

National Workshop on Importance of Disaster Risk Reduction and Resilience

Mizoram University, 10 April 2023

Recent Advances in Geotechnical Engineering Learning through Case Studies

Dr. Arindam Dey Associate Professor Geotechnical Engineering Division Department of Civil Engineering Center for Disaster Management and Research (CDMR) IIT Guwahati

11-04-2023

Hillslope Profiling at NEEPCO Hydel Plant, Saiphum, Mizoram Geophysical Prospecting – Crosshole Survey

THEORY v/s PRACTICE

Theory vs Practice: Tuirial Project, Mizoram

- Location of site: Tuirial, Saiphum, Mizoram
- Client: NEEPCO
- **Project**: Diversion of Tuirial River, Construction of dam and reservoir, Development of Hydro-Electric Power Plant
- **Calamity**: Seismic failure of a large hill-slope geopardizing the power-distribution unit located at the same foot-hill
- **Background information**: GSI report states only about static stability of the slope, no dynamic analysis
- **Objective**: Geophysical prospecting of the subsurface
- **Hindrance**: The site slope is already subjected to stabilization, so no scope/chance of getting soil samples
- Tests conducted: Seismic Crosshole Survey and MASW

Tuirial Project, Mizoram

6

Tuirial Project, Mizoram

11-04-2023

8

Instruments

11-04-2023

IDRRR, MZU, 2023

Instruments

- Ballard Shock Wave Generator
- 5D Geophone Receiver array
 - * 1 Vertical and 4 Horizontal

11-04-2023

10

Geological Investigation Report from GSI

Geophysical Prospecting

• Identification of the subsurface information through the applications of wave propagation through soil/rock media

Seismic Borehole Surveys

11-04-2023

IDRRR, MZU, 2023

13

Expectation vs Reality

- Multidirectional sensors in ideal ground
 - Each sensor should record the effect of the desired wave
- Heterogeneity in the soil creates record adulteration
 - Reflection from boundary and soil interface

13

11-04-2023

14

Signals: Theoretical and Field Observation

15

Arrival of S-wave

- Concept of Polarity Reversal
 - P-wave particle movement are in the same polarity independent of the direction of Ballard strike
 - S-wave particle movement changes the polarity depending on the direction of Ballard strike

11-04-2023

16

Signals: Theoretical and Field Observation

17

Arrival of S-wave

11-04-2023

18

Subsurface Velocity Profile

11-04-2023

19

Landslide at Calcom Cement Plant, Umrangso, Assam Forensic Geotechnology

Why is it important to conduct exploratory borings at **PROPER LOCATION**???

20

General Site Conditions

- Lat: *N*25°31′04″, Long: *E*92°47′19.3″, Elevation: +501m MSL
- Climatic conditions: Average Annual Rainfall 1672 mm (high)

11-04-2023

Pre-Reconnaissance Round-Table Discussion

- 2nd November 2015: Meeting with the client
 - * Pictures of damages of the 24-Colony Residential Housing blocks
 - 2 rows of 12 quarters face-to-face: All extensively damaged
 - Wall and Floor cracking / See through cracks
 - Detachment of plasters
 - Abnormal sounds from cracking
 - Detachment in floors
 - Shifting of soil in plinth raft

11-04-2023

22

Pre-Reconnaissance Round-Table Discussion

- 2nd November 2015: Meeting with the client, Dalmia Cements
 - * Pictures of damages in the protective retaining and boundary walls
 - Development of gaps and cracks in the retaining walls
 - Retaining wall 1: Between cement factory (workshop) and 24-Colony
 - Retaining Wall 3: Beside RCL road in front of 24 colony
 - Retaining wall 2: Frontal protection of 24-Colony (3 m)
 - Gaps in old boundary wall
 - Dislodgment of pavement and drains

• 2nd November 2015: Meeting with the client, Dalmia Cements

Contour map of the site

2nd November 2015: Meeting with the client, Dalmia Cements
Rough sketch of site topography

Site Visit for Reconnaissance Survey: 3rd Nov 2015

25

Site Visit for Reconnaissance Survey: 3rd Nov 2015

26

Site Visit for Reconnaissance Survey: 3rd Nov 2015

Site Visit for Reconnaissance Survey: 3rd Nov 2015

- Immense mass movement of soil
- Broken boundary wall
- Ejection of seeping water
- Overtopping of retaining wall
- Breakage of downhill protection wall

