used to construct the target is always
deferred. This general rule is true for explicit rules, pattern rules,
suffix rules, static pattern rules, and simple prerequisite
definitions.

Previous: Reading Makefiles, Up: Makefiles [Contents][Index]

3.8 Secondary Expansion

In the previous section we learned that GNU make works in two
distinct phases: a read-in phase and a target-update phase (see
How make Reads a Makefile). GNU make also has the ability to
enable a second expansion of the prerequisites (only) for some or
all targets defined in the makefile. In order for this second
expansion to occur, the special target .SECONDEXPANSION must be
defined before the first prerequisite list that makes use of this
feature.

If that special target is defined then in between the two phases
mentioned above, right at the end of the read-in phase, all the
prerequisites of the targets defined after the special target are
expanded a second time. In most circumstances this secondary
expansion will have no effect, since all variable and function
references will have been expanded during the initial parsing of
the makefiles. In order to take advantage of the secondary
expansion phase of the parser, then, it’s necessary to escape the
variable or function reference in the makefile. In this case the first
expansion merely un-escapes the reference but doesn’t expand it,
and expansion is left to the secondary expansion phase. For
example, consider this makefile:

.SECONDEXPANSION:

GNU make https://www.gnu.org/software/make/manual/ma...

39 of 322 06/08/18, 2:50 PM

ONEVAR = onefile
TWOVAR = twofile
myfile: $(ONEVAR) $$(TWOVAR)

After the first expansion phase the prerequisites list of the myfile
target will be onefile and $(TWOVAR); the first (unescaped) variable
reference to ONEVAR is expanded, while the second (escaped)
variable reference is simply unescaped, without being recognized
as a variable reference. Now during the secondary expansion the
first word is expanded again but since it contains no variable or
function references it remains the value onefile, while the second
word is now a normal reference to the variable TWOVAR, which is
expanded to the value twofile. The final result is that there are two
prerequisites, onefile and twofile.

Obviously, this is not a very interesting case since the same result
could more easily have been achieved simply by having both
variables appear, unescaped, in the prerequisites list. One
difference becomes apparent if the variables are reset; consider
this example:

.SECONDEXPANSION:
AVAR = top
onefile: $(AVAR)
twofile: $$(AVAR)
AVAR = bottom

Here the prerequisite of onefile will be expanded immediately, and
resolve to the value top, while the prerequisite of twofile will not be
full expanded until the secondary expansion and yield a value of
bottom.

This is marginally more exciting, but the true power of this feature
only becomes apparent when you discover that secondary
expansions always take place within the scope of the automatic
variables for that target. This means that you can use variables
such as $@, $*, etc. during the second expansion and they will have
their expected values, just as in the recipe. All you have to do is
defer the expansion by escaping the $. Also, secondary expansion
occurs for both explicit and implicit (pattern) rules. Knowing this,
the possible uses for this feature increase dramatically. For
example:

.SECONDEXPANSION:
main_OBJS := main.o try.o test.o
lib_OBJS := lib.o api.o

GNU make https://www.gnu.org/software/make/manual/ma...

40 of 322 06/08/18, 2:50 PM

main lib: $$($$@_OBJS)

Here, after the initial expansion the prerequisites of both the main
and lib targets will be $($@_OBJS). During the secondary expansion,
the $@ variable is set to the name of the target and so the expansion
for the main target will yield $(main_OBJS), or main.o try.o test.o, while
the secondary expansion for the lib target will yield $(lib_OBJS), or
lib.o api.o.

You can also mix in functions here, as long as they are properly
escaped:

main_SRCS := main.c try.c test.c
lib_SRCS := lib.c api.c

.SECONDEXPANSION:
main lib: $$(patsubst %.c,%.o,$$($$@_SRCS))

This version allows users to specify source files rather than object
files, but gives the same resulting prerequisites list as the previous
example.

Evaluation of automatic variables during the secondary expansion
phase, especially of the target name variable $$@, behaves similarly
to evaluation within recipes. However, there are some subtle
differences and “corner cases” which come into play for the
different types of rule definitions that make understands. The
subtleties of using the different automatic variables are described
below.

Secondary Expansion of Explicit Rules

During the secondary expansion of explicit rules, $$@ and $$%
evaluate, respectively, to the file name of the target and, when the
target is an archive member, the target member name. The $$<
variable evaluates to the first prerequisite in the first rule for this
target. $$^ and $$+ evaluate to the list of all prerequisites of rules
that have already appeared for the same target ($$+ with
repetitions and $$^ without). The following example will help
illustrate these behaviors:

.SECONDEXPANSION:

foo: foo.1 bar.1 $$< $$^ $$+ # line #1

foo: foo.2 bar.2 $$< $$^ $$+ # line #2

GNU make https://www.gnu.org/software/make/manual/ma...

41 of 322 06/08/18, 2:50 PM

foo: foo.3 bar.3 $$< $$^ $$+ # line #3

In the first prerequisite list, all three variables ($$<, $$^, and $$+)
expand to the empty string. In the second, they will have values
foo.1, foo.1 bar.1, and foo.1 bar.1 respectively. In the third they will
have values foo.1, foo.1 bar.1 foo.2 bar.2, and foo.1 bar.1 foo.2 bar.2
foo.1 foo.1 bar.1 foo.1 bar.1 respectively.

Rules undergo secondary expansion in makefile order, except that
the rule with the recipe is always evaluated last.

The variables $$? and $$* are not available and expand to the empty
string.

Secondary Expansion of Static Pattern Rules

Rules for secondary expansion of static pattern rules are identical
to those for explicit rules, above, with one exception: for static
pattern rules the $$* variable is set to the pattern stem. As with
explicit rules, $$? is not available and expands to the empty string.

Secondary Expansion of Implicit Rules

As make searches for an implicit rule, it substitutes the stem and
then performs secondary expansion for every rule with a matching
target pattern. The value of the automatic variables is derived in
the same fashion as for static pattern rules. As an example:

.SECONDEXPANSION:

foo: bar

foo foz: fo%: bo%

%oo: $$< $$^ $$+ $$*

When the implicit rule is tried for target foo, $$< expands to bar, $$^
expands to bar boo, $$+ also expands to bar boo, and $$* expands to f.

Note that the directory prefix (D), as described in Implicit Rule
Search Algorithm, is appended (after expansion) to all the patterns
in the prerequisites list. As an example:

.SECONDEXPANSION:

/tmp/foo.o:

GNU make https://www.gnu.org/software/make/manual/ma...

42 of 322 06/08/18, 2:50 PM

%.o: $$(addsuffix /%.c,foo bar) foo.h
 @echo $^

The prerequisite list printed, after the secondary expansion and
directory prefix reconstruction, will be /tmp/foo/foo.c /tmp/bar/foo.c
foo.h. If you are not interested in this reconstruction, you can use
$$* instead of % in the prerequisites list.

Next: Recipes, Previous: Makefiles, Up: Top [Contents][Index]

4 Writing Rules

A rule appears in the makefile and says when and how to remake
certain files, called the rule’s targets (most often only one per
rule). It lists the other files that are the prerequisites of the target,
and the recipe to use to create or update the target.

The order of rules is not significant, except for determining the
default goal: the target for make to consider, if you do not otherwise
specify one. The default goal is the target of the first rule in the
first makefile. If the first rule has multiple targets, only the first
target is taken as the default. There are two exceptions: a target
starting with a period is not a default unless it contains one or
more slashes, ‘/’, as well; and, a target that defines a pattern rule
has no effect on the default goal. (See Defining and Redefining
Pattern Rules.)

Therefore, we usually write the makefile so that the first rule is the
one for compiling the entire program or all the programs described
by the makefile (often with a target called ‘all’). See Arguments to
Specify the Goals.

• Rule Example: An example explained.

• Rule Syntax: General syntax explained.

• Prerequisite
Types:

There are two types of prerequisites.

• Wildcards: Using wildcard characters such as ‘*’.

• Directory
Search:

Searching other directories for source
files.

• Phony Targets:

Using a target that is not a real file’s
name.

GNU make https://www.gnu.org/software/make/manual/ma...

43 of 322 06/08/18, 2:50 PM

• Force Targets:

You can use a target without a recipe or
prerequisites to mark other targets as
phony.

• Empty Targets:

When only the date matters and the files
are empty.

• Special Targets: Targets with special built-in meanings.

• Multiple
Targets:

When to make use of several targets in a
rule.

• Multiple Rules:

How to use several rules with the same
target.

• Static Pattern:

Static pattern rules apply to multiple
targets and can vary the prerequisites
according to the target name.

• Double-Colon:

How to use a special kind of rule to allow
several independent rules for one target.

• Automatic
Prerequisites:

How to automatically generate rules
giving prerequisites from source files
themselves.

Next: Rule Syntax, Previous: Rules, Up: Rules [Contents][Index]

4.1 Rule Example

Here is an example of a rule:

foo.o : foo.c defs.h # module for twiddling the frobs
 cc -c -g foo.c

Its target is foo.o and its prerequisites are foo.c and defs.h. It has
one command in the recipe: ‘cc -c -g foo.c’. The recipe starts with a
tab to identify it as a recipe.

This rule says two things:

How to decide whether foo.o is out of date: it is out of date if
it does not exist, or if either foo.c or defs.h is more recent
than it.

How to update the file foo.o: by running cc as stated. The
recipe does not explicitly mention defs.h, but we presume
that foo.c includes it, and that that is why defs.h was added to

GNU make https://www.gnu.org/software/make/manual/ma...

44 of 322 06/08/18, 2:50 PM

the prerequisites.

Next: Prerequisite Types, Previous: Rule Example, Up: Rules [

Contents][Index]

4.2 Rule Syntax

In general, a rule looks like this:

targets : prerequisites
recipe

 …

or like this:

targets : prerequisites ; recipe
recipe

 …

The targets are file names, separated by spaces. Wildcard
characters may be used (see Using Wildcard Characters in File
Names) and a name of the form a(m) represents member m in
archive file a (see Archive Members as Targets). Usually there is
only one target per rule, but occasionally there is a reason to have
more (see Multiple Targets in a Rule).

The recipe lines start with a tab character (or the first character in
the value of the .RECIPEPREFIX variable; see Special Variables). The
first recipe line may appear on the line after the prerequisites, with
a tab character, or may appear on the same line, with a semicolon.
Either way, the effect is the same. There are other differences in
the syntax of recipes. See Writing Recipes in Rules.

Because dollar signs are used to start make variable references, if
you really want a dollar sign in a target or prerequisite you must
write two of them, ‘$$’ (see How to Use Variables). If you have
enabled secondary expansion (see Secondary Expansion) and you
want a literal dollar sign in the prerequisites list, you must actually
write four dollar signs (‘$$$$’).

You may split a long line by inserting a backslash followed by a
newline, but this is not required, as make places no limit on the
length of a line in a makefile.

GNU make https://www.gnu.org/software/make/manual/ma...

45 of 322 06/08/18, 2:50 PM

A rule tells make two things: when the targets are out of date, and
how to update them when necessary.

The criterion for being out of date is specified in terms of the
prerequisites, which consist of file names separated by spaces.
(Wildcards and archive members (see Archives) are allowed here
too.) A target is out of date if it does not exist or if it is older than
any of the prerequisites (by comparison of last-modification times).
The idea is that the contents of the target file are computed based
on information in the prerequisites, so if any of the prerequisites
changes, the contents of the existing target file are no longer
necessarily valid.

How to update is specified by a recipe. This is one or more lines to
be executed by the shell (normally ‘sh’), but with some extra
features (see Writing Recipes in Rules).

Next: Wildcards, Previous: Rule Syntax, Up: Rules [Contents][

Index]

4.3 Types of Prerequisites

There are actually two different types of prerequisites understood
by GNU make: normal prerequisites such as described in the
previous section, and order-only prerequisites. A normal
prerequisite makes two statements: first, it imposes an order in
which recipes will be invoked: the recipes for all prerequisites of a
target will be completed before the recipe for the target is run.
Second, it imposes a dependency relationship: if any prerequisite is
newer than the target, then the target is considered out-of-date
and must be rebuilt.

Normally, this is exactly what you want: if a target’s prerequisite is
updated, then the target should also be updated.

Occasionally, however, you have a situation where you want to
impose a specific ordering on the rules to be invoked without
forcing the target to be updated if one of those rules is executed.
In that case, you want to define order-only prerequisites. Order-
only prerequisites can be specified by placing a pipe symbol (|) in
the prerequisites list: any prerequisites to the left of the pipe
symbol are normal; any prerequisites to the right are order-only:

GNU make https://www.gnu.org/software/make/manual/ma...

46 of 322 06/08/18, 2:50 PM

targets : normal-prerequisites | order-only-prerequisites

The normal prerequisites section may of course be empty. Also, you
may still declare multiple lines of prerequisites for the same target:
they are appended appropriately (normal prerequisites are
appended to the list of normal prerequisites; order-only
prerequisites are appended to the list of order-only prerequisites).
Note that if you declare the same file to be both a normal and an
order-only prerequisite, the normal prerequisite takes precedence
(since they have a strict superset of the behavior of an order-only
prerequisite).

Consider an example where your targets are to be placed in a
separate directory, and that directory might not exist before make is
run. In this situation, you want the directory to be created before
any targets are placed into it but, because the timestamps on
directories change whenever a file is added, removed, or renamed,
we certainly don’t want to rebuild all the targets whenever the
directory’s timestamp changes. One way to manage this is with
order-only prerequisites: make the directory an order-only
prerequisite on all the targets:

OBJDIR := objdir
OBJS := $(addprefix $(OBJDIR)/,foo.o bar.o baz.o)

$(OBJDIR)/%.o : %.c
 $(COMPILE.c) $(OUTPUT_OPTION) $<

all: $(OBJS)

$(OBJS): | $(OBJDIR)

$(OBJDIR):
 mkdir $(OBJDIR)

Now the rule to create the objdir directory will be run, if needed,
before any ‘.o’ is built, but no ‘.o’ will be built because the objdir
directory timestamp changed.

Next: Directory Search, Previous: Prerequisite Types, Up: Rules [

Contents][Index]

4.4 Using Wildcard Characters in File Names

A single file name can specify many files using wildcard characters.

GNU make https://www.gnu.org/software/make/manual/ma...

47 of 322 06/08/18, 2:50 PM

The wildcard characters in make are ‘*’, ‘?’ and ‘[…]’, the same as in
the Bourne shell. For example, *.c specifies a list of all the files (in
the working directory) whose names end in ‘.c’.

The character ‘~’ at the beginning of a file name also has special
significance. If alone, or followed by a slash, it represents your
home directory. For example ~/bin expands to /home/you/bin. If the ‘~’
is followed by a word, the string represents the home directory of
the user named by that word. For example ~john/bin expands to
/home/john/bin. On systems which don’t have a home directory for
each user (such as MS-DOS or MS-Windows), this functionality can
be simulated by setting the environment variable HOME.

Wildcard expansion is performed by make automatically in targets
and in prerequisites. In recipes, the shell is responsible for
wildcard expansion. In other contexts, wildcard expansion happens
only if you request it explicitly with the wildcard function.

The special significance of a wildcard character can be turned off
by preceding it with a backslash. Thus, foo*bar would refer to a
specific file whose name consists of ‘foo’, an asterisk, and ‘bar’.

• Wildcard
Examples:

Several examples.

• Wildcard
Pitfall:

Problems to avoid.

• Wildcard
Function:

How to cause wildcard expansion where it
does not normally take place.

Next: Wildcard Pitfall, Previous: Wildcards, Up: Wildcards [

Contents][Index]

4.4.1 Wildcard Examples

Wildcards can be used in the recipe of a rule, where they are
expanded by the shell. For example, here is a rule to delete all the
object files:

clean:
 rm -f *.o

Wildcards are also useful in the prerequisites of a rule. With the

GNU make https://www.gnu.org/software/make/manual/ma...

48 of 322 06/08/18, 2:50 PM

following rule in the makefile, ‘make print’ will print all the ‘.c’ files
that have changed since the last time you printed them:

print: *.c
 lpr -p $?
 touch print

This rule uses print as an empty target file; see Empty Target Files
to Record Events. (The automatic variable ‘$?’ is used to print only
those files that have changed; see Automatic Variables.)

Wildcard expansion does not happen when you define a variable.
Thus, if you write this:

objects = *.o

then the value of the variable objects is the actual string ‘*.o’.
However, if you use the value of objects in a target or prerequisite,
wildcard expansion will take place there. If you use the value of
objects in a recipe, the shell may perform wildcard expansion when
the recipe runs. To set objects to the expansion, instead use:

objects := $(wildcard *.o)

See Wildcard Function.

Next: Wildcard Function, Previous: Wildcard Examples, Up:

Wildcards [Contents][Index]

4.4.2 Pitfalls of Using Wildcards

Now here is an example of a naive way of using wildcard
expansion, that does not do what you would intend. Suppose you
would like to say that the executable file foo is made from all the
object files in the directory, and you write this:

objects = *.o

foo : $(objects)
 cc -o foo $(CFLAGS) $(objects)

The value of objects is the actual string ‘*.o’. Wildcard expansion

GNU make https://www.gnu.org/software/make/manual/ma...

49 of 322 06/08/18, 2:50 PM

happens in the rule for foo, so that each existing ‘.o’ file becomes a
prerequisite of foo and will be recompiled if necessary.

But what if you delete all the ‘.o’ files? When a wildcard matches
no files, it is left as it is, so then foo will depend on the oddly-named
file *.o. Since no such file is likely to exist, make will give you an
error saying it cannot figure out how to make *.o. This is not what
you want!

Actually it is possible to obtain the desired result with wildcard
expansion, but you need more sophisticated techniques, including
the wildcard function and string substitution. See The Function
wildcard.

Microsoft operating systems (MS-DOS and MS-Windows) use
backslashes to separate directories in pathnames, like so:

 c:\foo\bar\baz.c

This is equivalent to the Unix-style c:/foo/bar/baz.c (the c: part is the
so-called drive letter). When make runs on these systems, it supports
backslashes as well as the Unix-style forward slashes in
pathnames. However, this support does not include the wildcard
expansion, where backslash is a quote character. Therefore, you
must use Unix-style slashes in these cases.

Previous: Wildcard Pitfall, Up: Wildcards [Contents][Index]

4.4.3 The Function wildcard

Wildcard expansion happens automatically in rules. But wildcard
expansion does not normally take place when a variable is set, or
inside the arguments of a function. If you want to do wildcard
expansion in such places, you need to use the wildcard function, like
this:

$(wildcard pattern…)

This string, used anywhere in a makefile, is replaced by a space-
separated list of names of existing files that match one of the given
file name patterns. If no existing file name matches a pattern, then
that pattern is omitted from the output of the wildcard function.
Note that this is different from how unmatched wildcards behave

GNU make https://www.gnu.org/software/make/manual/ma...

50 of 322 06/08/18, 2:50 PM

in rules, where they are used verbatim rather than ignored (see
Wildcard Pitfall).

One use of the wildcard function is to get a list of all the C source
files in a directory, like this:

$(wildcard *.c)

We can change the list of C source files into a list of object files by
replacing the ‘.c’ suffix with ‘.o’ in the result, like this:

$(patsubst %.c,%.o,$(wildcard *.c))

(Here we have used another function, patsubst. See Functions for
String Substitution and Analysis.)

Thus, a makefile to compile all C source files in the directory and
then link them together could be written as follows:

objects := $(patsubst %.c,%.o,$(wildcard *.c))

foo : $(objects)
 cc -o foo $(objects)

(This takes advantage of the implicit rule for compiling C
programs, so there is no need to write explicit rules for compiling
the files. See The Two Flavors of Variables, for an explanation of
‘:=’, which is a variant of ‘=’.)

Next: Phony Targets, Previous: Wildcards, Up: Rules [Contents][

Index]

4.5 Searching Directories for Prerequisites

For large systems, it is often desirable to put sources in a separate
directory from the binaries. The directory search features of make
facilitate this by searching several directories automatically to find
a prerequisite. When you redistribute the files among directories,
you do not need to change the individual rules, just the search
paths.

• General Search: Specifying a search path that applies to

GNU make https://www.gnu.org/software/make/manual/ma...

51 of 322 06/08/18, 2:50 PM

every prerequisite.

• Selective
Search:

Specifying a search path for a specified
class of names.

• Search
Algorithm:

When and how search paths are applied.

• Recipes/Search:

How to write recipes that work together
with search paths.

• Implicit/Search: How search paths affect implicit rules.

•
Libraries/Search:

Directory search for link libraries.

Next: Selective Search, Previous: Directory Search, Up:

Directory Search [Contents][Index]

4.5.1 VPATH: Search Path for All Prerequisites

The value of the make variable VPATH specifies a list of directories that
make should search. Most often, the directories are expected to
contain prerequisite files that are not in the current directory;
however, make uses VPATH as a search list for both prerequisites and
targets of rules.

Thus, if a file that is listed as a target or prerequisite does not exist
in the current directory, make searches the directories listed in VPATH
for a file with that name. If a file is found in one of them, that file
may become the prerequisite (see below). Rules may then specify
the names of files in the prerequisite list as if they all existed in the
current directory. See Writing Recipes with Directory Search.

In the VPATH variable, directory names are separated by colons or
blanks. The order in which directories are listed is the order
followed by make in its search. (On MS-DOS and MS-Windows, semi-
colons are used as separators of directory names in VPATH, since the
colon can be used in the pathname itself, after the drive letter.)

For example,

VPATH = src:../headers

specifies a path containing two directories, src and ../headers, which
make searches in that order.

GNU make https://www.gnu.org/software/make/manual/ma...

52 of 322 06/08/18, 2:50 PM

With this value of VPATH, the following rule,

foo.o : foo.c

is interpreted as if it were written like this:

foo.o : src/foo.c

assuming the file foo.c does not exist in the current directory but is
found in the directory src.

Next: Search Algorithm, Previous: General Search, Up:

Directory Search [Contents][Index]

4.5.2 The vpath Directive

Similar to the VPATH variable, but more selective, is the vpath
directive (note lower case), which allows you to specify a search
path for a particular class of file names: those that match a
particular pattern. Thus you can supply certain search directories
for one class of file names and other directories (or none) for other
file names.

There are three forms of the vpath directive:

vpath pattern directories

Specify the search path directories for file names that match
pattern.

The search path, directories, is a list of directories to be
searched, separated by colons (semi-colons on MS-DOS and
MS-Windows) or blanks, just like the search path used in the
VPATH variable.

vpath pattern

Clear out the search path associated with pattern.

vpath

Clear all search paths previously specified with vpath directives.

A vpath pattern is a string containing a ‘%’ character. The string
must match the file name of a prerequisite that is being searched
for, the ‘%’ character matching any sequence of zero or more

GNU make https://www.gnu.org/software/make/manual/ma...

53 of 322 06/08/18, 2:50 PM

characters (as in pattern rules; see Defining and Redefining
Pattern Rules). For example, %.h matches files that end in .h. (If
there is no ‘%’, the pattern must match the prerequisite exactly,
which is not useful very often.)

‘%’ characters in a vpath directive’s pattern can be quoted with
preceding backslashes (‘\’). Backslashes that would otherwise
quote ‘%’ characters can be quoted with more backslashes.
Backslashes that quote ‘%’ characters or other backslashes are
removed from the pattern before it is compared to file names.
Backslashes that are not in danger of quoting ‘%’ characters go
unmolested.

When a prerequisite fails to exist in the current directory, if the
pattern in a vpath directive matches the name of the prerequisite
file, then the directories in that directive are searched just like
(and before) the directories in the VPATH variable.

For example,

vpath %.h ../headers

tells make to look for any prerequisite whose name ends in .h in the
directory ../headers if the file is not found in the current directory.

If several vpath patterns match the prerequisite file’s name, then
make processes each matching vpath directive one by one, searching
all the directories mentioned in each directive. make handles
multiple vpath directives in the order in which they appear in the
makefile; multiple directives with the same pattern are
independent of each other.

Thus,

vpath %.c foo
vpath % blish
vpath %.c bar

will look for a file ending in ‘.c’ in foo, then blish, then bar, while

vpath %.c foo:bar
vpath % blish

will look for a file ending in ‘.c’ in foo, then bar, then blish.

GNU make https://www.gnu.org/software/make/manual/ma...

54 of 322 06/08/18, 2:50 PM

Next: Recipes/Search, Previous: Selective Search, Up:

Directory Search [Contents][Index]

4.5.3 How Directory Searches are Performed

When a prerequisite is found through directory search, regardless
of type (general or selective), the pathname located may not be the
one that make actually provides you in the prerequisite list.
Sometimes the path discovered through directory search is thrown
away.

The algorithm make uses to decide whether to keep or abandon a
path found via directory search is as follows:

If a target file does not exist at the path specified in the
makefile, directory search is performed.

1.

If the directory search is successful, that path is kept and
this file is tentatively stored as the target.

2.

All prerequisites of this target are examined using this same
method.

3.

After processing the prerequisites, the target may or may not
need to be rebuilt:

If the target does not need to be rebuilt, the path to the
file found during directory search is used for any
prerequisite lists which contain this target. In short, if
make doesn’t need to rebuild the target then you use the
path found via directory search.

1.

If the target does need to be rebuilt (is out-of-date), the
pathname found during directory search is thrown
away, and the target is rebuilt using the file name
specified in the makefile. In short, if make must rebuild,
then the target is rebuilt locally, not in the directory
found via directory search.

2.

4.

This algorithm may seem complex, but in practice it is quite often
exactly what you want.

Other versions of make use a simpler algorithm: if the file does not
exist, and it is found via directory search, then that pathname is
always used whether or not the target needs to be built. Thus, if

GNU make https://www.gnu.org/software/make/manual/ma...

55 of 322 06/08/18, 2:50 PM

the target is rebuilt it is created at the pathname discovered
during directory search.

If, in fact, this is the behavior you want for some or all of your
directories, you can use the GPATH variable to indicate this to make.

GPATH has the same syntax and format as VPATH (that is, a space- or
colon-delimited list of pathnames). If an out-of-date target is found
by directory search in a directory that also appears in GPATH, then
that pathname is not thrown away. The target is rebuilt using the
expanded path.

Next: Implicit/Search, Previous: Search Algorithm, Up:

Directory Search [Contents][Index]

4.5.4 Writing Recipes with Directory Search

When a prerequisite is found in another directory through
directory search, this cannot change the recipe of the rule; they
will execute as written. Therefore, you must write the recipe with
care so that it will look for the prerequisite in the directory where
make finds it.

This is done with the automatic variables such as ‘$^’ (see
Automatic Variables). For instance, the value of ‘$^’ is a list of all
the prerequisites of the rule, including the names of the directories
in which they were found, and the value of ‘$@’ is the target. Thus:

foo.o : foo.c
 cc -c $(CFLAGS) $^ -o $@

(The variable CFLAGS exists so you can specify flags for C compilation
by implicit rules; we use it here for consistency so it will affect all
C compilations uniformly; see Variables Used by Implicit Rules.)

Often the prerequisites include header files as well, which you do
not want to mention in the recipe. The automatic variable ‘$<’ is
just the first prerequisite:

VPATH = src:../headers
foo.o : foo.c defs.h hack.h
 cc -c $(CFLAGS) $< -o $@

GNU make https://www.gnu.org/software/make/manual/ma...

56 of 322 06/08/18, 2:50 PM

Next: Libraries/Search, Previous: Recipes/Search, Up:

Directory Search [Contents][Index]

4.5.5 Directory Search and Implicit Rules

The search through the directories specified in VPATH or with vpath
also happens during consideration of implicit rules (see Using
Implicit Rules).

For example, when a file foo.o has no explicit rule, make considers
implicit rules, such as the built-in rule to compile foo.c if that file
exists. If such a file is lacking in the current directory, the
appropriate directories are searched for it. If foo.c exists (or is
mentioned in the makefile) in any of the directories, the implicit
rule for C compilation is applied.

The recipes of implicit rules normally use automatic variables as a
matter of necessity; consequently they will use the file names
found by directory search with no extra effort.

Previous: Implicit/Search, Up: Directory Search [Contents][Index]

4.5.6 Directory Search for Link Libraries

Directory search applies in a special way to libraries used with the
linker. This special feature comes into play when you write a
prerequisite whose name is of the form ‘-lname’. (You can tell
something strange is going on here because the prerequisite is
normally the name of a file, and the file name of a library generally
looks like libname.a, not like ‘-lname’.)

When a prerequisite’s name has the form ‘-lname’, make handles it
specially by searching for the file libname.so, and, if it is not found,
for the file libname.a in the current directory, in directories specified
by matching vpath search paths and the VPATH search path, and then
in the directories /lib, /usr/lib, and prefix/lib (normally
/usr/local/lib, but MS-DOS/MS-Windows versions of make behave as
if prefix is defined to be the root of the DJGPP installation tree).

For example, if there is a /usr/lib/libcurses.a library on your system
(and no /usr/lib/libcurses.so file), then

foo : foo.c -lcurses

GNU make https://www.gnu.org/software/make/manual/ma...

57 of 322 06/08/18, 2:50 PM

 cc $^ -o $@

would cause the command ‘cc foo.c /usr/lib/libcurses.a -o foo’ to be
executed when foo is older than foo.c or than /usr/lib/libcurses.a.

Although the default set of files to be searched for is libname.so and
libname.a, this is customizable via the .LIBPATTERNS variable. Each
word in the value of this variable is a pattern string. When a
prerequisite like ‘-lname’ is seen, make will replace the percent in
each pattern in the list with name and perform the above directory
searches using each library file name.

The default value for .LIBPATTERNS is ‘lib%.so lib%.a’, which provides
the default behavior described above.

You can turn off link library expansion completely by setting this
variable to an empty value.

Next: Force Targets, Previous: Directory Search, Up: Rules [

Contents][Index]

4.6 Phony Targets

A phony target is one that is not really the name of a file; rather it
is just a name for a recipe to be executed when you make an
explicit request. There are two reasons to use a phony target: to
avoid a conflict with a file of the same name, and to improve
performance.

If you write a rule whose recipe will not create the target file, the
recipe will be executed every time the target comes up for
remaking. Here is an example:

clean:
 rm *.o temp

Because the rm command does not create a file named clean,
probably no such file will ever exist. Therefore, the rm command
will be executed every time you say ‘make clean’.

In this example, the clean target will not work properly if a file
named clean is ever created in this directory. Since it has no
prerequisites, clean would always be considered up to date and its

GNU make https://www.gnu.org/software/make/manual/ma...

58 of 322 06/08/18, 2:50 PM

recipe would not be executed. To avoid this problem you can
explicitly declare the target to be phony by making it a
prerequisite of the special target .PHONY (see Special Built-in Target
Names) as follows:

.PHONY: clean
clean:
 rm *.o temp

Once this is done, ‘make clean’ will run the recipe regardless of
whether there is a file named clean.

Phony targets are also useful in conjunction with recursive
invocations of make (see Recursive Use of make). In this situation the
makefile will often contain a variable which lists a number of sub-
directories to be built. A simplistic way to handle this is to define
one rule with a recipe that loops over the sub-directories, like this:

SUBDIRS = foo bar baz

subdirs:
 for dir in $(SUBDIRS); do \
 $(MAKE) -C $$dir; \
 done

There are problems with this method, however. First, any error
detected in a sub-make is ignored by this rule, so it will continue to
build the rest of the directories even when one fails. This can be
overcome by adding shell commands to note the error and exit, but
then it will do so even if make is invoked with the -k option, which is
unfortunate. Second, and perhaps more importantly, you cannot
take advantage of make’s ability to build targets in parallel (see
Parallel Execution), since there is only one rule.

By declaring the sub-directories as .PHONY targets (you must do this
as the sub-directory obviously always exists; otherwise it won’t be
built) you can remove these problems:

GNU make https://www.gnu.org/software/make/manual/ma...

59 of 322 06/08/18, 2:50 PM

SUBDIRS = foo bar baz

.PHONY: subdirs $(SUBDIRS)

subdirs: $(SUBDIRS)

$(SUBDIRS):
 $(MAKE) -C $@

foo: baz

Here we’ve also declared that the foo sub-directory cannot be built
until after the baz sub-directory is complete; this kind of
relationship declaration is particularly important when attempting
parallel builds.

The implicit rule search (see Implicit Rules) is skipped for .PHONY
targets. This is why declaring a target as .PHONY is good for
performance, even if you are not worried about the actual file
existing.

A phony target should not be a prerequisite of a real target file; if it
is, its recipe will be run every time make goes to update that file. As
long as a phony target is never a prerequisite of a real target, the
phony target recipe will be executed only when the phony target is
a specified goal (see Arguments to Specify the Goals).

Phony targets can have prerequisites. When one directory contains
multiple programs, it is most convenient to describe all of the
programs in one makefile ./Makefile. Since the target remade by
default will be the first one in the makefile, it is common to make
this a phony target named ‘all’ and give it, as prerequisites, all the
individual programs. For example:

all : prog1 prog2 prog3
.PHONY : all

prog1 : prog1.o utils.o
 cc -o prog1 prog1.o utils.o

prog2 : prog2.o
 cc -o prog2 prog2.o

prog3 : prog3.o sort.o utils.o
 cc -o prog3 prog3.o sort.o utils.o

Now you can say just ‘make’ to remake all three programs, or specify
as arguments the ones to remake (as in ‘make prog1 prog3’). Phoniness
is not inherited: the prerequisites of a phony target are not

GNU make https://www.gnu.org/software/make/manual/ma...

60 of 322 06/08/18, 2:50 PM

themselves phony, unless explicitly declared to be so.

When one phony target is a prerequisite of another, it serves as a
subroutine of the other. For example, here ‘make cleanall’ will delete
the object files, the difference files, and the file program:

.PHONY: cleanall cleanobj cleandiff

cleanall : cleanobj cleandiff
 rm program

cleanobj :
 rm *.o

cleandiff :
 rm *.diff

Next: Empty Targets, Previous: Phony Targets, Up: Rules [

Contents][Index]

4.7 Rules without Recipes or Prerequisites

If a rule has no prerequisites or recipe, and the target of the rule is
a nonexistent file, then make imagines this target to have been
updated whenever its rule is run. This implies that all targets
depending on this one will always have their recipe run.

An example will illustrate this:

clean: FORCE
 rm $(objects)
FORCE:

Here the target ‘FORCE’ satisfies the special conditions, so the target
clean that depends on it is forced to run its recipe. There is nothing
special about the name ‘FORCE’, but that is one name commonly used
this way.

As you can see, using ‘FORCE’ this way has the same results as using
‘.PHONY: clean’.

Using ‘.PHONY’ is more explicit and more efficient. However, other
versions of make do not support ‘.PHONY’; thus ‘FORCE’ appears in many
makefiles. See Phony Targets.

GNU make https://www.gnu.org/software/make/manual/ma...

61 of 322 06/08/18, 2:50 PM

Next: Special Targets, Previous: Force Targets, Up: Rules [

Contents][Index]

4.8 Empty Target Files to Record Events

The empty target is a variant of the phony target; it is used to hold
recipes for an action that you request explicitly from time to time.
Unlike a phony target, this target file can really exist; but the file’s
contents do not matter, and usually are empty.

The purpose of the empty target file is to record, with its last-
modification time, when the rule’s recipe was last executed. It does
so because one of the commands in the recipe is a touch command
to update the target file.

The empty target file should have some prerequisites (otherwise it
doesn’t make sense). When you ask to remake the empty target,
the recipe is executed if any prerequisite is more recent than the
target; in other words, if a prerequisite has changed since the last
time you remade the target. Here is an example:

print: foo.c bar.c
 lpr -p $?
 touch print

With this rule, ‘make print’ will execute the lpr command if either
source file has changed since the last ‘make print’. The automatic
variable ‘$?’ is used to print only those files that have changed (see
Automatic Variables).

Next: Multiple Targets, Previous: Empty Targets, Up: Rules [

Contents][Index]

4.9 Special Built-in Target Names

Certain names have special meanings if they appear as targets.

.PHONY

The prerequisites of the special target .PHONY are considered to
be phony targets. When it is time to consider such a target, make
will run its recipe unconditionally, regardless of whether a file
with that name exists or what its last-modification time is. See

GNU make https://www.gnu.org/software/make/manual/ma...

62 of 322 06/08/18, 2:50 PM

Phony Targets.

.SUFFIXES

The prerequisites of the special target .SUFFIXES are the list of
suffixes to be used in checking for suffix rules. See Old-
Fashioned Suffix Rules.

.DEFAULT

The recipe specified for .DEFAULT is used for any target for which
no rules are found (either explicit rules or implicit rules). See
Last Resort. If a .DEFAULT recipe is specified, every file
mentioned as a prerequisite, but not as a target in a rule, will
have that recipe executed on its behalf. See Implicit Rule
Search Algorithm.

.PRECIOUS

The targets which .PRECIOUS depends on are given the following
special treatment: if make is killed or interrupted during the
execution of their recipes, the target is not deleted. See
Interrupting or Killing make. Also, if the target is an
intermediate file, it will not be deleted after it is no longer
needed, as is normally done. See Chains of Implicit Rules. In
this latter respect it overlaps with the .SECONDARY special target.

You can also list the target pattern of an implicit rule (such as
‘%.o’) as a prerequisite file of the special target .PRECIOUS to
preserve intermediate files created by rules whose target
patterns match that file’s name.

.INTERMEDIATE

The targets which .INTERMEDIATE depends on are treated as
intermediate files. See Chains of Implicit Rules. .INTERMEDIATE
with no prerequisites has no effect.

.SECONDARY

The targets which .SECONDARY depends on are treated as
intermediate files, except that they are never automatically
deleted. See Chains of Implicit Rules.

.SECONDARY with no prerequisites causes all targets to be treated
as secondary (i.e., no target is removed because it is
considered intermediate).

.SECONDEXPANSION

If .SECONDEXPANSION is mentioned as a target anywhere in the

GNU make https://www.gnu.org/software/make/manual/ma...

63 of 322 06/08/18, 2:50 PM

makefile, then all prerequisite lists defined after it appears will
be expanded a second time after all makefiles have been read
in. See Secondary Expansion.

.DELETE_ON_ERROR

If .DELETE_ON_ERROR is mentioned as a target anywhere in the
makefile, then make will delete the target of a rule if it has
changed and its recipe exits with a nonzero exit status, just as
it does when it receives a signal. See Errors in Recipes.

.IGNORE

If you specify prerequisites for .IGNORE, then make will ignore
errors in execution of the recipe for those particular files. The
recipe for .IGNORE (if any) is ignored.

If mentioned as a target with no prerequisites, .IGNORE says to
ignore errors in execution of recipes for all files. This usage of
‘.IGNORE’ is supported only for historical compatibility. Since this
affects every recipe in the makefile, it is not very useful; we
recommend you use the more selective ways to ignore errors
in specific recipes. See Errors in Recipes.

.LOW_RESOLUTION_TIME

If you specify prerequisites for .LOW_RESOLUTION_TIME, make assumes
that these files are created by commands that generate low
resolution time stamps. The recipe for the .LOW_RESOLUTION_TIME
target are ignored.

The high resolution file time stamps of many modern file
systems lessen the chance of make incorrectly concluding that a
file is up to date. Unfortunately, some hosts do not provide a
way to set a high resolution file time stamp, so commands like
‘cp -p’ that explicitly set a file’s time stamp must discard its
sub-second part. If a file is created by such a command, you
should list it as a prerequisite of .LOW_RESOLUTION_TIME so that make
does not mistakenly conclude that the file is out of date. For
example:

.LOW_RESOLUTION_TIME: dst
dst: src
 cp -p src dst

Since ‘cp -p’ discards the sub-second part of src’s time stamp,
dst is typically slightly older than src even when it is up to date.
The .LOW_RESOLUTION_TIME line causes make to consider dst to be up

GNU make https://www.gnu.org/software/make/manual/ma...

64 of 322 06/08/18, 2:50 PM

to date if its time stamp is at the start of the same second that
src’s time stamp is in.

Due to a limitation of the archive format, archive member time
stamps are always low resolution. You need not list archive
members as prerequisites of .LOW_RESOLUTION_TIME, as make does
this automatically.

.SILENT

If you specify prerequisites for .SILENT, then make will not print
the recipe used to remake those particular files before
executing them. The recipe for .SILENT is ignored.

If mentioned as a target with no prerequisites, .SILENT says not
to print any recipes before executing them. This usage of
‘.SILENT’ is supported only for historical compatibility. We
recommend you use the more selective ways to silence specific
recipes. See Recipe Echoing. If you want to silence all recipes
for a particular run of make, use the ‘-s’ or ‘--silent’ option (see
Options Summary).

.EXPORT_ALL_VARIABLES

Simply by being mentioned as a target, this tells make to export
all variables to child processes by default. See Communicating
Variables to a Sub-make.

.NOTPARALLEL

If .NOTPARALLEL is mentioned as a target, then this invocation of
make will be run serially, even if the ‘-j’ option is given. Any
recursively invoked make command will still run recipes in
parallel (unless its makefile also contains this target). Any
prerequisites on this target are ignored.

.ONESHELL

If .ONESHELL is mentioned as a target, then when a target is built
all lines of the recipe will be given to a single invocation of the
shell rather than each line being invoked separately (see
Recipe Execution).

.POSIX

If .POSIX is mentioned as a target, then the makefile will be
parsed and run in POSIX-conforming mode. This does not mean
that only POSIX-conforming makefiles will be accepted: all
advanced GNU make features are still available. Rather, this
target causes make to behave as required by POSIX in those

GNU make https://www.gnu.org/software/make/manual/ma...

65 of 322 06/08/18, 2:50 PM

areas where make’s default behavior differs.

In particular, if this target is mentioned then recipes will be
invoked as if the shell had been passed the -e flag: the first
failing command in a recipe will cause the recipe to fail
immediately.

Any defined implicit rule suffix also counts as a special target if it
appears as a target, and so does the concatenation of two suffixes,
such as ‘.c.o’. These targets are suffix rules, an obsolete way of
defining implicit rules (but a way still widely used). In principle,
any target name could be special in this way if you break it in two
and add both pieces to the suffix list. In practice, suffixes normally
begin with ‘.’, so these special target names also begin with ‘.’.
See Old-Fashioned Suffix Rules.

Next: Multiple Rules, Previous: Special Targets, Up: Rules [

Contents][Index]

4.10 Multiple Targets in a Rule

A rule with multiple targets is equivalent to writing many rules,
each with one target, and all identical aside from that. The same
recipe applies to all the targets, but its effect may vary because
you can substitute the actual target name into the recipe using ‘$@’.
The rule contributes the same prerequisites to all the targets also.

This is useful in two cases.

You want just prerequisites, no recipe. For example:

kbd.o command.o files.o: command.h

gives an additional prerequisite to each of the three object
files mentioned.

Similar recipes work for all the targets. The recipes do not
need to be absolutely identical, since the automatic variable
‘$@’ can be used to substitute the particular target to be
remade into the commands (see Automatic Variables). For
example:

bigoutput littleoutput : text.g
 generate text.g -$(subst output,,$@) > $@

GNU make https://www.gnu.org/software/make/manual/ma...

66 of 322 06/08/18, 2:50 PM

is equivalent to

bigoutput : text.g
 generate text.g -big > bigoutput
littleoutput : text.g
 generate text.g -little > littleoutput

Here we assume the hypothetical program generate makes two
types of output, one if given ‘-big’ and one if given ‘-little’.
See Functions for String Substitution and Analysis, for an
explanation of the subst function.

Suppose you would like to vary the prerequisites according to the
target, much as the variable ‘$@’ allows you to vary the recipe. You
cannot do this with multiple targets in an ordinary rule, but you
can do it with a static pattern rule. See Static Pattern Rules.

Next: Static Pattern, Previous: Multiple Targets, Up: Rules [

Contents][Index]

4.11 Multiple Rules for One Target

One file can be the target of several rules. All the prerequisites
mentioned in all the rules are merged into one list of prerequisites
for the target. If the target is older than any prerequisite from any
rule, the recipe is executed.

There can only be one recipe to be executed for a file. If more than
one rule gives a recipe for the same file, make uses the last one
given and prints an error message. (As a special case, if the file’s
name begins with a dot, no error message is printed. This odd
behavior is only for compatibility with other implementations of
make… you should avoid using it). Occasionally it is useful to have
the same target invoke multiple recipes which are defined in
different parts of your makefile; you can use double-colon rules
(see Double-Colon) for this.

An extra rule with just prerequisites can be used to give a few
extra prerequisites to many files at once. For example, makefiles
often have a variable, such as objects, containing a list of all the
compiler output files in the system being made. An easy way to say
that all of them must be recompiled if config.h changes is to write
the following:

GNU make https://www.gnu.org/software/make/manual/ma...

67 of 322 06/08/18, 2:50 PM

objects = foo.o bar.o
foo.o : defs.h
bar.o : defs.h test.h
$(objects) : config.h

This could be inserted or taken out without changing the rules that
really specify how to make the object files, making it a convenient
form to use if you wish to add the additional prerequisite
intermittently.

Another wrinkle is that the additional prerequisites could be
specified with a variable that you set with a command line
argument to make (see Overriding Variables). For example,

extradeps=
$(objects) : $(extradeps)

means that the command ‘make extradeps=foo.h’ will consider foo.h as
a prerequisite of each object file, but plain ‘make’ will not.

If none of the explicit rules for a target has a recipe, then make
searches for an applicable implicit rule to find one see Using
Implicit Rules).

Next: Double-Colon, Previous: Multiple Rules, Up: Rules [

Contents][Index]

4.12 Static Pattern Rules

Static pattern rules are rules which specify multiple targets and
construct the prerequisite names for each target based on the
target name. They are more general than ordinary rules with
multiple targets because the targets do not have to have identical
prerequisites. Their prerequisites must be analogous, but not
necessarily identical.

• Static Usage: The syntax of static pattern rules.

• Static versus
Implicit:

When are they better than implicit
rules?

Next: Static versus Implicit, Previous: Static Pattern, Up:

GNU make https://www.gnu.org/software/make/manual/ma...

68 of 322 06/08/18, 2:50 PM

Static Pattern [Contents][Index]

4.12.1 Syntax of Static Pattern Rules

Here is the syntax of a static pattern rule:

targets …: target-pattern: prereq-patterns …
recipe

 …

The targets list specifies the targets that the rule applies to. The
targets can contain wildcard characters, just like the targets of
ordinary rules (see Using Wildcard Characters in File Names).

The target-pattern and prereq-patterns say how to compute the
prerequisites of each target. Each target is matched against the
target-pattern to extract a part of the target name, called the stem.
This stem is substituted into each of the prereq-patterns to make
the prerequisite names (one from each prereq-pattern).

Each pattern normally contains the character ‘%’ just once. When
the target-pattern matches a target, the ‘%’ can match any part of
the target name; this part is called the stem. The rest of the
pattern must match exactly. For example, the target foo.o matches
the pattern ‘%.o’, with ‘foo’ as the stem. The targets foo.c and foo.out
do not match that pattern.

The prerequisite names for each target are made by substituting
the stem for the ‘%’ in each prerequisite pattern. For example, if
one prerequisite pattern is %.c, then substitution of the stem ‘foo’
gives the prerequisite name foo.c. It is legitimate to write a
prerequisite pattern that does not contain ‘%’; then this
prerequisite is the same for all targets.

‘%’ characters in pattern rules can be quoted with preceding
backslashes (‘\’). Backslashes that would otherwise quote ‘%’
characters can be quoted with more backslashes. Backslashes that
quote ‘%’ characters or other backslashes are removed from the
pattern before it is compared to file names or has a stem
substituted into it. Backslashes that are not in danger of quoting ‘%’
characters go unmolested. For example, the pattern the\%weird
\\%pattern\\ has ‘the%weird\’ preceding the operative ‘%’ character,
and ‘pattern\\’ following it. The final two backslashes are left alone
because they cannot affect any ‘%’ character.

GNU make https://www.gnu.org/software/make/manual/ma...

69 of 322 06/08/18, 2:50 PM

Here is an example, which compiles each of foo.o and bar.o from the
corresponding .c file:

objects = foo.o bar.o

all: $(objects)

$(objects): %.o: %.c
 $(CC) -c $(CFLAGS) $< -o $@

Here ‘$<’ is the automatic variable that holds the name of the
prerequisite and ‘$@’ is the automatic variable that holds the name
of the target; see Automatic Variables.

Each target specified must match the target pattern; a warning is
issued for each target that does not. If you have a list of files, only
some of which will match the pattern, you can use the filter
function to remove non-matching file names (see Functions for
String Substitution and Analysis):

files = foo.elc bar.o lose.o

$(filter %.o,$(files)): %.o: %.c
 $(CC) -c $(CFLAGS) $< -o $@
$(filter %.elc,$(files)): %.elc: %.el
 emacs -f batch-byte-compile $<

In this example the result of ‘$(filter %.o,$(files))’ is bar.o lose.o,
and the first static pattern rule causes each of these object files to
be updated by compiling the corresponding C source file. The
result of ‘$(filter %.elc,$(files))’ is foo.elc, so that file is made from
foo.el.

Another example shows how to use $* in static pattern rules:

bigoutput littleoutput : %output : text.g
 generate text.g -$* > $@

When the generate command is run, $* will expand to the stem,
either ‘big’ or ‘little’.

Previous: Static Usage, Up: Static Pattern [Contents][Index]

4.12.2 Static Pattern Rules versus Implicit Rules

GNU make https://www.gnu.org/software/make/manual/ma...

70 of 322 06/08/18, 2:50 PM

A static pattern rule has much in common with an implicit rule
defined as a pattern rule (see Defining and Redefining Pattern
Rules). Both have a pattern for the target and patterns for
constructing the names of prerequisites. The difference is in how
make decides when the rule applies.

An implicit rule can apply to any target that matches its pattern,
but it does apply only when the target has no recipe otherwise
specified, and only when the prerequisites can be found. If more
than one implicit rule appears applicable, only one applies; the
choice depends on the order of rules.

By contrast, a static pattern rule applies to the precise list of
targets that you specify in the rule. It cannot apply to any other
target and it invariably does apply to each of the targets specified.
If two conflicting rules apply, and both have recipes, that’s an
error.

