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11 ABSTRACT

12 This paper presents a novel framework for solving the plane strain two-dimensional (2D) consol-
13 idation problem of saturated soils using the random Feynman-Kac (RF-K) formulation. The pro-
12 posed framework addresses the inherent spatial variability of soils by modeling the coefficients of
15 horizontal (c;) and vertical (c,) consolidation as 2D random fields, generated using the Karhunen-
16 Loeve (K-L) expansion. Stochastic differential equations (SDEs), formulated as generators corre-
17 sponding to the governing partial differential equation (PDE) of the 2D consolidation problem, are
e used to simulate the trajectories of pore water dissipation using Monte Carlo (MC) simulations.
19 These trajectories are simulated until the exit time (7,) and the excess pore water pressure solu-
20 tions (EPWP) are calculated by taking the expectation over the ensemble of simulated trajectories
21 under various drainage boundary conditions with uniform initial conditions. In addition to the
22 RF-K framework, a random field finite difference method (RF-FDM) is developed incorporating

23 random fields of ¢, and c,. The solutions obtained using the RF-K framework are then compared
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with those obtained using the proposed RF-FDM framework incorporating the same random fields
of ¢, and c¢,. To further validate the accuracy of the RF-K framework, it is applied to the simple
case of the one-dimensional (1D) consolidation problem, and resulting solutions are benchmarked
against both the FDM and existing analytical solutions. The study illustrates the robustness and
accuracy of the RF-K framework in different drainage boundary cases and demonstrates its po-
tential to model consolidation processes in heterogeneous soils. Taking into account the spatial
variability of soils in both 1D and 2D consolidation scenarios, the proposed approach offers a

significant advancement in the probabilistic analysis of the consolidation of saturated soils.

Keywords: 2D Consolidation, Feynman-Kac formula, Random Field, Monte-Carlo simulations,

Finite Difference Method, Excess Pore-Water Pressure

1 INTRODUCTION

The stability and settlement of the structures (buildings, bridges and dams) are significantly
influenced by the consolidation of saturated soft soils, which is caused by the accumulation of ex-
cess pore-water pressure (EPWP) under applied external loads, followed by subsequent expulsion
of pore-water. The classical theory of one-dimensional (1D) consolidation of saturated soils by
Terzaghi [1] posits it to be a small strain phenomenology, assuming vertical dissipation of EPWP
through single or double drainage while restricting any lateral deformation. Although it provides
a simplified approach towards the understanding of the consolidation phenomenon, it falls short
in addressing real-world complex situations due to its restrictive assumptions. In reality, pertinent
geotechnical projects dealing with the settlement of embankments, dams, and foundations are in-

fluenced by the two-dimensional (2D) dissipation of pore-water, complex boundary conditions,
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anisotropic soil behavior, and mixed drainage conditions. Rendulic [2] extended the 1D consoli-
dation framework to include two- and three-dimensional cases, leading to the development of the
Terzaghi-Rendulic theory. This theory assumes that during consolidation under constant external
loading, the total normal stresses at a given point in the soil remain unchanged. The implicit as-
sumptions of the Terzaghi-Rendulic theory simplified the consolidation problem, transforming it
into a much simpler diffusion equation.

In traditional consolidation analyses, it is assumed that the soil is homogeneous and the proper-
ties such as consolidation coefficients, permeability, and volume compressibility are deterministic
and constant throughout the soil domain. However, in reality, the soil is heterogeneous [3], and
these soil properties exhibit inherent spatial variability [4—7]. Neglecting spatial variability can
result in significant errors in estimating EPWP and subsequent settlement. This is particularly
critical for large-scale projects where heterogeneity in soil properties greatly influences the con-
solidation process. As a result, efficient models are necessary to accurately analyze and predict
consolidation behavior under different loading scenarios and boundary conditions.

Various significant studies have focused on the development of analytical and semi-analytical
methods that address different loading and boundary conditions in 2D consolidation problems
[8-11]. Huang and Li [12] developed a generalized analytical solution for 2D plane strain consol-
idation of unsaturated soils with time-dependent drainage boundaries, analyzing the influence of
drainage parameters on EPWP and excess pore air pressure dissipation. Utilizing Laplace trans-
form and Fourier analysis, Wang et al. [13] derived semi-analytical solutions for plane strain 2D
consolidation of unsaturated soils considering time- and depth-dependent stress with a multistage

loading scheme. A recent study by Xie et al. [14] explored the analytical solution for the 2D
3
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consolidation of visco-elastic saturated soils under cyclic loading, specifically addressing the im-
pact of leakage during the operation of an underground tunnel. Sun et al. [15] recently proposed
semi-analytical solutions for 2D consolidation in interbedded soils incorporating clay layer inter-
actions using Laplace transforms, Fourier analysis, and boundary transformation in the frequency
domain. While analytical and semi-analytical approaches provide valuable insights, they are lim-
ited by simplified assumptions, regular domain geometries, and specific parameter constraints,
highlighting the necessity of numerical methods for more complex and realistic scenarios.

Over the years, numerical methods have emerged as powerful tools for addressing the com-
plexities of 2D consolidation problems under realistic conditions, as highlighted in several studies
[16-18]. Tang et al. [19] developed finite element solutions for 1D and 2D consolidation in sat-
urated and unsaturated soils, incorporating coupled and uncoupled analyses in both axisymmetric
and plane strain cases. While numerical approaches effectively model 2D consolidation, they
require extensive domain discretization, leading to high computational costs. Moreover, these
techniques often operate within a deterministic framework that demands precise input data and
calibration, which can be challenging. This highlights the growing need for probabilistic compu-
tational frameworks to address uncertainties and improve predictability.

Probabilistic computational approaches have seen substantial progress, with advancements in
random field modeling techniques [20, 21]. Bong et al. [22] proposed new probabilistic ap-
proaches for modeling consolidation under vertical, radial, and combined drainage conditions
using stochastic surface response and first-order reliability methods. Using a subset simulation
approach, Houmadi et al. [23] conducted a probabilistic analysis of the 2D Biot’s consolidation

problem under uniform surcharge loading, taking into account Young’s modulus as an anisotropic
4
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random field. Recently, solving the consolidation problem has also bolstered the usage of machine
learning techniques [24-26]. Wang et al. [27] used physics-informed neural networks (PINN)
for forward and inverse analysis of 2D plane strain and axisymmetric consolidation of soils from
limited measurements, and the results are compared with those obtained from the finite differ-
ence method (FDM). In the physics-informed deep learning framework, Guo and Yin [28] used
continuous and discrete methods to conduct forward and inverse studies of 1D, 2D, and 3D soil
consolidation under different drainage boundary conditions.

Building on the growing interest in probabilistic and computational approaches for model-
ing the 2D consolidation of soils, one promising framework that has yet to be fully explored in
geotechnical applications is the Feynman-Kac (F-K) formula [29, 30]. The F-K formula uniquely
connects the solutions of governing partial differential equations (PDEs) with the expected values
of functionals of a stochastic process, offering a probabilistic interpretation of deterministic prob-
lems. Since its introduction in quantum mechanics [31], it has been widely used in a variety of
fields, such as engineering [32], physics [33], and financial mathematics [34]. Alghassi et al. [35]
developed a quantum algorithm for solving PDEs derived from higher-dimensional stochastic dif-
ferential equations (SDEs), demonstrating consistency with the forward Euler method and Monte
Carlo Simulation (MCS). Recently, Hawkins et al. [36] presented a McKean-Markov branched
sampling approach for solving forward-backward SDE.