28

Extensive damage in the 24-Colony leading to relocation of workers

11-04-2023

29

Collection of Information and Data

• Geotechnical Investigation locations at the site

30

Collection of Information and Data

• Borehole locations at the site

* No boreholes present exactly at the failure site

32

Measurement and Monitoring

Displacement monitoring stations – 19 locations
Till December 2015

33

Measurement and Monitoring

• Typical lateral and vertical displacement monitoring data

* Some monitoring points were destroyed due to extreme displacement

MONITORING REPORT OF EARTH DISPLACEMENT BEHIND STORE																
AND WORK SHOP																
SI NO	ARFA	BASE COORDINATE AND LVL 28/10/2015				12-09-2015					12-11-2015					
						READING TAKEN		DIFFRENCE		SITE READING TAKEN			DIFFRENCE			
		EASTING	NORTHING	RL	STN	NORTHING	RL	EASTING	NORTHING	RL	EASTING	NORTHING	RL	EASTING	NORTHING	RL
11		189.804	143.763	78.975	POINT NO-11	143.786	78.64	-1.216	-0.023	0.335	191.021	143.798	78.591	-1.217	-0.035	0.384
12	REHAB QTRS	191.629	137.583	77.403	POINT NO-12	137.522	77.184	-0.602	0.061	0.219	192.235	137.538	77.179	-0.606	0.045	0.224
13	24 COLONY	251.861	167.28	67.727	POINT NO-13	166.988	67.473	-1.777	0.292	0.254	253.671	166.976	67.441	-1.81	0.304	0.286
14		245.488	139.819	68.046	POINT NO-14	POINT DESTROYED					POINT DESTROYED					
15		247.749	127.621	67.319	POINT NO-15	127.129	66.94	-1.609	0.492	0.379	249.421	127.108	66.831	-1.672	0.513	0.488
16		241.257	119.051	67.986	POINT NO-16	BOINT DESTROYED										
17		238.211	108.001	69.271	POINT NO-17		FOINT DI	SIKUTED			POINT DESTRUTED					
18		233.373	124.629	71.882	POINT NO-18	124.816	70.604	0.012	-0.187	1.278	233.358	124.821	70.588	0.015	-0.192	1.294
19		232.621	130.84	70.441	POINT NO-19	130.662	68.995	-1.268	0.178	1.446	233.897	130.65	68.965	-1.276	0.190	1.476
20	DRAIN ALONG	151.875	152.097	86.317	POINT 8A	152.097	86.317	0.001	0	0	151.876	152.095	86.316	-0.001	0.002	0.001
21	RCL ROAD	153.562	165.089	86.679	POINT 9A	165.089	86.68	0	0	-0.001	153.561	165.087	86.68	0.001	0.002	-0.001
22	NALA BEHIND 24	262.832	119.858	53.89	POINT NO-20	119.858	53.889	-0.001	0	0.001	262.831	119.859	53.88	0.001	-0.001	0.01
23	COLONY	277.088	136.566	49.881	POINT NO-21	136.566	49.881	-0.001	0	0	277.089	136.567	49.88	-0.001	-0.001	0.001

11-04-2023

35

Deciphering Chronological Events

• Contour and Profile of failure site

Sequence of construction of protection retaining walls

36

Deciphering Chronological Events

• Hillslope topography along different sections

37

- Forensic study of hillslope failure using Geostudio
 - * Soil layering done on the basis of nearby borehole stratigraphies
 - Depth of water table Unknown

Preliminary Models and Failure Analysis

• Forensic study of hillslope failure

* Material properties used in the model for the numerical simulation

Material properties of the Primary model PM										
Layer	Undrained Strength Parameters			Drained Strength Parameters			Unit	Saturated	Saturated volumetric	
	c _u (kPa)	φ_u (°)	E (MPa)	c' (kPa)	φ' (°)	E' (MPa)	weight (kN/m ³)	permeability K _{sat} (m/s)	water content Θ_{sat} (m^3/m^3)	
Soil layer I	18.5	4	4.7	12.33	4	4.2	19	3x10 ⁻⁸	0.425	
Soil layer II	18.5	4	4.7	12.33	4	4.2	19	3x10 ⁻⁸	0.425	
Soil layer III	18.5	4	4.7	12.33	4	4.2	19	3x10 ⁻⁸	0.425	
Rock	-	-	683	-	-	610.4	24.1	$2x10^{-10}$	0.087	
Retaining wall	-	-	17000	-	-	15194	29	3x10 ⁻¹³	0.33	

Material properties of the tertiary model TM										
Layer	Undrained Strength Parameters			Drained Strength Parameters			Unit weight	Saturated Permeability	Saturated Volumetric water	
	C_{u}	φ_u	Ε	с'	φ'	E'	(kN/m^3)	K_{sat} (m/s)	content Θ_{sat}	
	(kPa)	(°)	(MPa)	(kPa)	(°)	(MPa)			(m^{3}/m^{3})	
Soil layer I	18.5	4	4.7	12.33	4	4.2	19	3x10 ⁻⁸	0.425	
Soil layer II	94 4 90.65		90.65	62.66	4	81	19	3x10 ⁻⁸	0.425	
Soil layer III	94	4	90.65	62.66	4	81	19	3x10 ⁻⁸	0.425	
Rock	-	-	683	-	-	610.4	24.1	$2x10^{-10}$	0.087	
Retaining wall	-	-	17000	-	-	15194	29	3x10 ⁻¹³	0.33	