The static pattern rule can be better than an implicit rule for these
reasons:

You may wish to override the usual implicit rule for a few
files whose names cannot be categorized syntactically but
can be given in an explicit list.

If you cannot be sure of the precise contents of the
directories you are using, you may not be sure which other
irrelevant files might lead make to use the wrong implicit rule.
The choice might depend on the order in which the implicit
rule search is done. With static pattern rules, there is no
uncertainty: each rule applies to precisely the targets
specified.

Next: Automatic Prerequisites, Previous: Static Pattern, Up: Rules

[Contents][Index]

4.13 Double-Colon Rules

Double-colon rules are explicit rules written with ‘::’ instead of ‘:’
after the target names. They are handled differently from ordinary
rules when the same target appears in more than one rule. Pattern
rules with double-colons have an entirely different meaning (see
Match-Anything Rules).

When a target appears in multiple rules, all the rules must be the

GNU make https://www.gnu.org/software/make/manual/ma...

71 of 322 06/08/18, 2:50 PM

same type: all ordinary, or all double-colon. If they are double-
colon, each of them is independent of the others. Each double-
colon rule’s recipe is executed if the target is older than any
prerequisites of that rule. If there are no prerequisites for that
rule, its recipe is always executed (even if the target already
exists). This can result in executing none, any, or all of the double-
colon rules.

Double-colon rules with the same target are in fact completely
separate from one another. Each double-colon rule is processed
individually, just as rules with different targets are processed.

The double-colon rules for a target are executed in the order they
appear in the makefile. However, the cases where double-colon
rules really make sense are those where the order of executing the
recipes would not matter.

Double-colon rules are somewhat obscure and not often very
useful; they provide a mechanism for cases in which the method
used to update a target differs depending on which prerequisite
files caused the update, and such cases are rare.

Each double-colon rule should specify a recipe; if it does not, an
implicit rule will be used if one applies. See Using Implicit Rules.

Previous: Double-Colon, Up: Rules [Contents][Index]

4.14 Generating Prerequisites Automatically

In the makefile for a program, many of the rules you need to write
often say only that some object file depends on some header file.
For example, if main.c uses defs.h via an #include, you would write:

main.o: defs.h

You need this rule so that make knows that it must remake main.o
whenever defs.h changes. You can see that for a large program you
would have to write dozens of such rules in your makefile. And, you
must always be very careful to update the makefile every time you
add or remove an #include.

To avoid this hassle, most modern C compilers can write these
rules for you, by looking at the #include lines in the source files.
Usually this is done with the ‘-M’ option to the compiler. For

GNU make https://www.gnu.org/software/make/manual/ma...

72 of 322 06/08/18, 2:50 PM

example, the command:

cc -M main.c

generates the output:

main.o : main.c defs.h

Thus you no longer have to write all those rules yourself. The
compiler will do it for you.

Note that such a rule constitutes mentioning main.o in a makefile, so
it can never be considered an intermediate file by implicit rule
search. This means that make won’t ever remove the file after using
it; see Chains of Implicit Rules.

With old make programs, it was traditional practice to use this
compiler feature to generate prerequisites on demand with a
command like ‘make depend’. That command would create a file depend
containing all the automatically-generated prerequisites; then the
makefile could use include to read them in (see Include).

In GNU make, the feature of remaking makefiles makes this practice
obsolete—you need never tell make explicitly to regenerate the
prerequisites, because it always regenerates any makefile that is
out of date. See Remaking Makefiles.

The practice we recommend for automatic prerequisite generation
is to have one makefile corresponding to each source file. For each
source file name.c there is a makefile name.d which lists what files the
object file name.o depends on. That way only the source files that
have changed need to be rescanned to produce the new
prerequisites.

Here is the pattern rule to generate a file of prerequisites (i.e., a
makefile) called name.d from a C source file called name.c:

%.d: %.c
 @set -e; rm -f $@; \
 $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \
 sed 's,\($*\)\.o[:]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
 rm -f $@.$$$$

See Pattern Rules, for information on defining pattern rules. The
‘-e’ flag to the shell causes it to exit immediately if the $(CC)
command (or any other command) fails (exits with a nonzero
status).

GNU make https://www.gnu.org/software/make/manual/ma...

73 of 322 06/08/18, 2:50 PM

With the GNU C compiler, you may wish to use the ‘-MM’ flag instead
of ‘-M’. This omits prerequisites on system header files. See Options
Controlling the Preprocessor in Using GNU CC, for details.

The purpose of the sed command is to translate (for example):

main.o : main.c defs.h

into:

main.o main.d : main.c defs.h

This makes each ‘.d’ file depend on all the source and header files
that the corresponding ‘.o’ file depends on. make then knows it must
regenerate the prerequisites whenever any of the source or header
files changes.

Once you’ve defined the rule to remake the ‘.d’ files, you then use
the include directive to read them all in. See Include. For example:

sources = foo.c bar.c

include $(sources:.c=.d)

(This example uses a substitution variable reference to translate
the list of source files ‘foo.c bar.c’ into a list of prerequisite
makefiles, ‘foo.d bar.d’. See Substitution Refs, for full information
on substitution references.) Since the ‘.d’ files are makefiles like
any others, make will remake them as necessary with no further
work from you. See Remaking Makefiles.

Note that the ‘.d’ files contain target definitions; you should be
sure to place the include directive after the first, default goal in
your makefiles or run the risk of having a random object file
become the default goal. See How Make Works.

Next: Using Variables, Previous: Rules, Up: Top [Contents][Index]

5 Writing Recipes in Rules

The recipe of a rule consists of one or more shell command lines to
be executed, one at a time, in the order they appear. Typically, the

GNU make https://www.gnu.org/software/make/manual/ma...

74 of 322 06/08/18, 2:50 PM

result of executing these commands is that the target of the rule is
brought up to date.

Users use many different shell programs, but recipes in makefiles
are always interpreted by /bin/sh unless the makefile specifies
otherwise. See Recipe Execution.

• Recipe Syntax: Recipe syntax features and pitfalls.

• Echoing: How to control when recipes are echoed.

• Execution: How recipes are executed.

• Parallel: How recipes can be executed in parallel.

• Errors:

What happens after a recipe execution
error.

• Interrupts:

What happens when a recipe is
interrupted.

• Recursion: Invoking make from makefiles.

• Canned
Recipes:

Defining canned recipes.

• Empty Recipes: Defining useful, do-nothing recipes.

Next: Echoing, Previous: Recipes, Up: Recipes [Contents][Index]

5.1 Recipe Syntax

Makefiles have the unusual property that there are really two
distinct syntaxes in one file. Most of the makefile uses make syntax
(see Writing Makefiles). However, recipes are meant to be
interpreted by the shell and so they are written using shell syntax.
The make program does not try to understand shell syntax: it
performs only a very few specific translations on the content of the
recipe before handing it to the shell.

Each line in the recipe must start with a tab (or the first character
in the value of the .RECIPEPREFIX variable; see Special Variables),
except that the first recipe line may be attached to the target-and-
prerequisites line with a semicolon in between. Any line in the
makefile that begins with a tab and appears in a “rule context”
(that is, after a rule has been started until another rule or variable
definition) will be considered part of a recipe for that rule. Blank
lines and lines of just comments may appear among the recipe
lines; they are ignored.

GNU make https://www.gnu.org/software/make/manual/ma...

75 of 322 06/08/18, 2:50 PM

Some consequences of these rules include:

A blank line that begins with a tab is not blank: it’s an empty
recipe (see Empty Recipes).

A comment in a recipe is not a make comment; it will be
passed to the shell as-is. Whether the shell treats it as a
comment or not depends on your shell.

A variable definition in a “rule context” which is indented by
a tab as the first character on the line, will be considered
part of a recipe, not a make variable definition, and passed to
the shell.

A conditional expression (ifdef, ifeq, etc. see Syntax of
Conditionals) in a “rule context” which is indented by a tab
as the first character on the line, will be considered part of a
recipe and be passed to the shell.

• Splitting Recipe
Lines:

Breaking long recipe lines for
readability.

• Variables in Recipes: Using make variables in recipes.

Next: Variables in Recipes, Previous: Recipe Syntax, Up:

Recipe Syntax [Contents][Index]

5.1.1 Splitting Recipe Lines

One of the few ways in which make does interpret recipes is
checking for a backslash just before the newline. As in normal
makefile syntax, a single logical recipe line can be split into
multiple physical lines in the makefile by placing a backslash
before each newline. A sequence of lines like this is considered a
single recipe line, and one instance of the shell will be invoked to
run it.

However, in contrast to how they are treated in other places in a
makefile (see Splitting Long Lines), backslash/newline pairs are
not removed from the recipe. Both the backslash and the newline
characters are preserved and passed to the shell. How the
backslash/newline is interpreted depends on your shell. If the first
character of the next line after the backslash/newline is the recipe
prefix character (a tab by default; see Special Variables), then that
character (and only that character) is removed. Whitespace is
never added to the recipe.

GNU make https://www.gnu.org/software/make/manual/ma...

76 of 322 06/08/18, 2:50 PM

For example, the recipe for the all target in this makefile:

all :
 @echo no\
space
 @echo no\
 space
 @echo one \
 space
 @echo one\
 space

consists of four separate shell commands where the output is:

nospace
nospace
one space
one space

As a more complex example, this makefile:

all : ; @echo 'hello \
 world' ; echo "hello \
 world"

will invoke one shell with a command of:

echo 'hello \
world' ; echo "hello \
 world"

which, according to shell quoting rules, will yield the following
output:

hello \
world
hello world

Notice how the backslash/newline pair was removed inside the
string quoted with double quotes ("…"), but not from the string
quoted with single quotes ('…'). This is the way the default shell
(/bin/sh) handles backslash/newline pairs. If you specify a different
shell in your makefiles it may treat them differently.

Sometimes you want to split a long line inside of single quotes, but
you don’t want the backslash/newline to appear in the quoted
content. This is often the case when passing scripts to languages

GNU make https://www.gnu.org/software/make/manual/ma...

77 of 322 06/08/18, 2:50 PM

such as Perl, where extraneous backslashes inside the script can
change its meaning or even be a syntax error. One simple way of
handling this is to place the quoted string, or even the entire
command, into a make variable then use the variable in the recipe.
In this situation the newline quoting rules for makefiles will be
used, and the backslash/newline will be removed. If we rewrite our
example above using this method:

HELLO = 'hello \
world'

all : ; @echo $(HELLO)

we will get output like this:

hello world

If you like, you can also use target-specific variables (see Target-
specific Variable Values) to obtain a tighter correspondence
between the variable and the recipe that uses it.

Previous: Splitting Recipe Lines, Up: Recipe Syntax [Contents][

Index]

5.1.2 Using Variables in Recipes

The other way in which make processes recipes is by expanding any
variable references in them (see Basics of Variable References).
This occurs after make has finished reading all the makefiles and
the target is determined to be out of date; so, the recipes for
targets which are not rebuilt are never expanded.

Variable and function references in recipes have identical syntax
and semantics to references elsewhere in the makefile. They also
have the same quoting rules: if you want a dollar sign to appear in
your recipe, you must double it (‘$$’). For shells like the default
shell, that use dollar signs to introduce variables, it’s important to
keep clear in your mind whether the variable you want to
reference is a make variable (use a single dollar sign) or a shell
variable (use two dollar signs). For example:

LIST = one two three
all:

GNU make https://www.gnu.org/software/make/manual/ma...

78 of 322 06/08/18, 2:50 PM

 for i in $(LIST); do \
 echo $$i; \
 done

results in the following command being passed to the shell:

for i in one two three; do \
 echo $i; \
done

which generates the expected result:

one
two
three

Next: Execution, Previous: Recipe Syntax, Up: Recipes [Contents

][Index]

5.2 Recipe Echoing

Normally make prints each line of the recipe before it is executed.
We call this echoing because it gives the appearance that you are
typing the lines yourself.

When a line starts with ‘@’, the echoing of that line is suppressed.
The ‘@’ is discarded before the line is passed to the shell. Typically
you would use this for a command whose only effect is to print
something, such as an echo command to indicate progress through
the makefile:

@echo About to make distribution files

When make is given the flag ‘-n’ or ‘--just-print’ it only echoes most
recipes, without executing them. See Summary of Options. In this
case even the recipe lines starting with ‘@’ are printed. This flag is
useful for finding out which recipes make thinks are necessary
without actually doing them.

The ‘-s’ or ‘--silent’ flag to make prevents all echoing, as if all recipes
started with ‘@’. A rule in the makefile for the special target .SILENT
without prerequisites has the same effect (see Special Built-in

GNU make https://www.gnu.org/software/make/manual/ma...

79 of 322 06/08/18, 2:50 PM

Target Names). .SILENT is essentially obsolete since ‘@’ is more
flexible.

Next: Parallel, Previous: Echoing, Up: Recipes [Contents][Index]

5.3 Recipe Execution

When it is time to execute recipes to update a target, they are
executed by invoking a new sub-shell for each line of the recipe,
unless the .ONESHELL special target is in effect (see Using One Shell)
(In practice, make may take shortcuts that do not affect the results.)

Please note: this implies that setting shell variables and invoking
shell commands such as cd that set a context local to each process
will not affect the following lines in the recipe.2 If you want to use
cd to affect the next statement, put both statements in a single
recipe line. Then make will invoke one shell to run the entire line,
and the shell will execute the statements in sequence. For
example:

foo : bar/lose
 cd $(@D) && gobble $(@F) > ../$@

Here we use the shell AND operator (&&) so that if the cd command
fails, the script will fail without trying to invoke the gobble
command in the wrong directory, which could cause problems (in
this case it would certainly cause ../foo to be truncated, at least).

• One Shell: One shell for all lines in a recipe.

• Choosing the
Shell:

How make chooses the shell used to run
recipes.

Next: Choosing the Shell, Previous: Execution, Up: Execution [

Contents][Index]

5.3.1 Using One Shell

Sometimes you would prefer that all the lines in the recipe be
passed to a single invocation of the shell. There are generally two
situations where this is useful: first, it can improve performance in
makefiles where recipes consist of many command lines, by

GNU make https://www.gnu.org/software/make/manual/ma...

80 of 322 06/08/18, 2:50 PM

avoiding extra processes. Second, you might want newlines to be
included in your recipe command (for example perhaps you are
using a very different interpreter as your SHELL). If the .ONESHELL
special target appears anywhere in the makefile then all recipe
lines for each target will be provided to a single invocation of the
shell. Newlines between recipe lines will be preserved. For
example:

.ONESHELL:
foo : bar/lose
 cd $(@D)
 gobble $(@F) > ../$@

would now work as expected even though the commands are on
different recipe lines.

If .ONESHELL is provided, then only the first line of the recipe will be
checked for the special prefix characters (‘@’, ‘-’, and ‘+’).
Subsequent lines will include the special characters in the recipe
line when the SHELL is invoked. If you want your recipe to start with
one of these special characters you’ll need to arrange for them to
not be the first characters on the first line, perhaps by adding a
comment or similar. For example, this would be a syntax error in
Perl because the first ‘@’ is removed by make:

.ONESHELL:
SHELL = /usr/bin/perl
.SHELLFLAGS = -e
show :
 @f = qw(a b c);
 print "@f\n";

However, either of these alternatives would work properly:

.ONESHELL:
SHELL = /usr/bin/perl
.SHELLFLAGS = -e
show :
 # Make sure "@" is not the first character on the first line
 @f = qw(a b c);
 print "@f\n";

or

.ONESHELL:
SHELL = /usr/bin/perl
.SHELLFLAGS = -e

GNU make https://www.gnu.org/software/make/manual/ma...

81 of 322 06/08/18, 2:50 PM

show :
 my @f = qw(a b c);
 print "@f\n";

As a special feature, if SHELL is determined to be a POSIX-style shell,
the special prefix characters in “internal” recipe lines will removed
before the recipe is processed. This feature is intended to allow
existing makefiles to add the .ONESHELL special target and still run
properly without extensive modifications. Since the special prefix
characters are not legal at the beginning of a line in a POSIX shell
script this is not a loss in functionality. For example, this works as
expected:

.ONESHELL:
foo : bar/lose
 @cd $(@D)
 @gobble $(@F) > ../$@

Even with this special feature, however, makefiles with .ONESHELL
will behave differently in ways that could be noticeable. For
example, normally if any line in the recipe fails, that causes the
rule to fail and no more recipe lines are processed. Under .ONESHELL
a failure of any but the final recipe line will not be noticed by make.
You can modify .SHELLFLAGS to add the -e option to the shell which
will cause any failure anywhere in the command line to cause the
shell to fail, but this could itself cause your recipe to behave
differently. Ultimately you may need to harden your recipe lines to
allow them to work with .ONESHELL.

Previous: One Shell, Up: Execution [Contents][Index]

5.3.2 Choosing the Shell

The program used as the shell is taken from the variable SHELL. If
this variable is not set in your makefile, the program /bin/sh is used
as the shell. The argument(s) passed to the shell are taken from
the variable .SHELLFLAGS. The default value of .SHELLFLAGS is -c
normally, or -ec in POSIX-conforming mode.

Unlike most variables, the variable SHELL is never set from the
environment. This is because the SHELL environment variable is used
to specify your personal choice of shell program for interactive
use. It would be very bad for personal choices like this to affect the
functioning of makefiles. See Variables from the Environment.

GNU make https://www.gnu.org/software/make/manual/ma...

82 of 322 06/08/18, 2:50 PM

Furthermore, when you do set SHELL in your makefile that value is
not exported in the environment to recipe lines that make invokes.
Instead, the value inherited from the user’s environment, if any, is
exported. You can override this behavior by explicitly exporting
SHELL (see Communicating Variables to a Sub-make), forcing it to be
passed in the environment to recipe lines.

However, on MS-DOS and MS-Windows the value of SHELL in the
environment is used, since on those systems most users do not set
this variable, and therefore it is most likely set specifically to be
used by make. On MS-DOS, if the setting of SHELL is not suitable for
make, you can set the variable MAKESHELL to the shell that make should
use; if set it will be used as the shell instead of the value of SHELL.

Choosing a Shell in DOS and Windows

Choosing a shell in MS-DOS and MS-Windows is much more
complex than on other systems.

On MS-DOS, if SHELL is not set, the value of the variable COMSPEC
(which is always set) is used instead.

The processing of lines that set the variable SHELL in Makefiles is
different on MS-DOS. The stock shell, command.com, is ridiculously
limited in its functionality and many users of make tend to install a
replacement shell. Therefore, on MS-DOS, make examines the value
of SHELL, and changes its behavior based on whether it points to a
Unix-style or DOS-style shell. This allows reasonable functionality
even if SHELL points to command.com.

If SHELL points to a Unix-style shell, make on MS-DOS additionally
checks whether that shell can indeed be found; if not, it ignores
the line that sets SHELL. In MS-DOS, GNU make searches for the shell
in the following places:

In the precise place pointed to by the value of SHELL. For
example, if the makefile specifies ‘SHELL = /bin/sh’, make will
look in the directory /bin on the current drive.

1.

In the current directory.2.

In each of the directories in the PATH variable, in order.3.

In every directory it examines, make will first look for the specific file
(sh in the example above). If this is not found, it will also look in
that directory for that file with one of the known extensions which
identify executable files. For example .exe, .com, .bat, .btm, .sh, and

GNU make https://www.gnu.org/software/make/manual/ma...

83 of 322 06/08/18, 2:50 PM

some others.

If any of these attempts is successful, the value of SHELL will be set
to the full pathname of the shell as found. However, if none of
these is found, the value of SHELL will not be changed, and thus the
line that sets it will be effectively ignored. This is so make will only
support features specific to a Unix-style shell if such a shell is
actually installed on the system where make runs.

Note that this extended search for the shell is limited to the cases
where SHELL is set from the Makefile; if it is set in the environment
or command line, you are expected to set it to the full pathname of
the shell, exactly as things are on Unix.

The effect of the above DOS-specific processing is that a Makefile
that contains ‘SHELL = /bin/sh’ (as many Unix makefiles do), will work
on MS-DOS unaltered if you have e.g. sh.exe installed in some
directory along your PATH.

Next: Errors, Previous: Execution, Up: Recipes [Contents][Index]

5.4 Parallel Execution

GNU make knows how to execute several recipes at once. Normally,
make will execute only one recipe at a time, waiting for it to finish
before executing the next. However, the ‘-j’ or ‘--jobs’ option tells
make to execute many recipes simultaneously. You can inhibit
parallelism in a particular makefile with the .NOTPARALLEL pseudo-
target (see Special Built-in Target Names).

On MS-DOS, the ‘-j’ option has no effect, since that system doesn’t
support multi-processing.

If the ‘-j’ option is followed by an integer, this is the number of
recipes to execute at once; this is called the number of job slots. If
there is nothing looking like an integer after the ‘-j’ option, there is
no limit on the number of job slots. The default number of job slots
is one, which means serial execution (one thing at a time).

Handling recursive make invocations raises issues for parallel
execution. For more information on this, see Communicating
Options to a Sub-make.

If a recipe fails (is killed by a signal or exits with a nonzero status),
and errors are not ignored for that recipe (see Errors in Recipes),

GNU make https://www.gnu.org/software/make/manual/ma...

84 of 322 06/08/18, 2:50 PM

the remaining recipe lines to remake the same target will not be
run. If a recipe fails and the ‘-k’ or ‘--keep-going’ option was not
given (see Summary of Options), make aborts execution. If make
terminates for any reason (including a signal) with child processes
running, it waits for them to finish before actually exiting.

When the system is heavily loaded, you will probably want to run
fewer jobs than when it is lightly loaded. You can use the ‘-l’ option
to tell make to limit the number of jobs to run at once, based on the
load average. The ‘-l’ or ‘--max-load’ option is followed by a floating-
point number. For example,

-l 2.5

will not let make start more than one job if the load average is above
2.5. The ‘-l’ option with no following number removes the load
limit, if one was given with a previous ‘-l’ option.

More precisely, when make goes to start up a job, and it already has
at least one job running, it checks the current load average; if it is
not lower than the limit given with ‘-l’, make waits until the load
average goes below that limit, or until all the other jobs finish.

By default, there is no load limit.

• Parallel Output: Handling output during parallel execution

• Parallel Input: Handling input during parallel execution

Next: Parallel Input, Previous: Parallel, Up: Parallel [Contents][

Index]

5.4.1 Output During Parallel Execution

When running several recipes in parallel the output from each
recipe appears as soon as it is generated, with the result that
messages from different recipes may be interspersed, sometimes
even appearing on the same line. This can make reading the output
very difficult.

To avoid this you can use the ‘--output-sync’ (‘-O’) option. This option
instructs make to save the output from the commands it invokes and
print it all once the commands are completed. Additionally, if there

GNU make https://www.gnu.org/software/make/manual/ma...

85 of 322 06/08/18, 2:50 PM

are multiple recursive make invocations running in parallel, they will
communicate so that only one of them is generating output at a
time.

If working directory printing is enabled (see The ‘--print-directory’
Option), the enter/leave messages are printed around each output
grouping. If you prefer not to see these messages add the ‘--no-
print-directory’ option to MAKEFLAGS.

There are four levels of granularity when synchronizing output,
specified by giving an argument to the option (e.g., ‘-Oline’ or
‘--output-sync=recurse’).

none

This is the default: all output is sent directly as it is generated
and no synchronization is performed.

line

Output from each individual line of the recipe is grouped and
printed as soon as that line is complete. If a recipe consists of
multiple lines, they may be interspersed with lines from other
recipes.

target

Output from the entire recipe for each target is grouped and
printed once the target is complete. This is the default if the
--output-sync or -O option is given with no argument.

recurse

Output from each recursive invocation of make is grouped and
printed once the recursive invocation is complete.

Regardless of the mode chosen, the total build time will be the
same. The only difference is in how the output appears.

The ‘target’ and ‘recurse’ modes both collect the output of the entire
recipe of a target and display it uninterrupted when the recipe
completes. The difference between them is in how recipes that
contain recursive invocations of make are treated (see Recursive Use
of make). For all recipes which have no recursive lines, the ‘target’
and ‘recurse’ modes behave identically.

If the ‘recurse’ mode is chosen, recipes that contain recursive make
invocations are treated the same as other targets: the output from
the recipe, including the output from the recursive make, is saved

GNU make https://www.gnu.org/software/make/manual/ma...

86 of 322 06/08/18, 2:50 PM

and printed after the entire recipe is complete. This ensures output
from all the targets built by a given recursive make instance are
grouped together, which may make the output easier to
understand. However it also leads to long periods of time during
the build where no output is seen, followed by large bursts of
output. If you are not watching the build as it proceeds, but instead
viewing a log of the build after the fact, this may be the best option
for you.

If you are watching the output, the long gaps of quiet during the
build can be frustrating. The ‘target’ output synchronization mode
detects when make is going to be invoked recursively, using the
standard methods, and it will not synchronize the output of those
lines. The recursive make will perform the synchronization for its
targets and the output from each will be displayed immediately
when it completes. Be aware that output from recursive lines of the
recipe are not synchronized (for example if the recursive line
prints a message before running make, that message will not be
synchronized).

The ‘line’ mode can be useful for front-ends that are watching the
output of make to track when recipes are started and completed.

Some programs invoked by make may behave differently if they
determine they’re writing output to a terminal versus a file (often
described as “interactive” vs. “non-interactive” modes). For
example, many programs that can display colorized output will not
do so if they determine they are not writing to a terminal. If your
makefile invokes a program like this then using the output
synchronization options will cause the program to believe it’s
running in “non-interactive” mode even though the output will
ultimately go to the terminal.

Previous: Parallel Output, Up: Parallel [Contents][Index]

5.4.2 Input During Parallel Execution

Two processes cannot both take input from the same device at the
same time. To make sure that only one recipe tries to take input
from the terminal at once, make will invalidate the standard input
streams of all but one running recipe. If another recipe attempts to
read from standard input it will usually incur a fatal error (a ‘Broken
pipe’ signal).

It is unpredictable which recipe will have a valid standard input

GNU make https://www.gnu.org/software/make/manual/ma...

87 of 322 06/08/18, 2:50 PM

stream (which will come from the terminal, or wherever you
redirect the standard input of make). The first recipe run will always
get it first, and the first recipe started after that one finishes will
get it next, and so on.

We will change how this aspect of make works if we find a better
alternative. In the mean time, you should not rely on any recipe
using standard input at all if you are using the parallel execution
feature; but if you are not using this feature, then standard input
works normally in all recipes.

Next: Interrupts, Previous: Parallel, Up: Recipes [Contents][Index

]

5.5 Errors in Recipes

After each shell invocation returns, make looks at its exit status. If
the shell completed successfully (the exit status is zero), the next
line in the recipe is executed in a new shell; after the last line is
finished, the rule is finished.

If there is an error (the exit status is nonzero), make gives up on the
current rule, and perhaps on all rules.

Sometimes the failure of a certain recipe line does not indicate a
problem. For example, you may use the mkdir command to ensure
that a directory exists. If the directory already exists, mkdir will
report an error, but you probably want make to continue regardless.

To ignore errors in a recipe line, write a ‘-’ at the beginning of the
line’s text (after the initial tab). The ‘-’ is discarded before the line
is passed to the shell for execution.

For example,

clean:
 -rm -f *.o

This causes make to continue even if rm is unable to remove a file.

When you run make with the ‘-i’ or ‘--ignore-errors’ flag, errors are
ignored in all recipes of all rules. A rule in the makefile for the
special target .IGNORE has the same effect, if there are no
prerequisites. These ways of ignoring errors are obsolete because

GNU make https://www.gnu.org/software/make/manual/ma...

88 of 322 06/08/18, 2:50 PM

‘-’ is more flexible.

When errors are to be ignored, because of either a ‘-’ or the ‘-i’
flag, make treats an error return just like success, except that it
prints out a message that tells you the status code the shell exited
with, and says that the error has been ignored.

When an error happens that make has not been told to ignore, it
implies that the current target cannot be correctly remade, and
neither can any other that depends on it either directly or
indirectly. No further recipes will be executed for these targets,
since their preconditions have not been achieved.

Normally make gives up immediately in this circumstance, returning
a nonzero status. However, if the ‘-k’ or ‘--keep-going’ flag is
specified, make continues to consider the other prerequisites of the
pending targets, remaking them if necessary, before it gives up and
returns nonzero status. For example, after an error in compiling
one object file, ‘make -k’ will continue compiling other object files
even though it already knows that linking them will be impossible.
See Summary of Options.

The usual behavior assumes that your purpose is to get the
specified targets up to date; once make learns that this is impossible,
it might as well report the failure immediately. The ‘-k’ option says
that the real purpose is to test as many of the changes made in the
program as possible, perhaps to find several independent problems
so that you can correct them all before the next attempt to
compile. This is why Emacs’ compile command passes the ‘-k’ flag by
default.

Usually when a recipe line fails, if it has changed the target file at
all, the file is corrupted and cannot be used—or at least it is not
completely updated. Yet the file’s time stamp says that it is now up
to date, so the next time make runs, it will not try to update that file.
The situation is just the same as when the shell is killed by a
signal; see Interrupts. So generally the right thing to do is to delete
the target file if the recipe fails after beginning to change the file.
make will do this if .DELETE_ON_ERROR appears as a target. This is almost
always what you want make to do, but it is not historical practice; so
for compatibility, you must explicitly request it.

Next: Recursion, Previous: Errors, Up: Recipes [Contents][Index]

GNU make https://www.gnu.org/software/make/manual/ma...

89 of 322 06/08/18, 2:50 PM

5.6 Interrupting or Killing make

If make gets a fatal signal while a shell is executing, it may delete
the target file that the recipe was supposed to update. This is done
if the target file’s last-modification time has changed since make first
checked it.

The purpose of deleting the target is to make sure that it is remade
from scratch when make is next run. Why is this? Suppose you type
Ctrl-c while a compiler is running, and it has begun to write an
object file foo.o. The Ctrl-c kills the compiler, resulting in an
incomplete file whose last-modification time is newer than the
source file foo.c. But make also receives the Ctrl-c signal and deletes
this incomplete file. If make did not do this, the next invocation of
make would think that foo.o did not require updating—resulting in a
strange error message from the linker when it tries to link an
object file half of which is missing.

You can prevent the deletion of a target file in this way by making
the special target .PRECIOUS depend on it. Before remaking a target,
make checks to see whether it appears on the prerequisites of
.PRECIOUS, and thereby decides whether the target should be deleted
if a signal happens. Some reasons why you might do this are that
the target is updated in some atomic fashion, or exists only to
record a modification-time (its contents do not matter), or must
exist at all times to prevent other sorts of trouble.

Next: Canned Recipes, Previous: Interrupts, Up: Recipes [

Contents][Index]

5.7 Recursive Use of make

Recursive use of make means using make as a command in a makefile.
This technique is useful when you want separate makefiles for
various subsystems that compose a larger system. For example,
suppose you have a sub-directory subdir which has its own makefile,
and you would like the containing directory’s makefile to run make
on the sub-directory. You can do it by writing this:

subsystem:
 cd subdir && $(MAKE)

or, equivalently, this (see Summary of Options):

GNU make https://www.gnu.org/software/make/manual/ma...

90 of 322 06/08/18, 2:50 PM

subsystem:
 $(MAKE) -C subdir

You can write recursive make commands just by copying this
example, but there are many things to know about how they work
and why, and about how the sub-make relates to the top-level make.
You may also find it useful to declare targets that invoke recursive
make commands as ‘.PHONY’ (for more discussion on when this is
useful, see Phony Targets).

For your convenience, when GNU make starts (after it has processed
any -C options) it sets the variable CURDIR to the pathname of the
current working directory. This value is never touched by make
again: in particular note that if you include files from other
directories the value of CURDIR does not change. The value has the
same precedence it would have if it were set in the makefile (by
default, an environment variable CURDIR will not override this value).
Note that setting this variable has no impact on the operation of
make (it does not cause make to change its working directory, for
example).

• MAKE Variable: The special effects of using ‘$(MAKE)’.

•
Variables/Recursion:

How to communicate variables to a
sub-make.

• Options/Recursion:

How to communicate options to a sub-
make.

• -w Option:

How the ‘-w’ or ‘--print-directory’ option
helps debug use of recursive make
commands.

Next: Variables/Recursion, Previous: Recursion, Up: Recursion [

Contents][Index]

5.7.1 How the MAKE Variable Works

Recursive make commands should always use the variable MAKE, not
the explicit command name ‘make’, as shown here:

subsystem:
 cd subdir && $(MAKE)

GNU make https://www.gnu.org/software/make/manual/ma...

91 of 322 06/08/18, 2:50 PM

The value of this variable is the file name with which make was
invoked. If this file name was /bin/make, then the recipe executed is
‘cd subdir && /bin/make’. If you use a special version of make to run the
top-level makefile, the same special version will be executed for
recursive invocations.

As a special feature, using the variable MAKE in the recipe of a rule
alters the effects of the ‘-t’ (‘--touch’), ‘-n’ (‘--just-print’), or ‘-q’
(‘--question’) option. Using the MAKE variable has the same effect as
using a ‘+’ character at the beginning of the recipe line. See
Instead of Executing the Recipes. This special feature is only
enabled if the MAKE variable appears directly in the recipe: it does
not apply if the MAKE variable is referenced through expansion of
another variable. In the latter case you must use the ‘+’ token to
get these special effects.

Consider the command ‘make -t’ in the above example. (The ‘-t’
option marks targets as up to date without actually running any
recipes; see Instead of Execution.) Following the usual definition of
‘-t’, a ‘make -t’ command in the example would create a file named
subsystem and do nothing else. What you really want it to do is run
‘cd subdir && make -t’; but that would require executing the recipe,
and ‘-t’ says not to execute recipes.

The special feature makes this do what you want: whenever a
recipe line of a rule contains the variable MAKE, the flags ‘-t’, ‘-n’ and
‘-q’ do not apply to that line. Recipe lines containing MAKE are
executed normally despite the presence of a flag that causes most
recipes not to be run. The usual MAKEFLAGS mechanism passes the
flags to the sub-make (see Communicating Options to a Sub-make), so
your request to touch the files, or print the recipes, is propagated
to the subsystem.

Next: Options/Recursion, Previous: MAKE Variable, Up: Recursion

[Contents][Index]

5.7.2 Communicating Variables to a Sub-make

Variable values of the top-level make can be passed to the sub-make
through the environment by explicit request. These variables are
defined in the sub-make as defaults, but they do not override
variables defined in the makefile used by the sub-make unless you
use the ‘-e’ switch (see Summary of Options).

GNU make https://www.gnu.org/software/make/manual/ma...

92 of 322 06/08/18, 2:50 PM

To pass down, or export, a variable, make adds the variable and its
value to the environment for running each line of the recipe. The
sub-make, in turn, uses the environment to initialize its table of
variable values. See Variables from the Environment.

Except by explicit request, make exports a variable only if it is either
defined in the environment initially or set on the command line,
and if its name consists only of letters, numbers, and underscores.
Some shells cannot cope with environment variable names
consisting of characters other than letters, numbers, and
underscores.

The value of the make variable SHELL is not exported. Instead, the
value of the SHELL variable from the invoking environment is passed
to the sub-make. You can force make to export its value for SHELL by
using the export directive, described below. See Choosing the Shell.

The special variable MAKEFLAGS is always exported (unless you
unexport it). MAKEFILES is exported if you set it to anything.

make automatically passes down variable values that were defined
on the command line, by putting them in the MAKEFLAGS variable. See
Options/Recursion.

Variables are not normally passed down if they were created by
default by make (see Variables Used by Implicit Rules). The sub-make
will define these for itself.

If you want to export specific variables to a sub-make, use the export
directive, like this:

export variable …

If you want to prevent a variable from being exported, use the
unexport directive, like this:

unexport variable …

In both of these forms, the arguments to export and unexport are
expanded, and so could be variables or functions which expand to a
(list of) variable names to be (un)exported.

As a convenience, you can define a variable and export it at the
same time by doing:

GNU make https://www.gnu.org/software/make/manual/ma...

93 of 322 06/08/18, 2:50 PM

export variable = value

has the same result as:

variable = value
export variable

and

export variable := value

has the same result as:

variable := value
export variable

Likewise,

export variable += value

is just like:

variable += value
export variable

See Appending More Text to Variables.

You may notice that the export and unexport directives work in make in
the same way they work in the shell, sh.

If you want all variables to be exported by default, you can use
export by itself:

export

This tells make that variables which are not explicitly mentioned in
an export or unexport directive should be exported. Any variable
given in an unexport directive will still not be exported. If you use
export by itself to export variables by default, variables whose
names contain characters other than alphanumerics and
underscores will not be exported unless specifically mentioned in
an export directive.

GNU make https://www.gnu.org/software/make/manual/ma...

94 of 322 06/08/18, 2:50 PM

The behavior elicited by an export directive by itself was the default
in older versions of GNU make. If your makefiles depend on this
behavior and you want to be compatible with old versions of make,
you can write a rule for the special target .EXPORT_ALL_VARIABLES
instead of using the export directive. This will be ignored by old
makes, while the export directive will cause a syntax error.

Likewise, you can use unexport by itself to tell make not to export
variables by default. Since this is the default behavior, you would
only need to do this if export had been used by itself earlier (in an
included makefile, perhaps). You cannot use export and unexport by
themselves to have variables exported for some recipes and not for
others. The last export or unexport directive that appears by itself
determines the behavior for the entire run of make.

As a special feature, the variable MAKELEVEL is changed when it is
passed down from level to level. This variable’s value is a string
which is the depth of the level as a decimal number. The value is ‘0’
for the top-level make; ‘1’ for a sub-make, ‘2’ for a sub-sub-make, and so
on. The incrementation happens when make sets up the environment
for a recipe.

The main use of MAKELEVEL is to test it in a conditional directive (see
Conditional Parts of Makefiles); this way you can write a makefile
that behaves one way if run recursively and another way if run
directly by you.

You can use the variable MAKEFILES to cause all sub-make commands to
use additional makefiles. The value of MAKEFILES is a whitespace-
separated list of file names. This variable, if defined in the outer-
level makefile, is passed down through the environment; then it
serves as a list of extra makefiles for the sub-make to read before the
usual or specified ones. See The Variable MAKEFILES.

Next: -w Option, Previous: Variables/Recursion, Up: Recursion [

Contents][Index]

5.7.3 Communicating Options to a Sub-make

Flags such as ‘-s’ and ‘-k’ are passed automatically to the sub-make
through the variable MAKEFLAGS. This variable is set up automatically
by make to contain the flag letters that make received. Thus, if you do
‘make -ks’ then MAKEFLAGS gets the value ‘ks’.

GNU make https://www.gnu.org/software/make/manual/ma...

95 of 322 06/08/18, 2:50 PM

As a consequence, every sub-make gets a value for MAKEFLAGS in its
environment. In response, it takes the flags from that value and
processes them as if they had been given as arguments. See
Summary of Options.

Likewise variables defined on the command line are passed to the
sub-make through MAKEFLAGS. Words in the value of MAKEFLAGS that
contain ‘=’, make treats as variable definitions just as if they
appeared on the command line. See Overriding Variables.

The options ‘-C’, ‘-f’, ‘-o’, and ‘-W’ are not put into MAKEFLAGS; these
options are not passed down.

The ‘-j’ option is a special case (see Parallel Execution). If you set
it to some numeric value ‘N’ and your operating system supports it
(most any UNIX system will; others typically won’t), the parent make
and all the sub-makes will communicate to ensure that there are only
‘N’ jobs running at the same time between them all. Note that any
job that is marked recursive (see Instead of Executing Recipes)
doesn’t count against the total jobs (otherwise we could get ‘N’ sub-
makes running and have no slots left over for any real work!)

If your operating system doesn’t support the above communication,
then no ‘-j’ is added to MAKEFLAGS, so that sub-makes run in non-
parallel mode. If the ‘-j’ option were passed down to sub-makes you
would get many more jobs running in parallel than you asked for. If
you give ‘-j’ with no numeric argument, meaning to run as many
jobs as possible in parallel, this is passed down, since multiple
infinities are no more than one.

If you do not want to pass the other flags down, you must change
the value of MAKEFLAGS, like this:

subsystem:
 cd subdir && $(MAKE) MAKEFLAGS=

The command line variable definitions really appear in the variable
MAKEOVERRIDES, and MAKEFLAGS contains a reference to this variable. If
you do want to pass flags down normally, but don’t want to pass
down the command line variable definitions, you can reset
MAKEOVERRIDES to empty, like this:

MAKEOVERRIDES =

GNU make https://www.gnu.org/software/make/manual/ma...

96 of 322 06/08/18, 2:50 PM

This is not usually useful to do. However, some systems have a
small fixed limit on the size of the environment, and putting so
much information into the value of MAKEFLAGS can exceed it. If you
see the error message ‘Arg list too long’, this may be the problem.
(For strict compliance with POSIX.2, changing MAKEOVERRIDES does
not affect MAKEFLAGS if the special target ‘.POSIX’ appears in the
makefile. You probably do not care about this.)

A similar variable MFLAGS exists also, for historical compatibility. It
has the same value as MAKEFLAGS except that it does not contain the
command line variable definitions, and it always begins with a
hyphen unless it is empty (MAKEFLAGS begins with a hyphen only when
it begins with an option that has no single-letter version, such as
‘--warn-undefined-variables’). MFLAGS was traditionally used explicitly in
the recursive make command, like this:

subsystem:
 cd subdir && $(MAKE) $(MFLAGS)

but now MAKEFLAGS makes this usage redundant. If you want your
makefiles to be compatible with old make programs, use this
technique; it will work fine with more modern make versions too.

The MAKEFLAGS variable can also be useful if you want to have certain
options, such as ‘-k’ (see Summary of Options), set each time you
run make. You simply put a value for MAKEFLAGS in your environment.
You can also set MAKEFLAGS in a makefile, to specify additional flags
that should also be in effect for that makefile. (Note that you
cannot use MFLAGS this way. That variable is set only for
compatibility; make does not interpret a value you set for it in any
way.)

When make interprets the value of MAKEFLAGS (either from the
environment or from a makefile), it first prepends a hyphen if the
value does not already begin with one. Then it chops the value into
words separated by blanks, and parses these words as if they were
options given on the command line (except that ‘-C’, ‘-f’, ‘-h’, ‘-o’,
‘-W’, and their long-named versions are ignored; and there is no
error for an invalid option).

If you do put MAKEFLAGS in your environment, you should be sure not
to include any options that will drastically affect the actions of make
and undermine the purpose of makefiles and of make itself. For
instance, the ‘-t’, ‘-n’, and ‘-q’ options, if put in one of these
variables, could have disastrous consequences and would certainly

GNU make https://www.gnu.org/software/make/manual/ma...

97 of 322 06/08/18, 2:50 PM

have at least surprising and probably annoying effects.

If you’d like to run other implementations of make in addition to
GNU make, and hence do not want to add GNU make-specific flags to
the MAKEFLAGS variable, you can add them to the GNUMAKEFLAGS variable
instead. This variable is parsed just before MAKEFLAGS, in the same
way as MAKEFLAGS. When make constructs MAKEFLAGS to pass to a
recursive make it will include all flags, even those taken from
GNUMAKEFLAGS. As a result, after parsing GNUMAKEFLAGS GNU make sets this
variable to the empty string to avoid duplicating flags during
recursion.

It’s best to use GNUMAKEFLAGS only with flags which won’t materially
change the behavior of your makefiles. If your makefiles require
GNU make anyway then simply use MAKEFLAGS. Flags such as ‘--no-
print-directory’ or ‘--output-sync’ may be appropriate for GNUMAKEFLAGS.

Previous: Options/Recursion, Up: Recursion [Contents][Index]

5.7.4 The ‘--print-directory’ Option

If you use several levels of recursive make invocations, the ‘-w’ or
‘--print-directory’ option can make the output a lot easier to
understand by showing each directory as make starts processing it
and as make finishes processing it. For example, if ‘make -w’ is run in
the directory /u/gnu/make, make will print a line of the form:

make: Entering directory `/u/gnu/make'.

before doing anything else, and a line of the form:

make: Leaving directory `/u/gnu/make'.

when processing is completed.

Normally, you do not need to specify this option because ‘make’ does
it for you: ‘-w’ is turned on automatically when you use the ‘-C’
option, and in sub-makes. make will not automatically turn on ‘-w’ if
you also use ‘-s’, which says to be silent, or if you use ‘--no-print-
directory’ to explicitly disable it.

GNU make https://www.gnu.org/software/make/manual/ma...

98 of 322 06/08/18, 2:50 PM

Next: Empty Recipes, Previous: Recursion, Up: Recipes [Contents

][Index]

5.8 Defining Canned Recipes

When the same sequence of commands is useful in making various
targets, you can define it as a canned sequence with the define
directive, and refer to the canned sequence from the recipes for
those targets. The canned sequence is actually a variable, so the
name must not conflict with other variable names.

Here is an example of defining a canned recipe:

define run-yacc =
yacc $(firstword $^)
mv y.tab.c $@
endef

Here run-yacc is the name of the variable being defined; endef marks
the end of the definition; the lines in between are the commands.
The define directive does not expand variable references and
function calls in the canned sequence; the ‘$’ characters,
parentheses, variable names, and so on, all become part of the
value of the variable you are defining. See Defining Multi-Line
Variables, for a complete explanation of define.

The first command in this example runs Yacc on the first
prerequisite of whichever rule uses the canned sequence. The
output file from Yacc is always named y.tab.c. The second command
moves the output to the rule’s target file name.

To use the canned sequence, substitute the variable into the recipe
of a rule. You can substitute it like any other variable (see Basics of
Variable References). Because variables defined by define are
recursively expanded variables, all the variable references you
wrote inside the define are expanded now. For example:

foo.c : foo.y
 $(run-yacc)

‘foo.y’ will be substituted for the variable ‘$^’ when it occurs in run-
yacc’s value, and ‘foo.c’ for ‘$@’.

This is a realistic example, but this particular one is not needed in

GNU make https://www.gnu.org/software/make/manual/ma...

99 of 322 06/08/18, 2:50 PM

practice because make has an implicit rule to figure out these
commands based on the file names involved (see Using Implicit
Rules).

In recipe execution, each line of a canned sequence is treated just
as if the line appeared on its own in the rule, preceded by a tab. In
particular, make invokes a separate sub-shell for each line. You can
use the special prefix characters that affect command lines (‘@’, ‘-’,
and ‘+’) on each line of a canned sequence. See Writing Recipes in
Rules. For example, using this canned sequence:

define frobnicate =
@echo "frobnicating target $@"
frob-step-1 $< -o $@-step-1
frob-step-2 $@-step-1 -o $@
endef

make will not echo the first line, the echo command. But it will echo
the following two recipe lines.

On the other hand, prefix characters on the recipe line that refers
to a canned sequence apply to every line in the sequence. So the
rule:

frob.out: frob.in
 @$(frobnicate)

does not echo any recipe lines. (See Recipe Echoing, for a full
explanation of ‘@’.)

Previous: Canned Recipes, Up: Recipes [Contents][Index]

5.9 Using Empty Recipes

It is sometimes useful to define recipes which do nothing. This is
done simply by giving a recipe that consists of nothing but
whitespace. For example:

target: ;

defines an empty recipe for target. You could also use a line
beginning with a recipe prefix character to define an empty recipe,
but this would be confusing because such a line looks empty.

GNU make https://www.gnu.org/software/make/manual/ma...

100 of 322 06/08/18, 2:50 PM

You may be wondering why you would want to define a recipe that
does nothing. One reason this is useful is to prevent a target from
getting implicit recipes (from implicit rules or the .DEFAULT special
target; see Implicit Rules and see Defining Last-Resort Default
Rules).

Empty recipes can also be used to avoid errors for targets that will
be created as a side-effect of another recipe: if the target does not
exist the empty recipe ensures that make won’t complain that it
doesn’t know how to build the target, and make will assume the
target is out of date.

You may be inclined to define empty recipes for targets that are
not actual files, but only exist so that their prerequisites can be
remade. However, this is not the best way to do that, because the
prerequisites may not be remade properly if the target file actually
does exist. See Phony Targets, for a better way to do this.

Next: Conditionals, Previous: Recipes, Up: Top [Contents][Index]

6 How to Use Variables

A variable is a name defined in a makefile to represent a string of
text, called the variable’s value. These values are substituted by
explicit request into targets, prerequisites, recipes, and other parts
of the makefile. (In some other versions of make, variables are called
macros.)

Variables and functions in all parts of a makefile are expanded
when read, except for in recipes, the right-hand sides of variable
definitions using ‘=’, and the bodies of variable definitions using the
define directive.

Variables can represent lists of file names, options to pass to
compilers, programs to run, directories to look in for source files,
directories to write output in, or anything else you can imagine.

A variable name may be any sequence of characters not containing
‘:’, ‘#’, ‘=’, or whitespace. However, variable names containing
characters other than letters, numbers, and underscores should be
considered carefully, as in some shells they cannot be passed
through the environment to a sub-make (see Communicating
Variables to a Sub-make). Variable names beginning with ‘.’ and an
uppercase letter may be given special meaning in future versions

GNU make https://www.gnu.org/software/make/manual/ma...

101 of 322 06/08/18, 2:50 PM

of make.

Variable names are case-sensitive. The names ‘foo’, ‘FOO’, and ‘Foo’
all refer to different variables.

It is traditional to use upper case letters in variable names, but we
recommend using lower case letters for variable names that serve
internal purposes in the makefile, and reserving upper case for
parameters that control implicit rules or for parameters that the
user should override with command options (see Overriding
Variables).

A few variables have names that are a single punctuation character
or just a few characters. These are the automatic variables, and
they have particular specialized uses. See Automatic Variables.

• Reference: How to use the value of a variable.

• Flavors: Variables come in two flavors.

• Advanced: Advanced features for referencing a
variable.

• Values: All the ways variables get their values.

• Setting: How to set a variable in the makefile.

• Appending:

How to append more text to the old value
of a variable.

• Override
Directive:

How to set a variable in the makefile
even if the user has set it with a
command argument.

• Multi-Line:

An alternate way to set a variable to a
multi-line string.

• Undefine
Directive:

How to undefine a variable so that it
appears as if it was never set.