Studies reveal that there are very few semi-analytical, analytical, and numerical solutions for
2D soil consolidation. The majority of current research focuses on unsaturated soil conditions or
2D axisymmetric consolidation, with limited analytical methods for plane-strain 2D consolidation

in fully saturated soils. Although probabilistic and computational methods have recently gained
5
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increased attention for addressing uncertainties and complexities in the 2D soil consolidation prob-
lem, the field is still emerging with few notable contributions. Despite its proven effectiveness in
other domains, the potential application of the F-K formulation in soil consolidation analysis, par-
ticularly in random field modeling of soil parameters, remains unexplored. To improve predictions
of EPWP dissipation and settlement and analyze the consolidation behavior of soil from a prob-
abilistic perspective, the F-K technique may offer a novel approach to addressing uncertainties in
soil properties and boundary conditions.

The key contribution of the present work is the probabilistic solution to the 2D plane strain
consolidation problem of saturated soils, based on a novel random Feynman-Kac (RF-K) formu-
lation incorporating the spatial variability of the consolidation coefficients under various drainage
boundary and uniform initial conditions. This meshless framework utilizes two SDEs as genera-
tors of stochastic processes in two spatial directions, corresponding to the governing bi-directional
parabolic PDE. The coefficients of horizontal (c;) and vertical (c,) consolidation are modeled as
random fields generated by the Karhunen-Loeve (K-L) expansion technique and incorporated into
the SDEs. The SDEs are simulated using MCS, and the pore-water trajectories within the con-
solidating domain of saturated soil are simulated using the Euler-Maruyama method within the
framework of MCS of SDEs. The Brownian particles are absorbed or reflected according to the
boundary conditions, and the expected value of the pore-water trajectories yields the EPWP so-
lutions to the 2D consolidation problem. Additionally, a random field finite difference method
(RF-FDM) is developed to analyze the 2D plane strain consolidation problem, incorporating the
random fields of ¢, and c,. The results obtained from the RF-K framework are compared and

validated against those from the RF-FDM approach.
6
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2 MATHEMATICAL BACKGROUND
2.1 Theory of Consolidation

The classical one-dimensional (1D) consolidation theory is widely used to analyze the consol-
idation behavior of soils and describe the spatiotemporal behavior of excess pore water pressure
(EPWP). The governing partial differential equation (PDE) of 1D consolidation of saturated and

homogeneous soils, as in [37], is given by:

du(zn) _  Puzn
o " 92

€]

where, ¢, represents the coefficient of consolidation and u(z, t) is EPWP, which is a function of
depth, z and time ¢. The initial condition (at t = 0) and boundary conditions (atz = O and at z = L)

associated with the 1D consolidation PDE are given by

ou(0,1)
9z

u(z,0) = up; 0, w(lL,1)=0 ()

The boundary conditions represent single drainage along the vertical direction, where only the
top boundary allows water to exit the soil domain. This condition is referred to as S, condition,
denoting single drainage in the vertical direction with a permeating top boundary, as described

further in the paper. The analytical solution to the 1D consolidation Eq. (1) as in [37] is given by

(]

u(z,t) = — — cos [(2m - 1)%} exp [—(2m - 1)

e

”—ZC”] 3

41z
The governing PDE of plane-strain two-dimensional (2D) consolidation of saturated soils, as in

[38] is given by:

ou(x,z,1) . 0u(x,z, 1) . u(x,z, 1)
a " ax Y02
7
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where u(x, z,t) is the EPWP, x and z represent the horizontal and vertical directions, respectively,
t signifies time, and ¢, and c, are the coefficients of horizontal and vertical consolidation, respec-

tively, defined by:

oo o K )

Ywity

Ch = 5
Ywitty

where k;, and k, are coefficients of horizontal and vertical permeability, respectively, v, is the unit
weight of water, and m, is the coefficient of volume compressibility. The initial condition of the

2D consolidation problem is given by:
u(x,z,0) =up; (t=0) (6)

where, ug signifies the uniform initial pore water pressure across the soil domain. The 2D consol-

idation equation Eq. (4) is subjected to boundary conditions given by:
2.1.1 S§,S, Boundary Conditions

The bottom (z = 0) and top ( z = L,) boundary conditions are as follows:

Ou(x,0,1)

0; wux,L,t)=0 (7
0z

The left (x = 0) and right (x = L,) boundary conditions are as follows:

ou0,z,1) _

0; u(Ly,z,t)=0 ()
0x

A pictorial representation of the S .S, drainage boundary conditions for the 2D consolidation prob-
lem is shown in Figure 1(a). The top and right boundaries permeate and allow water drainage,
whereas the bottom and left boundaries do not permeate, restricting the flow of water out of the

soil domain.
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2.1.2 D,S Boundary Conditions

The bottom (z = 0) and top ( z = L,) boundary conditions are as follows:

u(x,0,1) =0; u(x,

L,n=0

The left (x = 0) and right (x = L,) boundary conditions are as follows:

ou(0,z, 1)
0x

=0, u(ly,z,0)=0

(€))

(10)

For D, S, drainage boundary conditions, as shown in Figure 1(b), in addition to the permeating top

and right boundaries, drainage of water is also allowed through the permeating bottom boundary,

whereas the non-permeating left boundary restricts the flow of water out of the soil domain.
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Figure 1: Schematic illustration of 2D consolidation problem under (a) S, drainage (b) D,.S; drainage conditions.



169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

2.2 The Feynman-Kac (F-K) Formula: An Overview

The F-K formula offers a probabilistic method for solving specific PDEs by connecting them
with stochastic processes, particularly Brownian motion [30]. It establishes a relationship between
the solutions of parabolic and elliptic PDEs and the expected values of functionals derived from

stochastic processes. For a generalized PDE of the form as in [39] given by

ow(y, t) ow(y,n) 1., *w(y, 1) B B
o +a(y) P + 2b 6)) 2 cw(y,t)=0 (11)
with the condition:
wy, T) = ¢(y) (12)

where, w (y, f) is the unknown function to be solved, a(y), b(y), and ¢(y) are some known functions,
and c is a positive constant. w (y, T) = ¢(y) is the terminal condition of the problem at ¢ = T. Eq.
(11) takes a form similar to a backward Kolmogorov equation, which can be addressed through
the F-K formula. To solve the PDE as in Eq. (11) with the F-K formula, it needs to be converted
to a stochastic differential equation (SDE) having drift and diffusion terms.

Define a stochastic process y, having drift and diffusion terms that correspond to the PDE as
in Eq. (11) given by:

dy, = a(y)dt + b(y)dB, (13)

where, a(y) and b(y) represent the SDE’s drift and diffusion terms, respectively, and B, signifies
the Brownian motion. According to the F-K formula, the solution w (y,t) to the PDE can be

expressed as the expected value of a functional related to the stochastic process y,. With the

10
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terminal condition as in Eq. (12), the solution w (y, 7) as in [39] can be represented as follows:

T
w(y,1) = E[GXP (—f c(yss S)d5)¢(yr) |y = )’] (14)

where, exp (— ft Te Vs, 8) ds) accounts for the term cw (y, ¢) in the PDE, and ¢ (yr) is the terminal
value of w(y,T) at T, based on the stochastic process y,. Eq. (14) represents the F-K formula,

which gives a solution to the generalized PDE as in Eq. (11).
2.3 Karhunen-Loéve (K-L) Expansion for Random Fields

A random field is a collection of random variables indexed by points in space [40]. For a
domain D C R? a random field v(y, w) is defined such that v(y, w) is a random variable for each
point y € D and for each outcome w in a probability space 2 [41]. In mathematical terms, a

random field satisfies (V(y, w) € L*(2, L*(D))) as in [42], which implies that:

E[ f b, )P dy] <o
D

This ensures the random field has well-defined statistical properties, such as mean and covariance,
which are essential for its mathematical and physical interpretations. The covariance function

C(y, x) of a random field v(y, w) as in [42] is defined as:

CO,x) = E[(v(, w) = (), ) — pu(x))] (15)

where, u(y) = E[v(y, w)] is the mean value of the random field. The covariance operator C as-
sociated with the covariance function acts on functions ®(x) defined over D as in [42] is given
by:

(Co)y) = fC(y, x)®(x) dy (16)
D
11
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The operator in Eq. (16) is central to the Karhunen-Loeve (K-L) expansion, as its eigenfunctions
and eigenvalues provide the orthonormal basis and weights for the expansion.