Material properties of the secondary model SM											
Layer	Undrained Strength Parameters			Drained Strength Parameters			Unit weight	Saturated Permeability	Saturated Volumetric water		
	c_u (kPa)	φ_u	E (MPa)	c' (kPa)	φ' (°)	E' (MPa)	(kN/m^3)	K_{sat} (m/s)	content Θ_{sat} (m ³ /m ³)		
Soil layer I	18.5	4	4.7	12.33	4	4.2	19	3x10 ⁻⁸	0.425		
Soil layer II	18.5	4	4.7	12.33	4	4.2	19	3x10 ⁻⁸	0.425		
Soil layer III	94	4	90.65	62.66	4	81	19	3x10 ⁻⁸	0.425		
Rock	-	-	683	-	-	610.4	24.1	$2x10^{-10}$	0.087		
Retaining wall	-	-	17000	-	-	15194	29	3x10 ⁻¹³	0.33		

38

39

Schematic Section of Retaining Walls

- Forensic analysis of hillslope failure
 - * Sequential anthropogenic intervention at the site (Stages of construction)
 - **Stage 1**: In-situ analysis to assess the stability of the virgin slope before human intervention

- Forensic analysis of hillslope failure
 - * Sequential anthropogenic intervention at the site (Stages of construction)
 - Stage 2: Excavation of foundation of building

Preliminary Models and Failure Analysis

• Forensic analysis of hillslope failure

- * Sequential anthropogenic intervention at the site (Stages of construction)
 - **Stage 3**: Imposition of building load at the site due to the construction of the building (Calculated from structural data)

Preliminary Models and Failure Analysis

• Forensic analysis of hillslope failure

- * Sequential anthropogenic intervention at the site (Stages of construction)
 - **Stage 4**: Filling back and embedment of the shallow footings (Stages 3 and 4 are done simultaneously in the field)

- Forensic analysis of hillslope failure
 - * Sequential anthropogenic intervention at the site (Stages of construction)
 - Stage 5: Excavation of the foundation of the retaining wall R1

45

- Forensic analysis of hillslope failure
 - * Sequential anthropogenic intervention at the site (Stages of construction)
 - Stage 6: Construction of R1 and simultaneous back-filing

46

- Forensic analysis of hillslope failure
 - * Sequential anthropogenic intervention at the site (Stages of construction)
 - Stage 7: Excavation of the foundation of the retaining wall R2

- Forensic analysis of hillslope failure
 - * Sequential anthropogenic intervention at the site (Stages of construction)
 - Stage 8: Construction of R2 and simultaneous back-filing

48

- Forensic analysis of hillslope failure
 - * Sequential anthropogenic intervention at the site (Stages of construction)
 - Stage 9: Excavation of the foundation of the retaining wall R3

- Forensic analysis of hillslope failure
 - * Sequential anthropogenic intervention at the site (Stages of construction)
 - Stage 10: Construction of R3 and simultaneous back-filing

Preliminary Models and Failure Analysis

- Forensic analysis of hillslope failure
 - * Application of Parent-Child concept to amalgamate various modules
 - SEEP/W \rightarrow SIGMA/W \rightarrow SLOPE/W (Applied in sequence)
 - SEEP/W → Finite element based steady-state seepage analysis to generate the pore-water pressures under a given WT
 - → FE-based transient seepage analysis to identify the steady state WT due to a rainfall based infiltration and development of transient pore-water pressures

50

- SIGMA/W → Finite element based load-deformation analysis conducted by incorporating the steady-state WT and pore-water pressures generated from the preceding SEEP/W analysis
- SLOPE/W → Limit Equilibrium based slope stability analysis to identify the critical slip surface and the Factor of Safety values, by incorporating the results from the preceding SIGMA/W analysis

SI

- Slope stability analysis using Slope/W
 - Morgenstern-Price Method for analysis
 - Entry-Exit method for slip surface definition

52

- Slope stability analysis using Slope/W
 - Morgenstern-Price Method for analysis
 - Entry-Exit method for slip surface definition

53

- Slope stability analysis using Slope/W
 - Morgenstern-Price Method for analysis
 - Entry-Exit method for slip surface definition

54

- Slope stability analysis using Slope/W
 - Morgenstern-Price Method for analysis
 - Entry-Exit method for slip surface definition

55

- Slope stability analysis using Slope/W
 - Morgenstern-Price Method for analysis
 - Entry-Exit method for slip surface definition

56

- Slope stability analysis using Slope/W
 - Morgenstern-Price Method for analysis
 - Entry-Exit method for slip surface definition

- Slope stability analysis using Slope/W
 - Morgenstern-Price Method for analysis
 - Entry-Exit method for slip surface definition

Preliminary Models and Failure Analysis

- Slope stability analysis using Slope/W
 - * Morgenstern-Price Method for analysis
 - Entry-Exit method for slip surface definition

Retaining walls and backfills simply kept on adding weight to the system leading to more destabilization

58

Preliminary Models and Failure Analysis

- Slope stability analysis using Slope/W
 - Morgenstern-Price Method for analysis

This did not happen in the field, RW4 was overtopped by mud and water \rightarrow Necessity for further investigation