• Environment:

Variable values can come from the
environment.

• Target-specific:

Variable values can be defined on a per-
target basis.

• Pattern-specific:

Target-specific variable values can be
applied to a group of targets that match a
pattern.

• Suppressing
Inheritance:

Suppress inheritance of variables.

GNU make https://www.gnu.org/software/make/manual/ma...

102 of 322 06/08/18, 2:50 PM

• Special
Variables:

Variables with special meaning or
behavior.

Next: Flavors, Previous: Using Variables, Up: Using Variables [

Contents][Index]

6.1 Basics of Variable References

To substitute a variable’s value, write a dollar sign followed by the
name of the variable in parentheses or braces: either ‘$(foo)’ or
‘${foo}’ is a valid reference to the variable foo. This special
significance of ‘$’ is why you must write ‘$$’ to have the effect of a
single dollar sign in a file name or recipe.

Variable references can be used in any context: targets,
prerequisites, recipes, most directives, and new variable values.
Here is an example of a common case, where a variable holds the
names of all the object files in a program:

objects = program.o foo.o utils.o
program : $(objects)
 cc -o program $(objects)

$(objects) : defs.h

Variable references work by strict textual substitution. Thus, the
rule

foo = c
prog.o : prog.$(foo)
 (foo)(foo) -$(foo) prog.$(foo)

could be used to compile a C program prog.c. Since spaces before
the variable value are ignored in variable assignments, the value of
foo is precisely ‘c’. (Don’t actually write your makefiles this way!)

A dollar sign followed by a character other than a dollar sign,
open-parenthesis or open-brace treats that single character as the
variable name. Thus, you could reference the variable x with ‘$x’.
However, this practice is strongly discouraged, except in the case
of the automatic variables (see Automatic Variables).

GNU make https://www.gnu.org/software/make/manual/ma...

103 of 322 06/08/18, 2:50 PM

Next: Advanced, Previous: Reference, Up: Using Variables [

Contents][Index]

6.2 The Two Flavors of Variables

There are two ways that a variable in GNU make can have a value;
we call them the two flavors of variables. The two flavors are
distinguished in how they are defined and in what they do when
expanded.

The first flavor of variable is a recursively expanded variable.
Variables of this sort are defined by lines using ‘=’ (see Setting
Variables) or by the define directive (see Defining Multi-Line
Variables). The value you specify is installed verbatim; if it contains
references to other variables, these references are expanded
whenever this variable is substituted (in the course of expanding
some other string). When this happens, it is called recursive
expansion.

For example,

foo = $(bar)
bar = $(ugh)
ugh = Huh?

all:;echo $(foo)

will echo ‘Huh?’: ‘$(foo)’ expands to ‘$(bar)’ which expands to ‘$(ugh)’
which finally expands to ‘Huh?’.

This flavor of variable is the only sort supported by most other
versions of make. It has its advantages and its disadvantages. An
advantage (most would say) is that:

CFLAGS = $(include_dirs) -O
include_dirs = -Ifoo -Ibar

will do what was intended: when ‘CFLAGS’ is expanded in a recipe, it
will expand to ‘-Ifoo -Ibar -O’. A major disadvantage is that you
cannot append something on the end of a variable, as in

CFLAGS = $(CFLAGS) -O

because it will cause an infinite loop in the variable expansion.

GNU make https://www.gnu.org/software/make/manual/ma...

104 of 322 06/08/18, 2:50 PM

(Actually make detects the infinite loop and reports an error.)

Another disadvantage is that any functions (see Functions for
Transforming Text) referenced in the definition will be executed
every time the variable is expanded. This makes make run slower;
worse, it causes the wildcard and shell functions to give
unpredictable results because you cannot easily control when they
are called, or even how many times.

To avoid all the problems and inconveniences of recursively
expanded variables, there is another flavor: simply expanded
variables.

Simply expanded variables are defined by lines using ‘:=’ or ‘::=’
(see Setting Variables). Both forms are equivalent in GNU make;
however only the ‘::=’ form is described by the POSIX standard
(support for ‘::=’ was added to the POSIX standard in 2012, so
older versions of make won’t accept this form either).

The value of a simply expanded variable is scanned once and for
all, expanding any references to other variables and functions,
when the variable is defined. The actual value of the simply
expanded variable is the result of expanding the text that you
write. It does not contain any references to other variables; it
contains their values as of the time this variable was defined.
Therefore,

x := foo
y := $(x) bar
x := later

is equivalent to

y := foo bar
x := later

When a simply expanded variable is referenced, its value is
substituted verbatim.

Here is a somewhat more complicated example, illustrating the use
of ‘:=’ in conjunction with the shell function. (See The shell
Function.) This example also shows use of the variable MAKELEVEL,
which is changed when it is passed down from level to level. (See
Communicating Variables to a Sub-make, for information about
MAKELEVEL.)

GNU make https://www.gnu.org/software/make/manual/ma...

105 of 322 06/08/18, 2:50 PM

ifeq (0,${MAKELEVEL})
whoami := $(shell whoami)
host-type := $(shell arch)
MAKE := ${MAKE} host-type=${host-type} whoami=${whoami}
endif

An advantage of this use of ‘:=’ is that a typical ‘descend into a
directory’ recipe then looks like this:

${subdirs}:
 ${MAKE} -C $@ all

Simply expanded variables generally make complicated makefile
programming more predictable because they work like variables in
most programming languages. They allow you to redefine a
variable using its own value (or its value processed in some way by
one of the expansion functions) and to use the expansion functions
much more efficiently (see Functions for Transforming Text).

You can also use them to introduce controlled leading whitespace
into variable values. Leading whitespace characters are discarded
from your input before substitution of variable references and
function calls; this means you can include leading spaces in a
variable value by protecting them with variable references, like
this:

nullstring :=
space := $(nullstring) # end of the line

Here the value of the variable space is precisely one space. The
comment ‘# end of the line’ is included here just for clarity. Since
trailing space characters are not stripped from variable values, just
a space at the end of the line would have the same effect (but be
rather hard to read). If you put whitespace at the end of a variable
value, it is a good idea to put a comment like that at the end of the
line to make your intent clear. Conversely, if you do not want any
whitespace characters at the end of your variable value, you must
remember not to put a random comment on the end of the line
after some whitespace, such as this:

dir := /foo/bar # directory to put the frobs in

Here the value of the variable dir is ‘/foo/bar ’ (with four trailing
spaces), which was probably not the intention. (Imagine something

GNU make https://www.gnu.org/software/make/manual/ma...

106 of 322 06/08/18, 2:50 PM

like ‘$(dir)/file’ with this definition!)

There is another assignment operator for variables, ‘?=’. This is
called a conditional variable assignment operator, because it only
has an effect if the variable is not yet defined. This statement:

FOO ?= bar

is exactly equivalent to this (see The origin Function):

ifeq ($(origin FOO), undefined)
 FOO = bar
endif

Note that a variable set to an empty value is still defined, so ‘?=’
will not set that variable.

Next: Values, Previous: Flavors, Up: Using Variables [Contents][

Index]

6.3 Advanced Features for Reference to
Variables

This section describes some advanced features you can use to
reference variables in more flexible ways.

• Substitution
Refs:

Referencing a variable with substitutions
on the value.

• Computed
Names:

Computing the name of the variable to
refer to.

Next: Computed Names, Previous: Advanced, Up: Advanced [

Contents][Index]

6.3.1 Substitution References

A substitution reference substitutes the value of a variable with
alterations that you specify. It has the form ‘$(var:a=b)’ (or
‘${var:a=b}’) and its meaning is to take the value of the variable var,

GNU make https://www.gnu.org/software/make/manual/ma...

107 of 322 06/08/18, 2:50 PM

replace every a at the end of a word with b in that value, and
substitute the resulting string.

When we say “at the end of a word”, we mean that a must appear
either followed by whitespace or at the end of the value in order to
be replaced; other occurrences of a in the value are unaltered. For
example:

foo := a.o b.o c.o
bar := $(foo:.o=.c)

sets ‘bar’ to ‘a.c b.c c.c’. See Setting Variables.

A substitution reference is actually an abbreviation for use of the
patsubst expansion function (see Functions for String Substitution
and Analysis). We provide substitution references as well as patsubst
for compatibility with other implementations of make.

Another type of substitution reference lets you use the full power
of the patsubst function. It has the same form ‘$(var:a=b)’ described
above, except that now a must contain a single ‘%’ character. This
case is equivalent to ‘$(patsubst a,b,$(var))’. See Functions for String
Substitution and Analysis, for a description of the patsubst function.

For example:

foo := a.o b.o c.o
bar := $(foo:%.o=%.c)

sets ‘bar’ to ‘a.c b.c c.c’.

Previous: Substitution Refs, Up: Advanced [Contents][Index]

6.3.2 Computed Variable Names

Computed variable names are a complicated concept needed only
for sophisticated makefile programming. For most purposes you
need not consider them, except to know that making a variable
with a dollar sign in its name might have strange results. However,
if you are the type that wants to understand everything, or you are
actually interested in what they do, read on.

Variables may be referenced inside the name of a variable. This is
called a computed variable name or a nested variable reference.

GNU make https://www.gnu.org/software/make/manual/ma...

108 of 322 06/08/18, 2:50 PM

For example,

x = y
y = z
a := $($(x))

defines a as ‘z’: the ‘$(x)’ inside ‘$($(x))’ expands to ‘y’, so ‘$($(x))’
expands to ‘$(y)’ which in turn expands to ‘z’. Here the name of the
variable to reference is not stated explicitly; it is computed by
expansion of ‘$(x)’. The reference ‘$(x)’ here is nested within the
outer variable reference.

The previous example shows two levels of nesting, but any number
of levels is possible. For example, here are three levels:

x = y
y = z
z = u
a := $($($(x)))

Here the innermost ‘$(x)’ expands to ‘y’, so ‘$($(x))’ expands to ‘$(y)’
which in turn expands to ‘z’; now we have ‘$(z)’, which becomes ‘u’.

References to recursively-expanded variables within a variable
name are re-expanded in the usual fashion. For example:

x = $(y)
y = z
z = Hello
a := $($(x))

defines a as ‘Hello’: ‘$($(x))’ becomes ‘$($(y))’ which becomes ‘$(z)’
which becomes ‘Hello’.

Nested variable references can also contain modified references
and function invocations (see Functions for Transforming Text),
just like any other reference. For example, using the subst function
(see Functions for String Substitution and Analysis):

x = variable1
variable2 := Hello
y = $(subst 1,2,$(x))
z = y
a := $($($(z)))

eventually defines a as ‘Hello’. It is doubtful that anyone would ever

GNU make https://www.gnu.org/software/make/manual/ma...

109 of 322 06/08/18, 2:50 PM

want to write a nested reference as convoluted as this one, but it
works: ‘$($($(z)))’ expands to ‘$($(y))’ which becomes ‘$($(subst
1,2,$(x)))’. This gets the value ‘variable1’ from x and changes it by
substitution to ‘variable2’, so that the entire string becomes
‘$(variable2)’, a simple variable reference whose value is ‘Hello’.

A computed variable name need not consist entirely of a single
variable reference. It can contain several variable references, as
well as some invariant text. For example,

a_dirs := dira dirb
1_dirs := dir1 dir2

a_files := filea fileb
1_files := file1 file2

ifeq "$(use_a)" "yes"
a1 := a
else
a1 := 1
endif

ifeq "$(use_dirs)" "yes"
df := dirs
else
df := files
endif

dirs := $($(a1)_$(df))

will give dirs the same value as a_dirs, 1_dirs, a_files or 1_files
depending on the settings of use_a and use_dirs.

Computed variable names can also be used in substitution
references:

a_objects := a.o b.o c.o
1_objects := 1.o 2.o 3.o

sources := $($(a1)_objects:.o=.c)

defines sources as either ‘a.c b.c c.c’ or ‘1.c 2.c 3.c’, depending on
the value of a1.

The only restriction on this sort of use of nested variable
references is that they cannot specify part of the name of a
function to be called. This is because the test for a recognized
function name is done before the expansion of nested references.

GNU make https://www.gnu.org/software/make/manual/ma...

110 of 322 06/08/18, 2:50 PM

For example,

ifdef do_sort
func := sort
else
func := strip
endif

bar := a d b g q c

foo := $($(func) $(bar))

attempts to give ‘foo’ the value of the variable ‘sort a d b g q c’ or
‘strip a d b g q c’, rather than giving ‘a d b g q c’ as the argument to
either the sort or the strip function. This restriction could be
removed in the future if that change is shown to be a good idea.

You can also use computed variable names in the left-hand side of
a variable assignment, or in a define directive, as in:

dir = foo
$(dir)_sources := $(wildcard $(dir)/*.c)
define $(dir)_print =
lpr $($(dir)_sources)
endef

This example defines the variables ‘dir’, ‘foo_sources’, and ‘foo_print’.

Note that nested variable references are quite different from
recursively expanded variables (see The Two Flavors of Variables),
though both are used together in complex ways when doing
makefile programming.

Next: Setting, Previous: Advanced, Up: Using Variables [Contents

][Index]

6.4 How Variables Get Their Values

Variables can get values in several different ways:

You can specify an overriding value when you run make. See
Overriding Variables.

You can specify a value in the makefile, either with an
assignment (see Setting Variables) or with a verbatim

GNU make https://www.gnu.org/software/make/manual/ma...

111 of 322 06/08/18, 2:50 PM

definition (see Defining Multi-Line Variables).

Variables in the environment become make variables. See
Variables from the Environment.

Several automatic variables are given new values for each
rule. Each of these has a single conventional use. See
Automatic Variables.

Several variables have constant initial values. See Variables
Used by Implicit Rules.

Next: Appending, Previous: Values, Up: Using Variables [Contents

][Index]

6.5 Setting Variables

To set a variable from the makefile, write a line starting with the
variable name followed by ‘=’, ‘:=’, or ‘::=’. Whatever follows the ‘=’,
‘:=’, or ‘::=’ on the line becomes the value. For example,

objects = main.o foo.o bar.o utils.o

defines a variable named objects. Whitespace around the variable
name and immediately after the ‘=’ is ignored.

Variables defined with ‘=’ are recursively expanded variables.
Variables defined with ‘:=’ or ‘::=’ are simply expanded variables;
these definitions can contain variable references which will be
expanded before the definition is made. See The Two Flavors of
Variables.

The variable name may contain function and variable references,
which are expanded when the line is read to find the actual
variable name to use.

There is no limit on the length of the value of a variable except the
amount of memory on the computer. You can split the value of a
variable into multiple physical lines for readability (see Splitting
Long Lines).

Most variable names are considered to have the empty string as a
value if you have never set them. Several variables have built-in
initial values that are not empty, but you can set them in the usual
ways (see Variables Used by Implicit Rules). Several special

GNU make https://www.gnu.org/software/make/manual/ma...

112 of 322 06/08/18, 2:50 PM

variables are set automatically to a new value for each rule; these
are called the automatic variables (see Automatic Variables).

If you’d like a variable to be set to a value only if it’s not already
set, then you can use the shorthand operator ‘?=’ instead of ‘=’.
These two settings of the variable ‘FOO’ are identical (see The origin
Function):

FOO ?= bar

and

ifeq ($(origin FOO), undefined)
FOO = bar
endif

The shell assignment operator ‘!=’ can be used to execute a shell
script and set a variable to its output. This operator first evaluates
the right-hand side, then passes that result to the shell for
execution. If the result of the execution ends in a newline, that one
newline is removed; all other newlines are replaced by spaces. The
resulting string is then placed into the named recursively-
expanded variable. For example:

hash != printf '\043'
file_list != find . -name '*.c'

If the result of the execution could produce a $, and you don’t
intend what follows that to be interpreted as a make variable or
function reference, then you must replace every $ with $$ as part of
the execution. Alternatively, you can set a simply expanded
variable to the result of running a program using the shell function
call. See The shell Function. For example:

hash := $(shell printf '\043')
var := $(shell find . -name "*.c")

As with the shell function, the exit status of the just-invoked shell
script is stored in the .SHELLSTATUS variable.

Next: Override Directive, Previous: Setting, Up: Using Variables [

Contents][Index]

GNU make https://www.gnu.org/software/make/manual/ma...

113 of 322 06/08/18, 2:50 PM

6.6 Appending More Text to Variables

Often it is useful to add more text to the value of a variable already
defined. You do this with a line containing ‘+=’, like this:

objects += another.o

This takes the value of the variable objects, and adds the text
‘another.o’ to it (preceded by a single space). Thus:

objects = main.o foo.o bar.o utils.o
objects += another.o

sets objects to ‘main.o foo.o bar.o utils.o another.o’.

Using ‘+=’ is similar to:

objects = main.o foo.o bar.o utils.o
objects := $(objects) another.o

but differs in ways that become important when you use more
complex values.

When the variable in question has not been defined before, ‘+=’ acts
just like normal ‘=’: it defines a recursively-expanded variable.
However, when there is a previous definition, exactly what ‘+=’ does
depends on what flavor of variable you defined originally. See The
Two Flavors of Variables, for an explanation of the two flavors of
variables.

When you add to a variable’s value with ‘+=’, make acts essentially as
if you had included the extra text in the initial definition of the
variable. If you defined it first with ‘:=’ or ‘::=’, making it a simply-
expanded variable, ‘+=’ adds to that simply-expanded definition,
and expands the new text before appending it to the old value just
as ‘:=’ does (see Setting Variables, for a full explanation of ‘:=’ or
‘::=’). In fact,

variable := value
variable += more

is exactly equivalent to:

GNU make https://www.gnu.org/software/make/manual/ma...

114 of 322 06/08/18, 2:50 PM

variable := value
variable := $(variable) more

On the other hand, when you use ‘+=’ with a variable that you
defined first to be recursively-expanded using plain ‘=’, make does
something a bit different. Recall that when you define a
recursively-expanded variable, make does not expand the value you
set for variable and function references immediately. Instead it
stores the text verbatim, and saves these variable and function
references to be expanded later, when you refer to the new
variable (see The Two Flavors of Variables). When you use ‘+=’ on a
recursively-expanded variable, it is this unexpanded text to which
make appends the new text you specify.

variable = value
variable += more

is roughly equivalent to:

temp = value
variable = $(temp) more

except that of course it never defines a variable called temp. The
importance of this comes when the variable’s old value contains
variable references. Take this common example:

CFLAGS = $(includes) -O
…
CFLAGS += -pg # enable profiling

The first line defines the CFLAGS variable with a reference to another
variable, includes. (CFLAGS is used by the rules for C compilation; see
Catalogue of Built-In Rules.) Using ‘=’ for the definition makes
CFLAGS a recursively-expanded variable, meaning ‘$(includes) -O’ is
not expanded when make processes the definition of CFLAGS. Thus,
includes need not be defined yet for its value to take effect. It only
has to be defined before any reference to CFLAGS. If we tried to
append to the value of CFLAGS without using ‘+=’, we might do it like
this:

CFLAGS := $(CFLAGS) -pg # enable profiling

This is pretty close, but not quite what we want. Using ‘:=’

GNU make https://www.gnu.org/software/make/manual/ma...

115 of 322 06/08/18, 2:50 PM

redefines CFLAGS as a simply-expanded variable; this means make
expands the text ‘$(CFLAGS) -pg’ before setting the variable. If includes
is not yet defined, we get ‘ -O -pg’, and a later definition of includes
will have no effect. Conversely, by using ‘+=’ we set CFLAGS to the
unexpanded value ‘$(includes) -O -pg’. Thus we preserve the
reference to includes, so if that variable gets defined at any later
point, a reference like ‘$(CFLAGS)’ still uses its value.

Next: Multi-Line, Previous: Appending, Up: Using Variables [

Contents][Index]

6.7 The override Directive

If a variable has been set with a command argument (see
Overriding Variables), then ordinary assignments in the makefile
are ignored. If you want to set the variable in the makefile even
though it was set with a command argument, you can use an
override directive, which is a line that looks like this:

override variable = value

or

override variable := value

To append more text to a variable defined on the command line,
use:

override variable += more text

See Appending More Text to Variables.

Variable assignments marked with the override flag have a higher
priority than all other assignments, except another override.
Subsequent assignments or appends to this variable which are not
marked override will be ignored.

The override directive was not invented for escalation in the war
between makefiles and command arguments. It was invented so
you can alter and add to values that the user specifies with
command arguments.

GNU make https://www.gnu.org/software/make/manual/ma...

116 of 322 06/08/18, 2:50 PM

For example, suppose you always want the ‘-g’ switch when you
run the C compiler, but you would like to allow the user to specify
the other switches with a command argument just as usual. You
could use this override directive:

override CFLAGS += -g

You can also use override directives with define directives. This is
done as you might expect:

override define foo =
bar
endef

See Defining Multi-Line Variables.

Next: Undefine Directive, Previous: Override Directive, Up:

Using Variables [Contents][Index]

6.8 Defining Multi-Line Variables

Another way to set the value of a variable is to use the define
directive. This directive has an unusual syntax which allows
newline characters to be included in the value, which is convenient
for defining both canned sequences of commands (see Defining
Canned Recipes), and also sections of makefile syntax to use with
eval (see Eval Function).

The define directive is followed on the same line by the name of the
variable being defined and an (optional) assignment operator, and
nothing more. The value to give the variable appears on the
following lines. The end of the value is marked by a line containing
just the word endef. Aside from this difference in syntax, define
works just like any other variable definition. The variable name
may contain function and variable references, which are expanded
when the directive is read to find the actual variable name to use.

You may omit the variable assignment operator if you prefer. If
omitted, make assumes it to be ‘=’ and creates a recursively-
expanded variable (see The Two Flavors of Variables). When using
a ‘+=’ operator, the value is appended to the previous value as with
any other append operation: with a single space separating the old
and new values.

GNU make https://www.gnu.org/software/make/manual/ma...

117 of 322 06/08/18, 2:50 PM

You may nest define directives: make will keep track of nested
directives and report an error if they are not all properly closed
with endef. Note that lines beginning with the recipe prefix
character are considered part of a recipe, so any define or endef
strings appearing on such a line will not be considered make
directives.

define two-lines =
echo foo
echo $(bar)
endef

The value in an ordinary assignment cannot contain a newline; but
the newlines that separate the lines of the value in a define become
part of the variable’s value (except for the final newline which
precedes the endef and is not considered part of the value).

When used in a recipe, the previous example is functionally
equivalent to this:

two-lines = echo foo; echo $(bar)

since two commands separated by semicolon behave much like two
separate shell commands. However, note that using two separate
lines means make will invoke the shell twice, running an
independent sub-shell for each line. See Recipe Execution.

If you want variable definitions made with define to take
precedence over command-line variable definitions, you can use
the override directive together with define:

override define two-lines =
foo
$(bar)
endef

See The override Directive.

Next: Environment, Previous: Multi-Line, Up: Using Variables [

Contents][Index]

6.9 Undefining Variables

GNU make https://www.gnu.org/software/make/manual/ma...

118 of 322 06/08/18, 2:50 PM

If you want to clear a variable, setting its value to empty is usually
sufficient. Expanding such a variable will yield the same result
(empty string) regardless of whether it was set or not. However, if
you are using the flavor (see Flavor Function) and origin (see Origin
Function) functions, there is a difference between a variable that
was never set and a variable with an empty value. In such
situations you may want to use the undefine directive to make a
variable appear as if it was never set. For example:

foo := foo
bar = bar

undefine foo
undefine bar

$(info $(origin foo))
$(info $(flavor bar))

This example will print “undefined” for both variables.

If you want to undefine a command-line variable definition, you can
use the override directive together with undefine, similar to how this
is done for variable definitions:

override undefine CFLAGS

Next: Target-specific, Previous: Undefine Directive, Up:

Using Variables [Contents][Index]

6.10 Variables from the Environment

Variables in make can come from the environment in which make is
run. Every environment variable that make sees when it starts up is
transformed into a make variable with the same name and value.
However, an explicit assignment in the makefile, or with a
command argument, overrides the environment. (If the ‘-e’ flag is
specified, then values from the environment override assignments
in the makefile. See Summary of Options. But this is not
recommended practice.)

Thus, by setting the variable CFLAGS in your environment, you can
cause all C compilations in most makefiles to use the compiler
switches you prefer. This is safe for variables with standard or
conventional meanings because you know that no makefile will use

GNU make https://www.gnu.org/software/make/manual/ma...

119 of 322 06/08/18, 2:50 PM

them for other things. (Note this is not totally reliable; some
makefiles set CFLAGS explicitly and therefore are not affected by the
value in the environment.)

When make runs a recipe, variables defined in the makefile are
placed into the environment of each shell. This allows you to pass
values to sub-make invocations (see Recursive Use of make). By
default, only variables that came from the environment or the
command line are passed to recursive invocations. You can use the
export directive to pass other variables. See Communicating
Variables to a Sub-make, for full details.

Other use of variables from the environment is not recommended.
It is not wise for makefiles to depend for their functioning on
environment variables set up outside their control, since this would
cause different users to get different results from the same
makefile. This is against the whole purpose of most makefiles.

Such problems would be especially likely with the variable SHELL,
which is normally present in the environment to specify the user’s
choice of interactive shell. It would be very undesirable for this
choice to affect make; so, make handles the SHELL environment variable
in a special way; see Choosing the Shell.

Next: Pattern-specific, Previous: Environment, Up: Using Variables

 [Contents][Index]

6.11 Target-specific Variable Values

Variable values in make are usually global; that is, they are the same
regardless of where they are evaluated (unless they’re reset, of
course). One exception to that is automatic variables (see
Automatic Variables).

The other exception is target-specific variable values. This feature
allows you to define different values for the same variable, based
on the target that make is currently building. As with automatic
variables, these values are only available within the context of a
target’s recipe (and in other target-specific assignments).

Set a target-specific variable value like this:

target … : variable-assignment

GNU make https://www.gnu.org/software/make/manual/ma...

120 of 322 06/08/18, 2:50 PM

Target-specific variable assignments can be prefixed with any or all
of the special keywords export, override, or private; these apply their
normal behavior to this instance of the variable only.

Multiple target values create a target-specific variable value for
each member of the target list individually.

The variable-assignment can be any valid form of assignment;
recursive (‘=’), simple (‘:=’ or ‘::=’), appending (‘+=’), or conditional
(‘?=’). All variables that appear within the variable-assignment are
evaluated within the context of the target: thus, any previously-
defined target-specific variable values will be in effect. Note that
this variable is actually distinct from any “global” value: the two
variables do not have to have the same flavor (recursive vs.
simple).

Target-specific variables have the same priority as any other
makefile variable. Variables provided on the command line (and in
the environment if the ‘-e’ option is in force) will take precedence.
Specifying the override directive will allow the target-specific
variable value to be preferred.

There is one more special feature of target-specific variables: when
you define a target-specific variable that variable value is also in
effect for all prerequisites of this target, and all their prerequisites,
etc. (unless those prerequisites override that variable with their
own target-specific variable value). So, for example, a statement
like this:

prog : CFLAGS = -g
prog : prog.o foo.o bar.o

will set CFLAGS to ‘-g’ in the recipe for prog, but it will also set CFLAGS
to ‘-g’ in the recipes that create prog.o, foo.o, and bar.o, and any
recipes which create their prerequisites.

Be aware that a given prerequisite will only be built once per
invocation of make, at most. If the same file is a prerequisite of
multiple targets, and each of those targets has a different value for
the same target-specific variable, then the first target to be built
will cause that prerequisite to be built and the prerequisite will
inherit the target-specific value from the first target. It will ignore
the target-specific values from any other targets.

GNU make https://www.gnu.org/software/make/manual/ma...

121 of 322 06/08/18, 2:50 PM

Next: Suppressing Inheritance, Previous: Target-specific, Up:

Using Variables [Contents][Index]

6.12 Pattern-specific Variable Values

In addition to target-specific variable values (see Target-specific
Variable Values), GNU make supports pattern-specific variable
values. In this form, the variable is defined for any target that
matches the pattern specified.

Set a pattern-specific variable value like this:

pattern … : variable-assignment

where pattern is a %-pattern. As with target-specific variable
values, multiple pattern values create a pattern-specific variable
value for each pattern individually. The variable-assignment can be
any valid form of assignment. Any command line variable setting
will take precedence, unless override is specified.

For example:

%.o : CFLAGS = -O

will assign CFLAGS the value of ‘-O’ for all targets matching the
pattern %.o.

If a target matches more than one pattern, the matching pattern-
specific variables with longer stems are interpreted first. This
results in more specific variables taking precedence over the more
generic ones, for example:

%.o: %.c
 $(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

lib/%.o: CFLAGS := -fPIC -g
%.o: CFLAGS := -g

all: foo.o lib/bar.o

In this example the first definition of the CFLAGS variable will be used
to update lib/bar.o even though the second one also applies to this
target. Pattern-specific variables which result in the same stem
length are considered in the order in which they were defined in

GNU make https://www.gnu.org/software/make/manual/ma...

122 of 322 06/08/18, 2:50 PM

the makefile.

Pattern-specific variables are searched after any target-specific
variables defined explicitly for that target, and before target-
specific variables defined for the parent target.

Next: Special Variables, Previous: Pattern-specific, Up:

Using Variables [Contents][Index]

6.13 Suppressing Inheritance

As described in previous sections, make variables are inherited by
prerequisites. This capability allows you to modify the behavior of
a prerequisite based on which targets caused it to be rebuilt. For
example, you might set a target-specific variable on a debug target,
then running ‘make debug’ will cause that variable to be inherited by
all prerequisites of debug, while just running ‘make all’ (for example)
would not have that assignment.

Sometimes, however, you may not want a variable to be inherited.
For these situations, make provides the private modifier. Although
this modifier can be used with any variable assignment, it makes
the most sense with target- and pattern-specific variables. Any
variable marked private will be visible to its local target but will not
be inherited by prerequisites of that target. A global variable
marked private will be visible in the global scope but will not be
inherited by any target, and hence will not be visible in any recipe.

As an example, consider this makefile:

EXTRA_CFLAGS =

prog: private EXTRA_CFLAGS = -L/usr/local/lib
prog: a.o b.o

Due to the private modifier, a.o and b.o will not inherit the
EXTRA_CFLAGS variable assignment from the prog target.

Previous: Suppressing Inheritance, Up: Using Variables [Contents

][Index]

6.14 Other Special Variables

GNU make https://www.gnu.org/software/make/manual/ma...

123 of 322 06/08/18, 2:50 PM

GNU make supports some variables that have special properties.

MAKEFILE_LIST

Contains the name of each makefile that is parsed by make, in
the order in which it was parsed. The name is appended just
before make begins to parse the makefile. Thus, if the first thing
a makefile does is examine the last word in this variable, it will
be the name of the current makefile. Once the current makefile
has used include, however, the last word will be the just-
included makefile.

If a makefile named Makefile has this content:

name1 := $(lastword $(MAKEFILE_LIST))

include inc.mk

name2 := $(lastword $(MAKEFILE_LIST))

all:
 @echo name1 = $(name1)
 @echo name2 = $(name2)

then you would expect to see this output:

name1 = Makefile
name2 = inc.mk

.DEFAULT_GOAL

Sets the default goal to be used if no targets were specified on
the command line (see Arguments to Specify the Goals). The
.DEFAULT_GOAL variable allows you to discover the current default
goal, restart the default goal selection algorithm by clearing its
value, or to explicitly set the default goal. The following
example illustrates these cases:

Query the default goal.
ifeq ($(.DEFAULT_GOAL),)
 $(warning no default goal is set)
endif

.PHONY: foo
foo: ; @echo $@

$(warning default goal is $(.DEFAULT_GOAL))

Reset the default goal.
.DEFAULT_GOAL :=

GNU make https://www.gnu.org/software/make/manual/ma...

124 of 322 06/08/18, 2:50 PM

.PHONY: bar
bar: ; @echo $@

$(warning default goal is $(.DEFAULT_GOAL))

Set our own.
.DEFAULT_GOAL := foo

This makefile prints:

no default goal is set
default goal is foo
default goal is bar
foo

Note that assigning more than one target name to .DEFAULT_GOAL
is invalid and will result in an error.

MAKE_RESTARTS

This variable is set only if this instance of make has restarted
(see How Makefiles Are Remade): it will contain the number of
times this instance has restarted. Note this is not the same as
recursion (counted by the MAKELEVEL variable). You should not
set, modify, or export this variable.

MAKE_TERMOUT

MAKE_TERMERR

When make starts it will check whether stdout and stderr will
show their output on a terminal. If so, it will set MAKE_TERMOUT and
MAKE_TERMERR, respectively, to the name of the terminal device (or
true if this cannot be determined). If set these variables will be
marked for export. These variables will not be changed by make
and they will not be modified if already set.

These values can be used (particularly in combination with
output synchronization (see Output During Parallel Execution)
to determine whether make itself is writing to a terminal; they
can be tested to decide whether to force recipe commands to
generate colorized output for example.

If you invoke a sub-make and redirect its stdout or stderr it is
your responsibility to reset or unexport these variables as well,
if your makefiles rely on them.

.RECIPEPREFIX

The first character of the value of this variable is used as the
character make assumes is introducing a recipe line. If the

GNU make https://www.gnu.org/software/make/manual/ma...

125 of 322 06/08/18, 2:50 PM

variable is empty (as it is by default) that character is the
standard tab character. For example, this is a valid makefile:

.RECIPEPREFIX = >
all:
> @echo Hello, world

The value of .RECIPEPREFIX can be changed multiple times; once
set it stays in effect for all rules parsed until it is modified.

.VARIABLES

Expands to a list of the names of all global variables defined so
far. This includes variables which have empty values, as well as
built-in variables (see Variables Used by Implicit Rules), but
does not include any variables which are only defined in a
target-specific context. Note that any value you assign to this
variable will be ignored; it will always return its special value.

.FEATURES

Expands to a list of special features supported by this version
of make. Possible values include, but are not limited to:

‘archives’

Supports ar (archive) files using special file name syntax.
See Using make to Update Archive Files.

‘check-symlink’

Supports the -L (--check-symlink-times) flag. See Summary of
Options.

‘else-if’

Supports “else if” non-nested conditionals. See Syntax of
Conditionals.

‘jobserver’

Supports “job server” enhanced parallel builds. See
Parallel Execution.

‘oneshell’

Supports the .ONESHELL special target. See Using One Shell.

‘order-only’

Supports order-only prerequisites. See Types of

GNU make https://www.gnu.org/software/make/manual/ma...

126 of 322 06/08/18, 2:50 PM

Prerequisites.

‘second-expansion’

Supports secondary expansion of prerequisite lists.

‘shortest-stem’

Uses the “shortest stem” method of choosing which
pattern, of multiple applicable options, will be used. See
How Patterns Match.

‘target-specific’

Supports target-specific and pattern-specific variable
assignments. See Target-specific Variable Values.

‘undefine’

Supports the undefine directive. See Undefine Directive.

‘guile’

Has GNU Guile available as an embedded extension
language. See GNU Guile Integration.

‘load’

Supports dynamically loadable objects for creating custom
extensions. See Loading Dynamic Objects.

.INCLUDE_DIRS

Expands to a list of directories that make searches for included
makefiles (see Including Other Makefiles).

Next: Functions, Previous: Using Variables, Up: Top [Contents][

Index]

7 Conditional Parts of Makefiles

A conditional directive causes part of a makefile to be obeyed or
ignored depending on the values of variables. Conditionals can
compare the value of one variable to another, or the value of a
variable to a constant string. Conditionals control what make
actually “sees” in the makefile, so they cannot be used to control
recipes at the time of execution.

GNU make https://www.gnu.org/software/make/manual/ma...

127 of 322 06/08/18, 2:50 PM

• Conditional Example: Example of a conditional

• Conditional Syntax: The syntax of conditionals.

• Testing Flags: Conditionals that test flags.

Next: Conditional Syntax, Previous: Conditionals, Up: Conditionals

 [Contents][Index]

7.1 Example of a Conditional

The following example of a conditional tells make to use one set of
libraries if the CC variable is ‘gcc’, and a different set of libraries
otherwise. It works by controlling which of two recipe lines will be
used for the rule. The result is that ‘CC=gcc’ as an argument to make
changes not only which compiler is used but also which libraries
are linked.

libs_for_gcc = -lgnu
normal_libs =

foo: $(objects)
ifeq ($(CC),gcc)
 $(CC) -o foo $(objects) $(libs_for_gcc)
else
 $(CC) -o foo $(objects) $(normal_libs)
endif

This conditional uses three directives: one ifeq, one else and one
endif.

The ifeq directive begins the conditional, and specifies the
condition. It contains two arguments, separated by a comma and
surrounded by parentheses. Variable substitution is performed on
both arguments and then they are compared. The lines of the
makefile following the ifeq are obeyed if the two arguments match;
otherwise they are ignored.

The else directive causes the following lines to be obeyed if the
previous conditional failed. In the example above, this means that
the second alternative linking command is used whenever the first
alternative is not used. It is optional to have an else in a
conditional.

The endif directive ends the conditional. Every conditional must
end with an endif. Unconditional makefile text follows.

GNU make https://www.gnu.org/software/make/manual/ma...

128 of 322 06/08/18, 2:50 PM

As this example illustrates, conditionals work at the textual level:
the lines of the conditional are treated as part of the makefile, or
ignored, according to the condition. This is why the larger
syntactic units of the makefile, such as rules, may cross the
beginning or the end of the conditional.

When the variable CC has the value ‘gcc’, the above example has this
effect:

foo: $(objects)
 $(CC) -o foo $(objects) $(libs_for_gcc)

When the variable CC has any other value, the effect is this:

foo: $(objects)
 $(CC) -o foo $(objects) $(normal_libs)

Equivalent results can be obtained in another way by
conditionalizing a variable assignment and then using the variable
unconditionally:

libs_for_gcc = -lgnu
normal_libs =

ifeq ($(CC),gcc)
 libs=$(libs_for_gcc)
else
 libs=$(normal_libs)
endif

foo: $(objects)
 $(CC) -o foo $(objects) $(libs)

Next: Testing Flags, Previous: Conditional Example, Up:

Conditionals [Contents][Index]

7.2 Syntax of Conditionals

The syntax of a simple conditional with no else is as follows:

conditional-directive
text-if-true
endif

GNU make https://www.gnu.org/software/make/manual/ma...

129 of 322 06/08/18, 2:50 PM

The text-if-true may be any lines of text, to be considered as part of
the makefile if the condition is true. If the condition is false, no text
is used instead.

The syntax of a complex conditional is as follows:

conditional-directive
text-if-true
else
text-if-false
endif

or:

conditional-directive-one
text-if-one-is-true
else conditional-directive-two
text-if-two-is-true
else
text-if-one-and-two-are-false
endif

There can be as many “else conditional-directive” clauses as
necessary. Once a given condition is true, text-if-true is used and
no other clause is used; if no condition is true then text-if-false is
used. The text-if-true and text-if-false can be any number of lines of
text.

The syntax of the conditional-directive is the same whether the
conditional is simple or complex; after an else or not. There are
four different directives that test different conditions. Here is a
table of them:

ifeq (arg1, arg2)

ifeq 'arg1' 'arg2'

ifeq "arg1" "arg2"

ifeq "arg1" 'arg2'

ifeq 'arg1' "arg2"

Expand all variable references in arg1 and arg2 and compare
them. If they are identical, the text-if-true is effective;
otherwise, the text-if-false, if any, is effective.

Often you want to test if a variable has a non-empty value.
When the value results from complex expansions of variables
and functions, expansions you would consider empty may
actually contain whitespace characters and thus are not seen

GNU make https://www.gnu.org/software/make/manual/ma...

130 of 322 06/08/18, 2:50 PM

as empty. However, you can use the strip function (see Text
Functions) to avoid interpreting whitespace as a non-empty
value. For example:

ifeq ($(strip $(foo)),)
text-if-empty
endif

will evaluate text-if-empty even if the expansion of $(foo)
contains whitespace characters.

ifneq (arg1, arg2)

ifneq 'arg1' 'arg2'

ifneq "arg1" "arg2"

ifneq "arg1" 'arg2'

ifneq 'arg1' "arg2"

Expand all variable references in arg1 and arg2 and compare
them. If they are different, the text-if-true is effective;
otherwise, the text-if-false, if any, is effective.

ifdef variable-name

The ifdef form takes the name of a variable as its argument,
not a reference to a variable. If the value of that variable has a
non-empty value, the text-if-true is effective; otherwise, the
text-if-false, if any, is effective. Variables that have never been
defined have an empty value. The text variable-name is
expanded, so it could be a variable or function that expands to
the name of a variable. For example:

bar = true
foo = bar
ifdef $(foo)
frobozz = yes
endif

The variable reference $(foo) is expanded, yielding bar, which is
considered to be the name of a variable. The variable bar is not
expanded, but its value is examined to determine if it is non-
empty.

Note that ifdef only tests whether a variable has a value. It
does not expand the variable to see if that value is nonempty.
Consequently, tests using ifdef return true for all definitions
except those like foo =. To test for an empty value, use

GNU make https://www.gnu.org/software/make/manual/ma...

131 of 322 06/08/18, 2:50 PM

ifeq ($(foo),). For example,

bar =
foo = $(bar)
ifdef foo
frobozz = yes
else
frobozz = no
endif

sets ‘frobozz’ to ‘yes’, while:

foo =
ifdef foo
frobozz = yes
else
frobozz = no
endif

sets ‘frobozz’ to ‘no’.

ifndef variable-name

If the variable variable-name has an empty value, the text-if-
true is effective; otherwise, the text-if-false, if any, is effective.
The rules for expansion and testing of variable-name are
identical to the ifdef directive.

Extra spaces are allowed and ignored at the beginning of the
conditional directive line, but a tab is not allowed. (If the line
begins with a tab, it will be considered part of a recipe for a rule.)
Aside from this, extra spaces or tabs may be inserted with no effect
anywhere except within the directive name or within an argument.
A comment starting with ‘#’ may appear at the end of the line.

The other two directives that play a part in a conditional are else
and endif. Each of these directives is written as one word, with no
arguments. Extra spaces are allowed and ignored at the beginning
of the line, and spaces or tabs at the end. A comment starting with
‘#’ may appear at the end of the line.

Conditionals affect which lines of the makefile make uses. If the
condition is true, make reads the lines of the text-if-true as part of
the makefile; if the condition is false, make ignores those lines
completely. It follows that syntactic units of the makefile, such as
rules, may safely be split across the beginning or the end of the
conditional.

GNU make https://www.gnu.org/software/make/manual/ma...

132 of 322 06/08/18, 2:50 PM

make evaluates conditionals when it reads a makefile. Consequently,
you cannot use automatic variables in the tests of conditionals
because they are not defined until recipes are run (see Automatic
Variables).

To prevent intolerable confusion, it is not permitted to start a
conditional in one makefile and end it in another. However, you
may write an include directive within a conditional, provided you do
not attempt to terminate the conditional inside the included file.

Previous: Conditional Syntax, Up: Conditionals [Contents][Index]

7.3 Conditionals that Test Flags

You can write a conditional that tests make command flags such as
‘-t’ by using the variable MAKEFLAGS together with the findstring
function (see Functions for String Substitution and Analysis). This
is useful when touch is not enough to make a file appear up to date.

The findstring function determines whether one string appears as a
substring of another. If you want to test for the ‘-t’ flag, use ‘t’ as
the first string and the value of MAKEFLAGS as the other.

For example, here is how to arrange to use ‘ranlib -t’ to finish
marking an archive file up to date:

archive.a: …
ifneq (,$(findstring t,$(MAKEFLAGS)))
 +touch archive.a
 +ranlib -t archive.a
else
 ranlib archive.a
endif

The ‘+’ prefix marks those recipe lines as “recursive” so that they
will be executed despite use of the ‘-t’ flag. See Recursive Use of
make.

Next: Running, Previous: Conditionals, Up: Top [Contents][Index]

8 Functions for Transforming Text

Functions allow you to do text processing in the makefile to

GNU make https://www.gnu.org/software/make/manual/ma...

133 of 322 06/08/18, 2:50 PM

compute the files to operate on or the commands to use in recipes.
You use a function in a function call, where you give the name of
the function and some text (the arguments) for the function to
operate on. The result of the function’s processing is substituted
into the makefile at the point of the call, just as a variable might be
substituted.

• Syntax of Functions: How to write a function call.

• Text Functions:

General-purpose text manipulation
functions.

• File Name
Functions:

Functions for manipulating file
names.

• Conditional
Functions:

Functions that implement conditions.

• Foreach Function:

Repeat some text with controlled
variation.

• File Function: Write text to a file.

• Call Function: Expand a user-defined function.

• Value Function:

Return the un-expanded value of a
variable.

• Eval Function:

Evaluate the arguments as makefile
syntax.

• Origin Function: Find where a variable got its value.

• Flavor Function: Find out the flavor of a variable.

• Make Control
Functions:

Functions that control how make
runs.

• Shell Function:

Substitute the output of a shell
command.

• Guile Function:

Use GNU Guile embedded scripting
language.

Next: Text Functions, Previous: Functions, Up: Functions [

Contents][Index]

8.1 Function Call Syntax

A function call resembles a variable reference. It can appear
anywhere a variable reference can appear, and it is expanded using

GNU make https://www.gnu.org/software/make/manual/ma...

134 of 322 06/08/18, 2:50 PM

the same rules as variable references. A function call looks like
this:

$(function arguments)

or like this:

${function arguments}

Here function is a function name; one of a short list of names that
are part of make. You can also essentially create your own functions
by using the call built-in function.

The arguments are the arguments of the function. They are
separated from the function name by one or more spaces or tabs,
and if there is more than one argument, then they are separated by
commas. Such whitespace and commas are not part of an
argument’s value. The delimiters which you use to surround the
function call, whether parentheses or braces, can appear in an
argument only in matching pairs; the other kind of delimiters may
appear singly. If the arguments themselves contain other function
calls or variable references, it is wisest to use the same kind of
delimiters for all the references; write ‘$(subst a,b,$(x))’, not
‘$(subst a,b,${x})’. This is because it is clearer, and because only one
type of delimiter is matched to find the end of the reference.

The text written for each argument is processed by substitution of
variables and function calls to produce the argument value, which
is the text on which the function acts. The substitution is done in
the order in which the arguments appear.

Commas and unmatched parentheses or braces cannot appear in
the text of an argument as written; leading spaces cannot appear
in the text of the first argument as written. These characters can
be put into the argument value by variable substitution. First
define variables comma and space whose values are isolated comma
and space characters, then substitute these variables where such
characters are wanted, like this:

comma:= ,
empty:=
space:= $(empty) $(empty)
foo:= a b c
bar:= $(subst $(space),$(comma),$(foo))

bar is now ‘a,b,c’.

GNU make https://www.gnu.org/software/make/manual/ma...

135 of 322 06/08/18, 2:50 PM

Here the subst function replaces each space with a comma, through
the value of foo, and substitutes the result.

Next: File Name Functions, Previous: Syntax of Functions, Up:

Functions [Contents][Index]

8.2 Functions for String Substitution and
Analysis

Here are some functions that operate on strings:

$(subst from,to,text)

Performs a textual replacement on the text text: each
occurrence of from is replaced by to. The result is substituted
for the function call. For example,

$(subst ee,EE,feet on the street)

substitutes the string ‘fEEt on the strEEt’.

$(patsubst pattern,replacement,text)

Finds whitespace-separated words in text that match pattern
and replaces them with replacement. Here pattern may
contain a ‘%’ which acts as a wildcard, matching any number of
any characters within a word. If replacement also contains a
‘%’, the ‘%’ is replaced by the text that matched the ‘%’ in
pattern. Only the first ‘%’ in the pattern and replacement is
treated this way; any subsequent ‘%’ is unchanged.

‘%’ characters in patsubst function invocations can be quoted
with preceding backslashes (‘\’). Backslashes that would
otherwise quote ‘%’ characters can be quoted with more
backslashes. Backslashes that quote ‘%’ characters or other
backslashes are removed from the pattern before it is
compared file names or has a stem substituted into it.
Backslashes that are not in danger of quoting ‘%’ characters go
unmolested. For example, the pattern the\%weird\\%pattern\\ has
‘the%weird\’ preceding the operative ‘%’ character, and ‘pattern\\’
following it. The final two backslashes are left alone because
they cannot affect any ‘%’ character.

Whitespace between words is folded into single space

GNU make https://www.gnu.org/software/make/manual/ma...

136 of 322 06/08/18, 2:50 PM

characters; leading and trailing whitespace is discarded.

For example,

$(patsubst %.c,%.o,x.c.c bar.c)

produces the value ‘x.c.o bar.o’.

Substitution references (see Substitution References) are a
simpler way to get the effect of the patsubst function:

$(var:pattern=replacement)

is equivalent to

$(patsubst pattern,replacement,$(var))

The second shorthand simplifies one of the most common uses
of patsubst: replacing the suffix at the end of file names.

$(var:suffix=replacement)

is equivalent to

$(patsubst %suffix,%replacement,$(var))

For example, you might have a list of object files:

objects = foo.o bar.o baz.o

To get the list of corresponding source files, you could simply
write:

$(objects:.o=.c)

instead of using the general form:

$(patsubst %.o,%.c,$(objects))

$(strip string)

Removes leading and trailing whitespace from string and

GNU make https://www.gnu.org/software/make/manual/ma...

137 of 322 06/08/18, 2:50 PM

replaces each internal sequence of one or more whitespace
characters with a single space. Thus, ‘$(strip a b c)’ results in
‘a b c’.

The function strip can be very useful when used in conjunction
with conditionals. When comparing something with the empty
string ‘’ using ifeq or ifneq, you usually want a string of just
whitespace to match the empty string (see Conditionals).

Thus, the following may fail to have the desired results:

.PHONY: all
ifneq "$(needs_made)" ""
all: $(needs_made)
else
all:;@echo 'Nothing to make!'
endif

Replacing the variable reference ‘$(needs_made)’ with the
function call ‘$(strip $(needs_made))’ in the ifneq directive would
make it more robust.

