

Università degli Studi del Molise Invited Talk Universita degli Studi del Molise Campobasso, Italy

Geotechnical Practices and Applications for Infrastructure Development

Dr. Arindam Dey

Associate Professor

Geotechnical Engineering Division, Department of Civil Engineering Center for Disaster Management and Research (CDMR) Indian Institute of Technology Guwahati

Dey, UoM, Campobasso, 2023

2

Geographical Location of IIT Guwahati

3

Some Glimpses of the IIT Guwahati Campus

4

AD_Research Group

- Students in the group (until date) 159
 - Doctoral Research Students (23): Completed 8, Ongoing 15
 - M.Tech./MS(R) Students (34): Completed 30, Ongoing 4
 - ✤ B.Tech. Students (26)
 - Intern Students (47)
 - Credit Seminar Students (29)
- Research Publications (until date) 269
 - Books: 2; Book Sections: 32; ASCE GSP: 3
 - International Journals: 51; National Journals: 15
 - ♦ ASCE Specialty Conference: 1; International Conference: 46; National Conference: 85
 - International Symposium: 7; National Symposium: 3
 - International Workshop: 3; National Workshop: 7
 - National Seminar: 8; Technical Reports: 6

Infrastructure and Development

- **Infrastructures** are the fundamental facilities and systems serving a country, city, or other area, including the services and facilities necessary for its economy to function.
 - Infrastructures are the physical components of interrelated systems providing commodities and services essential to enable, sustain, or enhance societal living conditions

Geotechnical Engineering for Infrastructure Development

- Vistas of geotechnical engineering interrelated with infrastructure development
 Geotechnical and Geophysical Investigations
 - Shallow, Deep and Hybrid foundations on horizontal grounds and slopes
 - Ground Improvement for constructions in difficult subsoil conditions
 - Soil Dynamics, Earthquake Geotechnics, Ground Response and Liquefaction Analysis
 - Soil-Structure Interaction
 - Rainfall Induced Landslides, Landslide Hazard and Slope Stabilization
 - Geosynthetic Engineering and Reinforced Soil Structures
 - Rigid and Flexible Earth Retention Systems
 - Pavement and Railway Geotechnics
 - Dam and Embankment Engineering

Multichannel Analysis of Surface Waves (MASW) Surveys

n

500

420

tion (#)

- Shear wave velocity profiling of soil substrata
- Operates on the dispersive capacity of soils

8

Subsurface Profiling through Inversion Analysis

9

0 = 0 0 = 0 0 0 0 0 0 0

MASW Survey Components

Subsurface Profiling using Active MASW Survey

- MASW (Multichannel Analysis of Spectral Waves)
 - Seismic exploration technique using NDT
 - Soil stratigraphy and shear wave velocity profile (1D, 2D or 3D)
- Active MASW Survey
 - Impact source using sledgehammer or automated drop weight
 - Depth of investigation: 20-30m with good resolution

10

Jumrik

Dey, UoM, Campobasso, 2023

Subsurface Profiling using Passive Roadside MASW Survey

- Passive Roadside MASW Survey
 - Adopted in populated urban areas
 - Utilization of vehicle loading as energy source
 - Depth of investigation: 20-50m (Good resolution)

Velocity (m/sec)

300

15

11

Dipjyoti

Subsurface Profiling using Passive Remote MASW Survey

- Passive Remote MASW Survey
 - 2D Array of geophone receivers
 - Utilization of long wavelength ambient noise source
 - Depth of investigation: 30-120m (Good resolution)

12

Shibayan

Automated Extraction from 3-D Dispersion Image

• Image processing techniques and Matlab coding

MASW Survey of 1.2 km long Jia-Bharali River Bed

- A new 4-lane (1.2 km) carriageway bridge over Jiya-Bharali River bed
 - National Highway and Infrastructure Development Corporation Limited (NHIDCL)
 - Located in Tezpur District, Assam state
 - Connects NH-52A and NH-37
 - Project completed with Simplex Infrastructures Ltd

Dey, UoM, Campobasso, 2023

15

Chiranjib

Rana

Jumrik

Madhulatha

2-D shear wave velocity profile obtained from a roll-along active MASW conducted along the alignment of the proposed bridge over Jia-Bharali (P5-A2)

Tuirial Hydroelectric Power Plant Project, Mizoram

Tuirial Hydroelectric Power Plant Project, Mizoram

Dey, UoM, Campobasso, 2023

Dynamic Response of Typical Soils of NE India

- Cyclic Triaxial tests
 - Strain and Stress controlled tests
 - Shear modulus degradation
 - Evolution of damping ratio
 - Liquefaction potential evaluatio