59

Entry-Exit method for slip surface definition

Preliminary Models and Failure Analysis

• Identification of the most feasible soil stratigraphy

Sased on stability analysis of various stages (Slope/W Module)

• PM and SM fails under the presence of any WT condition even in the in-situ condition (landslide in natural hillslope was not recognized at site)

Stage of construction	Dry	Vater level at a depth of 1 m (W1)	Water level at a depth of 4 m (W2)	Water level at a depth of 8 m (W3)	t n	Stage of construction	Dry	Water level at a depth of 1 m (W1)	Water level at a depth of 4 m (W2)	Water level at a depth of 8 m (W3)
Primary Model (PM)							Seco	ndary Model (SM)		
(1)	1.106	0.693	0.765	0.821	_	(1)	1.416	0.920	1.029	1.054
(2)	1.156	0.882	0.886	0.919		(2)	1.388	0.952	1.025	1.053
(3)	0.928	0.692	0.694	0.717		(3)	1.038	0.489	0.609	0.854
(4)	0.937	0.765	0.736	0.778		(4)	1.078	0.975	0.976	0.88
(5)	0.947	0.777	0.750	0.792		(5)	1.076	0.989	0.975	0.875
(6)	0.930	0.765	0.736	0.778		(6)	1.064	1.038	1.038	0.919
(7)	0.928	0.764	0.743	0.776		(7)	1.087	1.146	1.077	0.935
(8)	0.929	0.764	0.744	0.777		(8)	1.083	1.151	1.097	0.936
(9)	0.940	0.77	0.758	0.779		(9)	1.071	1.080	1.083	0.931
(10)	0.928	0.764	0.744	0.777		(10)	1.081	1.066	1.060	0.924

Stage of construction	Dry	Water level at a depth of 1 m (W1)	Water level at a depth of 4 m (W2)	Water level at a depth of 8 m (W3)	
	Terti	ary Model (TM)			
(1)	2.112	1.411	1.588	1.511	
(2)	0.976	0.821	0.793	0.769	
(4)	0.967	0.850	0.802	0.774	
(5)	0.985	0.875	0.825	0.805	
(7)	1.373	0.817	1.065	1.025	
(8)	1.344	0.752	0.967	1.007	
(10)	1.294	1.024	0.984	0.959	

Tertiary model indicates that imposition of building load (Stage 3) induced the marginal stability in the natural hillslope

61

- Influence of WT depth on the Tertiary Model
 - * Attempt to identify the location of the Water Table
 - In dry condition, the imposition of building load (Stage 3) might have initiated some creep instability, which was arrested by constructed RWs
 - WT assumed at any depth (W1, W2 or W3) showed similar instability after Stage 3
 - However, under such scenarios, no water seepage is expected in the hillslope
 - The possible location of initial WT yet remains unsolved from this aspect

	Stage of construction	Dry	Wat	ter level at a pth of 1 m (W1)	Water level at a depth of 4 m (W2)	Water level at a depth of 8 m (W3)
		Tertiary Model (TM)				
Building Load Soil Layer II Soil Layer II Bedrock 5 m 240 m	(1) (2) (3) (4) (5) (6) (6) (7) (8) (9) (10)	2.112 2.100 0.976 0.967 1.015 0.985 1.373 1.344 1.288 1.294		1.411 1.373 0.821 0.850 0.875 0.838 0.817 0.752 1.029 1.024	1.588 1.577 0.793 0.802 0.825 0.798 1.065 0.967 1.035 0.984	1.511 1.513 0.769 0.774 0.805 0.785 1.025 1.007 0.975 0.959

11-04-2023

63

- What happened to water seeping out from slope face behind the 24 colony → Question still looms !
- Inclusion of rainfall and rainwater infiltration in the SEEP/W analysis
 - ✤ Prevalent infiltration during the monsoons 5.4 x 10⁻⁸ m/s (estimated from climatic and meteorological data)
 - * Modeled as constant head of water over the entire slope

64

- Interesting inferences !!!
 - ✤ Infiltration leads to the rise of the WT
 - WT, upon rising, intersects the slope face near the 24 colony

65

- Interesting inferences !!!
 - * Intersection of WT at the slope face near the 24 colony (160-180 m from left)
 - Denoted by achievement of zero or negative water flux at the slope face
 - Water comes out of the slope face at the prescribed location
 - Time duration of the rise of WT to intersect: Approximately 3-6 h of rain
 - Coincidentally, the same was reported from the field that the first slide behind the colony was noted after an initial 3-4 hr of rainfall around October 2015

66

- Interesting inferences !!!
 - *Intersection of WT at the slope face near the 24 colony (160-180 m from left)*
 - Field observation of water emanating out of the slope face behind 24 colony

11-04-2023

18

IDRRR, MZU, 2023

Preliminary Models and Failure Analysis

• Still, we were unhappy !!! ⊗

Why so less displacement behind the 24 colony, while the field displacement was maximum at that location !?

• Max displacement around building???