$(findstring find,in)

Searches in for an occurrence of find. If it occurs, the value is
find; otherwise, the value is empty. You can use this function in
a conditional to test for the presence of a specific substring in
a given string. Thus, the two examples,

$(findstring a,a b c)
$(findstring a,b c)

produce the values ‘a’ and ‘’ (the empty string), respectively.
See Testing Flags, for a practical application of findstring.

$(filter pattern…,text)

Returns all whitespace-separated words in text that do match
any of the pattern words, removing any words that do not
match. The patterns are written using ‘%’, just like the patterns
used in the patsubst function above.

The filter function can be used to separate out different types
of strings (such as file names) in a variable. For example:

sources := foo.c bar.c baz.s ugh.h
foo: $(sources)
 cc $(filter %.c %.s,$(sources)) -o foo

GNU make https://www.gnu.org/software/make/manual/ma...

138 of 322 06/08/18, 2:50 PM

says that foo depends of foo.c, bar.c, baz.s and ugh.h but only
foo.c, bar.c and baz.s should be specified in the command to the
compiler.

$(filter-out pattern…,text)

Returns all whitespace-separated words in text that do not
match any of the pattern words, removing the words that do
match one or more. This is the exact opposite of the filter
function.

For example, given:

objects=main1.o foo.o main2.o bar.o
mains=main1.o main2.o

the following generates a list which contains all the object files
not in ‘mains’:

$(filter-out $(mains),$(objects))

$(sort list)

Sorts the words of list in lexical order, removing duplicate
words. The output is a list of words separated by single spaces.
Thus,

$(sort foo bar lose)

returns the value ‘bar foo lose’.

Incidentally, since sort removes duplicate words, you can use it
for this purpose even if you don’t care about the sort order.

$(word n,text)

Returns the nth word of text. The legitimate values of n start
from 1. If n is bigger than the number of words in text, the
value is empty. For example,

$(word 2, foo bar baz)

returns ‘bar’.

$(wordlist s,e,text)

Returns the list of words in text starting with word s and

GNU make https://www.gnu.org/software/make/manual/ma...

139 of 322 06/08/18, 2:50 PM

ending with word e (inclusive). The legitimate values of s start
from 1; e may start from 0. If s is bigger than the number of
words in text, the value is empty. If e is bigger than the number
of words in text, words up to the end of text are returned. If s
is greater than e, nothing is returned. For example,

$(wordlist 2, 3, foo bar baz)

returns ‘bar baz’.

$(words text)

Returns the number of words in text. Thus, the last word of
text is $(word $(words text),text).

$(firstword names…)

The argument names is regarded as a series of names,
separated by whitespace. The value is the first name in the
series. The rest of the names are ignored.

For example,

$(firstword foo bar)

produces the result ‘foo’. Although $(firstword text) is the same
as $(word 1,text), the firstword function is retained for its
simplicity.

$(lastword names…)

The argument names is regarded as a series of names,
separated by whitespace. The value is the last name in the
series.

For example,

$(lastword foo bar)

produces the result ‘bar’. Although $(lastword text) is the same
as $(word $(words text),text), the lastword function was added for
its simplicity and better performance.

Here is a realistic example of the use of subst and patsubst. Suppose
that a makefile uses the VPATH variable to specify a list of directories
that make should search for prerequisite files (see VPATH Search Path
for All Prerequisites). This example shows how to tell the C

GNU make https://www.gnu.org/software/make/manual/ma...

140 of 322 06/08/18, 2:50 PM

compiler to search for header files in the same list of directories.

The value of VPATH is a list of directories separated by colons, such
as ‘src:../headers’. First, the subst function is used to change the
colons to spaces:

$(subst :, ,$(VPATH))

This produces ‘src ../headers’. Then patsubst is used to turn each
directory name into a ‘-I’ flag. These can be added to the value of
the variable CFLAGS, which is passed automatically to the C compiler,
like this:

override CFLAGS += $(patsubst %,-I%,$(subst :, ,$(VPATH)))

The effect is to append the text ‘-Isrc -I../headers’ to the previously
given value of CFLAGS. The override directive is used so that the new
value is assigned even if the previous value of CFLAGS was specified
with a command argument (see The override Directive).

Next: Conditional Functions, Previous: Text Functions, Up:

Functions [Contents][Index]

8.3 Functions for File Names

Several of the built-in expansion functions relate specifically to
taking apart file names or lists of file names.

Each of the following functions performs a specific transformation
on a file name. The argument of the function is regarded as a
series of file names, separated by whitespace. (Leading and trailing
whitespace is ignored.) Each file name in the series is transformed
in the same way and the results are concatenated with single
spaces between them.

$(dir names…)

Extracts the directory-part of each file name in names. The
directory-part of the file name is everything up through (and
including) the last slash in it. If the file name contains no slash,
the directory part is the string ‘./’. For example,

GNU make https://www.gnu.org/software/make/manual/ma...

141 of 322 06/08/18, 2:50 PM

$(dir src/foo.c hacks)

produces the result ‘src/ ./’.

$(notdir names…)

Extracts all but the directory-part of each file name in names.
If the file name contains no slash, it is left unchanged.
Otherwise, everything through the last slash is removed from
it.

A file name that ends with a slash becomes an empty string.
This is unfortunate, because it means that the result does not
always have the same number of whitespace-separated file
names as the argument had; but we do not see any other valid
alternative.

For example,

$(notdir src/foo.c hacks)

produces the result ‘foo.c hacks’.

$(suffix names…)

Extracts the suffix of each file name in names. If the file name
contains a period, the suffix is everything starting with the last
period. Otherwise, the suffix is the empty string. This
frequently means that the result will be empty when names is
not, and if names contains multiple file names, the result may
contain fewer file names.

For example,

$(suffix src/foo.c src-1.0/bar.c hacks)

produces the result ‘.c .c’.

$(basename names…)

Extracts all but the suffix of each file name in names. If the file
name contains a period, the basename is everything starting
up to (and not including) the last period. Periods in the
directory part are ignored. If there is no period, the basename
is the entire file name. For example,

GNU make https://www.gnu.org/software/make/manual/ma...

142 of 322 06/08/18, 2:50 PM

$(basename src/foo.c src-1.0/bar hacks)

produces the result ‘src/foo src-1.0/bar hacks’.

$(addsuffix suffix,names…)

The argument names is regarded as a series of names,
separated by whitespace; suffix is used as a unit. The value of
suffix is appended to the end of each individual name and the
resulting larger names are concatenated with single spaces
between them. For example,

$(addsuffix .c,foo bar)

produces the result ‘foo.c bar.c’.

$(addprefix prefix,names…)

The argument names is regarded as a series of names,
separated by whitespace; prefix is used as a unit. The value of
prefix is prepended to the front of each individual name and
the resulting larger names are concatenated with single spaces
between them. For example,

$(addprefix src/,foo bar)

produces the result ‘src/foo src/bar’.

$(join list1,list2)

Concatenates the two arguments word by word: the two first
words (one from each argument) concatenated form the first
word of the result, the two second words form the second word
of the result, and so on. So the nth word of the result comes
from the nth word of each argument. If one argument has more
words that the other, the extra words are copied unchanged
into the result.

For example, ‘$(join a b,.c .o)’ produces ‘a.c b.o’.

Whitespace between the words in the lists is not preserved; it
is replaced with a single space.

This function can merge the results of the dir and notdir
functions, to produce the original list of files which was given
to those two functions.

GNU make https://www.gnu.org/software/make/manual/ma...

143 of 322 06/08/18, 2:50 PM

$(wildcard pattern)

The argument pattern is a file name pattern, typically
containing wildcard characters (as in shell file name patterns).
The result of wildcard is a space-separated list of the names of
existing files that match the pattern. See Using Wildcard
Characters in File Names.

$(realpath names…)

For each file name in names return the canonical absolute
name. A canonical name does not contain any . or ..
components, nor any repeated path separators (/) or symlinks.
In case of a failure the empty string is returned. Consult the
realpath(3) documentation for a list of possible failure causes.

$(abspath names…)

For each file name in names return an absolute name that does
not contain any . or .. components, nor any repeated path
separators (/). Note that, in contrast to realpath function, abspath
does not resolve symlinks and does not require the file names
to refer to an existing file or directory. Use the wildcard function
to test for existence.

Next: Foreach Function, Previous: File Name Functions, Up:

Functions [Contents][Index]

8.4 Functions for Conditionals

There are three functions that provide conditional expansion. A key
aspect of these functions is that not all of the arguments are
expanded initially. Only those arguments which need to be
expanded, will be expanded.

$(if condition,then-part[,else-part])

The if function provides support for conditional expansion in a
functional context (as opposed to the GNU make makefile
conditionals such as ifeq (see Syntax of Conditionals).

The first argument, condition, first has all preceding and
trailing whitespace stripped, then is expanded. If it expands to
any non-empty string, then the condition is considered to be
true. If it expands to an empty string, the condition is
considered to be false.

If the condition is true then the second argument, then-part, is

GNU make https://www.gnu.org/software/make/manual/ma...

144 of 322 06/08/18, 2:50 PM

evaluated and this is used as the result of the evaluation of the
entire if function.

If the condition is false then the third argument, else-part, is
evaluated and this is the result of the if function. If there is no
third argument, the if function evaluates to nothing (the empty
string).

Note that only one of the then-part or the else-part will be
evaluated, never both. Thus, either can contain side-effects
(such as shell function calls, etc.)

$(or condition1[,condition2[,condition3…]])

The or function provides a “short-circuiting” OR operation.
Each argument is expanded, in order. If an argument expands
to a non-empty string the processing stops and the result of
the expansion is that string. If, after all arguments are
expanded, all of them are false (empty), then the result of the
expansion is the empty string.

$(and condition1[,condition2[,condition3…]])

The and function provides a “short-circuiting” AND operation.
Each argument is expanded, in order. If an argument expands
to an empty string the processing stops and the result of the
expansion is the empty string. If all arguments expand to a
non-empty string then the result of the expansion is the
expansion of the last argument.

Next: File Function, Previous: Conditional Functions, Up:

Functions [Contents][Index]

8.5 The foreach Function

The foreach function is very different from other functions. It causes
one piece of text to be used repeatedly, each time with a different
substitution performed on it. It resembles the for command in the
shell sh and the foreach command in the C-shell csh.

The syntax of the foreach function is:

$(foreach var,list,text)

The first two arguments, var and list, are expanded before
anything else is done; note that the last argument, text, is not

GNU make https://www.gnu.org/software/make/manual/ma...

145 of 322 06/08/18, 2:50 PM

expanded at the same time. Then for each word of the expanded
value of list, the variable named by the expanded value of var is set
to that word, and text is expanded. Presumably text contains
references to that variable, so its expansion will be different each
time.

The result is that text is expanded as many times as there are
whitespace-separated words in list. The multiple expansions of text
are concatenated, with spaces between them, to make the result of
foreach.

This simple example sets the variable ‘files’ to the list of all files in
the directories in the list ‘dirs’:

dirs := a b c d
files := $(foreach dir,$(dirs),$(wildcard $(dir)/*))

Here text is ‘$(wildcard $(dir)/*)’. The first repetition finds the value
‘a’ for dir, so it produces the same result as ‘$(wildcard a/*)’; the
second repetition produces the result of ‘$(wildcard b/*)’; and the
third, that of ‘$(wildcard c/*)’.

This example has the same result (except for setting ‘dirs’) as the
following example:

files := $(wildcard a/* b/* c/* d/*)

When text is complicated, you can improve readability by giving it
a name, with an additional variable:

find_files = $(wildcard $(dir)/*)
dirs := a b c d
files := $(foreach dir,$(dirs),$(find_files))

Here we use the variable find_files this way. We use plain ‘=’ to
define a recursively-expanding variable, so that its value contains
an actual function call to be re-expanded under the control of
foreach; a simply-expanded variable would not do, since wildcard
would be called only once at the time of defining find_files.

The foreach function has no permanent effect on the variable var; its
value and flavor after the foreach function call are the same as they
were beforehand. The other values which are taken from list are in
effect only temporarily, during the execution of foreach. The variable

GNU make https://www.gnu.org/software/make/manual/ma...

146 of 322 06/08/18, 2:50 PM

var is a simply-expanded variable during the execution of foreach. If
var was undefined before the foreach function call, it is undefined
after the call. See The Two Flavors of Variables.

You must take care when using complex variable expressions that
result in variable names because many strange things are valid
variable names, but are probably not what you intended. For
example,

files := $(foreach Esta-escrito-en-espanol!,b c ch,$(find_files))

might be useful if the value of find_files references the variable
whose name is ‘Esta-escrito-en-espanol!’ (es un nombre bastante
largo, no?), but it is more likely to be a mistake.

Next: Call Function, Previous: Foreach Function, Up: Functions [

Contents][Index]

8.6 The file Function

The file function allows the makefile to write to or read from a file.
Two modes of writing are supported: overwrite, where the text is
written to the beginning of the file and any existing content is lost,
and append, where the text is written to the end of the file,
preserving the existing content. In both cases the file is created if
it does not exist. It is a fatal error if the file cannot be opened for
writing, or if the write operation fails. The file function expands to
the empty string when writing to a file.

When reading from a file, the file function expands to the verbatim
contents of the file, except that the final newline (if there is one)
will be stripped. Attempting to read from a non-existent file
expands to the empty string.

The syntax of the file function is:

$(file op filename[,text])

When the file function is evaluated all its arguments are expanded
first, then the file indicated by filename will be opened in the mode
described by op.

The operator op can be > to indicate the file will be overwritten
with new content, >> to indicate the current contents of the file will

GNU make https://www.gnu.org/software/make/manual/ma...

147 of 322 06/08/18, 2:50 PM

be appended to, or < to indicate the contents of the file will be read
in. The filename specifies the file to be written to or read from.
There may optionally be whitespace between the operator and the
file name.

When reading files, it is an error to provide a text value.

When writing files, text will be written to the file. If text does not
already end in a newline a final newline will be written (even if text
is the empty string). If the text argument is not given at all,
nothing will be written.

For example, the file function can be useful if your build system
has a limited command line size and your recipe runs a command
that can accept arguments from a file as well. Many commands use
the convention that an argument prefixed with an @ specifies a file
containing more arguments. Then you might write your recipe in
this way:

program: $(OBJECTS)
 $(file >$@.in,$^)
 $(CMD) $(CMDFLAGS) @$@.in
 @rm $@.in

If the command required each argument to be on a separate line of
the input file, you might write your recipe like this:

program: $(OBJECTS)
 $(file >$@.in) $(foreach O,,(file >>$@.in,$O))
 $(CMD) $(CMDFLAGS) @$@.in
 @rm $@.in

Next: Value Function, Previous: File Function, Up: Functions [

Contents][Index]

8.7 The call Function

The call function is unique in that it can be used to create new
parameterized functions. You can write a complex expression as
the value of a variable, then use call to expand it with different
values.

The syntax of the call function is:

GNU make https://www.gnu.org/software/make/manual/ma...

148 of 322 06/08/18, 2:50 PM

$(call variable,param,param,…)

When make expands this function, it assigns each param to
temporary variables $(1), $(2), etc. The variable $(0) will contain
variable. There is no maximum number of parameter arguments.
There is no minimum, either, but it doesn’t make sense to use call
with no parameters.

Then variable is expanded as a make variable in the context of these
temporary assignments. Thus, any reference to $(1) in the value of
variable will resolve to the first param in the invocation of call.

Note that variable is the name of a variable, not a reference to that
variable. Therefore you would not normally use a ‘$’ or parentheses
when writing it. (You can, however, use a variable reference in the
name if you want the name not to be a constant.)

If variable is the name of a built-in function, the built-in function is
always invoked (even if a make variable by that name also exists).

The call function expands the param arguments before assigning
them to temporary variables. This means that variable values
containing references to built-in functions that have special
expansion rules, like foreach or if, may not work as you expect.

Some examples may make this clearer.

This macro simply reverses its arguments:

reverse = $(2) $(1)

foo = $(call reverse,a,b)

Here foo will contain ‘b a’.

This one is slightly more interesting: it defines a macro to search
for the first instance of a program in PATH:

pathsearch = $(firstword $(wildcard $(addsuffix /$(1),$(subst :, ,$(PATH)))))

LS := $(call pathsearch,ls)

Now the variable LS contains /bin/ls or similar.

The call function can be nested. Each recursive invocation gets its
own local values for $(1), etc. that mask the values of higher-level
call. For example, here is an implementation of a map function:

map = $(foreach a,$(2),$(call $(1),$(a)))

GNU make https://www.gnu.org/software/make/manual/ma...

149 of 322 06/08/18, 2:50 PM

Now you can map a function that normally takes only one
argument, such as origin, to multiple values in one step:

o = $(call map,origin,o map MAKE)

and end up with o containing something like ‘file file default’.

A final caution: be careful when adding whitespace to the
arguments to call. As with other functions, any whitespace
contained in the second and subsequent arguments is kept; this
can cause strange effects. It’s generally safest to remove all
extraneous whitespace when providing parameters to call.

Next: Eval Function, Previous: Call Function, Up: Functions [

Contents][Index]

8.8 The value Function

The value function provides a way for you to use the value of a
variable without having it expanded. Please note that this does not
undo expansions which have already occurred; for example if you
create a simply expanded variable its value is expanded during the
definition; in that case the value function will return the same result
as using the variable directly.

The syntax of the value function is:

$(value variable)

Note that variable is the name of a variable, not a reference to that
variable. Therefore you would not normally use a ‘$’ or parentheses
when writing it. (You can, however, use a variable reference in the
name if you want the name not to be a constant.)

The result of this function is a string containing the value of
variable, without any expansion occurring. For example, in this
makefile:

FOO = $PATH

all:
 @echo $(FOO)
 @echo $(value FOO)

GNU make https://www.gnu.org/software/make/manual/ma...

150 of 322 06/08/18, 2:50 PM

The first output line would be ATH, since the “$P” would be
expanded as a make variable, while the second output line would be
the current value of your $PATH environment variable, since the value
function avoided the expansion.

The value function is most often used in conjunction with the eval
function (see Eval Function).

Next: Origin Function, Previous: Value Function, Up: Functions [

Contents][Index]

8.9 The eval Function

The eval function is very special: it allows you to define new
makefile constructs that are not constant; which are the result of
evaluating other variables and functions. The argument to the eval
function is expanded, then the results of that expansion are parsed
as makefile syntax. The expanded results can define new make
variables, targets, implicit or explicit rules, etc.

The result of the eval function is always the empty string; thus, it
can be placed virtually anywhere in a makefile without causing
syntax errors.

It’s important to realize that the eval argument is expanded twice;
first by the eval function, then the results of that expansion are
expanded again when they are parsed as makefile syntax. This
means you may need to provide extra levels of escaping for “$”
characters when using eval. The value function (see Value Function)
can sometimes be useful in these situations, to circumvent
unwanted expansions.

Here is an example of how eval can be used; this example combines
a number of concepts and other functions. Although it might seem
overly complex to use eval in this example, rather than just writing
out the rules, consider two things: first, the template definition (in
PROGRAM_template) could need to be much more complex than it is
here; and second, you might put the complex, “generic” part of this
example into another makefile, then include it in all the individual
makefiles. Now your individual makefiles are quite
straightforward.

PROGRAMS = server client

GNU make https://www.gnu.org/software/make/manual/ma...

151 of 322 06/08/18, 2:50 PM

server_OBJS = server.o server_priv.o server_access.o
server_LIBS = priv protocol

client_OBJS = client.o client_api.o client_mem.o
client_LIBS = protocol

Everything after this is generic

.PHONY: all
all: $(PROGRAMS)

define PROGRAM_template =
 $(1): $$($(1)_OBJS) $$($(1)_LIBS:%=-l%)
 ALL_OBJS += $$($(1)_OBJS)
endef

$(foreach prog,$(PROGRAMS),$(eval $(call PROGRAM_template,$(prog))))

$(PROGRAMS):
 $(LINK.o) $^ $(LDLIBS) -o $@

clean:
 rm -f $(ALL_OBJS) $(PROGRAMS)

Next: Flavor Function, Previous: Eval Function, Up: Functions [

Contents][Index]

8.10 The origin Function

The origin function is unlike most other functions in that it does not
operate on the values of variables; it tells you something about a
variable. Specifically, it tells you where it came from.

The syntax of the origin function is:

$(origin variable)

Note that variable is the name of a variable to inquire about, not a
reference to that variable. Therefore you would not normally use a
‘$’ or parentheses when writing it. (You can, however, use a
variable reference in the name if you want the name not to be a
constant.)

The result of this function is a string telling you how the variable
variable was defined:

‘undefined’

if variable was never defined.

GNU make https://www.gnu.org/software/make/manual/ma...

152 of 322 06/08/18, 2:50 PM

‘default’

if variable has a default definition, as is usual with CC and so on.
See Variables Used by Implicit Rules. Note that if you have
redefined a default variable, the origin function will return the
origin of the later definition.

‘environment’

if variable was inherited from the environment provided to make.

‘environment override’

if variable was inherited from the environment provided to make,
and is overriding a setting for variable in the makefile as a
result of the ‘-e’ option (see Summary of Options).

‘file’

if variable was defined in a makefile.

‘command line’

if variable was defined on the command line.

‘override’

if variable was defined with an override directive in a makefile
(see The override Directive).

‘automatic’

if variable is an automatic variable defined for the execution of
the recipe for each rule (see Automatic Variables).

This information is primarily useful (other than for your curiosity)
to determine if you want to believe the value of a variable. For
example, suppose you have a makefile foo that includes another
makefile bar. You want a variable bletch to be defined in bar if you
run the command ‘make -f bar’, even if the environment contains a
definition of bletch. However, if foo defined bletch before including
bar, you do not want to override that definition. This could be done
by using an override directive in foo, giving that definition
precedence over the later definition in bar; unfortunately, the
override directive would also override any command line definitions.
So, bar could include:

ifdef bletch
ifeq "$(origin bletch)" "environment"
bletch = barf, gag, etc.

GNU make https://www.gnu.org/software/make/manual/ma...

153 of 322 06/08/18, 2:50 PM

endif
endif

If bletch has been defined from the environment, this will redefine
it.

If you want to override a previous definition of bletch if it came
from the environment, even under ‘-e’, you could instead write:

ifneq "$(findstring environment,$(origin bletch))" ""
bletch = barf, gag, etc.
endif

Here the redefinition takes place if ‘$(origin bletch)’ returns either
‘environment’ or ‘environment override’. See Functions for String
Substitution and Analysis.

Next: Make Control Functions, Previous: Origin Function, Up:

Functions [Contents][Index]

8.11 The flavor Function

The flavor function, like the origin function, does not operate on the
values of variables but rather it tells you something about a
variable. Specifically, it tells you the flavor of a variable (see The
Two Flavors of Variables).

The syntax of the flavor function is:

$(flavor variable)

Note that variable is the name of a variable to inquire about, not a
reference to that variable. Therefore you would not normally use a
‘$’ or parentheses when writing it. (You can, however, use a
variable reference in the name if you want the name not to be a
constant.)

The result of this function is a string that identifies the flavor of the
variable variable:

‘undefined’

if variable was never defined.

GNU make https://www.gnu.org/software/make/manual/ma...

154 of 322 06/08/18, 2:50 PM

‘recursive’

if variable is a recursively expanded variable.

‘simple’

if variable is a simply expanded variable.

Next: Shell Function, Previous: Flavor Function, Up: Functions [

Contents][Index]

8.12 Functions That Control Make

These functions control the way make runs. Generally, they are
used to provide information to the user of the makefile or to cause
make to stop if some sort of environmental error is detected.

$(error text…)

Generates a fatal error where the message is text. Note that
the error is generated whenever this function is evaluated. So,
if you put it inside a recipe or on the right side of a recursive
variable assignment, it won’t be evaluated until later. The text
will be expanded before the error is generated.

For example,

ifdef ERROR1
$(error error is $(ERROR1))
endif

will generate a fatal error during the read of the makefile if the
make variable ERROR1 is defined. Or,

ERR = $(error found an error!)

.PHONY: err
err: ; $(ERR)

will generate a fatal error while make is running, if the err target
is invoked.

$(warning text…)

This function works similarly to the error function, above,
except that make doesn’t exit. Instead, text is expanded and the
resulting message is displayed, but processing of the makefile

GNU make https://www.gnu.org/software/make/manual/ma...

155 of 322 06/08/18, 2:50 PM

continues.

The result of the expansion of this function is the empty string.

$(info text…)

This function does nothing more than print its (expanded)
argument(s) to standard output. No makefile name or line
number is added. The result of the expansion of this function is
the empty string.

Next: Guile Function, Previous: Make Control Functions, Up:

Functions [Contents][Index]

8.13 The shell Function

The shell function is unlike any other function other than the
wildcard function (see The Function wildcard) in that it communicates
with the world outside of make.

The shell function performs the same function that backquotes (‘`’)
perform in most shells: it does command expansion. This means
that it takes as an argument a shell command and evaluates to the
output of the command. The only processing make does on the result
is to convert each newline (or carriage-return / newline pair) to a
single space. If there is a trailing (carriage-return and) newline it
will simply be removed.

The commands run by calls to the shell function are run when the
function calls are expanded (see How make Reads a Makefile).
Because this function involves spawning a new shell, you should
carefully consider the performance implications of using the shell
function within recursively expanded variables vs. simply expanded
variables (see The Two Flavors of Variables).

After the shell function or ‘!=’ assignment operator is used, its exit
status is placed in the .SHELLSTATUS variable.

Here are some examples of the use of the shell function:

contents := $(shell cat foo)

sets contents to the contents of the file foo, with a space (rather than
a newline) separating each line.

GNU make https://www.gnu.org/software/make/manual/ma...

156 of 322 06/08/18, 2:50 PM

files := $(shell echo *.c)

sets files to the expansion of ‘*.c’. Unless make is using a very
strange shell, this has the same result as ‘$(wildcard *.c)’ (as long as
at least one ‘.c’ file exists).

Previous: Shell Function, Up: Functions [Contents][Index]

8.14 The guile Function

If GNU make is built with support for GNU Guile as an embedded
extension language then the guile function will be available. The
guile function takes one argument which is first expanded by make in
the normal fashion, then passed to the GNU Guile evaluator. The
result of the evaluator is converted into a string and used as the
expansion of the guile function in the makefile. See GNU Guile
Integration for details on writing extensions to make in Guile.

You can determine whether GNU Guile support is available by
checking the .FEATURES variable for the word guile.

Next: Implicit Rules, Previous: Functions, Up: Top [Contents][

Index]

9 How to Run make

A makefile that says how to recompile a program can be used in
more than one way. The simplest use is to recompile every file that
is out of date. Usually, makefiles are written so that if you run make
with no arguments, it does just that.

But you might want to update only some of the files; you might
want to use a different compiler or different compiler options; you
might want just to find out which files are out of date without
changing them.

By giving arguments when you run make, you can do any of these
things and many others.

The exit status of make is always one of three values:

0

GNU make https://www.gnu.org/software/make/manual/ma...

157 of 322 06/08/18, 2:50 PM

The exit status is zero if make is successful.

2

The exit status is two if make encounters any errors. It will print
messages describing the particular errors.

1

The exit status is one if you use the ‘-q’ flag and make
determines that some target is not already up to date. See
Instead of Executing Recipes.

• Makefile
Arguments:

How to specify which makefile to use.

• Goals:

How to use goal arguments to specify which
parts of the makefile to use.

• Instead of
Execution:

How to use mode flags to specify what kind
of thing to do with the recipes in the
makefile other than simply execute them.

• Avoiding
Compilation:

How to avoid recompiling certain files.

• Overriding:

How to override a variable to specify an
alternate compiler and other things.

• Testing:

How to proceed past some errors, to test
compilation.

• Options
Summary:

Summary of Options

Next: Goals, Previous: Running, Up: Running [Contents][Index]

9.1 Arguments to Specify the Makefile

The way to specify the name of the makefile is with the ‘-f’ or
‘--file’ option (‘--makefile’ also works). For example, ‘-f altmake’ says
to use the file altmake as the makefile.

If you use the ‘-f’ flag several times and follow each ‘-f’ with an
argument, all the specified files are used jointly as makefiles.

If you do not use the ‘-f’ or ‘--file’ flag, the default is to try
GNUmakefile, makefile, and Makefile, in that order, and use the first of
these three which exists or can be made (see Writing Makefiles).

GNU make https://www.gnu.org/software/make/manual/ma...

158 of 322 06/08/18, 2:50 PM

Next: Instead of Execution, Previous: Makefile Arguments, Up:

Running [Contents][Index]

9.2 Arguments to Specify the Goals

The goals are the targets that make should strive ultimately to
update. Other targets are updated as well if they appear as
prerequisites of goals, or prerequisites of prerequisites of goals,
etc.

By default, the goal is the first target in the makefile (not counting
targets that start with a period). Therefore, makefiles are usually
written so that the first target is for compiling the entire program
or programs they describe. If the first rule in the makefile has
several targets, only the first target in the rule becomes the default
goal, not the whole list. You can manage the selection of the
default goal from within your makefile using the .DEFAULT_GOAL
variable (see Other Special Variables).

You can also specify a different goal or goals with command line
arguments to make. Use the name of the goal as an argument. If you
specify several goals, make processes each of them in turn, in the
order you name them.

Any target in the makefile may be specified as a goal (unless it
starts with ‘-’ or contains an ‘=’, in which case it will be parsed as a
switch or variable definition, respectively). Even targets not in the
makefile may be specified, if make can find implicit rules that say
how to make them.

Make will set the special variable MAKECMDGOALS to the list of goals you
specified on the command line. If no goals were given on the
command line, this variable is empty. Note that this variable should
be used only in special circumstances.

An example of appropriate use is to avoid including .d files during
clean rules (see Automatic Prerequisites), so make won’t create them
only to immediately remove them again:

sources = foo.c bar.c

ifneq ($(MAKECMDGOALS),clean)
include $(sources:.c=.d)
endif

GNU make https://www.gnu.org/software/make/manual/ma...

159 of 322 06/08/18, 2:50 PM

One use of specifying a goal is if you want to compile only a part of
the program, or only one of several programs. Specify as a goal
each file that you wish to remake. For example, consider a
directory containing several programs, with a makefile that starts
like this:

.PHONY: all
all: size nm ld ar as

If you are working on the program size, you might want to say
‘make size’ so that only the files of that program are recompiled.

Another use of specifying a goal is to make files that are not
normally made. For example, there may be a file of debugging
output, or a version of the program that is compiled specially for
testing, which has a rule in the makefile but is not a prerequisite of
the default goal.

Another use of specifying a goal is to run the recipe associated
with a phony target (see Phony Targets) or empty target (see
Empty Target Files to Record Events). Many makefiles contain a
phony target named clean which deletes everything except source
files. Naturally, this is done only if you request it explicitly with
‘make clean’. Following is a list of typical phony and empty target
names. See Standard Targets, for a detailed list of all the standard
target names which GNU software packages use.

all

Make all the top-level targets the makefile knows about.

clean

Delete all files that are normally created by running make.

mostlyclean

Like ‘clean’, but may refrain from deleting a few files that
people normally don’t want to recompile. For example, the
‘mostlyclean’ target for GCC does not delete libgcc.a, because
recompiling it is rarely necessary and takes a lot of time.

distclean

realclean

clobber

GNU make https://www.gnu.org/software/make/manual/ma...

160 of 322 06/08/18, 2:50 PM

Any of these targets might be defined to delete more files than
‘clean’ does. For example, this would delete configuration files
or links that you would normally create as preparation for
compilation, even if the makefile itself cannot create these
files.

install

Copy the executable file into a directory that users typically
search for commands; copy any auxiliary files that the
executable uses into the directories where it will look for them.

print

Print listings of the source files that have changed.

tar

Create a tar file of the source files.

shar

Create a shell archive (shar file) of the source files.

dist

Create a distribution file of the source files. This might be a tar
file, or a shar file, or a compressed version of one of the above,
or even more than one of the above.

TAGS

Update a tags table for this program.

check

test

Perform self tests on the program this makefile builds.

Next: Avoiding Compilation, Previous: Goals, Up: Running [

Contents][Index]

9.3 Instead of Executing Recipes

The makefile tells make how to tell whether a target is up to date,
and how to update each target. But updating the targets is not
always what you want. Certain options specify other activities for
make.

GNU make https://www.gnu.org/software/make/manual/ma...

161 of 322 06/08/18, 2:50 PM

‘-n’

‘--just-print’

‘--dry-run’

‘--recon’

“No-op”. Causes make to print the recipes that are needed to
make the targets up to date, but not actually execute them.
Note that some recipes are still executed, even with this flag
(see How the MAKE Variable Works). Also any recipes needed to
update included makefiles are still executed (see How
Makefiles Are Remade).

‘-t’

‘--touch’

“Touch”. Marks targets as up to date without actually changing
them. In other words, make pretends to update the targets but
does not really change their contents; instead only their
modified times are updated.

‘-q’

‘--question’

“Question”. Silently check whether the targets are up to date,
but do not execute recipes; the exit code shows whether any
updates are needed.

‘-W file’

‘--what-if=file’

‘--assume-new=file’

‘--new-file=file’

“What if”. Each ‘-W’ flag is followed by a file name. The given
files’ modification times are recorded by make as being the
present time, although the actual modification times remain
the same. You can use the ‘-W’ flag in conjunction with the ‘-n’
flag to see what would happen if you were to modify specific
files.

With the ‘-n’ flag, make prints the recipe that it would normally
execute but usually does not execute it.

With the ‘-t’ flag, make ignores the recipes in the rules and uses (in
effect) the command touch for each target that needs to be remade.

GNU make https://www.gnu.org/software/make/manual/ma...

162 of 322 06/08/18, 2:50 PM

The touch command is also printed, unless ‘-s’ or .SILENT is used. For
speed, make does not actually invoke the program touch. It does the
work directly.

With the ‘-q’ flag, make prints nothing and executes no recipes, but
the exit status code it returns is zero if and only if the targets to be
considered are already up to date. If the exit status is one, then
some updating needs to be done. If make encounters an error, the
exit status is two, so you can distinguish an error from a target
that is not up to date.

It is an error to use more than one of these three flags in the same
invocation of make.

The ‘-n’, ‘-t’, and ‘-q’ options do not affect recipe lines that begin
with ‘+’ characters or contain the strings ‘$(MAKE)’ or ‘${MAKE}’. Note
that only the line containing the ‘+’ character or the strings ‘$(MAKE)’
or ‘${MAKE}’ is run regardless of these options. Other lines in the
same rule are not run unless they too begin with ‘+’ or contain
‘$(MAKE)’ or ‘${MAKE}’ (See How the MAKE Variable Works.)

The ‘-t’ flag prevents phony targets (see Phony Targets) from being
updated, unless there are recipe lines beginning with ‘+’ or
containing ‘$(MAKE)’ or ‘${MAKE}’.

The ‘-W’ flag provides two features:

If you also use the ‘-n’ or ‘-q’ flag, you can see what make
would do if you were to modify some files.

Without the ‘-n’ or ‘-q’ flag, when make is actually executing
recipes, the ‘-W’ flag can direct make to act as if some files had
been modified, without actually running the recipes for those
files.

Note that the options ‘-p’ and ‘-v’ allow you to obtain other
information about make or about the makefiles in use (see Summary
of Options).

Next: Overriding, Previous: Instead of Execution, Up: Running [

Contents][Index]

9.4 Avoiding Recompilation of Some Files

GNU make https://www.gnu.org/software/make/manual/ma...

163 of 322 06/08/18, 2:50 PM

Sometimes you may have changed a source file but you do not
want to recompile all the files that depend on it. For example,
suppose you add a macro or a declaration to a header file that
many other files depend on. Being conservative, make assumes that
any change in the header file requires recompilation of all
dependent files, but you know that they do not need to be
recompiled and you would rather not waste the time waiting for
them to compile.

If you anticipate the problem before changing the header file, you
can use the ‘-t’ flag. This flag tells make not to run the recipes in the
rules, but rather to mark the target up to date by changing its last-
modification date. You would follow this procedure:

Use the command ‘make’ to recompile the source files that
really need recompilation, ensuring that the object files are
up-to-date before you begin.

1.

Make the changes in the header files.2.

Use the command ‘make -t’ to mark all the object files as up to
date. The next time you run make, the changes in the header
files will not cause any recompilation.

3.

If you have already changed the header file at a time when some
files do need recompilation, it is too late to do this. Instead, you
can use the ‘-o file’ flag, which marks a specified file as “old” (see
Summary of Options). This means that the file itself will not be
remade, and nothing else will be remade on its account. Follow this
procedure:

Recompile the source files that need compilation for reasons
independent of the particular header file, with ‘make -o
headerfile’. If several header files are involved, use a separate
‘-o’ option for each header file.

1.

Touch all the object files with ‘make -t’.2.

Next: Testing, Previous: Avoiding Compilation, Up: Running [

Contents][Index]

9.5 Overriding Variables

An argument that contains ‘=’ specifies the value of a variable: ‘v=x’

GNU make https://www.gnu.org/software/make/manual/ma...

164 of 322 06/08/18, 2:50 PM

sets the value of the variable v to x. If you specify a value in this
way, all ordinary assignments of the same variable in the makefile
are ignored; we say they have been overridden by the command
line argument.

The most common way to use this facility is to pass extra flags to
compilers. For example, in a properly written makefile, the variable
CFLAGS is included in each recipe that runs the C compiler, so a file
foo.c would be compiled something like this:

cc -c $(CFLAGS) foo.c

Thus, whatever value you set for CFLAGS affects each compilation
that occurs. The makefile probably specifies the usual value for
CFLAGS, like this:

CFLAGS=-g

Each time you run make, you can override this value if you wish. For
example, if you say ‘make CFLAGS='-g -O'’, each C compilation will be
done with ‘cc -c -g -O’. (This also illustrates how you can use
quoting in the shell to enclose spaces and other special characters
in the value of a variable when you override it.)

The variable CFLAGS is only one of many standard variables that exist
just so that you can change them this way. See Variables Used by
Implicit Rules, for a complete list.

You can also program the makefile to look at additional variables of
your own, giving the user the ability to control other aspects of
how the makefile works by changing the variables.

When you override a variable with a command line argument, you
can define either a recursively-expanded variable or a simply-
expanded variable. The examples shown above make a recursively-
expanded variable; to make a simply-expanded variable, write ‘:=’
or ‘::=’ instead of ‘=’. But, unless you want to include a variable
reference or function call in the value that you specify, it makes no
difference which kind of variable you create.

There is one way that the makefile can change a variable that you
have overridden. This is to use the override directive, which is a line
that looks like this: ‘override variable = value’ (see The override
Directive).

GNU make https://www.gnu.org/software/make/manual/ma...

165 of 322 06/08/18, 2:50 PM

Next: Options Summary, Previous: Overriding, Up: Running [

Contents][Index]

9.6 Testing the Compilation of a Program

Normally, when an error happens in executing a shell command,
make gives up immediately, returning a nonzero status. No further
recipes are executed for any target. The error implies that the goal
cannot be correctly remade, and make reports this as soon as it
knows.

When you are compiling a program that you have just changed,
this is not what you want. Instead, you would rather that make try
compiling every file that can be tried, to show you as many
compilation errors as possible.

On these occasions, you should use the ‘-k’ or ‘--keep-going’ flag.
This tells make to continue to consider the other prerequisites of the
pending targets, remaking them if necessary, before it gives up and
returns nonzero status. For example, after an error in compiling
one object file, ‘make -k’ will continue compiling other object files
even though it already knows that linking them will be impossible.
In addition to continuing after failed shell commands, ‘make -k’ will
continue as much as possible after discovering that it does not
know how to make a target or prerequisite file. This will always
cause an error message, but without ‘-k’, it is a fatal error (see
Summary of Options).

The usual behavior of make assumes that your purpose is to get the
goals up to date; once make learns that this is impossible, it might as
well report the failure immediately. The ‘-k’ flag says that the real
purpose is to test as much as possible of the changes made in the
program, perhaps to find several independent problems so that you
can correct them all before the next attempt to compile. This is
why Emacs’ M-x compile command passes the ‘-k’ flag by default.

Previous: Testing, Up: Running [Contents][Index]

9.7 Summary of Options

Here is a table of all the options make understands:

‘-b’

GNU make https://www.gnu.org/software/make/manual/ma...

166 of 322 06/08/18, 2:50 PM

‘-m’

These options are ignored for compatibility with other versions
of make.

‘-B’

‘--always-make’

Consider all targets out-of-date. GNU make proceeds to consider
targets and their prerequisites using the normal algorithms;
however, all targets so considered are always remade
regardless of the status of their prerequisites. To avoid infinite
recursion, if MAKE_RESTARTS (see Other Special Variables) is set to
a number greater than 0 this option is disabled when
considering whether to remake makefiles (see How Makefiles
Are Remade).

‘-C dir’

‘--directory=dir’

Change to directory dir before reading the makefiles. If
multiple ‘-C’ options are specified, each is interpreted relative
to the previous one: ‘-C / -C etc’ is equivalent to ‘-C /etc’. This is
typically used with recursive invocations of make (see Recursive
Use of make).

‘-d’

Print debugging information in addition to normal processing.
The debugging information says which files are being
considered for remaking, which file-times are being compared
and with what results, which files actually need to be remade,
which implicit rules are considered and which are applied
—everything interesting about how make decides what to do.
The -d option is equivalent to ‘--debug=a’ (see below).

‘--debug[=options]’

Print debugging information in addition to normal processing.
Various levels and types of output can be chosen. With no
arguments, print the “basic” level of debugging. Possible
arguments are below; only the first character is considered,
and values must be comma- or space-separated.

a (all)

All types of debugging output are enabled. This is

GNU make https://www.gnu.org/software/make/manual/ma...

167 of 322 06/08/18, 2:50 PM

equivalent to using ‘-d’.

b (basic)

Basic debugging prints each target that was found to be
out-of-date, and whether the build was successful or not.

v (verbose)

A level above ‘basic’; includes messages about which
makefiles were parsed, prerequisites that did not need to
be rebuilt, etc. This option also enables ‘basic’ messages.

i (implicit)

Prints messages describing the implicit rule searches for
each target. This option also enables ‘basic’ messages.

j (jobs)

Prints messages giving details on the invocation of specific
sub-commands.

m (makefile)

By default, the above messages are not enabled while
trying to remake the makefiles. This option enables
messages while rebuilding makefiles, too. Note that the
‘all’ option does enable this option. This option also
enables ‘basic’ messages.

n (none)

Disable all debugging currently enabled. If additional
debugging flags are encountered after this they will still
take effect.

‘-e’

‘--environment-overrides’

Give variables taken from the environment precedence over
variables from makefiles. See Variables from the Environment.

‘--eval=string’

Evaluate string as makefile syntax. This is a command-line
version of the eval function (see Eval Function). The evaluation
is performed after the default rules and variables have been
defined, but before any makefiles are read.

GNU make https://www.gnu.org/software/make/manual/ma...

168 of 322 06/08/18, 2:50 PM

‘-f file’

‘--file=file’

‘--makefile=file’

Read the file named file as a makefile. See Writing Makefiles.

‘-h’

‘--help’

Remind you of the options that make understands and then exit.

‘-i’

‘--ignore-errors’

Ignore all errors in recipes executed to remake files. See
Errors in Recipes.

‘-I dir’

‘--include-dir=dir’

Specifies a directory dir to search for included makefiles. See
Including Other Makefiles. If several ‘-I’ options are used to
specify several directories, the directories are searched in the
order specified.

‘-j [jobs]’

‘--jobs[=jobs]’

Specifies the number of recipes (jobs) to run simultaneously.
With no argument, make runs as many recipes simultaneously as
possible. If there is more than one ‘-j’ option, the last one is
effective. See Parallel Execution, for more information on how
recipes are run. Note that this option is ignored on MS-DOS.

‘-k’

‘--keep-going’

Continue as much as possible after an error. While the target
that failed, and those that depend on it, cannot be remade, the
other prerequisites of these targets can be processed all the
same. See Testing the Compilation of a Program.

‘-l [load]’

GNU make https://www.gnu.org/software/make/manual/ma...

169 of 322 06/08/18, 2:50 PM

‘--load-average[=load]’

‘--max-load[=load]’

Specifies that no new recipes should be started if there are
other recipes running and the load average is at least load (a
floating-point number). With no argument, removes a previous
load limit. See Parallel Execution.

‘-L’

‘--check-symlink-times’

On systems that support symbolic links, this option causes make
to consider the timestamps on any symbolic links in addition to
the timestamp on the file referenced by those links. When this
option is provided, the most recent timestamp among the file
and the symbolic links is taken as the modification time for this
target file.

‘-n’

‘--just-print’

‘--dry-run’

‘--recon’

Print the recipe that would be executed, but do not execute it
(except in certain circumstances). See Instead of Executing
Recipes.

‘-o file’

‘--old-file=file’

‘--assume-old=file’

Do not remake the file file even if it is older than its
prerequisites, and do not remake anything on account of
changes in file. Essentially the file is treated as very old and its
rules are ignored. See Avoiding Recompilation of Some Files.

‘-O[type]’

‘--output-sync[=type]’

Ensure that the complete output from each recipe is printed in
one uninterrupted sequence. This option is only useful when
using the --jobs option to run multiple recipes simultaneously

GNU make https://www.gnu.org/software/make/manual/ma...

170 of 322 06/08/18, 2:50 PM

(see Parallel Execution) Without this option output will be
displayed as it is generated by the recipes.

With no type or the type ‘target’, output from the entire recipe
of each target is grouped together. With the type ‘line’, output
from each line in the recipe is grouped together. With the type
‘recurse’, the output from an entire recursive make is grouped
together. With the type ‘none’, no output synchronization is
performed. See Output During Parallel Execution.

‘-p’

‘--print-data-base’

Print the data base (rules and variable values) that results
from reading the makefiles; then execute as usual or as
otherwise specified. This also prints the version information
given by the ‘-v’ switch (see below). To print the data base
without trying to remake any files, use ‘make -qp’. To print the
data base of predefined rules and variables, use
‘make -p -f /dev/null’. The data base output contains file name
and line number information for recipe and variable
definitions, so it can be a useful debugging tool in complex
environments.

‘-q’

‘--question’

“Question mode”. Do not run any recipes, or print anything;
just return an exit status that is zero if the specified targets are
already up to date, one if any remaking is required, or two if an
error is encountered. See Instead of Executing Recipes.

‘-r’

‘--no-builtin-rules’

Eliminate use of the built-in implicit rules (see Using Implicit
Rules). You can still define your own by writing pattern rules
(see Defining and Redefining Pattern Rules). The ‘-r’ option
also clears out the default list of suffixes for suffix rules (see
Old-Fashioned Suffix Rules). But you can still define your own
suffixes with a rule for .SUFFIXES, and then define your own
suffix rules. Note that only rules are affected by the -r option;
default variables remain in effect (see Variables Used by
Implicit Rules); see the ‘-R’ option below.

GNU make https://www.gnu.org/software/make/manual/ma...

171 of 322 06/08/18, 2:50 PM

‘-R’

‘--no-builtin-variables’

Eliminate use of the built-in rule-specific variables (see
Variables Used by Implicit Rules). You can still define your
own, of course. The ‘-R’ option also automatically enables the
‘-r’ option (see above), since it doesn’t make sense to have
implicit rules without any definitions for the variables that they
use.

‘-s’

‘--silent’

‘--quiet’

Silent operation; do not print the recipes as they are executed.
See Recipe Echoing.

‘-S’

‘--no-keep-going’

‘--stop’

Cancel the effect of the ‘-k’ option. This is never necessary
except in a recursive make where ‘-k’ might be inherited from
the top-level make via MAKEFLAGS (see Recursive Use of make) or if
you set ‘-k’ in MAKEFLAGS in your environment.

‘-t’

‘--touch’

Touch files (mark them up to date without really changing
them) instead of running their recipes. This is used to pretend
that the recipes were done, in order to fool future invocations
of make. See Instead of Executing Recipes.

‘--trace’

Show tracing information for make execution. Prints the entire
recipe to be executed, even for recipes that are normally silent
(due to .SILENT or ‘@’). Also prints the makefile name and line
number where the recipe was defined, and information on why
the target is being rebuilt.

‘-v’

GNU make https://www.gnu.org/software/make/manual/ma...

172 of 322 06/08/18, 2:50 PM

‘--version’

Print the version of the make program plus a copyright, a list of
authors, and a notice that there is no warranty; then exit.

‘-w’

‘--print-directory’

Print a message containing the working directory both before
and after executing the makefile. This may be useful for
tracking down errors from complicated nests of recursive make
commands. See Recursive Use of make. (In practice, you rarely
need to specify this option since ‘make’ does it for you; see The
‘--print-directory’ Option.)

‘--no-print-directory’

Disable printing of the working directory under -w. This option
is useful when -w is turned on automatically, but you do not
want to see the extra messages. See The ‘--print-directory’
Option.

‘-W file’

‘--what-if=file’

‘--new-file=file’

‘--assume-new=file’

Pretend that the target file has just been modified. When used
with the ‘-n’ flag, this shows you what would happen if you
were to modify that file. Without ‘-n’, it is almost the same as
running a touch command on the given file before running make,
except that the modification time is changed only in the
imagination of make. See Instead of Executing Recipes.

‘--warn-undefined-variables’

Issue a warning message whenever make sees a reference to an
undefined variable. This can be helpful when you are trying to
debug makefiles which use variables in complex ways.

Next: Archives, Previous: Running, Up: Top [Contents][Index]

10 Using Implicit Rules

GNU make https://www.gnu.org/software/make/manual/ma...

173 of 322 06/08/18, 2:50 PM

Certain standard ways of remaking target files are used very often.
For example, one customary way to make an object file is from a C
source file using the C compiler, cc.

Implicit rules tell make how to use customary techniques so that you
do not have to specify them in detail when you want to use them.
For example, there is an implicit rule for C compilation. File names
determine which implicit rules are run. For example, C compilation
typically takes a .c file and makes a .o file. So make applies the
implicit rule for C compilation when it sees this combination of file
name endings.

A chain of implicit rules can apply in sequence; for example, make
will remake a .o file from a .y file by way of a .c file.

The built-in implicit rules use several variables in their recipes so
that, by changing the values of the variables, you can change the
way the implicit rule works. For example, the variable CFLAGS
controls the flags given to the C compiler by the implicit rule for C
compilation.