18

Liquefaction Criteria for Saturated BS

- > BS ($D_r = 30\%$ -90%) liquefy under the following optimum conditions
 - **♦ PGA ≥ 0.36g**
 - $\mathbf{*CSR} \ge \mathbf{0.3}$
 - $ightarrow \gamma_{max} > 0.5\%$
 - * Limiting value of $\gamma = 0.5\%$ is to be adopted for liquefaction evaluation study for BS soil at loose condition
 - * Limiting value of $\gamma = 1.0\%$ is to be adopted for liquefaction study for BS soil at dense condition

Dey, UoM, Campobasso, 2023

19

-2

-100

-12

Î

Dep

Representation of Subsurface 1-D and 2-D GRA Models

Dey, UoM, Campobasso, 2023

GRA of Guwahati City and IIT Guwahati

Typical Borehole Profile

Thickness Field Density Average Field SPT N Shear Wave Average Soil Depth Туре (kN/m³) Density (kN/m³) (m) (m) Value Velocity, v_s (m/s) $v_s (m/s)$ 0.75 0.75 18.9 0.75 1.5 136.5 18.9 0.5 19.05 138.3 4.5 1.5 164 0.5 19.2 5 6 7.5 18.4 112 Clay 112 1.5

V_s Profile

20

Fourier and

Devdeep

Shiv

Dey, UoM, Campobasso, 2023

21

Typical GRA Results and Representations

Typical PGA and AF Contour Map of Guwahati City

- Manifestation of Local Site Effects due to varying geology
 - Local Amplification and Attenuation of bedrock motion

Nepal Eq: PBRA = 0.18g

Shiv

Typical PGA and AF Contour Maps of IIT Guwahati

- Manifestation of Local Site Effects due to varying geology
 - Local Amplification and Attenuation of bedrock motion

23

Devdeep

Liquefaction FoS Maps of IIT Guwahati

- Influence of peak bedrock acceleration
 - No liquefaction for lower bedrock motions
 - FoS > 1 at all places in the campus

Substantial liquefaction at higher bedrock motions

• FoS < 1 at many places in the campus at both shallow and deeper strata

25

Liquefaction Potential Index (LPI) of IIT Guwahati

- Indicates susceptibility to liquefaction
 - ♦ LPI < 5 → No liquefaction
 - ♦ $5 < LPI < 15 \rightarrow$ Moderate liquefaction
 - ♦ LPI > 15 → Severe liquefaction

Seismic Soil-Structure Interaction

- Soil-Structure Interaction
 - Seismic analysis of integral abutment RC bridges
 - Seismic behavior of RC wall-framed buildings
 - Kinematic and Inertial interaction of building foundations

Nishant

27

Rainfall Induced Landslide Hazard of Guwahati City

03-07-2023

28

Rainfall Induced Landslide Hazard of Guwahati City

29

Rainfall Induced Landslide Hazard of Guwahati City

- Local-scale probabilistic slope stability analysis
 - Application of Random Field for soil parameters for catering uncertainty in soil parameters

Landslide Susceptibility and LHZ of Guwahati City

- Regional Scale Stability Analysis
 - Landslide Hazard Zonation and Landslide Susceptibility Studies
 - SHALSTAB, TRIGGRS, SINMAP, Physically Based Models
 - GIS platform for Digital Elevation Models (DEM)

30

Ground Water Table

Rainfall Induced Landslide in Guwahati Region

- Regional Scale Landslide Hazard Analysis
 - Incorporation of variability in rainfall and soil depth

Variation of weathered soil thickness and slope angle

31

Monthly mean rainfall based on 100 years data (1901-2002) at Kamrup metropolitan

IDF curves for Guwahati region

Dey, UoM, Campobasso, 2023

32

Landslide Hazard Map of Guwahati City

33

Probabilistic Landslide Hazard Analysis of Guwahati City

Probability of Failure (PoF) Map of Guwahati City

Forensic Analysis of Landslide and Mitigation

• Calcom Cement Plant, Umrangso, Assam

Priyanka

Ruplekha

03-07-2023

Forensic Analysis of Landslide and Mitigation

- Approximate model based on available nearby borehole data
 - Sequential construction simulated in FE model
 - Water Table depth at failure location was unknown