61

11-04-2023

Model Updating from Further Field Studies

- What did we miss earlier???
 - Is it the boreholes and stratigraphy??
 - Yes !! They were not really from failure site
 - It is possible that our assumption of soil stratigraphy and even some of the soil parameters are incorrect ⁽²⁾

* Prescription

- Conduct few more borehole surveys at the landslide site itself
 - Site was accessible? Yes !!

68

11-04-2023

69

- A new understanding of the failure site
 - * Presence of thick cover of loosely deposited fill soil
 - Deposited during construction of workshop and store
 - This information was completely missing in earlier discussions

70

- A new understanding of the failure site
 - * Presence of shale pockets
 - Offers shear surface when get wet due to infiltration and percolation of water

- A new understanding of the failure site
 - Presence of weathered rock/stone
 - Allows easy gradient-based migration of water beneath the slope surface

72

- A new understanding of the failure site
 - * Presence of thick deposit of shale
 - May act either as bedrock when dry, or offer sliding surface when wet

11-04-2023

73

Model Updating from Further Field Studies

- A new understanding of the failure site
 - * A strong intuition developed that the failure is actually shallow slide due to the movement of the loose deposit itself
 - All the retaining walls and workers colony were simply resting on the loose deposit

74

Model Updating from Further Field Studies

• A new numerical model is developed

11-04-2023

SIGMA

IDRRR, MZU, 2023

Model Updating from Further Field Studies

• Model parameters are chosen from the new set of experimental investigations (from both field and lab)

	Layer	Type of soil	Material model (in Sigma/W)	Material model (in Slope/W)	Total paramete Dry	l stress er <u>su</u> (kPa) Saturated	E (MPa)	Unit weight (kN/m ³)
GMA/W and	1	Filling	Elastic plastic	Undrained $\phi = 0$	42	22	4.08	15
SLOPE/W	2	Moderately stiff Shale	Linear Elastic	Impenetrable bedrock	-	-	860	22
	3	Weathered Rock	Linear Elastic	Impenetrable bedrock	-	-	860	22
	4	Hard Shale	Linear Elastic	Impenetrable bedrock	-	-	860	22

Layer	Type of soil	Material model (in SEEP/W)	Saturated hydraulic conductivity (m/sec)	Saturated volumetric water content (m ³ /m ³) obtained from porosity	
1	Filling	Saturated Only	3 × 10 ⁻⁸	0.425	
2	Moderately stiff Shale	Saturated Only	2 × 10 ⁻¹⁰	0.087	SEEP/W
3	Weathered Rock	Saturated Only	2 × 10 ⁻¹⁰	0.087	
4	Hard Shale	Saturated Only	2 × 10 ⁻¹⁰	0.087	

76

Results from Updated Analysis

• Application of various loads in stages (as earlier)

Displacement Results from Updated Analysis

- Application of colony load
 - Invokes sufficient displacement in saturated stage

78

Displacement Results from Updated Analysis

- Application of building load
 - * Another slip deformation zone is initiated

Displacement Results from Updated Analysis

• Application of RW1

80

Displacement Results from Updated Analysis

• Application of RW2

♦ *RW2* placed on loose deposit \rightarrow *Deformation zones start overlapping*

8

Displacement Results from Updated Analysis

- Application of RW3
 - RW3 placed on loose deposit \rightarrow Deformation zones completely overlaps
 - MASS MOVEMENT OF SOIL towards complete failure

82

Displacement Results from Updated Analysis

- Application of RW4
 - The bottommost barrier gets overtopped by excessively displacing soil

OUTCOME OF FORENSIC ANALYSIS

Happy to identify the background reasons of cause, triggers and subsequent failure

Matched well with the several observations made during field reconnaissance
 reconnaissance

84

Adopted Stabilization Scheme

- Cut-off Sheet Pile Wall with adequate drainage
 - * Sheet pile walls to be pushed and embedded in the weathered rock layer
 - 2-sheet pile row / 3-sheet pile row strategies

85

Adopted Stabilization Scheme

• Cut-off Sheet Pile Wall with adequate drainage

* A successful stabilization scheme was noted from stability analysis

		FoS					
SI. No	Stage of construction	Before Stabilization		After Stabilization (3 rows of cutoff wall)	After Stabilization (2 rows of cutoff wall)		
1	In-situ	1.014		2.212	1.589		
2	Colony Load	0.970		1.710	1.5		
3	Building load	0.645		2.244	1.615		
4	Construction R1	0.669		2.205	1.611		
5	Construction of R2	0.669		2.132	1.606		
6	Construction of R3	0.671		2.249	1.641		

- Cut-off Sheet Pile Wall with adequate drainage
 - * Large displacement behind the colony were well arrested

11-04-2023

87

Heritage Railway Station at Udaipur, Agartala, Tripura Construction in Very Difficult Subsoil

Ground Improvement Methodology

88

Project Walkthrough

- Udaipur railway station of Agartala-Sabroom New BG Line Project is situated between Km. 42.2 to 43.3 (Km. 0.00 at Agartala) in the state of Tripura.
- Station is situated in the Sukhsagar Lake of Udaipur.
 - Water logged and marshy soil.
 - Existence of soft soil (Silty Clay) up to 13.3-20 m depth at various locations.
 - Out of 13.3 m, top 8 m is mixed with decomposed trees & wooden logs.
- During construction of building differential settlement of piles.