You can define your own implicit rules by writing pattern rules.

Suffix rules are a more limited way to define implicit rules. Pattern
rules are more general and clearer, but suffix rules are retained for
compatibility.

• Using Implicit:

How to use an existing implicit rule to get
the recipes for updating a file.

• Catalogue of
Rules:

A list of built-in rules.

• Implicit
Variables:

How to change what predefined rules do.

• Chained Rules: How to use a chain of implicit rules.

• Pattern Rules: How to define new implicit rules.

• Last Resort:

How to define a recipe for rules which
cannot find any.

• Suffix Rules: The old-fashioned style of implicit rule.

• Implicit Rule
Search:

The precise algorithm for applying implicit
rules.

Next: Catalogue of Rules, Previous: Implicit Rules, Up:

GNU make https://www.gnu.org/software/make/manual/ma...

174 of 322 06/08/18, 2:50 PM

Implicit Rules [Contents][Index]

10.1 Using Implicit Rules

To allow make to find a customary method for updating a target file,
all you have to do is refrain from specifying recipes yourself. Either
write a rule with no recipe, or don’t write a rule at all. Then make
will figure out which implicit rule to use based on which kind of
source file exists or can be made.

For example, suppose the makefile looks like this:

foo : foo.o bar.o
 cc -o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)

Because you mention foo.o but do not give a rule for it, make will
automatically look for an implicit rule that tells how to update it.
This happens whether or not the file foo.o currently exists.

If an implicit rule is found, it can supply both a recipe and one or
more prerequisites (the source files). You would want to write a
rule for foo.o with no recipe if you need to specify additional
prerequisites, such as header files, that the implicit rule cannot
supply.

Each implicit rule has a target pattern and prerequisite patterns.
There may be many implicit rules with the same target pattern. For
example, numerous rules make ‘.o’ files: one, from a ‘.c’ file with
the C compiler; another, from a ‘.p’ file with the Pascal compiler;
and so on. The rule that actually applies is the one whose
prerequisites exist or can be made. So, if you have a file foo.c, make
will run the C compiler; otherwise, if you have a file foo.p, make will
run the Pascal compiler; and so on.

Of course, when you write the makefile, you know which implicit
rule you want make to use, and you know it will choose that one
because you know which possible prerequisite files are supposed
to exist. See Catalogue of Built-In Rules, for a catalogue of all the
predefined implicit rules.

Above, we said an implicit rule applies if the required prerequisites
“exist or can be made”. A file “can be made” if it is mentioned
explicitly in the makefile as a target or a prerequisite, or if an
implicit rule can be recursively found for how to make it. When an
implicit prerequisite is the result of another implicit rule, we say

GNU make https://www.gnu.org/software/make/manual/ma...

175 of 322 06/08/18, 2:50 PM

that chaining is occurring. See Chains of Implicit Rules.

In general, make searches for an implicit rule for each target, and
for each double-colon rule, that has no recipe. A file that is
mentioned only as a prerequisite is considered a target whose rule
specifies nothing, so implicit rule search happens for it. See
Implicit Rule Search Algorithm, for the details of how the search is
done.

Note that explicit prerequisites do not influence implicit rule
search. For example, consider this explicit rule:

foo.o: foo.p

The prerequisite on foo.p does not necessarily mean that make will
remake foo.o according to the implicit rule to make an object file, a
.o file, from a Pascal source file, a .p file. For example, if foo.c also
exists, the implicit rule to make an object file from a C source file is
used instead, because it appears before the Pascal rule in the list
of predefined implicit rules (see Catalogue of Built-In Rules).

If you do not want an implicit rule to be used for a target that has
no recipe, you can give that target an empty recipe by writing a
semicolon (see Defining Empty Recipes).

Next: Implicit Variables, Previous: Using Implicit, Up:

Implicit Rules [Contents][Index]

10.2 Catalogue of Built-In Rules

Here is a catalogue of predefined implicit rules which are always
available unless the makefile explicitly overrides or cancels them.
See Canceling Implicit Rules, for information on canceling or
overriding an implicit rule. The ‘-r’ or ‘--no-builtin-rules’ option
cancels all predefined rules.

This manual only documents the default rules available on POSIX-
based operating systems. Other operating systems, such as VMS,
Windows, OS/2, etc. may have different sets of default rules. To see
the full list of default rules and variables available in your version
of GNU make, run ‘make -p’ in a directory with no makefile.

Not all of these rules will always be defined, even when the ‘-r’

GNU make https://www.gnu.org/software/make/manual/ma...

176 of 322 06/08/18, 2:50 PM

option is not given. Many of the predefined implicit rules are
implemented in make as suffix rules, so which ones will be defined
depends on the suffix list (the list of prerequisites of the special
target .SUFFIXES). The default suffix list is: .out, .a, .ln, .o, .c, .cc, .C,
.cpp, .p, .f, .F, .m, .r, .y, .l, .ym, .lm, .s, .S, .mod, .sym, .def, .h, .info, .dvi,
.tex, .texinfo, .texi, .txinfo, .w, .ch .web, .sh, .elc, .el. All of the implicit
rules described below whose prerequisites have one of these
suffixes are actually suffix rules. If you modify the suffix list, the
only predefined suffix rules in effect will be those named by one or
two of the suffixes that are on the list you specify; rules whose
suffixes fail to be on the list are disabled. See Old-Fashioned Suffix
Rules, for full details on suffix rules.

Compiling C programs

n.o is made automatically from n.c with a recipe of the form
‘$(CC) $(CPPFLAGS) $(CFLAGS) -c’.

Compiling C++ programs

n.o is made automatically from n.cc, n.cpp, or n.C with a recipe of
the form ‘$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c’. We encourage you to
use the suffix ‘.cc’ for C++ source files instead of ‘.C’.

Compiling Pascal programs

n.o is made automatically from n.p with the recipe ‘$(PC)
$(PFLAGS) -c’.

Compiling Fortran and Ratfor programs

n.o is made automatically from n.r, n.F or n.f by running the
Fortran compiler. The precise recipe used is as follows:

‘.f’

‘$(FC) $(FFLAGS) -c’.

‘.F’

‘$(FC) $(FFLAGS) $(CPPFLAGS) -c’.

‘.r’

‘$(FC) $(FFLAGS) $(RFLAGS) -c’.

Preprocessing Fortran and Ratfor programs

n.f is made automatically from n.r or n.F. This rule runs just the
preprocessor to convert a Ratfor or preprocessable Fortran

GNU make https://www.gnu.org/software/make/manual/ma...

177 of 322 06/08/18, 2:50 PM

program into a strict Fortran program. The precise recipe used
is as follows:

‘.F’

‘$(FC) $(CPPFLAGS) $(FFLAGS) -F’.

‘.r’

‘$(FC) $(FFLAGS) $(RFLAGS) -F’.

Compiling Modula-2 programs

n.sym is made from n.def with a recipe of the form ‘$(M2C)
$(M2FLAGS) $(DEFFLAGS)’. n.o is made from n.mod; the form is:
‘$(M2C) $(M2FLAGS) $(MODFLAGS)’.

Assembling and preprocessing assembler programs

n.o is made automatically from n.s by running the assembler, as.
The precise recipe is ‘$(AS) $(ASFLAGS)’.

n.s is made automatically from n.S by running the C
preprocessor, cpp. The precise recipe is ‘$(CPP) $(CPPFLAGS)’.

Linking a single object file

n is made automatically from n.o by running the linker (usually
called ld) via the C compiler. The precise recipe used is
‘$(CC) $(LDFLAGS) n.o $(LOADLIBES) $(LDLIBS)’.

This rule does the right thing for a simple program with only
one source file. It will also do the right thing if there are
multiple object files (presumably coming from various other
source files), one of which has a name matching that of the
executable file. Thus,

x: y.o z.o

when x.c, y.c and z.c all exist will execute:

cc -c x.c -o x.o
cc -c y.c -o y.o
cc -c z.c -o z.o
cc x.o y.o z.o -o x
rm -f x.o
rm -f y.o
rm -f z.o

In more complicated cases, such as when there is no object file

GNU make https://www.gnu.org/software/make/manual/ma...

178 of 322 06/08/18, 2:50 PM

whose name derives from the executable file name, you must
write an explicit recipe for linking.

Each kind of file automatically made into ‘.o’ object files will be
automatically linked by using the compiler (‘$(CC)’, ‘$(FC)’ or
‘$(PC)’; the C compiler ‘$(CC)’ is used to assemble ‘.s’ files)
without the ‘-c’ option. This could be done by using the ‘.o’
object files as intermediates, but it is faster to do the compiling
and linking in one step, so that’s how it’s done.

Yacc for C programs

n.c is made automatically from n.y by running Yacc with the
recipe ‘$(YACC) $(YFLAGS)’.

Lex for C programs

n.c is made automatically from n.l by running Lex. The actual
recipe is ‘$(LEX) $(LFLAGS)’.

Lex for Ratfor programs

n.r is made automatically from n.l by running Lex. The actual
recipe is ‘$(LEX) $(LFLAGS)’.

The convention of using the same suffix ‘.l’ for all Lex files
regardless of whether they produce C code or Ratfor code
makes it impossible for make to determine automatically which
of the two languages you are using in any particular case. If
make is called upon to remake an object file from a ‘.l’ file, it
must guess which compiler to use. It will guess the C compiler,
because that is more common. If you are using Ratfor, make
sure make knows this by mentioning n.r in the makefile. Or, if
you are using Ratfor exclusively, with no C files, remove ‘.c’
from the list of implicit rule suffixes with:

.SUFFIXES:

.SUFFIXES: .o .r .f .l …

Making Lint Libraries from C, Yacc, or Lex programs

n.ln is made from n.c by running lint. The precise recipe is
‘$(LINT) $(LINTFLAGS) $(CPPFLAGS) -i’. The same recipe is used on
the C code produced from n.y or n.l.

TeX and Web

n.dvi is made from n.tex with the recipe ‘$(TEX)’. n.tex is made

GNU make https://www.gnu.org/software/make/manual/ma...

179 of 322 06/08/18, 2:50 PM

from n.web with ‘$(WEAVE)’, or from n.w (and from n.ch if it exists or
can be made) with ‘$(CWEAVE)’. n.p is made from n.web with
‘$(TANGLE)’ and n.c is made from n.w (and from n.ch if it exists or
can be made) with ‘$(CTANGLE)’.

Texinfo and Info

n.dvi is made from n.texinfo, n.texi, or n.txinfo, with the recipe
‘$(TEXI2DVI) $(TEXI2DVI_FLAGS)’. n.info is made from n.texinfo, n.texi,
or n.txinfo, with the recipe ‘$(MAKEINFO) $(MAKEINFO_FLAGS)’.

RCS

Any file n is extracted if necessary from an RCS file named
either n,v or RCS/n,v. The precise recipe used is ‘$(CO) $(COFLAGS)’.
n will not be extracted from RCS if it already exists, even if the
RCS file is newer. The rules for RCS are terminal (see Match-
Anything Pattern Rules), so RCS files cannot be generated
from another source; they must actually exist.

SCCS

Any file n is extracted if necessary from an SCCS file named
either s.n or SCCS/s.n. The precise recipe used is
‘$(GET) $(GFLAGS)’. The rules for SCCS are terminal (see Match-
Anything Pattern Rules), so SCCS files cannot be generated
from another source; they must actually exist.

For the benefit of SCCS, a file n is copied from n.sh and made
executable (by everyone). This is for shell scripts that are
checked into SCCS. Since RCS preserves the execution
permission of a file, you do not need to use this feature with
RCS.

We recommend that you avoid using of SCCS. RCS is widely
held to be superior, and is also free. By choosing free software
in place of comparable (or inferior) proprietary software, you
support the free software movement.

Usually, you want to change only the variables listed in the table
above, which are documented in the following section.

However, the recipes in built-in implicit rules actually use variables
such as COMPILE.c, LINK.p, and PREPROCESS.S, whose values contain the
recipes listed above.

make follows the convention that the rule to compile a .x source file
uses the variable COMPILE.x. Similarly, the rule to produce an

GNU make https://www.gnu.org/software/make/manual/ma...

180 of 322 06/08/18, 2:50 PM

executable from a .x file uses LINK.x; and the rule to preprocess a .x
file uses PREPROCESS.x.

Every rule that produces an object file uses the variable
OUTPUT_OPTION. make defines this variable either to contain ‘-o $@’, or to
be empty, depending on a compile-time option. You need the ‘-o’
option to ensure that the output goes into the right file when the
source file is in a different directory, as when using VPATH (see
Directory Search). However, compilers on some systems do not
accept a ‘-o’ switch for object files. If you use such a system, and
use VPATH, some compilations will put their output in the wrong
place. A possible workaround for this problem is to give
OUTPUT_OPTION the value ‘; mv $*.o $@’.

Next: Chained Rules, Previous: Catalogue of Rules, Up:

Implicit Rules [Contents][Index]

10.3 Variables Used by Implicit Rules

The recipes in built-in implicit rules make liberal use of certain
predefined variables. You can alter the values of these variables in
the makefile, with arguments to make, or in the environment to alter
how the implicit rules work without redefining the rules
themselves. You can cancel all variables used by implicit rules with
the ‘-R’ or ‘--no-builtin-variables’ option.

For example, the recipe used to compile a C source file actually
says ‘$(CC) -c $(CFLAGS) $(CPPFLAGS)’. The default values of the
variables used are ‘cc’ and nothing, resulting in the command ‘cc
-c’. By redefining ‘CC’ to ‘ncc’, you could cause ‘ncc’ to be used for all
C compilations performed by the implicit rule. By redefining ‘CFLAGS’
to be ‘-g’, you could pass the ‘-g’ option to each compilation. All
implicit rules that do C compilation use ‘$(CC)’ to get the program
name for the compiler and all include ‘$(CFLAGS)’ among the
arguments given to the compiler.

The variables used in implicit rules fall into two classes: those that
are names of programs (like CC) and those that contain arguments
for the programs (like CFLAGS). (The “name of a program” may also
contain some command arguments, but it must start with an actual
executable program name.) If a variable value contains more than
one argument, separate them with spaces.

GNU make https://www.gnu.org/software/make/manual/ma...

181 of 322 06/08/18, 2:50 PM

The following tables describe of some of the more commonly-used
predefined variables. This list is not exhaustive, and the default
values shown here may not be what make selects for your
environment. To see the complete list of predefined variables for
your instance of GNU make you can run ‘make -p’ in a directory with
no makefiles.

Here is a table of some of the more common variables used as
names of programs in built-in rules:

AR

Archive-maintaining program; default ‘ar’.

AS

Program for compiling assembly files; default ‘as’.

CC

Program for compiling C programs; default ‘cc’.

CXX

Program for compiling C++ programs; default ‘g++’.

CPP

Program for running the C preprocessor, with results to
standard output; default ‘$(CC) -E’.

FC

Program for compiling or preprocessing Fortran and Ratfor
programs; default ‘f77’.

M2C

Program to use to compile Modula-2 source code; default ‘m2c’.

PC

Program for compiling Pascal programs; default ‘pc’.

CO

Program for extracting a file from RCS; default ‘co’.

GET

Program for extracting a file from SCCS; default ‘get’.

LEX

GNU make https://www.gnu.org/software/make/manual/ma...

182 of 322 06/08/18, 2:50 PM

Program to use to turn Lex grammars into source code; default
‘lex’.

YACC

Program to use to turn Yacc grammars into source code;
default ‘yacc’.

LINT

Program to use to run lint on source code; default ‘lint’.

MAKEINFO

Program to convert a Texinfo source file into an Info file;
default ‘makeinfo’.

TEX

Program to make TeX DVI files from TeX source; default ‘tex’.

TEXI2DVI

Program to make TeX DVI files from Texinfo source; default
‘texi2dvi’.

WEAVE

Program to translate Web into TeX; default ‘weave’.

CWEAVE

Program to translate C Web into TeX; default ‘cweave’.

TANGLE

Program to translate Web into Pascal; default ‘tangle’.

CTANGLE

Program to translate C Web into C; default ‘ctangle’.

RM

Command to remove a file; default ‘rm -f’.

Here is a table of variables whose values are additional arguments
for the programs above. The default values for all of these is the
empty string, unless otherwise noted.

ARFLAGS

Flags to give the archive-maintaining program; default ‘rv’.

GNU make https://www.gnu.org/software/make/manual/ma...

183 of 322 06/08/18, 2:50 PM

ASFLAGS

Extra flags to give to the assembler (when explicitly invoked on
a ‘.s’ or ‘.S’ file).

CFLAGS

Extra flags to give to the C compiler.

CXXFLAGS

Extra flags to give to the C++ compiler.

COFLAGS

Extra flags to give to the RCS co program.

CPPFLAGS

Extra flags to give to the C preprocessor and programs that
use it (the C and Fortran compilers).

FFLAGS

Extra flags to give to the Fortran compiler.

GFLAGS

Extra flags to give to the SCCS get program.

LDFLAGS

Extra flags to give to compilers when they are supposed to
invoke the linker, ‘ld’, such as -L. Libraries (-lfoo) should be
added to the LDLIBS variable instead.

LDLIBS

Library flags or names given to compilers when they are
supposed to invoke the linker, ‘ld’. LOADLIBES is a deprecated (but
still supported) alternative to LDLIBS. Non-library linker flags,
such as -L, should go in the LDFLAGS variable.

LFLAGS

Extra flags to give to Lex.

YFLAGS

Extra flags to give to Yacc.

PFLAGS

Extra flags to give to the Pascal compiler.

GNU make https://www.gnu.org/software/make/manual/ma...

184 of 322 06/08/18, 2:50 PM

RFLAGS

Extra flags to give to the Fortran compiler for Ratfor programs.

LINTFLAGS

Extra flags to give to lint.

Next: Pattern Rules, Previous: Implicit Variables, Up: Implicit Rules

 [Contents][Index]

10.4 Chains of Implicit Rules

Sometimes a file can be made by a sequence of implicit rules. For
example, a file n.o could be made from n.y by running first Yacc and
then cc. Such a sequence is called a chain.

If the file n.c exists, or is mentioned in the makefile, no special
searching is required: make finds that the object file can be made by
C compilation from n.c; later on, when considering how to make
n.c, the rule for running Yacc is used. Ultimately both n.c and n.o
are updated.

However, even if n.c does not exist and is not mentioned, make
knows how to envision it as the missing link between n.o and n.y! In
this case, n.c is called an intermediate file. Once make has decided to
use the intermediate file, it is entered in the data base as if it had
been mentioned in the makefile, along with the implicit rule that
says how to create it.

Intermediate files are remade using their rules just like all other
files. But intermediate files are treated differently in two ways.

The first difference is what happens if the intermediate file does
not exist. If an ordinary file b does not exist, and make considers a
target that depends on b, it invariably creates b and then updates
the target from b. But if b is an intermediate file, then make can
leave well enough alone. It won’t bother updating b, or the
ultimate target, unless some prerequisite of b is newer than that
target or there is some other reason to update that target.

The second difference is that if make does create b in order to
update something else, it deletes b later on after it is no longer
needed. Therefore, an intermediate file which did not exist before
make also does not exist after make. make reports the deletion to you by

GNU make https://www.gnu.org/software/make/manual/ma...

185 of 322 06/08/18, 2:50 PM

printing a ‘rm -f’ command showing which file it is deleting.

Ordinarily, a file cannot be intermediate if it is mentioned in the
makefile as a target or prerequisite. However, you can explicitly
mark a file as intermediate by listing it as a prerequisite of the
special target .INTERMEDIATE. This takes effect even if the file is
mentioned explicitly in some other way.

You can prevent automatic deletion of an intermediate file by
marking it as a secondary file. To do this, list it as a prerequisite of
the special target .SECONDARY. When a file is secondary, make will not
create the file merely because it does not already exist, but make
does not automatically delete the file. Marking a file as secondary
also marks it as intermediate.

You can list the target pattern of an implicit rule (such as ‘%.o’) as a
prerequisite of the special target .PRECIOUS to preserve intermediate
files made by implicit rules whose target patterns match that file’s
name; see Interrupts.

A chain can involve more than two implicit rules. For example, it is
possible to make a file foo from RCS/foo.y,v by running RCS, Yacc
and cc. Then both foo.y and foo.c are intermediate files that are
deleted at the end.

No single implicit rule can appear more than once in a chain. This
means that make will not even consider such a ridiculous thing as
making foo from foo.o.o by running the linker twice. This constraint
has the added benefit of preventing any infinite loop in the search
for an implicit rule chain.

There are some special implicit rules to optimize certain cases that
would otherwise be handled by rule chains. For example, making
foo from foo.c could be handled by compiling and linking with
separate chained rules, using foo.o as an intermediate file. But
what actually happens is that a special rule for this case does the
compilation and linking with a single cc command. The optimized
rule is used in preference to the step-by-step chain because it
comes earlier in the ordering of rules.

Next: Last Resort, Previous: Chained Rules, Up: Implicit Rules [

Contents][Index]

10.5 Defining and Redefining Pattern Rules

GNU make https://www.gnu.org/software/make/manual/ma...

186 of 322 06/08/18, 2:50 PM

You define an implicit rule by writing a pattern rule. A pattern rule
looks like an ordinary rule, except that its target contains the
character ‘%’ (exactly one of them). The target is considered a
pattern for matching file names; the ‘%’ can match any nonempty
substring, while other characters match only themselves. The
prerequisites likewise use ‘%’ to show how their names relate to the
target name.

Thus, a pattern rule ‘%.o : %.c’ says how to make any file stem.o from
another file stem.c.

Note that expansion using ‘%’ in pattern rules occurs after any
variable or function expansions, which take place when the
makefile is read. See How to Use Variables, and Functions for
Transforming Text.

• Pattern Intro: An introduction to pattern rules.

• Pattern
Examples:

Examples of pattern rules.

• Automatic
Variables:

How to use automatic variables in the
recipe of implicit rules.

• Pattern
Match:

How patterns match.

• Match-
Anything Rules:

Precautions you should take prior to
defining rules that can match any target file
whatever.

• Canceling
Rules:

How to override or cancel built-in rules.

Next: Pattern Examples, Previous: Pattern Rules, Up: Pattern Rules

 [Contents][Index]

10.5.1 Introduction to Pattern Rules

A pattern rule contains the character ‘%’ (exactly one of them) in
the target; otherwise, it looks exactly like an ordinary rule. The
target is a pattern for matching file names; the ‘%’ matches any
nonempty substring, while other characters match only
themselves.

For example, ‘%.c’ as a pattern matches any file name that ends in

GNU make https://www.gnu.org/software/make/manual/ma...

187 of 322 06/08/18, 2:50 PM

‘.c’. ‘s.%.c’ as a pattern matches any file name that starts with ‘s.’,
ends in ‘.c’ and is at least five characters long. (There must be at
least one character to match the ‘%’.) The substring that the ‘%’
matches is called the stem.

‘%’ in a prerequisite of a pattern rule stands for the same stem that
was matched by the ‘%’ in the target. In order for the pattern rule
to apply, its target pattern must match the file name under
consideration and all of its prerequisites (after pattern
substitution) must name files that exist or can be made. These files
become prerequisites of the target.

Thus, a rule of the form

%.o : %.c ; recipe…

specifies how to make a file n.o, with another file n.c as its
prerequisite, provided that n.c exists or can be made.

There may also be prerequisites that do not use ‘%’; such a
prerequisite attaches to every file made by this pattern rule. These
unvarying prerequisites are useful occasionally.

A pattern rule need not have any prerequisites that contain ‘%’, or
in fact any prerequisites at all. Such a rule is effectively a general
wildcard. It provides a way to make any file that matches the
target pattern. See Last Resort.

More than one pattern rule may match a target. In this case make
will choose the “best fit” rule. See How Patterns Match.

Pattern rules may have more than one target. Unlike normal rules,
this does not act as many different rules with the same
prerequisites and recipe. If a pattern rule has multiple targets, make
knows that the rule’s recipe is responsible for making all of the
targets. The recipe is executed only once to make all the targets.
When searching for a pattern rule to match a target, the target
patterns of a rule other than the one that matches the target in
need of a rule are incidental: make worries only about giving a
recipe and prerequisites to the file presently in question. However,
when this file’s recipe is run, the other targets are marked as
having been updated themselves.

Next: Automatic Variables, Previous: Pattern Intro, Up:

GNU make https://www.gnu.org/software/make/manual/ma...

188 of 322 06/08/18, 2:50 PM

Pattern Rules [Contents][Index]

10.5.2 Pattern Rule Examples

Here are some examples of pattern rules actually predefined in
make. First, the rule that compiles ‘.c’ files into ‘.o’ files:

%.o : %.c
 $(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

defines a rule that can make any file x.o from x.c. The recipe uses
the automatic variables ‘$@’ and ‘$<’ to substitute the names of the
target file and the source file in each case where the rule applies
(see Automatic Variables).

Here is a second built-in rule:

% :: RCS/%,v
 $(CO) $(COFLAGS) $<

defines a rule that can make any file x whatsoever from a
corresponding file x,v in the sub-directory RCS. Since the target is
‘%’, this rule will apply to any file whatever, provided the
appropriate prerequisite file exists. The double colon makes the
rule terminal, which means that its prerequisite may not be an
intermediate file (see Match-Anything Pattern Rules).

This pattern rule has two targets:

%.tab.c %.tab.h: %.y
 bison -d $<

This tells make that the recipe ‘bison -d x.y’ will make both x.tab.c and
x.tab.h. If the file foo depends on the files parse.tab.o and scan.o and
the file scan.o depends on the file parse.tab.h, when parse.y is
changed, the recipe ‘bison -d parse.y’ will be executed only once,
and the prerequisites of both parse.tab.o and scan.o will be satisfied.
(Presumably the file parse.tab.o will be recompiled from parse.tab.c
and the file scan.o from scan.c, while foo is linked from parse.tab.o,
scan.o, and its other prerequisites, and it will execute happily ever
after.)

GNU make https://www.gnu.org/software/make/manual/ma...

189 of 322 06/08/18, 2:50 PM

Next: Pattern Match, Previous: Pattern Examples, Up:

Pattern Rules [Contents][Index]

10.5.3 Automatic Variables

Suppose you are writing a pattern rule to compile a ‘.c’ file into a
‘.o’ file: how do you write the ‘cc’ command so that it operates on
the right source file name? You cannot write the name in the
recipe, because the name is different each time the implicit rule is
applied.

What you do is use a special feature of make, the automatic
variables. These variables have values computed afresh for each
rule that is executed, based on the target and prerequisites of the
rule. In this example, you would use ‘$@’ for the object file name
and ‘$<’ for the source file name.

It’s very important that you recognize the limited scope in which
automatic variable values are available: they only have values
within the recipe. In particular, you cannot use them anywhere
within the target list of a rule; they have no value there and will
expand to the empty string. Also, they cannot be accessed directly
within the prerequisite list of a rule. A common mistake is
attempting to use $@ within the prerequisites list; this will not work.
However, there is a special feature of GNU make, secondary
expansion (see Secondary Expansion), which will allow automatic
variable values to be used in prerequisite lists.

Here is a table of automatic variables:

$@

The file name of the target of the rule. If the target is an
archive member, then ‘$@’ is the name of the archive file. In a
pattern rule that has multiple targets (see Introduction to
Pattern Rules), ‘$@’ is the name of whichever target caused the
rule’s recipe to be run.

$%

The target member name, when the target is an archive
member. See Archives. For example, if the target is foo.a(bar.o)
then ‘$%’ is bar.o and ‘$@’ is foo.a. ‘$%’ is empty when the target is
not an archive member.

$<

GNU make https://www.gnu.org/software/make/manual/ma...

190 of 322 06/08/18, 2:50 PM

The name of the first prerequisite. If the target got its recipe
from an implicit rule, this will be the first prerequisite added
by the implicit rule (see Implicit Rules).

$?

The names of all the prerequisites that are newer than the
target, with spaces between them. For prerequisites which are
archive members, only the named member is used (see
Archives).

$^

The names of all the prerequisites, with spaces between them.
For prerequisites which are archive members, only the named
member is used (see Archives). A target has only one
prerequisite on each other file it depends on, no matter how
many times each file is listed as a prerequisite. So if you list a
prerequisite more than once for a target, the value of $^
contains just one copy of the name. This list does not contain
any of the order-only prerequisites; for those see the ‘$|’
variable, below.

$+

This is like ‘$^’, but prerequisites listed more than once are
duplicated in the order they were listed in the makefile. This is
primarily useful for use in linking commands where it is
meaningful to repeat library file names in a particular order.

$|

The names of all the order-only prerequisites, with spaces
between them.

$*

The stem with which an implicit rule matches (see How
Patterns Match). If the target is dir/a.foo.b and the target
pattern is a.%.b then the stem is dir/foo. The stem is useful for
constructing names of related files.

In a static pattern rule, the stem is part of the file name that
matched the ‘%’ in the target pattern.

In an explicit rule, there is no stem; so ‘$*’ cannot be
determined in that way. Instead, if the target name ends with a
recognized suffix (see Old-Fashioned Suffix Rules), ‘$*’ is set to
the target name minus the suffix. For example, if the target
name is ‘foo.c’, then ‘$*’ is set to ‘foo’, since ‘.c’ is a suffix. GNU

GNU make https://www.gnu.org/software/make/manual/ma...

191 of 322 06/08/18, 2:50 PM

make does this bizarre thing only for compatibility with other
implementations of make. You should generally avoid using ‘$*’
except in implicit rules or static pattern rules.

If the target name in an explicit rule does not end with a
recognized suffix, ‘$*’ is set to the empty string for that rule.

‘$?’ is useful even in explicit rules when you wish to operate on only
the prerequisites that have changed. For example, suppose that an
archive named lib is supposed to contain copies of several object
files. This rule copies just the changed object files into the archive:

lib: foo.o bar.o lose.o win.o
 ar r lib $?

Of the variables listed above, four have values that are single file
names, and three have values that are lists of file names. These
seven have variants that get just the file’s directory name or just
the file name within the directory. The variant variables’ names are
formed by appending ‘D’ or ‘F’, respectively. These variants are
semi-obsolete in GNU make since the functions dir and notdir can be
used to get a similar effect (see Functions for File Names). Note,
however, that the ‘D’ variants all omit the trailing slash which
always appears in the output of the dir function. Here is a table of
the variants:

‘$(@D)’

The directory part of the file name of the target, with the
trailing slash removed. If the value of ‘$@’ is dir/foo.o then ‘$(@D)’
is dir. This value is . if ‘$@’ does not contain a slash.

‘$(@F)’

The file-within-directory part of the file name of the target. If
the value of ‘$@’ is dir/foo.o then ‘$(@F)’ is foo.o. ‘$(@F)’ is
equivalent to ‘$(notdir $@)’.

‘$(*D)’

‘$(*F)’

The directory part and the file-within-directory part of the
stem; dir and foo in this example.

‘$(%D)’

GNU make https://www.gnu.org/software/make/manual/ma...

192 of 322 06/08/18, 2:50 PM

‘$(%F)’

The directory part and the file-within-directory part of the
target archive member name. This makes sense only for
archive member targets of the form archive(member) and is useful
only when member may contain a directory name. (See Archive
Members as Targets.)

‘$(<D)’

‘$(<F)’

The directory part and the file-within-directory part of the first
prerequisite.

‘$(^D)’

‘$(^F)’

Lists of the directory parts and the file-within-directory parts of
all prerequisites.

‘$(+D)’

‘$(+F)’

Lists of the directory parts and the file-within-directory parts of
all prerequisites, including multiple instances of duplicated
prerequisites.

‘$(?D)’

‘$(?F)’

Lists of the directory parts and the file-within-directory parts of
all prerequisites that are newer than the target.

Note that we use a special stylistic convention when we talk about
these automatic variables; we write “the value of ‘$<’”, rather than
“the variable <” as we would write for ordinary variables such as
objects and CFLAGS. We think this convention looks more natural in
this special case. Please do not assume it has a deep significance;
‘$<’ refers to the variable named < just as ‘$(CFLAGS)’ refers to the
variable named CFLAGS. You could just as well use ‘$(<)’ in place of
‘$<’.

Next: Match-Anything Rules, Previous: Automatic Variables, Up:

GNU make https://www.gnu.org/software/make/manual/ma...

193 of 322 06/08/18, 2:50 PM

Pattern Rules [Contents][Index]

10.5.4 How Patterns Match

A target pattern is composed of a ‘%’ between a prefix and a suffix,
either or both of which may be empty. The pattern matches a file
name only if the file name starts with the prefix and ends with the
suffix, without overlap. The text between the prefix and the suffix is
called the stem. Thus, when the pattern ‘%.o’ matches the file name
test.o, the stem is ‘test’. The pattern rule prerequisites are turned
into actual file names by substituting the stem for the character ‘%’.
Thus, if in the same example one of the prerequisites is written as
‘%.c’, it expands to ‘test.c’.

When the target pattern does not contain a slash (and it usually
does not), directory names in the file names are removed from the
file name before it is compared with the target prefix and suffix.
After the comparison of the file name to the target pattern, the
directory names, along with the slash that ends them, are added on
to the prerequisite file names generated from the pattern rule’s
prerequisite patterns and the file name. The directories are
ignored only for the purpose of finding an implicit rule to use, not
in the application of that rule. Thus, ‘e%t’ matches the file name
src/eat, with ‘src/a’ as the stem. When prerequisites are turned into
file names, the directories from the stem are added at the front,
while the rest of the stem is substituted for the ‘%’. The stem ‘src/a’
with a prerequisite pattern ‘c%r’ gives the file name src/car.

A pattern rule can be used to build a given file only if there is a
target pattern that matches the file name, and all prerequisites in
that rule either exist or can be built. The rules you write take
precedence over those that are built in. Note however, that a rule
whose prerequisites actually exist or are mentioned always takes
priority over a rule with prerequisites that must be made by
chaining other implicit rules.

It is possible that more than one pattern rule will meet these
criteria. In that case, make will choose the rule with the shortest
stem (that is, the pattern that matches most specifically). If more
than one pattern rule has the shortest stem, make will choose the
first one found in the makefile.

This algorithm results in more specific rules being preferred over
more generic ones; for example:

GNU make https://www.gnu.org/software/make/manual/ma...

194 of 322 06/08/18, 2:50 PM

%.o: %.c
 $(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

%.o : %.f
 $(COMPILE.F) $(OUTPUT_OPTION) $<

lib/%.o: lib/%.c
 $(CC) -fPIC -c $(CFLAGS) $(CPPFLAGS) $< -o $@

Given these rules and asked to build bar.o where both bar.c and
bar.f exist, make will choose the first rule and compile bar.c into bar.o.
In the same situation where bar.c does not exist, then make will
choose the second rule and compile bar.f into bar.o.

If make is asked to build lib/bar.o and both lib/bar.c and lib/bar.f
exist, then the third rule will be chosen since the stem for this rule
(‘bar’) is shorter than the stem for the first rule (‘lib/bar’). If lib/bar.c
does not exist then the third rule is not eligible and the second rule
will be used, even though the stem is longer.

Next: Canceling Rules, Previous: Pattern Match, Up: Pattern Rules

 [Contents][Index]

10.5.5 Match-Anything Pattern Rules

When a pattern rule’s target is just ‘%’, it matches any file name
whatever. We call these rules match-anything rules. They are very
useful, but it can take a lot of time for make to think about them,
because it must consider every such rule for each file name listed
either as a target or as a prerequisite.

Suppose the makefile mentions foo.c. For this target, make would
have to consider making it by linking an object file foo.c.o, or by C
compilation-and-linking in one step from foo.c.c, or by Pascal
compilation-and-linking from foo.c.p, and many other possibilities.

We know these possibilities are ridiculous since foo.c is a C source
file, not an executable. If make did consider these possibilities, it
would ultimately reject them, because files such as foo.c.o and
foo.c.p would not exist. But these possibilities are so numerous that
make would run very slowly if it had to consider them.

To gain speed, we have put various constraints on the way make
considers match-anything rules. There are two different

GNU make https://www.gnu.org/software/make/manual/ma...

195 of 322 06/08/18, 2:50 PM

constraints that can be applied, and each time you define a match-
anything rule you must choose one or the other for that rule.

One choice is to mark the match-anything rule as terminal by
defining it with a double colon. When a rule is terminal, it does not
apply unless its prerequisites actually exist. Prerequisites that
could be made with other implicit rules are not good enough. In
other words, no further chaining is allowed beyond a terminal rule.

For example, the built-in implicit rules for extracting sources from
RCS and SCCS files are terminal; as a result, if the file foo.c,v does
not exist, make will not even consider trying to make it as an
intermediate file from foo.c,v.o or from RCS/SCCS/s.foo.c,v. RCS and
SCCS files are generally ultimate source files, which should not be
remade from any other files; therefore, make can save time by not
looking for ways to remake them.

If you do not mark the match-anything rule as terminal, then it is
non-terminal. A non-terminal match-anything rule cannot apply to
a file name that indicates a specific type of data. A file name
indicates a specific type of data if some non-match-anything
implicit rule target matches it.

For example, the file name foo.c matches the target for the pattern
rule ‘%.c : %.y’ (the rule to run Yacc). Regardless of whether this
rule is actually applicable (which happens only if there is a file
foo.y), the fact that its target matches is enough to prevent
consideration of any non-terminal match-anything rules for the file
foo.c. Thus, make will not even consider trying to make foo.c as an
executable file from foo.c.o, foo.c.c, foo.c.p, etc.

The motivation for this constraint is that non-terminal match-
anything rules are used for making files containing specific types
of data (such as executable files) and a file name with a recognized
suffix indicates some other specific type of data (such as a C source
file).

Special built-in dummy pattern rules are provided solely to
recognize certain file names so that non-terminal match-anything
rules will not be considered. These dummy rules have no
prerequisites and no recipes, and they are ignored for all other
purposes. For example, the built-in implicit rule

%.p :

GNU make https://www.gnu.org/software/make/manual/ma...

196 of 322 06/08/18, 2:50 PM

exists to make sure that Pascal source files such as foo.p match a
specific target pattern and thereby prevent time from being wasted
looking for foo.p.o or foo.p.c.

Dummy pattern rules such as the one for ‘%.p’ are made for every
suffix listed as valid for use in suffix rules (see Old-Fashioned Suffix
Rules).

Previous: Match-Anything Rules, Up: Pattern Rules [Contents][

Index]

10.5.6 Canceling Implicit Rules

You can override a built-in implicit rule (or one you have defined
yourself) by defining a new pattern rule with the same target and
prerequisites, but a different recipe. When the new rule is defined,
the built-in one is replaced. The new rule’s position in the
sequence of implicit rules is determined by where you write the
new rule.

You can cancel a built-in implicit rule by defining a pattern rule
with the same target and prerequisites, but no recipe. For
example, the following would cancel the rule that runs the
assembler:

%.o : %.s

Next: Suffix Rules, Previous: Pattern Rules, Up: Implicit Rules [

Contents][Index]

10.6 Defining Last-Resort Default Rules

You can define a last-resort implicit rule by writing a terminal
match-anything pattern rule with no prerequisites (see Match-
Anything Rules). This is just like any other pattern rule; the only
thing special about it is that it will match any target. So such a
rule’s recipe is used for all targets and prerequisites that have no
recipe of their own and for which no other implicit rule applies.

For example, when testing a makefile, you might not care if the
source files contain real data, only that they exist. Then you might

GNU make https://www.gnu.org/software/make/manual/ma...

197 of 322 06/08/18, 2:50 PM

do this:

%::
 touch $@

to cause all the source files needed (as prerequisites) to be created
automatically.

You can instead define a recipe to be used for targets for which
there are no rules at all, even ones which don’t specify recipes. You
do this by writing a rule for the target .DEFAULT. Such a rule’s recipe
is used for all prerequisites which do not appear as targets in any
explicit rule, and for which no implicit rule applies. Naturally, there
is no .DEFAULT rule unless you write one.

If you use .DEFAULT with no recipe or prerequisites:

.DEFAULT:

the recipe previously stored for .DEFAULT is cleared. Then make acts as
if you had never defined .DEFAULT at all.

If you do not want a target to get the recipe from a match-anything
pattern rule or .DEFAULT, but you also do not want any recipe to be
run for the target, you can give it an empty recipe (see Defining
Empty Recipes).

You can use a last-resort rule to override part of another makefile.
See Overriding Part of Another Makefile.

Next: Implicit Rule Search, Previous: Last Resort, Up:

Implicit Rules [Contents][Index]

10.7 Old-Fashioned Suffix Rules

Suffix rules are the old-fashioned way of defining implicit rules for
make. Suffix rules are obsolete because pattern rules are more
general and clearer. They are supported in GNU make for
compatibility with old makefiles. They come in two kinds: double-
suffix and single-suffix.

A double-suffix rule is defined by a pair of suffixes: the target suffix
and the source suffix. It matches any file whose name ends with

GNU make https://www.gnu.org/software/make/manual/ma...

198 of 322 06/08/18, 2:50 PM

the target suffix. The corresponding implicit prerequisite is made
by replacing the target suffix with the source suffix in the file
name. A two-suffix rule whose target and source suffixes are ‘.o’
and ‘.c’ is equivalent to the pattern rule ‘%.o : %.c’.

A single-suffix rule is defined by a single suffix, which is the source
suffix. It matches any file name, and the corresponding implicit
prerequisite name is made by appending the source suffix. A
single-suffix rule whose source suffix is ‘.c’ is equivalent to the
pattern rule ‘% : %.c’.

Suffix rule definitions are recognized by comparing each rule’s
target against a defined list of known suffixes. When make sees a
rule whose target is a known suffix, this rule is considered a single-
suffix rule. When make sees a rule whose target is two known
suffixes concatenated, this rule is taken as a double-suffix rule.

For example, ‘.c’ and ‘.o’ are both on the default list of known
suffixes. Therefore, if you define a rule whose target is ‘.c.o’, make
takes it to be a double-suffix rule with source suffix ‘.c’ and target
suffix ‘.o’. Here is the old-fashioned way to define the rule for
compiling a C source file:

.c.o:
 $(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

Suffix rules cannot have any prerequisites of their own. If they
have any, they are treated as normal files with funny names, not as
suffix rules. Thus, the rule:

.c.o: foo.h
 $(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

tells how to make the file .c.o from the prerequisite file foo.h, and is
not at all like the pattern rule:

%.o: %.c foo.h
 $(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

which tells how to make ‘.o’ files from ‘.c’ files, and makes all ‘.o’
files using this pattern rule also depend on foo.h.

Suffix rules with no recipe are also meaningless. They do not
remove previous rules as do pattern rules with no recipe (see

GNU make https://www.gnu.org/software/make/manual/ma...

199 of 322 06/08/18, 2:50 PM

Canceling Implicit Rules). They simply enter the suffix or pair of
suffixes concatenated as a target in the data base.

The known suffixes are simply the names of the prerequisites of
the special target .SUFFIXES. You can add your own suffixes by
writing a rule for .SUFFIXES that adds more prerequisites, as in:

.SUFFIXES: .hack .win

which adds ‘.hack’ and ‘.win’ to the end of the list of suffixes.

If you wish to eliminate the default known suffixes instead of just
adding to them, write a rule for .SUFFIXES with no prerequisites. By
special dispensation, this eliminates all existing prerequisites of
.SUFFIXES. You can then write another rule to add the suffixes you
want. For example,

.SUFFIXES: # Delete the default suffixes

.SUFFIXES: .c .o .h # Define our suffix list

The ‘-r’ or ‘--no-builtin-rules’ flag causes the default list of suffixes
to be empty.

The variable SUFFIXES is defined to the default list of suffixes before
make reads any makefiles. You can change the list of suffixes with a
rule for the special target .SUFFIXES, but that does not alter this
variable.

Previous: Suffix Rules, Up: Implicit Rules [Contents][Index]

10.8 Implicit Rule Search Algorithm

Here is the procedure make uses for searching for an implicit rule
for a target t. This procedure is followed for each double-colon rule
with no recipe, for each target of ordinary rules none of which
have a recipe, and for each prerequisite that is not the target of
any rule. It is also followed recursively for prerequisites that come
from implicit rules, in the search for a chain of rules.

Suffix rules are not mentioned in this algorithm because suffix
rules are converted to equivalent pattern rules once the makefiles
have been read in.

For an archive member target of the form ‘archive(member)’, the

GNU make https://www.gnu.org/software/make/manual/ma...

200 of 322 06/08/18, 2:50 PM

following algorithm is run twice, first using the entire target name
t, and second using ‘(member)’ as the target t if the first run found no
rule.

Split t into a directory part, called d, and the rest, called n.
For example, if t is ‘src/foo.o’, then d is ‘src/’ and n is ‘foo.o’.

1.

Make a list of all the pattern rules one of whose targets
matches t or n. If the target pattern contains a slash, it is
matched against t; otherwise, against n.

2.

If any rule in that list is not a match-anything rule, then
remove all non-terminal match-anything rules from the list.

3.

Remove from the list all rules with no recipe.4.

For each pattern rule in the list:

Find the stem s, which is the nonempty part of t or n
matched by the ‘%’ in the target pattern.

1.

Compute the prerequisite names by substituting s for
‘%’; if the target pattern does not contain a slash,
append d to the front of each prerequisite name.

2.

Test whether all the prerequisites exist or ought to
exist. (If a file name is mentioned in the makefile as a
target or as an explicit prerequisite, then we say it
ought to exist.)

If all prerequisites exist or ought to exist, or there are
no prerequisites, then this rule applies.

3.

5.

If no pattern rule has been found so far, try harder. For each
pattern rule in the list:

If the rule is terminal, ignore it and go on to the next
rule.

1.

Compute the prerequisite names as before.2.

Test whether all the prerequisites exist or ought to
exist.

3.

For each prerequisite that does not exist, follow this
algorithm recursively to see if the prerequisite can be
made by an implicit rule.

4.

6.

GNU make https://www.gnu.org/software/make/manual/ma...

201 of 322 06/08/18, 2:50 PM

If all prerequisites exist, ought to exist, or can be made
by implicit rules, then this rule applies.

5.

If no implicit rule applies, the rule for .DEFAULT, if any, applies.
In that case, give t the same recipe that .DEFAULT has.
Otherwise, there is no recipe for t.

7.

Once a rule that applies has been found, for each target pattern of
the rule other than the one that matched t or n, the ‘%’ in the
pattern is replaced with s and the resultant file name is stored until
the recipe to remake the target file t is executed. After the recipe
is executed, each of these stored file names are entered into the
data base and marked as having been updated and having the
same update status as the file t.

When the recipe of a pattern rule is executed for t, the automatic
variables are set corresponding to the target and prerequisites.
See Automatic Variables.

Next: Extending make, Previous: Implicit Rules, Up: Top [

Contents][Index]

11 Using make to Update Archive Files

Archive files are files containing named sub-files called members;
they are maintained with the program ar and their main use is as
subroutine libraries for linking.

• Archive
Members:

Archive members as targets.

• Archive
Update:

The implicit rule for archive member
targets.

• Archive Pitfalls:

Dangers to watch out for when using
archives.

• Archive Suffix
Rules:

You can write a special kind of suffix rule
for updating archives.

Next: Archive Update, Previous: Archives, Up: Archives [Contents

][Index]

GNU make https://www.gnu.org/software/make/manual/ma...

202 of 322 06/08/18, 2:50 PM

11.1 Archive Members as Targets

An individual member of an archive file can be used as a target or
prerequisite in make. You specify the member named member in
archive file archive as follows:

archive(member)

This construct is available only in targets and prerequisites, not in
recipes! Most programs that you might use in recipes do not
support this syntax and cannot act directly on archive members.
Only ar and other programs specifically designed to operate on
archives can do so. Therefore, valid recipes to update an archive
member target probably must use ar. For example, this rule says to
create a member hack.o in archive foolib by copying the file hack.o:

foolib(hack.o) : hack.o
 ar cr foolib hack.o

In fact, nearly all archive member targets are updated in just this
way and there is an implicit rule to do it for you. Please note: The
‘c’ flag to ar is required if the archive file does not already exist.

To specify several members in the same archive, you can write all
the member names together between the parentheses. For
example:

foolib(hack.o kludge.o)

is equivalent to:

foolib(hack.o) foolib(kludge.o)

You can also use shell-style wildcards in an archive member
reference. See Using Wildcard Characters in File Names. For
example, ‘foolib(*.o)’ expands to all existing members of the foolib
archive whose names end in ‘.o’; perhaps ‘foolib(hack.o)
foolib(kludge.o)’.

Next: Archive Pitfalls, Previous: Archive Members, Up: Archives [

Contents][Index]

GNU make https://www.gnu.org/software/make/manual/ma...

203 of 322 06/08/18, 2:50 PM

11.2 Implicit Rule for Archive Member Targets

Recall that a target that looks like a(m) stands for the member
named m in the archive file a.

When make looks for an implicit rule for such a target, as a special
feature it considers implicit rules that match (m), as well as those
that match the actual target a(m).

This causes one special rule whose target is (%) to match. This rule
updates the target a(m) by copying the file m into the archive. For
example, it will update the archive member target foo.a(bar.o) by
copying the file bar.o into the archive foo.a as a member named
bar.o.

When this rule is chained with others, the result is very powerful.
Thus, ‘make "foo.a(bar.o)"’ (the quotes are needed to protect the ‘(’
and ‘)’ from being interpreted specially by the shell) in the
presence of a file bar.c is enough to cause the following recipe to be
run, even without a makefile:

cc -c bar.c -o bar.o
ar r foo.a bar.o
rm -f bar.o

Here make has envisioned the file bar.o as an intermediate file. See
Chains of Implicit Rules.

Implicit rules such as this one are written using the automatic
variable ‘$%’. See Automatic Variables.

An archive member name in an archive cannot contain a directory
name, but it may be useful in a makefile to pretend that it does. If
you write an archive member target foo.a(dir/file.o), make will
perform automatic updating with this recipe:

ar r foo.a dir/file.o

which has the effect of copying the file dir/file.o into a member
named file.o. In connection with such usage, the automatic
variables %D and %F may be useful.

• Archive

How to update archive symbol

GNU make https://www.gnu.org/software/make/manual/ma...