The K-L expansion is an essential mathematical technique employed for expressing a random
field using orthogonal functions and uncorrelated random variables. It efficiently models spatial
variability in stochastic processes by characterizing and simulating the uncertainty of soil proper-
ties, material variability, and environmental factors. For a random field v(y, w) with mean u(y), the

K-L expansion representation of the random field as in [42] is given as:

V() = ) + ) VAP 0)E(W) (17)
i=1

where {4;} are the eigenvalues of the covariance operator C of the random field such that 4; >
Ay = -+ 2 0, {®;} are the eigenfunctions, forming an orthonormal basis for the space L*(D), and
&i(w) are uncorrelated standard normal random variables such that E[&;(w)] = 0, E[fl.z(w)] =1and
E[éi(w)éj(w)] = 6;;. The random variables &;(w) are defined by the projection of the deviation of

the random field from its mean onto each eigenfunction as in [42] as follows:

1
éi(w) == ﬁ Wy, w) = p(y), (I)i(}’»LZ(D) (13)

The inner product -, )2, in the L? space defined in D quantifies how well the eigenfunction
@; captures the variation in the random field v(y, w). In practical applications, a truncated K-L
expansion is often employed to approximate the random field by keeping only the first K terms,
thus reducing computational demands while capturing the dominant variability modes, particularly

when eigenvalues decay quickly. The truncated K-L expansion [42] of a random field is given by:

K
vk (0 @) 1= 1) + ) VADGE(w) (19)

i=1

12



217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

where vi(y, w) is a random field with mean u(y). The K-L expansion effectively represents the
mean and spatial variability of a domain, provides an understanding of the spatial correlation
structure, enables efficient computation by truncating the series to keep only the key modes, and

simplifies the simulations of complex random fields.
3 PROPOSED FORMULATIONS
3.1 Numerical Solutions Using the Finite Difference Method

To solve the governing 2D consolidation Eq. (4) using the Finite Difference Method (FDM),
the spatial domain is divided into a grid with spacing Ax and Az along the x and z axes, respectively,
and the time domain is discretized with a time step Az. Numerical solutions to the 2D plane strain
consolidation Eq. (4) will be derived using two approaches: one using the deterministic finite
difference method (DFDM), where c;, and ¢, are considered constant parameters, and the other
using the random field finite difference method (RF-FDM), where ¢, and c, are considered as

random fields.
3.1.1 Deterministic Finite Difference Method (DFDM)

Let u}; represent the EPWP at grid point (i, j) at time step n. For the partial second-order

derivatives in Eq. (7), using central difference approximation gives,

5 ul = 2ul+ul
_I/l ~ +1,j J 1,j (20)
ox? Ax?
Pu Wi = 25+ @1
072 AZ?
For the first-order time derivative of Eq. (7), using the forward difference scheme gives,
gu u -
Z ot : 22
ot At 22)

13
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Substituting the approximations of Eq. (20) — Eq. (22) into Eq. (7) yields,

n n n n
Wiy =20+ U 41

c
Ax? Y AZ?

= 2u" 4+ u".
n+1 ul,j uz,j—l

ij

ut = qu+At ch (23)

The solution u(x, z, t) of the 2D consolidation equation (7) can be obtained by iteratively solving
Eq. (23) for each time step. To ensure the stability of solutions during the time marching process

for explicit schemes, the time step must satisfy the criterion given by:

2 2
1 (Ax Az ) (24)

At —|—+
2\ ¢ Cy

The solution in Eq. 23 gives the DFDM solution to the 2D plane strain consolidation Eq. (7) where
¢, and ¢, are constants. To obtain a random field finite difference solution, the spatial variability

of ¢, and ¢, must be incorporated in the finite difference scheme as in Eq. (23).
3.1.2 Random Field Finite Difference Method (RF-FDM)

For the RF-FDM approach, the spatial variability of ¢, and ¢, are incorporated into the finite
difference scheme as given in Eq. (23). If ¢, and ¢, are considered as random fields generated by

Karhunen-Loeve (K-L) expansion following Eq. (47), it can be written as:

N
o (62,0) = (D) + )| A (6,2 & (@) (25)
k=1
- N
(62,0 = 0 (6D + ) A i (%,2) m (@) (26)
k=1

where ¢, and ¢, are the mean values of ¢, and c,, respectively; /lZ and A are the eigenvalues of
the respective covariance matrices; ¢,(x,z) and y(x,z) are the eigenfunctions; & (w) and m(w)

are independent Gaussian random variables. N is the number of terms retained in the expansion.

14
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Incorporating Eq. (25)-Eq. (26) into the finite difference scheme as in Eq. (23) gives,

n+l _ n
u; ; —ui,j+At

X wl o=2ul Ul
{”’(X’ SEDIRRAC z)fk<w>} R l

k=1

(27)

+ At

n n n
uj i 2uij +u l

N
{CV(X’ 2+ Z \/ﬂ_"kwk(-x, Z)Uk(a))} Azé -1
k=1

Eq. (27) represents the finite difference scheme to the 2D consolidation Eq. (7) obtained using
RF-FDM implementing random fields of ¢, and ¢,. Solving Eq. (27) iteratively for each time step

gives the solution u(x, z, t, w) using the RF-FDM approach.
3.2 Proposed Formulation: Random Feynman-Kac (RF-K) Framework

The 2D consolidation Eq. (7) is a forward parabolic PDE of diffusion type, governing the ex-
cess pore water pressure u(x, z, t) within a porous medium. The F-K formula connects the solution
of the backward parabolic PDE, corresponding to the forward PDE, to the expected value of a
function for a stochastic process that progresses backward in time.

The backward PDE of the 2D consolidation Eq. (7) describing how the solution evolves back-

ward in time from a terminal condition at some exit time 7, is given by:

—Ou(x,z,t) 1 20%u(x,z,t) 1 20%u(x, z, 1)
o = 3(e) e e 5(e) = @)

subjected to the terminal condition given by:
u (x7 Z’ Te) = é’ (x’ Z) (29)

where T, represents the exit time. The negative sign in the time derivative in Eq. (28) represents
that it evolves backward in time. The second-order spatial derivatives remain the same as in the

forward partial differential Eq. (7). The F-K formula gives a probabilistic interpretation of the
15
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solution u(x, z, ) of the backward PDE (28) as the expected value of a function of a stochastic
process that solves the corresponding SDE.

The application of the F-K formula to the backward PDE in Eq. (28) relies on linking the
second-order spatial derivatives in x and z to Brownian motion. These second-order derivatives
(0*u/0x* and 8*u/dz*) in the PDE imply that the spatial variables follow stochastic processes. Let
B.(?) and B,(¢) be two independent Brownian motions representing the randomness in the horizon-
tal and vertical directions. For the backward 2D consolidation PDE (28), the corresponding SDEs
that describe the motion of particles evolving in horizontal and vertical directions, respectively,

are given by:

dX; = \2c,dB.(t) (30)
dz, = \2c,dB.(1) (31)

where X; and Z; are the positions of the Brownian particles at time ¢ in the horizontal and vertical
directions, respectively. Eq. (30) and Eq. (31) are the two zero drift SDEs corresponding to
the 2D consolidation Eq. (28) having diffusion terms as v2c, and +2c,, respectively. These
two SDEs describe how the particles diffuse randomly over time, with diffusion controlled by the

consolidation coefficients, ¢, and c,. Using Ito’s lemma and Taylor series expansion for u(x, z, 1)

gives,
G, t 0 t 16° t
du(x,z,1) = LoD, Qw0 o 10U LD
ot Ox 2 Ox? (32)
ou(x,z,1) 1 6%u(x, z, 1) 5
—d ——
* 0z “t 2 0 (dz1)