11-04-2023

89

Rail Links of Tripura (Proposed and Existing)

Udaipur Railway 🖪

Sukhsagar

Lake

Planned Developments

- Railway station building and associated facilities
- Railway line over embankment
- Station Yard...

Uttar Chandrapu

Uttar Chandrapur Mosque Tripura Sundari Temple

90

Udaipur Station

91

Chronology of the Problem

- Formation in station yard:
 - ✤ Construction started in Dec '2010.
 - Excessive settlement in the range of 1-2 m was noticed in Oct' 2011 when constructed embankment height reached 3 m.
 - ✤ The work continued & reached to a height of 5 m.
 - Huge Settlement, Cracks and Heaving of adjacent ground beyond toe (up to 25m on both sides of embankment).
- Station building:
 - *Earth filling started in Nov* 2011.
 - ✤ Pile foundation started in Dec '2011.
 - ✤ Pile foundation completed by Nov'2012.
 - * Differential settlement observed in Pile cap No. 13, 14 and 35 in May 2012
 - Cracks noticed in plinth beam and grade beams connected to above mentioned pile caps.
 - * Brickwork for wall done in Jan' 2014 and differential settlement increased further.

11-04-2023

IDRRR, MZU, 2023

A 16.10

94

3-Stage Remedial Measures

- Ground improvement of the adjoining area by Pre-fabricated Vertical Drain (PVD) for accelerating consolidation of soft soil.
 Arresting long-term settlement
- Sheet piling of adequate retaining capacity around the station building before stripping off the existing surrounding embankment for PVD installation.

* Preventing the movement of embankment soil

• Retrofitting of the station building by providing additional pile raft system and Carbon Fibre Reinforced Polymer (CFRP).

* Distribution of building load and Strengthening the building

95

Embankments on Soft Soils

- Embankment constructions are required for highways, railways
 Lengths are in many kms
- Many times the foundation soils are found to be of soft soils
 - Low shear strength
 - May not have sufficient bearing capacity
 - * High compressibility
 - Undergo higher settlement
 - Resulting large differential settlements
- The design and construction of embankments over soft soil has always been a challenging task for engineers

Proper engineered attention required during initial planning stage with proper ground improvement techniques

11-04-2023

Problems Faced during Embankment Construction

- Height of embankment = 6.2 m
- Embankment construction started in stages: Dec' 2010.
 - September 2011
 - First failure noticed at 3.0-3.5 m height:
 - ***** *March* 2012
 - Large settlement of 5-5.2 m
 - Heaving up of ground until 30 m distance from the embankment
- After that further construction stopped

11-04-2023

98

Problem Description

• New broad gauge (BG) railway line project (about 110 km) railway embankments are being constructed

- * The site of interest is in a water logging area
- * During monsoon, the water level rises approx. to 3 4 m above the EGL
- * The old soil reports available for the site indicate that the subsoil consist of soft soils up to about 12-13 m below EGL.
- *Construction of the embankment was started during Dec 2010 directly on the natural soil without giving any pre-treatment.*

11-04-2023

99

Field Investigation

Locations of boreholes (CE Testing report, 2013)

11-04-2023

100

Boreholes along the railway line

-AGARTALA

SABROOM ---

11-04-2023

IDRRR, MZU, 2023

Stratification of the subsoil

Stratum	SPT N-values	Depth (m)
Layer I	3 - 5	4
Layer II	5 - 10	5
Layer III	10 - 15	4
Layer IV	> 70	5

Tentative Subsurface Profiling

- From available bore log data of 5 boreholes, 4 different layers are identified.
- Depending on the SPT N-values, cohesion and physical appearance of the soil.

Investigations for Forensic Analysis

- New Borelogs in adjacent areas (outer embankment area)
- SPT
- SCPT
- UDS collection and Laboratory tests

11-04-2023

104

Boreholes at the outer side of embankment

11-04-2023

105

Boreholes at the outer side of embankment

11-04-2023

106

Typical SCPT results

Corr. Friction Resistance,fs, kg/sqcm

11-04-2023

107

Laboratory tests on Undisturbed Soil

- * Proper identification and classification of the sub-soil deposits is required.
- * Undisturbed samples of 100 mm dia. were collected by means of pushing Shelby tubes.
- * Index and Engineering properties of the soil were found out. / Wax Coat

Undisturbed sample cores obtained from the site location

Bore hole details

11-04-2023

108

Index Tests

a) Dry Sieve analysis, b) Hydrometer Analysis, c) Liquid Limit, d) Specific gravity by gravity bottles and e) Plastic Limit