204 of 322 06/08/18, 2:50 PM

Symbols: directories.

Previous: Archive Update, Up: Archive Update [Contents][Index]

11.2.1 Updating Archive Symbol Directories

An archive file that is used as a library usually contains a special
member named __.SYMDEF that contains a directory of the external
symbol names defined by all the other members. After you update
any other members, you need to update __.SYMDEF so that it will
summarize the other members properly. This is done by running
the ranlib program:

ranlib archivefile

Normally you would put this command in the rule for the archive
file, and make all the members of the archive file prerequisites of
that rule. For example,

libfoo.a: libfoo.a(x.o) libfoo.a(y.o) …
 ranlib libfoo.a

The effect of this is to update archive members x.o, y.o, etc., and
then update the symbol directory member __.SYMDEF by running
ranlib. The rules for updating the members are not shown here;
most likely you can omit them and use the implicit rule which
copies files into the archive, as described in the preceding section.

This is not necessary when using the GNU ar program, which
updates the __.SYMDEF member automatically.

Next: Archive Suffix Rules, Previous: Archive Update, Up: Archives

 [Contents][Index]

11.3 Dangers When Using Archives

It is important to be careful when using parallel execution (the -j
switch; see Parallel Execution) and archives. If multiple ar
commands run at the same time on the same archive file, they will
not know about each other and can corrupt the file.

GNU make https://www.gnu.org/software/make/manual/ma...

205 of 322 06/08/18, 2:50 PM

Possibly a future version of make will provide a mechanism to
circumvent this problem by serializing all recipes that operate on
the same archive file. But for the time being, you must either write
your makefiles to avoid this problem in some other way, or not use
-j.

Previous: Archive Pitfalls, Up: Archives [Contents][Index]

11.4 Suffix Rules for Archive Files

You can write a special kind of suffix rule for dealing with archive
files. See Suffix Rules, for a full explanation of suffix rules. Archive
suffix rules are obsolete in GNU make, because pattern rules for
archives are a more general mechanism (see Archive Update). But
they are retained for compatibility with other makes.

To write a suffix rule for archives, you simply write a suffix rule
using the target suffix ‘.a’ (the usual suffix for archive files). For
example, here is the old-fashioned suffix rule to update a library
archive from C source files:

.c.a:
 $(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o
 $(AR) r $@ $*.o
 $(RM) $*.o

This works just as if you had written the pattern rule:

(%.o): %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o
 $(AR) r $@ $*.o
 $(RM) $*.o

In fact, this is just what make does when it sees a suffix rule with ‘.a’
as the target suffix. Any double-suffix rule ‘.x.a’ is converted to a
pattern rule with the target pattern ‘(%.o)’ and a prerequisite
pattern of ‘%.x’.

Since you might want to use ‘.a’ as the suffix for some other kind of
file, make also converts archive suffix rules to pattern rules in the
normal way (see Suffix Rules). Thus a double-suffix rule ‘.x.a’
produces two pattern rules: ‘(%.o): %.x’ and ‘%.a: %.x’.

GNU make https://www.gnu.org/software/make/manual/ma...

206 of 322 06/08/18, 2:50 PM

Next: Integrating make, Previous: Archives, Up: Top [Contents][

Index]

12 Extending GNU make

GNU make provides many advanced capabilities, including many
useful functions. However, it does not contain a complete
programming language and so it has limitations. Sometimes these
limitations can be overcome through use of the shell function to
invoke a separate program, although this can be inefficient.

In cases where the built-in capabilities of GNU make are insufficient
to your requirements there are two options for extending make. On
systems where it’s provided, you can utilize GNU Guile as an
embedded scripting language (see GNU Guile Integration). On
systems which support dynamically loadable objects, you can write
your own extension in any language (which can be compiled into
such an object) and load it to provide extended capabilities (see
The load Directive).

• Guile
Integration:

Using Guile as an embedded scripting
language.

• Loading
Objects:

Loading dynamic objects as extensions.

Next: Loading Objects, Previous: Extending make, Up:

Extending make [Contents][Index]

12.1 GNU Guile Integration

GNU make may be built with support for GNU Guile as an embedded
extension language. Guile implements the Scheme language. A
review of GNU Guile and the Scheme language and its features is
beyond the scope of this manual: see the documentation for GNU
Guile and Scheme.

You can determine if make contains support for Guile by examining
the .FEATURES variable; it will contain the word guile if Guile support
is available.

The Guile integration provides one new make function: guile. The

GNU make https://www.gnu.org/software/make/manual/ma...

207 of 322 06/08/18, 2:50 PM

guile function takes one argument which is first expanded by make in
the normal fashion, then passed to the GNU Guile evaluator. The
result of the evaluator is converted into a string and used as the
expansion of the guile function in the makefile.

In addition, GNU make exposes Guile procedures for use in Guile
scripts.

• Guile Types: Converting Guile types to make strings.

• Guile Interface: Invoking make functions from Guile.

• Guile Example: Example using Guile in make.

Next: Guile Interface, Previous: Guile Integration, Up:

Guile Integration [Contents][Index]

12.1.1 Conversion of Guile Types

There is only one “data type” in make: a string. GNU Guile, on the
other hand, provides a rich variety of different data types. An
important aspect of the interface between make and GNU Guile is
the conversion of Guile data types into make strings.

This conversion is relevant in two places: when a makefile invokes
the guile function to evaluate a Guile expression, the result of that
evaluation must be converted into a make string so it can be
further evaluated by make. And secondly, when a Guile script
invokes one of the procedures exported by make the argument
provided to the procedure must be converted into a string.

The conversion of Guile types into make strings is as below:

#f

False is converted into the empty string: in make conditionals
the empty string is considered false.

#t

True is converted to the string ‘#t’: in make conditionals any non-
empty string is considered true.

symbol

number

A symbol or number is converted into the string representation

GNU make https://www.gnu.org/software/make/manual/ma...

208 of 322 06/08/18, 2:50 PM

of that symbol or number.

character

A printable character is converted to the same character.

string

A string containing only printable characters is converted to
the same string.

list

A list is converted recursively according to the above rules.
This implies that any structured list will be flattened (that is, a
result of ‘'(a b (c d) e)’ will be converted to the make string ‘a b c
d e’).

other

Any other Guile type results in an error. In future versions of
make, other Guile types may be converted.

The translation of ‘#f’ (to the empty string) and ‘#t’ (to the non-
empty string ‘#t’) is designed to allow you to use Guile boolean
results directly as make boolean conditions. For example:

$(if $(guile (access? "myfile" R_OK)),$(info myfile exists))

As a consequence of these conversion rules you must consider the
result of your Guile script, as that result will be converted into a
string and parsed by make. If there is no natural result for the script
(that is, the script exists solely for its side-effects), you should add
‘#f’ as the final expression in order to avoid syntax errors in your
makefile.

Next: Guile Example, Previous: Guile Types, Up: Guile Integration

[Contents][Index]

12.1.2 Interfaces from Guile to make

In addition to the guile function available in makefiles, make exposes
some procedures for use in your Guile scripts. At startup make
creates a new Guile module, gnu make, and exports these procedures
as public interfaces from that module:

GNU make https://www.gnu.org/software/make/manual/ma...

209 of 322 06/08/18, 2:50 PM

gmk-expand

This procedure takes a single argument which is converted
into a string. The string is expanded by make using normal make
expansion rules. The result of the expansion is converted into a
Guile string and provided as the result of the procedure.

gmk-eval

This procedure takes a single argument which is converted
into a string. The string is evaluated by make as if it were a
makefile. This is the same capability available via the eval
function (see Eval Function). The result of the gmk-eval
procedure is always the empty string.

Note that gmk-eval is not quite the same as using gmk-expand with
the eval function: in the latter case the evaluated string will be
expanded twice; first by gmk-expand, then again by the eval
function.

Previous: Guile Interface, Up: Guile Integration [Contents][Index]

12.1.3 Example Using Guile in make

Here is a very simple example using GNU Guile to manage writing
to a file. These Guile procedures simply open a file, allow writing to
the file (one string per line), and close the file. Note that because
we cannot store complex values such as Guile ports in make
variables, we’ll keep the port as a global variable in the Guile
interpreter.

You can create Guile functions easily using define/endef to create a
Guile script, then use the guile function to internalize it:

define GUILEIO
;; A simple Guile IO library for GNU make

(define MKPORT #f)

(define (mkopen name mode)
 (set! MKPORT (open-file name mode))
 #f)

(define (mkwrite s)
 (display s MKPORT)
 (newline MKPORT)
 #f)

(define (mkclose)
 (close-port MKPORT)

GNU make https://www.gnu.org/software/make/manual/ma...

210 of 322 06/08/18, 2:50 PM

 #f)

#f
endef

Internalize the Guile IO functions
$(guile $(GUILEIO))

If you have a significant amount of Guile support code, you might
consider keeping it in a different file (e.g., guileio.scm) and then
loading it in your makefile using the guile function:

$(guile (load "guileio.scm"))

An advantage to this method is that when editing guileio.scm, your
editor will understand that this file contains Scheme syntax rather
than makefile syntax.

Now you can use these Guile functions to create files. Suppose you
need to operate on a very large list, which cannot fit on the
command line, but the utility you’re using accepts the list as input
as well:

prog: $(PREREQS)
 @$(guile (mkopen "tmp.out" "w")) \
 $(foreach X,,(guile (mkwrite "$(X)"))) \
 $(guile (mkclose))
 $(LINK) < tmp.out

A more comprehensive suite of file manipulation procedures is
possible of course. You could, for example, maintain multiple
output files at the same time by choosing a symbol for each one
and using it as the key to a hash table, where the value is a port,
then returning the symbol to be stored in a make variable.

Previous: Guile Integration, Up: Extending make [Contents][Index

]

12.2 Loading Dynamic Objects

Warning: The load directive and extension capability is

GNU make https://www.gnu.org/software/make/manual/ma...

211 of 322 06/08/18, 2:50 PM

considered a “technology preview” in this release of GNU
make. We encourage you to experiment with this feature
and we appreciate any feedback on it. However we cannot
guarantee to maintain backward-compatibility in the next
release. Consider using GNU Guile instead for extending
GNU make (see The guile Function).

Many operating systems provide a facility for dynamically loading
compiled objects. If your system provides this facility, GNU make can
make use of it to load dynamic objects at runtime, providing new
capabilities which may then be invoked by your makefile.

The load directive is used to load a dynamic object. Once the object
is loaded, a “setup” function will be invoked to allow the object to
initialize itself and register new facilities with GNU make. A dynamic
object might include new make functions, for example, and the
“setup” function would register them with GNU make’s function
handling system.

• load Directive:

Loading dynamic objects as
extensions.

• Remaking Loaded
Objects:

How loaded objects get remade.

• Loaded Object API:

Programmatic interface for loaded
objects.

• Loaded Object
Example:

Example of a loaded object

Next: Remaking Loaded Objects, Previous: Loading Objects, Up:

Loading Objects [Contents][Index]

12.2.1 The load Directive

Objects are loaded into GNU make by placing the load directive into
your makefile. The syntax of the load directive is as follows:

load object-file …

GNU make https://www.gnu.org/software/make/manual/ma...

212 of 322 06/08/18, 2:50 PM

or:

load object-file(symbol-name) …

The file object-file is dynamically loaded by GNU make. If object-file
does not include a directory path then it is first looked for in the
current directory. If it is not found there, or a directory path is
included, then system-specific paths will be searched. If the load
fails for any reason, make will print a message and exit.

If the load succeeds make will invoke an initializing function.

If symbol-name is provided, it will be used as the name of the
initializing function.

If no symbol-name is provided, the initializing function name is
created by taking the base file name of object-file, up to the first
character which is not a valid symbol name character
(alphanumerics and underscores are valid symbol name
characters). To this prefix will be appended the suffix _gmk_setup.

More than one object file may be loaded with a single load
directive, and both forms of load arguments may be used in the
same directive.

The initializing function will be provided the file name and line
number of the invocation of the load operation. It should return a
value of type int, which must be 0 on failure and non-0 on success.
If the return value is -1, then GNU make will not attempt to rebuild
the object file (see How Loaded Objects Are Remade).

For example:

load ../mk_funcs.so

will load the dynamic object ../mk_funcs.so. After the object is
loaded, make will invoke the function (assumed to be defined by the
shared object) mk_funcs_gmk_setup.

On the other hand:

load ../mk_funcs.so(init_mk_func)

will load the dynamic object ../mk_funcs.so. After the object is
loaded, make will invoke the function init_mk_func.

GNU make https://www.gnu.org/software/make/manual/ma...

213 of 322 06/08/18, 2:50 PM

Regardless of how many times an object file appears in a load
directive, it will only be loaded (and its setup function will only be
invoked) once.

After an object has been successfully loaded, its file name is
appended to the .LOADED variable.

If you would prefer that failure to load a dynamic object not be
reported as an error, you can use the -load directive instead of load.
GNU make will not fail and no message will be generated if an object
fails to load. The failed object is not added to the .LOADED variable,
which can then be consulted to determine if the load was
successful.

Next: Loaded Object API, Previous: load Directive, Up:

Loading Objects [Contents][Index]

12.2.2 How Loaded Objects Are Remade

Loaded objects undergo the same re-make procedure as makefiles
(see How Makefiles Are Remade). If any loaded object is recreated,
then make will start from scratch and re-read all the makefiles, and
reload the object files again. It is not necessary for the loaded
object to do anything special to support this.

It’s up to the makefile author to provide the rules needed for
rebuilding the loaded object.

Next: Loaded Object Example, Previous: Remaking Loaded Objects

, Up: Loading Objects [Contents][Index]

12.2.3 Loaded Object Interface

Warning: For this feature to be useful your extensions will
need to invoke various functions internal to GNU make. The
programming interfaces provided in this release should not
be considered stable: functions may be added, removed, or
change calling signatures or implementations in future
versions of GNU make.

GNU make https://www.gnu.org/software/make/manual/ma...

214 of 322 06/08/18, 2:50 PM

To be useful, loaded objects must be able to interact with GNU make.
This interaction includes both interfaces the loaded object provides
to makefiles and also interfaces make provides to the loaded object
to manipulate make’s operation.

The interface between loaded objects and make is defined by the
gnumake.h C header file. All loaded objects written in C should
include this header file. Any loaded object not written in C will
need to implement the interface defined in this header file.

Typically, a loaded object will register one or more new GNU make
functions using the gmk_add_function routine from within its setup
function. The implementations of these make functions may make
use of the gmk_expand and gmk_eval routines to perform their tasks,
then optionally return a string as the result of the function
expansion.

Loaded Object Licensing

Every dynamic extension should define the global symbol
plugin_is_GPL_compatible to assert that it has been licensed under a
GPL-compatible license. If this symbol does not exist, make emits a
fatal error and exits when it tries to load your extension.

The declared type of the symbol should be int. It does not need to
be in any allocated section, though. The code merely asserts that
the symbol exists in the global scope. Something like this is
enough:

int plugin_is_GPL_compatible;

Data Structures

gmk_floc

This structure represents a filename/location pair. It is
provided when defining items, so GNU make can inform the user
later where the definition occurred if necessary.

Registering Functions

There is currently one way for makefiles to invoke operations
provided by the loaded object: through the make function call
interface. A loaded object can register one or more new functions
which may then be invoked from within the makefile in the same
way as any other function.

GNU make https://www.gnu.org/software/make/manual/ma...

215 of 322 06/08/18, 2:50 PM

Use gmk_add_function to create a new make function. Its arguments are
as follows:

name

The function name. This is what the makefile should use to
invoke the function. The name must be between 1 and 255
characters long and it may only contain alphanumeric, period
(‘.’), dash (‘-’), and underscore (‘_’) characters. It may not
begin with a period.

func_ptr

A pointer to a function that make will invoke when it expands the
function in a makefile. This function must be defined by the
loaded object.

min_args

The minimum number of arguments the function will accept.
Must be between 0 and 255. GNU make will check this and fail
before invoking func_ptr if the function was invoked with too
few arguments.

max_args

The maximum number of arguments the function will accept.
Must be between 0 and 255. GNU make will check this and fail
before invoking func_ptr if the function was invoked with too
few arguments. If the value is 0, then any number of
arguments is accepted. If the value is greater than 0, then it
must be greater than or equal to min_args.

flags

Flags that specify how this function will operate; the desired
flags should be OR’d together. If the GMK_FUNC_NOEXPAND flag is
given then the function arguments will not be expanded before
the function is called; otherwise they will be expanded first.

Registered Function Interface

A function registered with make must match the gmk_func_ptr type. It
will be invoked with three parameters: name (the name of the
function), argc (the number of arguments to the function), and argv
(an array of pointers to arguments to the function). The last pointer
(that is, argv[argc]) will be null (0).

The return value of the function is the result of expanding the
function. If the function expands to nothing the return value may

GNU make https://www.gnu.org/software/make/manual/ma...

216 of 322 06/08/18, 2:50 PM

be null. Otherwise, it must be a pointer to a string created with
gmk_alloc. Once the function returns, make owns this string and will
free it when appropriate; it cannot be accessed by the loaded
object.

GNU make Facilities

There are some facilities exported by GNU make for use by loaded
objects. Typically these would be run from within the setup
function and/or the functions registered via gmk_add_function, to
retrieve or modify the data make works with.

gmk_expand

This function takes a string and expands it using make expansion
rules. The result of the expansion is returned in a nil-
terminated string buffer. The caller is responsible for calling
gmk_free with a pointer to the returned buffer when done.

gmk_eval

This function takes a buffer and evaluates it as a segment of
makefile syntax. This function can be used to define new
variables, new rules, etc. It is equivalent to using the eval make

function.

Note that there is a difference between gmk_eval and calling
gmk_expand with a string using the eval function: in the latter case the
string will be expanded twice; once by gmk_expand and then again by
the eval function. Using gmk_eval the buffer is only expanded once, at
most (as it’s read by the make parser).

Memory Management

Some systems allow for different memory management schemes.
Thus you should never pass memory that you’ve allocated directly
to any make function, nor should you attempt to directly free any
memory returned to you by any make function. Instead, use the
gmk_alloc and gmk_free functions.

In particular, the string returned to make by a function registered
using gmk_add_function must be allocated using gmk_alloc, and the
string returned from the make gmk_expand function must be freed
(when no longer needed) using gmk_free.

gmk_alloc

Return a pointer to a newly-allocated buffer. This function will
always return a valid pointer; if not enough memory is

GNU make https://www.gnu.org/software/make/manual/ma...

217 of 322 06/08/18, 2:50 PM

available make will exit.

gmk_free

Free a buffer returned to you by make. Once the gmk_free function
returns the string will no longer be valid.

Previous: Loaded Object API, Up: Loading Objects [Contents][

Index]

12.2.4 Example Loaded Object

Let’s suppose we wanted to write a new GNU make function that
would create a temporary file and return its name. We would like
our function to take a prefix as an argument. First we can write the
function in a file mk_temp.c:

#include <stdlib.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>

#include <gnumake.h>

int plugin_is_GPL_compatible;

char *
gen_tmpfile(const char *nm, int argc, char **argv)
{
 int fd;

 /* Compute the size of the filename and allocate space for it. */
 int len = strlen (argv[0]) + 6 + 1;
 char *buf = gmk_alloc (len);

 strcpy (buf, argv[0]);
 strcat (buf, "XXXXXX");

 fd = mkstemp(buf);
 if (fd >= 0)
 {
 /* Don't leak the file descriptor. */
 close (fd);
 return buf;
 }

 /* Failure. */
 fprintf (stderr, "mkstemp(%s) failed: %s\n", buf, strerror (errno));
 gmk_free (buf);
 return NULL;
}

GNU make https://www.gnu.org/software/make/manual/ma...

218 of 322 06/08/18, 2:50 PM

int
mk_temp_gmk_setup ()
{
 /* Register the function with make name "mk-temp". */
 gmk_add_function ("mk-temp", gen_tmpfile, 1, 1, 1);
 return 1;
}

Next, we will write a makefile that can build this shared object,
load it, and use it:

all:
 @echo Temporary file: $(mk-temp tmpfile.)

load mk_temp.so

mk_temp.so: mk_temp.c
 $(CC) -shared -fPIC -o $ $<

On MS-Windows, due to peculiarities of how shared objects are
produced, the compiler needs to scan the import library produced
when building make, typically called libgnumake-version.dll.a, where
version is the version of the load object API. So the recipe to
produce a shared object will look on Windows like this (assuming
the API version is 1):

mk_temp.dll: mk_temp.c
 $(CC) -shared -o $ $< -lgnumake-1

Now when you run make you’ll see something like:

$ make
cc -shared -fPIC -o mk_temp.so mk_temp.c
Temporary filename: tmpfile.A7JEwd

Next: Features, Previous: Extending make, Up: Top [Contents][

Index]

13 Integrating GNU make

GNU make is often one component in a larger system of tools,
including integrated development environments, compiler
toolchains, and others. The role of make is to start commands and
determine whether they succeeded or not: no special integration is

GNU make https://www.gnu.org/software/make/manual/ma...

219 of 322 06/08/18, 2:50 PM

needed to accomplish that. However, sometimes it is convenient to
bind make more tightly with other parts of the system, both higher-
level (tools that invoke make) and lower-level (tools that make
invokes).

• Job Slots: Share job slots with GNU make.

• Terminal Output: Control output to terminals.

Next: Terminal Output, Previous: Integrating make, Up:

Integrating make [Contents][Index]

13.1 Sharing Job Slots with GNU make

GNU make has the ability to run multiple recipes in parallel (see
Parallel Execution) and to cap the total number of parallel jobs
even across recursive invocations of make (see Communicating
Options to a Sub-make). Tools that make invokes which are also able to
run multiple operations in parallel, either using multiple threads or
multiple processes, can be enhanced to participate in GNU make’s
job management facility to ensure that the total number of active
threads/processes running on the system does not exceed the
maximum number of slots provided to GNU make.

GNU make uses a method called the “jobserver” to control the
number of active jobs across recursive invocations. The actual
implementation of the jobserver varies across different operating
systems, but some fundamental aspects are always true.

First, only command lines that make understands to be recursive
invocations of make (see How the MAKE Variable Works) will have
access to the jobserver. When writing makefiles you must be sure
to mark the command as recursive (most commonly by prefixing
the command line with the + indicator (see Recursive Use of make).

Second, make will provide information necessary for accessing the
jobserver through the environment to its children, in the MAKEFLAGS
environment variable. Tools which want to participate in the
jobserver protocol will need to parse this environment variable, as
described in subsequent sections.

Third, every command make starts has one implicit job slot reserved
for it before it starts. Any tool which wants to participate in the
jobserver protocol should assume it can always run one job without

GNU make https://www.gnu.org/software/make/manual/ma...

220 of 322 06/08/18, 2:50 PM

having to contact the jobserver at all.

Finally, it’s critical that tools that participate in the jobserver
protocol return the exact number of slots they obtained from the
jobserver back to the jobserver before they exit, even under error
conditions. Remember that the implicit job slot should not be
returned to the jobserver! Returning too few slots means that
those slots will be lost for the rest of the build process; returning
too many slots means that extra slots will be available. The top-
level make command will print an error message at the end of the
build if it detects an incorrect number of slots available in the
jobserver.

As an example, suppose you are implementing a linker which
provides for multithreaded operation. You would like to enhance
the linker so that if it is invoked by GNU make it can participate in
the jobserver protocol to control how many threads are used
during link. First you will need to modify the linker to determine if
the MAKEFLAGS environment variable is set. Next you will need to
parse the value of that variable to determine if the jobserver is
available, and how to access it. If it is available then you can
access it to obtain job slots controlling how much parallelism your
tool can use. Once done your tool must return those job slots back
to the jobserver.

• POSIX Jobserver: Using the jobserver on POSIX systems.

• Windows
Jobserver:

Using the jobserver on Windows
systems.

Next: Windows Jobserver, Previous: Job Slots, Up: Job Slots [

Contents][Index]

13.1.1 POSIX Jobserver Interaction

On POSIX systems the jobserver is implemented as a simple UNIX
pipe. The pipe will be pre-loaded with one single-character token
for each available job. To obtain an extra slot you must read a
single character from the jobserver pipe; to release a slot you must
write a single character back into the jobserver pipe.

To access the pipe you must parse the MAKEFLAGS variable and look
for the argument string --jobserver-auth=R,W where ‘R’ and ‘W’ are non-
negative integers representing file descriptors: ‘R’ is the read file

GNU make https://www.gnu.org/software/make/manual/ma...

221 of 322 06/08/18, 2:50 PM

descriptor and ‘W’ is the write file descriptor.

It’s important that when you release the job slot, you write back
the same character you read from the pipe for that slot. Don’t
assume that all tokens are the same character; different characters
may have different meanings to GNU make. The order is not
important, since make has no idea in what order jobs will complete
anyway.

There are various error conditions you must consider to ensure
your implementation is robust:

Usually you will have a command-line argument controlling
the parallel operation of your tool. Consider whether your
tool should detect situations where both the jobserver and
the command-line argument are specified, and how it should
react.

If your tool determines that the --jobserver-auth option is
available in MAKEFLAGS but that the file descriptors specified are
closed, this means that the calling make process did not think
that your tool was a recursive make invocation (e.g., the
command line was not prefixed with a + character). You
should notify your users of this situation.

Your tool should also examine the first word of the MAKEFLAGS
variable and look for the character n. If this character is
present then make was invoked with the ‘-n’ option and your
tool should stop without performing any operations.

Your tool should be sure to write back the tokens it read,
even under error conditions. This includes not only errors in
your tool but also outside influences such as interrupts
(SIGINT), etc. You may want to install signal handlers to
manage this write-back.

Previous: POSIX Jobserver, Up: Job Slots [Contents][Index]

13.1.2 Windows Jobserver Interaction

On Windows systems the jobserver is implemented as a named
semaphore. The semaphore will be set with an initial count equal
to the number of available slots; to obtain a slot you must wait on
the semaphore (with or without a timeout). To release a slot,
release the semaphore.

To access the semaphore you must parse the MAKEFLAGS variable and

GNU make https://www.gnu.org/software/make/manual/ma...

222 of 322 06/08/18, 2:50 PM

look for the argument string --jobserver-auth=NAME where ‘NAME’ is the
name of the named semaphore. Use this name with OpenSemaphore to
create a handle to the semaphore.

There are various error conditions you must consider to ensure
your implementation is robust:

Usually you will have a command-line argument controlling
the parallel operation of your tool. Consider whether your
tool should detect situations where both the jobserver and
the command-line argument are specified, and how it should
react.

Your tool should be sure to release the semaphore for the
tokens it read, even under error conditions. This includes not
only errors in your tool but also outside influences such as
interrupts (SIGINT), etc. You may want to install signal
handlers to manage this write-back.

Previous: Job Slots, Up: Integrating make [Contents][Index]

13.2 Synchronized Terminal Output

Normally GNU make will invoke all commands with access to the
same standard and error outputs that make itself was started with. A
number of tools will detect whether the output is a terminal or not-
a-terminal, and use this information to change the output style. For
example if the output goes to a terminal the tool may add control
characters that set color, or even change the location of the cursor.
If the output is not going to a terminal then these special control
characters are not emitted so that they don’t corrupt log files, etc.

The --output-sync (see Output During Parallel Output) option will
defeat the terminal detection. When output synchronization is
enabled GNU make arranges for all command output to be written to
a file, so that its output can be written as a block without
interference from other commands. This means that all tools
invoked by make will believe that their output is not going to be
displayed on a terminal, even when it will be (because make will
display it there after the command is completed).

In order to facilitate tools which would like to determine whether
or not their output will be displayed on a terminal, GNU make will
set the MAKE_TERMOUT and MAKE_TERMERR environment variables before
invoking any commands. Tools which would like to determine

GNU make https://www.gnu.org/software/make/manual/ma...

223 of 322 06/08/18, 2:50 PM

whether standard or error output (respectively) will be displayed
on a terminal can check these environment variables to determine
if they exist and contain a non-empty value. If so the tool can
assume that the output will (eventually) be displayed on a terminal.
If the variables are not set or have an empty value, then the tool
should fall back to its normal methods of detecting whether output
is going to a terminal or not.

The content of the variables can be parsed to determine the type of
terminal which will be used to display the output.

Similarly, environments which invoke make and would like to capture
the output and eventually display it on a terminal (or some display
which can interpret terminal control characters) can set these
variables before invoking make. GNU make will not modify these
environment variables if they already exist when it starts.

Next: Missing, Previous: Integrating make, Up: Top [Contents][

Index]

14 Features of GNU make

Here is a summary of the features of GNU make, for comparison
with and credit to other versions of make. We consider the features
of make in 4.2 BSD systems as a baseline. If you are concerned with
writing portable makefiles, you should not use the features of make
listed here, nor the ones in Missing.

Many features come from the version of make in System V.

The VPATH variable and its special meaning. See Searching
Directories for Prerequisites. This feature exists in System V
make, but is undocumented. It is documented in 4.3 BSD make
(which says it mimics System V’s VPATH feature).

Included makefiles. See Including Other Makefiles. Allowing
multiple files to be included with a single directive is a GNU
extension.

Variables are read from and communicated via the
environment. See Variables from the Environment.

Options passed through the variable MAKEFLAGS to recursive
invocations of make. See Communicating Options to a Sub-make.

The automatic variable $% is set to the member name in an

GNU make https://www.gnu.org/software/make/manual/ma...

224 of 322 06/08/18, 2:50 PM

archive reference. See Automatic Variables.

The automatic variables $@, $*, $<, $%, and $? have
corresponding forms like $(@F) and $(@D). We have generalized
this to $^ as an obvious extension. See Automatic Variables.

Substitution variable references. See Basics of Variable
References.

The command line options ‘-b’ and ‘-m’, accepted and ignored.
In System V make, these options actually do something.

Execution of recursive commands to run make via the variable
MAKE even if ‘-n’, ‘-q’ or ‘-t’ is specified. See Recursive Use of
make.

Support for suffix ‘.a’ in suffix rules. See Archive Suffix
Rules. This feature is obsolete in GNU make, because the
general feature of rule chaining (see Chains of Implicit
Rules) allows one pattern rule for installing members in an
archive (see Archive Update) to be sufficient.

The arrangement of lines and backslash/newline
combinations in recipes is retained when the recipes are
printed, so they appear as they do in the makefile, except for
the stripping of initial whitespace.

The following features were inspired by various other versions of
make. In some cases it is unclear exactly which versions inspired
which others.

Pattern rules using ‘%’. This has been implemented in several
versions of make. We’re not sure who invented it first, but it’s
been spread around a bit. See Defining and Redefining
Pattern Rules.

Rule chaining and implicit intermediate files. This was
implemented by Stu Feldman in his version of make for AT&T
Eighth Edition Research Unix, and later by Andrew Hume of
AT&T Bell Labs in his mk program (where he terms it
“transitive closure”). We do not really know if we got this
from either of them or thought it up ourselves at the same
time. See Chains of Implicit Rules.

The automatic variable $^ containing a list of all prerequisites
of the current target. We did not invent this, but we have no
idea who did. See Automatic Variables. The automatic
variable $+ is a simple extension of $^.

The “what if” flag (‘-W’ in GNU make) was (as far as we know)
invented by Andrew Hume in mk. See Instead of Executing

GNU make https://www.gnu.org/software/make/manual/ma...

225 of 322 06/08/18, 2:50 PM

Recipes.

The concept of doing several things at once (parallelism)
exists in many incarnations of make and similar programs,
though not in the System V or BSD implementations. See
Recipe Execution.

A number of different build tools that support parallelism
also support collecting output and displaying as a single
block. See Output During Parallel Execution.

Modified variable references using pattern substitution come
from SunOS 4. See Basics of Variable References. This
functionality was provided in GNU make by the patsubst
function before the alternate syntax was implemented for
compatibility with SunOS 4. It is not altogether clear who
inspired whom, since GNU make had patsubst before SunOS 4
was released.

The special significance of ‘+’ characters preceding recipe
lines (see Instead of Executing Recipes) is mandated by IEEE
Standard 1003.2-1992 (POSIX.2).

The ‘+=’ syntax to append to the value of a variable comes
from SunOS 4 make. See Appending More Text to Variables.

The syntax ‘archive(mem1 mem2…)’ to list multiple members in a
single archive file comes from SunOS 4 make. See Archive
Members.

The -include directive to include makefiles with no error for a
nonexistent file comes from SunOS 4 make. (But note that
SunOS 4 make does not allow multiple makefiles to be
specified in one -include directive.) The same feature appears
with the name sinclude in SGI make and perhaps others.

The != shell assignment operator exists in many BSD of make
and is purposefully implemented here to behave identically
to those implementations.

Various build management tools are implemented using
scripting languages such as Perl or Python and thus provide
a natural embedded scripting language, similar to GNU make’s
integration of GNU Guile.

The remaining features are inventions new in GNU make:

Use the ‘-v’ or ‘--version’ option to print version and copyright
information.

Use the ‘-h’ or ‘--help’ option to summarize the options to make.

GNU make https://www.gnu.org/software/make/manual/ma...

226 of 322 06/08/18, 2:50 PM

Simply-expanded variables. See The Two Flavors of
Variables.

Pass command line variable assignments automatically
through the variable MAKE to recursive make invocations. See
Recursive Use of make.

Use the ‘-C’ or ‘--directory’ command option to change
directory. See Summary of Options.

Make verbatim variable definitions with define. See Defining
Multi-Line Variables.

Declare phony targets with the special target .PHONY.

Andrew Hume of AT&T Bell Labs implemented a similar
feature with a different syntax in his mk program. This seems
to be a case of parallel discovery. See Phony Targets.

Manipulate text by calling functions. See Functions for
Transforming Text.

Use the ‘-o’ or ‘--old-file’ option to pretend a file’s
modification-time is old. See Avoiding Recompilation of Some
Files.

Conditional execution.

This feature has been implemented numerous times in
various versions of make; it seems a natural extension derived
from the features of the C preprocessor and similar macro
languages and is not a revolutionary concept. See
Conditional Parts of Makefiles.

Specify a search path for included makefiles. See Including
Other Makefiles.

Specify extra makefiles to read with an environment variable.
See The Variable MAKEFILES.

Strip leading sequences of ‘./’ from file names, so that ./file
and file are considered to be the same file.

Use a special search method for library prerequisites written
in the form ‘-lname’. See Directory Search for Link Libraries.

Allow suffixes for suffix rules (see Old-Fashioned Suffix
Rules) to contain any characters. In other versions of make,
they must begin with ‘.’ and not contain any ‘/’ characters.

Keep track of the current level of make recursion using the
variable MAKELEVEL. See Recursive Use of make.

Provide any goals given on the command line in the variable
MAKECMDGOALS. See Arguments to Specify the Goals.

GNU make https://www.gnu.org/software/make/manual/ma...

227 of 322 06/08/18, 2:50 PM

Specify static pattern rules. See Static Pattern Rules.

Provide selective vpath search. See Searching Directories for
Prerequisites.

Provide computed variable references. See Basics of Variable
References.

Update makefiles. See How Makefiles Are Remade. System V
make has a very, very limited form of this functionality in that
it will check out SCCS files for makefiles.

Various new built-in implicit rules. See Catalogue of Built-In
Rules.

Load dynamic objects which can modify the behavior of make.
See Loading Dynamic Objects.

Next: Makefile Conventions, Previous: Features, Up: Top [

Contents][Index]

15 Incompatibilities and Missing
Features

The make programs in various other systems support a few features
that are not implemented in GNU make. The POSIX.2 standard (IEEE
Standard 1003.2-1992) which specifies make does not require any of
these features.

A target of the form ‘file((entry))’ stands for a member of
archive file file. The member is chosen, not by name, but by
being an object file which defines the linker symbol entry.

This feature was not put into GNU make because of the non-
modularity of putting knowledge into make of the internal
format of archive file symbol tables. See Updating Archive
Symbol Directories.

Suffixes (used in suffix rules) that end with the character ‘~’
have a special meaning to System V make; they refer to the
SCCS file that corresponds to the file one would get without
the ‘~’. For example, the suffix rule ‘.c~.o’ would make the file
n.o from the SCCS file s.n.c. For complete coverage, a whole
series of such suffix rules is required. See Old-Fashioned
Suffix Rules.

In GNU make, this entire series of cases is handled by two

GNU make https://www.gnu.org/software/make/manual/ma...

228 of 322 06/08/18, 2:50 PM

pattern rules for extraction from SCCS, in combination with
the general feature of rule chaining. See Chains of Implicit
Rules.

In System V and 4.3 BSD make, files found by VPATH search (see
Searching Directories for Prerequisites) have their names
changed inside recipes. We feel it is much cleaner to always
use automatic variables and thus make this feature obsolete.

In some Unix makes, the automatic variable $* appearing in the
prerequisites of a rule has the amazingly strange “feature” of
expanding to the full name of the target of that rule. We
cannot imagine what went on in the minds of Unix make
developers to do this; it is utterly inconsistent with the
normal definition of $*.

In some Unix makes, implicit rule search (see Using Implicit
Rules) is apparently done for all targets, not just those
without recipes. This means you can do:

foo.o:
 cc -c foo.c

and Unix make will intuit that foo.o depends on foo.c.

We feel that such usage is broken. The prerequisite
properties of make are well-defined (for GNU make, at least),
and doing such a thing simply does not fit the model.

GNU make does not include any built-in implicit rules for
compiling or preprocessing EFL programs. If we hear of
anyone who is using EFL, we will gladly add them.

It appears that in SVR4 make, a suffix rule can be specified
with no recipe, and it is treated as if it had an empty recipe
(see Empty Recipes). For example:

.c.a:

will override the built-in .c.a suffix rule.

We feel that it is cleaner for a rule without a recipe to always
simply add to the prerequisite list for the target. The above
example can be easily rewritten to get the desired behavior
in GNU make:

.c.a: ;

GNU make https://www.gnu.org/software/make/manual/ma...

229 of 322 06/08/18, 2:50 PM

Some versions of make invoke the shell with the ‘-e’ flag,
except under ‘-k’ (see Testing the Compilation of a Program).
The ‘-e’ flag tells the shell to exit as soon as any program it
runs returns a nonzero status. We feel it is cleaner to write
each line of the recipe to stand on its own and not require
this special treatment.

Next: Quick Reference, Previous: Missing, Up: Top [Contents][

Index]

16 Makefile Conventions

This describes conventions for writing the Makefiles for GNU
programs. Using Automake will help you write a Makefile that
follows these conventions. For more information on portable
Makefiles, see POSIX and Portable Make Programming in Autoconf.

• Makefile Basics: General conventions for Makefiles.

• Utilities in
Makefiles:

Utilities to be used in Makefiles.

• Command
Variables:

Variables for specifying commands.

• DESTDIR: Supporting staged installs.

• Directory
Variables:

Variables for installation directories.

• Standard
Targets:

Standard targets for users.

• Install Command
Categories:

Three categories of commands in the
‘install’ rule: normal, pre-install and
post-install.

Next: Utilities in Makefiles, Up: Makefile Conventions [Contents][

Index]

16.1 General Conventions for Makefiles

Every Makefile should contain this line:

GNU make https://www.gnu.org/software/make/manual/ma...

230 of 322 06/08/18, 2:50 PM

SHELL = /bin/sh

to avoid trouble on systems where the SHELL variable might be
inherited from the environment. (This is never a problem with GNU
make.)

Different make programs have incompatible suffix lists and implicit
rules, and this sometimes creates confusion or misbehavior. So it is
a good idea to set the suffix list explicitly using only the suffixes
you need in the particular Makefile, like this:

.SUFFIXES:

.SUFFIXES: .c .o

The first line clears out the suffix list, the second introduces all
suffixes which may be subject to implicit rules in this Makefile.

Don’t assume that . is in the path for command execution. When
you need to run programs that are a part of your package during
the make, please make sure that it uses ./ if the program is built as
part of the make or $(srcdir)/ if the file is an unchanging part of the
source code. Without one of these prefixes, the current search path
is used.

The distinction between ./ (the build directory) and $(srcdir)/ (the
source directory) is important because users can build in a
separate directory using the ‘--srcdir’ option to configure. A rule of
the form:

foo.1 : foo.man sedscript
 sed -f sedscript foo.man > foo.1

will fail when the build directory is not the source directory,
because foo.man and sedscript are in the source directory.

When using GNU make, relying on ‘VPATH’ to find the source file will
work in the case where there is a single dependency file, since the
make automatic variable ‘$<’ will represent the source file wherever
it is. (Many versions of make set ‘$<’ only in implicit rules.) A
Makefile target like

foo.o : bar.c
 $(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o

should instead be written as

foo.o : bar.c

GNU make https://www.gnu.org/software/make/manual/ma...

231 of 322 06/08/18, 2:50 PM

 $(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@

in order to allow ‘VPATH’ to work correctly. When the target has
multiple dependencies, using an explicit ‘$(srcdir)’ is the easiest
way to make the rule work well. For example, the target above for
foo.1 is best written as:

foo.1 : foo.man sedscript
 sed -f $(srcdir)/sedscript $(srcdir)/foo.man > $@

GNU distributions usually contain some files which are not source
files—for example, Info files, and the output from Autoconf,
Automake, Bison or Flex. Since these files normally appear in the
source directory, they should always appear in the source
directory, not in the build directory. So Makefile rules to update
them should put the updated files in the source directory.

However, if a file does not appear in the distribution, then the
Makefile should not put it in the source directory, because building
a program in ordinary circumstances should not modify the source
directory in any way.

Try to make the build and installation targets, at least (and all their
subtargets) work correctly with a parallel make.

Next: Command Variables, Previous: Makefile Basics, Up:

Makefile Conventions [Contents][Index]

16.2 Utilities in Makefiles

Write the Makefile commands (and any shell scripts, such as
configure) to run under sh (both the traditional Bourne shell and the
POSIX shell), not csh. Don’t use any special features of ksh or bash, or
POSIX features not widely supported in traditional Bourne sh.

The configure script and the Makefile rules for building and
installation should not use any utilities directly except these:

awk cat cmp cp diff echo egrep expr false grep install-info ln ls
mkdir mv printf pwd rm rmdir sed sleep sort tar test touch tr true

Compression programs such as gzip can be used in the dist rule.

Generally, stick to the widely-supported (usually POSIX-specified)
options and features of these programs. For example, don’t use

GNU make https://www.gnu.org/software/make/manual/ma...

232 of 322 06/08/18, 2:50 PM

‘mkdir -p’, convenient as it may be, because a few systems don’t
support it at all and with others, it is not safe for parallel
execution. For a list of known incompatibilities, see Portable Shell
Programming in Autoconf.

It is a good idea to avoid creating symbolic links in makefiles, since
a few file systems don’t support them.

The Makefile rules for building and installation can also use
compilers and related programs, but should do so via make variables
so that the user can substitute alternatives. Here are some of the
programs we mean:

ar bison cc flex install ld ldconfig lex
make makeinfo ranlib texi2dvi yacc

Use the following make variables to run those programs:

$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LDCONFIG) $(LEX)
$(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC)

When you use ranlib or ldconfig, you should make sure nothing bad
happens if the system does not have the program in question.
Arrange to ignore an error from that command, and print a
message before the command to tell the user that failure of this
command does not mean a problem. (The Autoconf ‘AC_PROG_RANLIB’
macro can help with this.)

If you use symbolic links, you should implement a fallback for
systems that don’t have symbolic links.

Additional utilities that can be used via Make variables are:

chgrp chmod chown mknod

It is ok to use other utilities in Makefile portions (or scripts)
intended only for particular systems where you know those utilities
exist.

Next: DESTDIR, Previous: Utilities in Makefiles, Up:

Makefile Conventions [Contents][Index]

16.3 Variables for Specifying Commands

GNU make https://www.gnu.org/software/make/manual/ma...

233 of 322 06/08/18, 2:50 PM

Makefiles should provide variables for overriding certain
commands, options, and so on.

In particular, you should run most utility programs via variables.
Thus, if you use Bison, have a variable named BISON whose default
value is set with ‘BISON = bison’, and refer to it with $(BISON)
whenever you need to use Bison.

File management utilities such as ln, rm, mv, and so on, need not be
referred to through variables in this way, since users don’t need to
replace them with other programs.

Each program-name variable should come with an options variable
that is used to supply options to the program. Append ‘FLAGS’ to the
program-name variable name to get the options variable name—for
example, BISONFLAGS. (The names CFLAGS for the C compiler, YFLAGS for
yacc, and LFLAGS for lex, are exceptions to this rule, but we keep
them because they are standard.) Use CPPFLAGS in any compilation
command that runs the preprocessor, and use LDFLAGS in any
compilation command that does linking as well as in any direct use
of ld.

If there are C compiler options that must be used for proper
compilation of certain files, do not include them in CFLAGS. Users
expect to be able to specify CFLAGS freely themselves. Instead,
arrange to pass the necessary options to the C compiler
independently of CFLAGS, by writing them explicitly in the
compilation commands or by defining an implicit rule, like this:

CFLAGS = -g
ALL_CFLAGS = -I. $(CFLAGS)
.c.o:
 $(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Do include the ‘-g’ option in CFLAGS, because that is not required for
proper compilation. You can consider it a default that is only
recommended. If the package is set up so that it is compiled with
GCC by default, then you might as well include ‘-O’ in the default
value of CFLAGS as well.

Put CFLAGS last in the compilation command, after other variables
containing compiler options, so the user can use CFLAGS to override
the others.

CFLAGS should be used in every invocation of the C compiler, both
those which do compilation and those which do linking.

Every Makefile should define the variable INSTALL, which is the basic

GNU make https://www.gnu.org/software/make/manual/ma...

234 of 322 06/08/18, 2:50 PM

command for installing a file into the system.

Every Makefile should also define the variables INSTALL_PROGRAM and
INSTALL_DATA. (The default for INSTALL_PROGRAM should be $(INSTALL); the
default for INSTALL_DATA should be ${INSTALL} -m 644.) Then it should
use those variables as the commands for actual installation, for
executables and non-executables respectively. Minimal use of these
variables is as follows:

$(INSTALL_PROGRAM) foo $(bindir)/foo
$(INSTALL_DATA) libfoo.a $(libdir)/libfoo.a

However, it is preferable to support a DESTDIR prefix on the target
files, as explained in the next section.

It is acceptable, but not required, to install multiple files in one
command, with the final argument being a directory, as in:

$(INSTALL_PROGRAM) foo bar baz $(bindir)

Next: Directory Variables, Previous: Command Variables, Up:

Makefile Conventions [Contents][Index]

16.4 DESTDIR: Support for Staged Installs

DESTDIR is a variable prepended to each installed target file, like
this:

$(INSTALL_PROGRAM) foo $(DESTDIR)$(bindir)/foo
$(INSTALL_DATA) libfoo.a $(DESTDIR)$(libdir)/libfoo.a

The DESTDIR variable is specified by the user on the make command
line as an absolute file name. For example:

make DESTDIR=/tmp/stage install

DESTDIR should be supported only in the install* and uninstall*
targets, as those are the only targets where it is useful.

If your installation step would normally install /usr/local/bin/foo and
/usr/local/lib/libfoo.a, then an installation invoked as in the example
above would install /tmp/stage/usr/local/bin/foo and /tmp/stage/usr/local

GNU make https://www.gnu.org/software/make/manual/ma...

235 of 322 06/08/18, 2:50 PM

/lib/libfoo.a instead.

Prepending the variable DESTDIR to each target in this way provides
for staged installs, where the installed files are not placed directly
into their expected location but are instead copied into a
temporary location (DESTDIR). However, installed files maintain their
relative directory structure and any embedded file names will not
be modified.

You should not set the value of DESTDIR in your Makefile at all; then
the files are installed into their expected locations by default. Also,
specifying DESTDIR should not change the operation of the software
in any way, so its value should not be included in any file contents.

DESTDIR support is commonly used in package creation. It is also
helpful to users who want to understand what a given package will
install where, and to allow users who don’t normally have
permissions to install into protected areas to build and install
before gaining those permissions. Finally, it can be useful with
tools such as stow, where code is installed in one place but made to
appear to be installed somewhere else using symbolic links or
special mount operations. So, we strongly recommend GNU
packages support DESTDIR, though it is not an absolute requirement.

Next: Standard Targets, Previous: DESTDIR, Up:

Makefile Conventions [Contents][Index]

16.5 Variables for Installation Directories

Installation directories should always be named by variables, so it
is easy to install in a nonstandard place. The standard names for
these variables and the values they should have in GNU packages
are described below. They are based on a standard file system
layout; variants of it are used in GNU/Linux and other modern
operating systems.

Installers are expected to override these values when calling make
(e.g., make prefix=/usr install) or configure (e.g., configure --prefix=/usr).
GNU packages should not try to guess which value should be
appropriate for these variables on the system they are being
installed onto: use the default settings specified here so that all
GNU packages behave identically, allowing the installer to achieve
any desired layout.

GNU make https://www.gnu.org/software/make/manual/ma...

236 of 322 06/08/18, 2:50 PM

All installation directories, and their parent directories, should be
created (if necessary) before they are installed into.

These first two variables set the root for the installation. All the
other installation directories should be subdirectories of one of
these two, and nothing should be directly installed into these two
directories.

prefix

A prefix used in constructing the default values of the variables
listed below. The default value of prefix should be /usr/local.
When building the complete GNU system, the prefix will be
empty and /usr will be a symbolic link to /. (If you are using
Autoconf, write it as ‘@prefix@’.)

Running ‘make install’ with a different value of prefix from the
one used to build the program should not recompile the
program.

exec_prefix

A prefix used in constructing the default values of some of the
variables listed below. The default value of exec_prefix should be
$(prefix). (If you are using Autoconf, write it as ‘@exec_prefix@’.)

Generally, $(exec_prefix) is used for directories that contain
machine-specific files (such as executables and subroutine
libraries), while $(prefix) is used directly for other directories.

Running ‘make install’ with a different value of exec_prefix from
the one used to build the program should not recompile the
program.