Substituting Eq. (29) and Eq. (30) in Eq. (31) and further simplifying and recalling the properties

16
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ou(x,z,t ou(x, z,1) 10°u(x,zt
du(x,z,0) = —— )i + (6x (V2c)dB.(1) + T)

P 205D () a + LPUEED (cap o)

ou(x,z,t) 0u(x, z,1) 0? u(x, z,1) ou(x, z,1)
= ( o + cp PP +c, 52 dt + ( \/2ch) o

(V2endB (o))

(33)

dB(1)

+ (V2e) 252 o

253 The backward PDE of the 2D consolidation equation, as in Eq. (28) yields;

(Bu(x, z,1) . Cho')zu(x, Z,1) e 0u(x, z, t)) 0 (34)

ot ox? Y02

23« Substituting Eq. (34) in Eq. (33) results in;

du(x,z,1) = (v2c) wcum) +(v2e) ab‘(;—’;’t)de(t) (35)

255 Integrating Eq. (35) from ¢ to T, and substituting terminal conditions yields;

0x
e Ou(x, z, 1)
+ f —5— (V2e)dB.(o

256 Upon taking expectations on both sides of Eq. (36), conditioned on X, = x and Z, = z, and

T,
()T - utrz) = [ HEED (o) b
’ (36)

257 observing that the right-hand side is an Ito integral whose expectation is zero, which after further
2g3 rearranging leads to,

u(x,z,t) = E[{(X(T.), 2T X = x,Z, = 2] (37)

289 where, (x(7.), z(T,)) represents the position of the water particles at the exit time 7, according to
200 the SDEs. The deterministic Feynman-Kac (DF-K) formula in Eq. (37) expresses the solution to

201 the 2D consolidation equation at any point u(x, z, ). This is achieved by initiating the stochastic
17
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processes in Egs. (30) and (31) from (x,z) at time ¢ and evolving them until the exit time 7.
The solution is given by the expected value of {(z(7,), z(T,)), conditioned on the initial positions
(X; = x,Z, = z), across multiple realizations of the stochastic processes. The DF-K formula
thus propagates the final condition £(z(7,), z(T.)) backward in time to determine the solution at
u(x,z,t).

Incorporating the spatial variability of ¢; and ¢, into the F-K framework by modeling ¢, and ¢,
as random fields, the solution to the 2D consolidation equation becomes the expected value over

both the stochastic processes and the random fields. The solution u(x, z, f) is given by:
u(x,z,t) = Egp [EIL(X(Te), 2(T)) | X, = x,Z, = z]] (38)

The inner expectation E[{(x(T,),z(T.)) | X; = x,Z, = z] is calculated over the trajectories of
water particles governed by the stochastic differential equations presented in Eqgs. (30) and (31).
Meanwhile, the outer expectation, E,, is evaluated over the random fields of ¢, and c,, which
depend on the independent random variables,  and 77 derived from the K-L expansion of ¢, and
¢, as defined in Egs. (25) and (26). Eq. (38) gives the random Feynman-Kac (RF-K) solutions to
the 2D consolidation Eq. (4), where the spatial variability is incorporated by modeling ¢, and c,

as random fields.
4 IMPLEMENTATION AND SIMULATION FRAMEWORK
4.1 Generation of Random Fields of ¢;, and ¢,

For implementation in the RF-K and RF-FDM frameworks, 2D random fields of ¢, and ¢, are
generated using K-L expansion as in Eq. (25)-Eq. (26). The autocovariance function commonly

used in geotechnical engineering studies for modeling spatial variability is exponential [21] given
18
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by:

(39)

C(x1,x2) = exp (_|x1 - XZ|)

l

where / represents the correlation distance. The random fields of ¢, and ¢, will be spatially auto-
correlated following the autocovariance function as in Eq. (39). As the spatial variability is in both
x and z directions in the 2D consolidation problem, an anisotropic exponential covariance function

as in [21] is used for modeling the 2D spatial variability of random fields for ¢, and ¢, given by:

lx; — x| _ |21 — 22
1, [,

C(x,z) = exp|-— (40)

where [, and [, are the horizontal and vertical correlation distances, respectively. Eq. (40) ensures
that the covariance between two points decreases with increasing distance, wherein the decay rate
is controlled by /, and /,. For many soil properties, horizontal correlation distances are generally
estimated to range from 2 to 60 m, while vertical correlation distances are typically in the range of
1 to 6 m [5, 22, 43].

The generation of random fields for ¢, and ¢, within a specific range of values is essential, as
their variation depends significantly on soil type, highlighting the importance of careful modeling
to ensure realistic and meaningful results. For Singapore marine clay, it is reported that the value of
¢, generally increases with depth and is typically 2-3 times the value of ¢,, which ranges between
0.5-2 m?/yr [44]. Consequently, following this range of c,, the random field of ¢, is generated
in the range of 1.5 to 6 m?/yr. 2D random fields of ¢, and ¢, are generated for various /, and [,
using the K-L expansion, considering ¢, and c, to be spatially varying fields as shown in Figure 2.
Figures 2(a)—Figure 2(c) depict the 2D random field realizations of ¢, while Figures 2(d)-Figure

2(f) show those of ¢, for the same [, and [,.
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Figure 2: 2D realizations of random fields of ¢;(x, z, w) and ¢,(x, z, w) for various /, and /,.

The spatial domain is divided into a grid of n, X n, points, resulting in a total of n = n, X n, grid

points. The covariance matrix is formed by calculating the covariance function, as in Eq. (40),

across all grid points. Eigenvalue decomposition (EVD) is performed on this matrix to obtain

its eigenvalues and eigenvectors. For each realization of the random fields ¢, and c,, the random

variables & and n are sampled, and the random field is generated as described in Eqgs. (25) and

(26). Although c;, and ¢, exhibit different patterns of variation, they are positively correlated [22].

The random fields generated for ¢, and ¢, are scaled so that their values fall within their speci-

fied limits using:

min

scaled( ) __ _.min Ch (x’ % (1)) - Ch .
Ch X2, W) = ¢ max __ ,.min h
Ch Ch
N N A i
Cicaled(x’ z w) — Cvrmn + v ( 11/nax
cmax _ cmin
v v

20

max __

min

(41)

(42)

min
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where, ¢’ = 1.5m?/yr, ¢f** = 6m?/yr, ¢ = 0.5m?/yr, and ™

v

= 2m?/yr. The scaling of
the random fields is essential, as in practical cases, ¢, and ¢, are constrained to lie within specific

bounds due to material properties, environmental conditions, or experimental measurements.
4.2 Implementation of Random Fields of c; and c, into the F-K and FDM Framework

The random fields of ¢, and ¢, are incorporated into the FDM and F-K frameworks based on
the formulations outlined in subsections 3.1 and 3.2, respectively. Following the generation of
random fields for ¢, and ¢, using the Karhunen-Loe¢ve (K-L) expansion, these fields are integrated

into the FDM and F-K frameworks, resulting in the RF-FDM and RF-K frameworks.
4.2.1 Working of the RF-K framework

The RF-K framework solves the plane-strain 2D consolidation PDE by transforming them into
SDE:s as in Eq. (30) and Eq. (31) and incorporating random fields by replacing the constant coeffi-
cients in the generator SDEs, making the stochastic processes location-dependent. This approach
utilizes MCS to compute the solution as an expected value of the stochastic process. The frame-
work enables modeling the dissipation of EPWP over time and space, integrating spatial variability
in soil properties in the form of random fields of ¢, and c,.