109

Index Properties

• Summary of index properties and classification of cohesive soil samples

Bore Hole	Sample Number	Depth (m)	Natural Moisture content, %	Specific Gravity	Liquid Limit	Plastic Limit
BH 01	UDS-02	1.65-2.10	28.57	2.511	42.6	-
BH 03	UDS-01	2.00-2.45	26.58	2.601	-	20
BH 01	UDS-04	5.25-5.70	82.52	1.398	55.2	19.04
BH 04	UDS-06	9.55-10.00	23.54	2.335	42.4	20.8
BH 03	UDS-04	6.25-6.70	40.29	2.725	47.6	-
BH 05	UDS-04	5.15-5.60	80	2.257	48.8	-

11-04-2023

Particle size Distribution

Particle size	Layer I (%)	Layer II (%)	Layer III (%)
Coarse sand (4.75mm-2mm)	0.5	2	0
Medium sand (2mm-0.425mm)	1.5	0	2
Fine sand (0.425m-0.075mm)	40	7	30
Silt (0. 075mm-0.002mm)	28	47	34
Clay (<0.002mm)	30	44	34

Both wet sieve and hydrometer analysis are conducted to complete particle size distribution of the sub-soil

Grain Size (mm)

Engineering Properties of soil

- Undrained shear strength of the soil is found out from Unconfined Compression test (UCS) and laboratory Vane shear test.
- * Compressibility and Permeability Parameters are found out from Oedometer test.

a) Vane Shear test b) Uniaxial compression test and c) Oedometer Test

11-04-2023

Undrained Shear Strength

			UCS		Vane Shear			
Bore Hole	Sample Number	Depth (m)	Moisture Content, %	c _u (kPa)	Moisture Content, %	c _u (kPa)	Consistency	
BH 01	UDS-02	1.65-2.10	28.57	26.48	30.21	34.3	Soft	
BH 01	UDS-04	5.25-5.70	75.23	12.17	82.52	7.775	Very Soft	
BH 01	UDS-10	16.10-16.55	-	7.03	-	-	Very Soft	
BH 03	UDS-01	2.00-2.45	26.58	55.69		16.01	Very Soft	
вн оз	UDS-04	6.25-6.70	30.92	28.61	40.29	44.36	Medium	
BH 04	UDS-04	5.15-5.60	-	-	21.58	105.2	Stiff	
BH 04	UDS-06	9.55-10.00	27.67	41.87	23.54	53.97	Medium	
BH 05	UDS-02	1.50-1.95	15.16	54.11	20.36	25.61	Stiff	
BH 05	UDS-04	5.15-5.60	-	-	80	14.17	Soft	
BH 05	UDS-08	12.5-12.6	34.54	22.5	24.4	54.88	Soft	

Distribution of undrained shear strength is very erratic (mostly soft) – conducive of large differential settlements

11-04-2023

113

Modes of failure

Stress strain response of different layers under unconfined compression

Consolidation Tests

- Typical void ratio against effective stress for different layers of the soil are drawn from the readings of consolidation test.
- C_c and C_v values are calculated from the graphs.

Borehole	Depth (m)	Moisture Content, w%	Initial Void Ratio, e _o	C _c	C _v (cm²/sec)	k _v (cm/sec)
UDS-04	10.65- 11.10	40.8	1.126	0.365	0.000576	1.57x10 ⁻⁰⁸
UDS-03	9.0-9.45	61	1.702	0.664	0.001369	5.05x10 ⁻⁰⁸
UDS-03	10.0-10.45	87.9	2.719	1.079	0.000838	6.04x10 ⁻⁰⁸

11-04-2023

115

Subsoil Parameters

Stratum	Fill	Layer I	Layer II	Layer III	Layer IV
Unit Weight (kN/m ³)	19.5	17.5	18	18	19
Specific Gravity	2.45	2.2	2.34		-
Cohesion (kPa)	30	7	15	25	0
Angle of Internal Friction, ϕ °	-	<u> </u>	-		32-35
Natural Moisture content	24%	48%	23.54%	34.54%	-
Liquid Limit	42%	50%	42.40%	-	-
Plastic Limit	20%	19%	20.80%	-	-
Plasticity Index	22%	31%	21.60%	-	-
Compression Index, C _c	-	1.079	0.365	0.664	-
Coefficient of Consolidation, C _v (cm ² /sec)		0.000838	0.000576	0.001369	
Permeability (cm/sec), k _v	-	8.76x10 ⁻⁹	1.57x10 ⁻⁸	5.05x10 ⁻⁸	-
Initial void ratio, e _o	-	2.719	1.126	1.702	-

116

Sub-soil Profile with properties

- The ultimate soil profile with parameters found out from the laboratory tests.
- These properties will be used in modeling in Settle3D software.