Executable programs are installed in one of the following
directories.

bindir

The directory for installing executable programs that users can
run. This should normally be /usr/local/bin, but write it as
$(exec_prefix)/bin. (If you are using Autoconf, write it as
‘@bindir@’.)

sbindir

The directory for installing executable programs that can be
run from the shell, but are only generally useful to system
administrators. This should normally be /usr/local/sbin, but
write it as $(exec_prefix)/sbin. (If you are using Autoconf, write it

GNU make https://www.gnu.org/software/make/manual/ma...

237 of 322 06/08/18, 2:50 PM

as ‘@sbindir@’.)

libexecdir

The directory for installing executable programs to be run by
other programs rather than by users. This directory should
normally be /usr/local/libexec, but write it as
$(exec_prefix)/libexec. (If you are using Autoconf, write it as
‘@libexecdir@’.)

The definition of ‘libexecdir’ is the same for all packages, so you
should install your data in a subdirectory thereof. Most
packages install their data under $(libexecdir)/package-name/,
possibly within additional subdirectories thereof, such as
$(libexecdir)/package-name/machine/version.

Data files used by the program during its execution are divided
into categories in two ways.

Some files are normally modified by programs; others are
never normally modified (though users may edit some of
these).

Some files are architecture-independent and can be shared
by all machines at a site; some are architecture-dependent
and can be shared only by machines of the same kind and
operating system; others may never be shared between two
machines.

This makes for six different possibilities. However, we want to
discourage the use of architecture-dependent files, aside from
object files and libraries. It is much cleaner to make other data
files architecture-independent, and it is generally not hard.

Here are the variables Makefiles should use to specify directories
to put these various kinds of files in:

‘datarootdir’

The root of the directory tree for read-only architecture-
independent data files. This should normally be /usr/local/share,
but write it as $(prefix)/share. (If you are using Autoconf, write it
as ‘@datarootdir@’.) ‘datadir’’s default value is based on this
variable; so are ‘infodir’, ‘mandir’, and others.

‘datadir’

The directory for installing idiosyncratic read-only
architecture-independent data files for this program. This is

GNU make https://www.gnu.org/software/make/manual/ma...

238 of 322 06/08/18, 2:50 PM

usually the same place as ‘datarootdir’, but we use the two
separate variables so that you can move these program-
specific files without altering the location for Info files, man
pages, etc.

This should normally be /usr/local/share, but write it as
$(datarootdir). (If you are using Autoconf, write it as ‘@datadir@’.)

The definition of ‘datadir’ is the same for all packages, so you
should install your data in a subdirectory thereof. Most
packages install their data under $(datadir)/package-name/.

‘sysconfdir’

The directory for installing read-only data files that pertain to a
single machine–that is to say, files for configuring a host.
Mailer and network configuration files, /etc/passwd, and so forth
belong here. All the files in this directory should be ordinary
ASCII text files. This directory should normally be
/usr/local/etc, but write it as $(prefix)/etc. (If you are using
Autoconf, write it as ‘@sysconfdir@’.)

Do not install executables here in this directory (they probably
belong in $(libexecdir) or $(sbindir)). Also do not install files that
are modified in the normal course of their use (programs
whose purpose is to change the configuration of the system
excluded). Those probably belong in $(localstatedir).

‘sharedstatedir’

The directory for installing architecture-independent data files
which the programs modify while they run. This should
normally be /usr/local/com, but write it as $(prefix)/com. (If you
are using Autoconf, write it as ‘@sharedstatedir@’.)

‘localstatedir’

The directory for installing data files which the programs
modify while they run, and that pertain to one specific
machine. Users should never need to modify files in this
directory to configure the package’s operation; put such
configuration information in separate files that go in $(datadir)
or $(sysconfdir). $(localstatedir) should normally be /usr/local/var,
but write it as $(prefix)/var. (If you are using Autoconf, write it
as ‘@localstatedir@’.)

‘runstatedir’

GNU make https://www.gnu.org/software/make/manual/ma...

239 of 322 06/08/18, 2:50 PM

The directory for installing data files which the programs
modify while they run, that pertain to one specific machine,
and which need not persist longer than the execution of the
program—which is generally long-lived, for example, until the
next reboot. PID files for system daemons are a typical use. In
addition, this directory should not be cleaned except perhaps
at reboot, while the general /tmp (TMPDIR) may be cleaned
arbitrarily. This should normally be /var/run, but write it as
$(localstatedir)/run. Having it as a separate variable allows the
use of /run if desired, for example. (If you are using Autoconf
2.70 or later, write it as ‘@runstatedir@’.)

These variables specify the directory for installing certain specific
types of files, if your program has them. Every GNU package
should have Info files, so every program needs ‘infodir’, but not all
need ‘libdir’ or ‘lispdir’.

‘includedir’

The directory for installing header files to be included by user
programs with the C ‘#include’ preprocessor directive. This
should normally be /usr/local/include, but write it as
$(prefix)/include. (If you are using Autoconf, write it as
‘@includedir@’.)

Most compilers other than GCC do not look for header files in
directory /usr/local/include. So installing the header files this
way is only useful with GCC. Sometimes this is not a problem
because some libraries are only really intended to work with
GCC. But some libraries are intended to work with other
compilers. They should install their header files in two places,
one specified by includedir and one specified by oldincludedir.

‘oldincludedir’

The directory for installing ‘#include’ header files for use with
compilers other than GCC. This should normally be /usr/include.
(If you are using Autoconf, you can write it as ‘@oldincludedir@’.)

The Makefile commands should check whether the value of
oldincludedir is empty. If it is, they should not try to use it; they
should cancel the second installation of the header files.

A package should not replace an existing header in this
directory unless the header came from the same package.
Thus, if your Foo package provides a header file foo.h, then it
should install the header file in the oldincludedir directory if

GNU make https://www.gnu.org/software/make/manual/ma...

240 of 322 06/08/18, 2:50 PM

either (1) there is no foo.h there or (2) the foo.h that exists
came from the Foo package.

To tell whether foo.h came from the Foo package, put a magic
string in the file—part of a comment—and grep for that string.

‘docdir’

The directory for installing documentation files (other than
Info) for this package. By default, it should be /usr/local/share
/doc/yourpkg, but it should be written as $(datarootdir)/doc/yourpkg.
(If you are using Autoconf, write it as ‘@docdir@’.) The yourpkg
subdirectory, which may include a version number, prevents
collisions among files with common names, such as README.

‘infodir’

The directory for installing the Info files for this package. By
default, it should be /usr/local/share/info, but it should be
written as $(datarootdir)/info. (If you are using Autoconf, write it
as ‘@infodir@’.) infodir is separate from docdir for compatibility
with existing practice.

‘htmldir’

‘dvidir’

‘pdfdir’

‘psdir’

Directories for installing documentation files in the particular
format. They should all be set to $(docdir) by default. (If you are
using Autoconf, write them as ‘@htmldir@’, ‘@dvidir@’, etc.)
Packages which supply several translations of their
documentation should install them in ‘$(htmldir)/’ll, ‘$(pdfdir)/’ll,
etc. where ll is a locale abbreviation such as ‘en’ or ‘pt_BR’.

‘libdir’

The directory for object files and libraries of object code. Do
not install executables here, they probably ought to go in
$(libexecdir) instead. The value of libdir should normally be
/usr/local/lib, but write it as $(exec_prefix)/lib. (If you are using
Autoconf, write it as ‘@libdir@’.)

‘lispdir’

The directory for installing any Emacs Lisp files in this

GNU make https://www.gnu.org/software/make/manual/ma...

241 of 322 06/08/18, 2:50 PM

package. By default, it should be /usr/local/share/emacs/site-lisp,
but it should be written as $(datarootdir)/emacs/site-lisp.

If you are using Autoconf, write the default as ‘@lispdir@’. In
order to make ‘@lispdir@’ work, you need the following lines in
your configure.ac file:

lispdir='${datarootdir}/emacs/site-lisp'
AC_SUBST(lispdir)

‘localedir’

The directory for installing locale-specific message catalogs for
this package. By default, it should be /usr/local/share/locale, but
it should be written as $(datarootdir)/locale. (If you are using
Autoconf, write it as ‘@localedir@’.) This directory usually has a
subdirectory per locale.

Unix-style man pages are installed in one of the following:

‘mandir’

The top-level directory for installing the man pages (if any) for
this package. It will normally be /usr/local/share/man, but you
should write it as $(datarootdir)/man. (If you are using Autoconf,
write it as ‘@mandir@’.)

‘man1dir’

The directory for installing section 1 man pages. Write it as
$(mandir)/man1.

‘man2dir’

The directory for installing section 2 man pages. Write it as
$(mandir)/man2

‘…’

Don’t make the primary documentation for any GNU
software be a man page. Write a manual in Texinfo
instead. Man pages are just for the sake of people
running GNU software on Unix, which is a secondary
application only.

‘manext’

The file name extension for the installed man page. This should
contain a period followed by the appropriate digit; it should

GNU make https://www.gnu.org/software/make/manual/ma...

242 of 322 06/08/18, 2:50 PM

normally be ‘.1’.

‘man1ext’

The file name extension for installed section 1 man pages.

‘man2ext’

The file name extension for installed section 2 man pages.

‘…’

Use these names instead of ‘manext’ if the package needs to
install man pages in more than one section of the manual.

And finally, you should set the following variable:

‘srcdir’

The directory for the sources being compiled. The value of this
variable is normally inserted by the configure shell script. (If you
are using Autoconf, use ‘srcdir = @srcdir@’.)

For example:

Common prefix for installation directories.
NOTE: This directory must exist when you start the install.
prefix = /usr/local
datarootdir = $(prefix)/share
datadir = $(datarootdir)
exec_prefix = $(prefix)
Where to put the executable for the command 'gcc'.
bindir = $(exec_prefix)/bin
Where to put the directories used by the compiler.
libexecdir = $(exec_prefix)/libexec
Where to put the Info files.
infodir = $(datarootdir)/info

If your program installs a large number of files into one of the
standard user-specified directories, it might be useful to group
them into a subdirectory particular to that program. If you do this,
you should write the install rule to create these subdirectories.

Do not expect the user to include the subdirectory name in the
value of any of the variables listed above. The idea of having a
uniform set of variable names for installation directories is to
enable the user to specify the exact same values for several
different GNU packages. In order for this to be useful, all the
packages must be designed so that they will work sensibly when
the user does so.

At times, not all of these variables may be implemented in the
current release of Autoconf and/or Automake; but as of
Autoconf 2.60, we believe all of them are. When any are missing,

GNU make https://www.gnu.org/software/make/manual/ma...

243 of 322 06/08/18, 2:50 PM

the descriptions here serve as specifications for what Autoconf will
implement. As a programmer, you can either use a development
version of Autoconf or avoid using these variables until a stable
release is made which supports them.

Next: Install Command Categories, Previous: Directory Variables,

Up: Makefile Conventions [Contents][Index]

16.6 Standard Targets for Users

All GNU programs should have the following targets in their
Makefiles:

‘all’

Compile the entire program. This should be the default target.
This target need not rebuild any documentation files; Info files
should normally be included in the distribution, and DVI (and
other documentation format) files should be made only when
explicitly asked for.

By default, the Make rules should compile and link with ‘-g’, so
that executable programs have debugging symbols. Otherwise,
you are essentially helpless in the face of a crash, and it is
often far from easy to reproduce with a fresh build.

‘install’

Compile the program and copy the executables, libraries, and
so on to the file names where they should reside for actual use.
If there is a simple test to verify that a program is properly
installed, this target should run that test.

Do not strip executables when installing them. This helps
eventual debugging that may be needed later, and nowadays
disk space is cheap and dynamic loaders typically ensure
debug sections are not loaded during normal execution. Users
that need stripped binaries may invoke the install-strip target
to do that.

If possible, write the install target rule so that it does not
modify anything in the directory where the program was built,
provided ‘make all’ has just been done. This is convenient for
building the program under one user name and installing it
under another.

The commands should create all the directories in which files

GNU make https://www.gnu.org/software/make/manual/ma...

244 of 322 06/08/18, 2:50 PM

are to be installed, if they don’t already exist. This includes the
directories specified as the values of the variables prefix and
exec_prefix, as well as all subdirectories that are needed. One
way to do this is by means of an installdirs target as described
below.

Use ‘-’ before any command for installing a man page, so that
make will ignore any errors. This is in case there are systems
that don’t have the Unix man page documentation system
installed.

The way to install Info files is to copy them into $(infodir) with
$(INSTALL_DATA) (see Command Variables), and then run the
install-info program if it is present. install-info is a program
that edits the Info dir file to add or update the menu entry for
the given Info file; it is part of the Texinfo package.

Here is a sample rule to install an Info file that also tries to
handle some additional situations, such as install-info not
being present.

do-install-info: foo.info installdirs
 $(NORMAL_INSTALL)
Prefer an info file in . to one in srcdir.
 if test -f foo.info; then d=.; \
 else d="$(srcdir)"; fi; \
 $(INSTALL_DATA) $$d/foo.info \
 "$(DESTDIR)$(infodir)/foo.info"
Run install-info only if it exists.
Use 'if' instead of just prepending '-' to the
line so we notice real errors from install-info.
Use '$(SHELL) -c' because some shells do not
fail gracefully when there is an unknown command.
 $(POST_INSTALL)
 if $(SHELL) -c 'install-info --version' \
 >/dev/null 2>&1; then \
 install-info --dir-file="$(DESTDIR)$(infodir)/dir" \
 "$(DESTDIR)$(infodir)/foo.info"; \
 else true; fi

When writing the install target, you must classify all the
commands into three categories: normal ones, pre-installation
commands and post-installation commands. See Install
Command Categories.

‘install-html’

‘install-dvi’

‘install-pdf’

‘install-ps’

These targets install documentation in formats other than Info;
they’re intended to be called explicitly by the person installing
the package, if that format is desired. GNU prefers Info files,
so these must be installed by the install target.

GNU make https://www.gnu.org/software/make/manual/ma...

245 of 322 06/08/18, 2:50 PM

When you have many documentation files to install, we
recommend that you avoid collisions and clutter by arranging
for these targets to install in subdirectories of the appropriate
installation directory, such as htmldir. As one example, if your
package has multiple manuals, and you wish to install HTML
documentation with many files (such as the “split” mode
output by makeinfo --html), you’ll certainly want to use
subdirectories, or two nodes with the same name in different
manuals will overwrite each other.

Please make these install-format targets invoke the commands
for the format target, for example, by making format a
dependency.

‘uninstall’

Delete all the installed files—the copies that the ‘install’ and
‘install-*’ targets create.

This rule should not modify the directories where compilation
is done, only the directories where files are installed.

The uninstallation commands are divided into three categories,
just like the installation commands. See Install Command
Categories.

‘install-strip’

Like install, but strip the executable files while installing them.
In simple cases, this target can use the install target in a
simple way:

install-strip:
 $(MAKE) INSTALL_PROGRAM='$(INSTALL_PROGRAM) -s' \
 install

But if the package installs scripts as well as real executables,
the install-strip target can’t just refer to the install target; it
has to strip the executables but not the scripts.

install-strip should not strip the executables in the build
directory which are being copied for installation. It should only
strip the copies that are installed.

Normally we do not recommend stripping an executable unless
you are sure the program has no bugs. However, it can be
reasonable to install a stripped executable for actual execution
while saving the unstripped executable elsewhere in case there
is a bug.

‘clean’

GNU make https://www.gnu.org/software/make/manual/ma...

246 of 322 06/08/18, 2:50 PM

Delete all files in the current directory that are normally
created by building the program. Also delete files in other
directories if they are created by this makefile. However, don’t
delete the files that record the configuration. Also preserve
files that could be made by building, but normally aren’t
because the distribution comes with them. There is no need to
delete parent directories that were created with ‘mkdir -p’,
since they could have existed anyway.

Delete .dvi files here if they are not part of the distribution.

‘distclean’

Delete all files in the current directory (or created by this
makefile) that are created by configuring or building the
program. If you have unpacked the source and built the
program without creating any other files, ‘make distclean’ should
leave only the files that were in the distribution. However,
there is no need to delete parent directories that were created
with ‘mkdir -p’, since they could have existed anyway.

‘mostlyclean’

Like ‘clean’, but may refrain from deleting a few files that
people normally don’t want to recompile. For example, the
‘mostlyclean’ target for GCC does not delete libgcc.a, because
recompiling it is rarely necessary and takes a lot of time.

‘maintainer-clean’

Delete almost everything that can be reconstructed with this
Makefile. This typically includes everything deleted by
distclean, plus more: C source files produced by Bison, tags
tables, Info files, and so on.

The reason we say “almost everything” is that running the
command ‘make maintainer-clean’ should not delete configure even
if configure can be remade using a rule in the Makefile. More
generally, ‘make maintainer-clean’ should not delete anything that
needs to exist in order to run configure and then begin to build
the program. Also, there is no need to delete parent directories
that were created with ‘mkdir -p’, since they could have existed
anyway. These are the only exceptions; maintainer-clean should
delete everything else that can be rebuilt.

The ‘maintainer-clean’ target is intended to be used by a
maintainer of the package, not by ordinary users. You may
need special tools to reconstruct some of the files that ‘make

GNU make https://www.gnu.org/software/make/manual/ma...

247 of 322 06/08/18, 2:50 PM

maintainer-clean’ deletes. Since these files are normally included
in the distribution, we don’t take care to make them easy to
reconstruct. If you find you need to unpack the full distribution
again, don’t blame us.

To help make users aware of this, the commands for the
special maintainer-clean target should start with these two:

@echo 'This command is intended for maintainers to use; it'
@echo 'deletes files that may need special tools to rebuild.'

‘TAGS’

Update a tags table for this program.

‘info’

Generate any Info files needed. The best way to write the rules
is as follows:

info: foo.info

foo.info: foo.texi chap1.texi chap2.texi
 $(MAKEINFO) $(srcdir)/foo.texi

You must define the variable MAKEINFO in the Makefile. It should
run the makeinfo program, which is part of the Texinfo
distribution.

Normally a GNU distribution comes with Info files, and that
means the Info files are present in the source directory.
Therefore, the Make rule for an info file should update it in the
source directory. When users build the package, ordinarily
Make will not update the Info files because they will already be
up to date.

‘dvi’

‘html’

‘pdf’

‘ps’

Generate documentation files in the given format. These
targets should always exist, but any or all can be a no-op if the
given output format cannot be generated. These targets should
not be dependencies of the all target; the user must manually
invoke them.

Here’s an example rule for generating DVI files from Texinfo:

dvi: foo.dvi

foo.dvi: foo.texi chap1.texi chap2.texi
 $(TEXI2DVI) $(srcdir)/foo.texi

GNU make https://www.gnu.org/software/make/manual/ma...

248 of 322 06/08/18, 2:50 PM

You must define the variable TEXI2DVI in the Makefile. It should
run the program texi2dvi, which is part of the Texinfo
distribution. (texi2dvi uses TeX to do the real work of
formatting. TeX is not distributed with Texinfo.) Alternatively,
write only the dependencies, and allow GNU make to provide the
command.

Here’s another example, this one for generating HTML from
Texinfo:

html: foo.html

foo.html: foo.texi chap1.texi chap2.texi
 $(TEXI2HTML) $(srcdir)/foo.texi

Again, you would define the variable TEXI2HTML in the Makefile;
for example, it might run makeinfo --no-split --html (makeinfo is
part of the Texinfo distribution).

‘dist’

Create a distribution tar file for this program. The tar file
should be set up so that the file names in the tar file start with
a subdirectory name which is the name of the package it is a
distribution for. This name can include the version number.

For example, the distribution tar file of GCC version 1.40
unpacks into a subdirectory named gcc-1.40.

The easiest way to do this is to create a subdirectory
appropriately named, use ln or cp to install the proper files in it,
and then tar that subdirectory.

Compress the tar file with gzip. For example, the actual
distribution file for GCC version 1.40 is called gcc-1.40.tar.gz. It
is ok to support other free compression formats as well.

The dist target should explicitly depend on all non-source files
that are in the distribution, to make sure they are up to date in
the distribution. See Making Releases in GNU Coding
Standards.

‘check’

Perform self-tests (if any). The user must build the program
before running the tests, but need not install the program; you
should write the self-tests so that they work when the program
is built but not installed.

The following targets are suggested as conventional names, for
programs in which they are useful.

GNU make https://www.gnu.org/software/make/manual/ma...

249 of 322 06/08/18, 2:50 PM

installcheck

Perform installation tests (if any). The user must build and
install the program before running the tests. You should not
assume that $(bindir) is in the search path.

installdirs

It’s useful to add a target named ‘installdirs’ to create the
directories where files are installed, and their parent
directories. There is a script called mkinstalldirs which is
convenient for this; you can find it in the Gnulib package. You
can use a rule like this:

Make sure all installation directories (e.g. $(bindir))
actually exist by making them if necessary.
installdirs: mkinstalldirs
 $(srcdir)/mkinstalldirs $(bindir) $(datadir) \
 $(libdir) $(infodir) \
 $(mandir)

or, if you wish to support DESTDIR (strongly encouraged),

Make sure all installation directories (e.g. $(bindir))
actually exist by making them if necessary.
installdirs: mkinstalldirs
 $(srcdir)/mkinstalldirs \
 $(DESTDIR)$(bindir) $(DESTDIR)$(datadir) \
 $(DESTDIR)$(libdir) $(DESTDIR)$(infodir) \
 $(DESTDIR)$(mandir)

This rule should not modify the directories where compilation
is done. It should do nothing but create installation directories.

Previous: Standard Targets, Up: Makefile Conventions [Contents][

Index]

16.7 Install Command Categories

When writing the install target, you must classify all the commands
into three categories: normal ones, pre-installation commands and
post-installation commands.

Normal commands move files into their proper places, and set
their modes. They may not alter any files except the ones that
come entirely from the package they belong to.

Pre-installation and post-installation commands may alter other
files; in particular, they can edit global configuration files or data
bases.

Pre-installation commands are typically executed before the

GNU make https://www.gnu.org/software/make/manual/ma...

250 of 322 06/08/18, 2:50 PM

normal commands, and post-installation commands are typically
run after the normal commands.

The most common use for a post-installation command is to run
install-info. This cannot be done with a normal command, since it
alters a file (the Info directory) which does not come entirely and
solely from the package being installed. It is a post-installation
command because it needs to be done after the normal command
which installs the package’s Info files.

Most programs don’t need any pre-installation commands, but we
have the feature just in case it is needed.

To classify the commands in the install rule into these three
categories, insert category lines among them. A category line
specifies the category for the commands that follow.

A category line consists of a tab and a reference to a special Make
variable, plus an optional comment at the end. There are three
variables you can use, one for each category; the variable name
specifies the category. Category lines are no-ops in ordinary
execution because these three Make variables are normally
undefined (and you should not define them in the makefile).

Here are the three possible category lines, each with a comment
that explains what it means:

 $(PRE_INSTALL) # Pre-install commands follow.
 $(POST_INSTALL) # Post-install commands follow.
 $(NORMAL_INSTALL) # Normal commands follow.

If you don’t use a category line at the beginning of the install rule,
all the commands are classified as normal until the first category
line. If you don’t use any category lines, all the commands are
classified as normal.

These are the category lines for uninstall:

 $(PRE_UNINSTALL) # Pre-uninstall commands follow.
 $(POST_UNINSTALL) # Post-uninstall commands follow.
 $(NORMAL_UNINSTALL) # Normal commands follow.

Typically, a pre-uninstall command would be used for deleting
entries from the Info directory.

If the install or uninstall target has any dependencies which act as
subroutines of installation, then you should start each
dependency’s commands with a category line, and start the main
target’s commands with a category line also. This way, you can

GNU make https://www.gnu.org/software/make/manual/ma...

251 of 322 06/08/18, 2:50 PM

ensure that each command is placed in the right category
regardless of which of the dependencies actually run.

Pre-installation and post-installation commands should not run any
programs except for these:

[basename bash cat chgrp chmod chown cmp cp dd diff echo
egrep expand expr false fgrep find getopt grep gunzip gzip
hostname install install-info kill ldconfig ln ls md5sum
mkdir mkfifo mknod mv printenv pwd rm rmdir sed sort tee
test touch true uname xargs yes

The reason for distinguishing the commands in this way is for the
sake of making binary packages. Typically a binary package
contains all the executables and other files that need to be
installed, and has its own method of installing them—so it does not
need to run the normal installation commands. But installing the
binary package does need to execute the pre-installation and post-
installation commands.

Programs to build binary packages work by extracting the pre-
installation and post-installation commands. Here is one way of
extracting the pre-installation commands (the -s option to make is
needed to silence messages about entering subdirectories):

make -s -n install -o all \
 PRE_INSTALL=pre-install \
 POST_INSTALL=post-install \
 NORMAL_INSTALL=normal-install \
 | gawk -f pre-install.awk

where the file pre-install.awk could contain this:

$0 ~ /^(normal-install|post-install)[\t]*$/ {on = 0}
on {print $0}
$0 ~ /^pre-install[\t]*$/ {on = 1}

Next: Error Messages, Previous: Makefile Conventions, Up: Top [

Contents][Index]

Appendix A Quick Reference

This appendix summarizes the directives, text manipulation
functions, and special variables which GNU make understands. See
Special Targets, Catalogue of Built-In Rules, and Summary of
Options, for other summaries.

GNU make https://www.gnu.org/software/make/manual/ma...

252 of 322 06/08/18, 2:50 PM

Here is a summary of the directives GNU make recognizes:

define variable

define variable =

define variable :=

define variable ::=

define variable +=

define variable ?=

endef

Define multi-line variables.
See Multi-Line.

undefine variable

Undefining variables.
See Undefine Directive.

ifdef variable

ifndef variable

ifeq (a,b)

ifeq "a" "b"

ifeq 'a' 'b'

ifneq (a,b)

ifneq "a" "b"

ifneq 'a' 'b'

else

endif

Conditionally evaluate part of the makefile.
See Conditionals.

include file

-include file

sinclude file

Include another makefile.
See Including Other Makefiles.

override variable-assignment

Define a variable, overriding any previous definition, even one
from the command line.

GNU make https://www.gnu.org/software/make/manual/ma...

253 of 322 06/08/18, 2:50 PM

See The override Directive.

export

Tell make to export all variables to child processes by default.
See Communicating Variables to a Sub-make.

export variable

export variable-assignment

unexport variable

Tell make whether or not to export a particular variable to child
processes.
See Communicating Variables to a Sub-make.

private variable-assignment

Do not allow this variable assignment to be inherited by
prerequisites.
See Suppressing Inheritance.

vpath pattern path

Specify a search path for files matching a ‘%’ pattern.
See The vpath Directive.

vpath pattern

Remove all search paths previously specified for pattern.

vpath

Remove all search paths previously specified in any vpath
directive.

Here is a summary of the built-in functions (see Functions):

$(subst from,to,text)

Replace from with to in text.
See Functions for String Substitution and Analysis.

$(patsubst pattern,replacement,text)

Replace words matching pattern with replacement in text.
See Functions for String Substitution and Analysis.

$(strip string)

Remove excess whitespace characters from string.
See Functions for String Substitution and Analysis.

GNU make https://www.gnu.org/software/make/manual/ma...

254 of 322 06/08/18, 2:50 PM

$(findstring find,text)

Locate find in text.
See Functions for String Substitution and Analysis.

$(filter pattern…,text)

Select words in text that match one of the pattern words.
See Functions for String Substitution and Analysis.

$(filter-out pattern…,text)

Select words in text that do not match any of the pattern
words.
See Functions for String Substitution and Analysis.

$(sort list)

Sort the words in list lexicographically, removing duplicates.
See Functions for String Substitution and Analysis.

$(word n,text)

Extract the nth word (one-origin) of text.
See Functions for String Substitution and Analysis.

$(words text)

Count the number of words in text.
See Functions for String Substitution and Analysis.

$(wordlist s,e,text)

Returns the list of words in text from s to e.
See Functions for String Substitution and Analysis.

$(firstword names…)

Extract the first word of names.
See Functions for String Substitution and Analysis.

$(lastword names…)

Extract the last word of names.
See Functions for String Substitution and Analysis.

$(dir names…)

Extract the directory part of each file name.
See Functions for File Names.

$(notdir names…)

Extract the non-directory part of each file name.

GNU make https://www.gnu.org/software/make/manual/ma...

255 of 322 06/08/18, 2:50 PM

See Functions for File Names.

$(suffix names…)

Extract the suffix (the last ‘.’ and following characters) of each
file name.
See Functions for File Names.

$(basename names…)

Extract the base name (name without suffix) of each file name.
See Functions for File Names.

$(addsuffix suffix,names…)

Append suffix to each word in names.
See Functions for File Names.

$(addprefix prefix,names…)

Prepend prefix to each word in names.
See Functions for File Names.

$(join list1,list2)

Join two parallel lists of words.
See Functions for File Names.

$(wildcard pattern…)

Find file names matching a shell file name pattern (not a ‘%’
pattern).
See The Function wildcard.

$(realpath names…)

For each file name in names, expand to an absolute name that
does not contain any ., .., nor symlinks.
See Functions for File Names.

$(abspath names…)

For each file name in names, expand to an absolute name that
does not contain any . or .. components, but preserves
symlinks.
See Functions for File Names.

$(error text…)

When this function is evaluated, make generates a fatal error
with the message text.
See Functions That Control Make.

GNU make https://www.gnu.org/software/make/manual/ma...

256 of 322 06/08/18, 2:50 PM

$(warning text…)

When this function is evaluated, make generates a warning with
the message text.
See Functions That Control Make.

$(shell command)

Execute a shell command and return its output.
See The shell Function.

$(origin variable)

Return a string describing how the make variable variable was
defined.
See The origin Function.

$(flavor variable)

Return a string describing the flavor of the make variable
variable.
See The flavor Function.

$(foreach var,words,text)

Evaluate text with var bound to each word in words, and
concatenate the results.
See The foreach Function.

$(if condition,then-part[,else-part])

Evaluate the condition condition; if it’s non-empty substitute
the expansion of the then-part otherwise substitute the
expansion of the else-part.
See Functions for Conditionals.

$(or condition1[,condition2[,condition3…]])

Evaluate each condition conditionN one at a time; substitute
the first non-empty expansion. If all expansions are empty,
substitute the empty string.
See Functions for Conditionals.

$(and condition1[,condition2[,condition3…]])

Evaluate each condition conditionN one at a time; if any
expansion results in the empty string substitute the empty
string. If all expansions result in a non-empty string, substitute
the expansion of the last condition.
See Functions for Conditionals.

$(call var,param,…)

GNU make https://www.gnu.org/software/make/manual/ma...

257 of 322 06/08/18, 2:50 PM

Evaluate the variable var replacing any references to $(1), $(2)
with the first, second, etc. param values.
See The call Function.

$(eval text)

Evaluate text then read the results as makefile commands.
Expands to the empty string.
See The eval Function.

$(file op filename,text)

Expand the arguments, then open the file filename using mode
op and write text to that file.
See The file Function.

$(value var)

Evaluates to the contents of the variable var, with no
expansion performed on it.
See The value Function.

Here is a summary of the automatic variables. See Automatic
Variables, for full information.

$@

The file name of the target.

$%

The target member name, when the target is an archive
member.

$<

The name of the first prerequisite.

$?

The names of all the prerequisites that are newer than the
target, with spaces between them. For prerequisites which are
archive members, only the named member is used (see
Archives).

$^

$+

The names of all the prerequisites, with spaces between them.
For prerequisites which are archive members, only the named
member is used (see Archives). The value of $^ omits duplicate
prerequisites, while $+ retains them and preserves their order.

GNU make https://www.gnu.org/software/make/manual/ma...

258 of 322 06/08/18, 2:50 PM

$*

The stem with which an implicit rule matches (see How
Patterns Match).

$(@D)

$(@F)

The directory part and the file-within-directory part of $@.

$(*D)

$(*F)

The directory part and the file-within-directory part of $*.

$(%D)

$(%F)

The directory part and the file-within-directory part of $%.

$(<D)

$(<F)

The directory part and the file-within-directory part of $<.

$(^D)

$(^F)

The directory part and the file-within-directory part of $^.

$(+D)

$(+F)

The directory part and the file-within-directory part of $+.

$(?D)

$(?F)

The directory part and the file-within-directory part of $?.

These variables are used specially by GNU make:

MAKEFILES

Makefiles to be read on every invocation of make.
See The Variable MAKEFILES.

VPATH

Directory search path for files not found in the current
directory.

GNU make https://www.gnu.org/software/make/manual/ma...

259 of 322 06/08/18, 2:50 PM

See VPATH Search Path for All Prerequisites.

SHELL

The name of the system default command interpreter, usually
/bin/sh. You can set SHELL in the makefile to change the shell
used to run recipes. See Recipe Execution. The SHELL variable is
handled specially when importing from and exporting to the
environment. See Choosing the Shell.

MAKESHELL

On MS-DOS only, the name of the command interpreter that is
to be used by make. This value takes precedence over the value
of SHELL. See MAKESHELL variable.

MAKE

The name with which make was invoked. Using this variable in
recipes has special meaning. See How the MAKE Variable Works.

MAKE_VERSION

The built-in variable ‘MAKE_VERSION’ expands to the version
number of the GNU make program.

MAKE_HOST

The built-in variable ‘MAKE_HOST’ expands to a string representing
the host that GNU make was built to run on.

MAKELEVEL

The number of levels of recursion (sub-makes).
See Variables/Recursion.

MAKEFLAGS

The flags given to make. You can set this in the environment or a
makefile to set flags.
See Communicating Options to a Sub-make.

It is never appropriate to use MAKEFLAGS directly in a recipe line:
its contents may not be quoted correctly for use in the shell.
Always allow recursive make’s to obtain these values through
the environment from its parent.

GNUMAKEFLAGS

Other flags parsed by make. You can set this in the environment
or a makefile to set make command-line flags. GNU make never
sets this variable itself. This variable is only needed if you’d

GNU make https://www.gnu.org/software/make/manual/ma...

260 of 322 06/08/18, 2:50 PM

like to set GNU make-specific flags in a POSIX-compliant
makefile. This variable will be seen by GNU make and ignored by
other make implementations. It’s not needed if you only use
GNU make; just use MAKEFLAGS directly. See Communicating
Options to a Sub-make.

MAKECMDGOALS

The targets given to make on the command line. Setting this
variable has no effect on the operation of make.
See Arguments to Specify the Goals.

CURDIR

Set to the absolute pathname of the current working directory
(after all -C options are processed, if any). Setting this variable
has no effect on the operation of make.
See Recursive Use of make.

SUFFIXES

The default list of suffixes before make reads any makefiles.

.LIBPATTERNS

Defines the naming of the libraries make searches for, and their
order.
See Directory Search for Link Libraries.

Next: Complex Makefile, Previous: Quick Reference, Up: Top [

Contents][Index]

Appendix B Errors Generated by Make

Here is a list of the more common errors you might see generated
by make, and some information about what they mean and how to fix
them.

Sometimes make errors are not fatal, especially in the presence of a
- prefix on a recipe line, or the -k command line option. Errors that
are fatal are prefixed with the string ***.

Error messages are all either prefixed with the name of the
program (usually ‘make’), or, if the error is found in a makefile, the
name of the file and line number containing the problem.

In the table below, these common prefixes are left off.

GNU make https://www.gnu.org/software/make/manual/ma...

261 of 322 06/08/18, 2:50 PM

‘[foo] Error NN’

‘[foo] signal description’

These errors are not really make errors at all. They mean that a
program that make invoked as part of a recipe returned a non-0
error code (‘Error NN’), which make interprets as failure, or it
exited in some other abnormal fashion (with a signal of some
type). See Errors in Recipes.

If no *** is attached to the message, then the sub-process failed
but the rule in the makefile was prefixed with the - special
character, so make ignored the error.

‘missing separator. Stop.’

‘missing separator (did you mean TAB instead of 8 spaces?). Stop.’

This means that make could not understand much of anything
about the makefile line it just read. GNU make looks for various
separators (:, =, recipe prefix characters, etc.) to indicate what
kind of line it’s parsing. This message means it couldn’t find a
valid one.

One of the most common reasons for this message is that you
(or perhaps your oh-so-helpful editor, as is the case with many
MS-Windows editors) have attempted to indent your recipe
lines with spaces instead of a tab character. In this case, make
will use the second form of the error above. Remember that
every line in the recipe must begin with a tab character (unless
you set .RECIPEPREFIX; see Special Variables). Eight spaces do not
count. See Rule Syntax.

‘recipe commences before first target. Stop.’

‘missing rule before recipe. Stop.’

This means the first thing in the makefile seems to be part of a
recipe: it begins with a recipe prefix character and doesn’t
appear to be a legal make directive (such as a variable
assignment). Recipes must always be associated with a target.

The second form is generated if the line has a semicolon as the
first non-whitespace character; make interprets this to mean you
left out the "target: prerequisite" section of a rule. See Rule
Syntax.

‘No rule to make target `xxx'.’

‘No rule to make target `xxx', needed by `yyy'.’

This means that make decided it needed to build a target, but

GNU make https://www.gnu.org/software/make/manual/ma...

262 of 322 06/08/18, 2:50 PM

then couldn’t find any instructions in the makefile on how to do
that, either explicit or implicit (including in the default rules
database).

If you want that file to be built, you will need to add a rule to
your makefile describing how that target can be built. Other
possible sources of this problem are typos in the makefile (if
that file name is wrong) or a corrupted source tree (if that file
is not supposed to be built, but rather only a prerequisite).

‘No targets specified and no makefile found. Stop.’

‘No targets. Stop.’

The former means that you didn’t provide any targets to be
built on the command line, and make couldn’t find any makefiles
to read in. The latter means that some makefile was found, but
it didn’t contain any default goal and none was given on the
command line. GNU make has nothing to do in these situations.
See Arguments to Specify the Makefile.

‘Makefile `xxx' was not found.’

‘Included makefile `xxx' was not found.’

A makefile specified on the command line (first form) or
included (second form) was not found.

‘warning: overriding recipe for target `xxx'’

‘warning: ignoring old recipe for target `xxx'’

GNU make allows only one recipe to be specified per target
(except for double-colon rules). If you give a recipe for a target
which already has been defined to have one, this warning is
issued and the second recipe will overwrite the first. See
Multiple Rules for One Target.

‘Circular xxx <- yyy dependency dropped.’

This means that make detected a loop in the dependency graph:
after tracing the prerequisite yyy of target xxx, and its
prerequisites, etc., one of them depended on xxx again.

‘Recursive variable `xxx' references itself (eventually). Stop.’

This means you’ve defined a normal (recursive) make variable
xxx that, when it’s expanded, will refer to itself (xxx). This is
not allowed; either use simply-expanded variables (‘:=’ or ‘::=’)
or use the append operator (‘+=’). See How to Use Variables.

GNU make https://www.gnu.org/software/make/manual/ma...

263 of 322 06/08/18, 2:50 PM

‘Unterminated variable reference. Stop.’

This means you forgot to provide the proper closing
parenthesis or brace in your variable or function reference.

‘insufficient arguments to function `xxx'. Stop.’

This means you haven’t provided the requisite number of
arguments for this function. See the documentation of the
function for a description of its arguments. See Functions for
Transforming Text.

‘missing target pattern. Stop.’

‘multiple target patterns. Stop.’

‘target pattern contains no `%'. Stop.’

‘mixed implicit and static pattern rules. Stop.’

These are generated for malformed static pattern rules. The
first means there’s no pattern in the target section of the rule;
the second means there are multiple patterns in the target
section; the third means the target doesn’t contain a pattern
character (%); and the fourth means that all three parts of the
static pattern rule contain pattern characters (%)–only the first
two parts should. If you see these errors and you aren’t trying
to create a static pattern rule, check the value of any variables
in your target and prerequisite lists to be sure they do not
contain colons. See Syntax of Static Pattern Rules.

‘warning: -jN forced in submake: disabling jobserver mode.’

This warning and the next are generated if make detects error
conditions related to parallel processing on systems where
sub-makes can communicate (see Communicating Options to a
Sub-make). This warning is generated if a recursive invocation of
a make process is forced to have ‘-jN’ in its argument list (where
N is greater than one). This could happen, for example, if you
set the MAKE environment variable to ‘make -j2’. In this case, the
sub-make doesn’t communicate with other make processes and
will simply pretend it has two jobs of its own.

‘warning: jobserver unavailable: using -j1. Add `+' to parent make rule.’

In order for make processes to communicate, the parent will
pass information to the child. Since this could result in
problems if the child process isn’t actually a make, the parent
will only do this if it thinks the child is a make. The parent uses
the normal algorithms to determine this (see How the MAKE

GNU make https://www.gnu.org/software/make/manual/ma...

264 of 322 06/08/18, 2:50 PM

Variable Works). If the makefile is constructed such that the
parent doesn’t know the child is a make process, then the child
will receive only part of the information necessary. In this case,
the child will generate this warning message and proceed with
its build in a sequential manner.

Next: GNU Free Documentation License, Previous: Error Messages

, Up: Top [Contents][Index]

Appendix C Complex Makefile Example

Here is the makefile for the GNU tar program. This is a moderately
complex makefile. The first line uses a #! setting to allow the
makefile to be executed directly.

Because it is the first target, the default goal is ‘all’. An interesting
feature of this makefile is that testpad.h is a source file
automatically created by the testpad program, itself compiled from
testpad.c.

If you type ‘make’ or ‘make all’, then make creates the tar executable,
the rmt daemon that provides remote tape access, and the tar.info
Info file.

If you type ‘make install’, then make not only creates tar, rmt, and
tar.info, but also installs them.

If you type ‘make clean’, then make removes the ‘.o’ files, and the tar,
rmt, testpad, testpad.h, and core files.

If you type ‘make distclean’, then make not only removes the same files
as does ‘make clean’ but also the TAGS, Makefile, and config.status files.
(Although it is not evident, this makefile (and config.status) is
generated by the user with the configure program, which is provided
in the tar distribution, but is not shown here.)

If you type ‘make realclean’, then make removes the same files as does
‘make distclean’ and also removes the Info files generated from
tar.texinfo.

In addition, there are targets shar and dist that create distribution
kits.

GNU make https://www.gnu.org/software/make/manual/ma...

265 of 322 06/08/18, 2:50 PM

#!/usr/bin/make -f
Generated automatically from Makefile.in by configure.
Un*x Makefile for GNU tar program.
Copyright (C) 1991 Free Software Foundation, Inc.

This program is free software; you can redistribute
it and/or modify it under the terms of the GNU
General Public License …
…
…

SHELL = /bin/sh

Start of system configuration section.

srcdir = .

If you use gcc, you should either run the
fixincludes script that comes with it or else use
gcc with the -traditional option. Otherwise ioctl
calls will be compiled incorrectly on some systems.
CC = gcc -O
YACC = bison -y
INSTALL = /usr/local/bin/install -c
INSTALLDATA = /usr/local/bin/install -c -m 644

Things you might add to DEFS:
-DSTDC_HEADERS If you have ANSI C headers and
libraries.
-DPOSIX If you have POSIX.1 headers and
libraries.
-DBSD42 If you have sys/dir.h (unless
you use -DPOSIX), sys/file.h,
and st_blocks in `struct stat'.
-DUSG If you have System V/ANSI C
string and memory functions
and headers, sys/sysmacros.h,
fcntl.h, getcwd, no valloc,
and ndir.h (unless
you use -DDIRENT).
-DNO_MEMORY_H If USG or STDC_HEADERS but do not
include memory.h.
-DDIRENT If USG and you have dirent.h
instead of ndir.h.
-DSIGTYPE=int If your signal handlers
return int, not void.
-DNO_MTIO If you lack sys/mtio.h
(magtape ioctls).
-DNO_REMOTE If you do not have a remote shell
or rexec.
-DUSE_REXEC To use rexec for remote tape
operations instead of
forking rsh or remsh.
-DVPRINTF_MISSING If you lack vprintf function
(but have _doprnt).
-DDOPRNT_MISSING If you lack _doprnt function.
Also need to define

GNU make https://www.gnu.org/software/make/manual/ma...

266 of 322 06/08/18, 2:50 PM

-DVPRINTF_MISSING.
-DFTIME_MISSING If you lack ftime system call.
-DSTRSTR_MISSING If you lack strstr function.
-DVALLOC_MISSING If you lack valloc function.
-DMKDIR_MISSING If you lack mkdir and
rmdir system calls.
-DRENAME_MISSING If you lack rename system call.
-DFTRUNCATE_MISSING If you lack ftruncate
system call.
-DV7 On Version 7 Unix (not
tested in a long time).
-DEMUL_OPEN3 If you lack a 3-argument version
of open, and want to emulate it
with system calls you do have.
-DNO_OPEN3 If you lack the 3-argument open
and want to disable the tar -k
option instead of emulating open.
-DXENIX If you have sys/inode.h
and need it 94 to be included.

DEFS = -DSIGTYPE=int -DDIRENT -DSTRSTR_MISSING \
 -DVPRINTF_MISSING -DBSD42
Set this to rtapelib.o unless you defined NO_REMOTE,
in which case make it empty.
RTAPELIB = rtapelib.o
LIBS =
DEF_AR_FILE = /dev/rmt8
DEFBLOCKING = 20

CDEBUG = -g
CFLAGS = $(CDEBUG) -I. -I$(srcdir) $(DEFS) \
 -DDEF_AR_FILE=\"$(DEF_AR_FILE)\" \
 -DDEFBLOCKING=$(DEFBLOCKING)
LDFLAGS = -g

prefix = /usr/local
Prefix for each installed program,
normally empty or `g'.
binprefix =

The directory to install tar in.
bindir = $(prefix)/bin

The directory to install the info files in.
infodir = $(prefix)/info

End of system configuration section.

SRCS_C = tar.c create.c extract.c buffer.c \
 getoldopt.c update.c gnu.c mangle.c \
 version.c list.c names.c diffarch.c \
 port.c wildmat.c getopt.c getopt1.c \
 regex.c
SRCS_Y = getdate.y
SRCS = $(SRCS_C) $(SRCS_Y)
OBJS = $(SRCS_C:.c=.o) $(SRCS_Y:.y=.o) $(RTAPELIB)

AUX = README COPYING ChangeLog Makefile.in \
 makefile.pc configure configure.in \

GNU make https://www.gnu.org/software/make/manual/ma...

267 of 322 06/08/18, 2:50 PM

 tar.texinfo tar.info* texinfo.tex \
 tar.h port.h open3.h getopt.h regex.h \
 rmt.h rmt.c rtapelib.c alloca.c \
 msd_dir.h msd_dir.c tcexparg.c \
 level-0 level-1 backup-specs testpad.c

.PHONY: all
all: tar rmt tar.info

tar: $(OBJS)
 $(CC) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

rmt: rmt.c
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ rmt.c

tar.info: tar.texinfo
 makeinfo tar.texinfo

.PHONY: install
install: all
 $(INSTALL) tar $(bindir)/$(binprefix)tar
 -test ! -f rmt || $(INSTALL) rmt /etc/rmt
 $(INSTALLDATA) $(srcdir)/tar.info* $(infodir)

$(OBJS): tar.h port.h testpad.h
regex.o buffer.o tar.o: regex.h
getdate.y has 8 shift/reduce conflicts.

testpad.h: testpad
 ./testpad

testpad: testpad.o
 $(CC) -o $@ testpad.o

TAGS: $(SRCS)
 etags $(SRCS)

.PHONY: clean
clean:
 rm -f *.o tar rmt testpad testpad.h core

.PHONY: distclean
distclean: clean
 rm -f TAGS Makefile config.status

.PHONY: realclean
realclean: distclean
 rm -f tar.info*

.PHONY: shar
shar: $(SRCS) $(AUX)
 shar $(SRCS) $(AUX) | compress \
 > tar-`sed -e '/version_string/!d' \

GNU make https://www.gnu.org/software/make/manual/ma...

268 of 322 06/08/18, 2:50 PM

 -e 's/[^0-9.]*\([0-9.]*\).*/\1/' \
 -e q
 version.c`.shar.Z

.PHONY: dist
dist: $(SRCS) $(AUX)
 echo tar-`sed \
 -e '/version_string/!d' \
 -e 's/[^0-9.]*\([0-9.]*\).*/\1/' \
 -e q
 version.c` > .fname
 -rm -rf `cat .fname`
 mkdir `cat .fname`
 ln $(SRCS) $(AUX) `cat .fname`
 tar chZf `cat .fname`.tar.Z `cat .fname`
 -rm -rf `cat .fname` .fname

tar.zoo: $(SRCS) $(AUX)
 -rm -rf tmp.dir
 -mkdir tmp.dir
 -rm tar.zoo
 for X in $(SRCS) $(AUX) ; do \
 echo $$X ; \
 sed 's/$$/^M/' $$X \
 > tmp.dir/$$X ; done
 cd tmp.dir ; zoo aM ../tar.zoo *
 -rm -rf tmp.dir

Next: Concept Index, Previous: Complex Makefile, Up: Top [

Contents][Index]

C.1 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or
other functional and useful document free in the sense of
freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for

1.

GNU make https://www.gnu.org/software/make/manual/ma...

269 of 322 06/08/18, 2:50 PM

their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that
derivative works of the document must themselves be free in
the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals
for free software, because free software needs free
documentation: a free program should come with manuals
providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License
principally for works whose purpose is instruction or
reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any
medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the
conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if
you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work
containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter
section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of
historical connection with the subject or with related

2.

GNU make https://www.gnu.org/software/make/manual/ma...

270 of 322 06/08/18, 2:50 PM

matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is
released under this License. If a section does not fit the
above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any
Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-
readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include
plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent
image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced
by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page

GNU make https://www.gnu.org/software/make/manual/ma...

271 of 322 06/08/18, 2:50 PM

itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes
copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the
Document whose title either is precisely XYZ or contains XYZ
in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name
mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document
means that it remains a section “Entitled XYZ” according to
this definition.

The Document may include Warranty Disclaimers next to the
notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards
disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium,
either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a
large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies.

3.

COPYING IN QUANTITY4.

GNU make https://www.gnu.org/software/make/manual/ma...

272 of 322 06/08/18, 2:50 PM

If you publish printed copies (or copies in media that
commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-
network location from which the general network-using
public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the
authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with
an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the
Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under
precisely this License, with the Modified Version filling the

5.