Following the generation of random fields of ¢;, and ¢, using K-L expansion as in Eq. (25) and
Eq. (26), the computation domain is discretized into grid points. A set of Brownian particles is
initiated at each grid point with positions corresponding to the spatial coordinates of the grid. For
each particle, stochastic trajectories of EPWP are simulated over time using the Euler-Maruyama
method as:

Xiinr = X + V2en(Xy, w)AB, (1) (43)
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Ziint = Zy + \2¢,(Z,, w)AB,(1) (44)
where, At represents the time step of the stochastic processes, and AB,(f), AB,(t) represent the
Brownian increments. Based on the boundary conditions, particles are either absorbed (exit the
domain) or reflected (change direction) to ensure the correct physical representation of the EPWP
dissipation. For S, drainage boundary conditions, as described in Eq. (7) and Eq. (8), Dirichlet
boundary conditions (u = 0) are applied at the top and right boundaries, whereas Neumann bound-
ary conditions (Ou/dx = 0, du/dz = 0) are imposed at the bottom and left boundaries. In contrast,
for D, S, drainage boundary conditions, as given in Eq. (9) and Eq. (10), the top, bottom, and right
boundaries are treated as Dirichlet boundaries, while a Neumann boundary condition governs the
left boundary.

When the particles reach a Dirichlet boundary, it acts as an absorbent boundary, allowing
the particles to exit the domain. The exit time and position of the particle are recorded, and
the particle’s trajectory is terminated. This approach enables pore water drainage at a Dirichlet
boundary in the stochastic simulation by allowing the particles to exit the domain. In contrast,
Neumann boundaries impose reflecting conditions to enforce no-flux constraints. When a particle
reaches a Neumann boundary, its direction of movement is reversed, reflecting the particle back
into the domain while preserving the stochastic component. This ensures that pore water drainage
is restricted at the Neumann boundary in the stochastic simulation.

MCS is used to estimate the solution as an expected value over the stochastic processes and
random fields following Eq. (38) by estimating the double expectation operator. The terminal

condition £(x(T,), z(T,)) of Eq. (38) represents the initial condition of the forward 2D plane strain
22
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PDE because the backward PDE is solved in reverse time. In other words, when solving the
backward equation as in Eq. (28), the time 7 progresses backward to ¢ = 0, ensuring the terminal
condition at the final time 7, matches with the initial condition (Eq. (9)) of the forward PDE as in
Eq. (7). This reflects how the backward PDE traces the solution trajectory of the forward PDE in
reverse. Hence, the expectation over the terminal condition in Eq. (38) can be written in reference

to the forward PDE as:
E¢, |[EIL((T,), 2(T)) | Xi = x,Z; = 2]] = E¢ ) [E[uo(X(T.), 2(T ) |X, = x,Z, = z]]  (45)

The generation of random fields ¢, and ¢, using K-L expansion gives N, different realizations of
the random fields. For each realization of the random fields, the particle trajectories are simulated
using the Euler-Maruyama scheme as in Eq. (43) and Eq. (44). N,, independent particle simula-
tions are run for each realization of random fields to approximate the inner expectation over the

trajectories. So, for each random field realization, the solution is estimated as:
L
W (2t~ 5 D ua((Te). A(T) (46)
P =1
where r represents the realization of random fields and T, is the exit time of the i—th particle.

Finally, the results from all N, random field realizations are averaged to approximate the outer

expectation. The final solution, by averaging the results in the simulation, is given by:

1 & 1 91 &
uz )~ < ) W ezt = o )l ) uaa(Te). oTe) (47)
r=1 o=l TP =1

Eq. (47) represents the final solution of the plane strain 2D consolidation problem in terms of the

simulation framework. A detailed algorithm of the RF-K framework is outlined in Algorithm 1.
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Algorithm 1: Feynman-Kac Framework for 2D Consolidation with Random Fields

13

14

15

16

17

18

20

21

Input: Mean values ¢, ¢,, covariance parameters /;, 1,,, initial condition ug(x, z), boundary conditions, N, particles, time step At total
time T, domain [0, Ly] X [0, L;], number of realizations N,.

Output: EPWP field u(x, z, t) over time and space.

Step 1: Generate Random Fields for ¢;, and ¢,

Generate N, realizations of ¢j(x, z, w) and ¢,(x, z, w) using Eq. (25), Eq. (26).

Step 2: Initialize

Discretize domain and initialize N, particles at each grid point (x, z).

Set the initial condition ug(x, z).

Step 3: Simulate Particle Trajectories for N, Realizations

for r=11t N, do

Update particle positions using Eq. (43) and Eq. (44) based on SDE:s as in Eq. (30) and Eq. (31).

Boundary Conditions:

if Dirichlet condition u = 0 then

\\ Allow the water particles to exit the domain.

if Neumann condition du/dx = 0 or dufdz = 0 then

L Reflect the water particle back into the domain.

Step 4: Compute EPWP Using F-K Formula

For each grid point (x, z), compute expected value of EPWP over all N, particles using Eq. (46).
Approximate and average over N, realizations using Eq. (47).

Step 5: Time Evolution

for 1y = kAt until T, do

L Repeat Steps 3 and 4 for each time step #.

Step 6: Results Visualization

Plot variation of EPWP with depth, time, and horizontal distance.

s 4.2.2 Working of the RF-FDM framework

399

The RF-FDM framework is a numerical framework that solves the plane-strain 2D consolida-

a0 tion PDE as in Eq. (7) with ¢;, and ¢, modeled as random fields using K-L expansion. The solution

401

for EPWP, u(x.z.1) is obtained by solving the governing finite difference equation given by Eq. (27)

24



a2 that incorporates the random fields of ¢, and ¢, directly into the discretization. For each realiza-
a3 tion of the random fields, a deterministic finite difference solution is computed. These individual
a4 solutions are then averaged across all realizations to determine the final EPWP distribution.

Algorithm 2: RF-FDM Scheme for 2D Consolidation

Input: Ly, L;, Ny, N;, At, T, up, Mean values ¢, ¢,, covariance parameters /j, [,, number of K-L terms Ny, boundary conditions

Output: EPWP field, u(x, z,t) over space and time

1 Step 1: Discretization and Initialization;
2 Compute Ax = N—f“_—l, Az = ﬁ, N; = %;
3 Initialize u(x,z,t =0) = ugp ;
4 Set the number of realizations R;
5 Step 2: Generate Random Fields for ¢, and c,;
6 Generate R realizations of c¢;(x, z, w) and ¢, (x, z, w) using Eq. (25), Eq. (26) ;
7 Verify stability criteria as in Eq. (24);
405 8 Step 3: Solve FDM for Each Realization;

9 forr <« 1toRdo

10 for n < 1 to N, do

11 fori —2toN,—1do

12 for j < 2toN,—1do

13 L Update u using Eq. (27);

14 Apply boundary conditions for each realization;
15 Store u(x, z, t) for realization r;

16 Step 4: Post-processing of Results;

17 Store u(x, z, t) for visualization;

406 The time-stepping procedure ensures that the stability condition as in Eq. (24) is satisfied
s07  for each realization to compute a stable solution of EPWP. Through this process, the framework
a8 captures the influence of spatial variability in consolidation parameters, producing EPWP distribu-
w09 tions over time and space for each realization. A detailed algorithm for the computation of EPWP

a0 using the RF-FDM framework is given in Algorithm 2.
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4.3 Validation and Comparison of the Proposed Solutions

The DFDM solutions and the DF-K solutions, where ¢;, and ¢, are considered deterministic
values for the 2D consolidation problem, have been validated against the FDM results presented
by Wang et al. [27]. In their study, Wang et al. conducted FDM analyses of the plane-strain
2D consolidation problem to validate solutions obtained using PINN. Their computational domain
was defined by three variables (x,z,¢) € [0,4] X [0,4] x [0, 1], based on the 2D consolidation
equation Eq. (7). Deterministic values of ¢, = 0.6m?/yr and ¢, = 1.0m?/yr were adopted, and

2D colormaps of the FDM solutions were generated for = 0.3 yrand t = 1.0 yr.

b
4 (b)
E E
e ne
z, s
t=10yr

2 2

1 o Wang et al. (2024) : 1 o Wang et al. (2024)

—  DFDM solution 1 4 — DF-K solution
0 ‘ ‘ ‘ ‘ d 0 ‘ ‘ ‘ ‘
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Normalized EPWP (u/u 0) Normalized EPWP (u/u 0)

Figure 3: Comparison of the variation of EPWP profiles with depth obtained using the proposed (a) DFDM and (b)

DF-K framework with the existing solution of literature.