Layer I	Υ _b = 17.5 kN/m³, C = 7 kPa	4 m 🌔	\uparrow
Layer II	Υ _b = 18 kN/m³, C = 15 kPa	5 m	13 m
Layer III	$Y_{\rm b} = 18 \text{ kN/m}^3$, C = 25 kPa	4 m 🌔	
Layer IV	<u>Υ_b = 19 <u>kN</u>/m³, φ = 32°-35°</u>	5 m	

Railway Embankment Resting on Soft Soil

118

Soil profile considered for the analysis

119

Analysis of Embankment stability

- Using SETTLE3D software (Rocscience 2014)
 - The primary consolidation settlement of 0.505 m, 0.755 m, and 0.951 m after 3.14 m, 4.64 m, and 6 m embankment heights were observed.

- Numerical study confirms large deformations observed in the field
- Warrants for ground improvement

Large Differential Settlements along the Embankment

121

Initial Recommendation

- Construction of widened embankment encompassing failed one
 - Having slope of 4.5:1 for 3.1 m height from GL and slope of 2.5:1 for rest 3.1m height of embankment with 26.5 m wider sub bank at 3.1m from top.
 - * Stage Construction with measurement settlement & pore pressure.
- Requirement of Additional land.
- Requirement of more time for stage construction
- Possibility of settlement of central embankment in future

122

Restoration of embankment

- Prefabricated vertical drains (PVDs) or sand piles with preloading
 - *Owing to the time constraint of the project and unavailability of stone aggregate nearby to the site*

123

Typical Schematic of Railway Embankment on PVD

11-04-2023

CE 532: Lecture 1: Introductory Session

129

a) Laying of Coarse sand, b) Laying of Non-Woven Geo-textile, c) Laying of Granular Blanket.

d) Laying of Woven Geo-textile, e & f) Stage construction of embankment.

11-04-2023

131

Instrumentation

Piezometers & Settlement Gauges

11-04-2023

Construction Plan for Embankment at Udaipur

Height of	P _{0,}	δΡ,	No of Days	Settlement	Cumulative	Time*		Cumulative	
embankm	kPa[H/2*6.	kPa		due to load	Settlement,	period,	Uh	settlement, m	U
ent, m	53]	[(∆h*19)+2		with time,	mm	days		(achievable)	
		4]		mm					
0	43.26	0.00	0	0.00	0.00	0	0.00	0.00	0
0.5	43.26	33.50	20	0.488	0.488	20	0.45	0.22	17.75
1	43.26	43.00	20	0.099	0.587	40	0.70	0.42	33.71
1.5	43.26	52.50	20	0.089	0.676	60	0.84	0.56	45.37
2	43.26	62.00	20	0.081	0.756	80	0.91	0.69	55.67
2.5	43.26	71.50	20	0.074	0.831	100	0.95	0.79	63.76
6.2	43.26	141.80		0.407	1.238	**			

Considering 20 days of time period after execution of each stage of 0.5m height.

Height of embankment (m)	No of Days	Corresponding degree of consolidation	Initial Cohesi on (kPa)	Increased pressure δP [due to DL (kPa)	Gain in Cohesion value	Final Cohesion , kPa	Bearing Capacity of soil, in kN/m ²
0	0	0	4	0	0	4	20.6
0.5	20	45	4	9.5	0.75	4.75	24.4
1	20	71	4	19	2.38	6.38	32.8
1.5	20	83	4	28.5	4.18	8.18	42
2	20	91	4	38	6.11	10.11	51.9
2.5	20	95	4	47.5	7.97	11.97	61.5

Suzuki and Yasuhara, Soils and Foundations, 2007

11-04-2023

Record of Pore Water Pressure, Settlement & N-Value

N-Value Before & After Installation of PVDs (Ch: 42.44)							
Depth	Description	Old	New				
from	of the Soil	Bank	Bank				
OGL		(May	(11 Jan				
		2014)	2016)				
2	Soft , deep, grey	4	9				
3	clayey soil	4	15				
4.5	Medium, deep,		16				
6	grey clayey silty soil	4	11				
7	Medium, deep,	7	16				
9	grey clay silty sand soil	6	25				
11	Medium dense	4	28				
12.5	silty sand	3	29				
14.5	Medium to dense	6	36				
16	sandy soil	66	72				
17.5	Very dense sandy soil	100	100				
N-Valu	e After 51 days of P	VD inst	allation				

11-04-2023

135

Retrofitting of Railway Station Building

USE OF MODERN RETROFITTING TECHNIQUES IN UDAIPUR STATION BUILDING OF AGARTALA-SABROOM NEW LINE PROJECT OF N.F.RAILWAY

By: Harpal Singh, Chief Engineer/Con-8/Maligaon,

B.N.Bhaskar, Deputy Chief Engineer/Con/Agartala,

Koteshwar Ponnala, Asstt. Executive Engineer/Udaipur

http://ipweindia.org.in/index.php/books-publications/technical-papers/10-publications https://drive.google.com/file/d/1b4Xu7IIM6ZykaMArHBwnIIFzDZOqLLaH/view?usp=sharing

11-04-2023 IDRRR, MZV, 2023

11-04-2023

Heritage Railway Station, Udaipur, Agartala

• Application of preloading and PVD for developing of railway yard in a ditch marshland

11-04-2023

IDRRR, MZU, 2023

11-04-2023