GNU make https://www.gnu.org/software/make/manual/ma...

273 of 322 06/08/18, 2:50 PM

role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the
Modified Version:

Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of
previous versions (which should, if there were any, be
listed in the History section of the Document). You may
use the same title as a previous version if the original
publisher of that version gives permission.

1.

List on the Title Page, as authors, one or more persons
or entities responsible for authorship of the
modifications in the Modified Version, together with at
least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless
they release you from this requirement.

2.

State on the Title page the name of the publisher of the
Modified Version, as the publisher.

3.

Preserve all the copyright notices of the Document.4.

Add an appropriate copyright notice for your
modifications adjacent to the other copyright notices.

5.

Include, immediately after the copyright notices, a
license notice giving the public permission to use the
Modified Version under the terms of this License, in the
form shown in the Addendum below.

6.

Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the
Document’s license notice.

7.

Include an unaltered copy of this License.8.

Preserve the section Entitled “History”, Preserve its
Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing
the Modified Version as stated in the previous
sentence.

9.

GNU make https://www.gnu.org/software/make/manual/ma...

274 of 322 06/08/18, 2:50 PM

Preserve the network location, if any, given in the
Document for public access to a Transparent copy of
the Document, and likewise the network locations
given in the Document for previous versions it was
based on. These may be placed in the “History” section.
You may omit a network location for a work that was
published at least four years before the Document
itself, or if the original publisher of the version it refers
to gives permission.

10.

For any section Entitled “Acknowledgements” or
“Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or
dedications given therein.

11.

Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of
the section titles.

12.

Delete any section Entitled “Endorsements”. Such a
section may not be included in the Modified Version.

13.

Do not retitle any existing section to be Entitled
“Endorsements” or to conflict in title with any Invariant
Section.

14.

Preserve any Warranty Disclaimers.15.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it
contains nothing but endorsements of your Modified Version
by various parties—for example, statements of peer review or
that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover
Text, and a passage of up to 25 words as a Back-Cover Text,
to the end of the list of Cover Texts in the Modified Version.

GNU make https://www.gnu.org/software/make/manual/ma...

275 of 322 06/08/18, 2:50 PM

Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text
for the same cover, previously added by you or by
arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by
this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified
Version.

COMBINING DOCUMENTS

You may combine the Document with other documents
released under this License, under the terms defined in
section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this
License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make
the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled
“History” in the various original documents, forming one
section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled
“Endorsements.”

6.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and
other documents released under this License, and replace
the individual copies of this License in the various documents

7.

GNU make https://www.gnu.org/software/make/manual/ma...

276 of 322 06/08/18, 2:50 PM

with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a collection,
and distribute it individually under this License, provided you
insert a copy of this License into the extracted document,
and follow this License in all other respects regarding
verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is
not used to limit the legal rights of the compilation’s users
beyond what the individual works permit. When the
Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to
these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8.

TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but
you may include translations of some or all Invariant
Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the
original English version of this License and the original
versions of those notices and disclaimers. In case of a
disagreement between the translation and the original
version of this License or a notice or disclaimer, the original
version will prevail.

9.

GNU make https://www.gnu.org/software/make/manual/ma...

277 of 322 06/08/18, 2:50 PM

If a section in the Document is Entitled “Acknowledgements”,
“Dedications”, or “History”, the requirement (section 4) to
Preserve its Title (section 1) will typically require changing
the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the
Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your
rights under this License.

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if
the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of
the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any
work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not
terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy
of some or all of the same material does not give you any
rights to use it.

10.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised
versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version
number. If the Document specifies that a particular
numbered version of this License “or any later version”
applies to it, you have the option of following the terms and
conditions either of that specified version or of any later

11.

GNU make https://www.gnu.org/software/make/manual/ma...

278 of 322 06/08/18, 2:50 PM

version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a
version number of this License, you may choose any version
ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy can
decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the
Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”)
means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody
can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site
means any set of copyrightable works thus published on the
MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share
Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as
future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in
whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under
this License, and if all works that were first published under
this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were
thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC
contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for
relicensing.

12.

ADDENDUM: How to use this License for your
documents

GNU make https://www.gnu.org/software/make/manual/ma...

279 of 322 06/08/18, 2:50 PM

To use this License in a document you have written, include a copy
of the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (C) year your name.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
 Texts. A copy of the license is included in the section entitled ``GNU
 Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the “with…Texts.” line with this:

 with the Invariant Sections being list their titles, with
 the Front-Cover Texts being list, and with the Back-Cover Texts
 being list.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice
of free software license, such as the GNU General Public License,
to permit their use in free software.

Next: Name Index, Previous: GNU Free Documentation License,

Up: Top [Contents][Index]

Index of Concepts

Jump
to:

! # $ % * + , - . : = ? @ [\ _ ~
A B C D E F G H I J K L M N O P
Q R S T U V W Y

Index Entry Section

!

!=: Setting

!=, expansion: Reading Makefiles

GNU make https://www.gnu.org/software/make/manual/ma...

280 of 322 06/08/18, 2:50 PM

#

(comments), in makefile: Makefile Contents

(comments), in recipes: Recipe Syntax

#include: Automatic
Prerequisites

$

$, in function call: Syntax of Functions

$, in rules: Rule Syntax

$, in variable name: Computed Names

$, in variable reference: Reference

%

%, in pattern rules: Pattern Intro

%, quoting in patsubst: Text Functions

%, quoting in static pattern: Static Usage

%, quoting in vpath: Selective Search

%, quoting with \ (backslash): Selective Search

%, quoting with \ (backslash): Static Usage

%, quoting with \ (backslash): Text Functions

*

* (wildcard character): Wildcards

+

+, and define: Canned Recipes

+, and recipe execution: Instead of Execution

+, and recipes: MAKE Variable

+=: Appending

+=, expansion: Reading Makefiles

+=, expansion: Reading Makefiles

GNU make https://www.gnu.org/software/make/manual/ma...

281 of 322 06/08/18, 2:50 PM

,

,v (RCS file extension): Catalogue of Rules

-

- (in recipes): Errors

-, and define: Canned Recipes

--always-make: Options Summary

--assume-new: Instead of Execution

--assume-new: Options Summary

--assume-new, and recursion: Options/Recursion

--assume-old: Avoiding Compilation

--assume-old: Options Summary

--assume-old, and recursion: Options/Recursion

--check-symlink-times: Options Summary

--debug: Options Summary

--directory: Recursion

--directory: Options Summary

--directory, and --print-directory: -w Option

--directory, and recursion: Options/Recursion

--dry-run: Echoing

--dry-run: Instead of Execution

--dry-run: Options Summary

--environment-overrides: Options Summary

--eval: Options Summary

--file: Makefile Names

--file: Makefile Arguments

--file: Options Summary

--file, and recursion: Options/Recursion

--help: Options Summary

--ignore-errors: Errors

--ignore-errors: Options Summary

--include-dir: Include

GNU make https://www.gnu.org/software/make/manual/ma...

282 of 322 06/08/18, 2:50 PM

--include-dir: Options Summary

--jobs: Parallel

--jobs: Options Summary

--jobs, and recursion: Options/Recursion

--just-print: Echoing

--just-print: Instead of Execution

--just-print: Options Summary

--keep-going: Errors

--keep-going: Testing

--keep-going: Options Summary

--load-average: Parallel

--load-average: Options Summary

--makefile: Makefile Names

--makefile: Makefile Arguments

--makefile: Options Summary

--max-load: Parallel

--max-load: Options Summary

--new-file: Instead of Execution

--new-file: Options Summary

--new-file, and recursion: Options/Recursion

--no-builtin-rules: Options Summary

--no-builtin-variables: Options Summary

--no-keep-going: Options Summary

--no-print-directory: -w Option

--no-print-directory: Options Summary

--old-file: Avoiding Compilation

--old-file: Options Summary

--old-file, and recursion: Options/Recursion

--output-sync: Parallel Output

--output-sync: Options Summary

--print-data-base: Options Summary

--print-directory: Options Summary

--print-directory, and --directory: -w Option

--print-directory, and recursion: -w Option

GNU make https://www.gnu.org/software/make/manual/ma...

283 of 322 06/08/18, 2:50 PM

--print-directory, disabling: -w Option

--question: Instead of Execution

--question: Options Summary

--quiet: Echoing

--quiet: Options Summary

--recon: Echoing

--recon: Instead of Execution

--recon: Options Summary

--silent: Echoing

--silent: Options Summary

--stop: Options Summary

--touch: Instead of Execution

--touch: Options Summary

--touch, and recursion: MAKE Variable

--trace: Options Summary

--version: Options Summary

--warn-undefined-variables: Options Summary

--what-if: Instead of Execution

--what-if: Options Summary

-b: Options Summary

-B: Options Summary

-C: Recursion

-C: Options Summary

-C, and -w: -w Option

-C, and recursion: Options/Recursion

-d: Options Summary

-e: Options Summary

-e (shell flag): Automatic
Prerequisites

-f: Makefile Names

-f: Makefile Arguments

-f: Options Summary

-f, and recursion: Options/Recursion

-h: Options Summary

-I: Include

GNU make https://www.gnu.org/software/make/manual/ma...

284 of 322 06/08/18, 2:50 PM

-i: Errors

-i: Options Summary

-I: Options Summary

-j: Parallel

-j: Options Summary

-j, and archive update: Archive Pitfalls

-j, and recursion: Options/Recursion

-k: Errors

-k: Testing

-k: Options Summary

-l: Options Summary

-L: Options Summary

-l (library search): Libraries/Search

-l (load average): Parallel

-m: Options Summary

-M (to compiler): Automatic
Prerequisites

-MM (to GNU compiler): Automatic
Prerequisites

-n: Echoing

-n: Instead of Execution

-n: Options Summary

-O: Parallel Output

-o: Avoiding Compilation

-o: Options Summary

-O: Options Summary

-o, and recursion: Options/Recursion

-p: Options Summary

-q: Instead of Execution

-q: Options Summary

-r: Options Summary

-R: Options Summary

-s: Echoing

-s: Options Summary

-S: Options Summary

GNU make https://www.gnu.org/software/make/manual/ma...

285 of 322 06/08/18, 2:50 PM

-t: Instead of Execution

-t: Options Summary

-t, and recursion: MAKE Variable

-v: Options Summary

-W: Instead of Execution

-w: Options Summary

-W: Options Summary

-w, and -C: -w Option

-W, and recursion: Options/Recursion

-w, and recursion: -w Option

-w, disabling: -w Option

.

.a (archives): Archive Suffix Rules

.c: Catalogue of Rules

.C: Catalogue of Rules

.cc: Catalogue of Rules

.ch: Catalogue of Rules

.cpp: Catalogue of Rules

.d: Automatic
Prerequisites

.def: Catalogue of Rules

.dvi: Catalogue of Rules

.f: Catalogue of Rules

.F: Catalogue of Rules

.info: Catalogue of Rules

.l: Catalogue of Rules

.LIBPATTERNS, and link libraries: Libraries/Search

.ln: Catalogue of Rules

.mod: Catalogue of Rules

.o: Catalogue of Rules

.o: Catalogue of Rules

.ONESHELL, use of: One Shell

.p: Catalogue of Rules

GNU make https://www.gnu.org/software/make/manual/ma...

286 of 322 06/08/18, 2:50 PM

.PRECIOUS intermediate files: Chained Rules

.r: Catalogue of Rules

.s: Catalogue of Rules

.S: Catalogue of Rules

.sh: Catalogue of Rules

.SHELLFLAGS, value of: Choosing the Shell

.sym: Catalogue of Rules

.tex: Catalogue of Rules

.texi: Catalogue of Rules

.texinfo: Catalogue of Rules

.txinfo: Catalogue of Rules

.w: Catalogue of Rules

.web: Catalogue of Rules

.y: Catalogue of Rules

:

:: rules (double-colon): Double-Colon

::=: Flavors

::=: Setting

:=: Flavors

:=: Setting

=

=: Flavors

=: Setting

=, expansion: Reading Makefiles

?

? (wildcard character): Wildcards

?=: Flavors

?=: Setting

?=, expansion: Reading Makefiles

GNU make https://www.gnu.org/software/make/manual/ma...

287 of 322 06/08/18, 2:50 PM

@

@ (in recipes): Echoing

@, and define: Canned Recipes

[

[…] (wildcard characters): Wildcards

\

\ (backslash), for continuation
lines:

Simple Makefile

\ (backslash), in recipes: Splitting Recipe Lines

\ (backslash), to quote %: Selective Search

\ (backslash), to quote %: Static Usage

\ (backslash), to quote %: Text Functions

_

__.SYMDEF: Archive Symbols

~

~ (tilde): Wildcards

A

abspath: File Name Functions

algorithm for directory search: Search Algorithm

all (standard target): Goals

appending to variables: Appending

ar: Implicit Variables

archive: Archives

archive member targets: Archive Members

GNU make https://www.gnu.org/software/make/manual/ma...

288 of 322 06/08/18, 2:50 PM

archive symbol directory
updating:

Archive Symbols

archive, and -j: Archive Pitfalls

archive, and parallel execution: Archive Pitfalls

archive, suffix rule for: Archive Suffix Rules

Arg list too long: Options/Recursion

arguments of functions: Syntax of Functions

as: Catalogue of Rules

as: Implicit Variables

assembly, rule to compile: Catalogue of Rules

automatic generation of
prerequisites:

Include

automatic generation of
prerequisites:

Automatic
Prerequisites

automatic variables: Automatic Variables

automatic variables in
prerequisites:

Automatic Variables

B

backquotes: Shell Function

backslash (\), for continuation
lines:

Simple Makefile

backslash (\), in recipes: Splitting Recipe Lines

backslash (\), to quote %: Selective Search

backslash (\), to quote %: Static Usage

backslash (\), to quote %: Text Functions

backslash (\), to quote newlines: Splitting Lines

backslashes in pathnames and
wildcard expansion:

Wildcard Pitfall

basename: File Name Functions

binary packages: Install Command
Categories

broken pipe: Parallel Input

bugs, reporting: Bugs

built-in special targets: Special Targets

GNU make https://www.gnu.org/software/make/manual/ma...

289 of 322 06/08/18, 2:50 PM

C

C++, rule to compile: Catalogue of Rules

C, rule to compile: Catalogue of Rules

canned recipes: Canned Recipes

cc: Catalogue of Rules

cc: Implicit Variables

cd (shell command): Execution

cd (shell command): MAKE Variable

chains of rules: Chained Rules

check (standard target): Goals

clean (standard target): Goals

clean target: Simple Makefile

clean target: Cleanup

cleaning up: Cleanup

clobber (standard target): Goals

co: Catalogue of Rules

co: Implicit Variables

combining rules by prerequisite: Combine By
Prerequisite

command expansion: Shell Function

command line variable
definitions, and recursion:

Options/Recursion

command line variables: Overriding

commands, sequences of: Canned Recipes

comments, in makefile: Makefile Contents

comments, in recipes: Recipe Syntax

compatibility: Features

compatibility in exporting: Variables/Recursion

compilation, testing: Testing

computed variable name: Computed Names

conditional expansion: Conditional Functions

conditional variable assignment: Flavors

conditionals: Conditionals

GNU make https://www.gnu.org/software/make/manual/ma...

290 of 322 06/08/18, 2:50 PM

continuation lines: Simple Makefile

controlling make: Make Control
Functions

conventions for makefiles: Makefile Conventions

convert guile types: Guile Types

ctangle: Catalogue of Rules

ctangle: Implicit Variables

cweave: Catalogue of Rules

cweave: Implicit Variables

D

data base of make rules: Options Summary

deducing recipes (implicit rules): make Deduces

default directories for included
makefiles:

Include

default goal: How Make Works

default goal: Rules

default makefile name: Makefile Names

default rules, last-resort: Last Resort

define, expansion: Reading Makefiles

defining variables verbatim: Multi-Line

deletion of target files: Errors

deletion of target files: Interrupts

directive: Makefile Contents

directories, creating installation: Directory Variables

directories, printing them: -w Option

directories, updating archive
symbol:

Archive Symbols

directory part: File Name Functions

directory search (VPATH): Directory Search

directory search (VPATH), and
implicit rules:

Implicit/Search

directory search (VPATH), and link
libraries:

Libraries/Search

GNU make https://www.gnu.org/software/make/manual/ma...

291 of 322 06/08/18, 2:50 PM

directory search (VPATH), and
recipes:

Recipes/Search

directory search algorithm: Search Algorithm

directory search, traditional
(GPATH):

Search Algorithm

dist (standard target): Goals

distclean (standard target): Goals

dollar sign ($), in function call: Syntax of Functions

dollar sign ($), in rules: Rule Syntax

dollar sign ($), in variable name: Computed Names

dollar sign ($), in variable
reference:

Reference

DOS, choosing a shell in: Choosing the Shell

double-colon rules: Double-Colon

duplicate words, removing: Text Functions

E

E2BIG: Options/Recursion

echoing of recipes: Echoing

editor: Introduction

Emacs (M-x compile): Errors

empty recipes: Empty Recipes

empty targets: Empty Targets

environment: Environment

environment, and recursion: Variables/Recursion

environment, SHELL in: Choosing the Shell

error, stopping on: Make Control
Functions

errors (in recipes): Errors

errors with wildcards: Wildcard Pitfall

evaluating makefile syntax: Eval Function

example of loaded objects: Loaded Object
Example

example using Guile: Guile Example

execution, in parallel: Parallel

GNU make https://www.gnu.org/software/make/manual/ma...

292 of 322 06/08/18, 2:50 PM

execution, instead of: Instead of Execution

execution, of recipes: Execution

exit status (errors): Errors

exit status of make: Running

expansion, secondary: Secondary Expansion

explicit rule, definition of: Makefile Contents

explicit rule, expansion: Reading Makefiles

explicit rules, secondary
expansion of:

Secondary Expansion

exporting variables: Variables/Recursion

extensions, Guile: Guile Integration

extensions, load directive: load Directive

extensions, loading: Loading Objects

F

f77: Catalogue of Rules

f77: Implicit Variables

FDL, GNU Free Documentation
License:

GNU Free
Documentation
License

features of GNU make: Features

features, missing: Missing

file name functions: File Name Functions

file name of makefile: Makefile Names

file name of makefile, how to
specify:

Makefile Names

file name prefix, adding: File Name Functions

file name suffix: File Name Functions

file name suffix, adding: File Name Functions

file name with wildcards: Wildcards

file name, abspath of: File Name Functions

file name, basename of: File Name Functions

file name, directory part: File Name Functions

file name, nondirectory part: File Name Functions

file name, realpath of: File Name Functions

GNU make https://www.gnu.org/software/make/manual/ma...

293 of 322 06/08/18, 2:50 PM

file, reading from: File Function

file, writing to: File Function

files, assuming new: Instead of Execution

files, assuming old: Avoiding Compilation

files, avoiding recompilation of: Avoiding Compilation

files, intermediate: Chained Rules

filtering out words: Text Functions

filtering words: Text Functions

finding strings: Text Functions

flags: Options Summary

flags for compilers: Implicit Variables

flavor of variable: Flavor Function

flavors of variables: Flavors

FORCE: Force Targets

force targets: Force Targets

Fortran, rule to compile: Catalogue of Rules

functions: Functions

functions, for controlling make: Make Control
Functions

functions, for file names: File Name Functions

functions, for text: Text Functions

functions, syntax of: Syntax of Functions

functions, user defined: Call Function

G

g++: Catalogue of Rules

g++: Implicit Variables

gcc: Catalogue of Rules

generating prerequisites
automatically:

Include

generating prerequisites
automatically:

Automatic
Prerequisites

get: Catalogue of Rules

get: Implicit Variables

GNU make https://www.gnu.org/software/make/manual/ma...

294 of 322 06/08/18, 2:50 PM

globbing (wildcards): Wildcards

goal: How Make Works

goal, default: How Make Works

goal, default: Rules

goal, how to specify: Goals

Guile: Guile Function

Guile: Guile Integration

Guile example: Guile Example

guile, conversion of types: Guile Types

H

home directory: Wildcards

I

IEEE Standard 1003.2: Overview

ifdef, expansion: Reading Makefiles

ifeq, expansion: Reading Makefiles

ifndef, expansion: Reading Makefiles

ifneq, expansion: Reading Makefiles

implicit rule: Implicit Rules

implicit rule, and directory
search:

Implicit/Search

implicit rule, and VPATH: Implicit/Search

implicit rule, definition of: Makefile Contents

implicit rule, expansion: Reading Makefiles

implicit rule, how to use: Using Implicit

implicit rule, introduction to: make Deduces

implicit rule, predefined: Catalogue of Rules

implicit rule, search algorithm: Implicit Rule Search

implicit rules, secondary
expansion of:

Secondary Expansion

included makefiles, default
directories:

Include

including (MAKEFILES variable): MAKEFILES Variable

GNU make https://www.gnu.org/software/make/manual/ma...

295 of 322 06/08/18, 2:50 PM

including (MAKEFILE_LIST variable): Special Variables

including other makefiles: Include

incompatibilities: Missing

Info, rule to format: Catalogue of Rules

inheritance, suppressing: Suppressing
Inheritance

input during parallel execution: Parallel Input

install (standard target): Goals

installation directories, creating: Directory Variables

installations, staged: DESTDIR

interface for loaded objects: Loaded Object API

intermediate files: Chained Rules

intermediate files, preserving: Chained Rules

intermediate targets, explicit: Special Targets

interrupt: Interrupts

J

job slots: Parallel

job slots, and recursion: Options/Recursion

job slots, sharing: Job Slots

jobs, limiting based on load: Parallel

jobserver: Job Slots

jobserver on POSIX: POSIX Jobserver

jobserver on Windows: Windows Jobserver

joining lists of words: File Name Functions

K

killing (interruption): Interrupts

L

last-resort default rules: Last Resort

ld: Catalogue of Rules

lex: Catalogue of Rules

GNU make https://www.gnu.org/software/make/manual/ma...

296 of 322 06/08/18, 2:50 PM

lex: Implicit Variables

Lex, rule to run: Catalogue of Rules

libraries for linking, directory
search:

Libraries/Search

library archive, suffix rule for: Archive Suffix Rules

limiting jobs based on load: Parallel

link libraries, and directory
search:

Libraries/Search

link libraries, patterns matching: Libraries/Search

linking, predefined rule for: Catalogue of Rules

lint: Catalogue of Rules

lint: Implicit Variables

lint, rule to run: Catalogue of Rules

list of all prerequisites: Automatic Variables

list of changed prerequisites: Automatic Variables

load average: Parallel

load directive: load Directive

loaded object API: Loaded Object API

loaded object example: Loaded Object
Example

loaded object licensing: Loaded Object API

loaded objects: Loading Objects

loaded objects, remaking of: Remaking Loaded
Objects

long lines, splitting: Splitting Lines

loops in variable expansion: Flavors

lpr (shell command): Wildcard Examples

lpr (shell command): Empty Targets

M

m2c: Catalogue of Rules

m2c: Implicit Variables

macro: Using Variables

make depend: Automatic
Prerequisites

GNU make https://www.gnu.org/software/make/manual/ma...

297 of 322 06/08/18, 2:50 PM

make extensions: Extending make

make integration: Integrating make

make interface to guile: Guile Interface

make procedures in guile: Guile Interface

makefile: Introduction

makefile name: Makefile Names

makefile name, how to specify: Makefile Names

makefile rule parts: Rule Introduction

makefile syntax, evaluating: Eval Function

makefile, and MAKEFILES variable: MAKEFILES Variable

makefile, conventions for: Makefile Conventions

makefile, how make processes: How Make Works

makefile, how to write: Makefiles

makefile, including: Include

makefile, overriding: Overriding Makefiles

makefile, parsing: Reading Makefiles

makefile, remaking of: Remaking Makefiles

makefile, simple: Simple Makefile

makefiles, and MAKEFILE_LIST
variable:

Special Variables

makefiles, and special variables: Special Variables

makeinfo: Catalogue of Rules

makeinfo: Implicit Variables

match-anything rule: Match-Anything Rules

match-anything rule, used to
override:

Overriding Makefiles

missing features: Missing

mistakes with wildcards: Wildcard Pitfall

modified variable reference: Substitution Refs

Modula-2, rule to compile: Catalogue of Rules

mostlyclean (standard target): Goals

multi-line variable definition: Multi-Line

multiple rules for one target: Multiple Rules

multiple rules for one target (::): Double-Colon

multiple targets: Multiple Targets

GNU make https://www.gnu.org/software/make/manual/ma...

298 of 322 06/08/18, 2:50 PM

multiple targets, in pattern rule: Pattern Intro

N

name of makefile: Makefile Names

name of makefile, how to specify: Makefile Names

nested variable reference: Computed Names

newline, quoting, in makefile: Simple Makefile

newline, quoting, in recipes: Splitting Recipe Lines

nondirectory part: File Name Functions

normal prerequisites: Prerequisite Types

O

obj: Variables Simplify

OBJ: Variables Simplify

objects: Variables Simplify

OBJECTS: Variables Simplify

objects, loaded: Loading Objects

objs: Variables Simplify

OBJS: Variables Simplify

old-fashioned suffix rules: Suffix Rules

options: Options Summary

options, and recursion: Options/Recursion

options, setting from
environment:

Options/Recursion

options, setting in makefiles: Options/Recursion

order of pattern rules: Pattern Match

order-only prerequisites: Prerequisite Types

origin of variable: Origin Function

output during parallel execution: Parallel Output

output during parallel execution: Options Summary

overriding makefiles: Overriding Makefiles

overriding variables with
arguments:

Overriding

overriding with override: Override Directive

GNU make https://www.gnu.org/software/make/manual/ma...

299 of 322 06/08/18, 2:50 PM

P

parallel execution: Parallel

parallel execution, and archive
update:

Archive Pitfalls

parallel execution, input during: Parallel Input

parallel execution, output
during:

Parallel Output

parallel execution, output
during:

Options Summary

parallel execution, overriding: Special Targets

parallel output to terminal: Terminal Output

parts of makefile rule: Rule Introduction

Pascal, rule to compile: Catalogue of Rules

pattern rule: Pattern Intro

pattern rule, expansion: Reading Makefiles

pattern rules, order of: Pattern Match

pattern rules, static (not
implicit):

Static Pattern

pattern rules, static, syntax of: Static Usage

pattern-specific variables: Pattern-specific

pc: Catalogue of Rules

pc: Implicit Variables

phony targets: Phony Targets

phony targets and recipe
execution:

Instead of Execution

pitfalls of wildcards: Wildcard Pitfall

plugin_is_GPL_compatible: Loaded Object API

portability: Features

POSIX: Overview

POSIX: Options/Recursion

POSIX-conforming mode, setting: Special Targets

post-installation commands: Install Command
Categories

GNU make https://www.gnu.org/software/make/manual/ma...

300 of 322 06/08/18, 2:50 PM

pre-installation commands: Install Command
Categories

precious targets: Special Targets

predefined rules and variables,
printing:

Options Summary

prefix, adding: File Name Functions

prerequisite: Rules

prerequisite pattern, implicit: Pattern Intro

prerequisite pattern, static (not
implicit):

Static Usage

prerequisite types: Prerequisite Types

prerequisite, expansion: Reading Makefiles

prerequisites: Rule Syntax

prerequisites, and automatic
variables:

Automatic Variables

prerequisites, automatic
generation:

Include

prerequisites, automatic
generation:

Automatic
Prerequisites

prerequisites, introduction to: Rule Introduction

prerequisites, list of all: Automatic Variables

prerequisites, list of changed: Automatic Variables

prerequisites, normal: Prerequisite Types

prerequisites, order-only: Prerequisite Types

prerequisites, varying (static
pattern):

Static Pattern

preserving intermediate files: Chained Rules

preserving with .PRECIOUS: Special Targets

preserving with .PRECIOUS: Chained Rules

preserving with .SECONDARY: Special Targets

print (standard target): Goals

print target: Wildcard Examples

print target: Empty Targets

printing directories: -w Option

printing messages: Make Control
Functions

GNU make https://www.gnu.org/software/make/manual/ma...

301 of 322 06/08/18, 2:50 PM

printing of recipes: Echoing

printing user warnings: Make Control
Functions

problems and bugs, reporting: Bugs

problems with wildcards: Wildcard Pitfall

processing a makefile: How Make Works

Q

question mode: Instead of Execution

quoting %, in patsubst: Text Functions

quoting %, in static pattern: Static Usage

quoting %, in vpath: Selective Search

quoting newline, in makefile: Simple Makefile

quoting newline, in recipes: Splitting Recipe Lines

R

Ratfor, rule to compile: Catalogue of Rules

RCS, rule to extract from: Catalogue of Rules

reading from a file: File Function

reading makefiles: Reading Makefiles

README: Makefile Names

realclean (standard target): Goals

realpath: File Name Functions

recipe: Simple Makefile

recipe execution, single
invocation:

Special Targets

recipe lines, single shell: One Shell

recipe syntax: Recipe Syntax

recipe, execution: Execution

recipes: Rule Syntax

recipes: Recipes

recipes setting shell variables: Execution

recipes, and directory search: Recipes/Search

recipes, backslash (\) in: Splitting Recipe Lines

GNU make https://www.gnu.org/software/make/manual/ma...

302 of 322 06/08/18, 2:50 PM

recipes, canned: Canned Recipes

recipes, comments in: Recipe Syntax

recipes, echoing: Echoing

recipes, empty: Empty Recipes

recipes, errors in: Errors

recipes, execution in parallel: Parallel

recipes, how to write: Recipes

recipes, instead of executing: Instead of Execution

recipes, introduction to: Rule Introduction

recipes, quoting newlines in: Splitting Recipe Lines

recipes, splitting: Splitting Recipe Lines

recipes, using variables in: Variables in Recipes

recompilation: Introduction

recompilation, avoiding: Avoiding Compilation

recording events with empty
targets:

Empty Targets

recursion: Recursion

recursion, and -C: Options/Recursion

recursion, and -f: Options/Recursion

recursion, and -j: Options/Recursion

recursion, and -o: Options/Recursion

recursion, and -t: MAKE Variable

recursion, and -W: Options/Recursion

recursion, and -w: -w Option

recursion, and command line
variable definitions:

Options/Recursion

recursion, and environment: Variables/Recursion

recursion, and MAKE variable: MAKE Variable

recursion, and MAKEFILES variable: MAKEFILES Variable

recursion, and options: Options/Recursion

recursion, and printing
directories:

-w Option

recursion, and variables: Variables/Recursion

recursion, level of: Variables/Recursion

recursive variable expansion: Using Variables

GNU make https://www.gnu.org/software/make/manual/ma...

303 of 322 06/08/18, 2:50 PM

recursive variable expansion: Flavors

recursively expanded variables: Flavors

reference to variables: Reference

reference to variables: Advanced

relinking: How Make Works

remaking loaded objects: Remaking Loaded
Objects

remaking makefiles: Remaking Makefiles

removal of target files: Errors

removal of target files: Interrupts

removing duplicate words: Text Functions

removing targets on failure: Special Targets

removing, to clean up: Cleanup

reporting bugs: Bugs

rm: Implicit Variables

rm (shell command): Simple Makefile

rm (shell command): Wildcard Examples

rm (shell command): Phony Targets

rm (shell command): Errors

rule prerequisites: Rule Syntax

rule syntax: Rule Syntax

rule targets: Rule Syntax

rule, double-colon (::): Double-Colon

rule, explicit, definition of: Makefile Contents

rule, how to write: Rules

rule, implicit: Implicit Rules

rule, implicit, and directory
search:

Implicit/Search

rule, implicit, and VPATH: Implicit/Search

rule, implicit, chains of: Chained Rules

rule, implicit, definition of: Makefile Contents

rule, implicit, how to use: Using Implicit

rule, implicit, introduction to: make Deduces

rule, implicit, predefined: Catalogue of Rules

rule, introduction to: Rule Introduction

GNU make https://www.gnu.org/software/make/manual/ma...

304 of 322 06/08/18, 2:50 PM

rule, multiple for one target: Multiple Rules

rule, no recipe or prerequisites: Force Targets

rule, pattern: Pattern Intro

rule, static pattern: Static Pattern

rule, static pattern versus
implicit:

Static versus Implicit

rule, with multiple targets: Multiple Targets

rules, and $: Rule Syntax

S

s. (SCCS file prefix): Catalogue of Rules

SCCS, rule to extract from: Catalogue of Rules

search algorithm, implicit rule: Implicit Rule Search

search path for prerequisites
(VPATH):

Directory Search

search path for prerequisites
(VPATH), and implicit rules:

Implicit/Search

search path for prerequisites
(VPATH), and link libraries:

Libraries/Search

searching for strings: Text Functions

secondary expansion: Secondary Expansion

secondary expansion and explicit
rules:

Secondary Expansion

secondary expansion and implicit
rules:

Secondary Expansion

secondary expansion and static
pattern rules:

Secondary Expansion

secondary files: Chained Rules

secondary targets: Special Targets

sed (shell command): Automatic
Prerequisites

selecting a word: Text Functions

selecting word lists: Text Functions

sequences of commands: Canned Recipes

setting options from
environment:

Options/Recursion

GNU make https://www.gnu.org/software/make/manual/ma...

305 of 322 06/08/18, 2:50 PM

setting options in makefiles: Options/Recursion

setting variables: Setting

several rules for one target: Multiple Rules

several targets in a rule: Multiple Targets

shar (standard target): Goals

shell command, function for: Shell Function

shell file name pattern (in
include):

Include

shell variables, setting in
recipes:

Execution

shell wildcards (in include): Include

shell, choosing the: Choosing the Shell

SHELL, exported value: Variables/Recursion

SHELL, import from
environment:

Environment

shell, in DOS and Windows: Choosing the Shell

SHELL, MS-DOS specifics: Choosing the Shell

SHELL, value of: Choosing the Shell

signal: Interrupts

silent operation: Echoing

simple makefile: Simple Makefile

simple variable expansion: Using Variables

simplifying with variables: Variables Simplify

simply expanded variables: Flavors

sorting words: Text Functions

spaces, in variable values: Flavors

spaces, stripping: Text Functions

special targets: Special Targets

special variables: Special Variables

specifying makefile name: Makefile Names

splitting long lines: Splitting Lines

splitting recipes: Splitting Recipe Lines

staged installs: DESTDIR

standard input: Parallel Input

standards conformance: Overview

GNU make https://www.gnu.org/software/make/manual/ma...

306 of 322 06/08/18, 2:50 PM

standards for makefiles: Makefile Conventions

static pattern rule: Static Pattern

static pattern rule, syntax of: Static Usage

static pattern rule, versus
implicit:

Static versus Implicit

static pattern rules, secondary
expansion of:

Secondary Expansion

stem: Static Usage

stem: Pattern Match

stem, shortest: Pattern Match

stem, variable for: Automatic Variables

stopping make: Make Control
Functions

strings, searching for: Text Functions

stripping whitespace: Text Functions

sub-make: Variables/Recursion

subdirectories, recursion for: Recursion

substitution variable reference: Substitution Refs

suffix rule: Suffix Rules

suffix rule, for archive: Archive Suffix Rules

suffix, adding: File Name Functions

suffix, function to find: File Name Functions

suffix, substituting in variables: Substitution Refs

suppressing inheritance: Suppressing
Inheritance

switches: Options Summary

symbol directories, updating
archive:

Archive Symbols

syntax of recipe: Recipe Syntax

syntax of rules: Rule Syntax

T

tab character (in commands): Rule Syntax

tabs in rules: Rule Introduction

TAGS (standard target): Goals

GNU make https://www.gnu.org/software/make/manual/ma...

307 of 322 06/08/18, 2:50 PM

tangle: Catalogue of Rules

tangle: Implicit Variables

tar (standard target): Goals

target: Rules

target pattern, implicit: Pattern Intro

target pattern, static (not
implicit):

Static Usage

target, deleting on error: Errors

target, deleting on interrupt: Interrupts

target, expansion: Reading Makefiles

target, multiple in pattern rule: Pattern Intro

target, multiple rules for one: Multiple Rules

target, touching: Instead of Execution

target-specific variables: Target-specific

targets: Rule Syntax

targets without a file: Phony Targets

targets, built-in special: Special Targets

targets, empty: Empty Targets

targets, force: Force Targets

targets, introduction to: Rule Introduction

targets, multiple: Multiple Targets

targets, phony: Phony Targets

terminal rule: Match-Anything Rules

terminal, output to: Terminal Output

test (standard target): Goals

testing compilation: Testing

tex: Catalogue of Rules

tex: Implicit Variables

TeX, rule to run: Catalogue of Rules

texi2dvi: Catalogue of Rules

texi2dvi: Implicit Variables

Texinfo, rule to format: Catalogue of Rules

tilde (~): Wildcards

tools, sharing job slots: Job Slots

touch (shell command): Wildcard Examples

GNU make https://www.gnu.org/software/make/manual/ma...

308 of 322 06/08/18, 2:50 PM

touch (shell command): Empty Targets

touching files: Instead of Execution

traditional directory search
(GPATH):

Search Algorithm

types of prerequisites: Prerequisite Types

types, conversion of: Guile Types

U

undefined variables, warning
message:

Options Summary

undefining variable: Undefine Directive

updating archive symbol
directories:

Archive Symbols

updating loaded objects: Remaking Loaded
Objects

updating makefiles: Remaking Makefiles

user defined functions: Call Function

V

value: Using Variables

value, how a variable gets it: Values

variable: Using Variables

variable definition: Makefile Contents

variable references in recipes: Variables in Recipes

variables: Variables Simplify

variables, ‘$’ in name: Computed Names

variables, and implicit rule: Automatic Variables

variables, appending to: Appending

variables, automatic: Automatic Variables

variables, command line: Overriding

variables, command line, and
recursion:

Options/Recursion

variables, computed names: Computed Names

GNU make https://www.gnu.org/software/make/manual/ma...

309 of 322 06/08/18, 2:50 PM

variables, conditional
assignment:

Flavors

variables, defining verbatim: Multi-Line

variables, environment: Variables/Recursion

variables, environment: Environment

variables, exporting: Variables/Recursion

variables, flavor of: Flavor Function

variables, flavors: Flavors

variables, how they get their
values:

Values

variables, how to reference: Reference

variables, loops in expansion: Flavors

variables, modified reference: Substitution Refs

variables, multi-line: Multi-Line

variables, nested references: Computed Names

variables, origin of: Origin Function

variables, overriding: Override Directive

variables, overriding with
arguments:

Overriding

variables, pattern-specific: Pattern-specific

variables, recursively expanded: Flavors

variables, setting: Setting

variables, simply expanded: Flavors

variables, spaces in values: Flavors

variables, substituting suffix in: Substitution Refs

variables, substitution reference: Substitution Refs

variables, target-specific: Target-specific

variables, unexpanded value: Value Function

variables, warning for undefined: Options Summary

varying prerequisites: Static Pattern

verbatim variable definition: Multi-Line

vpath: Directory Search

VPATH, and implicit rules: Implicit/Search

VPATH, and link libraries: Libraries/Search

GNU make https://www.gnu.org/software/make/manual/ma...

310 of 322 06/08/18, 2:50 PM

W

warnings, printing: Make Control
Functions

weave: Catalogue of Rules

weave: Implicit Variables

Web, rule to run: Catalogue of Rules

what if: Instead of Execution

whitespace, in variable values: Flavors

whitespace, stripping: Text Functions

wildcard: Wildcards

wildcard pitfalls: Wildcard Pitfall

wildcard, function: File Name Functions

wildcard, in archive member: Archive Members

wildcard, in include: Include

wildcards and MS-DOS/MS-
Windows backslashes:

Wildcard Pitfall

Windows, choosing a shell in: Choosing the Shell

word, selecting a: Text Functions

words, extracting first: Text Functions

words, extracting last: Text Functions

words, filtering: Text Functions

words, filtering out: Text Functions

words, finding number: Text Functions

words, iterating over: Foreach Function

words, joining lists: File Name Functions

words, removing duplicates: Text Functions

words, selecting lists of: Text Functions

writing recipes: Recipes

writing rules: Rules

writing to a file: File Function

Y

yacc: Catalogue of Rules

yacc: Implicit Variables

GNU make https://www.gnu.org/software/make/manual/ma...

311 of 322 06/08/18, 2:50 PM

yacc: Canned Recipes

Yacc, rule to run: Catalogue of Rules

Jump
to:

! # $ % * + , - . : = ? @ [\ _ ~
A B C D E F G H I J K L M N O P
Q R S T U V W Y

Previous: Concept Index, Up: Top [Contents][Index]

Index of Functions, Variables, &
Directives

Jump to: $ % * + - . / < ? @ ^ |
A B C D E F G I J L M N O P R S
T U V W Y

Index Entry Section

$

$%: Automatic Variables

$(%D): Automatic Variables

$(%F): Automatic Variables

$(*D): Automatic Variables

$(*F): Automatic Variables

$(+D): Automatic Variables

$(+F): Automatic Variables

$(<D): Automatic Variables

$(<F): Automatic Variables

$(?D): Automatic Variables

$(?F): Automatic Variables

$(@D): Automatic Variables

$(@F): Automatic Variables

$(^D): Automatic Variables

GNU make https://www.gnu.org/software/make/manual/ma...

312 of 322 06/08/18, 2:50 PM

$(^F): Automatic Variables

$*: Automatic Variables

$*, and static pattern: Static Usage

$+: Automatic Variables

$<: Automatic Variables

$?: Automatic Variables

$@: Automatic Variables

$^: Automatic Variables

$|: Automatic Variables

%

% (automatic variable): Automatic Variables

%D (automatic variable): Automatic Variables

%F (automatic variable): Automatic Variables

*

* (automatic variable): Automatic Variables

* (automatic variable),
unsupported bizarre usage:

Missing

*D (automatic variable): Automatic Variables

*F (automatic variable): Automatic Variables

+

+ (automatic variable): Automatic Variables

+D (automatic variable): Automatic Variables

+F (automatic variable): Automatic Variables

-

-load: load Directive

.

.DEFAULT: Special Targets

GNU make https://www.gnu.org/software/make/manual/ma...

313 of 322 06/08/18, 2:50 PM

.DEFAULT: Last Resort

.DEFAULT, and empty recipes: Empty Recipes

.DEFAULT_GOAL (define default goal): Special Variables

.DELETE_ON_ERROR: Special Targets

.DELETE_ON_ERROR: Errors

.EXPORT_ALL_VARIABLES: Special Targets

.EXPORT_ALL_VARIABLES: Variables/Recursion

.FEATURES (list of supported
features):

Special Variables

.IGNORE: Special Targets

.IGNORE: Errors

.INCLUDE_DIRS (list of include
directories):

Special Variables

.INTERMEDIATE: Special Targets

.LIBPATTERNS: Libraries/Search

.LOADED: load Directive

.LOW_RESOLUTION_TIME: Special Targets

.NOTPARALLEL: Special Targets

.ONESHELL: Special Targets

.ONESHELL: One Shell

.PHONY: Phony Targets

.PHONY: Special Targets

.POSIX: Special Targets

.POSIX: Options/Recursion

.PRECIOUS: Special Targets

.PRECIOUS: Interrupts

.RECIPEPREFIX (change the recipe
prefix character):

Special Variables

.SECONDARY: Special Targets

.SECONDEXPANSION: Secondary Expansion

.SECONDEXPANSION: Special Targets

.SHELLFLAGS: Choosing the Shell

.SHELLFLAGS: Choosing the Shell

.SHELLSTATUS: Shell Function

.SILENT: Special Targets

GNU make https://www.gnu.org/software/make/manual/ma...

314 of 322 06/08/18, 2:50 PM

.SILENT: Echoing

.SUFFIXES: Special Targets

.SUFFIXES: Suffix Rules

.VARIABLES (list of variables): Special Variables

/

/usr/gnu/include: Include

/usr/include: Include

/usr/local/include: Include

<

< (automatic variable): Automatic Variables

<D (automatic variable): Automatic Variables

<F (automatic variable): Automatic Variables

?

? (automatic variable): Automatic Variables

?D (automatic variable): Automatic Variables

?F (automatic variable): Automatic Variables

@

@ (automatic variable): Automatic Variables

@D (automatic variable): Automatic Variables

@F (automatic variable): Automatic Variables

^

^ (automatic variable): Automatic Variables

^D (automatic variable): Automatic Variables

^F (automatic variable): Automatic Variables

|

GNU make https://www.gnu.org/software/make/manual/ma...

315 of 322 06/08/18, 2:50 PM

| (automatic variable): Automatic Variables

A

abspath: File Name Functions

addprefix: File Name Functions

addsuffix: File Name Functions

and: Conditional Functions

AR: Implicit Variables

ARFLAGS: Implicit Variables

AS: Implicit Variables

ASFLAGS: Implicit Variables

B

basename: File Name Functions

bindir: Directory Variables

C

call: Call Function

CC: Implicit Variables

CFLAGS: Implicit Variables

CO: Implicit Variables

COFLAGS: Implicit Variables

COMSPEC: Choosing the Shell

CPP: Implicit Variables

CPPFLAGS: Implicit Variables

CTANGLE: Implicit Variables

CURDIR: Recursion

CWEAVE: Implicit Variables

CXX: Implicit Variables

CXXFLAGS: Implicit Variables

D

GNU make https://www.gnu.org/software/make/manual/ma...

316 of 322 06/08/18, 2:50 PM

define: Multi-Line

DESTDIR: DESTDIR

dir: File Name Functions

E

else: Conditional Syntax

endef: Multi-Line

endif: Conditional Syntax

error: Make Control
Functions

eval: Eval Function

exec_prefix: Directory Variables

export: Variables/Recursion

F

FC: Implicit Variables

FFLAGS: Implicit Variables

file: File Function

filter: Text Functions

filter-out: Text Functions

findstring: Text Functions

firstword: Text Functions

flavor: Flavor Function

foreach: Foreach Function

G

GET: Implicit Variables

GFLAGS: Implicit Variables

gmk-eval: Guile Interface

gmk-expand: Guile Interface

gmk_add_function: Loaded Object API

gmk_alloc: Loaded Object API

gmk_eval: Loaded Object API

GNU make https://www.gnu.org/software/make/manual/ma...

317 of 322 06/08/18, 2:50 PM

gmk_expand: Loaded Object API

gmk_free: Loaded Object API

gmk_func_ptr: Loaded Object API

GNUmakefile: Makefile Names

GPATH: Search Algorithm

guile: Guile Function

I

if: Conditional Functions

if: Conditional Functions

ifdef: Conditional Syntax

ifeq: Conditional Syntax

ifndef: Conditional Syntax

ifneq: Conditional Syntax

include: Include

info: Make Control
Functions

J

join: File Name Functions

L

lastword: Text Functions

LDFLAGS: Implicit Variables

LDLIBS: Implicit Variables

LEX: Implicit Variables

LFLAGS: Implicit Variables

libexecdir: Directory Variables

LINT: Implicit Variables

LINTFLAGS: Implicit Variables

load: load Directive

LOADLIBES: Implicit Variables

GNU make https://www.gnu.org/software/make/manual/ma...

318 of 322 06/08/18, 2:50 PM

M

M2C: Implicit Variables

MAKE: MAKE Variable

MAKE: Flavors

MAKECMDGOALS: Goals

Makefile: Makefile Names

makefile: Makefile Names

MAKEFILES: MAKEFILES Variable

MAKEFILES: Variables/Recursion

MAKEFILE_LIST (list of parsed
makefiles):

Special Variables

MAKEFLAGS: Options/Recursion

MAKEINFO: Implicit Variables

MAKELEVEL: Variables/Recursion

MAKELEVEL: Flavors

MAKEOVERRIDES: Options/Recursion

MAKESHELL (MS-DOS alternative to
SHELL):

Choosing the Shell

MAKE_HOST: Quick Reference

MAKE_RESTARTS (number of times make
has restarted):

Special Variables

MAKE_TERMERR (whether stderr is a
terminal):

Special Variables

MAKE_TERMOUT (whether stdout is a
terminal):

Special Variables

MAKE_VERSION: Quick Reference

MFLAGS: Options/Recursion

N

notdir: File Name Functions

O

or: Conditional Functions

GNU make https://www.gnu.org/software/make/manual/ma...

319 of 322 06/08/18, 2:50 PM

origin: Origin Function

OUTPUT_OPTION: Catalogue of Rules

override: Override Directive

P

patsubst: Substitution Refs

patsubst: Text Functions

PC: Implicit Variables

PFLAGS: Implicit Variables

prefix: Directory Variables

private: Suppressing
Inheritance

R

realpath: File Name Functions

RFLAGS: Implicit Variables

RM: Implicit Variables

S

sbindir: Directory Variables

SHELL: Choosing the Shell

SHELL: Choosing the Shell

shell: Shell Function

SHELL (recipe execution): Execution

sort: Text Functions

strip: Text Functions

subst: Multiple Targets

subst: Text Functions

suffix: File Name Functions

SUFFIXES: Suffix Rules

T

GNU make https://www.gnu.org/software/make/manual/ma...

320 of 322 06/08/18, 2:50 PM

TANGLE: Implicit Variables

TEX: Implicit Variables

TEXI2DVI: Implicit Variables

U

undefine: Undefine Directive

unexport: Variables/Recursion

V

value: Value Function

VPATH: Directory Search

VPATH: General Search

vpath: Directory Search

vpath: Selective Search

W

warning: Make Control
Functions

WEAVE: Implicit Variables

wildcard: Wildcard Function

wildcard: File Name Functions

word: Text Functions

wordlist: Text Functions

words: Text Functions

Y

YACC: Implicit Variables

YFLAGS: Implicit Variables

Jump to: $ % * + - . / < ? @ ^ |
A B C D E F G I J L M N O P R S

GNU make https://www.gnu.org/software/make/manual/ma...

321 of 322 06/08/18, 2:50 PM

T U V W Y

Footnotes

(1)

GNU Make compiled for MS-DOS and MS-Windows behaves as if
prefix has been defined to be the root of the DJGPP tree hierarchy.

(2)

On MS-DOS, the value of current working directory is global, so
changing it will affect the following recipe lines on those systems.

GNU make https://www.gnu.org/software/make/manual/ma...

322 of 322 06/08/18, 2:50 PM