In this study, DFDM solutions are obtained using the same domain and parameter values. The

EPWP profiles from the DFDM solutions are compared with the FDM profiles by Wang et al. [27]
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at a horizontal distance x = 2m and at various time intervals, as illustrated in Figure 3(a). The
DFDM profiles closely match the FDM profiles, demonstrating strong agreement. Furthermore,
considering ¢, and ¢, as 0.6 m*/yr and 1.0 m*/yr respectively, the EPWP profiles obtained using
the proposed DF-K framework, based on Eq. (37), are compared with the FDM profiles of Wang
et al. [27], as illustrated in Figure 3(b). This comparison confirms the accuracy of the proposed

DF-K framework, with the DF-K and FDM profiles overlapping to a significant degree.
S RESULTS AND DISCUSSIONS

Using the RF-K framework, the EPWP solutions for the 2D consolidation are first analyzed
for both §,S,, and D,S, drainage boundary conditions, as in Eqns. (7) to (10). Random fields of
¢, and ¢, are generated in the range of 1.5-6 m?/yr and 0.5-2 m?/yr, respectively, as mentioned in
Subsection 4.1, using the K-L expansion expressions given by Eq. (25) and Eq. (26). For each
drainage case, the evolution of EPWP with depth, horizontal distance, and time is examined to
assess the dissipation patterns under uniform initial pore water pressure conditions. To validate
the accuracy of the RF-K framework, the results obtained using the RF-K framework are compared
with those obtained using the RF-FDM framework, where the same random fields of ¢, and ¢, are
incorporated.

Additionally, the RF-K framework is applied to the simpler case of consolidation in one di-
mension (1D) to validate the robustness of the framework. In that case, only the coefficient of
vertical consolidation ¢, is modeled as a 1D random field to incorporate the spatial variability. The
results of EPWP obtained are then compared with RF-FDM for the 1D case as well as with ana-

Iytical solutions available in the literature. The following subsections present a detailed discussion

27



442

443

444

445

446

447

448

449

450

451

452

453

454

455

457

458

459

461

462

of the EPWP profiles, focusing on the differences observed under S,S, and D, S, drainage cases

and their implications on consolidation behavior.

5.1 Case 1: 2D Consolidation under S,S5; Drainage

Considering the § S, drainage boundary conditions given in Eq. (7) and Eq. (8), solutions
of the 2D consolidation (Eq. (4)) are obtained by implementing the RF-K framework. Random
fields of ¢, and ¢, are generated using Eq. (25) and Eq. (26) respectively, considering /, = 3 and
[, = 2 in the covariance function, and scaled to the desired range using Eq. (41) and Eq. (42),
respectively. A depth of 6 m, a horizontal distance of 6 m, and a time of 1 yr are considered
for obtaining solutions of the EPWP profiles under §,.S;, drainage boundary conditions using the
proposed RF-K framework. 1000 MCS are used to simulate the trajectories of EPWP employing
the Euler-Maruyama scheme following the SDEs given by Eq. (30) and Eq. (31). The EPWP
is normalized with respect to the uniform initial pore water pressure, u; the depth is normalized
with respect to the total domain depth L., and the horizontal distance is normalized with respect to
the total domain horizontal length, L,.

Figure 4(a) shows the variation of the normalized EPWP profiles with normalized depth at a
fixed horizontal distance, x = 4 m, at various times of the year. Figure 4(b) shows the variation
of normalized EPWP with normalized horizontal distance at a fixed depth of z = 4 m at various
times of the year. For any time instant, Figure 4(a) shows that the EPWP achieves a maximum
value at the bottom boundary, owing to the fact that the bottom boundary is non-permeating,
thereby preventing water from flowing out and leading to the accumulation of pore pressure at this

location. Conversely, the EPWP profiles show zero values at the top boundary, which is permeating
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and allows the water to drain freely. Figure 4(b) exhibits that at any instant, the maximum EPWP
is attained at the non-permeating left boundary, whereas it becomes zero EPWP values at the

permeating right boundary.
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Figure 4: Variation of EPWP profiles with (a) normalized depth and (b) normalized horizontal distance under S,.S

drainage conditions obtained using the proposed RF-K framework.

The EPWP profiles at a particular time are expected to vary in depth and horizontal distances
within the domain. Figure 5 illustrates the shift in the EPWP profile at a specific time of r = 1.0
yr across various depths and horizontal distances. In Figure 5(a), the EPWP profile at = 1.0 yr
shows a transition from the maximum EPWP value at x = 0.1 m to the minimum value as the
horizontal distance increases up to x = 5.9 m, ultimately reaching zero at x = 6 m. Similarly,
in Figure 5(b), the EPWP profile at ¢t = 1.0 yr shifts from the highest value at z = 0.1 m to the

minimum value as the depth increases to z = 5.9 m, with the EPWP reaching zero at z = 6.0 m.
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Figure 5: Variation of EPWP profile at # = 1.0 yr (a) with normalized depth at various instants of horizontal distance

and (b) with normalized horizontal distance at various instants of depth under S, S, drainage conditions.

Figure 6 depicts the temporal variation of EPWP at various depths and horizontal distances.
In Figure 6(a), the EPWP varies with time at various depths for a fixed horizontal distance of
x = 4 m, while Figure 6(b) shows the EPWP variation with time at various horizontal distances
and a fixed depth of z = 4 m. Initially, the EPWP reaches its maximum value; however, as time
progresses, the EPWP dissipates rapidly at greater depths and horizontal distances. Near the non-
permeating bottom and left boundaries (z = 0 m and x = 0 m), the EPWP dissipates slowly, while
it dissipates more quickly near the permeating top and right boundaries (z = 6 m and x = 6 m). In
Figure 6(a), EPWP profiles near the non-permeating bottom boundary (up to z = 2.1 m) overlap,
indicating minimal variation in EPWP dissipation at these depths. Beyond z = 2.1 m, the profiles
diverge significantly, demonstrating increased variation over time. However, in Figure 6(b), EPWP

profiles near the non-permeating left boundary exhibit noticeable changes beyond x = 0.9 m.
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Figure 6: Variation of EPWP profiles with time at various instants of (a) depth at fixed x = 4 m and (b) horizontal

distance at fixed z = 4 m obtained using the proposed RF-K framework under § .S, drainage conditions.
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Figure 7: Comparison of RF-K and RF-FDM solutions under S .5, drainage showing the variation of EPWP with (a)

normalized depth and (b) normalized horizontal distance.
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The EPWP solutions derived from the proposed RF-K framework under S .S, drainage condi-
tions are compared with those obtained using the RF-FDM framework, ensuring consistent ran-
dom fields for ¢, and c,, as well as identical domain parameters. Figure 7 presents this comparison,
showing the variation of EPWP profiles with normalized depth and normalized distance. The solid
red lines correspond to the RF-K solutions, while the black dotted lines represent the RF-FDM so-
lutions. The close alignment between the two sets of results demonstrates excellent agreement,

validating the accuracy of the proposed RF-K framework.
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Figure 8: 2D colormaps of EPWP obtained by (a) RF-K at # = 0.5 yr (b) RF-FDM att = 0.5 yr (¢c) RF-K at# = 0.9 yr

(d) RF-FDM at t = 0.9 yr under S, S, drainage boundary conditions.