SI. No.	Stage of construction	Dry	Water level at a ht. of 17m (W ₁)	Water level at a ht. of 13m (W ₂)	Water level at a ht. of 9m (W ₃)
		FoS Values	FoS Values	FoS Values	FoS Values
1	In-situ	2.112	1.411	1.588	1.511
2	Building foundation excavation	2.1	1.373	1.577	1.513
3	Imposition of building load	0.976	0.821	0.793	0.769
4	Filling back of foundation	0.967	0.850	0.802	0.774
5	Excavation for R1	1.015	0.875	0.825	0.805
6	Construction and backfilling of R1	0.985	0.838	0.798	0.785
7	Excavation for R2	1.373	0.817	1.065	1.025
8	Construction and backfilling of R2	1.344	0.752	0.967	1.007
9	Excavation for R3	1.288	1.029	1.035	0.975
10	Construction and backfilling of R3	1.294	1.024	0.984	0.959

37

Forensic Analysis of Landslide and Mitigation

Response of Foundations on Slopes

Static and seismic behavior of foundations on slopes
 FE Analysis to identify the evolution of failure mechanism

38

Rana

Dey, UoM, Campobasso, 2023

39

AEGCL Transmission Tower on Disturbed Slope, Sarusajai

Dey, UoM, Campobasso, 2023

AEGCL Transmission Tower on Disturbed Slope, Sarusajai

03-07-2023

Probabilistic Stability Assessment of Toe-Excavated Hillslopes

- Consideration of uncertainties and variabilities
 - Slope stability assessment and mitigation
 - Ranndom FE and Probabilistic assessment

Hill Slope

Bedrock Foundation

Time (sec)

 $-\Theta = 0.2$

 $-\Theta = 0.1$

14

12

E 10

41

Rubi

Geotechnical Engineering of Earthen Dams and Embankments

• Curious case of San Fernando Dam Failure due to 1971 San Fernando Earthquake

Proper drainage is absolute necessity

Stability of Ash Dyke, NTPC, Bongaigaon, Assam

Dey, UoM, Campobasso, 2023

44

Ash Dyke, NTPC, Birsinghpur, MP

45

Clogging of Drainage Blanket of an Earthen Dam/Dyke

• Clogging of drainage blanket jeopardizes the geo-hydraulic stability of earthen dam

Dey, UoM, Campobasso, 2023

47

Core-Cracking of Zoned Earthen Dam

Core-Cracking of Zoned Earthen Dams

- Location of initiation of cracking
- Path of propagation of cracking

Unreinforced Unpaved Roads

Minimum value = $-3.730*10^{-3}$ (Element 1181 at Node 9544)

- Unreinforced unpaved roads
 - Unpaved roads resting on c-φ subgrade
 - Improvisation over Giroud and Noiray's technique
 - Finite element analysis using PLAXIS
 - Finite element based design of unpaved road
 - Percentage improvement using geosynthetics

-3.20

-3.40

-3.60

3.80

49

Lokesh

Shivraj

Geosynthetic Reinforced Unpaved Roads

- Design of geosynthetic reinforced unpaved roads
 - Development of Finite Element based design algorithm

03-07-2023

Soft Ground Improvement using Preloading with PVDs • Accelerated consolidation through radial drainage and

excess PWP dissipation

Rajesh

51

Sai Kiran

Typical PVD (Global Synthetics 2010)

Filter Sleeve

Filter jacket to prevent entry of soil particles

52

Soft Ground Improvement using Preloading with PVDs

• Typical observations of ground improvement through PVD and Preloading

Heritage Railway Station, Udaipur, Agartala

• Application of preloading and PVD for developing of railway yard in a ditch marshland

03-07-2023

Heritage Railway Station, Udaipur, Agartala

• Application of preloading and PVD for developing of railway yard in a ditch marshland

55

Other Ongoing Researches

- Research is a continuous effort to know the unknown
 - Seismic Response of Bridge Piers Emte
 - Response of Single Pile Embedded in Inclined Stratigraphy Debasmita
 - Soil Liquefaction and its Mitigation using Prefabricated Vertical Drains Samrat
 - Reservoir Induced Seismicity Anulekha
 - Hillslope stabilization using Geocells Sureka
 - Risk Assessment of Earthen Dams and Embankments Naveen
 - Engineering Behaviour of Varved Clays and Glaciolacustrine slopes Deepali
 - Regional Scale Rainfall Induced Landslide Hazard Zonation Manohara, Pooja
 - Seismic Microzonation Aditya
 - Seismic Response Analysis of GRS and MSE Walls Mihretab
 - Theoretical and Analytical Modeling of Complex Geotechnical Problems Naina
 - Geosynthetics for Roadway Subgrades under Freezing-Thawing cycles Chukhu

http://www.iitg.ac.in/arindam.dey/homepage/index.html# https://www.researchgate.net/profile/Arindam_Dey11