Figure 8 compares the EPWP colormaps computed using the RF-K and RF-FDM frameworks
att = 0.1 yr and r = 0.1 yr. These colormaps provide a detailed visualization of the EPWP

dissipation as time progresses. Figures 8(a) and 8(b) show the EPWP distribution at ¢t = 0.1 yr
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for RF-K and RF-FDM, respectively. Despite the relatively coarse mesh satisfying the stability
criteria, the RF-FDM solution exhibits spatial patterns similar to those observed in the RF-K col-
ormap. At t=1.0 yr, Figures 8(c) and 8(d) display the RF-K and RF-FDM solutions, respectively,
demonstrating a close resemblance of the spatial patterns. Notably, the areas near the top and right
boundaries, which are permeating, show a rapid decrease in EPWP. In contrast, the EPWP near the
lower-left corner remains nearly unchanged, as it is situated far from the drainage boundaries. The
mean squared error (MSE) between the two solutions is 9.65 X 1075, and the root mean squared
error (RMSE) is 0.0031. These results underscore the effectiveness of the RF-K framework in

accurately approximating the solution to the 2D consolidation problem as governed by Eq. (4).
5.2 Case 2: 2D Consolidation under D,S; Drainage

Under the D, S, drainage boundary conditions specified in Eq. (9) and Eq. (10), EPWP so-
lutions for the plane-strain 2D consolidation Eq. (as per (4)), are computed using the proposed
RF-K framework. Random fields for ¢, and ¢, are generated using the Karhunen-Loeve (K-L)
expansion, with correlation distances of [, = 3 and /, = 2 in the covariance function, consistent
with the S, drainage case. These fields are scaled to the desired ranges of 1.5 — 6m?/yr for ¢,
and 0.5 — 2m?/yr for ¢, using Eq. (25) and Eq. (26) respectively. Using a computational domain
of z = 6m, x = 6m, and a time period of # = 1 yr, EPWP solutions are obtained with the RF-K
framework, employing 1000 MCS to simulate the EPWP trajectories. Figure 9 illustrates the vari-
ation in EPWP profiles derived from the RF-K framework, with normalized depth at x = 4 m, and

normalized horizontal distance at z = 4 m.
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Figure 9: Variation of EPWP profiles with (a) normalized depth and (b) normalized horizontal distance under D,.S

drainage conditions obtained using the proposed RF-K framework.

The EPWP profiles at each instant show zero values at the top and bottom boundaries and a
maximum value at the mid-depth, as shown in Figure 9(a). The EPWP dissipates quickly close
to the permeating top and bottom boundaries, while due to a relatively larger distance from the
drainage boundaries, the EPWP accumulates to its maximum value at the mid-depth. On a hori-
zontal section, as shown in Figure 9(b), the EPWP attains its maximum at the non-permeating left
boundary and progressively decreases to zero at the permeating right boundary.

The transition from the boundary conditions of S,S; to DS, achieved by making the bottom
boundary permeating, is evident in the variation of the EPWP profile with depth, as shown in
Figure 9(a). However, as shown in Figure 9(b), the pattern of EPWP variation with horizontal
distance remains unchanged due to consistent boundary conditions in the horizontal direction,

similar to the S, . Nevertheless, the EPWP values change due to the influence of the permeating
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top, bottom, and right boundaries, and the non-permeating left boundary, as illustrated in Figure
10. The EPWP values up to ¢+ = 0.2 yr remain the same as those in the §,S, condition, but
beyond ¢ = 0.2 yr, the EPWP profile demonstrates significant increased values for D,S ,, reaching
a maximum variation of 16.5 % at the final consolidation time of + = 1.0 yr. This indicates
that rendering the bottom boundary permeating primarily affects the EPWP values rather than the

dissipation pattern as observed in the variation with horizontal distance.
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Figure 10: (a) Comparison of the EPWP profile with horizontal distance in S,S, and D,S, conditions (b) Variation

of the change in EPWP values with horizontal distance.

The EPWP profiles for every time instant change with depth and horizontal distance. Figure
11 depicts the reduction in EPWP values as both depth and horizontal distance increase for a
specific profile at ¢ = 1.0 yr. Near the non-permeating left boundary, the EPWP values are at their
maximum. However, as the horizontal distance approaches the permeating right boundary (x = 6

m), the EPWP values decrease, eventually reaching zero. Figure 11(b) illustrates the variation of
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EPWP profiles with horizontal distance at various depths. Understandably, the EPWP profiles are

identical to each other symmetrically around the mid-height of the domain (e.g., z = 5.9 m and

s3s z = 0.1 m, and so on).
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Figure 11: Variation of EPWP profile at # = 1.0 yr (a) with normalized depth at various instants of horizontal distance

and (b) with normalized horizontal distance at various instants of depth under D,.S, drainage conditions.

Figure 12 shows the variation of EPWP with time, exhibiting a faster dissipation near the per-
meating top, bottom, and right boundaries. Profiles equidistant from the mid-height of the domain
(i.e., z =3, m) overlap with each other. The rate of EPWP dissipation gets progressively slower for
profiles towards the mid-depth. For the variation of EPWP with time at different horizontal dis-
tances and a fixed depth of z = 4 m, as shown in Figure 12(b), the EPWP near the non-permeating
left boundary (x = Om to x = 3 m) dissipates gradually, with minimal variation between profiles.
Closer to the permeating right boundary (x = 3m to x = 6 m), the dissipation is more rapid,

resulting in notable changes in the profiles due to the influence of the permeating boundary.
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Figure 12: Variation of EPWP profiles with time at various instants of (a) depth at fixed x = 4 m and (b) horizontal

distance at fixed z = 4 m obtained using the proposed RF-K framework under D,.S; drainage conditions.

The EPWP dissipation profile over time at various horizontal distances in D,.S ;, drainage condi-
tions, as in Figure 12(b), exhibits notable differences as compared to S, ,, case due to the introduc-
tion of the permeating bottom boundary. This effect is more pronounced near the non-permeating
left boundary (x = 0 m), while the variation diminishes towards the permeating right boundary
(x = 6 m), as illustrated in Figure 13. The maximum EPWP variation of 16.5 % occurs at x = 0.3
m, as shown in Figure 13(b). Additionally, the presence of the permeating bottom boundary in the
D, S, case facilitates rapid EPWP dissipation in the vertical direction. However, it also leads to
a slower EPWP dissipation rate in the horizontal direction compared to the §,S, case, as shown
in Figure 13(a). This occurs because the pore water in the soil domain preferentially drains more
from the vertical boundaries, reducing the hydraulic gradient in the horizontal direction, which

slows down the EPWP dissipation in the horizontal direction.
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The EPWP profiles computed using the proposed RF-K framework under D,.S ;, drainage bound-
ary conditions, as shown in Figure 9, are compared with those obtained using the RF-FDM frame-
work. The comparison employs the same random fields for ¢, and ¢, and identical domain pa-
rameters. Figure 14 illustrates the EPWP profiles from both frameworks at selected time periods,
depths, and horizontal distances. The profiles exhibit excellent agreement, validating the accuracy
and effectiveness of the RF-K framework in solving the 2D consolidation problem under D,S,

drainage conditions.
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Figure 15: 2D colormaps of EPWP obtained by (a) RF-K at # = 0.5 yr (b) RF-FDM at # = 0.5 yr (c) RF-K at = 0.9

yr (d) RF-FDM at ¢ = 0.9 yr under D, S, drainage conditions.

Figure 15 compares the 2D colormaps of the EPWP computed using the proposed RF-K and
RF-FDM frameworks at ¢t = 0.1 yr and + = 1.0 yr under D,S, drainage conditions. The col-

ormaps reveal that even after one year of consolidation, the maximum EPWP persists near the
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mid-depth, close to the non-permeating left boundary of the domain. The effect of intersecting
permeating boundaries (top and bottom right corners) is nicely captured by the changing shape
of the EPWP colormaps, which transition from a more rectangular to an elliptical behavior (los-
ing corner prominence) with progressing consolidation. The RF-FDM colormaps align closely
with the spatial patterns of the EPWP profiles obtained from the RF-K framework at both time
instances. The MSE between the two solutions is 7.29 x 107, and the RMSE is 0.0027.

However, the computational cost of RF-FDM is significantly higher than the proposed RF-K
approach. For a spatial domain of 6 m x 6 m, a time duration of 1 yr, and a spatial discretiza-
tion of 200 x 200, the RF-FDM approach requires approximately 6550.15 seconds, whereas the
RF-K framework requires only 2352.29 seconds, achieving a 64% reduction in computation time.
Furthermore, using parallel computing reduces the computation time of the RF-K framework to
1853.6 seconds, achieving a 71.7% reduction, making it 3.53 times faster than the RF-FDM frame-
work. These results demonstrate the computational efficiency and capability of the R-FK frame-
work to accurately capture the solution to the 2D consolidation problem governed by Eq. (4).

In addition to the computational efficiency, the proposed RF-K framework is also meshless.
Unlike RF-FDM, which relies on a specified grid structure satisfying the time-step criteria as
outlined in Eq. (24), the proposed RF-K framework does not require a predefined grid structure to
compute stable solutions of the 2D consolidation problem. For a spatial discretization of 100x 100,
Ax = 0.01, Az = 0.01, and ¢, and ¢, modeled as random fields in the range of 1.5-6.0 mz/yr and
0.5-2.0 m?/yr, respectively, a time step of At = 0.01 leads to unstable EPWP profiles in the
RF-FDM framework due to the violation of the stability criteria. In contrast, the proposed RF-K

framework remains stable and produces accurate solutions, demonstrating its robustness in solving
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the 2D consolidation problem without being constrained by strict stability conditions.
5.3 Application to 1D consolidation: Case Study

To further validate its robustness and applicability, the proposed RF-K framework is applied
to the 1D consolidation of saturated soils. This 1D case represents a dimensionally degenerated
version of the 2D consolidation problem. By imposing non-permeating conditions on the left and
right boundaries of the 2D soil domain, horizontal dissipation pore water is restricted, allowing
vertical drainage only through the top permeating boundary. This modification effectively reduces
the problem to a 1D scenario. For the 1D consolidation problem, the RF-FDM scheme of Eq. (27)
reduces to

o= 2u! + ol

N
{CV(Z) + Z v/leWk(Z)ﬂk(w)} qu AZ2 =
k=1

For the 1D case, only the coefficient of vertical consolidation, c,, is modeled as a 1D random

utl = ul + At

(48)

field to incorporate the spatial variability. For the RF-K framework, the EPWP solution given by

Eq. (38) reduces for the 1D case, given by
u(z, 1) = B, [E[{((T) | Z: = z]] (49)

The solution of EPWP using the RF-K framework is obtained by simulating the SDE given by Eq.
(31), subjected to the initial boundary conditions as in Eq. (2), and considering a random field of
¢y. A depth of z =2 m and a time of # = 1 yr are considered, and a random field of ¢, is generated
in the range of 0.5 — 2 m?/yr to obtain the RF-K solution of the 1D consolidation problem.

Figure 16 illustrates the EPWP solution for 1D consolidation using the RF-K framework. In
Figure 16(a), EPWP profiles are shown varying with normalized depth at different time intervals,

with maximum EPWP at the impermeating bottom boundary and zero EPWP at the permeating
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top boundary. The profiles also indicate a progressive reduction in EPWP over time due to dissipa-
tion. Figure 16(b) presents a colormap of the EPWP solution, highlighting rapid dissipation near
the permeating top boundary, while significant EPWP remains entrapped at the non-permeating

bottom boundary.
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Figure 16: 1D consolidation solution showing (a) variation of normalized EPWP with normalized depth and (b) 2D

colormap of EPWP obtained using the proposed RF-K framework under S, drainage condition.

The RF-FDM solution of the 1D consolidation Eq. (1) is computed by solving Eq. (48)
for each time step, considering the same random field of ¢,. The analytical solution of the 1D
consolidation Eq. (1) is obtained using Eq. (3) for the same depth and time parameter values.
To assess the accuracy of the proposed RF-K framework, the EPWP solutions obtained from the
RF-K approach are compared with both the analytical (Figure 17(a)) and RF-FDM (Figure 17(b))
solutions. In both cases, the EPWP profiles exhibit excellent agreement across the methods. The

MSE between the analytical and RF-K solutions is 3.11 X 107, while the MSE between the RF-
42



20 FDM and RF-K solutions is 1.99 x 107, Similarly, the RMSE values are 0.0018 for the analytical
e21 and RF-K comparison and 0.0014 for the RF-FDM and RF-K comparison, further confirming the

e22 accuracy of the RF-K framework.

a b
1% (@) I (b)
o Analytical solution = o RF-FDM solution
— S-FK solution LR N — S-FK solution
0.8 0.8 8% % °
3 \ N
< 06 0.6 %1%
) 1
= 1%
= LR
2 1 3
= 04r 04+
£ ]
= !
2 :
0.2+ 0.2+
t= 0.9r
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Normalized EPWP (u/u ) Normalized EPWP (u/u,)

Figure 17: Comparison of the EPWP profiles obtained using the RF-K solution with the (a) analytical solution and

(b) RF-FDM solution for the 1D consolidation problem.

s2s 6 CONCLUSIONS

624 In the present study, a novel and robust stochastic framework is developed for solving the
25 plane-strain 2D consolidation of saturated soils. The framework employs the Feynman-Kac for-
s2s mula and the Karhunen-Loeve expansion technique to address the spatial variability of soils.
27 Specifically, the coefficients of horizontal and vertical consolidation, ¢, and c,, are modeled as
e2s random fields using K-L expansion. The proposed RF-K framework solves the 2D consolida-

s29 tion PDE by generating corresponding SDEs and simulating them until the exit time using MC
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simulations under various cases of §,S5, and D, S, drainage boundary conditions. The boundary
conditions are handled uniquely in the framework as reflective or absorbent boundaries, and the
Brownian particles are either reflected back or allowed to escape the domain according to the
boundary conditions. By simulating the trajectories of the Brownian particles until they reach the
domain boundaries, the framework constructs the excess pore water pressure (EPWP) field as an
ensemble average over these trajectories. This approach provides a probabilistic solution to the
2D consolidation PDE while incorporating soil heterogeneity and boundary effects in a computa-
tionally efficient manner.

In addition, a numerical framework employing the finite difference incorporating the random
fields of ¢, and ¢, is also developed to obtain solutions to the 2D consolidation. This RF-FDM
framework models the coefficients of horizontal and vertical consolidation, ¢, and c,, as random
fields, similar to the proposed RF-K framework. The RF-FDM framework provides EPWP so-
lutions to the 2D consolidation problem subjected to various cases of §,S, and D,S, drainage
boundary conditions. The EPWP solutions obtained from the proposed RF-K framework are com-
pared with those derived from the RF-FDM framework employing the same fields of ¢, and c,.
The results demonstrate excellent agreement between the two approaches across all boundary con-
ditions, as indicated by low MSE and RMSE values. This highlights the robustness of the RF-K
framework in accurately handling the spatial variability of soils and addressing various drainage
boundary cases of the 2D consolidation phenomenon.

Furthermore, the proposed RF-K framework is applied to the simple case of the 1D consoli-
dation problem under S, drainage boundary conditions, allowing water to be drained only in the

vertical direction. This application serves to validate the accuracy and versatility of the proposed
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framework in the light of both analytical and RF-FDM solutions. The results demonstrate excel-
lent agreement among the methods, as evidenced by even lower values of MSE and RMSE for the
1D case. The developed RF-K framework proves to be a robust and meshless approach for solving
both 2D and 1D consolidation problems of soft soils, effectively incorporating spatial variability

and addressing various drainage boundary conditions.
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